1 | //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "clang/AST/ASTContext.h" |
10 | #include "clang/AST/ASTDiagnostic.h" |
11 | #include "clang/AST/Attr.h" |
12 | #include "clang/AST/CXXInheritance.h" |
13 | #include "clang/AST/Decl.h" |
14 | #include "clang/AST/DeclCXX.h" |
15 | #include "clang/AST/DeclObjC.h" |
16 | #include "clang/AST/Expr.h" |
17 | #include "clang/AST/RecordLayout.h" |
18 | #include "clang/AST/VTableBuilder.h" |
19 | #include "clang/Basic/TargetInfo.h" |
20 | #include "llvm/Support/Format.h" |
21 | #include "llvm/Support/MathExtras.h" |
22 | |
23 | using namespace clang; |
24 | |
25 | namespace { |
26 | |
27 | /// BaseSubobjectInfo - Represents a single base subobject in a complete class. |
28 | /// For a class hierarchy like |
29 | /// |
30 | /// class A { }; |
31 | /// class B : A { }; |
32 | /// class C : A, B { }; |
33 | /// |
34 | /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo |
35 | /// instances, one for B and two for A. |
36 | /// |
37 | /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. |
38 | struct BaseSubobjectInfo { |
39 | /// Class - The class for this base info. |
40 | const CXXRecordDecl *Class; |
41 | |
42 | /// IsVirtual - Whether the BaseInfo represents a virtual base or not. |
43 | bool IsVirtual; |
44 | |
45 | /// Bases - Information about the base subobjects. |
46 | SmallVector<BaseSubobjectInfo*, 4> Bases; |
47 | |
48 | /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base |
49 | /// of this base info (if one exists). |
50 | BaseSubobjectInfo *PrimaryVirtualBaseInfo; |
51 | |
52 | // FIXME: Document. |
53 | const BaseSubobjectInfo *Derived; |
54 | }; |
55 | |
56 | /// Externally provided layout. Typically used when the AST source, such |
57 | /// as DWARF, lacks all the information that was available at compile time, such |
58 | /// as alignment attributes on fields and pragmas in effect. |
59 | struct ExternalLayout { |
60 | ExternalLayout() = default; |
61 | |
62 | /// Overall record size in bits. |
63 | uint64_t Size = 0; |
64 | |
65 | /// Overall record alignment in bits. |
66 | uint64_t Align = 0; |
67 | |
68 | /// Record field offsets in bits. |
69 | llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; |
70 | |
71 | /// Direct, non-virtual base offsets. |
72 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; |
73 | |
74 | /// Virtual base offsets. |
75 | llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; |
76 | |
77 | /// Get the offset of the given field. The external source must provide |
78 | /// entries for all fields in the record. |
79 | uint64_t getExternalFieldOffset(const FieldDecl *FD) { |
80 | assert(FieldOffsets.count(FD) && |
81 | "Field does not have an external offset"); |
82 | return FieldOffsets[FD]; |
83 | } |
84 | |
85 | bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { |
86 | auto Known = BaseOffsets.find(Val: RD); |
87 | if (Known == BaseOffsets.end()) |
88 | return false; |
89 | BaseOffset = Known->second; |
90 | return true; |
91 | } |
92 | |
93 | bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { |
94 | auto Known = VirtualBaseOffsets.find(Val: RD); |
95 | if (Known == VirtualBaseOffsets.end()) |
96 | return false; |
97 | BaseOffset = Known->second; |
98 | return true; |
99 | } |
100 | }; |
101 | |
102 | /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different |
103 | /// offsets while laying out a C++ class. |
104 | class EmptySubobjectMap { |
105 | const ASTContext &Context; |
106 | uint64_t CharWidth; |
107 | |
108 | /// Class - The class whose empty entries we're keeping track of. |
109 | const CXXRecordDecl *Class; |
110 | |
111 | /// EmptyClassOffsets - A map from offsets to empty record decls. |
112 | typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; |
113 | typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; |
114 | EmptyClassOffsetsMapTy EmptyClassOffsets; |
115 | |
116 | /// MaxEmptyClassOffset - The highest offset known to contain an empty |
117 | /// base subobject. |
118 | CharUnits MaxEmptyClassOffset; |
119 | |
120 | /// ComputeEmptySubobjectSizes - Compute the size of the largest base or |
121 | /// member subobject that is empty. |
122 | void ComputeEmptySubobjectSizes(); |
123 | |
124 | void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); |
125 | |
126 | void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, |
127 | CharUnits Offset, bool PlacingEmptyBase); |
128 | |
129 | void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, |
130 | const CXXRecordDecl *Class, CharUnits Offset, |
131 | bool PlacingOverlappingField); |
132 | void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, |
133 | bool PlacingOverlappingField); |
134 | |
135 | /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty |
136 | /// subobjects beyond the given offset. |
137 | bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { |
138 | return Offset <= MaxEmptyClassOffset; |
139 | } |
140 | |
141 | CharUnits getFieldOffset(const ASTRecordLayout &Layout, |
142 | const FieldDecl *Field) const { |
143 | uint64_t FieldOffset = Layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
144 | assert(FieldOffset % CharWidth == 0 && |
145 | "Field offset not at char boundary!"); |
146 | |
147 | return Context.toCharUnitsFromBits(BitSize: FieldOffset); |
148 | } |
149 | |
150 | protected: |
151 | bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, |
152 | CharUnits Offset) const; |
153 | |
154 | bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, |
155 | CharUnits Offset); |
156 | |
157 | bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, |
158 | const CXXRecordDecl *Class, |
159 | CharUnits Offset) const; |
160 | bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, |
161 | CharUnits Offset) const; |
162 | |
163 | public: |
164 | /// This holds the size of the largest empty subobject (either a base |
165 | /// or a member). Will be zero if the record being built doesn't contain |
166 | /// any empty classes. |
167 | CharUnits SizeOfLargestEmptySubobject; |
168 | |
169 | EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) |
170 | : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { |
171 | ComputeEmptySubobjectSizes(); |
172 | } |
173 | |
174 | /// CanPlaceBaseAtOffset - Return whether the given base class can be placed |
175 | /// at the given offset. |
176 | /// Returns false if placing the record will result in two components |
177 | /// (direct or indirect) of the same type having the same offset. |
178 | bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, |
179 | CharUnits Offset); |
180 | |
181 | /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given |
182 | /// offset. |
183 | bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); |
184 | }; |
185 | |
186 | void EmptySubobjectMap::ComputeEmptySubobjectSizes() { |
187 | // Check the bases. |
188 | for (const CXXBaseSpecifier &Base : Class->bases()) { |
189 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
190 | |
191 | CharUnits EmptySize; |
192 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); |
193 | if (BaseDecl->isEmpty()) { |
194 | // If the class decl is empty, get its size. |
195 | EmptySize = Layout.getSize(); |
196 | } else { |
197 | // Otherwise, we get the largest empty subobject for the decl. |
198 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); |
199 | } |
200 | |
201 | if (EmptySize > SizeOfLargestEmptySubobject) |
202 | SizeOfLargestEmptySubobject = EmptySize; |
203 | } |
204 | |
205 | // Check the fields. |
206 | for (const FieldDecl *FD : Class->fields()) { |
207 | const RecordType *RT = |
208 | Context.getBaseElementType(FD->getType())->getAs<RecordType>(); |
209 | |
210 | // We only care about record types. |
211 | if (!RT) |
212 | continue; |
213 | |
214 | CharUnits EmptySize; |
215 | const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); |
216 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); |
217 | if (MemberDecl->isEmpty()) { |
218 | // If the class decl is empty, get its size. |
219 | EmptySize = Layout.getSize(); |
220 | } else { |
221 | // Otherwise, we get the largest empty subobject for the decl. |
222 | EmptySize = Layout.getSizeOfLargestEmptySubobject(); |
223 | } |
224 | |
225 | if (EmptySize > SizeOfLargestEmptySubobject) |
226 | SizeOfLargestEmptySubobject = EmptySize; |
227 | } |
228 | } |
229 | |
230 | bool |
231 | EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, |
232 | CharUnits Offset) const { |
233 | // We only need to check empty bases. |
234 | if (!RD->isEmpty()) |
235 | return true; |
236 | |
237 | EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Val: Offset); |
238 | if (I == EmptyClassOffsets.end()) |
239 | return true; |
240 | |
241 | const ClassVectorTy &Classes = I->second; |
242 | if (!llvm::is_contained(Range: Classes, Element: RD)) |
243 | return true; |
244 | |
245 | // There is already an empty class of the same type at this offset. |
246 | return false; |
247 | } |
248 | |
249 | void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, |
250 | CharUnits Offset) { |
251 | // We only care about empty bases. |
252 | if (!RD->isEmpty()) |
253 | return; |
254 | |
255 | // If we have empty structures inside a union, we can assign both |
256 | // the same offset. Just avoid pushing them twice in the list. |
257 | ClassVectorTy &Classes = EmptyClassOffsets[Offset]; |
258 | if (llvm::is_contained(Range&: Classes, Element: RD)) |
259 | return; |
260 | |
261 | Classes.push_back(NewVal: RD); |
262 | |
263 | // Update the empty class offset. |
264 | if (Offset > MaxEmptyClassOffset) |
