1 | //===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Defines the clang::Preprocessor interface. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H |
15 | #define LLVM_CLANG_LEX_PREPROCESSOR_H |
16 | |
17 | #include "clang/Basic/Diagnostic.h" |
18 | #include "clang/Basic/DiagnosticIDs.h" |
19 | #include "clang/Basic/IdentifierTable.h" |
20 | #include "clang/Basic/LLVM.h" |
21 | #include "clang/Basic/LangOptions.h" |
22 | #include "clang/Basic/Module.h" |
23 | #include "clang/Basic/SourceLocation.h" |
24 | #include "clang/Basic/SourceManager.h" |
25 | #include "clang/Basic/TokenKinds.h" |
26 | #include "clang/Lex/HeaderSearch.h" |
27 | #include "clang/Lex/Lexer.h" |
28 | #include "clang/Lex/MacroInfo.h" |
29 | #include "clang/Lex/ModuleLoader.h" |
30 | #include "clang/Lex/ModuleMap.h" |
31 | #include "clang/Lex/PPCallbacks.h" |
32 | #include "clang/Lex/Token.h" |
33 | #include "clang/Lex/TokenLexer.h" |
34 | #include "llvm/ADT/ArrayRef.h" |
35 | #include "llvm/ADT/DenseMap.h" |
36 | #include "llvm/ADT/FoldingSet.h" |
37 | #include "llvm/ADT/FunctionExtras.h" |
38 | #include "llvm/ADT/PointerUnion.h" |
39 | #include "llvm/ADT/STLExtras.h" |
40 | #include "llvm/ADT/SmallPtrSet.h" |
41 | #include "llvm/ADT/SmallVector.h" |
42 | #include "llvm/ADT/StringRef.h" |
43 | #include "llvm/ADT/TinyPtrVector.h" |
44 | #include "llvm/ADT/iterator_range.h" |
45 | #include "llvm/Support/Allocator.h" |
46 | #include "llvm/Support/Casting.h" |
47 | #include "llvm/Support/Registry.h" |
48 | #include <cassert> |
49 | #include <cstddef> |
50 | #include <cstdint> |
51 | #include <map> |
52 | #include <memory> |
53 | #include <optional> |
54 | #include <string> |
55 | #include <utility> |
56 | #include <vector> |
57 | |
58 | namespace llvm { |
59 | |
60 | template<unsigned InternalLen> class SmallString; |
61 | |
62 | } // namespace llvm |
63 | |
64 | namespace clang { |
65 | |
66 | class CodeCompletionHandler; |
67 | class CommentHandler; |
68 | class DirectoryEntry; |
69 | class EmptylineHandler; |
70 | class ExternalPreprocessorSource; |
71 | class FileEntry; |
72 | class FileManager; |
73 | class ; |
74 | class MacroArgs; |
75 | class PragmaHandler; |
76 | class PragmaNamespace; |
77 | class PreprocessingRecord; |
78 | class PreprocessorLexer; |
79 | class PreprocessorOptions; |
80 | class ScratchBuffer; |
81 | class TargetInfo; |
82 | |
83 | namespace Builtin { |
84 | class Context; |
85 | } |
86 | |
87 | /// Stores token information for comparing actual tokens with |
88 | /// predefined values. Only handles simple tokens and identifiers. |
89 | class TokenValue { |
90 | tok::TokenKind Kind; |
91 | IdentifierInfo *II; |
92 | |
93 | public: |
94 | TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) { |
95 | assert(Kind != tok::raw_identifier && "Raw identifiers are not supported." ); |
96 | assert(Kind != tok::identifier && |
97 | "Identifiers should be created by TokenValue(IdentifierInfo *)" ); |
98 | assert(!tok::isLiteral(Kind) && "Literals are not supported." ); |
99 | assert(!tok::isAnnotation(Kind) && "Annotations are not supported." ); |
100 | } |
101 | |
102 | TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {} |
103 | |
104 | bool operator==(const Token &Tok) const { |
105 | return Tok.getKind() == Kind && |
106 | (!II || II == Tok.getIdentifierInfo()); |
107 | } |
108 | }; |
109 | |
110 | /// Context in which macro name is used. |
111 | enum MacroUse { |
112 | // other than #define or #undef |
113 | MU_Other = 0, |
114 | |
115 | // macro name specified in #define |
116 | MU_Define = 1, |
117 | |
118 | // macro name specified in #undef |
119 | MU_Undef = 2 |
120 | }; |
121 | |
122 | /// Engages in a tight little dance with the lexer to efficiently |
123 | /// preprocess tokens. |
124 | /// |
125 | /// Lexers know only about tokens within a single source file, and don't |
126 | /// know anything about preprocessor-level issues like the \#include stack, |
127 | /// token expansion, etc. |
128 | class Preprocessor { |
129 | friend class VAOptDefinitionContext; |
130 | friend class VariadicMacroScopeGuard; |
131 | |
132 | llvm::unique_function<void(const clang::Token &)> OnToken; |
133 | std::shared_ptr<PreprocessorOptions> PPOpts; |
134 | DiagnosticsEngine *Diags; |
135 | const LangOptions &LangOpts; |
136 | const TargetInfo *Target = nullptr; |
137 | const TargetInfo *AuxTarget = nullptr; |
138 | FileManager &FileMgr; |
139 | SourceManager &SourceMgr; |
140 | std::unique_ptr<ScratchBuffer> ScratchBuf; |
141 | HeaderSearch &; |
142 | ModuleLoader &TheModuleLoader; |
143 | |
144 | /// External source of macros. |
145 | ExternalPreprocessorSource *ExternalSource; |
146 | |
147 | /// A BumpPtrAllocator object used to quickly allocate and release |
148 | /// objects internal to the Preprocessor. |
149 | llvm::BumpPtrAllocator BP; |
150 | |
151 | /// Identifiers for builtin macros and other builtins. |
152 | IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__ |
153 | IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__ |
154 | IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__ |
155 | IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__ |
156 | IdentifierInfo *Ident__FILE_NAME__; // __FILE_NAME__ |
157 | IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__ |
158 | IdentifierInfo *Ident__COUNTER__; // __COUNTER__ |
159 | IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma |
160 | IdentifierInfo *Ident__identifier; // __identifier |
161 | IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__ |
162 | IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__ |
163 | IdentifierInfo *Ident__has_feature; // __has_feature |
164 | IdentifierInfo *Ident__has_extension; // __has_extension |
165 | IdentifierInfo *Ident__has_builtin; // __has_builtin |
166 | IdentifierInfo *Ident__has_constexpr_builtin; // __has_constexpr_builtin |
167 | IdentifierInfo *Ident__has_attribute; // __has_attribute |
168 | IdentifierInfo *Ident__has_include; // __has_include |
169 | IdentifierInfo *Ident__has_include_next; // __has_include_next |
170 | IdentifierInfo *Ident__has_warning; // __has_warning |
171 | IdentifierInfo *Ident__is_identifier; // __is_identifier |
172 | IdentifierInfo *Ident__building_module; // __building_module |
173 | IdentifierInfo *Ident__MODULE__; // __MODULE__ |
174 | IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute |
175 | IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute |
176 | IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute |
177 | IdentifierInfo *Ident__is_target_arch; // __is_target_arch |
178 | IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor |
179 | IdentifierInfo *Ident__is_target_os; // __is_target_os |
180 | IdentifierInfo *Ident__is_target_environment; // __is_target_environment |
181 | IdentifierInfo *Ident__is_target_variant_os; |
182 | IdentifierInfo *Ident__is_target_variant_environment; |
183 | IdentifierInfo *Ident__FLT_EVAL_METHOD__; // __FLT_EVAL_METHOD |
184 | |
185 | // Weak, only valid (and set) while InMacroArgs is true. |
186 | Token* ArgMacro; |
187 | |
188 | SourceLocation DATELoc, TIMELoc; |
189 | |
190 | // FEM_UnsetOnCommandLine means that an explicit evaluation method was |
191 | // not specified on the command line. The target is queried to set the |
192 | // default evaluation method. |
193 | LangOptions::FPEvalMethodKind CurrentFPEvalMethod = |
194 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; |
195 | |
196 | // The most recent pragma location where the floating point evaluation |
197 | // method was modified. This is used to determine whether the |
198 | // 'pragma clang fp eval_method' was used whithin the current scope. |
199 | SourceLocation LastFPEvalPragmaLocation; |
200 | |
201 | LangOptions::FPEvalMethodKind TUFPEvalMethod = |
202 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; |
203 | |
204 | // Next __COUNTER__ value, starts at 0. |
205 | unsigned CounterValue = 0; |
206 | |
207 | enum { |
208 | /// Maximum depth of \#includes. |
209 | MaxAllowedIncludeStackDepth = 200 |
210 | }; |
211 | |
212 | // State that is set before the preprocessor begins. |
213 | bool : 1; |
214 | bool : 1; |
215 | bool SuppressIncludeNotFoundError : 1; |
216 | |
217 | // State that changes while the preprocessor runs: |
218 | bool InMacroArgs : 1; // True if parsing fn macro invocation args. |
219 | |
220 | /// Whether the preprocessor owns the header search object. |
221 | bool : 1; |
222 | |
223 | /// True if macro expansion is disabled. |
224 | bool DisableMacroExpansion : 1; |
225 | |
226 | /// Temporarily disables DisableMacroExpansion (i.e. enables expansion) |
227 | /// when parsing preprocessor directives. |
228 | bool MacroExpansionInDirectivesOverride : 1; |
229 | |
230 | class ResetMacroExpansionHelper; |
231 | |
232 | /// Whether we have already loaded macros from the external source. |
233 | mutable bool ReadMacrosFromExternalSource : 1; |
234 | |
235 | /// True if pragmas are enabled. |
236 | bool PragmasEnabled : 1; |
237 | |
238 | /// True if the current build action is a preprocessing action. |
239 | bool PreprocessedOutput : 1; |
240 | |
241 | /// True if we are currently preprocessing a #if or #elif directive |
242 | bool ParsingIfOrElifDirective; |
243 | |
244 | /// True if we are pre-expanding macro arguments. |
245 | bool InMacroArgPreExpansion; |
246 | |
247 | /// Mapping/lookup information for all identifiers in |
248 | /// the program, including program keywords. |
249 | mutable IdentifierTable Identifiers; |
250 | |
251 | /// This table contains all the selectors in the program. |
252 | /// |
253 | /// Unlike IdentifierTable above, this table *isn't* populated by the |
254 | /// preprocessor. It is declared/expanded here because its role/lifetime is |
255 | /// conceptually similar to the IdentifierTable. In addition, the current |
256 | /// control flow (in clang::ParseAST()), make it convenient to put here. |
257 | /// |
258 | /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to |
259 | /// the lifetime of the preprocessor. |
260 | SelectorTable Selectors; |
261 | |
262 | /// Information about builtins. |
263 | std::unique_ptr<Builtin::Context> BuiltinInfo; |
264 | |
265 | /// Tracks all of the pragmas that the client registered |
266 | /// with this preprocessor. |
267 | std::unique_ptr<PragmaNamespace> PragmaHandlers; |
268 | |
269 | /// Pragma handlers of the original source is stored here during the |
270 | /// parsing of a model file. |
271 | std::unique_ptr<PragmaNamespace> PragmaHandlersBackup; |
272 | |
273 | /// Tracks all of the comment handlers that the client registered |
274 | /// with this preprocessor. |
275 | std::vector<CommentHandler *> CommentHandlers; |
276 | |
277 | /// Empty line handler. |
278 | EmptylineHandler *Emptyline = nullptr; |
279 | |
280 | /// True to avoid tearing down the lexer etc on EOF |
281 | bool IncrementalProcessing = false; |
282 | |
283 | public: |
284 | /// The kind of translation unit we are processing. |
285 | const TranslationUnitKind TUKind; |
286 | |
287 | /// Returns a pointer into the given file's buffer that's guaranteed |
288 | /// to be between tokens. The returned pointer is always before \p Start. |
289 | /// The maximum distance betweenthe returned pointer and \p Start is |
290 | /// limited by a constant value, but also an implementation detail. |
291 | /// If no such check point exists, \c nullptr is returned. |
292 | const char *getCheckPoint(FileID FID, const char *Start) const; |
293 | |
294 | private: |
295 | /// The code-completion handler. |
296 | CodeCompletionHandler *CodeComplete = nullptr; |
297 | |
298 | /// The file that we're performing code-completion for, if any. |
299 | const FileEntry *CodeCompletionFile = nullptr; |
300 | |
301 | /// The offset in file for the code-completion point. |
302 | unsigned CodeCompletionOffset = 0; |
303 | |
304 | /// The location for the code-completion point. This gets instantiated |
305 | /// when the CodeCompletionFile gets \#include'ed for preprocessing. |
306 | SourceLocation CodeCompletionLoc; |
307 | |
308 | /// The start location for the file of the code-completion point. |
309 | /// |
310 | /// This gets instantiated when the CodeCompletionFile gets \#include'ed |
311 | /// for preprocessing. |
312 | SourceLocation CodeCompletionFileLoc; |
313 | |
314 | /// The source location of the \c import contextual keyword we just |
315 | /// lexed, if any. |
316 | SourceLocation ModuleImportLoc; |
317 | |
318 | /// The import path for named module that we're currently processing. |
319 | SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> NamedModuleImportPath; |
320 | |
321 | llvm::DenseMap<FileID, SmallVector<const char *>> CheckPoints; |
322 | unsigned CheckPointCounter = 0; |
323 | |
324 | /// Whether the import is an `@import` or a standard c++ modules import. |
325 | bool IsAtImport = false; |
326 | |
327 | /// Whether the last token we lexed was an '@'. |
328 | bool LastTokenWasAt = false; |
329 | |
330 | /// A position within a C++20 import-seq. |
331 | class StdCXXImportSeq { |
332 | public: |
333 | enum State : int { |
334 | // Positive values represent a number of unclosed brackets. |
335 | AtTopLevel = 0, |
336 | AfterTopLevelTokenSeq = -1, |
337 | AfterExport = -2, |
338 | AfterImportSeq = -3, |
339 | }; |
340 | |
341 | StdCXXImportSeq(State S) : S(S) {} |
342 | |
343 | /// Saw any kind of open bracket. |
344 | void handleOpenBracket() { |
345 | S = static_cast<State>(std::max<int>(a: S, b: 0) + 1); |
346 | } |
347 | /// Saw any kind of close bracket other than '}'. |
348 | void handleCloseBracket() { |
349 | S = static_cast<State>(std::max<int>(a: S, b: 1) - 1); |
350 | } |
351 | /// Saw a close brace. |
352 | void handleCloseBrace() { |
353 | handleCloseBracket(); |
354 | if (S == AtTopLevel && !AfterHeaderName) |
355 | S = AfterTopLevelTokenSeq; |
356 | } |
357 | /// Saw a semicolon. |
358 | void handleSemi() { |
359 | if (atTopLevel()) { |
360 | S = AfterTopLevelTokenSeq; |
361 | AfterHeaderName = false; |
362 | } |
363 | } |
364 | |
365 | /// Saw an 'export' identifier. |
366 | void handleExport() { |
367 | if (S == AfterTopLevelTokenSeq) |
368 | S = AfterExport; |
369 | else if (S <= 0) |
370 | S = AtTopLevel; |
371 | } |
372 | /// Saw an 'import' identifier. |
373 | void handleImport() { |
374 | if (S == AfterTopLevelTokenSeq || S == AfterExport) |
375 | S = AfterImportSeq; |
376 | else if (S <= 0) |
377 | S = AtTopLevel; |
378 | } |
379 | |
380 | /// Saw a 'header-name' token; do not recognize any more 'import' tokens |
381 | /// until we reach a top-level semicolon. |
382 | void handleHeaderName() { |
383 | if (S == AfterImportSeq) |
384 | AfterHeaderName = true; |
385 | handleMisc(); |
386 | } |
387 | |
388 | /// Saw any other token. |
389 | void handleMisc() { |
390 | if (S <= 0) |
391 | S = AtTopLevel; |
392 | } |
393 | |
394 | bool atTopLevel() { return S <= 0; } |
395 | bool afterImportSeq() { return S == AfterImportSeq; } |
396 | bool afterTopLevelSeq() { return S == AfterTopLevelTokenSeq; } |
397 | |
398 | private: |
399 | State S; |
400 | /// Whether we're in the pp-import-suffix following the header-name in a |
401 | /// pp-import. If so, a close-brace is not sufficient to end the |
402 | /// top-level-token-seq of an import-seq. |
403 | bool = false; |
404 | }; |
405 | |
406 | /// Our current position within a C++20 import-seq. |
407 | StdCXXImportSeq StdCXXImportSeqState = StdCXXImportSeq::AfterTopLevelTokenSeq; |
408 | |
409 | /// Track whether we are in a Global Module Fragment |
410 | class TrackGMF { |
411 | public: |
412 | enum GMFState : int { |
413 | GMFActive = 1, |
414 | MaybeGMF = 0, |
415 | BeforeGMFIntroducer = -1, |
416 | GMFAbsentOrEnded = -2, |
417 | }; |
418 | |
