Warning: This file is not a C or C++ file. It does not have highlighting.
1 | //===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Defines the clang::Preprocessor interface. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H |
15 | #define LLVM_CLANG_LEX_PREPROCESSOR_H |
16 | |
17 | #include "clang/Basic/Diagnostic.h" |
18 | #include "clang/Basic/DiagnosticIDs.h" |
19 | #include "clang/Basic/IdentifierTable.h" |
20 | #include "clang/Basic/LLVM.h" |
21 | #include "clang/Basic/LangOptions.h" |
22 | #include "clang/Basic/Module.h" |
23 | #include "clang/Basic/SourceLocation.h" |
24 | #include "clang/Basic/SourceManager.h" |
25 | #include "clang/Basic/TokenKinds.h" |
26 | #include "clang/Lex/HeaderSearch.h" |
27 | #include "clang/Lex/Lexer.h" |
28 | #include "clang/Lex/MacroInfo.h" |
29 | #include "clang/Lex/ModuleLoader.h" |
30 | #include "clang/Lex/ModuleMap.h" |
31 | #include "clang/Lex/PPCallbacks.h" |
32 | #include "clang/Lex/Token.h" |
33 | #include "clang/Lex/TokenLexer.h" |
34 | #include "llvm/ADT/ArrayRef.h" |
35 | #include "llvm/ADT/DenseMap.h" |
36 | #include "llvm/ADT/FoldingSet.h" |
37 | #include "llvm/ADT/FunctionExtras.h" |
38 | #include "llvm/ADT/PointerUnion.h" |
39 | #include "llvm/ADT/STLExtras.h" |
40 | #include "llvm/ADT/SmallPtrSet.h" |
41 | #include "llvm/ADT/SmallVector.h" |
42 | #include "llvm/ADT/StringRef.h" |
43 | #include "llvm/ADT/TinyPtrVector.h" |
44 | #include "llvm/ADT/iterator_range.h" |
45 | #include "llvm/Support/Allocator.h" |
46 | #include "llvm/Support/Casting.h" |
47 | #include "llvm/Support/Registry.h" |
48 | #include <cassert> |
49 | #include <cstddef> |
50 | #include <cstdint> |
51 | #include <map> |
52 | #include <memory> |
53 | #include <optional> |
54 | #include <string> |
55 | #include <utility> |
56 | #include <vector> |
57 | |
58 | namespace llvm { |
59 | |
60 | template<unsigned InternalLen> class SmallString; |
61 | |
62 | } // namespace llvm |
63 | |
64 | namespace clang { |
65 | |
66 | class CodeCompletionHandler; |
67 | class CommentHandler; |
68 | class DirectoryEntry; |
69 | class EmptylineHandler; |
70 | class ExternalPreprocessorSource; |
71 | class FileEntry; |
72 | class FileManager; |
73 | class HeaderSearch; |
74 | class MacroArgs; |
75 | class PragmaHandler; |
76 | class PragmaNamespace; |
77 | class PreprocessingRecord; |
78 | class PreprocessorLexer; |
79 | class PreprocessorOptions; |
80 | class ScratchBuffer; |
81 | class TargetInfo; |
82 | |
83 | namespace Builtin { |
84 | class Context; |
85 | } |
86 | |
87 | /// Stores token information for comparing actual tokens with |
88 | /// predefined values. Only handles simple tokens and identifiers. |
89 | class TokenValue { |
90 | tok::TokenKind Kind; |
91 | IdentifierInfo *II; |
92 | |
93 | public: |
94 | TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) { |
95 | assert(Kind != tok::raw_identifier && "Raw identifiers are not supported."); |
96 | assert(Kind != tok::identifier && |
97 | "Identifiers should be created by TokenValue(IdentifierInfo *)"); |
98 | assert(!tok::isLiteral(Kind) && "Literals are not supported."); |
99 | assert(!tok::isAnnotation(Kind) && "Annotations are not supported."); |
100 | } |
101 | |
102 | TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {} |
103 | |
104 | bool operator==(const Token &Tok) const { |
105 | return Tok.getKind() == Kind && |
106 | (!II || II == Tok.getIdentifierInfo()); |
107 | } |
108 | }; |
109 | |
110 | /// Context in which macro name is used. |
111 | enum MacroUse { |
112 | // other than #define or #undef |
113 | MU_Other = 0, |
114 | |
115 | // macro name specified in #define |
116 | MU_Define = 1, |
117 | |
118 | // macro name specified in #undef |
119 | MU_Undef = 2 |
120 | }; |
121 | |
122 | /// Engages in a tight little dance with the lexer to efficiently |
123 | /// preprocess tokens. |
124 | /// |
125 | /// Lexers know only about tokens within a single source file, and don't |
126 | /// know anything about preprocessor-level issues like the \#include stack, |
127 | /// token expansion, etc. |
128 | class Preprocessor { |
129 | friend class VAOptDefinitionContext; |
130 | friend class VariadicMacroScopeGuard; |
131 | |
132 | llvm::unique_function<void(const clang::Token &)> OnToken; |
133 | std::shared_ptr<PreprocessorOptions> PPOpts; |
134 | DiagnosticsEngine *Diags; |
135 | LangOptions &LangOpts; |
136 | const TargetInfo *Target = nullptr; |
137 | const TargetInfo *AuxTarget = nullptr; |
138 | FileManager &FileMgr; |
139 | SourceManager &SourceMgr; |
140 | std::unique_ptr<ScratchBuffer> ScratchBuf; |
141 | HeaderSearch &HeaderInfo; |
142 | ModuleLoader &TheModuleLoader; |
143 | |
144 | /// External source of macros. |
145 | ExternalPreprocessorSource *ExternalSource; |
146 | |
147 | /// A BumpPtrAllocator object used to quickly allocate and release |
148 | /// objects internal to the Preprocessor. |
149 | llvm::BumpPtrAllocator BP; |
150 | |
151 | /// Identifiers for builtin macros and other builtins. |
152 | IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__ |
153 | IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__ |
154 | IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__ |
155 | IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__ |
156 | IdentifierInfo *Ident__FILE_NAME__; // __FILE_NAME__ |
157 | IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__ |
158 | IdentifierInfo *Ident__COUNTER__; // __COUNTER__ |
159 | IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma |
160 | IdentifierInfo *Ident__identifier; // __identifier |
161 | IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__ |
162 | IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__ |
163 | IdentifierInfo *Ident__has_feature; // __has_feature |
164 | IdentifierInfo *Ident__has_extension; // __has_extension |
165 | IdentifierInfo *Ident__has_builtin; // __has_builtin |
166 | IdentifierInfo *Ident__has_constexpr_builtin; // __has_constexpr_builtin |
167 | IdentifierInfo *Ident__has_attribute; // __has_attribute |
168 | IdentifierInfo *Ident__has_include; // __has_include |
169 | IdentifierInfo *Ident__has_include_next; // __has_include_next |
170 | IdentifierInfo *Ident__has_warning; // __has_warning |
171 | IdentifierInfo *Ident__is_identifier; // __is_identifier |
172 | IdentifierInfo *Ident__building_module; // __building_module |
173 | IdentifierInfo *Ident__MODULE__; // __MODULE__ |
174 | IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute |
175 | IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute |
176 | IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute |
177 | IdentifierInfo *Ident__is_target_arch; // __is_target_arch |
178 | IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor |
179 | IdentifierInfo *Ident__is_target_os; // __is_target_os |
180 | IdentifierInfo *Ident__is_target_environment; // __is_target_environment |
181 | IdentifierInfo *Ident__is_target_variant_os; |
182 | IdentifierInfo *Ident__is_target_variant_environment; |
183 | IdentifierInfo *Ident__FLT_EVAL_METHOD__; // __FLT_EVAL_METHOD |
184 | |
185 | // Weak, only valid (and set) while InMacroArgs is true. |
186 | Token* ArgMacro; |
187 | |
188 | SourceLocation DATELoc, TIMELoc; |
189 | |
190 | // FEM_UnsetOnCommandLine means that an explicit evaluation method was |
191 | // not specified on the command line. The target is queried to set the |
192 | // default evaluation method. |
193 | LangOptions::FPEvalMethodKind CurrentFPEvalMethod = |
194 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; |
195 | |
196 | // The most recent pragma location where the floating point evaluation |
197 | // method was modified. This is used to determine whether the |
198 | // 'pragma clang fp eval_method' was used whithin the current scope. |
199 | SourceLocation LastFPEvalPragmaLocation; |
200 | |
201 | LangOptions::FPEvalMethodKind TUFPEvalMethod = |
202 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; |
203 | |
204 | // Next __COUNTER__ value, starts at 0. |
205 | unsigned CounterValue = 0; |
206 | |
207 | enum { |
208 | /// Maximum depth of \#includes. |
209 | MaxAllowedIncludeStackDepth = 200 |
210 | }; |
211 | |
212 | // State that is set before the preprocessor begins. |
213 | bool KeepComments : 1; |
214 | bool KeepMacroComments : 1; |
215 | bool SuppressIncludeNotFoundError : 1; |
216 | |
217 | // State that changes while the preprocessor runs: |
218 | bool InMacroArgs : 1; // True if parsing fn macro invocation args. |
219 | |
220 | /// Whether the preprocessor owns the header search object. |
221 | bool OwnsHeaderSearch : 1; |
222 | |
223 | /// True if macro expansion is disabled. |
224 | bool DisableMacroExpansion : 1; |
225 | |
226 | /// Temporarily disables DisableMacroExpansion (i.e. enables expansion) |
227 | /// when parsing preprocessor directives. |
228 | bool MacroExpansionInDirectivesOverride : 1; |
229 | |
230 | class ResetMacroExpansionHelper; |
231 | |
232 | /// Whether we have already loaded macros from the external source. |
233 | mutable bool ReadMacrosFromExternalSource : 1; |
234 | |
235 | /// True if pragmas are enabled. |
236 | bool PragmasEnabled : 1; |
237 | |
238 | /// True if the current build action is a preprocessing action. |
239 | bool PreprocessedOutput : 1; |
240 | |
241 | /// True if we are currently preprocessing a #if or #elif directive |
242 | bool ParsingIfOrElifDirective; |
243 | |
244 | /// True if we are pre-expanding macro arguments. |
245 | bool InMacroArgPreExpansion; |
246 | |
247 | /// Mapping/lookup information for all identifiers in |
248 | /// the program, including program keywords. |
249 | mutable IdentifierTable Identifiers; |
250 | |
251 | /// This table contains all the selectors in the program. |
252 | /// |
253 | /// Unlike IdentifierTable above, this table *isn't* populated by the |
254 | /// preprocessor. It is declared/expanded here because its role/lifetime is |
255 | /// conceptually similar to the IdentifierTable. In addition, the current |
256 | /// control flow (in clang::ParseAST()), make it convenient to put here. |
257 | /// |
258 | /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to |
259 | /// the lifetime of the preprocessor. |
260 | SelectorTable Selectors; |
261 | |
262 | /// Information about builtins. |
263 | std::unique_ptr<Builtin::Context> BuiltinInfo; |
264 | |
265 | /// Tracks all of the pragmas that the client registered |
266 | /// with this preprocessor. |
267 | std::unique_ptr<PragmaNamespace> PragmaHandlers; |
268 | |
269 | /// Pragma handlers of the original source is stored here during the |
270 | /// parsing of a model file. |
271 | std::unique_ptr<PragmaNamespace> PragmaHandlersBackup; |
272 | |
273 | /// Tracks all of the comment handlers that the client registered |
274 | /// with this preprocessor. |
275 | std::vector<CommentHandler *> CommentHandlers; |
276 | |
277 | /// Empty line handler. |
278 | EmptylineHandler *Emptyline = nullptr; |
279 | |
280 | public: |
281 | /// The kind of translation unit we are processing. |
282 | const TranslationUnitKind TUKind; |
283 | |
284 | private: |
285 | /// The code-completion handler. |
286 | CodeCompletionHandler *CodeComplete = nullptr; |
287 | |
288 | /// The file that we're performing code-completion for, if any. |
289 | const FileEntry *CodeCompletionFile = nullptr; |
290 | |
291 | /// The offset in file for the code-completion point. |
292 | unsigned CodeCompletionOffset = 0; |
293 | |
294 | /// The location for the code-completion point. This gets instantiated |
295 | /// when the CodeCompletionFile gets \#include'ed for preprocessing. |
296 | SourceLocation CodeCompletionLoc; |
297 | |
298 | /// The start location for the file of the code-completion point. |
299 | /// |
300 | /// This gets instantiated when the CodeCompletionFile gets \#include'ed |
301 | /// for preprocessing. |
302 | SourceLocation CodeCompletionFileLoc; |
303 | |
304 | /// The source location of the \c import contextual keyword we just |
305 | /// lexed, if any. |
306 | SourceLocation ModuleImportLoc; |
307 | |
308 | /// The import path for named module that we're currently processing. |
309 | SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> NamedModuleImportPath; |
310 | |
311 | /// Whether the import is an `@import` or a standard c++ modules import. |
312 | bool IsAtImport = false; |
313 | |
314 | /// Whether the last token we lexed was an '@'. |
315 | bool LastTokenWasAt = false; |
316 | |
317 | /// A position within a C++20 import-seq. |
318 | class StdCXXImportSeq { |
319 | public: |
320 | enum State : int { |
321 | // Positive values represent a number of unclosed brackets. |
322 | AtTopLevel = 0, |
323 | AfterTopLevelTokenSeq = -1, |
324 | AfterExport = -2, |
325 | AfterImportSeq = -3, |
326 | }; |
327 | |
328 | StdCXXImportSeq(State S) : S(S) {} |
329 | |
330 | /// Saw any kind of open bracket. |
331 | void handleOpenBracket() { |
332 | S = static_cast<State>(std::max<int>(S, 0) + 1); |
333 | } |
334 | /// Saw any kind of close bracket other than '}'. |
335 | void handleCloseBracket() { |
336 | S = static_cast<State>(std::max<int>(S, 1) - 1); |
337 | } |
338 | /// Saw a close brace. |
339 | void handleCloseBrace() { |
340 | handleCloseBracket(); |
341 | if (S == AtTopLevel && !AfterHeaderName) |
342 | S = AfterTopLevelTokenSeq; |
343 | } |
344 | /// Saw a semicolon. |
345 | void handleSemi() { |
346 | if (atTopLevel()) { |
347 | S = AfterTopLevelTokenSeq; |
348 | AfterHeaderName = false; |
349 | } |
350 | } |
351 | |
352 | /// Saw an 'export' identifier. |
353 | void handleExport() { |
354 | if (S == AfterTopLevelTokenSeq) |
355 | S = AfterExport; |
356 | else if (S <= 0) |
357 | S = AtTopLevel; |
358 | } |
359 | /// Saw an 'import' identifier. |
360 | void handleImport() { |
361 | if (S == AfterTopLevelTokenSeq || S == AfterExport) |
362 | S = AfterImportSeq; |
363 | else if (S <= 0) |
364 | S = AtTopLevel; |
365 | } |
366 | |
367 | /// Saw a 'header-name' token; do not recognize any more 'import' tokens |
368 | /// until we reach a top-level semicolon. |
369 | void handleHeaderName() { |
370 | if (S == AfterImportSeq) |
371 | AfterHeaderName = true; |
372 | handleMisc(); |
373 | } |
374 | |
375 | /// Saw any other token. |
376 | void handleMisc() { |
377 | if (S <= 0) |
378 | S = AtTopLevel; |
379 | } |
380 | |
381 | bool atTopLevel() { return S <= 0; } |
382 | bool afterImportSeq() { return S == AfterImportSeq; } |
383 | bool afterTopLevelSeq() { return S == AfterTopLevelTokenSeq; } |
384 | |
385 | private: |
386 | State S; |
387 | /// Whether we're in the pp-import-suffix following the header-name in a |
388 | /// pp-import. If so, a close-brace is not sufficient to end the |
389 | /// top-level-token-seq of an import-seq. |
390 | bool AfterHeaderName = false; |
391 | }; |
392 | |
393 | /// Our current position within a C++20 import-seq. |
394 | StdCXXImportSeq StdCXXImportSeqState = StdCXXImportSeq::AfterTopLevelTokenSeq; |
395 | |
396 | /// Track whether we are in a Global Module Fragment |
397 | class TrackGMF { |
398 | public: |
399 | enum GMFState : int { |
400 | GMFActive = 1, |
401 | MaybeGMF = 0, |
402 | BeforeGMFIntroducer = -1, |
403 | GMFAbsentOrEnded = -2, |
404 | }; |
405 | |
406 | TrackGMF(GMFState S) : S(S) {} |
407 | |
408 | /// Saw a semicolon. |
409 | void handleSemi() { |
410 | // If it is immediately after the first instance of the module keyword, |
411 | // then that introduces the GMF. |
412 | if (S == MaybeGMF) |
413 | S = GMFActive; |
414 | } |
