| 1 | //===--- Threading.cpp - Abstractions for multithreading ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "support/Threading.h" |
| 10 | #include "support/Trace.h" |
| 11 | #include "llvm/ADT/ScopeExit.h" |
| 12 | #include "llvm/Support/Threading.h" |
| 13 | #include "llvm/Support/thread.h" |
| 14 | #include <atomic> |
| 15 | #include <optional> |
| 16 | #include <thread> |
| 17 | #ifdef __USE_POSIX |
| 18 | #include <pthread.h> |
| 19 | #elif defined(__APPLE__) |
| 20 | #include <sys/resource.h> |
| 21 | #elif defined(_WIN32) |
| 22 | #include <windows.h> |
| 23 | #endif |
| 24 | |
| 25 | namespace clang { |
| 26 | namespace clangd { |
| 27 | |
| 28 | void Notification::notify() { |
| 29 | { |
| 30 | std::lock_guard<std::mutex> Lock(Mu); |
| 31 | Notified = true; |
| 32 | // Broadcast with the lock held. This ensures that it's safe to destroy |
| 33 | // a Notification after wait() returns, even from another thread. |
| 34 | CV.notify_all(); |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | bool Notification::wait(Deadline D) const { |
| 39 | std::unique_lock<std::mutex> Lock(Mu); |
| 40 | return clangd::wait(Lock, CV, D, F: [&] { return Notified; }); |
| 41 | } |
| 42 | |
| 43 | Semaphore::Semaphore(std::size_t MaxLocks) : FreeSlots(MaxLocks) {} |
| 44 | |
| 45 | bool Semaphore::try_lock() { |
| 46 | std::unique_lock<std::mutex> Lock(Mutex); |
| 47 | if (FreeSlots > 0) { |
| 48 | --FreeSlots; |
| 49 | return true; |
| 50 | } |
| 51 | return false; |
| 52 | } |
| 53 | |
| 54 | void Semaphore::lock() { |
| 55 | trace::Span Span("WaitForFreeSemaphoreSlot" ); |
| 56 | // trace::Span can also acquire locks in ctor and dtor, we make sure it |
| 57 | // happens when Semaphore's own lock is not held. |
| 58 | { |
| 59 | std::unique_lock<std::mutex> Lock(Mutex); |
| 60 | SlotsChanged.wait(lock&: Lock, p: [&]() { return FreeSlots > 0; }); |
| 61 | --FreeSlots; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | void Semaphore::unlock() { |
| 66 | std::unique_lock<std::mutex> Lock(Mutex); |
| 67 | ++FreeSlots; |
| 68 | Lock.unlock(); |
| 69 | |
| 70 | SlotsChanged.notify_one(); |
| 71 | } |
| 72 | |
| 73 | AsyncTaskRunner::~AsyncTaskRunner() { wait(); } |
| 74 | |
| 75 | bool AsyncTaskRunner::wait(Deadline D) const { |
| 76 | std::unique_lock<std::mutex> Lock(Mutex); |
| 77 | return clangd::wait(Lock, CV&: TasksReachedZero, D, |
| 78 | F: [&] { return InFlightTasks == 0; }); |
| 79 | } |
| 80 | |
| 81 | void AsyncTaskRunner::runAsync(const llvm::Twine &Name, |
| 82 | llvm::unique_function<void()> Action) { |
| 83 | { |
| 84 | std::lock_guard<std::mutex> Lock(Mutex); |
| 85 | ++InFlightTasks; |
| 86 | } |
| 87 | |
| 88 | auto CleanupTask = llvm::make_scope_exit(F: [this]() { |
| 89 | std::lock_guard<std::mutex> Lock(Mutex); |
| 90 | int NewTasksCnt = --InFlightTasks; |
| 91 | if (NewTasksCnt == 0) { |
| 92 | // Note: we can't unlock here because we don't want the object to be |
| 93 | // destroyed before we notify. |
| 94 | TasksReachedZero.notify_one(); |
| 95 | } |
| 96 | }); |
| 97 | |
| 98 | auto Task = [Name = Name.str(), Action = std::move(Action), |
| 99 | Cleanup = std::move(CleanupTask)]() mutable { |
| 100 | llvm::set_thread_name(Name); |
| 101 | Action(); |
| 102 | // Make sure function stored by ThreadFunc is destroyed before Cleanup runs. |
| 103 | Action = nullptr; |
| 104 | }; |
| 105 | |
| 106 | // Ensure our worker threads have big enough stacks to run clang. |
| 107 | llvm::thread Thread( |
| 108 | /*clang::DesiredStackSize*/ std::optional<unsigned>(8 << 20), |
| 109 | std::move(Task)); |
| 110 | Thread.detach(); |
| 111 | } |
| 112 | |
| 113 | Deadline timeoutSeconds(std::optional<double> Seconds) { |
| 114 | using namespace std::chrono; |
| 115 | if (!Seconds) |
| 116 | return Deadline::infinity(); |
| 117 | return steady_clock::now() + |
| 118 | duration_cast<steady_clock::duration>(d: duration<double>(*Seconds)); |
| 119 | } |
| 120 | |
| 121 | void wait(std::unique_lock<std::mutex> &Lock, std::condition_variable &CV, |
| 122 | Deadline D) { |
| 123 | if (D == Deadline::zero()) |
| 124 | return; |
| 125 | if (D == Deadline::infinity()) |
| 126 | return CV.wait(lock&: Lock); |
| 127 | CV.wait_until(lock&: Lock, atime: D.time()); |
| 128 | } |
| 129 | |
| 130 | bool PeriodicThrottler::operator()() { |
| 131 | Rep Now = Stopwatch::now().time_since_epoch().count(); |
| 132 | Rep OldNext = Next.load(m: std::memory_order_acquire); |
| 133 | if (Now < OldNext) |
| 134 | return false; |
| 135 | // We're ready to run (but may be racing other threads). |
| 136 | // Work out the updated target time, and run if we successfully bump it. |
| 137 | Rep NewNext = Now + Period; |
| 138 | return Next.compare_exchange_strong(i1&: OldNext, i2: NewNext, |
| 139 | m: std::memory_order_acq_rel); |
| 140 | } |
| 141 | |
| 142 | } // namespace clangd |
| 143 | } // namespace clang |
| 144 | |