419 | TrackGMF(GMFState S) : S(S) {} |
420 | |
421 | /// Saw a semicolon. |
422 | void handleSemi() { |
423 | // If it is immediately after the first instance of the module keyword, |
424 | // then that introduces the GMF. |
425 | if (S == MaybeGMF) |
426 | S = GMFActive; |
427 | } |
428 | |
429 | /// Saw an 'export' identifier. |
430 | void handleExport() { |
431 | // The presence of an 'export' keyword always ends or excludes a GMF. |
432 | S = GMFAbsentOrEnded; |
433 | } |
434 | |
435 | /// Saw an 'import' identifier. |
436 | void handleImport(bool AfterTopLevelTokenSeq) { |
437 | // If we see this before any 'module' kw, then we have no GMF. |
438 | if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) |
439 | S = GMFAbsentOrEnded; |
440 | } |
441 | |
442 | /// Saw a 'module' identifier. |
443 | void handleModule(bool AfterTopLevelTokenSeq) { |
444 | // This was the first module identifier and not preceded by any token |
445 | // that would exclude a GMF. It could begin a GMF, but only if directly |
446 | // followed by a semicolon. |
447 | if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) |
448 | S = MaybeGMF; |
449 | else |
450 | S = GMFAbsentOrEnded; |
451 | } |
452 | |
453 | /// Saw any other token. |
454 | void handleMisc() { |
455 | // We saw something other than ; after the 'module' kw, so not a GMF. |
456 | if (S == MaybeGMF) |
457 | S = GMFAbsentOrEnded; |
458 | } |
459 | |
460 | bool inGMF() { return S == GMFActive; } |
461 | |
462 | private: |
463 | /// Track the transitions into and out of a Global Module Fragment, |
464 | /// if one is present. |
465 | GMFState S; |
466 | }; |
467 | |
468 | TrackGMF TrackGMFState = TrackGMF::BeforeGMFIntroducer; |
469 | |
470 | /// Track the status of the c++20 module decl. |
471 | /// |
472 | /// module-declaration: |
473 | /// 'export'[opt] 'module' module-name module-partition[opt] |
474 | /// attribute-specifier-seq[opt] ';' |
475 | /// |
476 | /// module-name: |
477 | /// module-name-qualifier[opt] identifier |
478 | /// |
479 | /// module-partition: |
480 | /// ':' module-name-qualifier[opt] identifier |
481 | /// |
482 | /// module-name-qualifier: |
483 | /// identifier '.' |
484 | /// module-name-qualifier identifier '.' |
485 | /// |
486 | /// Transition state: |
487 | /// |
488 | /// NotAModuleDecl --- export ---> FoundExport |
489 | /// NotAModuleDecl --- module ---> ImplementationCandidate |
490 | /// FoundExport --- module ---> InterfaceCandidate |
491 | /// ImplementationCandidate --- Identifier ---> ImplementationCandidate |
492 | /// ImplementationCandidate --- period ---> ImplementationCandidate |
493 | /// ImplementationCandidate --- colon ---> ImplementationCandidate |
494 | /// InterfaceCandidate --- Identifier ---> InterfaceCandidate |
495 | /// InterfaceCandidate --- period ---> InterfaceCandidate |
496 | /// InterfaceCandidate --- colon ---> InterfaceCandidate |
497 | /// ImplementationCandidate --- Semi ---> NamedModuleImplementation |
498 | /// NamedModuleInterface --- Semi ---> NamedModuleInterface |
499 | /// NamedModuleImplementation --- Anything ---> NamedModuleImplementation |
500 | /// NamedModuleInterface --- Anything ---> NamedModuleInterface |
501 | /// |
502 | /// FIXME: We haven't handle attribute-specifier-seq here. It may not be bad |
503 | /// soon since we don't support any module attributes yet. |
504 | class ModuleDeclSeq { |
505 | enum ModuleDeclState : int { |
506 | NotAModuleDecl, |
507 | FoundExport, |
508 | InterfaceCandidate, |
509 | ImplementationCandidate, |
510 | NamedModuleInterface, |
511 | NamedModuleImplementation, |
512 | }; |
513 | |
514 | public: |
515 | ModuleDeclSeq() = default; |
516 | |
517 | void handleExport() { |
518 | if (State == NotAModuleDecl) |
519 | State = FoundExport; |
520 | else if (!isNamedModule()) |
521 | reset(); |
522 | } |
523 | |
524 | void handleModule() { |
525 | if (State == FoundExport) |
526 | State = InterfaceCandidate; |
527 | else if (State == NotAModuleDecl) |
528 | State = ImplementationCandidate; |
529 | else if (!isNamedModule()) |
530 | reset(); |
531 | } |
532 | |
533 | void handleIdentifier(IdentifierInfo *Identifier) { |
534 | if (isModuleCandidate() && Identifier) |
535 | Name += Identifier->getName().str(); |
536 | else if (!isNamedModule()) |
537 | reset(); |
538 | } |
539 | |
540 | void handleColon() { |
541 | if (isModuleCandidate()) |
542 | Name += ":" ; |
543 | else if (!isNamedModule()) |
544 | reset(); |
545 | } |
546 | |
547 | void handlePeriod() { |
548 | if (isModuleCandidate()) |
549 | Name += "." ; |
550 | else if (!isNamedModule()) |
551 | reset(); |
552 | } |
553 | |
554 | void handleSemi() { |
555 | if (!Name.empty() && isModuleCandidate()) { |
556 | if (State == InterfaceCandidate) |
557 | State = NamedModuleInterface; |
558 | else if (State == ImplementationCandidate) |
559 | State = NamedModuleImplementation; |
560 | else |
561 | llvm_unreachable("Unimaged ModuleDeclState." ); |
562 | } else if (!isNamedModule()) |
563 | reset(); |
564 | } |
565 | |
566 | void handleMisc() { |
567 | if (!isNamedModule()) |
568 | reset(); |
569 | } |
570 | |
571 | bool isModuleCandidate() const { |
572 | return State == InterfaceCandidate || State == ImplementationCandidate; |
573 | } |
574 | |
575 | bool isNamedModule() const { |
576 | return State == NamedModuleInterface || |
577 | State == NamedModuleImplementation; |
578 | } |
579 | |
580 | bool isNamedInterface() const { return State == NamedModuleInterface; } |
581 | |
582 | bool isImplementationUnit() const { |
583 | return State == NamedModuleImplementation && !getName().contains(C: ':'); |
584 | } |
585 | |
586 | StringRef getName() const { |
587 | assert(isNamedModule() && "Can't get name from a non named module" ); |
588 | return Name; |
589 | } |
590 | |
591 | StringRef getPrimaryName() const { |
592 | assert(isNamedModule() && "Can't get name from a non named module" ); |
593 | return getName().split(Separator: ':').first; |
594 | } |
595 | |
596 | void reset() { |
597 | Name.clear(); |
598 | State = NotAModuleDecl; |
599 | } |
600 | |
601 | private: |
602 | ModuleDeclState State = NotAModuleDecl; |
603 | std::string Name; |
604 | }; |
605 | |
606 | ModuleDeclSeq ModuleDeclState; |
607 | |
608 | /// Whether the module import expects an identifier next. Otherwise, |
609 | /// it expects a '.' or ';'. |
610 | bool ModuleImportExpectsIdentifier = false; |
611 | |
612 | /// The identifier and source location of the currently-active |
613 | /// \#pragma clang arc_cf_code_audited begin. |
614 | std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo; |
615 | |
616 | /// The source location of the currently-active |
617 | /// \#pragma clang assume_nonnull begin. |
618 | SourceLocation PragmaAssumeNonNullLoc; |
619 | |
620 | /// Set only for preambles which end with an active |
621 | /// \#pragma clang assume_nonnull begin. |
622 | /// |
623 | /// When the preamble is loaded into the main file, |
624 | /// `PragmaAssumeNonNullLoc` will be set to this to |
625 | /// replay the unterminated assume_nonnull. |
626 | SourceLocation PreambleRecordedPragmaAssumeNonNullLoc; |
627 | |
628 | /// True if we hit the code-completion point. |
629 | bool CodeCompletionReached = false; |
630 | |
631 | /// The code completion token containing the information |
632 | /// on the stem that is to be code completed. |
633 | IdentifierInfo *CodeCompletionII = nullptr; |
634 | |
635 | /// Range for the code completion token. |
636 | SourceRange CodeCompletionTokenRange; |
637 | |
638 | /// The directory that the main file should be considered to occupy, |
639 | /// if it does not correspond to a real file (as happens when building a |
640 | /// module). |
641 | OptionalDirectoryEntryRef MainFileDir; |
642 | |
643 | /// The number of bytes that we will initially skip when entering the |
644 | /// main file, along with a flag that indicates whether skipping this number |
645 | /// of bytes will place the lexer at the start of a line. |
646 | /// |
647 | /// This is used when loading a precompiled preamble. |
648 | std::pair<int, bool> SkipMainFilePreamble; |
649 | |
650 | /// Whether we hit an error due to reaching max allowed include depth. Allows |
651 | /// to avoid hitting the same error over and over again. |
652 | bool HasReachedMaxIncludeDepth = false; |
653 | |
654 | /// The number of currently-active calls to Lex. |
655 | /// |
656 | /// Lex is reentrant, and asking for an (end-of-phase-4) token can often |
657 | /// require asking for multiple additional tokens. This counter makes it |
658 | /// possible for Lex to detect whether it's producing a token for the end |
659 | /// of phase 4 of translation or for some other situation. |
660 | unsigned LexLevel = 0; |
661 | |
662 | /// The number of (LexLevel 0) preprocessor tokens. |
663 | unsigned TokenCount = 0; |
664 | |
665 | /// Preprocess every token regardless of LexLevel. |
666 | bool PreprocessToken = false; |
667 | |
668 | /// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens |
669 | /// warning, or zero for unlimited. |
670 | unsigned MaxTokens = 0; |
671 | SourceLocation MaxTokensOverrideLoc; |
672 | |
673 | public: |
674 | struct PreambleSkipInfo { |
675 | SourceLocation HashTokenLoc; |
676 | SourceLocation IfTokenLoc; |
677 | bool FoundNonSkipPortion; |
678 | bool FoundElse; |
679 | SourceLocation ElseLoc; |
680 | |
681 | PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, |
682 | bool FoundNonSkipPortion, bool FoundElse, |
683 | SourceLocation ElseLoc) |
684 | : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc), |
685 | FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse), |
686 | ElseLoc(ElseLoc) {} |
687 | }; |
688 | |
689 | using IncludedFilesSet = llvm::DenseSet<const FileEntry *>; |
690 | |
691 | private: |
692 | friend class ASTReader; |
693 | friend class MacroArgs; |
694 | |
695 | class PreambleConditionalStackStore { |
696 | enum State { |
697 | Off = 0, |
698 | Recording = 1, |
699 | Replaying = 2, |
700 | }; |
701 | |
702 | public: |
703 | PreambleConditionalStackStore() = default; |
704 | |
705 | void startRecording() { ConditionalStackState = Recording; } |
706 | void startReplaying() { ConditionalStackState = Replaying; } |
707 | bool isRecording() const { return ConditionalStackState == Recording; } |
708 | bool isReplaying() const { return ConditionalStackState == Replaying; } |
709 | |
710 | ArrayRef<PPConditionalInfo> getStack() const { |
711 | return ConditionalStack; |
712 | } |
713 | |
714 | void doneReplaying() { |
715 | ConditionalStack.clear(); |
716 | ConditionalStackState = Off; |
717 | } |
718 | |
719 | void setStack(ArrayRef<PPConditionalInfo> s) { |
720 | if (!isRecording() && !isReplaying()) |
721 | return; |
722 | ConditionalStack.clear(); |
723 | ConditionalStack.append(in_start: s.begin(), in_end: s.end()); |
724 | } |
725 | |
726 | bool hasRecordedPreamble() const { return !ConditionalStack.empty(); } |
727 | |
728 | bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); } |
729 | |
730 | void clearSkipInfo() { SkipInfo.reset(); } |
731 | |
732 | std::optional<PreambleSkipInfo> SkipInfo; |
733 | |
734 | private: |
735 | SmallVector<PPConditionalInfo, 4> ConditionalStack; |
736 | State ConditionalStackState = Off; |
737 | } PreambleConditionalStack; |
738 | |
739 | /// The current top of the stack that we're lexing from if |
740 | /// not expanding a macro and we are lexing directly from source code. |
741 | /// |
742 | /// Only one of CurLexer, or CurTokenLexer will be non-null. |
743 | std::unique_ptr<Lexer> CurLexer; |
744 | |
745 | /// The current top of the stack that we're lexing from |
746 | /// if not expanding a macro. |
747 | /// |
748 | /// This is an alias for CurLexer. |
749 | PreprocessorLexer *CurPPLexer = nullptr; |
750 | |
751 | /// Used to find the current FileEntry, if CurLexer is non-null |
752 | /// and if applicable. |
753 | /// |
754 | /// This allows us to implement \#include_next and find directory-specific |
755 | /// properties. |
756 | ConstSearchDirIterator CurDirLookup = nullptr; |
757 | |
758 | /// The current macro we are expanding, if we are expanding a macro. |
759 | /// |
760 | /// One of CurLexer and CurTokenLexer must be null. |
761 | std::unique_ptr<TokenLexer> CurTokenLexer; |
762 | |
763 | /// The kind of lexer we're currently working with. |
764 | typedef bool (*LexerCallback)(Preprocessor &, Token &); |
765 | LexerCallback CurLexerCallback = &CLK_Lexer; |
766 | |
767 | /// If the current lexer is for a submodule that is being built, this |
768 | /// is that submodule. |
769 | Module *CurLexerSubmodule = nullptr; |
770 | |
771 | /// Keeps track of the stack of files currently |
772 | /// \#included, and macros currently being expanded from, not counting |
773 | /// CurLexer/CurTokenLexer. |
774 | struct IncludeStackInfo { |
775 | LexerCallback CurLexerCallback; |
776 | Module *TheSubmodule; |
777 | std::unique_ptr<Lexer> TheLexer; |
778 | PreprocessorLexer *ThePPLexer; |
779 | std::unique_ptr<TokenLexer> TheTokenLexer; |
780 | ConstSearchDirIterator TheDirLookup; |
781 | |
782 | // The following constructors are completely useless copies of the default |
783 | // versions, only needed to pacify MSVC. |
784 | IncludeStackInfo(LexerCallback CurLexerCallback, Module *TheSubmodule, |
785 | std::unique_ptr<Lexer> &&TheLexer, |
786 | PreprocessorLexer *ThePPLexer, |
787 | std::unique_ptr<TokenLexer> &&TheTokenLexer, |
788 | ConstSearchDirIterator TheDirLookup) |
789 | : CurLexerCallback(std::move(CurLexerCallback)), |
790 | TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)), |
791 | ThePPLexer(std::move(ThePPLexer)), |
792 | TheTokenLexer(std::move(TheTokenLexer)), |
793 | TheDirLookup(std::move(TheDirLookup)) {} |
794 | }; |
795 | std::vector<IncludeStackInfo> IncludeMacroStack; |
796 | |
797 | /// Actions invoked when some preprocessor activity is |
798 | /// encountered (e.g. a file is \#included, etc). |
799 | std::unique_ptr<PPCallbacks> Callbacks; |
800 | |
801 | struct MacroExpandsInfo { |
802 | Token Tok; |
803 | MacroDefinition MD; |
804 | SourceRange Range; |
805 | |
806 | MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range) |
807 | : Tok(Tok), MD(MD), Range(Range) {} |
808 | }; |
809 | SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks; |
810 | |
811 | /// Information about a name that has been used to define a module macro. |
812 | struct ModuleMacroInfo { |
813 | /// The most recent macro directive for this identifier. |
814 | MacroDirective *MD; |
815 | |
816 | /// The active module macros for this identifier. |
817 | llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros; |
818 | |
819 | /// The generation number at which we last updated ActiveModuleMacros. |
820 | /// \see Preprocessor::VisibleModules. |
821 | unsigned ActiveModuleMacrosGeneration = 0; |
822 | |
823 | /// Whether this macro name is ambiguous. |
824 | bool IsAmbiguous = false; |
825 | |
826 | /// The module macros that are overridden by this macro. |
827 | llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros; |
828 | |
829 | ModuleMacroInfo(MacroDirective *MD) : MD(MD) {} |
830 | }; |
831 | |
832 | /// The state of a macro for an identifier. |
833 | class MacroState { |
834 | mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State; |
835 | |
836 | ModuleMacroInfo *getModuleInfo(Preprocessor &PP, |
837 | const IdentifierInfo *II) const { |
838 | if (II->isOutOfDate()) |
839 | PP.updateOutOfDateIdentifier(II: *II); |
840 | // FIXME: Find a spare bit on IdentifierInfo and store a |
841 | // HasModuleMacros flag. |
842 | if (!II->hasMacroDefinition() || |
843 | (!PP.getLangOpts().Modules && |
844 | !PP.getLangOpts().ModulesLocalVisibility) || |
845 | !PP.CurSubmoduleState->VisibleModules.getGeneration()) |