265 | MaxEmptyClassOffset = Offset; |
266 | } |
267 | |
268 | bool |
269 | EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, |
270 | CharUnits Offset) { |
271 | // We don't have to keep looking past the maximum offset that's known to |
272 | // contain an empty class. |
273 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) |
274 | return true; |
275 | |
276 | if (!CanPlaceSubobjectAtOffset(RD: Info->Class, Offset)) |
277 | return false; |
278 | |
279 | // Traverse all non-virtual bases. |
280 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); |
281 | for (const BaseSubobjectInfo *Base : Info->Bases) { |
282 | if (Base->IsVirtual) |
283 | continue; |
284 | |
285 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: Base->Class); |
286 | |
287 | if (!CanPlaceBaseSubobjectAtOffset(Info: Base, Offset: BaseOffset)) |
288 | return false; |
289 | } |
290 | |
291 | if (Info->PrimaryVirtualBaseInfo) { |
292 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; |
293 | |
294 | if (Info == PrimaryVirtualBaseInfo->Derived) { |
295 | if (!CanPlaceBaseSubobjectAtOffset(Info: PrimaryVirtualBaseInfo, Offset)) |
296 | return false; |
297 | } |
298 | } |
299 | |
300 | // Traverse all member variables. |
301 | for (const FieldDecl *Field : Info->Class->fields()) { |
302 | if (Field->isBitField()) |
303 | continue; |
304 | |
305 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); |
306 | if (!CanPlaceFieldSubobjectAtOffset(Field, FieldOffset)) |
307 | return false; |
308 | } |
309 | |
310 | return true; |
311 | } |
312 | |
313 | void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, |
314 | CharUnits Offset, |
315 | bool PlacingEmptyBase) { |
316 | if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { |
317 | // We know that the only empty subobjects that can conflict with empty |
318 | // subobject of non-empty bases, are empty bases that can be placed at |
319 | // offset zero. Because of this, we only need to keep track of empty base |
320 | // subobjects with offsets less than the size of the largest empty |
321 | // subobject for our class. |
322 | return; |
323 | } |
324 | |
325 | AddSubobjectAtOffset(RD: Info->Class, Offset); |
326 | |
327 | // Traverse all non-virtual bases. |
328 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); |
329 | for (const BaseSubobjectInfo *Base : Info->Bases) { |
330 | if (Base->IsVirtual) |
331 | continue; |
332 | |
333 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: Base->Class); |
334 | UpdateEmptyBaseSubobjects(Info: Base, Offset: BaseOffset, PlacingEmptyBase); |
335 | } |
336 | |
337 | if (Info->PrimaryVirtualBaseInfo) { |
338 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; |
339 | |
340 | if (Info == PrimaryVirtualBaseInfo->Derived) |
341 | UpdateEmptyBaseSubobjects(Info: PrimaryVirtualBaseInfo, Offset, |
342 | PlacingEmptyBase); |
343 | } |
344 | |
345 | // Traverse all member variables. |
346 | for (const FieldDecl *Field : Info->Class->fields()) { |
347 | if (Field->isBitField()) |
348 | continue; |
349 | |
350 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); |
351 | UpdateEmptyFieldSubobjects(Field, FieldOffset, PlacingEmptyBase); |
352 | } |
353 | } |
354 | |
355 | bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, |
356 | CharUnits Offset) { |
357 | // If we know this class doesn't have any empty subobjects we don't need to |
358 | // bother checking. |
359 | if (SizeOfLargestEmptySubobject.isZero()) |
360 | return true; |
361 | |
362 | if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) |
363 | return false; |
364 | |
365 | // We are able to place the base at this offset. Make sure to update the |
366 | // empty base subobject map. |
367 | UpdateEmptyBaseSubobjects(Info, Offset, PlacingEmptyBase: Info->Class->isEmpty()); |
368 | return true; |
369 | } |
370 | |
371 | bool |
372 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, |
373 | const CXXRecordDecl *Class, |
374 | CharUnits Offset) const { |
375 | // We don't have to keep looking past the maximum offset that's known to |
376 | // contain an empty class. |
377 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) |
378 | return true; |
379 | |
380 | if (!CanPlaceSubobjectAtOffset(RD, Offset)) |
381 | return false; |
382 | |
383 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
384 | |
385 | // Traverse all non-virtual bases. |
386 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
387 | if (Base.isVirtual()) |
388 | continue; |
389 | |
390 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
391 | |
392 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: BaseDecl); |
393 | if (!CanPlaceFieldSubobjectAtOffset(RD: BaseDecl, Class, Offset: BaseOffset)) |
394 | return false; |
395 | } |
396 | |
397 | if (RD == Class) { |
398 | // This is the most derived class, traverse virtual bases as well. |
399 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
400 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); |
401 | |
402 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase: VBaseDecl); |
403 | if (!CanPlaceFieldSubobjectAtOffset(RD: VBaseDecl, Class, Offset: VBaseOffset)) |
404 | return false; |
405 | } |
406 | } |
407 | |
408 | // Traverse all member variables. |
409 | for (const FieldDecl *Field : RD->fields()) { |
410 | if (Field->isBitField()) |
411 | continue; |
412 | |
413 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); |
414 | if (!CanPlaceFieldSubobjectAtOffset(Field, FieldOffset)) |
415 | return false; |
416 | } |
417 | |
418 | return true; |
419 | } |
420 | |
421 | bool |
422 | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, |
423 | CharUnits Offset) const { |
424 | // We don't have to keep looking past the maximum offset that's known to |
425 | // contain an empty class. |
426 | if (!AnyEmptySubobjectsBeyondOffset(Offset)) |
427 | return true; |
428 | |
429 | QualType T = FD->getType(); |
430 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
431 | return CanPlaceFieldSubobjectAtOffset(RD, Class: RD, Offset); |
432 | |
433 | // If we have an array type we need to look at every element. |
434 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
435 | QualType ElemTy = Context.getBaseElementType(AT); |
436 | const RecordType *RT = ElemTy->getAs<RecordType>(); |
437 | if (!RT) |
438 | return true; |
439 | |
440 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
441 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
442 | |
443 | uint64_t NumElements = Context.getConstantArrayElementCount(CA: AT); |
444 | CharUnits ElementOffset = Offset; |
445 | for (uint64_t I = 0; I != NumElements; ++I) { |
446 | // We don't have to keep looking past the maximum offset that's known to |
447 | // contain an empty class. |
448 | if (!AnyEmptySubobjectsBeyondOffset(Offset: ElementOffset)) |
449 | return true; |
450 | |
451 | if (!CanPlaceFieldSubobjectAtOffset(RD, Class: RD, Offset: ElementOffset)) |
452 | return false; |
453 | |
454 | ElementOffset += Layout.getSize(); |
455 | } |
456 | } |
457 | |
458 | return true; |
459 | } |
460 | |
461 | bool EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, |
462 | CharUnits Offset) { |
463 | if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) |
464 | return false; |
465 | |
466 | // We are able to place the member variable at this offset. |
467 | // Make sure to update the empty field subobject map. |
468 | UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); |
469 | return true; |
470 | } |
471 | |
472 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( |
473 | const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, |
474 | bool PlacingOverlappingField) { |
475 | // We know that the only empty subobjects that can conflict with empty |
476 | // field subobjects are subobjects of empty bases and potentially-overlapping |
477 | // fields that can be placed at offset zero. Because of this, we only need to |
478 | // keep track of empty field subobjects with offsets less than the size of |
479 | // the largest empty subobject for our class. |
480 | // |
481 | // (Proof: we will only consider placing a subobject at offset zero or at |
482 | // >= the current dsize. The only cases where the earlier subobject can be |
483 | // placed beyond the end of dsize is if it's an empty base or a |
484 | // potentially-overlapping field.) |
485 | if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) |
486 | return; |
487 | |
488 | AddSubobjectAtOffset(RD, Offset); |
489 | |
490 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
491 | |
492 | // Traverse all non-virtual bases. |
493 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
494 | if (Base.isVirtual()) |
495 | continue; |
496 | |
497 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
498 | |
499 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: BaseDecl); |
500 | UpdateEmptyFieldSubobjects(RD: BaseDecl, Class, Offset: BaseOffset, |
501 | PlacingOverlappingField); |
502 | } |
503 | |
504 | if (RD == Class) { |
505 | // This is the most derived class, traverse virtual bases as well. |
506 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
507 | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); |
508 | |
509 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase: VBaseDecl); |
510 | UpdateEmptyFieldSubobjects(RD: VBaseDecl, Class, Offset: VBaseOffset, |
511 | PlacingOverlappingField); |
512 | } |
513 | } |
514 | |
515 | // Traverse all member variables. |
516 | for (const FieldDecl *Field : RD->fields()) { |
517 | if (Field->isBitField()) |
518 | continue; |
519 | |
520 | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); |