415 | |
416 | /// Saw an 'export' identifier. |
417 | void handleExport() { |
418 | // The presence of an 'export' keyword always ends or excludes a GMF. |
419 | S = GMFAbsentOrEnded; |
420 | } |
421 | |
422 | /// Saw an 'import' identifier. |
423 | void handleImport(bool AfterTopLevelTokenSeq) { |
424 | // If we see this before any 'module' kw, then we have no GMF. |
425 | if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) |
426 | S = GMFAbsentOrEnded; |
427 | } |
428 | |
429 | /// Saw a 'module' identifier. |
430 | void handleModule(bool AfterTopLevelTokenSeq) { |
431 | // This was the first module identifier and not preceded by any token |
432 | // that would exclude a GMF. It could begin a GMF, but only if directly |
433 | // followed by a semicolon. |
434 | if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) |
435 | S = MaybeGMF; |
436 | else |
437 | S = GMFAbsentOrEnded; |
438 | } |
439 | |
440 | /// Saw any other token. |
441 | void handleMisc() { |
442 | // We saw something other than ; after the 'module' kw, so not a GMF. |
443 | if (S == MaybeGMF) |
444 | S = GMFAbsentOrEnded; |
445 | } |
446 | |
447 | bool inGMF() { return S == GMFActive; } |
448 | |
449 | private: |
450 | /// Track the transitions into and out of a Global Module Fragment, |
451 | /// if one is present. |
452 | GMFState S; |
453 | }; |
454 | |
455 | TrackGMF TrackGMFState = TrackGMF::BeforeGMFIntroducer; |
456 | |
457 | /// Track the status of the c++20 module decl. |
458 | /// |
459 | /// module-declaration: |
460 | /// 'export'[opt] 'module' module-name module-partition[opt] |
461 | /// attribute-specifier-seq[opt] ';' |
462 | /// |
463 | /// module-name: |
464 | /// module-name-qualifier[opt] identifier |
465 | /// |
466 | /// module-partition: |
467 | /// ':' module-name-qualifier[opt] identifier |
468 | /// |
469 | /// module-name-qualifier: |
470 | /// identifier '.' |
471 | /// module-name-qualifier identifier '.' |
472 | /// |
473 | /// Transition state: |
474 | /// |
475 | /// NotAModuleDecl --- export ---> FoundExport |
476 | /// NotAModuleDecl --- module ---> ImplementationCandidate |
477 | /// FoundExport --- module ---> InterfaceCandidate |
478 | /// ImplementationCandidate --- Identifier ---> ImplementationCandidate |
479 | /// ImplementationCandidate --- period ---> ImplementationCandidate |
480 | /// ImplementationCandidate --- colon ---> ImplementationCandidate |
481 | /// InterfaceCandidate --- Identifier ---> InterfaceCandidate |
482 | /// InterfaceCandidate --- period ---> InterfaceCandidate |
483 | /// InterfaceCandidate --- colon ---> InterfaceCandidate |
484 | /// ImplementationCandidate --- Semi ---> NamedModuleImplementation |
485 | /// NamedModuleInterface --- Semi ---> NamedModuleInterface |
486 | /// NamedModuleImplementation --- Anything ---> NamedModuleImplementation |
487 | /// NamedModuleInterface --- Anything ---> NamedModuleInterface |
488 | /// |
489 | /// FIXME: We haven't handle attribute-specifier-seq here. It may not be bad |
490 | /// soon since we don't support any module attributes yet. |
491 | class ModuleDeclSeq { |
492 | enum ModuleDeclState : int { |
493 | NotAModuleDecl, |
494 | FoundExport, |
495 | InterfaceCandidate, |
496 | ImplementationCandidate, |
497 | NamedModuleInterface, |
498 | NamedModuleImplementation, |
499 | }; |
500 | |
501 | public: |
502 | ModuleDeclSeq() = default; |
503 | |
504 | void handleExport() { |
505 | if (State == NotAModuleDecl) |
506 | State = FoundExport; |
507 | else if (!isNamedModule()) |
508 | reset(); |
509 | } |
510 | |
511 | void handleModule() { |
512 | if (State == FoundExport) |
513 | State = InterfaceCandidate; |
514 | else if (State == NotAModuleDecl) |
515 | State = ImplementationCandidate; |
516 | else if (!isNamedModule()) |
517 | reset(); |
518 | } |
519 | |
520 | void handleIdentifier(IdentifierInfo *Identifier) { |
521 | if (isModuleCandidate() && Identifier) |
522 | Name += Identifier->getName().str(); |
523 | else if (!isNamedModule()) |
524 | reset(); |
525 | } |
526 | |
527 | void handleColon() { |
528 | if (isModuleCandidate()) |
529 | Name += ":"; |
530 | else if (!isNamedModule()) |
531 | reset(); |
532 | } |
533 | |
534 | void handlePeriod() { |
535 | if (isModuleCandidate()) |
536 | Name += "."; |
537 | else if (!isNamedModule()) |
538 | reset(); |
539 | } |
540 | |
541 | void handleSemi() { |
542 | if (!Name.empty() && isModuleCandidate()) { |
543 | if (State == InterfaceCandidate) |
544 | State = NamedModuleInterface; |
545 | else if (State == ImplementationCandidate) |
546 | State = NamedModuleImplementation; |
547 | else |
548 | llvm_unreachable("Unimaged ModuleDeclState."); |
549 | } else if (!isNamedModule()) |
550 | reset(); |
551 | } |
552 | |
553 | void handleMisc() { |
554 | if (!isNamedModule()) |
555 | reset(); |
556 | } |
557 | |
558 | bool isModuleCandidate() const { |
559 | return State == InterfaceCandidate || State == ImplementationCandidate; |
560 | } |
561 | |
562 | bool isNamedModule() const { |
563 | return State == NamedModuleInterface || |
564 | State == NamedModuleImplementation; |
565 | } |
566 | |
567 | bool isNamedInterface() const { return State == NamedModuleInterface; } |
568 | |
569 | bool isImplementationUnit() const { |
570 | return State == NamedModuleImplementation && !getName().contains(':'); |
571 | } |
572 | |
573 | StringRef getName() const { |
574 | assert(isNamedModule() && "Can't get name from a non named module"); |
575 | return Name; |
576 | } |
577 | |
578 | StringRef getPrimaryName() const { |
579 | assert(isNamedModule() && "Can't get name from a non named module"); |
580 | return getName().split(':').first; |
581 | } |
582 | |
583 | void reset() { |
584 | Name.clear(); |
585 | State = NotAModuleDecl; |
586 | } |
587 | |
588 | private: |
589 | ModuleDeclState State = NotAModuleDecl; |
590 | std::string Name; |
591 | }; |
592 | |
593 | ModuleDeclSeq ModuleDeclState; |
594 | |
595 | /// Whether the module import expects an identifier next. Otherwise, |
596 | /// it expects a '.' or ';'. |
597 | bool ModuleImportExpectsIdentifier = false; |
598 | |
599 | /// The identifier and source location of the currently-active |
600 | /// \#pragma clang arc_cf_code_audited begin. |
601 | std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo; |
602 | |
603 | /// The source location of the currently-active |
604 | /// \#pragma clang assume_nonnull begin. |
605 | SourceLocation PragmaAssumeNonNullLoc; |
606 | |
607 | /// Set only for preambles which end with an active |
608 | /// \#pragma clang assume_nonnull begin. |
609 | /// |
610 | /// When the preamble is loaded into the main file, |
611 | /// `PragmaAssumeNonNullLoc` will be set to this to |
612 | /// replay the unterminated assume_nonnull. |
613 | SourceLocation PreambleRecordedPragmaAssumeNonNullLoc; |
614 | |
615 | /// True if we hit the code-completion point. |
616 | bool CodeCompletionReached = false; |
617 | |
618 | /// The code completion token containing the information |
619 | /// on the stem that is to be code completed. |
620 | IdentifierInfo *CodeCompletionII = nullptr; |
621 | |
622 | /// Range for the code completion token. |
623 | SourceRange CodeCompletionTokenRange; |
624 | |
625 | /// The directory that the main file should be considered to occupy, |
626 | /// if it does not correspond to a real file (as happens when building a |
627 | /// module). |
628 | const DirectoryEntry *MainFileDir = nullptr; |
629 | |
630 | /// The number of bytes that we will initially skip when entering the |
631 | /// main file, along with a flag that indicates whether skipping this number |
632 | /// of bytes will place the lexer at the start of a line. |
633 | /// |
634 | /// This is used when loading a precompiled preamble. |
635 | std::pair<int, bool> SkipMainFilePreamble; |
636 | |
637 | /// Whether we hit an error due to reaching max allowed include depth. Allows |
638 | /// to avoid hitting the same error over and over again. |
639 | bool HasReachedMaxIncludeDepth = false; |
640 | |
641 | /// The number of currently-active calls to Lex. |
642 | /// |
643 | /// Lex is reentrant, and asking for an (end-of-phase-4) token can often |
644 | /// require asking for multiple additional tokens. This counter makes it |
645 | /// possible for Lex to detect whether it's producing a token for the end |
646 | /// of phase 4 of translation or for some other situation. |
647 | unsigned LexLevel = 0; |
648 | |
649 | /// The number of (LexLevel 0) preprocessor tokens. |
650 | unsigned TokenCount = 0; |
651 | |
652 | /// Preprocess every token regardless of LexLevel. |
653 | bool PreprocessToken = false; |
654 | |
655 | /// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens |
656 | /// warning, or zero for unlimited. |
657 | unsigned MaxTokens = 0; |
658 | SourceLocation MaxTokensOverrideLoc; |
659 | |
660 | public: |
661 | struct PreambleSkipInfo { |
662 | SourceLocation HashTokenLoc; |
663 | SourceLocation IfTokenLoc; |
664 | bool FoundNonSkipPortion; |
665 | bool FoundElse; |
666 | SourceLocation ElseLoc; |
667 | |
668 | PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, |
669 | bool FoundNonSkipPortion, bool FoundElse, |
670 | SourceLocation ElseLoc) |
671 | : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc), |
672 | FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse), |
673 | ElseLoc(ElseLoc) {} |
674 | }; |
675 | |
676 | using IncludedFilesSet = llvm::DenseSet<const FileEntry *>; |
677 | |
678 | private: |
679 | friend class ASTReader; |
680 | friend class MacroArgs; |
681 | |
682 | class PreambleConditionalStackStore { |
683 | enum State { |
684 | Off = 0, |
685 | Recording = 1, |
686 | Replaying = 2, |
687 | }; |
688 | |
689 | public: |
690 | PreambleConditionalStackStore() = default; |
691 | |
692 | void startRecording() { ConditionalStackState = Recording; } |
693 | void startReplaying() { ConditionalStackState = Replaying; } |
694 | bool isRecording() const { return ConditionalStackState == Recording; } |
695 | bool isReplaying() const { return ConditionalStackState == Replaying; } |
696 | |
697 | ArrayRef<PPConditionalInfo> getStack() const { |
698 | return ConditionalStack; |
699 | } |
700 | |
701 | void doneReplaying() { |
702 | ConditionalStack.clear(); |
703 | ConditionalStackState = Off; |
704 | } |
705 | |
706 | void setStack(ArrayRef<PPConditionalInfo> s) { |
707 | if (!isRecording() && !isReplaying()) |
708 | return; |
709 | ConditionalStack.clear(); |
710 | ConditionalStack.append(s.begin(), s.end()); |
711 | } |
712 | |
713 | bool hasRecordedPreamble() const { return !ConditionalStack.empty(); } |
714 | |
715 | bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); } |
716 | |
717 | void clearSkipInfo() { SkipInfo.reset(); } |
718 | |
719 | std::optional<PreambleSkipInfo> SkipInfo; |
720 | |
721 | private: |
722 | SmallVector<PPConditionalInfo, 4> ConditionalStack; |
723 | State ConditionalStackState = Off; |
724 | } PreambleConditionalStack; |
725 | |
726 | /// The current top of the stack that we're lexing from if |
727 | /// not expanding a macro and we are lexing directly from source code. |
728 | /// |
729 | /// Only one of CurLexer, or CurTokenLexer will be non-null. |
730 | std::unique_ptr<Lexer> CurLexer; |
731 | |
732 | /// The current top of the stack what we're lexing from |
733 | /// if not expanding a macro. |
734 | /// |
735 | /// This is an alias for CurLexer. |
736 | PreprocessorLexer *CurPPLexer = nullptr; |
737 | |
738 | /// Used to find the current FileEntry, if CurLexer is non-null |
739 | /// and if applicable. |
740 | /// |
741 | /// This allows us to implement \#include_next and find directory-specific |
742 | /// properties. |
743 | ConstSearchDirIterator CurDirLookup = nullptr; |
744 | |
745 | /// The current macro we are expanding, if we are expanding a macro. |
746 | /// |
747 | /// One of CurLexer and CurTokenLexer must be null. |
748 | std::unique_ptr<TokenLexer> CurTokenLexer; |
749 | |
750 | /// The kind of lexer we're currently working with. |
751 | enum CurLexerKind { |
752 | CLK_Lexer, |
753 | CLK_TokenLexer, |
754 | CLK_CachingLexer, |
755 | CLK_DependencyDirectivesLexer, |
756 | CLK_LexAfterModuleImport |
757 | } CurLexerKind = CLK_Lexer; |
758 | |
759 | /// If the current lexer is for a submodule that is being built, this |
760 | /// is that submodule. |
761 | Module *CurLexerSubmodule = nullptr; |
762 | |
763 | /// Keeps track of the stack of files currently |
764 | /// \#included, and macros currently being expanded from, not counting |
765 | /// CurLexer/CurTokenLexer. |
766 | struct IncludeStackInfo { |
767 | enum CurLexerKind CurLexerKind; |
768 | Module *TheSubmodule; |
769 | std::unique_ptr<Lexer> TheLexer; |
770 | PreprocessorLexer *ThePPLexer; |
771 | std::unique_ptr<TokenLexer> TheTokenLexer; |
772 | ConstSearchDirIterator TheDirLookup; |
773 | |
774 | // The following constructors are completely useless copies of the default |
775 | // versions, only needed to pacify MSVC. |
776 | IncludeStackInfo(enum CurLexerKind CurLexerKind, Module *TheSubmodule, |
777 | std::unique_ptr<Lexer> &&TheLexer, |
778 | PreprocessorLexer *ThePPLexer, |
779 | std::unique_ptr<TokenLexer> &&TheTokenLexer, |
780 | ConstSearchDirIterator TheDirLookup) |
781 | : CurLexerKind(std::move(CurLexerKind)), |
782 | TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)), |
783 | ThePPLexer(std::move(ThePPLexer)), |
784 | TheTokenLexer(std::move(TheTokenLexer)), |
785 | TheDirLookup(std::move(TheDirLookup)) {} |
786 | }; |
787 | std::vector<IncludeStackInfo> IncludeMacroStack; |
788 | |
789 | /// Actions invoked when some preprocessor activity is |
790 | /// encountered (e.g. a file is \#included, etc). |
791 | std::unique_ptr<PPCallbacks> Callbacks; |
792 | |
793 | struct MacroExpandsInfo { |
794 | Token Tok; |
795 | MacroDefinition MD; |
796 | SourceRange Range; |
797 | |
798 | MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range) |
799 | : Tok(Tok), MD(MD), Range(Range) {} |
800 | }; |
801 | SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks; |
802 | |
803 | /// Information about a name that has been used to define a module macro. |
804 | struct ModuleMacroInfo { |
805 | /// The most recent macro directive for this identifier. |
806 | MacroDirective *MD; |
807 | |
808 | /// The active module macros for this identifier. |
809 | llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros; |
810 | |
811 | /// The generation number at which we last updated ActiveModuleMacros. |
812 | /// \see Preprocessor::VisibleModules. |
813 | unsigned ActiveModuleMacrosGeneration = 0; |
814 | |
815 | /// Whether this macro name is ambiguous. |
816 | bool IsAmbiguous = false; |
817 | |
818 | /// The module macros that are overridden by this macro. |
819 | llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros; |
820 | |
821 | ModuleMacroInfo(MacroDirective *MD) : MD(MD) {} |
822 | }; |
823 | |
824 | /// The state of a macro for an identifier. |
825 | class MacroState { |
826 | mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State; |
827 | |
828 | ModuleMacroInfo *getModuleInfo(Preprocessor &PP, |
829 | const IdentifierInfo *II) const { |
830 | if (II->isOutOfDate()) |
831 | PP.updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II)); |
832 | // FIXME: Find a spare bit on IdentifierInfo and store a |
833 | // HasModuleMacros flag. |
834 | if (!II->hasMacroDefinition() || |
835 | (!PP.getLangOpts().Modules && |
836 | !PP.getLangOpts().ModulesLocalVisibility) || |