846 | return nullptr; |
847 | |
848 | auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
849 | if (!Info) { |
850 | Info = new (PP.getPreprocessorAllocator()) |
851 | ModuleMacroInfo(State.get<MacroDirective *>()); |
852 | State = Info; |
853 | } |
854 | |
855 | if (PP.CurSubmoduleState->VisibleModules.getGeneration() != |
856 | Info->ActiveModuleMacrosGeneration) |
857 | PP.updateModuleMacroInfo(II, Info&: *Info); |
858 | return Info; |
859 | } |
860 | |
861 | public: |
862 | MacroState() : MacroState(nullptr) {} |
863 | MacroState(MacroDirective *MD) : State(MD) {} |
864 | |
865 | MacroState(MacroState &&O) noexcept : State(O.State) { |
866 | O.State = (MacroDirective *)nullptr; |
867 | } |
868 | |
869 | MacroState &operator=(MacroState &&O) noexcept { |
870 | auto S = O.State; |
871 | O.State = (MacroDirective *)nullptr; |
872 | State = S; |
873 | return *this; |
874 | } |
875 | |
876 | ~MacroState() { |
877 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
878 | Info->~ModuleMacroInfo(); |
879 | } |
880 | |
881 | MacroDirective *getLatest() const { |
882 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
883 | return Info->MD; |
884 | return State.get<MacroDirective*>(); |
885 | } |
886 | |
887 | void setLatest(MacroDirective *MD) { |
888 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
889 | Info->MD = MD; |
890 | else |
891 | State = MD; |
892 | } |
893 | |
894 | bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const { |
895 | auto *Info = getModuleInfo(PP, II); |
896 | return Info ? Info->IsAmbiguous : false; |
897 | } |
898 | |
899 | ArrayRef<ModuleMacro *> |
900 | getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const { |
901 | if (auto *Info = getModuleInfo(PP, II)) |
902 | return Info->ActiveModuleMacros; |
903 | return std::nullopt; |
904 | } |
905 | |
906 | MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc, |
907 | SourceManager &SourceMgr) const { |
908 | // FIXME: Incorporate module macros into the result of this. |
909 | if (auto *Latest = getLatest()) |
910 | return Latest->findDirectiveAtLoc(L: Loc, SM: SourceMgr); |
911 | return {}; |
912 | } |
913 | |
914 | void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) { |
915 | if (auto *Info = getModuleInfo(PP, II)) { |
916 | Info->OverriddenMacros.insert(I: Info->OverriddenMacros.end(), |
917 | From: Info->ActiveModuleMacros.begin(), |
918 | To: Info->ActiveModuleMacros.end()); |
919 | Info->ActiveModuleMacros.clear(); |
920 | Info->IsAmbiguous = false; |
921 | } |
922 | } |
923 | |
924 | ArrayRef<ModuleMacro*> getOverriddenMacros() const { |
925 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
926 | return Info->OverriddenMacros; |
927 | return std::nullopt; |
928 | } |
929 | |
930 | void setOverriddenMacros(Preprocessor &PP, |
931 | ArrayRef<ModuleMacro *> Overrides) { |
932 | auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
933 | if (!Info) { |
934 | if (Overrides.empty()) |
935 | return; |
936 | Info = new (PP.getPreprocessorAllocator()) |
937 | ModuleMacroInfo(State.get<MacroDirective *>()); |
938 | State = Info; |
939 | } |
940 | Info->OverriddenMacros.clear(); |
941 | Info->OverriddenMacros.insert(I: Info->OverriddenMacros.end(), |
942 | From: Overrides.begin(), To: Overrides.end()); |
943 | Info->ActiveModuleMacrosGeneration = 0; |
944 | } |
945 | }; |
946 | |
947 | /// For each IdentifierInfo that was associated with a macro, we |
948 | /// keep a mapping to the history of all macro definitions and #undefs in |
949 | /// the reverse order (the latest one is in the head of the list). |
950 | /// |
951 | /// This mapping lives within the \p CurSubmoduleState. |
952 | using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>; |
953 | |
954 | struct SubmoduleState; |
955 | |
956 | /// Information about a submodule that we're currently building. |
957 | struct BuildingSubmoduleInfo { |
958 | /// The module that we are building. |
959 | Module *M; |
960 | |
961 | /// The location at which the module was included. |
962 | SourceLocation ImportLoc; |
963 | |
964 | /// Whether we entered this submodule via a pragma. |
965 | bool IsPragma; |
966 | |
967 | /// The previous SubmoduleState. |
968 | SubmoduleState *OuterSubmoduleState; |
969 | |
970 | /// The number of pending module macro names when we started building this. |
971 | unsigned OuterPendingModuleMacroNames; |
972 | |
973 | BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma, |
974 | SubmoduleState *OuterSubmoduleState, |
975 | unsigned OuterPendingModuleMacroNames) |
976 | : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma), |
977 | OuterSubmoduleState(OuterSubmoduleState), |
978 | OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {} |
979 | }; |
980 | SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack; |
981 | |
982 | /// Information about a submodule's preprocessor state. |
983 | struct SubmoduleState { |
984 | /// The macros for the submodule. |
985 | MacroMap Macros; |
986 | |
987 | /// The set of modules that are visible within the submodule. |
988 | VisibleModuleSet VisibleModules; |
989 | |
990 | // FIXME: CounterValue? |
991 | // FIXME: PragmaPushMacroInfo? |
992 | }; |
993 | std::map<Module *, SubmoduleState> Submodules; |
994 | |
995 | /// The preprocessor state for preprocessing outside of any submodule. |
996 | SubmoduleState NullSubmoduleState; |
997 | |
998 | /// The current submodule state. Will be \p NullSubmoduleState if we're not |
999 | /// in a submodule. |
1000 | SubmoduleState *CurSubmoduleState; |
1001 | |
1002 | /// The files that have been included. |
1003 | IncludedFilesSet IncludedFiles; |
1004 | |
1005 | /// The set of top-level modules that affected preprocessing, but were not |
1006 | /// imported. |
1007 | llvm::SmallSetVector<Module *, 2> AffectingClangModules; |
1008 | |
1009 | /// The set of known macros exported from modules. |
1010 | llvm::FoldingSet<ModuleMacro> ModuleMacros; |
1011 | |
1012 | /// The names of potential module macros that we've not yet processed. |
1013 | llvm::SmallVector<const IdentifierInfo *, 32> PendingModuleMacroNames; |
1014 | |
1015 | /// The list of module macros, for each identifier, that are not overridden by |
1016 | /// any other module macro. |
1017 | llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>> |
1018 | LeafModuleMacros; |
1019 | |
1020 | /// Macros that we want to warn because they are not used at the end |
1021 | /// of the translation unit. |
1022 | /// |
1023 | /// We store just their SourceLocations instead of |
1024 | /// something like MacroInfo*. The benefit of this is that when we are |
1025 | /// deserializing from PCH, we don't need to deserialize identifier & macros |
1026 | /// just so that we can report that they are unused, we just warn using |
1027 | /// the SourceLocations of this set (that will be filled by the ASTReader). |
1028 | using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>; |
1029 | WarnUnusedMacroLocsTy WarnUnusedMacroLocs; |
1030 | |
1031 | /// This is a pair of an optional message and source location used for pragmas |
1032 | /// that annotate macros like pragma clang restrict_expansion and pragma clang |
1033 | /// deprecated. This pair stores the optional message and the location of the |
1034 | /// annotation pragma for use producing diagnostics and notes. |
1035 | using MsgLocationPair = std::pair<std::string, SourceLocation>; |
1036 | |
1037 | struct MacroAnnotationInfo { |
1038 | SourceLocation Location; |
1039 | std::string Message; |
1040 | }; |
1041 | |
1042 | struct MacroAnnotations { |
1043 | std::optional<MacroAnnotationInfo> DeprecationInfo; |
1044 | std::optional<MacroAnnotationInfo> RestrictExpansionInfo; |
1045 | std::optional<SourceLocation> FinalAnnotationLoc; |
1046 | |
1047 | static MacroAnnotations makeDeprecation(SourceLocation Loc, |
1048 | std::string Msg) { |
1049 | return MacroAnnotations{.DeprecationInfo: MacroAnnotationInfo{.Location: Loc, .Message: std::move(Msg)}, |
1050 | .RestrictExpansionInfo: std::nullopt, .FinalAnnotationLoc: std::nullopt}; |
1051 | } |
1052 | |
1053 | static MacroAnnotations makeRestrictExpansion(SourceLocation Loc, |
1054 | std::string Msg) { |
1055 | return MacroAnnotations{ |
1056 | .DeprecationInfo: std::nullopt, .RestrictExpansionInfo: MacroAnnotationInfo{.Location: Loc, .Message: std::move(Msg)}, .FinalAnnotationLoc: std::nullopt}; |
1057 | } |
1058 | |
1059 | static MacroAnnotations makeFinal(SourceLocation Loc) { |
1060 | return MacroAnnotations{.DeprecationInfo: std::nullopt, .RestrictExpansionInfo: std::nullopt, .FinalAnnotationLoc: Loc}; |
1061 | } |
1062 | }; |
1063 | |
1064 | /// Warning information for macro annotations. |
1065 | llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos; |
1066 | |
1067 | /// A "freelist" of MacroArg objects that can be |
1068 | /// reused for quick allocation. |
1069 | MacroArgs *MacroArgCache = nullptr; |
1070 | |
1071 | /// For each IdentifierInfo used in a \#pragma push_macro directive, |
1072 | /// we keep a MacroInfo stack used to restore the previous macro value. |
1073 | llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>> |
1074 | PragmaPushMacroInfo; |
1075 | |
1076 | // Various statistics we track for performance analysis. |
1077 | unsigned NumDirectives = 0; |
1078 | unsigned NumDefined = 0; |
1079 | unsigned NumUndefined = 0; |
1080 | unsigned NumPragma = 0; |
1081 | unsigned NumIf = 0; |
1082 | unsigned NumElse = 0; |
1083 | unsigned NumEndif = 0; |
1084 | unsigned NumEnteredSourceFiles = 0; |
1085 | unsigned MaxIncludeStackDepth = 0; |
1086 | unsigned NumMacroExpanded = 0; |
1087 | unsigned NumFnMacroExpanded = 0; |
1088 | unsigned NumBuiltinMacroExpanded = 0; |
1089 | unsigned NumFastMacroExpanded = 0; |
1090 | unsigned NumTokenPaste = 0; |
1091 | unsigned NumFastTokenPaste = 0; |
1092 | unsigned NumSkipped = 0; |
1093 | |
1094 | /// The predefined macros that preprocessor should use from the |
1095 | /// command line etc. |
1096 | std::string Predefines; |
1097 | |
1098 | /// The file ID for the preprocessor predefines. |
1099 | FileID PredefinesFileID; |
1100 | |
1101 | /// The file ID for the PCH through header. |
1102 | FileID ; |
1103 | |
1104 | /// Whether tokens are being skipped until a #pragma hdrstop is seen. |
1105 | bool SkippingUntilPragmaHdrStop = false; |
1106 | |
1107 | /// Whether tokens are being skipped until the through header is seen. |
1108 | bool = false; |
1109 | |
1110 | /// \{ |
1111 | /// Cache of macro expanders to reduce malloc traffic. |
1112 | enum { TokenLexerCacheSize = 8 }; |
1113 | unsigned NumCachedTokenLexers; |
1114 | std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize]; |
1115 | /// \} |
1116 | |
1117 | /// Keeps macro expanded tokens for TokenLexers. |
1118 | // |
1119 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
1120 | /// going to lex in the cache and when it finishes the tokens are removed |
1121 | /// from the end of the cache. |
1122 | SmallVector<Token, 16> MacroExpandedTokens; |
1123 | std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack; |
1124 | |
1125 | /// A record of the macro definitions and expansions that |
1126 | /// occurred during preprocessing. |
1127 | /// |
1128 | /// This is an optional side structure that can be enabled with |
1129 | /// \c createPreprocessingRecord() prior to preprocessing. |
1130 | PreprocessingRecord *Record = nullptr; |
1131 | |
1132 | /// Cached tokens state. |
1133 | using CachedTokensTy = SmallVector<Token, 1>; |
1134 | |
1135 | /// Cached tokens are stored here when we do backtracking or |
1136 | /// lookahead. They are "lexed" by the CachingLex() method. |
1137 | CachedTokensTy CachedTokens; |
1138 | |
1139 | /// The position of the cached token that CachingLex() should |
1140 | /// "lex" next. |
1141 | /// |
1142 | /// If it points beyond the CachedTokens vector, it means that a normal |
1143 | /// Lex() should be invoked. |
1144 | CachedTokensTy::size_type CachedLexPos = 0; |
1145 | |
1146 | /// Stack of backtrack positions, allowing nested backtracks. |
1147 | /// |
1148 | /// The EnableBacktrackAtThisPos() method pushes a position to |
1149 | /// indicate where CachedLexPos should be set when the BackTrack() method is |
1150 | /// invoked (at which point the last position is popped). |
1151 | std::vector<CachedTokensTy::size_type> BacktrackPositions; |
1152 | |
1153 | /// True if \p Preprocessor::SkipExcludedConditionalBlock() is running. |
1154 | /// This is used to guard against calling this function recursively. |
1155 | /// |
1156 | /// See comments at the use-site for more context about why it is needed. |
1157 | bool SkippingExcludedConditionalBlock = false; |
1158 | |
1159 | /// Keeps track of skipped range mappings that were recorded while skipping |
1160 | /// excluded conditional directives. It maps the source buffer pointer at |
1161 | /// the beginning of a skipped block, to the number of bytes that should be |
1162 | /// skipped. |
1163 | llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges; |
1164 | |
1165 | void updateOutOfDateIdentifier(const IdentifierInfo &II) const; |
1166 | |
1167 | public: |
1168 | (std::shared_ptr<PreprocessorOptions> PPOpts, |
1169 | DiagnosticsEngine &diags, const LangOptions &LangOpts, |
1170 | SourceManager &SM, HeaderSearch &, |
1171 | ModuleLoader &TheModuleLoader, |
1172 | IdentifierInfoLookup *IILookup = nullptr, |
1173 | bool = false, |
1174 | TranslationUnitKind TUKind = TU_Complete); |
1175 | |
1176 | ~Preprocessor(); |
1177 | |
1178 | /// Initialize the preprocessor using information about the target. |
1179 | /// |
1180 | /// \param Target is owned by the caller and must remain valid for the |
1181 | /// lifetime of the preprocessor. |
1182 | /// \param AuxTarget is owned by the caller and must remain valid for |
1183 | /// the lifetime of the preprocessor. |
1184 | void Initialize(const TargetInfo &Target, |
1185 | const TargetInfo *AuxTarget = nullptr); |
1186 | |
1187 | /// Initialize the preprocessor to parse a model file |
1188 | /// |
1189 | /// To parse model files the preprocessor of the original source is reused to |
1190 | /// preserver the identifier table. However to avoid some duplicate |
1191 | /// information in the preprocessor some cleanup is needed before it is used |
1192 | /// to parse model files. This method does that cleanup. |
1193 | void InitializeForModelFile(); |
1194 | |
1195 | /// Cleanup after model file parsing |
1196 | void FinalizeForModelFile(); |
1197 | |
1198 | /// Retrieve the preprocessor options used to initialize this |
1199 | /// preprocessor. |
1200 | PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; } |
1201 | |
1202 | DiagnosticsEngine &getDiagnostics() const { return *Diags; } |
1203 | void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; } |
1204 | |
1205 | const LangOptions &getLangOpts() const { return LangOpts; } |
1206 | const TargetInfo &getTargetInfo() const { return *Target; } |
1207 | const TargetInfo *getAuxTargetInfo() const { return AuxTarget; } |
1208 | FileManager &getFileManager() const { return FileMgr; } |
1209 | SourceManager &getSourceManager() const { return SourceMgr; } |
1210 | HeaderSearch &() const { return HeaderInfo; } |
1211 | |
1212 | IdentifierTable &getIdentifierTable() { return Identifiers; } |
1213 | const IdentifierTable &getIdentifierTable() const { return Identifiers; } |
1214 | SelectorTable &getSelectorTable() { return Selectors; } |
1215 | Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; } |
1216 | llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; } |
1217 | |
1218 | void setExternalSource(ExternalPreprocessorSource *Source) { |
1219 | ExternalSource = Source; |
1220 | } |
1221 | |
1222 | ExternalPreprocessorSource *getExternalSource() const { |