521 | UpdateEmptyFieldSubobjects(Field, FieldOffset, PlacingOverlappingField); |
522 | } |
523 | } |
524 | |
525 | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( |
526 | const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { |
527 | QualType T = FD->getType(); |
528 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
529 | UpdateEmptyFieldSubobjects(RD, Class: RD, Offset, PlacingOverlappingField); |
530 | return; |
531 | } |
532 | |
533 | // If we have an array type we need to update every element. |
534 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
535 | QualType ElemTy = Context.getBaseElementType(AT); |
536 | const RecordType *RT = ElemTy->getAs<RecordType>(); |
537 | if (!RT) |
538 | return; |
539 | |
540 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
541 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
542 | |
543 | uint64_t NumElements = Context.getConstantArrayElementCount(CA: AT); |
544 | CharUnits ElementOffset = Offset; |
545 | |
546 | for (uint64_t I = 0; I != NumElements; ++I) { |
547 | // We know that the only empty subobjects that can conflict with empty |
548 | // field subobjects are subobjects of empty bases that can be placed at |
549 | // offset zero. Because of this, we only need to keep track of empty field |
550 | // subobjects with offsets less than the size of the largest empty |
551 | // subobject for our class. |
552 | if (!PlacingOverlappingField && |
553 | ElementOffset >= SizeOfLargestEmptySubobject) |
554 | return; |
555 | |
556 | UpdateEmptyFieldSubobjects(RD, Class: RD, Offset: ElementOffset, |
557 | PlacingOverlappingField); |
558 | ElementOffset += Layout.getSize(); |
559 | } |
560 | } |
561 | } |
562 | |
563 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; |
564 | |
565 | class ItaniumRecordLayoutBuilder { |
566 | protected: |
567 | // FIXME: Remove this and make the appropriate fields public. |
568 | friend class clang::ASTContext; |
569 | |
570 | const ASTContext &Context; |
571 | |
572 | EmptySubobjectMap *EmptySubobjects; |
573 | |
574 | /// Size - The current size of the record layout. |
575 | uint64_t Size; |
576 | |
577 | /// Alignment - The current alignment of the record layout. |
578 | CharUnits Alignment; |
579 | |
580 | /// PreferredAlignment - The preferred alignment of the record layout. |
581 | CharUnits PreferredAlignment; |
582 | |
583 | /// The alignment if attribute packed is not used. |
584 | CharUnits UnpackedAlignment; |
585 | |
586 | /// \brief The maximum of the alignments of top-level members. |
587 | CharUnits UnadjustedAlignment; |
588 | |
589 | SmallVector<uint64_t, 16> FieldOffsets; |
590 | |
591 | /// Whether the external AST source has provided a layout for this |
592 | /// record. |
593 | LLVM_PREFERRED_TYPE(bool) |
594 | unsigned UseExternalLayout : 1; |
595 | |
596 | /// Whether we need to infer alignment, even when we have an |
597 | /// externally-provided layout. |
598 | LLVM_PREFERRED_TYPE(bool) |
599 | unsigned InferAlignment : 1; |
600 | |
601 | /// Packed - Whether the record is packed or not. |
602 | LLVM_PREFERRED_TYPE(bool) |
603 | unsigned Packed : 1; |
604 | |
605 | LLVM_PREFERRED_TYPE(bool) |
606 | unsigned IsUnion : 1; |
607 | |
608 | LLVM_PREFERRED_TYPE(bool) |
609 | unsigned IsMac68kAlign : 1; |
610 | |
611 | LLVM_PREFERRED_TYPE(bool) |
612 | unsigned IsNaturalAlign : 1; |
613 | |
614 | LLVM_PREFERRED_TYPE(bool) |
615 | unsigned IsMsStruct : 1; |
616 | |
617 | /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, |
618 | /// this contains the number of bits in the last unit that can be used for |
619 | /// an adjacent bitfield if necessary. The unit in question is usually |
620 | /// a byte, but larger units are used if IsMsStruct. |
621 | unsigned char UnfilledBitsInLastUnit; |
622 | |
623 | /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the |
624 | /// storage unit of the previous field if it was a bitfield. |
625 | unsigned char LastBitfieldStorageUnitSize; |
626 | |
627 | /// MaxFieldAlignment - The maximum allowed field alignment. This is set by |
628 | /// #pragma pack. |
629 | CharUnits MaxFieldAlignment; |
630 | |
631 | /// DataSize - The data size of the record being laid out. |
632 | uint64_t DataSize; |
633 | |
634 | CharUnits NonVirtualSize; |
635 | CharUnits NonVirtualAlignment; |
636 | CharUnits PreferredNVAlignment; |
637 | |
638 | /// If we've laid out a field but not included its tail padding in Size yet, |
639 | /// this is the size up to the end of that field. |
640 | CharUnits PaddedFieldSize; |
641 | |
642 | /// PrimaryBase - the primary base class (if one exists) of the class |
643 | /// we're laying out. |
644 | const CXXRecordDecl *PrimaryBase; |
645 | |
646 | /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying |
647 | /// out is virtual. |
648 | bool PrimaryBaseIsVirtual; |
649 | |
650 | /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl |
651 | /// pointer, as opposed to inheriting one from a primary base class. |
652 | bool HasOwnVFPtr; |
653 | |
654 | /// the flag of field offset changing due to packed attribute. |
655 | bool HasPackedField; |
656 | |
657 | /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. |
658 | /// When there are OverlappingEmptyFields existing in the aggregate, the |
659 | /// flag shows if the following first non-empty or empty-but-non-overlapping |
660 | /// field has been handled, if any. |
661 | bool HandledFirstNonOverlappingEmptyField; |
662 | |
663 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; |
664 | |
665 | /// Bases - base classes and their offsets in the record. |
666 | BaseOffsetsMapTy Bases; |
667 | |
668 | // VBases - virtual base classes and their offsets in the record. |
669 | ASTRecordLayout::VBaseOffsetsMapTy VBases; |
670 | |
671 | /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are |
672 | /// primary base classes for some other direct or indirect base class. |
673 | CXXIndirectPrimaryBaseSet IndirectPrimaryBases; |
674 | |
675 | /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in |
676 | /// inheritance graph order. Used for determining the primary base class. |
677 | const CXXRecordDecl *FirstNearlyEmptyVBase; |
678 | |
679 | /// VisitedVirtualBases - A set of all the visited virtual bases, used to |
680 | /// avoid visiting virtual bases more than once. |
681 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; |
682 | |
683 | /// Valid if UseExternalLayout is true. |
684 | ExternalLayout External; |
685 | |
686 | ItaniumRecordLayoutBuilder(const ASTContext &Context, |
687 | EmptySubobjectMap *EmptySubobjects) |
688 | : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), |
689 | Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), |
690 | UnpackedAlignment(CharUnits::One()), |
691 | UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), |
692 | InferAlignment(false), Packed(false), IsUnion(false), |
693 | IsMac68kAlign(false), |
694 | IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), |
695 | IsMsStruct(false), UnfilledBitsInLastUnit(0), |
696 | LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), |
697 | DataSize(0), NonVirtualSize(CharUnits::Zero()), |
698 | NonVirtualAlignment(CharUnits::One()), |
699 | PreferredNVAlignment(CharUnits::One()), |
700 | PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), |
701 | PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), |
702 | HandledFirstNonOverlappingEmptyField(false), |
703 | FirstNearlyEmptyVBase(nullptr) {} |
704 | |
705 | void Layout(const RecordDecl *D); |
706 | void Layout(const CXXRecordDecl *D); |
707 | void Layout(const ObjCInterfaceDecl *D); |
708 | |
709 | void LayoutFields(const RecordDecl *D); |
710 | void LayoutField(const FieldDecl *D, bool InsertExtraPadding); |
711 | void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, |
712 | bool FieldPacked, const FieldDecl *D); |
713 | void LayoutBitField(const FieldDecl *D); |
714 | |
715 | TargetCXXABI getCXXABI() const { |
716 | return Context.getTargetInfo().getCXXABI(); |
717 | } |
718 | |
719 | /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. |
720 | llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; |
721 | |
722 | typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> |
723 | BaseSubobjectInfoMapTy; |
724 | |
725 | /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases |
726 | /// of the class we're laying out to their base subobject info. |
727 | BaseSubobjectInfoMapTy VirtualBaseInfo; |
728 | |
729 | /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the |
730 | /// class we're laying out to their base subobject info. |
731 | BaseSubobjectInfoMapTy NonVirtualBaseInfo; |
732 | |
733 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for the |
734 | /// bases of the given class. |
735 | void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); |
736 | |
737 | /// ComputeBaseSubobjectInfo - Compute the base subobject information for a |
738 | /// single class and all of its base classes. |
739 | BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, |
740 | bool IsVirtual, |
741 | BaseSubobjectInfo *Derived); |
742 | |
743 | /// DeterminePrimaryBase - Determine the primary base of the given class. |
744 | void DeterminePrimaryBase(const CXXRecordDecl *RD); |
745 | |
746 | void SelectPrimaryVBase(const CXXRecordDecl *RD); |
747 | |
748 | void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); |
749 | |
750 | /// LayoutNonVirtualBases - Determines the primary base class (if any) and |
751 | /// lays it out. Will then proceed to lay out all non-virtual base clasess. |