837 | !PP.CurSubmoduleState->VisibleModules.getGeneration()) |
838 | return nullptr; |
839 | |
840 | auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
841 | if (!Info) { |
842 | Info = new (PP.getPreprocessorAllocator()) |
843 | ModuleMacroInfo(State.get<MacroDirective *>()); |
844 | State = Info; |
845 | } |
846 | |
847 | if (PP.CurSubmoduleState->VisibleModules.getGeneration() != |
848 | Info->ActiveModuleMacrosGeneration) |
849 | PP.updateModuleMacroInfo(II, *Info); |
850 | return Info; |
851 | } |
852 | |
853 | public: |
854 | MacroState() : MacroState(nullptr) {} |
855 | MacroState(MacroDirective *MD) : State(MD) {} |
856 | |
857 | MacroState(MacroState &&O) noexcept : State(O.State) { |
858 | O.State = (MacroDirective *)nullptr; |
859 | } |
860 | |
861 | MacroState &operator=(MacroState &&O) noexcept { |
862 | auto S = O.State; |
863 | O.State = (MacroDirective *)nullptr; |
864 | State = S; |
865 | return *this; |
866 | } |
867 | |
868 | ~MacroState() { |
869 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
870 | Info->~ModuleMacroInfo(); |
871 | } |
872 | |
873 | MacroDirective *getLatest() const { |
874 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
875 | return Info->MD; |
876 | return State.get<MacroDirective*>(); |
877 | } |
878 | |
879 | void setLatest(MacroDirective *MD) { |
880 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
881 | Info->MD = MD; |
882 | else |
883 | State = MD; |
884 | } |
885 | |
886 | bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const { |
887 | auto *Info = getModuleInfo(PP, II); |
888 | return Info ? Info->IsAmbiguous : false; |
889 | } |
890 | |
891 | ArrayRef<ModuleMacro *> |
892 | getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const { |
893 | if (auto *Info = getModuleInfo(PP, II)) |
894 | return Info->ActiveModuleMacros; |
895 | return std::nullopt; |
896 | } |
897 | |
898 | MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc, |
899 | SourceManager &SourceMgr) const { |
900 | // FIXME: Incorporate module macros into the result of this. |
901 | if (auto *Latest = getLatest()) |
902 | return Latest->findDirectiveAtLoc(Loc, SourceMgr); |
903 | return {}; |
904 | } |
905 | |
906 | void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) { |
907 | if (auto *Info = getModuleInfo(PP, II)) { |
908 | Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), |
909 | Info->ActiveModuleMacros.begin(), |
910 | Info->ActiveModuleMacros.end()); |
911 | Info->ActiveModuleMacros.clear(); |
912 | Info->IsAmbiguous = false; |
913 | } |
914 | } |
915 | |
916 | ArrayRef<ModuleMacro*> getOverriddenMacros() const { |
917 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
918 | return Info->OverriddenMacros; |
919 | return std::nullopt; |
920 | } |
921 | |
922 | void setOverriddenMacros(Preprocessor &PP, |
923 | ArrayRef<ModuleMacro *> Overrides) { |
924 | auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
925 | if (!Info) { |
926 | if (Overrides.empty()) |
927 | return; |
928 | Info = new (PP.getPreprocessorAllocator()) |
929 | ModuleMacroInfo(State.get<MacroDirective *>()); |
930 | State = Info; |
931 | } |
932 | Info->OverriddenMacros.clear(); |
933 | Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), |
934 | Overrides.begin(), Overrides.end()); |
935 | Info->ActiveModuleMacrosGeneration = 0; |
936 | } |
937 | }; |
938 | |
939 | /// For each IdentifierInfo that was associated with a macro, we |
940 | /// keep a mapping to the history of all macro definitions and #undefs in |
941 | /// the reverse order (the latest one is in the head of the list). |
942 | /// |
943 | /// This mapping lives within the \p CurSubmoduleState. |
944 | using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>; |
945 | |
946 | struct SubmoduleState; |
947 | |
948 | /// Information about a submodule that we're currently building. |
949 | struct BuildingSubmoduleInfo { |
950 | /// The module that we are building. |
951 | Module *M; |
952 | |
953 | /// The location at which the module was included. |
954 | SourceLocation ImportLoc; |
955 | |
956 | /// Whether we entered this submodule via a pragma. |
957 | bool IsPragma; |
958 | |
959 | /// The previous SubmoduleState. |
960 | SubmoduleState *OuterSubmoduleState; |
961 | |
962 | /// The number of pending module macro names when we started building this. |
963 | unsigned OuterPendingModuleMacroNames; |
964 | |
965 | BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma, |
966 | SubmoduleState *OuterSubmoduleState, |
967 | unsigned OuterPendingModuleMacroNames) |
968 | : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma), |
969 | OuterSubmoduleState(OuterSubmoduleState), |
970 | OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {} |
971 | }; |
972 | SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack; |
973 | |
974 | /// Information about a submodule's preprocessor state. |
975 | struct SubmoduleState { |
976 | /// The macros for the submodule. |
977 | MacroMap Macros; |
978 | |
979 | /// The set of modules that are visible within the submodule. |
980 | VisibleModuleSet VisibleModules; |
981 | |
982 | // FIXME: CounterValue? |
983 | // FIXME: PragmaPushMacroInfo? |
984 | }; |
985 | std::map<Module *, SubmoduleState> Submodules; |
986 | |
987 | /// The preprocessor state for preprocessing outside of any submodule. |
988 | SubmoduleState NullSubmoduleState; |
989 | |
990 | /// The current submodule state. Will be \p NullSubmoduleState if we're not |
991 | /// in a submodule. |
992 | SubmoduleState *CurSubmoduleState; |
993 | |
994 | /// The files that have been included. |
995 | IncludedFilesSet IncludedFiles; |
996 | |
997 | /// The set of top-level modules that affected preprocessing, but were not |
998 | /// imported. |
999 | llvm::SmallSetVector<Module *, 2> AffectingClangModules; |
1000 | |
1001 | /// The set of known macros exported from modules. |
1002 | llvm::FoldingSet<ModuleMacro> ModuleMacros; |
1003 | |
1004 | /// The names of potential module macros that we've not yet processed. |
1005 | llvm::SmallVector<const IdentifierInfo *, 32> PendingModuleMacroNames; |
1006 | |
1007 | /// The list of module macros, for each identifier, that are not overridden by |
1008 | /// any other module macro. |
1009 | llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>> |
1010 | LeafModuleMacros; |
1011 | |
1012 | /// Macros that we want to warn because they are not used at the end |
1013 | /// of the translation unit. |
1014 | /// |
1015 | /// We store just their SourceLocations instead of |
1016 | /// something like MacroInfo*. The benefit of this is that when we are |
1017 | /// deserializing from PCH, we don't need to deserialize identifier & macros |
1018 | /// just so that we can report that they are unused, we just warn using |
1019 | /// the SourceLocations of this set (that will be filled by the ASTReader). |
1020 | using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>; |
1021 | WarnUnusedMacroLocsTy WarnUnusedMacroLocs; |
1022 | |
1023 | /// This is a pair of an optional message and source location used for pragmas |
1024 | /// that annotate macros like pragma clang restrict_expansion and pragma clang |
1025 | /// deprecated. This pair stores the optional message and the location of the |
1026 | /// annotation pragma for use producing diagnostics and notes. |
1027 | using MsgLocationPair = std::pair<std::string, SourceLocation>; |
1028 | |
1029 | struct MacroAnnotationInfo { |
1030 | SourceLocation Location; |
1031 | std::string Message; |
1032 | }; |
1033 | |
1034 | struct MacroAnnotations { |
1035 | std::optional<MacroAnnotationInfo> DeprecationInfo; |
1036 | std::optional<MacroAnnotationInfo> RestrictExpansionInfo; |
1037 | std::optional<SourceLocation> FinalAnnotationLoc; |
1038 | |
1039 | static MacroAnnotations makeDeprecation(SourceLocation Loc, |
1040 | std::string Msg) { |
1041 | return MacroAnnotations{MacroAnnotationInfo{Loc, std::move(Msg)}, |
1042 | std::nullopt, std::nullopt}; |
1043 | } |
1044 | |
1045 | static MacroAnnotations makeRestrictExpansion(SourceLocation Loc, |
1046 | std::string Msg) { |
1047 | return MacroAnnotations{ |
1048 | std::nullopt, MacroAnnotationInfo{Loc, std::move(Msg)}, std::nullopt}; |
1049 | } |
1050 | |
1051 | static MacroAnnotations makeFinal(SourceLocation Loc) { |
1052 | return MacroAnnotations{std::nullopt, std::nullopt, Loc}; |
1053 | } |
1054 | }; |
1055 | |
1056 | /// Warning information for macro annotations. |
1057 | llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos; |
1058 | |
1059 | /// A "freelist" of MacroArg objects that can be |
1060 | /// reused for quick allocation. |
1061 | MacroArgs *MacroArgCache = nullptr; |
1062 | |
1063 | /// For each IdentifierInfo used in a \#pragma push_macro directive, |
1064 | /// we keep a MacroInfo stack used to restore the previous macro value. |
1065 | llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>> |
1066 | PragmaPushMacroInfo; |
1067 | |
1068 | // Various statistics we track for performance analysis. |
1069 | unsigned NumDirectives = 0; |
1070 | unsigned NumDefined = 0; |
1071 | unsigned NumUndefined = 0; |
1072 | unsigned NumPragma = 0; |
1073 | unsigned NumIf = 0; |
1074 | unsigned NumElse = 0; |
1075 | unsigned NumEndif = 0; |
1076 | unsigned NumEnteredSourceFiles = 0; |
1077 | unsigned MaxIncludeStackDepth = 0; |
1078 | unsigned NumMacroExpanded = 0; |
1079 | unsigned NumFnMacroExpanded = 0; |
1080 | unsigned NumBuiltinMacroExpanded = 0; |
1081 | unsigned NumFastMacroExpanded = 0; |
1082 | unsigned NumTokenPaste = 0; |
1083 | unsigned NumFastTokenPaste = 0; |
1084 | unsigned NumSkipped = 0; |
1085 | |
1086 | /// The predefined macros that preprocessor should use from the |
1087 | /// command line etc. |
1088 | std::string Predefines; |
1089 | |
1090 | /// The file ID for the preprocessor predefines. |
1091 | FileID PredefinesFileID; |
1092 | |
1093 | /// The file ID for the PCH through header. |
1094 | FileID PCHThroughHeaderFileID; |
1095 | |
1096 | /// Whether tokens are being skipped until a #pragma hdrstop is seen. |
1097 | bool SkippingUntilPragmaHdrStop = false; |
1098 | |
1099 | /// Whether tokens are being skipped until the through header is seen. |
1100 | bool SkippingUntilPCHThroughHeader = false; |
1101 | |
1102 | /// \{ |
1103 | /// Cache of macro expanders to reduce malloc traffic. |
1104 | enum { TokenLexerCacheSize = 8 }; |
1105 | unsigned NumCachedTokenLexers; |
1106 | std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize]; |
1107 | /// \} |
1108 | |
1109 | /// Keeps macro expanded tokens for TokenLexers. |
1110 | // |
1111 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
1112 | /// going to lex in the cache and when it finishes the tokens are removed |
1113 | /// from the end of the cache. |
1114 | SmallVector<Token, 16> MacroExpandedTokens; |
1115 | std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack; |
1116 | |
1117 | /// A record of the macro definitions and expansions that |
1118 | /// occurred during preprocessing. |
1119 | /// |
1120 | /// This is an optional side structure that can be enabled with |
1121 | /// \c createPreprocessingRecord() prior to preprocessing. |
1122 | PreprocessingRecord *Record = nullptr; |
1123 | |
1124 | /// Cached tokens state. |
1125 | using CachedTokensTy = SmallVector<Token, 1>; |
1126 | |
1127 | /// Cached tokens are stored here when we do backtracking or |
1128 | /// lookahead. They are "lexed" by the CachingLex() method. |
1129 | CachedTokensTy CachedTokens; |
1130 | |
1131 | /// The position of the cached token that CachingLex() should |
1132 | /// "lex" next. |
1133 | /// |
1134 | /// If it points beyond the CachedTokens vector, it means that a normal |
1135 | /// Lex() should be invoked. |
1136 | CachedTokensTy::size_type CachedLexPos = 0; |
1137 | |
1138 | /// Stack of backtrack positions, allowing nested backtracks. |
1139 | /// |
1140 | /// The EnableBacktrackAtThisPos() method pushes a position to |
1141 | /// indicate where CachedLexPos should be set when the BackTrack() method is |
1142 | /// invoked (at which point the last position is popped). |
1143 | std::vector<CachedTokensTy::size_type> BacktrackPositions; |
1144 | |
1145 | /// True if \p Preprocessor::SkipExcludedConditionalBlock() is running. |
1146 | /// This is used to guard against calling this function recursively. |
1147 | /// |
1148 | /// See comments at the use-site for more context about why it is needed. |
1149 | bool SkippingExcludedConditionalBlock = false; |
1150 | |
1151 | /// Keeps track of skipped range mappings that were recorded while skipping |
1152 | /// excluded conditional directives. It maps the source buffer pointer at |
1153 | /// the beginning of a skipped block, to the number of bytes that should be |
1154 | /// skipped. |
1155 | llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges; |
1156 | |
1157 | void updateOutOfDateIdentifier(IdentifierInfo &II) const; |
1158 | |
1159 | public: |
1160 | Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, |
1161 | DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM, |
1162 | HeaderSearch &Headers, ModuleLoader &TheModuleLoader, |
1163 | IdentifierInfoLookup *IILookup = nullptr, |
1164 | bool OwnsHeaderSearch = false, |
1165 | TranslationUnitKind TUKind = TU_Complete); |
1166 | |
1167 | ~Preprocessor(); |
1168 | |
1169 | /// Initialize the preprocessor using information about the target. |
1170 | /// |
1171 | /// \param Target is owned by the caller and must remain valid for the |
1172 | /// lifetime of the preprocessor. |
1173 | /// \param AuxTarget is owned by the caller and must remain valid for |
1174 | /// the lifetime of the preprocessor. |
1175 | void Initialize(const TargetInfo &Target, |
1176 | const TargetInfo *AuxTarget = nullptr); |
1177 | |
1178 | /// Initialize the preprocessor to parse a model file |
1179 | /// |
1180 | /// To parse model files the preprocessor of the original source is reused to |
1181 | /// preserver the identifier table. However to avoid some duplicate |
1182 | /// information in the preprocessor some cleanup is needed before it is used |
1183 | /// to parse model files. This method does that cleanup. |
1184 | void InitializeForModelFile(); |
1185 | |
1186 | /// Cleanup after model file parsing |
1187 | void FinalizeForModelFile(); |
1188 | |
1189 | /// Retrieve the preprocessor options used to initialize this |
1190 | /// preprocessor. |
1191 | PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; } |
1192 | |
1193 | DiagnosticsEngine &getDiagnostics() const { return *Diags; } |
1194 | void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; } |
1195 | |
1196 | const LangOptions &getLangOpts() const { return LangOpts; } |
1197 | const TargetInfo &getTargetInfo() const { return *Target; } |
1198 | const TargetInfo *getAuxTargetInfo() const { return AuxTarget; } |
1199 | FileManager &getFileManager() const { return FileMgr; } |
1200 | SourceManager &getSourceManager() const { return SourceMgr; } |
1201 | HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; } |
1202 | |
1203 | IdentifierTable &getIdentifierTable() { return Identifiers; } |
1204 | const IdentifierTable &getIdentifierTable() const { return Identifiers; } |
1205 | SelectorTable &getSelectorTable() { return Selectors; } |
1206 | Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; } |
1207 | llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; } |
1208 | |
1209 | void setExternalSource(ExternalPreprocessorSource *Source) { |