1223 | return ExternalSource; |
1224 | } |
1225 | |
1226 | /// Retrieve the module loader associated with this preprocessor. |
1227 | ModuleLoader &getModuleLoader() const { return TheModuleLoader; } |
1228 | |
1229 | bool hadModuleLoaderFatalFailure() const { |
1230 | return TheModuleLoader.HadFatalFailure; |
1231 | } |
1232 | |
1233 | /// Retrieve the number of Directives that have been processed by the |
1234 | /// Preprocessor. |
1235 | unsigned getNumDirectives() const { |
1236 | return NumDirectives; |
1237 | } |
1238 | |
1239 | /// True if we are currently preprocessing a #if or #elif directive |
1240 | bool isParsingIfOrElifDirective() const { |
1241 | return ParsingIfOrElifDirective; |
1242 | } |
1243 | |
1244 | /// Control whether the preprocessor retains comments in output. |
1245 | void (bool , bool ) { |
1246 | this->KeepComments = KeepComments | KeepMacroComments; |
1247 | this->KeepMacroComments = KeepMacroComments; |
1248 | } |
1249 | |
1250 | bool () const { return KeepComments; } |
1251 | |
1252 | void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; } |
1253 | bool getPragmasEnabled() const { return PragmasEnabled; } |
1254 | |
1255 | void SetSuppressIncludeNotFoundError(bool Suppress) { |
1256 | SuppressIncludeNotFoundError = Suppress; |
1257 | } |
1258 | |
1259 | bool GetSuppressIncludeNotFoundError() { |
1260 | return SuppressIncludeNotFoundError; |
1261 | } |
1262 | |
1263 | /// Sets whether the preprocessor is responsible for producing output or if |
1264 | /// it is producing tokens to be consumed by Parse and Sema. |
1265 | void setPreprocessedOutput(bool IsPreprocessedOutput) { |
1266 | PreprocessedOutput = IsPreprocessedOutput; |
1267 | } |
1268 | |
1269 | /// Returns true if the preprocessor is responsible for generating output, |
1270 | /// false if it is producing tokens to be consumed by Parse and Sema. |
1271 | bool isPreprocessedOutput() const { return PreprocessedOutput; } |
1272 | |
1273 | /// Return true if we are lexing directly from the specified lexer. |
1274 | bool isCurrentLexer(const PreprocessorLexer *L) const { |
1275 | return CurPPLexer == L; |
1276 | } |
1277 | |
1278 | /// Return the current lexer being lexed from. |
1279 | /// |
1280 | /// Note that this ignores any potentially active macro expansions and _Pragma |
1281 | /// expansions going on at the time. |
1282 | PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; } |
1283 | |
1284 | /// Return the current file lexer being lexed from. |
1285 | /// |
1286 | /// Note that this ignores any potentially active macro expansions and _Pragma |
1287 | /// expansions going on at the time. |
1288 | PreprocessorLexer *getCurrentFileLexer() const; |
1289 | |
1290 | /// Return the submodule owning the file being lexed. This may not be |
1291 | /// the current module if we have changed modules since entering the file. |
1292 | Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; } |
1293 | |
1294 | /// Returns the FileID for the preprocessor predefines. |
1295 | FileID getPredefinesFileID() const { return PredefinesFileID; } |
1296 | |
1297 | /// \{ |
1298 | /// Accessors for preprocessor callbacks. |
1299 | /// |
1300 | /// Note that this class takes ownership of any PPCallbacks object given to |
1301 | /// it. |
1302 | PPCallbacks *getPPCallbacks() const { return Callbacks.get(); } |
1303 | void addPPCallbacks(std::unique_ptr<PPCallbacks> C) { |
1304 | if (Callbacks) |
1305 | C = std::make_unique<PPChainedCallbacks>(args: std::move(C), |
1306 | args: std::move(Callbacks)); |
1307 | Callbacks = std::move(C); |
1308 | } |
1309 | /// \} |
1310 | |
1311 | /// Get the number of tokens processed so far. |
1312 | unsigned getTokenCount() const { return TokenCount; } |
1313 | |
1314 | /// Get the max number of tokens before issuing a -Wmax-tokens warning. |
1315 | unsigned getMaxTokens() const { return MaxTokens; } |
1316 | |
1317 | void overrideMaxTokens(unsigned Value, SourceLocation Loc) { |
1318 | MaxTokens = Value; |
1319 | MaxTokensOverrideLoc = Loc; |
1320 | }; |
1321 | |
1322 | SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; } |
1323 | |
1324 | /// Register a function that would be called on each token in the final |
1325 | /// expanded token stream. |
1326 | /// This also reports annotation tokens produced by the parser. |
1327 | void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) { |
1328 | OnToken = std::move(F); |
1329 | } |
1330 | |
1331 | void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; } |
1332 | |
1333 | bool isMacroDefined(StringRef Id) { |
1334 | return isMacroDefined(&Identifiers.get(Id)); |
1335 | } |
1336 | bool isMacroDefined(const IdentifierInfo *II) { |
1337 | return II->hasMacroDefinition() && |
1338 | (!getLangOpts().Modules || (bool)getMacroDefinition(II)); |
1339 | } |
1340 | |
1341 | /// Determine whether II is defined as a macro within the module M, |
1342 | /// if that is a module that we've already preprocessed. Does not check for |
1343 | /// macros imported into M. |
1344 | bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) { |
1345 | if (!II->hasMacroDefinition()) |
1346 | return false; |
1347 | auto I = Submodules.find(x: M); |
1348 | if (I == Submodules.end()) |
1349 | return false; |
1350 | auto J = I->second.Macros.find(Val: II); |
1351 | if (J == I->second.Macros.end()) |
1352 | return false; |
1353 | auto *MD = J->second.getLatest(); |
1354 | return MD && MD->isDefined(); |
1355 | } |
1356 | |
1357 | MacroDefinition getMacroDefinition(const IdentifierInfo *II) { |
1358 | if (!II->hasMacroDefinition()) |
1359 | return {}; |
1360 | |
1361 | MacroState &S = CurSubmoduleState->Macros[II]; |
1362 | auto *MD = S.getLatest(); |
1363 | while (MD && isa<VisibilityMacroDirective>(Val: MD)) |
1364 | MD = MD->getPrevious(); |
1365 | return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(Val: MD), |
1366 | S.getActiveModuleMacros(PP&: *this, II), |
1367 | S.isAmbiguous(PP&: *this, II)); |
1368 | } |
1369 | |
1370 | MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II, |
1371 | SourceLocation Loc) { |
1372 | if (!II->hadMacroDefinition()) |
1373 | return {}; |
1374 | |
1375 | MacroState &S = CurSubmoduleState->Macros[II]; |
1376 | MacroDirective::DefInfo DI; |
1377 | if (auto *MD = S.getLatest()) |
1378 | DI = MD->findDirectiveAtLoc(L: Loc, SM: getSourceManager()); |
1379 | // FIXME: Compute the set of active module macros at the specified location. |
1380 | return MacroDefinition(DI.getDirective(), |
1381 | S.getActiveModuleMacros(PP&: *this, II), |
1382 | S.isAmbiguous(PP&: *this, II)); |
1383 | } |
1384 | |
1385 | /// Given an identifier, return its latest non-imported MacroDirective |
1386 | /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd. |
1387 | MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const { |
1388 | if (!II->hasMacroDefinition()) |
1389 | return nullptr; |
1390 | |
1391 | auto *MD = getLocalMacroDirectiveHistory(II); |
1392 | if (!MD || MD->getDefinition().isUndefined()) |
1393 | return nullptr; |
1394 | |
1395 | return MD; |
1396 | } |
1397 | |
1398 | const MacroInfo *getMacroInfo(const IdentifierInfo *II) const { |
1399 | return const_cast<Preprocessor*>(this)->getMacroInfo(II); |
1400 | } |
1401 | |
1402 | MacroInfo *getMacroInfo(const IdentifierInfo *II) { |
1403 | if (!II->hasMacroDefinition()) |
1404 | return nullptr; |
1405 | if (auto MD = getMacroDefinition(II)) |
1406 | return MD.getMacroInfo(); |
1407 | return nullptr; |
1408 | } |
1409 | |
1410 | /// Given an identifier, return the latest non-imported macro |
1411 | /// directive for that identifier. |
1412 | /// |
1413 | /// One can iterate over all previous macro directives from the most recent |
1414 | /// one. |
1415 | MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const; |
1416 | |
1417 | /// Add a directive to the macro directive history for this identifier. |
1418 | void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD); |
1419 | DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI, |
1420 | SourceLocation Loc) { |
1421 | DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc); |
1422 | appendMacroDirective(II, MD); |
1423 | return MD; |
1424 | } |
1425 | DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, |
1426 | MacroInfo *MI) { |
1427 | return appendDefMacroDirective(II, MI, Loc: MI->getDefinitionLoc()); |
1428 | } |
1429 | |
1430 | /// Set a MacroDirective that was loaded from a PCH file. |
1431 | void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, |
1432 | MacroDirective *MD); |
1433 | |
1434 | /// Register an exported macro for a module and identifier. |
1435 | ModuleMacro *addModuleMacro(Module *Mod, const IdentifierInfo *II, |
1436 | MacroInfo *Macro, |
1437 | ArrayRef<ModuleMacro *> Overrides, bool &IsNew); |
1438 | ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II); |
1439 | |
1440 | /// Get the list of leaf (non-overridden) module macros for a name. |
1441 | ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const { |
1442 | if (II->isOutOfDate()) |
1443 | updateOutOfDateIdentifier(II: *II); |
1444 | auto I = LeafModuleMacros.find(Val: II); |
1445 | if (I != LeafModuleMacros.end()) |
1446 | return I->second; |
1447 | return std::nullopt; |
1448 | } |
1449 | |
1450 | /// Get the list of submodules that we're currently building. |
1451 | ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const { |
1452 | return BuildingSubmoduleStack; |
1453 | } |
1454 | |
1455 | /// \{ |
1456 | /// Iterators for the macro history table. Currently defined macros have |
1457 | /// IdentifierInfo::hasMacroDefinition() set and an empty |
1458 | /// MacroInfo::getUndefLoc() at the head of the list. |
1459 | using macro_iterator = MacroMap::const_iterator; |
1460 | |
1461 | macro_iterator macro_begin(bool IncludeExternalMacros = true) const; |
1462 | macro_iterator macro_end(bool IncludeExternalMacros = true) const; |
1463 | |
1464 | llvm::iterator_range<macro_iterator> |
1465 | macros(bool IncludeExternalMacros = true) const { |
1466 | macro_iterator begin = macro_begin(IncludeExternalMacros); |
1467 | macro_iterator end = macro_end(IncludeExternalMacros); |
1468 | return llvm::make_range(x: begin, y: end); |
1469 | } |
1470 | |
1471 | /// \} |
1472 | |
1473 | /// Mark the given clang module as affecting the current clang module or translation unit. |
1474 | void markClangModuleAsAffecting(Module *M) { |
1475 | assert(M->isModuleMapModule()); |
1476 | if (!BuildingSubmoduleStack.empty()) { |
1477 | if (M != BuildingSubmoduleStack.back().M) |
1478 | BuildingSubmoduleStack.back().M->AffectingClangModules.insert(X: M); |
1479 | } else { |
1480 | AffectingClangModules.insert(X: M); |
1481 | } |
1482 | } |
1483 | |
1484 | /// Get the set of top-level clang modules that affected preprocessing, but were not |
1485 | /// imported. |
1486 | const llvm::SmallSetVector<Module *, 2> &getAffectingClangModules() const { |
1487 | return AffectingClangModules; |
1488 | } |
1489 | |
1490 | /// Mark the file as included. |
1491 | /// Returns true if this is the first time the file was included. |
1492 | bool markIncluded(FileEntryRef File) { |
1493 | HeaderInfo.getFileInfo(FE: File); |
1494 | return IncludedFiles.insert(V: File).second; |
1495 | } |
1496 | |
1497 | /// Return true if this header has already been included. |
1498 | bool alreadyIncluded(FileEntryRef File) const { |
1499 | HeaderInfo.getFileInfo(FE: File); |
1500 | return IncludedFiles.count(V: File); |
1501 | } |
1502 | |
1503 | /// Get the set of included files. |
1504 | IncludedFilesSet &getIncludedFiles() { return IncludedFiles; } |
1505 | const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; } |
1506 | |
1507 | /// Return the name of the macro defined before \p Loc that has |
1508 | /// spelling \p Tokens. If there are multiple macros with same spelling, |
1509 | /// return the last one defined. |
1510 | StringRef getLastMacroWithSpelling(SourceLocation Loc, |
1511 | ArrayRef<TokenValue> Tokens) const; |
1512 | |
1513 | /// Get the predefines for this processor. |
1514 | /// Used by some third-party tools to inspect and add predefines (see |
1515 | /// https://github.com/llvm/llvm-project/issues/57483). |
1516 | const std::string &getPredefines() const { return Predefines; } |
1517 | |
1518 | /// Set the predefines for this Preprocessor. |
1519 | /// |
1520 | /// These predefines are automatically injected when parsing the main file. |
1521 | void setPredefines(std::string P) { Predefines = std::move(P); } |
1522 | |
1523 | /// Return information about the specified preprocessor |
1524 | /// identifier token. |
1525 | IdentifierInfo *getIdentifierInfo(StringRef Name) const { |
1526 | return &Identifiers.get(Name); |
1527 | } |
1528 | |
1529 | /// Add the specified pragma handler to this preprocessor. |
1530 | /// |
1531 | /// If \p Namespace is non-null, then it is a token required to exist on the |
1532 | /// pragma line before the pragma string starts, e.g. "STDC" or "GCC". |
1533 | void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
1534 | void AddPragmaHandler(PragmaHandler *Handler) { |
1535 | AddPragmaHandler(Namespace: StringRef(), Handler); |
1536 | } |
1537 | |
1538 | /// Remove the specific pragma handler from this preprocessor. |
1539 | /// |
1540 | /// If \p Namespace is non-null, then it should be the namespace that |
1541 | /// \p Handler was added to. It is an error to remove a handler that |
1542 | /// has not been registered. |
1543 | void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
1544 | void RemovePragmaHandler(PragmaHandler *Handler) { |
1545 | RemovePragmaHandler(Namespace: StringRef(), Handler); |
1546 | } |
1547 | |
1548 | /// Install empty handlers for all pragmas (making them ignored). |
1549 | void IgnorePragmas(); |
1550 | |
1551 | /// Set empty line handler. |
1552 | void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; } |
1553 | |
1554 | EmptylineHandler *getEmptylineHandler() const { return Emptyline; } |
1555 | |
1556 | /// Add the specified comment handler to the preprocessor. |
1557 | void addCommentHandler(CommentHandler *Handler); |
1558 | |
1559 | /// Remove the specified comment handler. |
1560 | /// |
1561 | /// It is an error to remove a handler that has not been registered. |
1562 | void removeCommentHandler(CommentHandler *Handler); |
1563 | |
1564 | /// Set the code completion handler to the given object. |
1565 | void setCodeCompletionHandler(CodeCompletionHandler &Handler) { |
1566 | CodeComplete = &Handler; |
1567 | } |
1568 | |
1569 | /// Retrieve the current code-completion handler. |
1570 | CodeCompletionHandler *getCodeCompletionHandler() const { |
1571 | return CodeComplete; |
1572 | } |
1573 | |
1574 | /// Clear out the code completion handler. |
1575 | void clearCodeCompletionHandler() { |
1576 | CodeComplete = nullptr; |
1577 | } |
1578 | |
1579 | /// Hook used by the lexer to invoke the "included file" code |
1580 | /// completion point. |
1581 | void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); |
1582 | |
1583 | /// Hook used by the lexer to invoke the "natural language" code |
1584 | /// completion point. |
1585 | void CodeCompleteNaturalLanguage(); |
1586 | |
1587 | /// Set the code completion token for filtering purposes. |
1588 | void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) { |
1589 | CodeCompletionII = Filter; |
1590 | } |
1591 | |
1592 | /// Set the code completion token range for detecting replacement range later |
1593 | /// on. |
1594 | void setCodeCompletionTokenRange(const SourceLocation Start, |
1595 | const SourceLocation End) { |
1596 | CodeCompletionTokenRange = {Start, End}; |
1597 | } |
1598 | SourceRange getCodeCompletionTokenRange() const { |
1599 | return CodeCompletionTokenRange; |