752 | void LayoutNonVirtualBases(const CXXRecordDecl *RD); |
753 | |
754 | /// LayoutNonVirtualBase - Lays out a single non-virtual base. |
755 | void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); |
756 | |
757 | void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, |
758 | CharUnits Offset); |
759 | |
760 | /// LayoutVirtualBases - Lays out all the virtual bases. |
761 | void LayoutVirtualBases(const CXXRecordDecl *RD, |
762 | const CXXRecordDecl *MostDerivedClass); |
763 | |
764 | /// LayoutVirtualBase - Lays out a single virtual base. |
765 | void LayoutVirtualBase(const BaseSubobjectInfo *Base); |
766 | |
767 | /// LayoutBase - Will lay out a base and return the offset where it was |
768 | /// placed, in chars. |
769 | CharUnits LayoutBase(const BaseSubobjectInfo *Base); |
770 | |
771 | /// InitializeLayout - Initialize record layout for the given record decl. |
772 | void InitializeLayout(const Decl *D); |
773 | |
774 | /// FinishLayout - Finalize record layout. Adjust record size based on the |
775 | /// alignment. |
776 | void FinishLayout(const NamedDecl *D); |
777 | |
778 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, |
779 | CharUnits PreferredAlignment); |
780 | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { |
781 | UpdateAlignment(NewAlignment, UnpackedNewAlignment, PreferredAlignment: NewAlignment); |
782 | } |
783 | void UpdateAlignment(CharUnits NewAlignment) { |
784 | UpdateAlignment(NewAlignment, UnpackedNewAlignment: NewAlignment, PreferredAlignment: NewAlignment); |
785 | } |
786 | |
787 | /// Retrieve the externally-supplied field offset for the given |
788 | /// field. |
789 | /// |
790 | /// \param Field The field whose offset is being queried. |
791 | /// \param ComputedOffset The offset that we've computed for this field. |
792 | uint64_t updateExternalFieldOffset(const FieldDecl *Field, |
793 | uint64_t ComputedOffset); |
794 | |
795 | void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, |
796 | uint64_t UnpackedOffset, unsigned UnpackedAlign, |
797 | bool isPacked, const FieldDecl *D); |
798 | |
799 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); |
800 | |
801 | CharUnits getSize() const { |
802 | assert(Size % Context.getCharWidth() == 0); |
803 | return Context.toCharUnitsFromBits(BitSize: Size); |
804 | } |
805 | uint64_t getSizeInBits() const { return Size; } |
806 | |
807 | void setSize(CharUnits NewSize) { Size = Context.toBits(CharSize: NewSize); } |
808 | void setSize(uint64_t NewSize) { Size = NewSize; } |
809 | |
810 | CharUnits getAlignment() const { return Alignment; } |
811 | |
812 | CharUnits getDataSize() const { |
813 | assert(DataSize % Context.getCharWidth() == 0); |
814 | return Context.toCharUnitsFromBits(BitSize: DataSize); |
815 | } |
816 | uint64_t getDataSizeInBits() const { return DataSize; } |
817 | |
818 | void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(CharSize: NewSize); } |
819 | void setDataSize(uint64_t NewSize) { DataSize = NewSize; } |
820 | |
821 | ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; |
822 | void operator=(const ItaniumRecordLayoutBuilder &) = delete; |
823 | }; |
824 | } // end anonymous namespace |
825 | |
826 | void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { |
827 | for (const auto &I : RD->bases()) { |
828 | assert(!I.getType()->isDependentType() && |
829 | "Cannot layout class with dependent bases."); |
830 | |
831 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); |
832 | |
833 | // Check if this is a nearly empty virtual base. |
834 | if (I.isVirtual() && Context.isNearlyEmpty(RD: Base)) { |
835 | // If it's not an indirect primary base, then we've found our primary |
836 | // base. |
837 | if (!IndirectPrimaryBases.count(Ptr: Base)) { |
838 | PrimaryBase = Base; |
839 | PrimaryBaseIsVirtual = true; |
840 | return; |
841 | } |
842 | |
843 | // Is this the first nearly empty virtual base? |
844 | if (!FirstNearlyEmptyVBase) |
845 | FirstNearlyEmptyVBase = Base; |
846 | } |
847 | |
848 | SelectPrimaryVBase(RD: Base); |
849 | if (PrimaryBase) |
850 | return; |
851 | } |
852 | } |
853 | |
854 | /// DeterminePrimaryBase - Determine the primary base of the given class. |
855 | void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { |
856 | // If the class isn't dynamic, it won't have a primary base. |
857 | if (!RD->isDynamicClass()) |
858 | return; |
859 | |
860 | // Compute all the primary virtual bases for all of our direct and |
861 | // indirect bases, and record all their primary virtual base classes. |
862 | RD->getIndirectPrimaryBases(Bases&: IndirectPrimaryBases); |
863 | |
864 | // If the record has a dynamic base class, attempt to choose a primary base |
865 | // class. It is the first (in direct base class order) non-virtual dynamic |
866 | // base class, if one exists. |
867 | for (const auto &I : RD->bases()) { |
868 | // Ignore virtual bases. |
869 | if (I.isVirtual()) |
870 | continue; |
871 | |
872 | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); |
873 | |
874 | if (Base->isDynamicClass()) { |
875 | // We found it. |
876 | PrimaryBase = Base; |
877 | PrimaryBaseIsVirtual = false; |
878 | return; |
879 | } |
880 | } |
881 | |
882 | // Under the Itanium ABI, if there is no non-virtual primary base class, |
883 | // try to compute the primary virtual base. The primary virtual base is |
884 | // the first nearly empty virtual base that is not an indirect primary |
885 | // virtual base class, if one exists. |
886 | if (RD->getNumVBases() != 0) { |
887 | SelectPrimaryVBase(RD); |
888 | if (PrimaryBase) |
889 | return; |
890 | } |
891 | |
892 | // Otherwise, it is the first indirect primary base class, if one exists. |
893 | if (FirstNearlyEmptyVBase) { |
894 | PrimaryBase = FirstNearlyEmptyVBase; |
895 | PrimaryBaseIsVirtual = true; |
896 | return; |
897 | } |
898 | |
899 | assert(!PrimaryBase && "Should not get here with a primary base!"); |
900 | } |
901 | |
902 | BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( |
903 | const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { |
904 | BaseSubobjectInfo *Info; |
905 | |
906 | if (IsVirtual) { |
907 | // Check if we already have info about this virtual base. |
908 | BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; |
909 | if (InfoSlot) { |
910 | assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); |
911 | return InfoSlot; |
912 | } |
913 | |
914 | // We don't, create it. |
915 | InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; |
916 | Info = InfoSlot; |
917 | } else { |
918 | Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; |
919 | } |
920 | |
921 | Info->Class = RD; |
922 | Info->IsVirtual = IsVirtual; |
923 | Info->Derived = nullptr; |
924 | Info->PrimaryVirtualBaseInfo = nullptr; |
925 | |
926 | const CXXRecordDecl *PrimaryVirtualBase = nullptr; |
927 | BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; |
928 | |
929 | // Check if this base has a primary virtual base. |
930 | if (RD->getNumVBases()) { |
931 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
932 | if (Layout.isPrimaryBaseVirtual()) { |
933 | // This base does have a primary virtual base. |
934 | PrimaryVirtualBase = Layout.getPrimaryBase(); |
935 | assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); |
936 | |
937 | // Now check if we have base subobject info about this primary base. |
938 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(Val: PrimaryVirtualBase); |
939 | |
940 | if (PrimaryVirtualBaseInfo) { |
941 | if (PrimaryVirtualBaseInfo->Derived) { |
942 | // We did have info about this primary base, and it turns out that it |
943 | // has already been claimed as a primary virtual base for another |
944 | // base. |
945 | PrimaryVirtualBase = nullptr; |
946 | } else { |
947 | // We can claim this base as our primary base. |
948 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; |
949 | PrimaryVirtualBaseInfo->Derived = Info; |
950 | } |
951 | } |
952 | } |
953 | } |
954 | |
955 | // Now go through all direct bases. |
956 | for (const auto &I : RD->bases()) { |
957 | bool IsVirtual = I.isVirtual(); |
958 | |
959 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); |
960 | |
961 | Info->Bases.push_back(Elt: ComputeBaseSubobjectInfo(RD: BaseDecl, IsVirtual, Derived: Info)); |
962 | } |
963 | |
964 | if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { |
965 | // Traversing the bases must have created the base info for our primary |
966 | // virtual base. |
967 | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(Val: PrimaryVirtualBase); |
968 | assert(PrimaryVirtualBaseInfo && |
969 | "Did not create a primary virtual base!"); |
970 | |
971 | // Claim the primary virtual base as our primary virtual base. |
972 | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; |
973 | PrimaryVirtualBaseInfo->Derived = Info; |
974 | } |
975 | |
976 | return Info; |
977 | } |
978 | |
979 | void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( |
980 | const CXXRecordDecl *RD) { |
981 | for (const auto &I : RD->bases()) { |
982 | bool IsVirtual = I.isVirtual(); |
983 | |
984 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); |
985 | |
986 | // Compute the base subobject info for this base. |
987 | BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(RD: BaseDecl, IsVirtual, |
988 | Derived: nullptr); |
989 | |
990 | if (IsVirtual) { |
991 | // ComputeBaseInfo has already added this base for us. |
992 | assert(VirtualBaseInfo.count(BaseDecl) && |
993 | "Did not add virtual base!"); |
994 | } else { |
995 | // Add the base info to the map of non-virtual bases. |