1210 | ExternalSource = Source; |
1211 | } |
1212 | |
1213 | ExternalPreprocessorSource *getExternalSource() const { |
1214 | return ExternalSource; |
1215 | } |
1216 | |
1217 | /// Retrieve the module loader associated with this preprocessor. |
1218 | ModuleLoader &getModuleLoader() const { return TheModuleLoader; } |
1219 | |
1220 | bool hadModuleLoaderFatalFailure() const { |
1221 | return TheModuleLoader.HadFatalFailure; |
1222 | } |
1223 | |
1224 | /// Retrieve the number of Directives that have been processed by the |
1225 | /// Preprocessor. |
1226 | unsigned getNumDirectives() const { |
1227 | return NumDirectives; |
1228 | } |
1229 | |
1230 | /// True if we are currently preprocessing a #if or #elif directive |
1231 | bool isParsingIfOrElifDirective() const { |
1232 | return ParsingIfOrElifDirective; |
1233 | } |
1234 | |
1235 | /// Control whether the preprocessor retains comments in output. |
1236 | void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) { |
1237 | this->KeepComments = KeepComments | KeepMacroComments; |
1238 | this->KeepMacroComments = KeepMacroComments; |
1239 | } |
1240 | |
1241 | bool getCommentRetentionState() const { return KeepComments; } |
1242 | |
1243 | void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; } |
1244 | bool getPragmasEnabled() const { return PragmasEnabled; } |
1245 | |
1246 | void SetSuppressIncludeNotFoundError(bool Suppress) { |
1247 | SuppressIncludeNotFoundError = Suppress; |
1248 | } |
1249 | |
1250 | bool GetSuppressIncludeNotFoundError() { |
1251 | return SuppressIncludeNotFoundError; |
1252 | } |
1253 | |
1254 | /// Sets whether the preprocessor is responsible for producing output or if |
1255 | /// it is producing tokens to be consumed by Parse and Sema. |
1256 | void setPreprocessedOutput(bool IsPreprocessedOutput) { |
1257 | PreprocessedOutput = IsPreprocessedOutput; |
1258 | } |
1259 | |
1260 | /// Returns true if the preprocessor is responsible for generating output, |
1261 | /// false if it is producing tokens to be consumed by Parse and Sema. |
1262 | bool isPreprocessedOutput() const { return PreprocessedOutput; } |
1263 | |
1264 | /// Return true if we are lexing directly from the specified lexer. |
1265 | bool isCurrentLexer(const PreprocessorLexer *L) const { |
1266 | return CurPPLexer == L; |
1267 | } |
1268 | |
1269 | /// Return the current lexer being lexed from. |
1270 | /// |
1271 | /// Note that this ignores any potentially active macro expansions and _Pragma |
1272 | /// expansions going on at the time. |
1273 | PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; } |
1274 | |
1275 | /// Return the current file lexer being lexed from. |
1276 | /// |
1277 | /// Note that this ignores any potentially active macro expansions and _Pragma |
1278 | /// expansions going on at the time. |
1279 | PreprocessorLexer *getCurrentFileLexer() const; |
1280 | |
1281 | /// Return the submodule owning the file being lexed. This may not be |
1282 | /// the current module if we have changed modules since entering the file. |
1283 | Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; } |
1284 | |
1285 | /// Returns the FileID for the preprocessor predefines. |
1286 | FileID getPredefinesFileID() const { return PredefinesFileID; } |
1287 | |
1288 | /// \{ |
1289 | /// Accessors for preprocessor callbacks. |
1290 | /// |
1291 | /// Note that this class takes ownership of any PPCallbacks object given to |
1292 | /// it. |
1293 | PPCallbacks *getPPCallbacks() const { return Callbacks.get(); } |
1294 | void addPPCallbacks(std::unique_ptr<PPCallbacks> C) { |
1295 | if (Callbacks) |
1296 | C = std::make_unique<PPChainedCallbacks>(std::move(C), |
1297 | std::move(Callbacks)); |
1298 | Callbacks = std::move(C); |
1299 | } |
1300 | /// \} |
1301 | |
1302 | /// Get the number of tokens processed so far. |
1303 | unsigned getTokenCount() const { return TokenCount; } |
1304 | |
1305 | /// Get the max number of tokens before issuing a -Wmax-tokens warning. |
1306 | unsigned getMaxTokens() const { return MaxTokens; } |
1307 | |
1308 | void overrideMaxTokens(unsigned Value, SourceLocation Loc) { |
1309 | MaxTokens = Value; |
1310 | MaxTokensOverrideLoc = Loc; |
1311 | }; |
1312 | |
1313 | SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; } |
1314 | |
1315 | /// Register a function that would be called on each token in the final |
1316 | /// expanded token stream. |
1317 | /// This also reports annotation tokens produced by the parser. |
1318 | void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) { |
1319 | OnToken = std::move(F); |
1320 | } |
1321 | |
1322 | void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; } |
1323 | |
1324 | bool isMacroDefined(StringRef Id) { |
1325 | return isMacroDefined(&Identifiers.get(Id)); |
1326 | } |
1327 | bool isMacroDefined(const IdentifierInfo *II) { |
1328 | return II->hasMacroDefinition() && |
1329 | (!getLangOpts().Modules || (bool)getMacroDefinition(II)); |
1330 | } |
1331 | |
1332 | /// Determine whether II is defined as a macro within the module M, |
1333 | /// if that is a module that we've already preprocessed. Does not check for |
1334 | /// macros imported into M. |
1335 | bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) { |
1336 | if (!II->hasMacroDefinition()) |
1337 | return false; |
1338 | auto I = Submodules.find(M); |
1339 | if (I == Submodules.end()) |
1340 | return false; |
1341 | auto J = I->second.Macros.find(II); |
1342 | if (J == I->second.Macros.end()) |
1343 | return false; |
1344 | auto *MD = J->second.getLatest(); |
1345 | return MD && MD->isDefined(); |
1346 | } |
1347 | |
1348 | MacroDefinition getMacroDefinition(const IdentifierInfo *II) { |
1349 | if (!II->hasMacroDefinition()) |
1350 | return {}; |
1351 | |
1352 | MacroState &S = CurSubmoduleState->Macros[II]; |
1353 | auto *MD = S.getLatest(); |
1354 | while (MD && isa<VisibilityMacroDirective>(MD)) |
1355 | MD = MD->getPrevious(); |
1356 | return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD), |
1357 | S.getActiveModuleMacros(*this, II), |
1358 | S.isAmbiguous(*this, II)); |
1359 | } |
1360 | |
1361 | MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II, |
1362 | SourceLocation Loc) { |
1363 | if (!II->hadMacroDefinition()) |
1364 | return {}; |
1365 | |
1366 | MacroState &S = CurSubmoduleState->Macros[II]; |
1367 | MacroDirective::DefInfo DI; |
1368 | if (auto *MD = S.getLatest()) |
1369 | DI = MD->findDirectiveAtLoc(Loc, getSourceManager()); |
1370 | // FIXME: Compute the set of active module macros at the specified location. |
1371 | return MacroDefinition(DI.getDirective(), |
1372 | S.getActiveModuleMacros(*this, II), |
1373 | S.isAmbiguous(*this, II)); |
1374 | } |
1375 | |
1376 | /// Given an identifier, return its latest non-imported MacroDirective |
1377 | /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd. |
1378 | MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const { |
1379 | if (!II->hasMacroDefinition()) |
1380 | return nullptr; |
1381 | |
1382 | auto *MD = getLocalMacroDirectiveHistory(II); |
1383 | if (!MD || MD->getDefinition().isUndefined()) |
1384 | return nullptr; |
1385 | |
1386 | return MD; |
1387 | } |
1388 | |
1389 | const MacroInfo *getMacroInfo(const IdentifierInfo *II) const { |
1390 | return const_cast<Preprocessor*>(this)->getMacroInfo(II); |
1391 | } |
1392 | |
1393 | MacroInfo *getMacroInfo(const IdentifierInfo *II) { |
1394 | if (!II->hasMacroDefinition()) |
1395 | return nullptr; |
1396 | if (auto MD = getMacroDefinition(II)) |
1397 | return MD.getMacroInfo(); |
1398 | return nullptr; |
1399 | } |
1400 | |
1401 | /// Given an identifier, return the latest non-imported macro |
1402 | /// directive for that identifier. |
1403 | /// |
1404 | /// One can iterate over all previous macro directives from the most recent |
1405 | /// one. |
1406 | MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const; |
1407 | |
1408 | /// Add a directive to the macro directive history for this identifier. |
1409 | void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD); |
1410 | DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI, |
1411 | SourceLocation Loc) { |
1412 | DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc); |
1413 | appendMacroDirective(II, MD); |
1414 | return MD; |
1415 | } |
1416 | DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, |
1417 | MacroInfo *MI) { |
1418 | return appendDefMacroDirective(II, MI, MI->getDefinitionLoc()); |
1419 | } |
1420 | |
1421 | /// Set a MacroDirective that was loaded from a PCH file. |
1422 | void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, |
1423 | MacroDirective *MD); |
1424 | |
1425 | /// Register an exported macro for a module and identifier. |
1426 | ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro, |
1427 | ArrayRef<ModuleMacro *> Overrides, bool &IsNew); |
1428 | ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II); |
1429 | |
1430 | /// Get the list of leaf (non-overridden) module macros for a name. |
1431 | ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const { |
1432 | if (II->isOutOfDate()) |
1433 | updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II)); |
1434 | auto I = LeafModuleMacros.find(II); |
1435 | if (I != LeafModuleMacros.end()) |
1436 | return I->second; |
1437 | return std::nullopt; |
1438 | } |
1439 | |
1440 | /// Get the list of submodules that we're currently building. |
1441 | ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const { |
1442 | return BuildingSubmoduleStack; |
1443 | } |
1444 | |
1445 | /// \{ |
1446 | /// Iterators for the macro history table. Currently defined macros have |
1447 | /// IdentifierInfo::hasMacroDefinition() set and an empty |
1448 | /// MacroInfo::getUndefLoc() at the head of the list. |
1449 | using macro_iterator = MacroMap::const_iterator; |
1450 | |
1451 | macro_iterator macro_begin(bool IncludeExternalMacros = true) const; |
1452 | macro_iterator macro_end(bool IncludeExternalMacros = true) const; |
1453 | |
1454 | llvm::iterator_range<macro_iterator> |
1455 | macros(bool IncludeExternalMacros = true) const { |
1456 | macro_iterator begin = macro_begin(IncludeExternalMacros); |
1457 | macro_iterator end = macro_end(IncludeExternalMacros); |
1458 | return llvm::make_range(begin, end); |
1459 | } |
1460 | |
1461 | /// \} |
1462 | |
1463 | /// Mark the given clang module as affecting the current clang module or translation unit. |
1464 | void markClangModuleAsAffecting(Module *M) { |
1465 | assert(M->isModuleMapModule()); |
1466 | if (!BuildingSubmoduleStack.empty()) { |
1467 | if (M != BuildingSubmoduleStack.back().M) |
1468 | BuildingSubmoduleStack.back().M->AffectingClangModules.insert(M); |
1469 | } else { |
1470 | AffectingClangModules.insert(M); |
1471 | } |
1472 | } |
1473 | |
1474 | /// Get the set of top-level clang modules that affected preprocessing, but were not |
1475 | /// imported. |
1476 | const llvm::SmallSetVector<Module *, 2> &getAffectingClangModules() const { |
1477 | return AffectingClangModules; |
1478 | } |
1479 | |
1480 | /// Mark the file as included. |
1481 | /// Returns true if this is the first time the file was included. |
1482 | bool markIncluded(const FileEntry *File) { |
1483 | HeaderInfo.getFileInfo(File); |
1484 | return IncludedFiles.insert(File).second; |
1485 | } |
1486 | |
1487 | /// Return true if this header has already been included. |
1488 | bool alreadyIncluded(const FileEntry *File) const { |
1489 | return IncludedFiles.count(File); |
1490 | } |
1491 | |
1492 | /// Get the set of included files. |
1493 | IncludedFilesSet &getIncludedFiles() { return IncludedFiles; } |
1494 | const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; } |
1495 | |
1496 | /// Return the name of the macro defined before \p Loc that has |
1497 | /// spelling \p Tokens. If there are multiple macros with same spelling, |
1498 | /// return the last one defined. |
1499 | StringRef getLastMacroWithSpelling(SourceLocation Loc, |
1500 | ArrayRef<TokenValue> Tokens) const; |
1501 | |
1502 | /// Get the predefines for this processor. |
1503 | /// Used by some third-party tools to inspect and add predefines (see |
1504 | /// https://github.com/llvm/llvm-project/issues/57483). |
1505 | const std::string &getPredefines() const { return Predefines; } |
1506 | |
1507 | /// Set the predefines for this Preprocessor. |
1508 | /// |
1509 | /// These predefines are automatically injected when parsing the main file. |
1510 | void setPredefines(std::string P) { Predefines = std::move(P); } |
1511 | |
1512 | /// Return information about the specified preprocessor |
1513 | /// identifier token. |
1514 | IdentifierInfo *getIdentifierInfo(StringRef Name) const { |
1515 | return &Identifiers.get(Name); |
1516 | } |
1517 | |
1518 | /// Add the specified pragma handler to this preprocessor. |
1519 | /// |
1520 | /// If \p Namespace is non-null, then it is a token required to exist on the |
1521 | /// pragma line before the pragma string starts, e.g. "STDC" or "GCC". |
1522 | void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
1523 | void AddPragmaHandler(PragmaHandler *Handler) { |
1524 | AddPragmaHandler(StringRef(), Handler); |
1525 | } |
1526 | |
1527 | /// Remove the specific pragma handler from this preprocessor. |
1528 | /// |
1529 | /// If \p Namespace is non-null, then it should be the namespace that |
1530 | /// \p Handler was added to. It is an error to remove a handler that |
1531 | /// has not been registered. |
1532 | void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
1533 | void RemovePragmaHandler(PragmaHandler *Handler) { |
1534 | RemovePragmaHandler(StringRef(), Handler); |
1535 | } |
1536 | |
1537 | /// Install empty handlers for all pragmas (making them ignored). |
1538 | void IgnorePragmas(); |
1539 | |
1540 | /// Set empty line handler. |
1541 | void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; } |
1542 | |
1543 | EmptylineHandler *getEmptylineHandler() const { return Emptyline; } |
1544 | |
1545 | /// Add the specified comment handler to the preprocessor. |
1546 | void addCommentHandler(CommentHandler *Handler); |
1547 | |
1548 | /// Remove the specified comment handler. |
1549 | /// |
1550 | /// It is an error to remove a handler that has not been registered. |
1551 | void removeCommentHandler(CommentHandler *Handler); |
1552 | |
1553 | /// Set the code completion handler to the given object. |
1554 | void setCodeCompletionHandler(CodeCompletionHandler &Handler) { |
1555 | CodeComplete = &Handler; |
1556 | } |
1557 | |
1558 | /// Retrieve the current code-completion handler. |
1559 | CodeCompletionHandler *getCodeCompletionHandler() const { |
1560 | return CodeComplete; |
1561 | } |
1562 | |
1563 | /// Clear out the code completion handler. |
1564 | void clearCodeCompletionHandler() { |
1565 | CodeComplete = nullptr; |
1566 | } |
1567 | |
1568 | /// Hook used by the lexer to invoke the "included file" code |
1569 | /// completion point. |
1570 | void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); |
1571 | |
1572 | /// Hook used by the lexer to invoke the "natural language" code |
1573 | /// completion point. |
1574 | void CodeCompleteNaturalLanguage(); |
1575 | |
1576 | /// Set the code completion token for filtering purposes. |
1577 | void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) { |
1578 | CodeCompletionII = Filter; |
1579 | } |
1580 | |
1581 | /// Set the code completion token range for detecting replacement range later |