1600 | } |
1601 | |
1602 | /// Get the code completion token for filtering purposes. |
1603 | StringRef getCodeCompletionFilter() { |
1604 | if (CodeCompletionII) |
1605 | return CodeCompletionII->getName(); |
1606 | return {}; |
1607 | } |
1608 | |
1609 | /// Retrieve the preprocessing record, or NULL if there is no |
1610 | /// preprocessing record. |
1611 | PreprocessingRecord *getPreprocessingRecord() const { return Record; } |
1612 | |
1613 | /// Create a new preprocessing record, which will keep track of |
1614 | /// all macro expansions, macro definitions, etc. |
1615 | void createPreprocessingRecord(); |
1616 | |
1617 | /// Returns true if the FileEntry is the PCH through header. |
1618 | bool (const FileEntry *FE); |
1619 | |
1620 | /// True if creating a PCH with a through header. |
1621 | bool (); |
1622 | |
1623 | /// True if using a PCH with a through header. |
1624 | bool (); |
1625 | |
1626 | /// True if creating a PCH with a #pragma hdrstop. |
1627 | bool creatingPCHWithPragmaHdrStop(); |
1628 | |
1629 | /// True if using a PCH with a #pragma hdrstop. |
1630 | bool usingPCHWithPragmaHdrStop(); |
1631 | |
1632 | /// Skip tokens until after the #include of the through header or |
1633 | /// until after a #pragma hdrstop. |
1634 | void SkipTokensWhileUsingPCH(); |
1635 | |
1636 | /// Process directives while skipping until the through header or |
1637 | /// #pragma hdrstop is found. |
1638 | void HandleSkippedDirectiveWhileUsingPCH(Token &Result, |
1639 | SourceLocation HashLoc); |
1640 | |
1641 | /// Enter the specified FileID as the main source file, |
1642 | /// which implicitly adds the builtin defines etc. |
1643 | void EnterMainSourceFile(); |
1644 | |
1645 | /// Inform the preprocessor callbacks that processing is complete. |
1646 | void EndSourceFile(); |
1647 | |
1648 | /// Add a source file to the top of the include stack and |
1649 | /// start lexing tokens from it instead of the current buffer. |
1650 | /// |
1651 | /// Emits a diagnostic, doesn't enter the file, and returns true on error. |
1652 | bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir, |
1653 | SourceLocation Loc, bool IsFirstIncludeOfFile = true); |
1654 | |
1655 | /// Add a Macro to the top of the include stack and start lexing |
1656 | /// tokens from it instead of the current buffer. |
1657 | /// |
1658 | /// \param Args specifies the tokens input to a function-like macro. |
1659 | /// \param ILEnd specifies the location of the ')' for a function-like macro |
1660 | /// or the identifier for an object-like macro. |
1661 | void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro, |
1662 | MacroArgs *Args); |
1663 | |
1664 | private: |
1665 | /// Add a "macro" context to the top of the include stack, |
1666 | /// which will cause the lexer to start returning the specified tokens. |
1667 | /// |
1668 | /// If \p DisableMacroExpansion is true, tokens lexed from the token stream |
1669 | /// will not be subject to further macro expansion. Otherwise, these tokens |
1670 | /// will be re-macro-expanded when/if expansion is enabled. |
1671 | /// |
1672 | /// If \p OwnsTokens is false, this method assumes that the specified stream |
1673 | /// of tokens has a permanent owner somewhere, so they do not need to be |
1674 | /// copied. If it is true, it assumes the array of tokens is allocated with |
1675 | /// \c new[] and the Preprocessor will delete[] it. |
1676 | /// |
1677 | /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag |
1678 | /// set, see the flag documentation for details. |
1679 | void EnterTokenStream(const Token *Toks, unsigned NumToks, |
1680 | bool DisableMacroExpansion, bool OwnsTokens, |
1681 | bool IsReinject); |
1682 | |
1683 | public: |
1684 | void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks, |
1685 | bool DisableMacroExpansion, bool IsReinject) { |
1686 | EnterTokenStream(Toks: Toks.release(), NumToks, DisableMacroExpansion, OwnsTokens: true, |
1687 | IsReinject); |
1688 | } |
1689 | |
1690 | void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion, |
1691 | bool IsReinject) { |
1692 | EnterTokenStream(Toks: Toks.data(), NumToks: Toks.size(), DisableMacroExpansion, OwnsTokens: false, |
1693 | IsReinject); |
1694 | } |
1695 | |
1696 | /// Pop the current lexer/macro exp off the top of the lexer stack. |
1697 | /// |
1698 | /// This should only be used in situations where the current state of the |
1699 | /// top-of-stack lexer is known. |
1700 | void RemoveTopOfLexerStack(); |
1701 | |
1702 | /// From the point that this method is called, and until |
1703 | /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor |
1704 | /// keeps track of the lexed tokens so that a subsequent Backtrack() call will |
1705 | /// make the Preprocessor re-lex the same tokens. |
1706 | /// |
1707 | /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can |
1708 | /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will |
1709 | /// be combined with the EnableBacktrackAtThisPos calls in reverse order. |
1710 | /// |
1711 | /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack |
1712 | /// at some point after EnableBacktrackAtThisPos. If you don't, caching of |
1713 | /// tokens will continue indefinitely. |
1714 | /// |
1715 | void EnableBacktrackAtThisPos(); |
1716 | |
1717 | /// Disable the last EnableBacktrackAtThisPos call. |
1718 | void CommitBacktrackedTokens(); |
1719 | |
1720 | /// Make Preprocessor re-lex the tokens that were lexed since |
1721 | /// EnableBacktrackAtThisPos() was previously called. |
1722 | void Backtrack(); |
1723 | |
1724 | /// True if EnableBacktrackAtThisPos() was called and |
1725 | /// caching of tokens is on. |
1726 | bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); } |
1727 | |
1728 | /// Lex the next token for this preprocessor. |
1729 | void Lex(Token &Result); |
1730 | |
1731 | /// Lex all tokens for this preprocessor until (and excluding) end of file. |
1732 | void LexTokensUntilEOF(std::vector<Token> *Tokens = nullptr); |
1733 | |
1734 | /// Lex a token, forming a header-name token if possible. |
1735 | bool (Token &Result, bool AllowMacroExpansion = true); |
1736 | |
1737 | bool LexAfterModuleImport(Token &Result); |
1738 | void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks); |
1739 | |
1740 | void makeModuleVisible(Module *M, SourceLocation Loc); |
1741 | |
1742 | SourceLocation getModuleImportLoc(Module *M) const { |
1743 | return CurSubmoduleState->VisibleModules.getImportLoc(M); |
1744 | } |
1745 | |
1746 | /// Lex a string literal, which may be the concatenation of multiple |
1747 | /// string literals and may even come from macro expansion. |
1748 | /// \returns true on success, false if a error diagnostic has been generated. |
1749 | bool LexStringLiteral(Token &Result, std::string &String, |
1750 | const char *DiagnosticTag, bool AllowMacroExpansion) { |
1751 | if (AllowMacroExpansion) |
1752 | Lex(Result); |
1753 | else |
1754 | LexUnexpandedToken(Result); |
1755 | return FinishLexStringLiteral(Result, String, DiagnosticTag, |
1756 | AllowMacroExpansion); |
1757 | } |
1758 | |
1759 | /// Complete the lexing of a string literal where the first token has |
1760 | /// already been lexed (see LexStringLiteral). |
1761 | bool FinishLexStringLiteral(Token &Result, std::string &String, |
1762 | const char *DiagnosticTag, |
1763 | bool AllowMacroExpansion); |
1764 | |
1765 | /// Lex a token. If it's a comment, keep lexing until we get |
1766 | /// something not a comment. |
1767 | /// |
1768 | /// This is useful in -E -C mode where comments would foul up preprocessor |
1769 | /// directive handling. |
1770 | void (Token &Result) { |
1771 | do |
1772 | Lex(Result); |
1773 | while (Result.getKind() == tok::comment); |
1774 | } |
1775 | |
1776 | /// Just like Lex, but disables macro expansion of identifier tokens. |
1777 | void LexUnexpandedToken(Token &Result) { |
1778 | // Disable macro expansion. |
1779 | bool OldVal = DisableMacroExpansion; |
1780 | DisableMacroExpansion = true; |
1781 | // Lex the token. |
1782 | Lex(Result); |
1783 | |
1784 | // Reenable it. |
1785 | DisableMacroExpansion = OldVal; |
1786 | } |
1787 | |
1788 | /// Like LexNonComment, but this disables macro expansion of |
1789 | /// identifier tokens. |
1790 | void LexUnexpandedNonComment(Token &Result) { |
1791 | do |
1792 | LexUnexpandedToken(Result); |
1793 | while (Result.getKind() == tok::comment); |
1794 | } |
1795 | |
1796 | /// Parses a simple integer literal to get its numeric value. Floating |
1797 | /// point literals and user defined literals are rejected. Used primarily to |
1798 | /// handle pragmas that accept integer arguments. |
1799 | bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value); |
1800 | |
1801 | /// Disables macro expansion everywhere except for preprocessor directives. |
1802 | void SetMacroExpansionOnlyInDirectives() { |
1803 | DisableMacroExpansion = true; |
1804 | MacroExpansionInDirectivesOverride = true; |
1805 | } |
1806 | |
1807 | /// Peeks ahead N tokens and returns that token without consuming any |
1808 | /// tokens. |
1809 | /// |
1810 | /// LookAhead(0) returns the next token that would be returned by Lex(), |
1811 | /// LookAhead(1) returns the token after it, etc. This returns normal |
1812 | /// tokens after phase 5. As such, it is equivalent to using |
1813 | /// 'Lex', not 'LexUnexpandedToken'. |
1814 | const Token &LookAhead(unsigned N) { |
1815 | assert(LexLevel == 0 && "cannot use lookahead while lexing" ); |
1816 | if (CachedLexPos + N < CachedTokens.size()) |
1817 | return CachedTokens[CachedLexPos+N]; |
1818 | else |
1819 | return PeekAhead(N: N+1); |
1820 | } |
1821 | |
1822 | /// When backtracking is enabled and tokens are cached, |
1823 | /// this allows to revert a specific number of tokens. |
1824 | /// |
1825 | /// Note that the number of tokens being reverted should be up to the last |
1826 | /// backtrack position, not more. |
1827 | void RevertCachedTokens(unsigned N) { |
1828 | assert(isBacktrackEnabled() && |
1829 | "Should only be called when tokens are cached for backtracking" ); |
1830 | assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back()) |
1831 | && "Should revert tokens up to the last backtrack position, not more" ); |
1832 | assert(signed(CachedLexPos) - signed(N) >= 0 && |
1833 | "Corrupted backtrack positions ?" ); |
1834 | CachedLexPos -= N; |
1835 | } |
1836 | |
1837 | /// Enters a token in the token stream to be lexed next. |
1838 | /// |
1839 | /// If BackTrack() is called afterwards, the token will remain at the |
1840 | /// insertion point. |
1841 | /// If \p IsReinject is true, resulting token will have Token::IsReinjected |
1842 | /// flag set. See the flag documentation for details. |
1843 | void EnterToken(const Token &Tok, bool IsReinject) { |
1844 | if (LexLevel) { |
1845 | // It's not correct in general to enter caching lex mode while in the |
1846 | // middle of a nested lexing action. |
1847 | auto TokCopy = std::make_unique<Token[]>(num: 1); |
1848 | TokCopy[0] = Tok; |
1849 | EnterTokenStream(Toks: std::move(TokCopy), NumToks: 1, DisableMacroExpansion: true, IsReinject); |
1850 | } else { |
1851 | EnterCachingLexMode(); |
1852 | assert(IsReinject && "new tokens in the middle of cached stream" ); |
1853 | CachedTokens.insert(I: CachedTokens.begin()+CachedLexPos, Elt: Tok); |
1854 | } |
1855 | } |
1856 | |
1857 | /// We notify the Preprocessor that if it is caching tokens (because |
1858 | /// backtrack is enabled) it should replace the most recent cached tokens |
1859 | /// with the given annotation token. This function has no effect if |
1860 | /// backtracking is not enabled. |
1861 | /// |
1862 | /// Note that the use of this function is just for optimization, so that the |
1863 | /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is |
1864 | /// invoked. |
1865 | void AnnotateCachedTokens(const Token &Tok) { |
1866 | assert(Tok.isAnnotation() && "Expected annotation token" ); |
1867 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1868 | AnnotatePreviousCachedTokens(Tok); |
1869 | } |
1870 | |
1871 | /// Get the location of the last cached token, suitable for setting the end |
1872 | /// location of an annotation token. |
1873 | SourceLocation getLastCachedTokenLocation() const { |
1874 | assert(CachedLexPos != 0); |
1875 | return CachedTokens[CachedLexPos-1].getLastLoc(); |
1876 | } |
1877 | |
1878 | /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in |
1879 | /// CachedTokens. |
1880 | bool IsPreviousCachedToken(const Token &Tok) const; |
1881 | |
1882 | /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens |
1883 | /// in \p NewToks. |
1884 | /// |
1885 | /// Useful when a token needs to be split in smaller ones and CachedTokens |
1886 | /// most recent token must to be updated to reflect that. |
1887 | void ReplacePreviousCachedToken(ArrayRef<Token> NewToks); |
1888 | |
1889 | /// Replace the last token with an annotation token. |
1890 | /// |
1891 | /// Like AnnotateCachedTokens(), this routine replaces an |
1892 | /// already-parsed (and resolved) token with an annotation |
1893 | /// token. However, this routine only replaces the last token with |
1894 | /// the annotation token; it does not affect any other cached |
1895 | /// tokens. This function has no effect if backtracking is not |
1896 | /// enabled. |
1897 | void ReplaceLastTokenWithAnnotation(const Token &Tok) { |
1898 | assert(Tok.isAnnotation() && "Expected annotation token" ); |
1899 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1900 | CachedTokens[CachedLexPos-1] = Tok; |
1901 | } |
1902 | |
1903 | /// Enter an annotation token into the token stream. |
1904 | void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind, |
1905 | void *AnnotationVal); |
1906 | |
1907 | /// Determine whether it's possible for a future call to Lex to produce an |
1908 | /// annotation token created by a previous call to EnterAnnotationToken. |
1909 | bool mightHavePendingAnnotationTokens() { |
1910 | return CurLexerCallback != CLK_Lexer; |
1911 | } |
1912 | |
1913 | /// Update the current token to represent the provided |
1914 | /// identifier, in order to cache an action performed by typo correction. |
1915 | void TypoCorrectToken(const Token &Tok) { |
1916 | assert(Tok.getIdentifierInfo() && "Expected identifier token" ); |
1917 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1918 | CachedTokens[CachedLexPos-1] = Tok; |
1919 | } |
1920 | |
1921 | /// Recompute the current lexer kind based on the CurLexer/ |
1922 | /// CurTokenLexer pointers. |
1923 | void recomputeCurLexerKind(); |
1924 | |
1925 | /// Returns true if incremental processing is enabled |
1926 | bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; } |
1927 | |
1928 | /// Enables the incremental processing |
1929 | void enableIncrementalProcessing(bool value = true) { |
1930 | IncrementalProcessing = value; |
1931 | } |
1932 | |
1933 | /// Specify the point at which code-completion will be performed. |
1934 | /// |
1935 | /// \param File the file in which code completion should occur. If |
1936 | /// this file is included multiple times, code-completion will |
1937 | /// perform completion the first time it is included. If NULL, this |
1938 | /// function clears out the code-completion point. |
1939 | /// |
1940 | /// \param Line the line at which code completion should occur |
1941 | /// (1-based). |
1942 | /// |
1943 | /// \param Column the column at which code completion should occur |
1944 | /// (1-based). |
1945 | /// |
1946 | /// \returns true if an error occurred, false otherwise. |
1947 | bool SetCodeCompletionPoint(FileEntryRef File, unsigned Line, |
1948 | unsigned Column); |
1949 | |
1950 | /// Determine if we are performing code completion. |