996 | assert(!NonVirtualBaseInfo.count(BaseDecl) && |
997 | "Non-virtual base already exists!"); |
998 | NonVirtualBaseInfo.insert(KV: std::make_pair(x&: BaseDecl, y&: Info)); |
999 | } |
1000 | } |
1001 | } |
1002 | |
1003 | void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( |
1004 | CharUnits UnpackedBaseAlign) { |
1005 | CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; |
1006 | |
1007 | // The maximum field alignment overrides base align. |
1008 | if (!MaxFieldAlignment.isZero()) { |
1009 | BaseAlign = std::min(a: BaseAlign, b: MaxFieldAlignment); |
1010 | UnpackedBaseAlign = std::min(a: UnpackedBaseAlign, b: MaxFieldAlignment); |
1011 | } |
1012 | |
1013 | // Round up the current record size to pointer alignment. |
1014 | setSize(getSize().alignTo(Align: BaseAlign)); |
1015 | |
1016 | // Update the alignment. |
1017 | UpdateAlignment(NewAlignment: BaseAlign, UnpackedNewAlignment: UnpackedBaseAlign, PreferredAlignment: BaseAlign); |
1018 | } |
1019 | |
1020 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( |
1021 | const CXXRecordDecl *RD) { |
1022 | // Then, determine the primary base class. |
1023 | DeterminePrimaryBase(RD); |
1024 | |
1025 | // Compute base subobject info. |
1026 | ComputeBaseSubobjectInfo(RD); |
1027 | |
1028 | // If we have a primary base class, lay it out. |
1029 | if (PrimaryBase) { |
1030 | if (PrimaryBaseIsVirtual) { |
1031 | // If the primary virtual base was a primary virtual base of some other |
1032 | // base class we'll have to steal it. |
1033 | BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(Val: PrimaryBase); |
1034 | PrimaryBaseInfo->Derived = nullptr; |
1035 | |
1036 | // We have a virtual primary base, insert it as an indirect primary base. |
1037 | IndirectPrimaryBases.insert(Ptr: PrimaryBase); |
1038 | |
1039 | assert(!VisitedVirtualBases.count(PrimaryBase) && |
1040 | "vbase already visited!"); |
1041 | VisitedVirtualBases.insert(Ptr: PrimaryBase); |
1042 | |
1043 | LayoutVirtualBase(Base: PrimaryBaseInfo); |
1044 | } else { |
1045 | BaseSubobjectInfo *PrimaryBaseInfo = |
1046 | NonVirtualBaseInfo.lookup(Val: PrimaryBase); |
1047 | assert(PrimaryBaseInfo && |
1048 | "Did not find base info for non-virtual primary base!"); |
1049 | |
1050 | LayoutNonVirtualBase(Base: PrimaryBaseInfo); |
1051 | } |
1052 | |
1053 | // If this class needs a vtable/vf-table and didn't get one from a |
1054 | // primary base, add it in now. |
1055 | } else if (RD->isDynamicClass()) { |
1056 | assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); |
1057 | CharUnits PtrWidth = Context.toCharUnitsFromBits( |
1058 | BitSize: Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
1059 | CharUnits PtrAlign = Context.toCharUnitsFromBits( |
1060 | BitSize: Context.getTargetInfo().getPointerAlign(AddrSpace: LangAS::Default)); |
1061 | EnsureVTablePointerAlignment(UnpackedBaseAlign: PtrAlign); |
1062 | HasOwnVFPtr = true; |
1063 | |
1064 | assert(!IsUnion && "Unions cannot be dynamic classes."); |
1065 | HandledFirstNonOverlappingEmptyField = true; |
1066 | |
1067 | setSize(getSize() + PtrWidth); |
1068 | setDataSize(getSize()); |
1069 | } |
1070 | |
1071 | // Now lay out the non-virtual bases. |
1072 | for (const auto &I : RD->bases()) { |
1073 | |
1074 | // Ignore virtual bases. |
1075 | if (I.isVirtual()) |
1076 | continue; |
1077 | |
1078 | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); |
1079 | |
1080 | // Skip the primary base, because we've already laid it out. The |
1081 | // !PrimaryBaseIsVirtual check is required because we might have a |
1082 | // non-virtual base of the same type as a primary virtual base. |
1083 | if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) |
1084 | continue; |
1085 | |
1086 | // Lay out the base. |
1087 | BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(Val: BaseDecl); |
1088 | assert(BaseInfo && "Did not find base info for non-virtual base!"); |
1089 | |
1090 | LayoutNonVirtualBase(Base: BaseInfo); |
1091 | } |
1092 | } |
1093 | |
1094 | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( |
1095 | const BaseSubobjectInfo *Base) { |
1096 | // Layout the base. |
1097 | CharUnits Offset = LayoutBase(Base); |
1098 | |
1099 | // Add its base class offset. |
1100 | assert(!Bases.count(Base->Class) && "base offset already exists!"); |
1101 | Bases.insert(KV: std::make_pair(x: Base->Class, y&: Offset)); |
1102 | |
1103 | AddPrimaryVirtualBaseOffsets(Info: Base, Offset); |
1104 | } |
1105 | |
1106 | void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( |
1107 | const BaseSubobjectInfo *Info, CharUnits Offset) { |
1108 | // This base isn't interesting, it has no virtual bases. |
1109 | if (!Info->Class->getNumVBases()) |
1110 | return; |
1111 | |
1112 | // First, check if we have a virtual primary base to add offsets for. |
1113 | if (Info->PrimaryVirtualBaseInfo) { |
1114 | assert(Info->PrimaryVirtualBaseInfo->IsVirtual && |
1115 | "Primary virtual base is not virtual!"); |
1116 | if (Info->PrimaryVirtualBaseInfo->Derived == Info) { |
1117 | // Add the offset. |
1118 | assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && |
1119 | "primary vbase offset already exists!"); |
1120 | VBases.insert(KV: std::make_pair(x&: Info->PrimaryVirtualBaseInfo->Class, |
1121 | y: ASTRecordLayout::VBaseInfo(Offset, false))); |
1122 | |
1123 | // Traverse the primary virtual base. |
1124 | AddPrimaryVirtualBaseOffsets(Info: Info->PrimaryVirtualBaseInfo, Offset); |
1125 | } |
1126 | } |
1127 | |
1128 | // Now go through all direct non-virtual bases. |
1129 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); |
1130 | for (const BaseSubobjectInfo *Base : Info->Bases) { |
1131 | if (Base->IsVirtual) |
1132 | continue; |
1133 | |
1134 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base: Base->Class); |
1135 | AddPrimaryVirtualBaseOffsets(Info: Base, Offset: BaseOffset); |
1136 | } |
1137 | } |
1138 | |
1139 | void ItaniumRecordLayoutBuilder::LayoutVirtualBases( |
1140 | const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { |
1141 | const CXXRecordDecl *PrimaryBase; |
1142 | bool PrimaryBaseIsVirtual; |
1143 | |
1144 | if (MostDerivedClass == RD) { |
1145 | PrimaryBase = this->PrimaryBase; |
1146 | PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; |
1147 | } else { |
1148 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1149 | PrimaryBase = Layout.getPrimaryBase(); |
1150 | PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); |
1151 | } |
1152 | |
1153 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
1154 | assert(!Base.getType()->isDependentType() && |
1155 | "Cannot layout class with dependent bases."); |
1156 | |
1157 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
1158 | |
1159 | if (Base.isVirtual()) { |
1160 | if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { |
1161 | bool IndirectPrimaryBase = IndirectPrimaryBases.count(Ptr: BaseDecl); |
1162 | |
1163 | // Only lay out the virtual base if it's not an indirect primary base. |
1164 | if (!IndirectPrimaryBase) { |
1165 | // Only visit virtual bases once. |
1166 | if (!VisitedVirtualBases.insert(Ptr: BaseDecl).second) |
1167 | continue; |
1168 | |
1169 | const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(Val: BaseDecl); |
1170 | assert(BaseInfo && "Did not find virtual base info!"); |
1171 | LayoutVirtualBase(Base: BaseInfo); |
1172 | } |
1173 | } |
1174 | } |
1175 | |
1176 | if (!BaseDecl->getNumVBases()) { |
1177 | // This base isn't interesting since it doesn't have any virtual bases. |
1178 | continue; |
1179 | } |
1180 | |
1181 | LayoutVirtualBases(RD: BaseDecl, MostDerivedClass); |
1182 | } |
1183 | } |
1184 | |
1185 | void ItaniumRecordLayoutBuilder::LayoutVirtualBase( |
1186 | const BaseSubobjectInfo *Base) { |
1187 | assert(!Base->Derived && "Trying to lay out a primary virtual base!"); |
1188 | |
1189 | // Layout the base. |
1190 | CharUnits Offset = LayoutBase(Base); |
1191 | |
1192 | // Add its base class offset. |
1193 | assert(!VBases.count(Base->Class) && "vbase offset already exists!"); |
1194 | VBases.insert(KV: std::make_pair(x: Base->Class, |
1195 | y: ASTRecordLayout::VBaseInfo(Offset, false))); |
1196 | |
1197 | AddPrimaryVirtualBaseOffsets(Info: Base, Offset); |
1198 | } |
1199 | |
1200 | CharUnits |
1201 | ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { |
1202 | assert(!IsUnion && "Unions cannot have base classes."); |
1203 | |
1204 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); |
1205 | CharUnits Offset; |
1206 | |
1207 | // Query the external layout to see if it provides an offset. |
1208 | bool HasExternalLayout = false; |
1209 | if (UseExternalLayout) { |
1210 | if (Base->IsVirtual) |
1211 | HasExternalLayout = External.getExternalVBaseOffset(RD: Base->Class, BaseOffset&: Offset); |
1212 | else |
1213 | HasExternalLayout = External.getExternalNVBaseOffset(RD: Base->Class, BaseOffset&: Offset); |
1214 | } |
1215 | |
1216 | auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { |
1217 | // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. |
1218 | // Per GCC's documentation, it only applies to non-static data members. |
1219 | return (Packed && ((Context.getLangOpts().getClangABICompat() <= |
1220 | LangOptions::ClangABI::Ver6) || |
1221 | Context.getTargetInfo().getTriple().isPS() || |
1222 | Context.getTargetInfo().getTriple().isOSAIX())) |
1223 | ? CharUnits::One() |
1224 | : UnpackedAlign; |
1225 | }; |
1226 | |
1227 | CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); |
1228 | CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); |
1229 | CharUnits BaseAlign = |