1582 | /// on. |
1583 | void setCodeCompletionTokenRange(const SourceLocation Start, |
1584 | const SourceLocation End) { |
1585 | CodeCompletionTokenRange = {Start, End}; |
1586 | } |
1587 | SourceRange getCodeCompletionTokenRange() const { |
1588 | return CodeCompletionTokenRange; |
1589 | } |
1590 | |
1591 | /// Get the code completion token for filtering purposes. |
1592 | StringRef getCodeCompletionFilter() { |
1593 | if (CodeCompletionII) |
1594 | return CodeCompletionII->getName(); |
1595 | return {}; |
1596 | } |
1597 | |
1598 | /// Retrieve the preprocessing record, or NULL if there is no |
1599 | /// preprocessing record. |
1600 | PreprocessingRecord *getPreprocessingRecord() const { return Record; } |
1601 | |
1602 | /// Create a new preprocessing record, which will keep track of |
1603 | /// all macro expansions, macro definitions, etc. |
1604 | void createPreprocessingRecord(); |
1605 | |
1606 | /// Returns true if the FileEntry is the PCH through header. |
1607 | bool isPCHThroughHeader(const FileEntry *FE); |
1608 | |
1609 | /// True if creating a PCH with a through header. |
1610 | bool creatingPCHWithThroughHeader(); |
1611 | |
1612 | /// True if using a PCH with a through header. |
1613 | bool usingPCHWithThroughHeader(); |
1614 | |
1615 | /// True if creating a PCH with a #pragma hdrstop. |
1616 | bool creatingPCHWithPragmaHdrStop(); |
1617 | |
1618 | /// True if using a PCH with a #pragma hdrstop. |
1619 | bool usingPCHWithPragmaHdrStop(); |
1620 | |
1621 | /// Skip tokens until after the #include of the through header or |
1622 | /// until after a #pragma hdrstop. |
1623 | void SkipTokensWhileUsingPCH(); |
1624 | |
1625 | /// Process directives while skipping until the through header or |
1626 | /// #pragma hdrstop is found. |
1627 | void HandleSkippedDirectiveWhileUsingPCH(Token &Result, |
1628 | SourceLocation HashLoc); |
1629 | |
1630 | /// Enter the specified FileID as the main source file, |
1631 | /// which implicitly adds the builtin defines etc. |
1632 | void EnterMainSourceFile(); |
1633 | |
1634 | /// Inform the preprocessor callbacks that processing is complete. |
1635 | void EndSourceFile(); |
1636 | |
1637 | /// Add a source file to the top of the include stack and |
1638 | /// start lexing tokens from it instead of the current buffer. |
1639 | /// |
1640 | /// Emits a diagnostic, doesn't enter the file, and returns true on error. |
1641 | bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir, |
1642 | SourceLocation Loc, bool IsFirstIncludeOfFile = true); |
1643 | |
1644 | /// Add a Macro to the top of the include stack and start lexing |
1645 | /// tokens from it instead of the current buffer. |
1646 | /// |
1647 | /// \param Args specifies the tokens input to a function-like macro. |
1648 | /// \param ILEnd specifies the location of the ')' for a function-like macro |
1649 | /// or the identifier for an object-like macro. |
1650 | void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro, |
1651 | MacroArgs *Args); |
1652 | |
1653 | private: |
1654 | /// Add a "macro" context to the top of the include stack, |
1655 | /// which will cause the lexer to start returning the specified tokens. |
1656 | /// |
1657 | /// If \p DisableMacroExpansion is true, tokens lexed from the token stream |
1658 | /// will not be subject to further macro expansion. Otherwise, these tokens |
1659 | /// will be re-macro-expanded when/if expansion is enabled. |
1660 | /// |
1661 | /// If \p OwnsTokens is false, this method assumes that the specified stream |
1662 | /// of tokens has a permanent owner somewhere, so they do not need to be |
1663 | /// copied. If it is true, it assumes the array of tokens is allocated with |
1664 | /// \c new[] and the Preprocessor will delete[] it. |
1665 | /// |
1666 | /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag |
1667 | /// set, see the flag documentation for details. |
1668 | void EnterTokenStream(const Token *Toks, unsigned NumToks, |
1669 | bool DisableMacroExpansion, bool OwnsTokens, |
1670 | bool IsReinject); |
1671 | |
1672 | public: |
1673 | void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks, |
1674 | bool DisableMacroExpansion, bool IsReinject) { |
1675 | EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true, |
1676 | IsReinject); |
1677 | } |
1678 | |
1679 | void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion, |
1680 | bool IsReinject) { |
1681 | EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false, |
1682 | IsReinject); |
1683 | } |
1684 | |
1685 | /// Pop the current lexer/macro exp off the top of the lexer stack. |
1686 | /// |
1687 | /// This should only be used in situations where the current state of the |
1688 | /// top-of-stack lexer is known. |
1689 | void RemoveTopOfLexerStack(); |
1690 | |
1691 | /// From the point that this method is called, and until |
1692 | /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor |
1693 | /// keeps track of the lexed tokens so that a subsequent Backtrack() call will |
1694 | /// make the Preprocessor re-lex the same tokens. |
1695 | /// |
1696 | /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can |
1697 | /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will |
1698 | /// be combined with the EnableBacktrackAtThisPos calls in reverse order. |
1699 | /// |
1700 | /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack |
1701 | /// at some point after EnableBacktrackAtThisPos. If you don't, caching of |
1702 | /// tokens will continue indefinitely. |
1703 | /// |
1704 | void EnableBacktrackAtThisPos(); |
1705 | |
1706 | /// Disable the last EnableBacktrackAtThisPos call. |
1707 | void CommitBacktrackedTokens(); |
1708 | |
1709 | /// Make Preprocessor re-lex the tokens that were lexed since |
1710 | /// EnableBacktrackAtThisPos() was previously called. |
1711 | void Backtrack(); |
1712 | |
1713 | /// True if EnableBacktrackAtThisPos() was called and |
1714 | /// caching of tokens is on. |
1715 | bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); } |
1716 | |
1717 | /// Lex the next token for this preprocessor. |
1718 | void Lex(Token &Result); |
1719 | |
1720 | /// Lex a token, forming a header-name token if possible. |
1721 | bool LexHeaderName(Token &Result, bool AllowMacroExpansion = true); |
1722 | |
1723 | bool LexAfterModuleImport(Token &Result); |
1724 | void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks); |
1725 | |
1726 | void makeModuleVisible(Module *M, SourceLocation Loc); |
1727 | |
1728 | SourceLocation getModuleImportLoc(Module *M) const { |
1729 | return CurSubmoduleState->VisibleModules.getImportLoc(M); |
1730 | } |
1731 | |
1732 | /// Lex a string literal, which may be the concatenation of multiple |
1733 | /// string literals and may even come from macro expansion. |
1734 | /// \returns true on success, false if a error diagnostic has been generated. |
1735 | bool LexStringLiteral(Token &Result, std::string &String, |
1736 | const char *DiagnosticTag, bool AllowMacroExpansion) { |
1737 | if (AllowMacroExpansion) |
1738 | Lex(Result); |
1739 | else |
1740 | LexUnexpandedToken(Result); |
1741 | return FinishLexStringLiteral(Result, String, DiagnosticTag, |
1742 | AllowMacroExpansion); |
1743 | } |
1744 | |
1745 | /// Complete the lexing of a string literal where the first token has |
1746 | /// already been lexed (see LexStringLiteral). |
1747 | bool FinishLexStringLiteral(Token &Result, std::string &String, |
1748 | const char *DiagnosticTag, |
1749 | bool AllowMacroExpansion); |
1750 | |
1751 | /// Lex a token. If it's a comment, keep lexing until we get |
1752 | /// something not a comment. |
1753 | /// |
1754 | /// This is useful in -E -C mode where comments would foul up preprocessor |
1755 | /// directive handling. |
1756 | void LexNonComment(Token &Result) { |
1757 | do |
1758 | Lex(Result); |
1759 | while (Result.getKind() == tok::comment); |
1760 | } |
1761 | |
1762 | /// Just like Lex, but disables macro expansion of identifier tokens. |
1763 | void LexUnexpandedToken(Token &Result) { |
1764 | // Disable macro expansion. |
1765 | bool OldVal = DisableMacroExpansion; |
1766 | DisableMacroExpansion = true; |
1767 | // Lex the token. |
1768 | Lex(Result); |
1769 | |
1770 | // Reenable it. |
1771 | DisableMacroExpansion = OldVal; |
1772 | } |
1773 | |
1774 | /// Like LexNonComment, but this disables macro expansion of |
1775 | /// identifier tokens. |
1776 | void LexUnexpandedNonComment(Token &Result) { |
1777 | do |
1778 | LexUnexpandedToken(Result); |
1779 | while (Result.getKind() == tok::comment); |
1780 | } |
1781 | |
1782 | /// Parses a simple integer literal to get its numeric value. Floating |
1783 | /// point literals and user defined literals are rejected. Used primarily to |
1784 | /// handle pragmas that accept integer arguments. |
1785 | bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value); |
1786 | |
1787 | /// Disables macro expansion everywhere except for preprocessor directives. |
1788 | void SetMacroExpansionOnlyInDirectives() { |
1789 | DisableMacroExpansion = true; |
1790 | MacroExpansionInDirectivesOverride = true; |
1791 | } |
1792 | |
1793 | /// Peeks ahead N tokens and returns that token without consuming any |
1794 | /// tokens. |
1795 | /// |
1796 | /// LookAhead(0) returns the next token that would be returned by Lex(), |
1797 | /// LookAhead(1) returns the token after it, etc. This returns normal |
1798 | /// tokens after phase 5. As such, it is equivalent to using |
1799 | /// 'Lex', not 'LexUnexpandedToken'. |
1800 | const Token &LookAhead(unsigned N) { |
1801 | assert(LexLevel == 0 && "cannot use lookahead while lexing"); |
1802 | if (CachedLexPos + N < CachedTokens.size()) |
1803 | return CachedTokens[CachedLexPos+N]; |
1804 | else |
1805 | return PeekAhead(N+1); |
1806 | } |
1807 | |
1808 | /// When backtracking is enabled and tokens are cached, |
1809 | /// this allows to revert a specific number of tokens. |
1810 | /// |
1811 | /// Note that the number of tokens being reverted should be up to the last |
1812 | /// backtrack position, not more. |
1813 | void RevertCachedTokens(unsigned N) { |
1814 | assert(isBacktrackEnabled() && |
1815 | "Should only be called when tokens are cached for backtracking"); |
1816 | assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back()) |
1817 | && "Should revert tokens up to the last backtrack position, not more"); |
1818 | assert(signed(CachedLexPos) - signed(N) >= 0 && |
1819 | "Corrupted backtrack positions ?"); |
1820 | CachedLexPos -= N; |
1821 | } |
1822 | |
1823 | /// Enters a token in the token stream to be lexed next. |
1824 | /// |
1825 | /// If BackTrack() is called afterwards, the token will remain at the |
1826 | /// insertion point. |
1827 | /// If \p IsReinject is true, resulting token will have Token::IsReinjected |
1828 | /// flag set. See the flag documentation for details. |
1829 | void EnterToken(const Token &Tok, bool IsReinject) { |
1830 | if (LexLevel) { |
1831 | // It's not correct in general to enter caching lex mode while in the |
1832 | // middle of a nested lexing action. |
1833 | auto TokCopy = std::make_unique<Token[]>(1); |
1834 | TokCopy[0] = Tok; |
1835 | EnterTokenStream(std::move(TokCopy), 1, true, IsReinject); |
1836 | } else { |
1837 | EnterCachingLexMode(); |
1838 | assert(IsReinject && "new tokens in the middle of cached stream"); |
1839 | CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok); |
1840 | } |
1841 | } |
1842 | |
1843 | /// We notify the Preprocessor that if it is caching tokens (because |
1844 | /// backtrack is enabled) it should replace the most recent cached tokens |
1845 | /// with the given annotation token. This function has no effect if |
1846 | /// backtracking is not enabled. |
1847 | /// |
1848 | /// Note that the use of this function is just for optimization, so that the |
1849 | /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is |
1850 | /// invoked. |
1851 | void AnnotateCachedTokens(const Token &Tok) { |
1852 | assert(Tok.isAnnotation() && "Expected annotation token"); |
1853 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1854 | AnnotatePreviousCachedTokens(Tok); |
1855 | } |
1856 | |
1857 | /// Get the location of the last cached token, suitable for setting the end |
1858 | /// location of an annotation token. |
1859 | SourceLocation getLastCachedTokenLocation() const { |
1860 | assert(CachedLexPos != 0); |
1861 | return CachedTokens[CachedLexPos-1].getLastLoc(); |
1862 | } |
1863 | |
1864 | /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in |
1865 | /// CachedTokens. |
1866 | bool IsPreviousCachedToken(const Token &Tok) const; |
1867 | |
1868 | /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens |
1869 | /// in \p NewToks. |
1870 | /// |
1871 | /// Useful when a token needs to be split in smaller ones and CachedTokens |
1872 | /// most recent token must to be updated to reflect that. |
1873 | void ReplacePreviousCachedToken(ArrayRef<Token> NewToks); |
1874 | |
1875 | /// Replace the last token with an annotation token. |
1876 | /// |
1877 | /// Like AnnotateCachedTokens(), this routine replaces an |
1878 | /// already-parsed (and resolved) token with an annotation |
1879 | /// token. However, this routine only replaces the last token with |
1880 | /// the annotation token; it does not affect any other cached |
1881 | /// tokens. This function has no effect if backtracking is not |
1882 | /// enabled. |
1883 | void ReplaceLastTokenWithAnnotation(const Token &Tok) { |
1884 | assert(Tok.isAnnotation() && "Expected annotation token"); |
1885 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1886 | CachedTokens[CachedLexPos-1] = Tok; |
1887 | } |
1888 | |
1889 | /// Enter an annotation token into the token stream. |
1890 | void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind, |
1891 | void *AnnotationVal); |
1892 | |
1893 | /// Determine whether it's possible for a future call to Lex to produce an |
1894 | /// annotation token created by a previous call to EnterAnnotationToken. |
1895 | bool mightHavePendingAnnotationTokens() { |
1896 | return CurLexerKind != CLK_Lexer; |
1897 | } |
1898 | |
1899 | /// Update the current token to represent the provided |
1900 | /// identifier, in order to cache an action performed by typo correction. |
1901 | void TypoCorrectToken(const Token &Tok) { |
1902 | assert(Tok.getIdentifierInfo() && "Expected identifier token"); |
1903 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1904 | CachedTokens[CachedLexPos-1] = Tok; |
1905 | } |
1906 | |
1907 | /// Recompute the current lexer kind based on the CurLexer/ |
1908 | /// CurTokenLexer pointers. |
1909 | void recomputeCurLexerKind(); |
1910 | |
1911 | /// Returns true if incremental processing is enabled |
1912 | bool isIncrementalProcessingEnabled() const { |
1913 | return getLangOpts().IncrementalExtensions; |
1914 | } |
1915 | |
1916 | /// Enables the incremental processing |
1917 | void enableIncrementalProcessing(bool value = true) { |
1918 | // FIXME: Drop this interface. |
1919 | const_cast<LangOptions &>(getLangOpts()).IncrementalExtensions = value; |
1920 | } |
1921 | |
1922 | /// Specify the point at which code-completion will be performed. |
1923 | /// |
1924 | /// \param File the file in which code completion should occur. If |
1925 | /// this file is included multiple times, code-completion will |
1926 | /// perform completion the first time it is included. If NULL, this |