1951 | bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; } |
1952 | |
1953 | /// Returns the location of the code-completion point. |
1954 | /// |
1955 | /// Returns an invalid location if code-completion is not enabled or the file |
1956 | /// containing the code-completion point has not been lexed yet. |
1957 | SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; } |
1958 | |
1959 | /// Returns the start location of the file of code-completion point. |
1960 | /// |
1961 | /// Returns an invalid location if code-completion is not enabled or the file |
1962 | /// containing the code-completion point has not been lexed yet. |
1963 | SourceLocation getCodeCompletionFileLoc() const { |
1964 | return CodeCompletionFileLoc; |
1965 | } |
1966 | |
1967 | /// Returns true if code-completion is enabled and we have hit the |
1968 | /// code-completion point. |
1969 | bool isCodeCompletionReached() const { return CodeCompletionReached; } |
1970 | |
1971 | /// Note that we hit the code-completion point. |
1972 | void setCodeCompletionReached() { |
1973 | assert(isCodeCompletionEnabled() && "Code-completion not enabled!" ); |
1974 | CodeCompletionReached = true; |
1975 | // Silence any diagnostics that occur after we hit the code-completion. |
1976 | getDiagnostics().setSuppressAllDiagnostics(true); |
1977 | } |
1978 | |
1979 | /// The location of the currently-active \#pragma clang |
1980 | /// arc_cf_code_audited begin. |
1981 | /// |
1982 | /// Returns an invalid location if there is no such pragma active. |
1983 | std::pair<IdentifierInfo *, SourceLocation> |
1984 | getPragmaARCCFCodeAuditedInfo() const { |
1985 | return PragmaARCCFCodeAuditedInfo; |
1986 | } |
1987 | |
1988 | /// Set the location of the currently-active \#pragma clang |
1989 | /// arc_cf_code_audited begin. An invalid location ends the pragma. |
1990 | void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident, |
1991 | SourceLocation Loc) { |
1992 | PragmaARCCFCodeAuditedInfo = {Ident, Loc}; |
1993 | } |
1994 | |
1995 | /// The location of the currently-active \#pragma clang |
1996 | /// assume_nonnull begin. |
1997 | /// |
1998 | /// Returns an invalid location if there is no such pragma active. |
1999 | SourceLocation getPragmaAssumeNonNullLoc() const { |
2000 | return PragmaAssumeNonNullLoc; |
2001 | } |
2002 | |
2003 | /// Set the location of the currently-active \#pragma clang |
2004 | /// assume_nonnull begin. An invalid location ends the pragma. |
2005 | void setPragmaAssumeNonNullLoc(SourceLocation Loc) { |
2006 | PragmaAssumeNonNullLoc = Loc; |
2007 | } |
2008 | |
2009 | /// Get the location of the recorded unterminated \#pragma clang |
2010 | /// assume_nonnull begin in the preamble, if one exists. |
2011 | /// |
2012 | /// Returns an invalid location if the premable did not end with |
2013 | /// such a pragma active or if there is no recorded preamble. |
2014 | SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const { |
2015 | return PreambleRecordedPragmaAssumeNonNullLoc; |
2016 | } |
2017 | |
2018 | /// Record the location of the unterminated \#pragma clang |
2019 | /// assume_nonnull begin in the preamble. |
2020 | void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) { |
2021 | PreambleRecordedPragmaAssumeNonNullLoc = Loc; |
2022 | } |
2023 | |
2024 | /// Set the directory in which the main file should be considered |
2025 | /// to have been found, if it is not a real file. |
2026 | void setMainFileDir(DirectoryEntryRef Dir) { MainFileDir = Dir; } |
2027 | |
2028 | /// Instruct the preprocessor to skip part of the main source file. |
2029 | /// |
2030 | /// \param Bytes The number of bytes in the preamble to skip. |
2031 | /// |
2032 | /// \param StartOfLine Whether skipping these bytes puts the lexer at the |
2033 | /// start of a line. |
2034 | void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) { |
2035 | SkipMainFilePreamble.first = Bytes; |
2036 | SkipMainFilePreamble.second = StartOfLine; |
2037 | } |
2038 | |
2039 | /// Forwarding function for diagnostics. This emits a diagnostic at |
2040 | /// the specified Token's location, translating the token's start |
2041 | /// position in the current buffer into a SourcePosition object for rendering. |
2042 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const { |
2043 | return Diags->Report(Loc, DiagID); |
2044 | } |
2045 | |
2046 | DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const { |
2047 | return Diags->Report(Loc: Tok.getLocation(), DiagID); |
2048 | } |
2049 | |
2050 | /// Return the 'spelling' of the token at the given |
2051 | /// location; does not go up to the spelling location or down to the |
2052 | /// expansion location. |
2053 | /// |
2054 | /// \param buffer A buffer which will be used only if the token requires |
2055 | /// "cleaning", e.g. if it contains trigraphs or escaped newlines |
2056 | /// \param invalid If non-null, will be set \c true if an error occurs. |
2057 | StringRef getSpelling(SourceLocation loc, |
2058 | SmallVectorImpl<char> &buffer, |
2059 | bool *invalid = nullptr) const { |
2060 | return Lexer::getSpelling(loc, buffer, SM: SourceMgr, options: LangOpts, invalid); |
2061 | } |
2062 | |
2063 | /// Return the 'spelling' of the Tok token. |
2064 | /// |
2065 | /// The spelling of a token is the characters used to represent the token in |
2066 | /// the source file after trigraph expansion and escaped-newline folding. In |
2067 | /// particular, this wants to get the true, uncanonicalized, spelling of |
2068 | /// things like digraphs, UCNs, etc. |
2069 | /// |
2070 | /// \param Invalid If non-null, will be set \c true if an error occurs. |
2071 | std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const { |
2072 | return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid); |
2073 | } |
2074 | |
2075 | /// Get the spelling of a token into a preallocated buffer, instead |
2076 | /// of as an std::string. |
2077 | /// |
2078 | /// The caller is required to allocate enough space for the token, which is |
2079 | /// guaranteed to be at least Tok.getLength() bytes long. The length of the |
2080 | /// actual result is returned. |
2081 | /// |
2082 | /// Note that this method may do two possible things: it may either fill in |
2083 | /// the buffer specified with characters, or it may *change the input pointer* |
2084 | /// to point to a constant buffer with the data already in it (avoiding a |
2085 | /// copy). The caller is not allowed to modify the returned buffer pointer |
2086 | /// if an internal buffer is returned. |
2087 | unsigned getSpelling(const Token &Tok, const char *&Buffer, |
2088 | bool *Invalid = nullptr) const { |
2089 | return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid); |
2090 | } |
2091 | |
2092 | /// Get the spelling of a token into a SmallVector. |
2093 | /// |
2094 | /// Note that the returned StringRef may not point to the |
2095 | /// supplied buffer if a copy can be avoided. |
2096 | StringRef getSpelling(const Token &Tok, |
2097 | SmallVectorImpl<char> &Buffer, |
2098 | bool *Invalid = nullptr) const; |
2099 | |
2100 | /// Relex the token at the specified location. |
2101 | /// \returns true if there was a failure, false on success. |
2102 | bool getRawToken(SourceLocation Loc, Token &Result, |
2103 | bool IgnoreWhiteSpace = false) { |
2104 | return Lexer::getRawToken(Loc, Result, SM: SourceMgr, LangOpts, IgnoreWhiteSpace); |
2105 | } |
2106 | |
2107 | /// Given a Token \p Tok that is a numeric constant with length 1, |
2108 | /// return the character. |
2109 | char |
2110 | getSpellingOfSingleCharacterNumericConstant(const Token &Tok, |
2111 | bool *Invalid = nullptr) const { |
2112 | assert(Tok.is(tok::numeric_constant) && |
2113 | Tok.getLength() == 1 && "Called on unsupported token" ); |
2114 | assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1" ); |
2115 | |
2116 | // If the token is carrying a literal data pointer, just use it. |
2117 | if (const char *D = Tok.getLiteralData()) |
2118 | return *D; |
2119 | |
2120 | // Otherwise, fall back on getCharacterData, which is slower, but always |
2121 | // works. |
2122 | return *SourceMgr.getCharacterData(SL: Tok.getLocation(), Invalid); |
2123 | } |
2124 | |
2125 | /// Retrieve the name of the immediate macro expansion. |
2126 | /// |
2127 | /// This routine starts from a source location, and finds the name of the |
2128 | /// macro responsible for its immediate expansion. It looks through any |
2129 | /// intervening macro argument expansions to compute this. It returns a |
2130 | /// StringRef that refers to the SourceManager-owned buffer of the source |
2131 | /// where that macro name is spelled. Thus, the result shouldn't out-live |
2132 | /// the SourceManager. |
2133 | StringRef getImmediateMacroName(SourceLocation Loc) { |
2134 | return Lexer::getImmediateMacroName(Loc, SM: SourceMgr, LangOpts: getLangOpts()); |
2135 | } |
2136 | |
2137 | /// Plop the specified string into a scratch buffer and set the |
2138 | /// specified token's location and length to it. |
2139 | /// |
2140 | /// If specified, the source location provides a location of the expansion |
2141 | /// point of the token. |
2142 | void CreateString(StringRef Str, Token &Tok, |
2143 | SourceLocation ExpansionLocStart = SourceLocation(), |
2144 | SourceLocation ExpansionLocEnd = SourceLocation()); |
2145 | |
2146 | /// Split the first Length characters out of the token starting at TokLoc |
2147 | /// and return a location pointing to the split token. Re-lexing from the |
2148 | /// split token will return the split token rather than the original. |
2149 | SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length); |
2150 | |
2151 | /// Computes the source location just past the end of the |
2152 | /// token at this source location. |
2153 | /// |
2154 | /// This routine can be used to produce a source location that |
2155 | /// points just past the end of the token referenced by \p Loc, and |
2156 | /// is generally used when a diagnostic needs to point just after a |
2157 | /// token where it expected something different that it received. If |
2158 | /// the returned source location would not be meaningful (e.g., if |
2159 | /// it points into a macro), this routine returns an invalid |
2160 | /// source location. |
2161 | /// |
2162 | /// \param Offset an offset from the end of the token, where the source |
2163 | /// location should refer to. The default offset (0) produces a source |
2164 | /// location pointing just past the end of the token; an offset of 1 produces |
2165 | /// a source location pointing to the last character in the token, etc. |
2166 | SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) { |
2167 | return Lexer::getLocForEndOfToken(Loc, Offset, SM: SourceMgr, LangOpts); |
2168 | } |
2169 | |
2170 | /// Returns true if the given MacroID location points at the first |
2171 | /// token of the macro expansion. |
2172 | /// |
2173 | /// \param MacroBegin If non-null and function returns true, it is set to |
2174 | /// begin location of the macro. |
2175 | bool isAtStartOfMacroExpansion(SourceLocation loc, |
2176 | SourceLocation *MacroBegin = nullptr) const { |
2177 | return Lexer::isAtStartOfMacroExpansion(loc, SM: SourceMgr, LangOpts, |
2178 | MacroBegin); |
2179 | } |
2180 | |
2181 | /// Returns true if the given MacroID location points at the last |
2182 | /// token of the macro expansion. |
2183 | /// |
2184 | /// \param MacroEnd If non-null and function returns true, it is set to |
2185 | /// end location of the macro. |
2186 | bool isAtEndOfMacroExpansion(SourceLocation loc, |
2187 | SourceLocation *MacroEnd = nullptr) const { |
2188 | return Lexer::isAtEndOfMacroExpansion(loc, SM: SourceMgr, LangOpts, MacroEnd); |
2189 | } |
2190 | |
2191 | /// Print the token to stderr, used for debugging. |
2192 | void DumpToken(const Token &Tok, bool DumpFlags = false) const; |
2193 | void DumpLocation(SourceLocation Loc) const; |
2194 | void DumpMacro(const MacroInfo &MI) const; |
2195 | void dumpMacroInfo(const IdentifierInfo *II); |
2196 | |
2197 | /// Given a location that specifies the start of a |
2198 | /// token, return a new location that specifies a character within the token. |
2199 | SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, |
2200 | unsigned Char) const { |
2201 | return Lexer::AdvanceToTokenCharacter(TokStart, Characters: Char, SM: SourceMgr, LangOpts); |
2202 | } |
2203 | |
2204 | /// Increment the counters for the number of token paste operations |
2205 | /// performed. |
2206 | /// |
2207 | /// If fast was specified, this is a 'fast paste' case we handled. |
2208 | void IncrementPasteCounter(bool isFast) { |
2209 | if (isFast) |
2210 | ++NumFastTokenPaste; |
2211 | else |
2212 | ++NumTokenPaste; |
2213 | } |
2214 | |
2215 | void PrintStats(); |
2216 | |
2217 | size_t getTotalMemory() const; |
2218 | |
2219 | /// When the macro expander pastes together a comment (/##/) in Microsoft |
2220 | /// mode, this method handles updating the current state, returning the |
2221 | /// token on the next source line. |
2222 | void HandleMicrosoftCommentPaste(Token &Tok); |
2223 | |
2224 | //===--------------------------------------------------------------------===// |
2225 | // Preprocessor callback methods. These are invoked by a lexer as various |
2226 | // directives and events are found. |
2227 | |
2228 | /// Given a tok::raw_identifier token, look up the |
2229 | /// identifier information for the token and install it into the token, |
2230 | /// updating the token kind accordingly. |
2231 | IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const; |
2232 | |
2233 | private: |
2234 | llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons; |
2235 | |
2236 | public: |
2237 | /// Specifies the reason for poisoning an identifier. |
2238 | /// |
2239 | /// If that identifier is accessed while poisoned, then this reason will be |
2240 | /// used instead of the default "poisoned" diagnostic. |
2241 | void SetPoisonReason(IdentifierInfo *II, unsigned DiagID); |
2242 | |
2243 | /// Display reason for poisoned identifier. |
2244 | void HandlePoisonedIdentifier(Token & Identifier); |
2245 | |
2246 | void MaybeHandlePoisonedIdentifier(Token & Identifier) { |
2247 | if(IdentifierInfo * II = Identifier.getIdentifierInfo()) { |
2248 | if(II->isPoisoned()) { |
2249 | HandlePoisonedIdentifier(Identifier); |
2250 | } |
2251 | } |
2252 | } |
2253 | |
2254 | private: |
2255 | /// Identifiers used for SEH handling in Borland. These are only |
2256 | /// allowed in particular circumstances |
2257 | // __except block |
2258 | IdentifierInfo *Ident__exception_code, |
2259 | *Ident___exception_code, |
2260 | *Ident_GetExceptionCode; |
2261 | // __except filter expression |
2262 | IdentifierInfo *Ident__exception_info, |
2263 | *Ident___exception_info, |
2264 | *Ident_GetExceptionInfo; |
2265 | // __finally |
2266 | IdentifierInfo *Ident__abnormal_termination, |
2267 | *Ident___abnormal_termination, |
2268 | *Ident_AbnormalTermination; |
2269 | |
2270 | const char *getCurLexerEndPos(); |
2271 | void (const Module &Mod); |
2272 | |
2273 | public: |
2274 | void PoisonSEHIdentifiers(bool Poison = true); // Borland |
2275 | |
2276 | /// Callback invoked when the lexer reads an identifier and has |
2277 | /// filled in the tokens IdentifierInfo member. |
2278 | /// |
2279 | /// This callback potentially macro expands it or turns it into a named |
2280 | /// token (like 'for'). |
2281 | /// |
2282 | /// \returns true if we actually computed a token, false if we need to |
2283 | /// lex again. |
2284 | bool HandleIdentifier(Token &Identifier); |
2285 | |
2286 | /// Callback invoked when the lexer hits the end of the current file. |
2287 | /// |