1230 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); |
1231 | CharUnits PreferredBaseAlign = |
1232 | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); |
1233 | |
1234 | const bool DefaultsToAIXPowerAlignment = |
1235 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); |
1236 | if (DefaultsToAIXPowerAlignment) { |
1237 | // AIX `power` alignment does not apply the preferred alignment for |
1238 | // non-union classes if the source of the alignment (the current base in |
1239 | // this context) follows introduction of the first subobject with |
1240 | // exclusively allocated space or zero-extent array. |
1241 | if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { |
1242 | // By handling a base class that is not empty, we're handling the |
1243 | // "first (inherited) member". |
1244 | HandledFirstNonOverlappingEmptyField = true; |
1245 | } else if (!IsNaturalAlign) { |
1246 | UnpackedPreferredBaseAlign = UnpackedBaseAlign; |
1247 | PreferredBaseAlign = BaseAlign; |
1248 | } |
1249 | } |
1250 | |
1251 | CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment |
1252 | ? UnpackedBaseAlign |
1253 | : UnpackedPreferredBaseAlign; |
1254 | // If we have an empty base class, try to place it at offset 0. |
1255 | if (Base->Class->isEmpty() && |
1256 | (!HasExternalLayout || Offset == CharUnits::Zero()) && |
1257 | EmptySubobjects->CanPlaceBaseAtOffset(Info: Base, Offset: CharUnits::Zero())) { |
1258 | setSize(std::max(a: getSize(), b: Layout.getSize())); |
1259 | // On PS4/PS5, don't update the alignment, to preserve compatibility. |
1260 | if (!Context.getTargetInfo().getTriple().isPS()) |
1261 | UpdateAlignment(NewAlignment: BaseAlign, UnpackedNewAlignment: UnpackedAlignTo, PreferredAlignment: PreferredBaseAlign); |
1262 | |
1263 | return CharUnits::Zero(); |
1264 | } |
1265 | |
1266 | // The maximum field alignment overrides the base align/(AIX-only) preferred |
1267 | // base align. |
1268 | if (!MaxFieldAlignment.isZero()) { |
1269 | BaseAlign = std::min(a: BaseAlign, b: MaxFieldAlignment); |
1270 | PreferredBaseAlign = std::min(a: PreferredBaseAlign, b: MaxFieldAlignment); |
1271 | UnpackedAlignTo = std::min(a: UnpackedAlignTo, b: MaxFieldAlignment); |
1272 | } |
1273 | |
1274 | CharUnits AlignTo = |
1275 | !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; |
1276 | if (!HasExternalLayout) { |
1277 | // Round up the current record size to the base's alignment boundary. |
1278 | Offset = getDataSize().alignTo(Align: AlignTo); |
1279 | |
1280 | // Try to place the base. |
1281 | while (!EmptySubobjects->CanPlaceBaseAtOffset(Info: Base, Offset)) |
1282 | Offset += AlignTo; |
1283 | } else { |
1284 | bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Info: Base, Offset); |
1285 | (void)Allowed; |
1286 | assert(Allowed && "Base subobject externally placed at overlapping offset"); |
1287 | |
1288 | if (InferAlignment && Offset < getDataSize().alignTo(Align: AlignTo)) { |
1289 | // The externally-supplied base offset is before the base offset we |
1290 | // computed. Assume that the structure is packed. |
1291 | Alignment = CharUnits::One(); |
1292 | InferAlignment = false; |
1293 | } |
1294 | } |
1295 | |
1296 | if (!Base->Class->isEmpty()) { |
1297 | // Update the data size. |
1298 | setDataSize(Offset + Layout.getNonVirtualSize()); |
1299 | |
1300 | setSize(std::max(a: getSize(), b: getDataSize())); |
1301 | } else |
1302 | setSize(std::max(a: getSize(), b: Offset + Layout.getSize())); |
1303 | |
1304 | // Remember max struct/class alignment. |
1305 | UnadjustedAlignment = std::max(a: UnadjustedAlignment, b: BaseAlign); |
1306 | UpdateAlignment(NewAlignment: BaseAlign, UnpackedNewAlignment: UnpackedAlignTo, PreferredAlignment: PreferredBaseAlign); |
1307 | |
1308 | return Offset; |
1309 | } |
1310 | |
1311 | void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { |
1312 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: D)) { |
1313 | IsUnion = RD->isUnion(); |
1314 | IsMsStruct = RD->isMsStruct(C: Context); |
1315 | } |
1316 | |
1317 | Packed = D->hasAttr<PackedAttr>(); |
1318 | |
1319 | // Honor the default struct packing maximum alignment flag. |
1320 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { |
1321 | MaxFieldAlignment = CharUnits::fromQuantity(Quantity: DefaultMaxFieldAlignment); |
1322 | } |
1323 | |
1324 | // mac68k alignment supersedes maximum field alignment and attribute aligned, |
1325 | // and forces all structures to have 2-byte alignment. The IBM docs on it |
1326 | // allude to additional (more complicated) semantics, especially with regard |
1327 | // to bit-fields, but gcc appears not to follow that. |
1328 | if (D->hasAttr<AlignMac68kAttr>()) { |
1329 | assert( |
1330 | !D->hasAttr<AlignNaturalAttr>() && |
1331 | "Having both mac68k and natural alignment on a decl is not allowed."); |
1332 | IsMac68kAlign = true; |
1333 | MaxFieldAlignment = CharUnits::fromQuantity(Quantity: 2); |
1334 | Alignment = CharUnits::fromQuantity(Quantity: 2); |
1335 | PreferredAlignment = CharUnits::fromQuantity(Quantity: 2); |
1336 | } else { |
1337 | if (D->hasAttr<AlignNaturalAttr>()) |
1338 | IsNaturalAlign = true; |
1339 | |
1340 | if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) |
1341 | MaxFieldAlignment = Context.toCharUnitsFromBits(BitSize: MFAA->getAlignment()); |
1342 | |
1343 | if (unsigned MaxAlign = D->getMaxAlignment()) |
1344 | UpdateAlignment(NewAlignment: Context.toCharUnitsFromBits(BitSize: MaxAlign)); |
1345 | } |
1346 | |
1347 | HandledFirstNonOverlappingEmptyField = |
1348 | !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; |
1349 | |
1350 | // If there is an external AST source, ask it for the various offsets. |
1351 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: D)) |
1352 | if (ExternalASTSource *Source = Context.getExternalSource()) { |
1353 | UseExternalLayout = Source->layoutRecordType( |
1354 | Record: RD, Size&: External.Size, Alignment&: External.Align, FieldOffsets&: External.FieldOffsets, |
1355 | BaseOffsets&: External.BaseOffsets, VirtualBaseOffsets&: External.VirtualBaseOffsets); |
1356 | |
1357 | // Update based on external alignment. |
1358 | if (UseExternalLayout) { |
1359 | if (External.Align > 0) { |
1360 | Alignment = Context.toCharUnitsFromBits(BitSize: External.Align); |
1361 | PreferredAlignment = Context.toCharUnitsFromBits(BitSize: External.Align); |
1362 | } else { |
1363 | // The external source didn't have alignment information; infer it. |
1364 | InferAlignment = true; |
1365 | } |
1366 | } |
1367 | } |
1368 | } |
1369 | |
1370 | void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { |
1371 | InitializeLayout(D); |
1372 | LayoutFields(D); |
1373 | |
1374 | // Finally, round the size of the total struct up to the alignment of the |
1375 | // struct itself. |
1376 | FinishLayout(D); |
1377 | } |
1378 | |
1379 | void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { |
1380 | InitializeLayout(RD); |
1381 | |
1382 | // Lay out the vtable and the non-virtual bases. |
1383 | LayoutNonVirtualBases(RD); |
1384 | |
1385 | LayoutFields(RD); |
1386 | |
1387 | NonVirtualSize = Context.toCharUnitsFromBits( |
1388 | BitSize: llvm::alignTo(Value: getSizeInBits(), Align: Context.getTargetInfo().getCharAlign())); |
1389 | NonVirtualAlignment = Alignment; |
1390 | PreferredNVAlignment = PreferredAlignment; |
1391 | |
1392 | // Lay out the virtual bases and add the primary virtual base offsets. |
1393 | LayoutVirtualBases(RD, MostDerivedClass: RD); |
1394 | |
1395 | // Finally, round the size of the total struct up to the alignment |
1396 | // of the struct itself. |
1397 | FinishLayout(RD); |
1398 | |
1399 | #ifndef NDEBUG |
1400 | // Check that we have base offsets for all bases. |
1401 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
1402 | if (Base.isVirtual()) |
1403 | continue; |
1404 | |
1405 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
1406 | |
1407 | assert(Bases.count(BaseDecl) && "Did not find base offset!"); |
1408 | } |
1409 | |
1410 | // And all virtual bases. |
1411 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
1412 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
1413 | |
1414 | assert(VBases.count(BaseDecl) && "Did not find base offset!"); |
1415 | } |
1416 | #endif |
1417 | } |
1418 | |
1419 | void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { |
1420 | if (ObjCInterfaceDecl *SD = D->getSuperClass()) { |
1421 | const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(D: SD); |
1422 | |
1423 | UpdateAlignment(NewAlignment: SL.getAlignment()); |
1424 | |
1425 | // We start laying out ivars not at the end of the superclass |
1426 | // structure, but at the next byte following the last field. |
1427 | setDataSize(SL.getDataSize()); |
1428 | setSize(getDataSize()); |
1429 | } |
1430 | |
1431 | InitializeLayout(D); |
1432 | // Layout each ivar sequentially. |
1433 | for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; |
1434 | IVD = IVD->getNextIvar()) |
1435 | LayoutField(IVD, false); |
1436 | |
1437 | // Finally, round the size of the total struct up to the alignment of the |
1438 | // struct itself. |
1439 | FinishLayout(D); |
1440 | } |
1441 | |
1442 | void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { |
1443 | // Layout each field, for now, just sequentially, respecting alignment. In |
1444 | // the future, this will need to be tweakable by targets. |
1445 | bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); |
1446 | bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); |
1447 | for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { |
1448 | LayoutField(D: *I, InsertExtraPadding: InsertExtraPadding && |
1449 | (std::next(x: I) != End || !HasFlexibleArrayMember)); |
1450 | } |
1451 | } |
1452 | |
1453 | // Rounds the specified size to have it a multiple of the char size. |
1454 | static uint64_t |
1455 | roundUpSizeToCharAlignment(uint64_t Size, |
1456 | const ASTContext &Context) { |
1457 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); |
1458 | return llvm::alignTo(Value: Size, Align: CharAlignment); |
1459 | } |
1460 | |
1461 | void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, |
1462 | uint64_t StorageUnitSize, |
1463 | bool FieldPacked, |
1464 | const FieldDecl *D) { |
1465 | assert(Context.getLangOpts().CPlusPlus && |
1466 | "Can only have wide bit-fields in C++!"); |
1467 | |
1468 | // Itanium C++ ABI 2.4: |
1469 | // If sizeof(T)*8 < n, let T' be the largest integral POD type with |
1470 | // sizeof(T')*8 <= n. |
1471 | |
1472 | QualType IntegralPODTypes[] = { |
1473 | Context.UnsignedCharTy, Context.UnsignedShortTy, |
1474 | Context.UnsignedIntTy, Context.UnsignedLongTy, |
1475 | Context.UnsignedLongLongTy, Context.UnsignedInt128Ty, |
1476 | }; |
1477 | |
1478 | QualType Type; |
1479 | uint64_t MaxSize = |
1480 | Context.getTargetInfo().getLargestOverSizedBitfieldContainer(); |
1481 | for (const QualType &QT : IntegralPODTypes) { |
1482 | uint64_t Size = Context.getTypeSize(QT); |
1483 | |
1484 | if (Size > FieldSize || Size > MaxSize) |
1485 | break; |
1486 | |
1487 | Type = QT; |
1488 | } |
1489 | assert(!Type.isNull() && "Did not find a type!"); |
1490 | |
1491 | CharUnits TypeAlign = Context.getTypeAlignInChars(T: Type); |
1492 | |
1493 | // We're not going to use any of the unfilled bits in the last byte. |
1494 | UnfilledBitsInLastUnit = 0; |
1495 | LastBitfieldStorageUnitSize = 0; |
1496 | |
1497 | uint64_t FieldOffset; |
1498 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; |
1499 | |
1500 | if (IsUnion) { |
1501 | uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(Size: FieldSize, |
1502 | Context); |
1503 | setDataSize(std::max(a: getDataSizeInBits(), b: RoundedFieldSize)); |
1504 | FieldOffset = 0; |
1505 | } else { |
1506 | // The bitfield is allocated starting at the next offset aligned |
1507 | // appropriately for T', with length n bits. |
1508 | FieldOffset = llvm::alignTo(Value: getDataSizeInBits(), Align: Context.toBits(CharSize: TypeAlign)); |
1509 | |
1510 | uint64_t NewSizeInBits = FieldOffset + FieldSize; |
1511 | |
1512 | setDataSize( |
1513 | llvm::alignTo(Value: NewSizeInBits, Align: Context.getTargetInfo().getCharAlign())); |
1514 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; |
1515 | } |
1516 | |
1517 | // Place this field at the current location. |
1518 | FieldOffsets.push_back(Elt: FieldOffset); |
1519 | |
1520 | CheckFieldPadding(Offset: FieldOffset, UnpaddedOffset: UnpaddedFieldOffset, UnpackedOffset: FieldOffset, |
1521 | UnpackedAlign: Context.toBits(CharSize: TypeAlign), isPacked: FieldPacked, D); |
1522 | |
1523 | // Update the size. |
1524 | setSize(std::max(a: getSizeInBits(), b: getDataSizeInBits())); |
1525 | |
1526 | // Remember max struct/class alignment. |
1527 | UnadjustedAlignment = std::max(a: UnadjustedAlignment, b: TypeAlign); |
1528 | UpdateAlignment(NewAlignment: TypeAlign); |
1529 | } |
1530 | |
1531 | static bool isAIXLayout(const ASTContext &Context) { |
1532 | return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; |
1533 | } |
1534 | |
1535 | void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { |
1536 | bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); |
1537 | uint64_t FieldSize = D->getBitWidthValue(); |
1538 | TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); |
1539 | uint64_t StorageUnitSize = FieldInfo.Width; |
1540 | unsigned FieldAlign = FieldInfo.Align; |
1541 | bool AlignIsRequired = FieldInfo.isAlignRequired(); |
1542 | unsigned char PaddingInLastUnit = 0; |
1543 | |
1544 | // UnfilledBitsInLastUnit is the difference between the end of the |
1545 | // last allocated bitfield (i.e. the first bit offset available for |
1546 | // bitfields) and the end of the current data size in bits (i.e. the |
1547 | // first bit offset available for non-bitfields). The current data |
1548 | // size in bits is always a multiple of the char size; additionally, |
1549 | // for ms_struct records it's also a multiple of the |
1550 | // LastBitfieldStorageUnitSize (if set). |
1551 | |
1552 | // The struct-layout algorithm is dictated by the platform ABI, |
1553 | // which in principle could use almost any rules it likes. In |
1554 | // practice, UNIXy targets tend to inherit the algorithm described |
1555 | // in the System V generic ABI. The basic bitfield layout rule in |
1556 | // System V is to place bitfields at the next available bit offset |
1557 | // where the entire bitfield would fit in an aligned storage unit of |
1558 | // the declared type; it's okay if an earlier or later non-bitfield |
1559 | // is allocated in the same storage unit. However, some targets |
1560 | // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't |
1561 | // require this storage unit to be aligned, and therefore always put |
1562 | // the bitfield at the next available bit offset. |
1563 | |
1564 | // ms_struct basically requests a complete replacement of the |
1565 | // platform ABI's struct-layout algorithm, with the high-level goal |
1566 | // of duplicating MSVC's layout. For non-bitfields, this follows |
1567 | // the standard algorithm. The basic bitfield layout rule is to |
1568 | // allocate an entire unit of the bitfield's declared type |
1569 | // (e.g. 'unsigned long'), then parcel it up among successive |
1570 | // bitfields whose declared types have the same size, making a new |
1571 | // unit as soon as the last can no longer store the whole value. |
1572 | // Since it completely replaces the platform ABI's algorithm, |
1573 | // settings like !useBitFieldTypeAlignment() do not apply. |
1574 | |
1575 | // A zero-width bitfield forces the use of a new storage unit for |
1576 | // later bitfields. In general, this occurs by rounding up the |
1577 | // current size of the struct as if the algorithm were about to |
1578 | // place a non-bitfield of the field's formal type. Usually this |
1579 | // does not change the alignment of the struct itself, but it does |
1580 | // on some targets (those that useZeroLengthBitfieldAlignment(), |
1581 | // e.g. ARM). In ms_struct layout, zero-width bitfields are |
1582 | // ignored unless they follow a non-zero-width bitfield. |
1583 | |
1584 | // A field alignment restriction (e.g. from #pragma pack) or |
1585 | // specification (e.g. from __attribute__((aligned))) changes the |
1586 | // formal alignment of the field. For System V, this alters the |
1587 | // required alignment of the notional storage unit that must contain |
1588 | // the bitfield. For ms_struct, this only affects the placement of |
1589 | // new storage units. In both cases, the effect of #pragma pack is |
1590 | // ignored on zero-width bitfields. |
1591 | |
1592 | // On System V, a packed field (e.g. from #pragma pack or |
1593 | // __attribute__((packed))) always uses the next available bit |
1594 | // offset. |
1595 | |
1596 | // In an ms_struct struct, the alignment of a fundamental type is |
1597 | // always equal to its size. This is necessary in order to mimic |
1598 | // the i386 alignment rules on targets which might not fully align |
1599 | // all types (e.g. Darwin PPC32, where alignof(long long) == 4). |
1600 | |
1601 | // First, some simple bookkeeping to perform for ms_struct structs. |
1602 | if (IsMsStruct) { |
1603 | // The field alignment for integer types is always the size. |
1604 | FieldAlign = StorageUnitSize; |
1605 | |
1606 | // If the previous field was not a bitfield, or was a bitfield |
1607 | // with a different storage unit size, or if this field doesn't fit into |
1608 | // the current storage unit, we're done with that storage unit. |
1609 | if (LastBitfieldStorageUnitSize != StorageUnitSize || |
1610 | UnfilledBitsInLastUnit < FieldSize) { |
1611 | // Also, ignore zero-length bitfields after non-bitfields. |
1612 | if (!LastBitfieldStorageUnitSize && !FieldSize) |
1613 | FieldAlign = 1; |
1614 | |
1615 | PaddingInLastUnit = UnfilledBitsInLastUnit; |
1616 | UnfilledBitsInLastUnit = 0; |
1617 | LastBitfieldStorageUnitSize = 0; |
1618 | } |
1619 | } |
1620 | |
1621 | if (isAIXLayout(Context)) { |
1622 | if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) { |
1623 | // On AIX, [bool, char, short] bitfields have the same alignment |
1624 | // as [unsigned]. |
1625 | StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy); |
1626 | } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) && |
1627 | Context.getTargetInfo().getTriple().isArch32Bit() && |
1628 | FieldSize <= 32) { |
1629 | // Under 32-bit compile mode, the bitcontainer is 32 bits if a single |
1630 | // long long bitfield has length no greater than 32 bits. |
1631 | StorageUnitSize = 32; |
1632 | |
1633 | if (!AlignIsRequired) |
1634 | FieldAlign = 32; |
1635 | } |
1636 | |
1637 | if (FieldAlign < StorageUnitSize) { |
1638 | // The bitfield alignment should always be greater than or equal to |
1639 | // bitcontainer size. |
1640 | FieldAlign = StorageUnitSize; |
1641 | } |
1642 | } |
1643 | |
1644 | // If the field is wider than its declared type, it follows |
1645 | // different rules in all cases, except on AIX. |
1646 | // On AIX, wide bitfield follows the same rules as normal bitfield. |