1927 | /// function clears out the code-completion point. |
1928 | /// |
1929 | /// \param Line the line at which code completion should occur |
1930 | /// (1-based). |
1931 | /// |
1932 | /// \param Column the column at which code completion should occur |
1933 | /// (1-based). |
1934 | /// |
1935 | /// \returns true if an error occurred, false otherwise. |
1936 | bool SetCodeCompletionPoint(const FileEntry *File, |
1937 | unsigned Line, unsigned Column); |
1938 | |
1939 | /// Determine if we are performing code completion. |
1940 | bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; } |
1941 | |
1942 | /// Returns the location of the code-completion point. |
1943 | /// |
1944 | /// Returns an invalid location if code-completion is not enabled or the file |
1945 | /// containing the code-completion point has not been lexed yet. |
1946 | SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; } |
1947 | |
1948 | /// Returns the start location of the file of code-completion point. |
1949 | /// |
1950 | /// Returns an invalid location if code-completion is not enabled or the file |
1951 | /// containing the code-completion point has not been lexed yet. |
1952 | SourceLocation getCodeCompletionFileLoc() const { |
1953 | return CodeCompletionFileLoc; |
1954 | } |
1955 | |
1956 | /// Returns true if code-completion is enabled and we have hit the |
1957 | /// code-completion point. |
1958 | bool isCodeCompletionReached() const { return CodeCompletionReached; } |
1959 | |
1960 | /// Note that we hit the code-completion point. |
1961 | void setCodeCompletionReached() { |
1962 | assert(isCodeCompletionEnabled() && "Code-completion not enabled!"); |
1963 | CodeCompletionReached = true; |
1964 | // Silence any diagnostics that occur after we hit the code-completion. |
1965 | getDiagnostics().setSuppressAllDiagnostics(true); |
1966 | } |
1967 | |
1968 | /// The location of the currently-active \#pragma clang |
1969 | /// arc_cf_code_audited begin. |
1970 | /// |
1971 | /// Returns an invalid location if there is no such pragma active. |
1972 | std::pair<IdentifierInfo *, SourceLocation> |
1973 | getPragmaARCCFCodeAuditedInfo() const { |
1974 | return PragmaARCCFCodeAuditedInfo; |
1975 | } |
1976 | |
1977 | /// Set the location of the currently-active \#pragma clang |
1978 | /// arc_cf_code_audited begin. An invalid location ends the pragma. |
1979 | void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident, |
1980 | SourceLocation Loc) { |
1981 | PragmaARCCFCodeAuditedInfo = {Ident, Loc}; |
1982 | } |
1983 | |
1984 | /// The location of the currently-active \#pragma clang |
1985 | /// assume_nonnull begin. |
1986 | /// |
1987 | /// Returns an invalid location if there is no such pragma active. |
1988 | SourceLocation getPragmaAssumeNonNullLoc() const { |
1989 | return PragmaAssumeNonNullLoc; |
1990 | } |
1991 | |
1992 | /// Set the location of the currently-active \#pragma clang |
1993 | /// assume_nonnull begin. An invalid location ends the pragma. |
1994 | void setPragmaAssumeNonNullLoc(SourceLocation Loc) { |
1995 | PragmaAssumeNonNullLoc = Loc; |
1996 | } |
1997 | |
1998 | /// Get the location of the recorded unterminated \#pragma clang |
1999 | /// assume_nonnull begin in the preamble, if one exists. |
2000 | /// |
2001 | /// Returns an invalid location if the premable did not end with |
2002 | /// such a pragma active or if there is no recorded preamble. |
2003 | SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const { |
2004 | return PreambleRecordedPragmaAssumeNonNullLoc; |
2005 | } |
2006 | |
2007 | /// Record the location of the unterminated \#pragma clang |
2008 | /// assume_nonnull begin in the preamble. |
2009 | void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) { |
2010 | PreambleRecordedPragmaAssumeNonNullLoc = Loc; |
2011 | } |
2012 | |
2013 | /// Set the directory in which the main file should be considered |
2014 | /// to have been found, if it is not a real file. |
2015 | void setMainFileDir(const DirectoryEntry *Dir) { |
2016 | MainFileDir = Dir; |
2017 | } |
2018 | |
2019 | /// Instruct the preprocessor to skip part of the main source file. |
2020 | /// |
2021 | /// \param Bytes The number of bytes in the preamble to skip. |
2022 | /// |
2023 | /// \param StartOfLine Whether skipping these bytes puts the lexer at the |
2024 | /// start of a line. |
2025 | void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) { |
2026 | SkipMainFilePreamble.first = Bytes; |
2027 | SkipMainFilePreamble.second = StartOfLine; |
2028 | } |
2029 | |
2030 | /// Forwarding function for diagnostics. This emits a diagnostic at |
2031 | /// the specified Token's location, translating the token's start |
2032 | /// position in the current buffer into a SourcePosition object for rendering. |
2033 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const { |
2034 | return Diags->Report(Loc, DiagID); |
2035 | } |
2036 | |
2037 | DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const { |
2038 | return Diags->Report(Tok.getLocation(), DiagID); |
2039 | } |
2040 | |
2041 | /// Return the 'spelling' of the token at the given |
2042 | /// location; does not go up to the spelling location or down to the |
2043 | /// expansion location. |
2044 | /// |
2045 | /// \param buffer A buffer which will be used only if the token requires |
2046 | /// "cleaning", e.g. if it contains trigraphs or escaped newlines |
2047 | /// \param invalid If non-null, will be set \c true if an error occurs. |
2048 | StringRef getSpelling(SourceLocation loc, |
2049 | SmallVectorImpl<char> &buffer, |
2050 | bool *invalid = nullptr) const { |
2051 | return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid); |
2052 | } |
2053 | |
2054 | /// Return the 'spelling' of the Tok token. |
2055 | /// |
2056 | /// The spelling of a token is the characters used to represent the token in |
2057 | /// the source file after trigraph expansion and escaped-newline folding. In |
2058 | /// particular, this wants to get the true, uncanonicalized, spelling of |
2059 | /// things like digraphs, UCNs, etc. |
2060 | /// |
2061 | /// \param Invalid If non-null, will be set \c true if an error occurs. |
2062 | std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const { |
2063 | return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid); |
2064 | } |
2065 | |
2066 | /// Get the spelling of a token into a preallocated buffer, instead |
2067 | /// of as an std::string. |
2068 | /// |
2069 | /// The caller is required to allocate enough space for the token, which is |
2070 | /// guaranteed to be at least Tok.getLength() bytes long. The length of the |
2071 | /// actual result is returned. |
2072 | /// |
2073 | /// Note that this method may do two possible things: it may either fill in |
2074 | /// the buffer specified with characters, or it may *change the input pointer* |
2075 | /// to point to a constant buffer with the data already in it (avoiding a |
2076 | /// copy). The caller is not allowed to modify the returned buffer pointer |
2077 | /// if an internal buffer is returned. |
2078 | unsigned getSpelling(const Token &Tok, const char *&Buffer, |
2079 | bool *Invalid = nullptr) const { |
2080 | return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid); |
2081 | } |
2082 | |
2083 | /// Get the spelling of a token into a SmallVector. |
2084 | /// |
2085 | /// Note that the returned StringRef may not point to the |
2086 | /// supplied buffer if a copy can be avoided. |
2087 | StringRef getSpelling(const Token &Tok, |
2088 | SmallVectorImpl<char> &Buffer, |
2089 | bool *Invalid = nullptr) const; |
2090 | |
2091 | /// Relex the token at the specified location. |
2092 | /// \returns true if there was a failure, false on success. |
2093 | bool getRawToken(SourceLocation Loc, Token &Result, |
2094 | bool IgnoreWhiteSpace = false) { |
2095 | return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace); |
2096 | } |
2097 | |
2098 | /// Given a Token \p Tok that is a numeric constant with length 1, |
2099 | /// return the character. |
2100 | char |
2101 | getSpellingOfSingleCharacterNumericConstant(const Token &Tok, |
2102 | bool *Invalid = nullptr) const { |
2103 | assert(Tok.is(tok::numeric_constant) && |
2104 | Tok.getLength() == 1 && "Called on unsupported token"); |
2105 | assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1"); |
2106 | |
2107 | // If the token is carrying a literal data pointer, just use it. |
2108 | if (const char *D = Tok.getLiteralData()) |
2109 | return *D; |
2110 | |
2111 | // Otherwise, fall back on getCharacterData, which is slower, but always |
2112 | // works. |
2113 | return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid); |
2114 | } |
2115 | |
2116 | /// Retrieve the name of the immediate macro expansion. |
2117 | /// |
2118 | /// This routine starts from a source location, and finds the name of the |
2119 | /// macro responsible for its immediate expansion. It looks through any |
2120 | /// intervening macro argument expansions to compute this. It returns a |
2121 | /// StringRef that refers to the SourceManager-owned buffer of the source |
2122 | /// where that macro name is spelled. Thus, the result shouldn't out-live |
2123 | /// the SourceManager. |
2124 | StringRef getImmediateMacroName(SourceLocation Loc) { |
2125 | return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts()); |
2126 | } |
2127 | |
2128 | /// Plop the specified string into a scratch buffer and set the |
2129 | /// specified token's location and length to it. |
2130 | /// |
2131 | /// If specified, the source location provides a location of the expansion |
2132 | /// point of the token. |
2133 | void CreateString(StringRef Str, Token &Tok, |
2134 | SourceLocation ExpansionLocStart = SourceLocation(), |
2135 | SourceLocation ExpansionLocEnd = SourceLocation()); |
2136 | |
2137 | /// Split the first Length characters out of the token starting at TokLoc |
2138 | /// and return a location pointing to the split token. Re-lexing from the |
2139 | /// split token will return the split token rather than the original. |
2140 | SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length); |
2141 | |
2142 | /// Computes the source location just past the end of the |
2143 | /// token at this source location. |
2144 | /// |
2145 | /// This routine can be used to produce a source location that |
2146 | /// points just past the end of the token referenced by \p Loc, and |
2147 | /// is generally used when a diagnostic needs to point just after a |
2148 | /// token where it expected something different that it received. If |
2149 | /// the returned source location would not be meaningful (e.g., if |
2150 | /// it points into a macro), this routine returns an invalid |
2151 | /// source location. |
2152 | /// |
2153 | /// \param Offset an offset from the end of the token, where the source |
2154 | /// location should refer to. The default offset (0) produces a source |
2155 | /// location pointing just past the end of the token; an offset of 1 produces |
2156 | /// a source location pointing to the last character in the token, etc. |
2157 | SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) { |
2158 | return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); |
2159 | } |
2160 | |
2161 | /// Returns true if the given MacroID location points at the first |
2162 | /// token of the macro expansion. |
2163 | /// |
2164 | /// \param MacroBegin If non-null and function returns true, it is set to |
2165 | /// begin location of the macro. |
2166 | bool isAtStartOfMacroExpansion(SourceLocation loc, |
2167 | SourceLocation *MacroBegin = nullptr) const { |
2168 | return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts, |
2169 | MacroBegin); |
2170 | } |
2171 | |
2172 | /// Returns true if the given MacroID location points at the last |
2173 | /// token of the macro expansion. |
2174 | /// |
2175 | /// \param MacroEnd If non-null and function returns true, it is set to |
2176 | /// end location of the macro. |
2177 | bool isAtEndOfMacroExpansion(SourceLocation loc, |
2178 | SourceLocation *MacroEnd = nullptr) const { |
2179 | return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd); |
2180 | } |
2181 | |
2182 | /// Print the token to stderr, used for debugging. |
2183 | void DumpToken(const Token &Tok, bool DumpFlags = false) const; |
2184 | void DumpLocation(SourceLocation Loc) const; |
2185 | void DumpMacro(const MacroInfo &MI) const; |
2186 | void dumpMacroInfo(const IdentifierInfo *II); |
2187 | |
2188 | /// Given a location that specifies the start of a |
2189 | /// token, return a new location that specifies a character within the token. |
2190 | SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, |
2191 | unsigned Char) const { |
2192 | return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts); |
2193 | } |
2194 | |
2195 | /// Increment the counters for the number of token paste operations |
2196 | /// performed. |
2197 | /// |
2198 | /// If fast was specified, this is a 'fast paste' case we handled. |
2199 | void IncrementPasteCounter(bool isFast) { |
2200 | if (isFast) |
2201 | ++NumFastTokenPaste; |
2202 | else |
2203 | ++NumTokenPaste; |
2204 | } |
2205 | |
2206 | void PrintStats(); |
2207 | |
2208 | size_t getTotalMemory() const; |
2209 | |
2210 | /// When the macro expander pastes together a comment (/##/) in Microsoft |
2211 | /// mode, this method handles updating the current state, returning the |
2212 | /// token on the next source line. |
2213 | void HandleMicrosoftCommentPaste(Token &Tok); |
2214 | |
2215 | //===--------------------------------------------------------------------===// |
2216 | // Preprocessor callback methods. These are invoked by a lexer as various |
2217 | // directives and events are found. |
2218 | |
2219 | /// Given a tok::raw_identifier token, look up the |
2220 | /// identifier information for the token and install it into the token, |
2221 | /// updating the token kind accordingly. |
2222 | IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const; |
2223 | |
2224 | private: |
2225 | llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons; |
2226 | |
2227 | public: |
2228 | /// Specifies the reason for poisoning an identifier. |
2229 | /// |
2230 | /// If that identifier is accessed while poisoned, then this reason will be |
2231 | /// used instead of the default "poisoned" diagnostic. |
2232 | void SetPoisonReason(IdentifierInfo *II, unsigned DiagID); |
2233 | |
2234 | /// Display reason for poisoned identifier. |
2235 | void HandlePoisonedIdentifier(Token & Identifier); |
2236 | |
2237 | void MaybeHandlePoisonedIdentifier(Token & Identifier) { |
2238 | if(IdentifierInfo * II = Identifier.getIdentifierInfo()) { |
2239 | if(II->isPoisoned()) { |
2240 | HandlePoisonedIdentifier(Identifier); |
2241 | } |
2242 | } |
2243 | } |
2244 | |
2245 | private: |
2246 | /// Identifiers used for SEH handling in Borland. These are only |
2247 | /// allowed in particular circumstances |
2248 | // __except block |
2249 | IdentifierInfo *Ident__exception_code, |
2250 | *Ident___exception_code, |
2251 | *Ident_GetExceptionCode; |
2252 | // __except filter expression |
2253 | IdentifierInfo *Ident__exception_info, |
2254 | *Ident___exception_info, |
2255 | *Ident_GetExceptionInfo; |
2256 | // __finally |
2257 | IdentifierInfo *Ident__abnormal_termination, |
2258 | *Ident___abnormal_termination, |
2259 | *Ident_AbnormalTermination; |
2260 | |
2261 | const char *getCurLexerEndPos(); |