2288 | /// This either returns the EOF token and returns true, or |
2289 | /// pops a level off the include stack and returns false, at which point the |
2290 | /// client should call lex again. |
2291 | bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false); |
2292 | |
2293 | /// Callback invoked when the current TokenLexer hits the end of its |
2294 | /// token stream. |
2295 | bool HandleEndOfTokenLexer(Token &Result); |
2296 | |
2297 | /// Callback invoked when the lexer sees a # token at the start of a |
2298 | /// line. |
2299 | /// |
2300 | /// This consumes the directive, modifies the lexer/preprocessor state, and |
2301 | /// advances the lexer(s) so that the next token read is the correct one. |
2302 | void HandleDirective(Token &Result); |
2303 | |
2304 | /// Ensure that the next token is a tok::eod token. |
2305 | /// |
2306 | /// If not, emit a diagnostic and consume up until the eod. |
2307 | /// If \p EnableMacros is true, then we consider macros that expand to zero |
2308 | /// tokens as being ok. |
2309 | /// |
2310 | /// \return The location of the end of the directive (the terminating |
2311 | /// newline). |
2312 | SourceLocation CheckEndOfDirective(const char *DirType, |
2313 | bool EnableMacros = false); |
2314 | |
2315 | /// Read and discard all tokens remaining on the current line until |
2316 | /// the tok::eod token is found. Returns the range of the skipped tokens. |
2317 | SourceRange DiscardUntilEndOfDirective(); |
2318 | |
2319 | /// Returns true if the preprocessor has seen a use of |
2320 | /// __DATE__ or __TIME__ in the file so far. |
2321 | bool SawDateOrTime() const { |
2322 | return DATELoc != SourceLocation() || TIMELoc != SourceLocation(); |
2323 | } |
2324 | unsigned getCounterValue() const { return CounterValue; } |
2325 | void setCounterValue(unsigned V) { CounterValue = V; } |
2326 | |
2327 | LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const { |
2328 | assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine && |
2329 | "FPEvalMethod should be set either from command line or from the " |
2330 | "target info" ); |
2331 | return CurrentFPEvalMethod; |
2332 | } |
2333 | |
2334 | LangOptions::FPEvalMethodKind getTUFPEvalMethod() const { |
2335 | return TUFPEvalMethod; |
2336 | } |
2337 | |
2338 | SourceLocation getLastFPEvalPragmaLocation() const { |
2339 | return LastFPEvalPragmaLocation; |
2340 | } |
2341 | |
2342 | void setCurrentFPEvalMethod(SourceLocation PragmaLoc, |
2343 | LangOptions::FPEvalMethodKind Val) { |
2344 | assert(Val != LangOptions::FEM_UnsetOnCommandLine && |
2345 | "FPEvalMethod should never be set to FEM_UnsetOnCommandLine" ); |
2346 | // This is the location of the '#pragma float_control" where the |
2347 | // execution state is modifed. |
2348 | LastFPEvalPragmaLocation = PragmaLoc; |
2349 | CurrentFPEvalMethod = Val; |
2350 | TUFPEvalMethod = Val; |
2351 | } |
2352 | |
2353 | void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) { |
2354 | assert(Val != LangOptions::FEM_UnsetOnCommandLine && |
2355 | "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine" ); |
2356 | TUFPEvalMethod = Val; |
2357 | } |
2358 | |
2359 | /// Retrieves the module that we're currently building, if any. |
2360 | Module *getCurrentModule(); |
2361 | |
2362 | /// Retrieves the module whose implementation we're current compiling, if any. |
2363 | Module *getCurrentModuleImplementation(); |
2364 | |
2365 | /// If we are preprocessing a named module. |
2366 | bool isInNamedModule() const { return ModuleDeclState.isNamedModule(); } |
2367 | |
2368 | /// If we are proprocessing a named interface unit. |
2369 | /// Note that a module implementation partition is not considered as an |
2370 | /// named interface unit here although it is importable |
2371 | /// to ease the parsing. |
2372 | bool isInNamedInterfaceUnit() const { |
2373 | return ModuleDeclState.isNamedInterface(); |
2374 | } |
2375 | |
2376 | /// Get the named module name we're preprocessing. |
2377 | /// Requires we're preprocessing a named module. |
2378 | StringRef getNamedModuleName() const { return ModuleDeclState.getName(); } |
2379 | |
2380 | /// If we are implementing an implementation module unit. |
2381 | /// Note that the module implementation partition is not considered as an |
2382 | /// implementation unit. |
2383 | bool isInImplementationUnit() const { |
2384 | return ModuleDeclState.isImplementationUnit(); |
2385 | } |
2386 | |
2387 | /// If we're importing a standard C++20 Named Modules. |
2388 | bool isInImportingCXXNamedModules() const { |
2389 | // NamedModuleImportPath will be non-empty only if we're importing |
2390 | // Standard C++ named modules. |
2391 | return !NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules && |
2392 | !IsAtImport; |
2393 | } |
2394 | |
2395 | /// Allocate a new MacroInfo object with the provided SourceLocation. |
2396 | MacroInfo *AllocateMacroInfo(SourceLocation L); |
2397 | |
2398 | /// Turn the specified lexer token into a fully checked and spelled |
2399 | /// filename, e.g. as an operand of \#include. |
2400 | /// |
2401 | /// The caller is expected to provide a buffer that is large enough to hold |
2402 | /// the spelling of the filename, but is also expected to handle the case |
2403 | /// when this method decides to use a different buffer. |
2404 | /// |
2405 | /// \returns true if the input filename was in <>'s or false if it was |
2406 | /// in ""'s. |
2407 | bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer); |
2408 | |
2409 | /// Given a "foo" or \<foo> reference, look up the indicated file. |
2410 | /// |
2411 | /// Returns std::nullopt on failure. \p isAngled indicates whether the file |
2412 | /// reference is for system \#include's or not (i.e. using <> instead of ""). |
2413 | OptionalFileEntryRef |
2414 | LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled, |
2415 | ConstSearchDirIterator FromDir, const FileEntry *FromFile, |
2416 | ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath, |
2417 | SmallVectorImpl<char> *RelativePath, |
2418 | ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped, |
2419 | bool *IsFrameworkFound, bool SkipCache = false, |
2420 | bool OpenFile = true, bool CacheFailures = true); |
2421 | |
2422 | /// Return true if we're in the top-level file, not in a \#include. |
2423 | bool isInPrimaryFile() const; |
2424 | |
2425 | /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is |
2426 | /// followed by EOD. Return true if the token is not a valid on-off-switch. |
2427 | bool LexOnOffSwitch(tok::OnOffSwitch &Result); |
2428 | |
2429 | bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, |
2430 | bool *ShadowFlag = nullptr); |
2431 | |
2432 | void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma); |
2433 | Module *LeaveSubmodule(bool ForPragma); |
2434 | |
2435 | private: |
2436 | friend void TokenLexer::ExpandFunctionArguments(); |
2437 | |
2438 | void PushIncludeMacroStack() { |
2439 | assert(CurLexerCallback != CLK_CachingLexer && |
2440 | "cannot push a caching lexer" ); |
2441 | IncludeMacroStack.emplace_back(args&: CurLexerCallback, args&: CurLexerSubmodule, |
2442 | args: std::move(CurLexer), args&: CurPPLexer, |
2443 | args: std::move(CurTokenLexer), args&: CurDirLookup); |
2444 | CurPPLexer = nullptr; |
2445 | } |
2446 | |
2447 | void PopIncludeMacroStack() { |
2448 | CurLexer = std::move(IncludeMacroStack.back().TheLexer); |
2449 | CurPPLexer = IncludeMacroStack.back().ThePPLexer; |
2450 | CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer); |
2451 | CurDirLookup = IncludeMacroStack.back().TheDirLookup; |
2452 | CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule; |
2453 | CurLexerCallback = IncludeMacroStack.back().CurLexerCallback; |
2454 | IncludeMacroStack.pop_back(); |
2455 | } |
2456 | |
2457 | void PropagateLineStartLeadingSpaceInfo(Token &Result); |
2458 | |
2459 | /// Determine whether we need to create module macros for #defines in the |
2460 | /// current context. |
2461 | bool needModuleMacros() const; |
2462 | |
2463 | /// Update the set of active module macros and ambiguity flag for a module |
2464 | /// macro name. |
2465 | void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info); |
2466 | |
2467 | DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI, |
2468 | SourceLocation Loc); |
2469 | UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc); |
2470 | VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc, |
2471 | bool isPublic); |
2472 | |
2473 | /// Lex and validate a macro name, which occurs after a |
2474 | /// \#define or \#undef. |
2475 | /// |
2476 | /// \param MacroNameTok Token that represents the name defined or undefined. |
2477 | /// \param IsDefineUndef Kind if preprocessor directive. |
2478 | /// \param ShadowFlag Points to flag that is set if macro name shadows |
2479 | /// a keyword. |
2480 | /// |
2481 | /// This emits a diagnostic, sets the token kind to eod, |
2482 | /// and discards the rest of the macro line if the macro name is invalid. |
2483 | void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other, |
2484 | bool *ShadowFlag = nullptr); |
2485 | |
2486 | /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the |
2487 | /// entire line) of the macro's tokens and adds them to MacroInfo, and while |
2488 | /// doing so performs certain validity checks including (but not limited to): |
2489 | /// - # (stringization) is followed by a macro parameter |
2490 | /// \param MacroNameTok - Token that represents the macro name |
2491 | /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard |
2492 | /// |
2493 | /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and |
2494 | /// returns a nullptr if an invalid sequence of tokens is encountered. |
2495 | MacroInfo *ReadOptionalMacroParameterListAndBody( |
2496 | const Token &MacroNameTok, bool ); |
2497 | |
2498 | /// The ( starting an argument list of a macro definition has just been read. |
2499 | /// Lex the rest of the parameters and the closing ), updating \p MI with |
2500 | /// what we learn and saving in \p LastTok the last token read. |
2501 | /// Return true if an error occurs parsing the arg list. |
2502 | bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok); |
2503 | |
2504 | /// Provide a suggestion for a typoed directive. If there is no typo, then |
2505 | /// just skip suggesting. |
2506 | /// |
2507 | /// \param Tok - Token that represents the directive |
2508 | /// \param Directive - String reference for the directive name |
2509 | void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const; |
2510 | |
2511 | /// We just read a \#if or related directive and decided that the |
2512 | /// subsequent tokens are in the \#if'd out portion of the |
2513 | /// file. Lex the rest of the file, until we see an \#endif. If \p |
2514 | /// FoundNonSkipPortion is true, then we have already emitted code for part of |
2515 | /// this \#if directive, so \#else/\#elif blocks should never be entered. If |
2516 | /// \p FoundElse is false, then \#else directives are ok, if not, then we have |
2517 | /// already seen one so a \#else directive is a duplicate. When this returns, |
2518 | /// the caller can lex the first valid token. |
2519 | void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, |
2520 | SourceLocation IfTokenLoc, |
2521 | bool FoundNonSkipPortion, bool FoundElse, |
2522 | SourceLocation ElseLoc = SourceLocation()); |
2523 | |
2524 | /// Information about the result for evaluating an expression for a |
2525 | /// preprocessor directive. |
2526 | struct DirectiveEvalResult { |
2527 | /// Whether the expression was evaluated as true or not. |
2528 | bool Conditional; |
2529 | |
2530 | /// True if the expression contained identifiers that were undefined. |
2531 | bool IncludedUndefinedIds; |
2532 | |
2533 | /// The source range for the expression. |
2534 | SourceRange ExprRange; |
2535 | }; |
2536 | |
2537 | /// Evaluate an integer constant expression that may occur after a |
2538 | /// \#if or \#elif directive and return a \p DirectiveEvalResult object. |
2539 | /// |
2540 | /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. |
2541 | DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro); |
2542 | |
2543 | /// Process a '__has_include("path")' expression. |
2544 | /// |
2545 | /// Returns true if successful. |
2546 | bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II); |
2547 | |
2548 | /// Process '__has_include_next("path")' expression. |
2549 | /// |
2550 | /// Returns true if successful. |
2551 | bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II); |
2552 | |
2553 | /// Get the directory and file from which to start \#include_next lookup. |
2554 | std::pair<ConstSearchDirIterator, const FileEntry *> |
2555 | getIncludeNextStart(const Token &IncludeNextTok) const; |
2556 | |
2557 | /// Install the standard preprocessor pragmas: |
2558 | /// \#pragma GCC poison/system_header/dependency and \#pragma once. |
2559 | void RegisterBuiltinPragmas(); |
2560 | |
2561 | /// Register builtin macros such as __LINE__ with the identifier table. |
2562 | void RegisterBuiltinMacros(); |
2563 | |
2564 | /// If an identifier token is read that is to be expanded as a macro, handle |
2565 | /// it and return the next token as 'Tok'. If we lexed a token, return true; |
2566 | /// otherwise the caller should lex again. |
2567 | bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD); |
2568 | |
2569 | /// Cache macro expanded tokens for TokenLexers. |
2570 | // |
2571 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
2572 | /// going to lex in the cache and when it finishes the tokens are removed |
2573 | /// from the end of the cache. |
2574 | Token *cacheMacroExpandedTokens(TokenLexer *tokLexer, |
2575 | ArrayRef<Token> tokens); |
2576 | |
2577 | void removeCachedMacroExpandedTokensOfLastLexer(); |
2578 | |
2579 | /// Determine whether the next preprocessor token to be |
2580 | /// lexed is a '('. If so, consume the token and return true, if not, this |
2581 | /// method should have no observable side-effect on the lexed tokens. |
2582 | bool isNextPPTokenLParen(); |
2583 | |
2584 | /// After reading "MACRO(", this method is invoked to read all of the formal |
2585 | /// arguments specified for the macro invocation. Returns null on error. |
2586 | MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, |
2587 | SourceLocation &MacroEnd); |
2588 | |
2589 | /// If an identifier token is read that is to be expanded |
2590 | /// as a builtin macro, handle it and return the next token as 'Tok'. |
2591 | void ExpandBuiltinMacro(Token &Tok); |
2592 | |
2593 | /// Read a \c _Pragma directive, slice it up, process it, then |
2594 | /// return the first token after the directive. |
2595 | /// This assumes that the \c _Pragma token has just been read into \p Tok. |
2596 | void Handle_Pragma(Token &Tok); |
2597 | |
2598 | /// Like Handle_Pragma except the pragma text is not enclosed within |
2599 | /// a string literal. |
2600 | void HandleMicrosoft__pragma(Token &Tok); |
2601 | |
2602 | /// Add a lexer to the top of the include stack and |
2603 | /// start lexing tokens from it instead of the current buffer. |
2604 | void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir); |
2605 | |
2606 | /// Set the FileID for the preprocessor predefines. |
2607 | void setPredefinesFileID(FileID FID) { |
2608 | assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!" ); |
2609 | PredefinesFileID = FID; |
2610 | } |
2611 | |
2612 | /// Set the FileID for the PCH through header. |
2613 | void (FileID FID); |
2614 | |
2615 | /// Returns true if we are lexing from a file and not a |
2616 | /// pragma or a macro. |
2617 | static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) { |
2618 | return L ? !L->isPragmaLexer() : P != nullptr; |
2619 | } |
2620 | |
2621 | static bool IsFileLexer(const IncludeStackInfo& I) { |
2622 | return IsFileLexer(L: I.TheLexer.get(), P: I.ThePPLexer); |
2623 | } |
2624 | |
2625 | bool IsFileLexer() const { |
2626 | return IsFileLexer(L: CurLexer.get(), P: CurPPLexer); |
2627 | } |
2628 | |
2629 | //===--------------------------------------------------------------------===// |
2630 | // Caching stuff. |
2631 | void CachingLex(Token &Result); |
2632 | |
2633 | bool InCachingLexMode() const { |
2634 | // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means |
2635 | // that we are past EOF, not that we are in CachingLex mode. |
2636 | return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty(); |
2637 | } |
2638 | |
2639 | void EnterCachingLexMode(); |
2640 | void EnterCachingLexModeUnchecked(); |
2641 | |
2642 | void ExitCachingLexMode() { |
2643 | if (InCachingLexMode()) |
2644 | RemoveTopOfLexerStack(); |
2645 | } |
2646 | |
2647 | const Token &PeekAhead(unsigned N); |
2648 | void AnnotatePreviousCachedTokens(const Token &Tok); |
2649 | |
2650 | //===--------------------------------------------------------------------===// |
2651 | /// Handle*Directive - implement the various preprocessor directives. These |
2652 | /// should side-effect the current preprocessor object so that the next call |
2653 | /// to Lex() will return the appropriate token next. |
2654 | void HandleLineDirective(); |
2655 | void HandleDigitDirective(Token &Tok); |
2656 | void HandleUserDiagnosticDirective(Token &Tok, bool isWarning); |
2657 | void HandleIdentSCCSDirective(Token &Tok); |
2658 | void HandleMacroPublicDirective(Token &Tok); |
2659 | void HandleMacroPrivateDirective(); |
2660 | |
2661 | /// An additional notification that can be produced by a header inclusion or |
2662 | /// import to tell the parser what happened. |
2663 | struct ImportAction { |
2664 | enum ActionKind { |
2665 | None, |
2666 | ModuleBegin, |
2667 | ModuleImport, |
2668 | , |
2669 | SkippedModuleImport, |
2670 | Failure, |
2671 | } Kind; |
2672 | Module * = nullptr; |
2673 | |
2674 | ImportAction(ActionKind AK, Module *Mod = nullptr) |
2675 | : Kind(AK), ModuleForHeader(Mod) { |
2676 | assert((AK == None || Mod || AK == Failure) && |
2677 | "no module for module action" ); |
2678 | } |
2679 | }; |
2680 | |
2681 | OptionalFileEntryRef ( |
2682 | ConstSearchDirIterator *CurDir, StringRef &Filename, |
2683 | SourceLocation FilenameLoc, CharSourceRange FilenameRange, |
2684 | const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl, |
2685 | bool &IsMapped, ConstSearchDirIterator LookupFrom, |
2686 | const FileEntry *LookupFromFile, StringRef &LookupFilename, |
2687 | SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath, |
2688 | ModuleMap::KnownHeader &SuggestedModule, bool isAngled); |
2689 | |
2690 | // File inclusion. |
2691 | void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok, |
2692 | ConstSearchDirIterator LookupFrom = nullptr, |
2693 | const FileEntry *LookupFromFile = nullptr); |
2694 | ImportAction |
2695 | HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok, |
2696 | Token &FilenameTok, SourceLocation EndLoc, |
2697 | ConstSearchDirIterator LookupFrom = nullptr, |
2698 | const FileEntry *LookupFromFile = nullptr); |
2699 | void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok); |
2700 | void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok); |
2701 | void HandleImportDirective(SourceLocation HashLoc, Token &Tok); |
2702 | void HandleMicrosoftImportDirective(Token &Tok); |
2703 | |
2704 | public: |
2705 | /// Check that the given module is available, producing a diagnostic if not. |
2706 | /// \return \c true if the check failed (because the module is not available). |
2707 | /// \c false if the module appears to be usable. |
2708 | static bool checkModuleIsAvailable(const LangOptions &LangOpts, |
2709 | const TargetInfo &TargetInfo, |
2710 | const Module &M, DiagnosticsEngine &Diags); |
2711 | |
2712 | // Module inclusion testing. |
2713 | /// Find the module that owns the source or header file that |
2714 | /// \p Loc points to. If the location is in a file that was included |
2715 | /// into a module, or is outside any module, returns nullptr. |
2716 | Module *getModuleForLocation(SourceLocation Loc, bool AllowTextual); |
2717 | |
2718 | /// We want to produce a diagnostic at location IncLoc concerning an |
2719 | /// unreachable effect at location MLoc (eg, where a desired entity was |
2720 | /// declared or defined). Determine whether the right way to make MLoc |
2721 | /// reachable is by #include, and if so, what header should be included. |
2722 | /// |
2723 | /// This is not necessarily fast, and might load unexpected module maps, so |
2724 | /// should only be called by code that intends to produce an error. |
2725 | /// |
2726 | /// \param IncLoc The location at which the missing effect was detected. |
2727 | /// \param MLoc A location within an unimported module at which the desired |
2728 | /// effect occurred. |
2729 | /// \return A file that can be #included to provide the desired effect. Null |
2730 | /// if no such file could be determined or if a #include is not |
2731 | /// appropriate (eg, if a module should be imported instead). |
2732 | OptionalFileEntryRef (SourceLocation IncLoc, |
2733 | SourceLocation MLoc); |
2734 | |
2735 | bool isRecordingPreamble() const { |
2736 | return PreambleConditionalStack.isRecording(); |
2737 | } |
2738 | |
2739 | bool hasRecordedPreamble() const { |
2740 | return PreambleConditionalStack.hasRecordedPreamble(); |
2741 | } |
2742 | |
2743 | ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const { |
2744 | return PreambleConditionalStack.getStack(); |
2745 | } |
2746 | |
2747 | void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) { |
2748 | PreambleConditionalStack.setStack(s); |
2749 | } |
2750 | |
2751 | void setReplayablePreambleConditionalStack( |
2752 | ArrayRef<PPConditionalInfo> s, std::optional<PreambleSkipInfo> SkipInfo) { |
2753 | PreambleConditionalStack.startReplaying(); |
2754 | PreambleConditionalStack.setStack(s); |
2755 | PreambleConditionalStack.SkipInfo = SkipInfo; |
2756 | } |
2757 | |
2758 | std::optional<PreambleSkipInfo> getPreambleSkipInfo() const { |
2759 | return PreambleConditionalStack.SkipInfo; |
2760 | } |
2761 | |
2762 | private: |
2763 | /// After processing predefined file, initialize the conditional stack from |
2764 | /// the preamble. |
2765 | void replayPreambleConditionalStack(); |
2766 | |
2767 | // Macro handling. |
2768 | void HandleDefineDirective(Token &Tok, bool ); |
2769 | void HandleUndefDirective(); |
2770 | |
2771 | // Conditional Inclusion. |
2772 | void HandleIfdefDirective(Token &Result, const Token &HashToken, |
2773 | bool isIfndef, bool ReadAnyTokensBeforeDirective); |
2774 | void HandleIfDirective(Token &IfToken, const Token &HashToken, |
2775 | bool ReadAnyTokensBeforeDirective); |
2776 | void HandleEndifDirective(Token &EndifToken); |
2777 | void HandleElseDirective(Token &Result, const Token &HashToken); |
2778 | void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken, |
2779 | tok::PPKeywordKind Kind); |
2780 | |
2781 | // Pragmas. |
2782 | void HandlePragmaDirective(PragmaIntroducer Introducer); |
2783 | |
2784 | public: |
2785 | void HandlePragmaOnce(Token &OnceTok); |
2786 | void HandlePragmaMark(Token &MarkTok); |
2787 | void HandlePragmaPoison(); |
2788 | void HandlePragmaSystemHeader(Token &); |
2789 | void HandlePragmaDependency(Token &DependencyTok); |
2790 | void HandlePragmaPushMacro(Token &Tok); |
2791 | void HandlePragmaPopMacro(Token &Tok); |
2792 | void HandlePragmaIncludeAlias(Token &Tok); |
2793 | void HandlePragmaModuleBuild(Token &Tok); |
2794 | void HandlePragmaHdrstop(Token &Tok); |
2795 | IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok); |
2796 | |
2797 | // Return true and store the first token only if any CommentHandler |
2798 | // has inserted some tokens and getCommentRetentionState() is false. |
2799 | bool HandleComment(Token &result, SourceRange ); |
2800 | |
2801 | /// A macro is used, update information about macros that need unused |
2802 | /// warnings. |
2803 | void markMacroAsUsed(MacroInfo *MI); |
2804 | |
2805 | void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg, |
2806 | SourceLocation AnnotationLoc) { |
2807 | auto Annotations = AnnotationInfos.find(Val: II); |
2808 | if (Annotations == AnnotationInfos.end()) |
2809 | AnnotationInfos.insert(KV: std::make_pair( |
2810 | x&: II, |
2811 | y: MacroAnnotations::makeDeprecation(Loc: AnnotationLoc, Msg: std::move(Msg)))); |
2812 | else |
2813 | Annotations->second.DeprecationInfo = |
2814 | MacroAnnotationInfo{.Location: AnnotationLoc, .Message: std::move(Msg)}; |
2815 | } |
2816 | |
2817 | void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg, |
2818 | SourceLocation AnnotationLoc) { |
2819 | auto Annotations = AnnotationInfos.find(Val: II); |
2820 | if (Annotations == AnnotationInfos.end()) |
2821 | AnnotationInfos.insert( |
2822 | KV: std::make_pair(x&: II, y: MacroAnnotations::makeRestrictExpansion( |
2823 | Loc: AnnotationLoc, Msg: std::move(Msg)))); |
2824 | else |
2825 | Annotations->second.RestrictExpansionInfo = |
2826 | MacroAnnotationInfo{.Location: AnnotationLoc, .Message: std::move(Msg)}; |
2827 | } |
2828 | |
2829 | void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) { |
2830 | auto Annotations = AnnotationInfos.find(Val: II); |
2831 | if (Annotations == AnnotationInfos.end()) |
2832 | AnnotationInfos.insert( |
2833 | KV: std::make_pair(x&: II, y: MacroAnnotations::makeFinal(Loc: AnnotationLoc))); |
2834 | else |
2835 | Annotations->second.FinalAnnotationLoc = AnnotationLoc; |
2836 | } |
2837 | |
2838 | const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const { |
2839 | return AnnotationInfos.find(Val: II)->second; |
2840 | } |
2841 | |
2842 | void emitMacroExpansionWarnings(const Token &Identifier, |
2843 | bool IsIfnDef = false) const { |
2844 | IdentifierInfo *Info = Identifier.getIdentifierInfo(); |
2845 | if (Info->isDeprecatedMacro()) |
2846 | emitMacroDeprecationWarning(Identifier); |
2847 | |
2848 | if (Info->isRestrictExpansion() && |
2849 | !SourceMgr.isInMainFile(Loc: Identifier.getLocation())) |
2850 | emitRestrictExpansionWarning(Identifier); |
2851 | |
2852 | if (!IsIfnDef) { |
2853 | if (Info->getName() == "INFINITY" && getLangOpts().NoHonorInfs) |
2854 | emitRestrictInfNaNWarning(Identifier, DiagSelection: 0); |
2855 | if (Info->getName() == "NAN" && getLangOpts().NoHonorNaNs) |
2856 | emitRestrictInfNaNWarning(Identifier, DiagSelection: 1); |
2857 | } |
2858 | } |
2859 | |
2860 | static void processPathForFileMacro(SmallVectorImpl<char> &Path, |
2861 | const LangOptions &LangOpts, |
2862 | const TargetInfo &TI); |
2863 | |
2864 | static void processPathToFileName(SmallVectorImpl<char> &FileName, |
2865 | const PresumedLoc &PLoc, |
2866 | const LangOptions &LangOpts, |
2867 | const TargetInfo &TI); |
2868 | |
2869 | private: |
2870 | void emitMacroDeprecationWarning(const Token &Identifier) const; |
2871 | void emitRestrictExpansionWarning(const Token &Identifier) const; |
2872 | void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const; |
2873 | void emitRestrictInfNaNWarning(const Token &Identifier, |
2874 | unsigned DiagSelection) const; |
2875 | |
2876 | /// This boolean state keeps track if the current scanned token (by this PP) |
2877 | /// is in an "-Wunsafe-buffer-usage" opt-out region. Assuming PP scans a |
2878 | /// translation unit in a linear order. |
2879 | bool InSafeBufferOptOutRegion = false; |
2880 | |
2881 | /// Hold the start location of the current "-Wunsafe-buffer-usage" opt-out |
2882 | /// region if PP is currently in such a region. Hold undefined value |
2883 | /// otherwise. |
2884 | SourceLocation CurrentSafeBufferOptOutStart; // It is used to report the start location of an never-closed region. |
2885 | |
2886 | // An ordered sequence of "-Wunsafe-buffer-usage" opt-out regions in one |
2887 | // translation unit. Each region is represented by a pair of start and end |
2888 | // locations. A region is "open" if its' start and end locations are |
2889 | // identical. |
2890 | SmallVector<std::pair<SourceLocation, SourceLocation>, 8> SafeBufferOptOutMap; |
2891 | |
2892 | public: |
2893 | /// \return true iff the given `Loc` is in a "-Wunsafe-buffer-usage" opt-out |
2894 | /// region. This `Loc` must be a source location that has been pre-processed. |
2895 | bool isSafeBufferOptOut(const SourceManager&SourceMgr, const SourceLocation &Loc) const; |
2896 | |
2897 | /// Alter the state of whether this PP currently is in a |
2898 | /// "-Wunsafe-buffer-usage" opt-out region. |
2899 | /// |
2900 | /// \param isEnter true if this PP is entering a region; otherwise, this PP |
2901 | /// is exiting a region |
2902 | /// \param Loc the location of the entry or exit of a |
2903 | /// region |
2904 | /// \return true iff it is INVALID to enter or exit a region, i.e., |
2905 | /// attempt to enter a region before exiting a previous region, or exiting a |
2906 | /// region that PP is not currently in. |
2907 | bool enterOrExitSafeBufferOptOutRegion(bool isEnter, |
2908 | const SourceLocation &Loc); |
2909 | |
2910 | /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" |
2911 | /// opt-out region |
2912 | bool isPPInSafeBufferOptOutRegion(); |
2913 | |
2914 | /// \param StartLoc output argument. It will be set to the start location of |
2915 | /// the current "-Wunsafe-buffer-usage" opt-out region iff this function |
2916 | /// returns true. |
2917 | /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" |
2918 | /// opt-out region |
2919 | bool isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc); |
2920 | |
2921 | private: |
2922 | /// Helper functions to forward lexing to the actual lexer. They all share the |
2923 | /// same signature. |
2924 | static bool CLK_Lexer(Preprocessor &P, Token &Result) { |
2925 | return P.CurLexer->Lex(Result); |
2926 | } |
2927 | static bool CLK_TokenLexer(Preprocessor &P, Token &Result) { |
2928 | return P.CurTokenLexer->Lex(Tok&: Result); |
2929 | } |
2930 | static bool CLK_CachingLexer(Preprocessor &P, Token &Result) { |
2931 | P.CachingLex(Result); |
2932 | return true; |
2933 | } |
2934 | static bool CLK_DependencyDirectivesLexer(Preprocessor &P, Token &Result) { |
2935 | return P.CurLexer->LexDependencyDirectiveToken(Result); |
2936 | } |
2937 | static bool CLK_LexAfterModuleImport(Preprocessor &P, Token &Result) { |
2938 | return P.LexAfterModuleImport(Result); |
2939 | } |
2940 | }; |
2941 | |
2942 | /// Abstract base class that describes a handler that will receive |
2943 | /// source ranges for each of the comments encountered in the source file. |
2944 | class CommentHandler { |
2945 | public: |
2946 | virtual ~CommentHandler(); |
2947 | |
2948 | // The handler shall return true if it has pushed any tokens |
2949 | // to be read using e.g. EnterToken or EnterTokenStream. |
2950 | virtual bool HandleComment(Preprocessor &PP, SourceRange ) = 0; |
2951 | }; |
2952 | |
2953 | /// Abstract base class that describes a handler that will receive |
2954 | /// source ranges for empty lines encountered in the source file. |
2955 | class EmptylineHandler { |
2956 | public: |
2957 | virtual ~EmptylineHandler(); |
2958 | |
2959 | // The handler handles empty lines. |
2960 | virtual void HandleEmptyline(SourceRange Range) = 0; |
2961 | }; |
2962 | |
2963 | /// Registry of pragma handlers added by plugins |
2964 | using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>; |
2965 | |
2966 | } // namespace clang |
2967 | |
2968 | #endif // LLVM_CLANG_LEX_PREPROCESSOR_H |
2969 | |