2262 | void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod); |
2263 | |
2264 | public: |
2265 | void PoisonSEHIdentifiers(bool Poison = true); // Borland |
2266 | |
2267 | /// Callback invoked when the lexer reads an identifier and has |
2268 | /// filled in the tokens IdentifierInfo member. |
2269 | /// |
2270 | /// This callback potentially macro expands it or turns it into a named |
2271 | /// token (like 'for'). |
2272 | /// |
2273 | /// \returns true if we actually computed a token, false if we need to |
2274 | /// lex again. |
2275 | bool HandleIdentifier(Token &Identifier); |
2276 | |
2277 | /// Callback invoked when the lexer hits the end of the current file. |
2278 | /// |
2279 | /// This either returns the EOF token and returns true, or |
2280 | /// pops a level off the include stack and returns false, at which point the |
2281 | /// client should call lex again. |
2282 | bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false); |
2283 | |
2284 | /// Callback invoked when the current TokenLexer hits the end of its |
2285 | /// token stream. |
2286 | bool HandleEndOfTokenLexer(Token &Result); |
2287 | |
2288 | /// Callback invoked when the lexer sees a # token at the start of a |
2289 | /// line. |
2290 | /// |
2291 | /// This consumes the directive, modifies the lexer/preprocessor state, and |
2292 | /// advances the lexer(s) so that the next token read is the correct one. |
2293 | void HandleDirective(Token &Result); |
2294 | |
2295 | /// Ensure that the next token is a tok::eod token. |
2296 | /// |
2297 | /// If not, emit a diagnostic and consume up until the eod. |
2298 | /// If \p EnableMacros is true, then we consider macros that expand to zero |
2299 | /// tokens as being ok. |
2300 | /// |
2301 | /// \return The location of the end of the directive (the terminating |
2302 | /// newline). |
2303 | SourceLocation CheckEndOfDirective(const char *DirType, |
2304 | bool EnableMacros = false); |
2305 | |
2306 | /// Read and discard all tokens remaining on the current line until |
2307 | /// the tok::eod token is found. Returns the range of the skipped tokens. |
2308 | SourceRange DiscardUntilEndOfDirective(); |
2309 | |
2310 | /// Returns true if the preprocessor has seen a use of |
2311 | /// __DATE__ or __TIME__ in the file so far. |
2312 | bool SawDateOrTime() const { |
2313 | return DATELoc != SourceLocation() || TIMELoc != SourceLocation(); |
2314 | } |
2315 | unsigned getCounterValue() const { return CounterValue; } |
2316 | void setCounterValue(unsigned V) { CounterValue = V; } |
2317 | |
2318 | LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const { |
2319 | assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine && |
2320 | "FPEvalMethod should be set either from command line or from the " |
2321 | "target info"); |
2322 | return CurrentFPEvalMethod; |
2323 | } |
2324 | |
2325 | LangOptions::FPEvalMethodKind getTUFPEvalMethod() const { |
2326 | return TUFPEvalMethod; |
2327 | } |
2328 | |
2329 | SourceLocation getLastFPEvalPragmaLocation() const { |
2330 | return LastFPEvalPragmaLocation; |
2331 | } |
2332 | |
2333 | void setCurrentFPEvalMethod(SourceLocation PragmaLoc, |
2334 | LangOptions::FPEvalMethodKind Val) { |
2335 | assert(Val != LangOptions::FEM_UnsetOnCommandLine && |
2336 | "FPEvalMethod should never be set to FEM_UnsetOnCommandLine"); |
2337 | // This is the location of the '#pragma float_control" where the |
2338 | // execution state is modifed. |
2339 | LastFPEvalPragmaLocation = PragmaLoc; |
2340 | CurrentFPEvalMethod = Val; |
2341 | TUFPEvalMethod = Val; |
2342 | } |
2343 | |
2344 | void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) { |
2345 | assert(Val != LangOptions::FEM_UnsetOnCommandLine && |
2346 | "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine"); |
2347 | TUFPEvalMethod = Val; |
2348 | } |
2349 | |
2350 | /// Retrieves the module that we're currently building, if any. |
2351 | Module *getCurrentModule(); |
2352 | |
2353 | /// Retrieves the module whose implementation we're current compiling, if any. |
2354 | Module *getCurrentModuleImplementation(); |
2355 | |
2356 | /// If we are preprocessing a named module. |
2357 | bool isInNamedModule() const { return ModuleDeclState.isNamedModule(); } |
2358 | |
2359 | /// If we are proprocessing a named interface unit. |
2360 | /// Note that a module implementation partition is not considered as an |
2361 | /// named interface unit here although it is importable |
2362 | /// to ease the parsing. |
2363 | bool isInNamedInterfaceUnit() const { |
2364 | return ModuleDeclState.isNamedInterface(); |
2365 | } |
2366 | |
2367 | /// Get the named module name we're preprocessing. |
2368 | /// Requires we're preprocessing a named module. |
2369 | StringRef getNamedModuleName() const { return ModuleDeclState.getName(); } |
2370 | |
2371 | /// If we are implementing an implementation module unit. |
2372 | /// Note that the module implementation partition is not considered as an |
2373 | /// implementation unit. |
2374 | bool isInImplementationUnit() const { |
2375 | return ModuleDeclState.isImplementationUnit(); |
2376 | } |
2377 | |
2378 | /// If we're importing a standard C++20 Named Modules. |
2379 | bool isInImportingCXXNamedModules() const { |
2380 | // NamedModuleImportPath will be non-empty only if we're importing |
2381 | // Standard C++ named modules. |
2382 | return !NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules && |
2383 | !IsAtImport; |
2384 | } |
2385 | |
2386 | /// Allocate a new MacroInfo object with the provided SourceLocation. |
2387 | MacroInfo *AllocateMacroInfo(SourceLocation L); |
2388 | |
2389 | /// Turn the specified lexer token into a fully checked and spelled |
2390 | /// filename, e.g. as an operand of \#include. |
2391 | /// |
2392 | /// The caller is expected to provide a buffer that is large enough to hold |
2393 | /// the spelling of the filename, but is also expected to handle the case |
2394 | /// when this method decides to use a different buffer. |
2395 | /// |
2396 | /// \returns true if the input filename was in <>'s or false if it was |
2397 | /// in ""'s. |
2398 | bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer); |
2399 | |
2400 | /// Given a "foo" or \<foo> reference, look up the indicated file. |
2401 | /// |
2402 | /// Returns std::nullopt on failure. \p isAngled indicates whether the file |
2403 | /// reference is for system \#include's or not (i.e. using <> instead of ""). |
2404 | OptionalFileEntryRef |
2405 | LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled, |
2406 | ConstSearchDirIterator FromDir, const FileEntry *FromFile, |
2407 | ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath, |
2408 | SmallVectorImpl<char> *RelativePath, |
2409 | ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped, |
2410 | bool *IsFrameworkFound, bool SkipCache = false, |
2411 | bool OpenFile = true, bool CacheFailures = true); |
2412 | |
2413 | /// Return true if we're in the top-level file, not in a \#include. |
2414 | bool isInPrimaryFile() const; |
2415 | |
2416 | /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is |
2417 | /// followed by EOD. Return true if the token is not a valid on-off-switch. |
2418 | bool LexOnOffSwitch(tok::OnOffSwitch &Result); |
2419 | |
2420 | bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, |
2421 | bool *ShadowFlag = nullptr); |
2422 | |
2423 | void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma); |
2424 | Module *LeaveSubmodule(bool ForPragma); |
2425 | |
2426 | private: |
2427 | friend void TokenLexer::ExpandFunctionArguments(); |
2428 | |
2429 | void PushIncludeMacroStack() { |
2430 | assert(CurLexerKind != CLK_CachingLexer && "cannot push a caching lexer"); |
2431 | IncludeMacroStack.emplace_back(CurLexerKind, CurLexerSubmodule, |
2432 | std::move(CurLexer), CurPPLexer, |
2433 | std::move(CurTokenLexer), CurDirLookup); |
2434 | CurPPLexer = nullptr; |
2435 | } |
2436 | |
2437 | void PopIncludeMacroStack() { |
2438 | CurLexer = std::move(IncludeMacroStack.back().TheLexer); |
2439 | CurPPLexer = IncludeMacroStack.back().ThePPLexer; |
2440 | CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer); |
2441 | CurDirLookup = IncludeMacroStack.back().TheDirLookup; |
2442 | CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule; |
2443 | CurLexerKind = IncludeMacroStack.back().CurLexerKind; |
2444 | IncludeMacroStack.pop_back(); |
2445 | } |
2446 | |
2447 | void PropagateLineStartLeadingSpaceInfo(Token &Result); |
2448 | |
2449 | /// Determine whether we need to create module macros for #defines in the |
2450 | /// current context. |
2451 | bool needModuleMacros() const; |
2452 | |
2453 | /// Update the set of active module macros and ambiguity flag for a module |
2454 | /// macro name. |
2455 | void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info); |
2456 | |
2457 | DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI, |
2458 | SourceLocation Loc); |
2459 | UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc); |
2460 | VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc, |
2461 | bool isPublic); |
2462 | |
2463 | /// Lex and validate a macro name, which occurs after a |
2464 | /// \#define or \#undef. |
2465 | /// |
2466 | /// \param MacroNameTok Token that represents the name defined or undefined. |
2467 | /// \param IsDefineUndef Kind if preprocessor directive. |
2468 | /// \param ShadowFlag Points to flag that is set if macro name shadows |
2469 | /// a keyword. |
2470 | /// |
2471 | /// This emits a diagnostic, sets the token kind to eod, |
2472 | /// and discards the rest of the macro line if the macro name is invalid. |
2473 | void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other, |
2474 | bool *ShadowFlag = nullptr); |
2475 | |
2476 | /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the |
2477 | /// entire line) of the macro's tokens and adds them to MacroInfo, and while |
2478 | /// doing so performs certain validity checks including (but not limited to): |
2479 | /// - # (stringization) is followed by a macro parameter |
2480 | /// \param MacroNameTok - Token that represents the macro name |
2481 | /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard |
2482 | /// |
2483 | /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and |
2484 | /// returns a nullptr if an invalid sequence of tokens is encountered. |
2485 | MacroInfo *ReadOptionalMacroParameterListAndBody( |
2486 | const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard); |
2487 | |
2488 | /// The ( starting an argument list of a macro definition has just been read. |
2489 | /// Lex the rest of the parameters and the closing ), updating \p MI with |
2490 | /// what we learn and saving in \p LastTok the last token read. |
2491 | /// Return true if an error occurs parsing the arg list. |
2492 | bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok); |
2493 | |
2494 | /// Provide a suggestion for a typoed directive. If there is no typo, then |
2495 | /// just skip suggesting. |
2496 | /// |
2497 | /// \param Tok - Token that represents the directive |
2498 | /// \param Directive - String reference for the directive name |
2499 | void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const; |
2500 | |
2501 | /// We just read a \#if or related directive and decided that the |
2502 | /// subsequent tokens are in the \#if'd out portion of the |
2503 | /// file. Lex the rest of the file, until we see an \#endif. If \p |
2504 | /// FoundNonSkipPortion is true, then we have already emitted code for part of |
2505 | /// this \#if directive, so \#else/\#elif blocks should never be entered. If |
2506 | /// \p FoundElse is false, then \#else directives are ok, if not, then we have |
2507 | /// already seen one so a \#else directive is a duplicate. When this returns, |
2508 | /// the caller can lex the first valid token. |
2509 | void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, |
2510 | SourceLocation IfTokenLoc, |
2511 | bool FoundNonSkipPortion, bool FoundElse, |
2512 | SourceLocation ElseLoc = SourceLocation()); |
2513 | |
2514 | /// Information about the result for evaluating an expression for a |
2515 | /// preprocessor directive. |
2516 | struct DirectiveEvalResult { |
2517 | /// Whether the expression was evaluated as true or not. |
2518 | bool Conditional; |
2519 | |
2520 | /// True if the expression contained identifiers that were undefined. |
2521 | bool IncludedUndefinedIds; |
2522 | |
2523 | /// The source range for the expression. |
2524 | SourceRange ExprRange; |
2525 | }; |
2526 | |
2527 | /// Evaluate an integer constant expression that may occur after a |
2528 | /// \#if or \#elif directive and return a \p DirectiveEvalResult object. |
2529 | /// |
2530 | /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. |
2531 | DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro); |
2532 | |
2533 | /// Process a '__has_include("path")' expression. |
2534 | /// |
2535 | /// Returns true if successful. |
2536 | bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II); |
2537 | |
2538 | /// Process '__has_include_next("path")' expression. |
2539 | /// |
2540 | /// Returns true if successful. |
2541 | bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II); |
2542 | |
2543 | /// Get the directory and file from which to start \#include_next lookup. |
2544 | std::pair<ConstSearchDirIterator, const FileEntry *> |
2545 | getIncludeNextStart(const Token &IncludeNextTok) const; |
2546 | |
2547 | /// Install the standard preprocessor pragmas: |
2548 | /// \#pragma GCC poison/system_header/dependency and \#pragma once. |
2549 | void RegisterBuiltinPragmas(); |
2550 | |
2551 | /// Register builtin macros such as __LINE__ with the identifier table. |
2552 | void RegisterBuiltinMacros(); |
2553 | |
2554 | /// If an identifier token is read that is to be expanded as a macro, handle |
2555 | /// it and return the next token as 'Tok'. If we lexed a token, return true; |
2556 | /// otherwise the caller should lex again. |
2557 | bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD); |
2558 | |
2559 | /// Cache macro expanded tokens for TokenLexers. |
2560 | // |
2561 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
2562 | /// going to lex in the cache and when it finishes the tokens are removed |
2563 | /// from the end of the cache. |
2564 | Token *cacheMacroExpandedTokens(TokenLexer *tokLexer, |
2565 | ArrayRef<Token> tokens); |
2566 | |
2567 | void removeCachedMacroExpandedTokensOfLastLexer(); |
2568 | |
2569 | /// Determine whether the next preprocessor token to be |
2570 | /// lexed is a '('. If so, consume the token and return true, if not, this |
2571 | /// method should have no observable side-effect on the lexed tokens. |
2572 | bool isNextPPTokenLParen(); |
2573 | |
2574 | /// After reading "MACRO(", this method is invoked to read all of the formal |
2575 | /// arguments specified for the macro invocation. Returns null on error. |
2576 | MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, |
2577 | SourceLocation &MacroEnd); |
2578 | |
2579 | /// If an identifier token is read that is to be expanded |
2580 | /// as a builtin macro, handle it and return the next token as 'Tok'. |
2581 | void ExpandBuiltinMacro(Token &Tok); |
2582 | |
2583 | /// Read a \c _Pragma directive, slice it up, process it, then |
2584 | /// return the first token after the directive. |
2585 | /// This assumes that the \c _Pragma token has just been read into \p Tok. |
2586 | void Handle_Pragma(Token &Tok); |
2587 | |
2588 | /// Like Handle_Pragma except the pragma text is not enclosed within |
2589 | /// a string literal. |
2590 | void HandleMicrosoft__pragma(Token &Tok); |
2591 | |
2592 | /// Add a lexer to the top of the include stack and |
2593 | /// start lexing tokens from it instead of the current buffer. |
2594 | void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir); |
2595 | |
2596 | /// Set the FileID for the preprocessor predefines. |
2597 | void setPredefinesFileID(FileID FID) { |
2598 | assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!"); |
2599 | PredefinesFileID = FID; |
2600 | } |
2601 | |
2602 | /// Set the FileID for the PCH through header. |
2603 | void setPCHThroughHeaderFileID(FileID FID); |
2604 | |
2605 | /// Returns true if we are lexing from a file and not a |
2606 | /// pragma or a macro. |
2607 | static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) { |
2608 | return L ? !L->isPragmaLexer() : P != nullptr; |
2609 | } |
2610 | |
2611 | static bool IsFileLexer(const IncludeStackInfo& I) { |
2612 | return IsFileLexer(I.TheLexer.get(), I.ThePPLexer); |
2613 | } |
2614 | |
2615 | bool IsFileLexer() const { |
2616 | return IsFileLexer(CurLexer.get(), CurPPLexer); |
2617 | } |
2618 | |
2619 | //===--------------------------------------------------------------------===// |
2620 | // Caching stuff. |
2621 | void CachingLex(Token &Result); |
2622 | |
2623 | bool InCachingLexMode() const { |
2624 | // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means |
2625 | // that we are past EOF, not that we are in CachingLex mode. |
2626 | return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty(); |
2627 | } |
2628 | |
2629 | void EnterCachingLexMode(); |
2630 | void EnterCachingLexModeUnchecked(); |
2631 | |
2632 | void ExitCachingLexMode() { |
2633 | if (InCachingLexMode()) |
2634 | RemoveTopOfLexerStack(); |
2635 | } |
2636 | |
2637 | const Token &PeekAhead(unsigned N); |
2638 | void AnnotatePreviousCachedTokens(const Token &Tok); |
2639 | |
2640 | //===--------------------------------------------------------------------===// |
2641 | /// Handle*Directive - implement the various preprocessor directives. These |
2642 | /// should side-effect the current preprocessor object so that the next call |
2643 | /// to Lex() will return the appropriate token next. |
2644 | void HandleLineDirective(); |
2645 | void HandleDigitDirective(Token &Tok); |
2646 | void HandleUserDiagnosticDirective(Token &Tok, bool isWarning); |
2647 | void HandleIdentSCCSDirective(Token &Tok); |
2648 | void HandleMacroPublicDirective(Token &Tok); |
2649 | void HandleMacroPrivateDirective(); |
2650 | |
2651 | /// An additional notification that can be produced by a header inclusion or |
2652 | /// import to tell the parser what happened. |
2653 | struct ImportAction { |
2654 | enum ActionKind { |
2655 | None, |
2656 | ModuleBegin, |
2657 | ModuleImport, |
2658 | HeaderUnitImport, |
2659 | SkippedModuleImport, |
2660 | Failure, |
2661 | } Kind; |
2662 | Module *ModuleForHeader = nullptr; |
2663 | |
2664 | ImportAction(ActionKind AK, Module *Mod = nullptr) |
2665 | : Kind(AK), ModuleForHeader(Mod) { |
2666 | assert((AK == None || Mod || AK == Failure) && |
2667 | "no module for module action"); |
2668 | } |
2669 | }; |
2670 | |
2671 | OptionalFileEntryRef LookupHeaderIncludeOrImport( |
2672 | ConstSearchDirIterator *CurDir, StringRef &Filename, |
2673 | SourceLocation FilenameLoc, CharSourceRange FilenameRange, |
2674 | const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl, |
2675 | bool &IsMapped, ConstSearchDirIterator LookupFrom, |
2676 | const FileEntry *LookupFromFile, StringRef &LookupFilename, |
2677 | SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath, |
2678 | ModuleMap::KnownHeader &SuggestedModule, bool isAngled); |
2679 | |
2680 | // File inclusion. |
2681 | void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok, |
2682 | ConstSearchDirIterator LookupFrom = nullptr, |
2683 | const FileEntry *LookupFromFile = nullptr); |
2684 | ImportAction |
2685 | HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok, |
2686 | Token &FilenameTok, SourceLocation EndLoc, |
2687 | ConstSearchDirIterator LookupFrom = nullptr, |
2688 | const FileEntry *LookupFromFile = nullptr); |
2689 | void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok); |
2690 | void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok); |
2691 | void HandleImportDirective(SourceLocation HashLoc, Token &Tok); |
2692 | void HandleMicrosoftImportDirective(Token &Tok); |
2693 | |
2694 | public: |
2695 | /// Check that the given module is available, producing a diagnostic if not. |
2696 | /// \return \c true if the check failed (because the module is not available). |
2697 | /// \c false if the module appears to be usable. |
2698 | static bool checkModuleIsAvailable(const LangOptions &LangOpts, |
2699 | const TargetInfo &TargetInfo, |
2700 | DiagnosticsEngine &Diags, Module *M); |
2701 | |
2702 | // Module inclusion testing. |
2703 | /// Find the module that owns the source or header file that |
2704 | /// \p Loc points to. If the location is in a file that was included |
2705 | /// into a module, or is outside any module, returns nullptr. |
2706 | Module *getModuleForLocation(SourceLocation Loc, bool AllowTextual); |
2707 | |
2708 | /// We want to produce a diagnostic at location IncLoc concerning an |
2709 | /// unreachable effect at location MLoc (eg, where a desired entity was |
2710 | /// declared or defined). Determine whether the right way to make MLoc |
2711 | /// reachable is by #include, and if so, what header should be included. |
2712 | /// |
2713 | /// This is not necessarily fast, and might load unexpected module maps, so |
2714 | /// should only be called by code that intends to produce an error. |
2715 | /// |
2716 | /// \param IncLoc The location at which the missing effect was detected. |
2717 | /// \param MLoc A location within an unimported module at which the desired |
2718 | /// effect occurred. |
2719 | /// \return A file that can be #included to provide the desired effect. Null |
2720 | /// if no such file could be determined or if a #include is not |
2721 | /// appropriate (eg, if a module should be imported instead). |
2722 | const FileEntry *getHeaderToIncludeForDiagnostics(SourceLocation IncLoc, |
2723 | SourceLocation MLoc); |
2724 | |
2725 | bool isRecordingPreamble() const { |
2726 | return PreambleConditionalStack.isRecording(); |
2727 | } |
2728 | |
2729 | bool hasRecordedPreamble() const { |
2730 | return PreambleConditionalStack.hasRecordedPreamble(); |
2731 | } |
2732 | |
2733 | ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const { |
2734 | return PreambleConditionalStack.getStack(); |
2735 | } |
2736 | |
2737 | void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) { |
2738 | PreambleConditionalStack.setStack(s); |
2739 | } |
2740 | |
2741 | void setReplayablePreambleConditionalStack( |
2742 | ArrayRef<PPConditionalInfo> s, std::optional<PreambleSkipInfo> SkipInfo) { |
2743 | PreambleConditionalStack.startReplaying(); |
2744 | PreambleConditionalStack.setStack(s); |
2745 | PreambleConditionalStack.SkipInfo = SkipInfo; |
2746 | } |
2747 | |
2748 | std::optional<PreambleSkipInfo> getPreambleSkipInfo() const { |
2749 | return PreambleConditionalStack.SkipInfo; |
2750 | } |
2751 | |
2752 | private: |
2753 | /// After processing predefined file, initialize the conditional stack from |
2754 | /// the preamble. |
2755 | void replayPreambleConditionalStack(); |
2756 | |
2757 | // Macro handling. |
2758 | void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterHeaderGuard); |
2759 | void HandleUndefDirective(); |
2760 | |
2761 | // Conditional Inclusion. |
2762 | void HandleIfdefDirective(Token &Result, const Token &HashToken, |
2763 | bool isIfndef, bool ReadAnyTokensBeforeDirective); |
2764 | void HandleIfDirective(Token &IfToken, const Token &HashToken, |
2765 | bool ReadAnyTokensBeforeDirective); |
2766 | void HandleEndifDirective(Token &EndifToken); |
2767 | void HandleElseDirective(Token &Result, const Token &HashToken); |
2768 | void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken, |
2769 | tok::PPKeywordKind Kind); |
2770 | |
2771 | // Pragmas. |
2772 | void HandlePragmaDirective(PragmaIntroducer Introducer); |
2773 | |
2774 | public: |
2775 | void HandlePragmaOnce(Token &OnceTok); |
2776 | void HandlePragmaMark(Token &MarkTok); |
2777 | void HandlePragmaPoison(); |
2778 | void HandlePragmaSystemHeader(Token &SysHeaderTok); |
2779 | void HandlePragmaDependency(Token &DependencyTok); |
2780 | void HandlePragmaPushMacro(Token &Tok); |
2781 | void HandlePragmaPopMacro(Token &Tok); |
2782 | void HandlePragmaIncludeAlias(Token &Tok); |
2783 | void HandlePragmaModuleBuild(Token &Tok); |
2784 | void HandlePragmaHdrstop(Token &Tok); |
2785 | IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok); |
2786 | |
2787 | // Return true and store the first token only if any CommentHandler |
2788 | // has inserted some tokens and getCommentRetentionState() is false. |
2789 | bool HandleComment(Token &result, SourceRange Comment); |
2790 | |
2791 | /// A macro is used, update information about macros that need unused |
2792 | /// warnings. |
2793 | void markMacroAsUsed(MacroInfo *MI); |
2794 | |
2795 | void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg, |
2796 | SourceLocation AnnotationLoc) { |
2797 | auto Annotations = AnnotationInfos.find(II); |
2798 | if (Annotations == AnnotationInfos.end()) |
2799 | AnnotationInfos.insert(std::make_pair( |
2800 | II, |
2801 | MacroAnnotations::makeDeprecation(AnnotationLoc, std::move(Msg)))); |
2802 | else |
2803 | Annotations->second.DeprecationInfo = |
2804 | MacroAnnotationInfo{AnnotationLoc, std::move(Msg)}; |
2805 | } |
2806 | |
2807 | void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg, |
2808 | SourceLocation AnnotationLoc) { |
2809 | auto Annotations = AnnotationInfos.find(II); |
2810 | if (Annotations == AnnotationInfos.end()) |
2811 | AnnotationInfos.insert( |
2812 | std::make_pair(II, MacroAnnotations::makeRestrictExpansion( |
2813 | AnnotationLoc, std::move(Msg)))); |
2814 | else |
2815 | Annotations->second.RestrictExpansionInfo = |
2816 | MacroAnnotationInfo{AnnotationLoc, std::move(Msg)}; |
2817 | } |
2818 | |
2819 | void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) { |
2820 | auto Annotations = AnnotationInfos.find(II); |
2821 | if (Annotations == AnnotationInfos.end()) |
2822 | AnnotationInfos.insert( |
2823 | std::make_pair(II, MacroAnnotations::makeFinal(AnnotationLoc))); |
2824 | else |
2825 | Annotations->second.FinalAnnotationLoc = AnnotationLoc; |
2826 | } |
2827 | |
2828 | const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const { |
2829 | return AnnotationInfos.find(II)->second; |
2830 | } |
2831 | |
2832 | void emitMacroExpansionWarnings(const Token &Identifier) const { |
2833 | if (Identifier.getIdentifierInfo()->isDeprecatedMacro()) |
2834 | emitMacroDeprecationWarning(Identifier); |
2835 | |
2836 | if (Identifier.getIdentifierInfo()->isRestrictExpansion() && |
2837 | !SourceMgr.isInMainFile(Identifier.getLocation())) |
2838 | emitRestrictExpansionWarning(Identifier); |
2839 | } |
2840 | |
2841 | static void processPathForFileMacro(SmallVectorImpl<char> &Path, |
2842 | const LangOptions &LangOpts, |
2843 | const TargetInfo &TI); |
2844 | |
2845 | static void processPathToFileName(SmallVectorImpl<char> &FileName, |
2846 | const PresumedLoc &PLoc, |
2847 | const LangOptions &LangOpts, |
2848 | const TargetInfo &TI); |
2849 | |
2850 | private: |
2851 | void emitMacroDeprecationWarning(const Token &Identifier) const; |
2852 | void emitRestrictExpansionWarning(const Token &Identifier) const; |
2853 | void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const; |
2854 | |
2855 | /// This boolean state keeps track if the current scanned token (by this PP) |
2856 | /// is in an "-Wunsafe-buffer-usage" opt-out region. Assuming PP scans a |
2857 | /// translation unit in a linear order. |
2858 | bool InSafeBufferOptOutRegion = false; |
2859 | |
2860 | /// Hold the start location of the current "-Wunsafe-buffer-usage" opt-out |
2861 | /// region if PP is currently in such a region. Hold undefined value |
2862 | /// otherwise. |
2863 | SourceLocation CurrentSafeBufferOptOutStart; // It is used to report the start location of an never-closed region. |
2864 | |
2865 | // An ordered sequence of "-Wunsafe-buffer-usage" opt-out regions in one |
2866 | // translation unit. Each region is represented by a pair of start and end |
2867 | // locations. A region is "open" if its' start and end locations are |
2868 | // identical. |
2869 | SmallVector<std::pair<SourceLocation, SourceLocation>, 8> SafeBufferOptOutMap; |
2870 | |
2871 | public: |
2872 | /// \return true iff the given `Loc` is in a "-Wunsafe-buffer-usage" opt-out |
2873 | /// region. This `Loc` must be a source location that has been pre-processed. |
2874 | bool isSafeBufferOptOut(const SourceManager&SourceMgr, const SourceLocation &Loc) const; |
2875 | |
2876 | /// Alter the state of whether this PP currently is in a |
2877 | /// "-Wunsafe-buffer-usage" opt-out region. |
2878 | /// |
2879 | /// \param isEnter: true if this PP is entering a region; otherwise, this PP |
2880 | /// is exiting a region |
2881 | /// \param Loc: the location of the entry or exit of a |
2882 | /// region |
2883 | /// \return true iff it is INVALID to enter or exit a region, i.e., |
2884 | /// attempt to enter a region before exiting a previous region, or exiting a |
2885 | /// region that PP is not currently in. |
2886 | bool enterOrExitSafeBufferOptOutRegion(bool isEnter, |
2887 | const SourceLocation &Loc); |
2888 | |
2889 | /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" |
2890 | /// opt-out region |
2891 | bool isPPInSafeBufferOptOutRegion(); |
2892 | |
2893 | /// \param StartLoc: output argument. It will be set to the start location of |
2894 | /// the current "-Wunsafe-buffer-usage" opt-out region iff this function |
2895 | /// returns true. |
2896 | /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" |
2897 | /// opt-out region |
2898 | bool isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc); |
2899 | }; |
2900 | |
2901 | /// Abstract base class that describes a handler that will receive |
2902 | /// source ranges for each of the comments encountered in the source file. |
2903 | class CommentHandler { |
2904 | public: |
2905 | virtual ~CommentHandler(); |
2906 | |
2907 | // The handler shall return true if it has pushed any tokens |
2908 | // to be read using e.g. EnterToken or EnterTokenStream. |
2909 | virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0; |
2910 | }; |
2911 | |
2912 | /// Abstract base class that describes a handler that will receive |
2913 | /// source ranges for empty lines encountered in the source file. |
2914 | class EmptylineHandler { |
2915 | public: |
2916 | virtual ~EmptylineHandler(); |
2917 | |
2918 | // The handler handles empty lines. |
2919 | virtual void HandleEmptyline(SourceRange Range) = 0; |
2920 | }; |
2921 | |
2922 | /// Registry of pragma handlers added by plugins |
2923 | using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>; |
2924 | |
2925 | } // namespace clang |
2926 | |
2927 | #endif // LLVM_CLANG_LEX_PREPROCESSOR_H |
2928 |
Warning: This file is not a C or C++ file. It does not have highlighting.