1647 | if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { |
1648 | LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); |
1649 | return; |
1650 | } |
1651 | |
1652 | // Compute the next available bit offset. |
1653 | uint64_t FieldOffset = |
1654 | IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); |
1655 | |
1656 | // Handle targets that don't honor bitfield type alignment. |
1657 | if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { |
1658 | // Some such targets do honor it on zero-width bitfields. |
1659 | if (FieldSize == 0 && |
1660 | Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { |
1661 | // Some targets don't honor leading zero-width bitfield. |
1662 | if (!IsUnion && FieldOffset == 0 && |
1663 | !Context.getTargetInfo().useLeadingZeroLengthBitfield()) |
1664 | FieldAlign = 1; |
1665 | else { |
1666 | // The alignment to round up to is the max of the field's natural |
1667 | // alignment and a target-specific fixed value (sometimes zero). |
1668 | unsigned ZeroLengthBitfieldBoundary = |
1669 | Context.getTargetInfo().getZeroLengthBitfieldBoundary(); |
1670 | FieldAlign = std::max(a: FieldAlign, b: ZeroLengthBitfieldBoundary); |
1671 | } |
1672 | // If that doesn't apply, just ignore the field alignment. |
1673 | } else { |
1674 | FieldAlign = 1; |
1675 | } |
1676 | } |
1677 | |
1678 | // Remember the alignment we would have used if the field were not packed. |
1679 | unsigned UnpackedFieldAlign = FieldAlign; |
1680 | |
1681 | // Ignore the field alignment if the field is packed unless it has zero-size. |
1682 | if (!IsMsStruct && FieldPacked && FieldSize != 0) |
1683 | FieldAlign = 1; |
1684 | |
1685 | // But, if there's an 'aligned' attribute on the field, honor that. |
1686 | unsigned ExplicitFieldAlign = D->getMaxAlignment(); |
1687 | if (ExplicitFieldAlign) { |
1688 | FieldAlign = std::max(a: FieldAlign, b: ExplicitFieldAlign); |
1689 | UnpackedFieldAlign = std::max(a: UnpackedFieldAlign, b: ExplicitFieldAlign); |
1690 | } |
1691 | |
1692 | // But, if there's a #pragma pack in play, that takes precedent over |
1693 | // even the 'aligned' attribute, for non-zero-width bitfields. |
1694 | unsigned MaxFieldAlignmentInBits = Context.toBits(CharSize: MaxFieldAlignment); |
1695 | if (!MaxFieldAlignment.isZero() && FieldSize) { |
1696 | UnpackedFieldAlign = std::min(a: UnpackedFieldAlign, b: MaxFieldAlignmentInBits); |
1697 | if (FieldPacked) |
1698 | FieldAlign = UnpackedFieldAlign; |
1699 | else |
1700 | FieldAlign = std::min(a: FieldAlign, b: MaxFieldAlignmentInBits); |
1701 | } |
1702 | |
1703 | // But, ms_struct just ignores all of that in unions, even explicit |
1704 | // alignment attributes. |
1705 | if (IsMsStruct && IsUnion) { |
1706 | FieldAlign = UnpackedFieldAlign = 1; |
1707 | } |
1708 | |
1709 | // For purposes of diagnostics, we're going to simultaneously |
1710 | // compute the field offsets that we would have used if we weren't |
1711 | // adding any alignment padding or if the field weren't packed. |
1712 | uint64_t UnpaddedFieldOffset = FieldOffset - PaddingInLastUnit; |
1713 | uint64_t UnpackedFieldOffset = FieldOffset; |
1714 | |
1715 | // Check if we need to add padding to fit the bitfield within an |
1716 | // allocation unit with the right size and alignment. The rules are |
1717 | // somewhat different here for ms_struct structs. |
1718 | if (IsMsStruct) { |
1719 | // If it's not a zero-width bitfield, and we can fit the bitfield |
1720 | // into the active storage unit (and we haven't already decided to |
1721 | // start a new storage unit), just do so, regardless of any other |
1722 | // other consideration. Otherwise, round up to the right alignment. |
1723 | if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { |
1724 | FieldOffset = llvm::alignTo(Value: FieldOffset, Align: FieldAlign); |
1725 | UnpackedFieldOffset = |
1726 | llvm::alignTo(Value: UnpackedFieldOffset, Align: UnpackedFieldAlign); |
1727 | UnfilledBitsInLastUnit = 0; |
1728 | } |
1729 | |
1730 | } else { |
1731 | // #pragma pack, with any value, suppresses the insertion of padding. |
1732 | bool AllowPadding = MaxFieldAlignment.isZero(); |
1733 | |
1734 | // Compute the real offset. |
1735 | if (FieldSize == 0 || |
1736 | (AllowPadding && |
1737 | (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { |
1738 | FieldOffset = llvm::alignTo(Value: FieldOffset, Align: FieldAlign); |
1739 | } else if (ExplicitFieldAlign && |
1740 | (MaxFieldAlignmentInBits == 0 || |
1741 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && |
1742 | Context.getTargetInfo().useExplicitBitFieldAlignment()) { |
1743 | // TODO: figure it out what needs to be done on targets that don't honor |
1744 | // bit-field type alignment like ARM APCS ABI. |
1745 | FieldOffset = llvm::alignTo(Value: FieldOffset, Align: ExplicitFieldAlign); |
1746 | } |
1747 | |
1748 | // Repeat the computation for diagnostic purposes. |
1749 | if (FieldSize == 0 || |
1750 | (AllowPadding && |
1751 | (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > |
1752 | StorageUnitSize)) |
1753 | UnpackedFieldOffset = |
1754 | llvm::alignTo(Value: UnpackedFieldOffset, Align: UnpackedFieldAlign); |
1755 | else if (ExplicitFieldAlign && |
1756 | (MaxFieldAlignmentInBits == 0 || |
1757 | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && |
1758 | Context.getTargetInfo().useExplicitBitFieldAlignment()) |
1759 | UnpackedFieldOffset = |
1760 | llvm::alignTo(Value: UnpackedFieldOffset, Align: ExplicitFieldAlign); |
1761 | } |
1762 | |
1763 | // If we're using external layout, give the external layout a chance |
1764 | // to override this information. |
1765 | if (UseExternalLayout) |
1766 | FieldOffset = updateExternalFieldOffset(Field: D, ComputedOffset: FieldOffset); |
1767 | |
1768 | // Okay, place the bitfield at the calculated offset. |
1769 | FieldOffsets.push_back(Elt: FieldOffset); |
1770 | |
1771 | // Bookkeeping: |
1772 | |
1773 | // Anonymous members don't affect the overall record alignment, |
1774 | // except on targets where they do. |
1775 | if (!IsMsStruct && |
1776 | !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && |
1777 | !D->getIdentifier()) |
1778 | FieldAlign = UnpackedFieldAlign = 1; |
1779 | |
1780 | // On AIX, zero-width bitfields pad out to the natural alignment boundary, |
1781 | // but do not increase the alignment greater than the MaxFieldAlignment, or 1 |
1782 | // if packed. |
1783 | if (isAIXLayout(Context) && !FieldSize) { |
1784 | if (FieldPacked) |
1785 | FieldAlign = 1; |
1786 | if (!MaxFieldAlignment.isZero()) { |
1787 | UnpackedFieldAlign = |
1788 | std::min(a: UnpackedFieldAlign, b: MaxFieldAlignmentInBits); |
1789 | FieldAlign = std::min(a: FieldAlign, b: MaxFieldAlignmentInBits); |
1790 | } |
1791 | } |
1792 | |
1793 | // Diagnose differences in layout due to padding or packing. |
1794 | if (!UseExternalLayout) |
1795 | CheckFieldPadding(Offset: FieldOffset, UnpaddedOffset: UnpaddedFieldOffset, UnpackedOffset: UnpackedFieldOffset, |
1796 | UnpackedAlign: UnpackedFieldAlign, isPacked: FieldPacked, D); |
1797 | |
1798 | // Update DataSize to include the last byte containing (part of) the bitfield. |
1799 | |
1800 | // For unions, this is just a max operation, as usual. |
1801 | if (IsUnion) { |
1802 | // For ms_struct, allocate the entire storage unit --- unless this |
1803 | // is a zero-width bitfield, in which case just use a size of 1. |
1804 | uint64_t RoundedFieldSize; |
1805 | if (IsMsStruct) { |
1806 | RoundedFieldSize = (FieldSize ? StorageUnitSize |
1807 | : Context.getTargetInfo().getCharWidth()); |
1808 | |
1809 | // Otherwise, allocate just the number of bytes required to store |
1810 | // the bitfield. |
1811 | } else { |
1812 | RoundedFieldSize = roundUpSizeToCharAlignment(Size: FieldSize, Context); |
1813 | } |
1814 | setDataSize(std::max(a: getDataSizeInBits(), b: RoundedFieldSize)); |
1815 | |
1816 | // For non-zero-width bitfields in ms_struct structs, allocate a new |
1817 | // storage unit if necessary. |
1818 | } else if (IsMsStruct && FieldSize) { |
1819 | // We should have cleared UnfilledBitsInLastUnit in every case |
1820 | // where we changed storage units. |
1821 | if (!UnfilledBitsInLastUnit) { |
1822 | setDataSize(FieldOffset + StorageUnitSize); |
1823 | UnfilledBitsInLastUnit = StorageUnitSize; |
1824 | } |
1825 | UnfilledBitsInLastUnit -= FieldSize; |
1826 | LastBitfieldStorageUnitSize = StorageUnitSize; |
1827 | |
1828 | // Otherwise, bump the data size up to include the bitfield, |
1829 | // including padding up to char alignment, and then remember how |
1830 | // bits we didn't use. |
1831 | } else { |
1832 | uint64_t NewSizeInBits = FieldOffset + FieldSize; |
1833 | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); |
1834 | setDataSize(llvm::alignTo(Value: NewSizeInBits, Align: CharAlignment)); |
1835 | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; |
1836 | |
1837 | // The only time we can get here for an ms_struct is if this is a |
1838 | // zero-width bitfield, which doesn't count as anything for the |
1839 | // purposes of unfilled bits. |
1840 | LastBitfieldStorageUnitSize = 0; |
1841 | } |
1842 | |
1843 | // Update the size. |
1844 | setSize(std::max(a: getSizeInBits(), b: getDataSizeInBits())); |
1845 | |
1846 | // Remember max struct/class alignment. |
1847 | UnadjustedAlignment = |
1848 | std::max(a: UnadjustedAlignment, b: Context.toCharUnitsFromBits(BitSize: FieldAlign)); |
1849 | UpdateAlignment(NewAlignment: Context.toCharUnitsFromBits(BitSize: FieldAlign), |
1850 | UnpackedNewAlignment: Context.toCharUnitsFromBits(BitSize: UnpackedFieldAlign)); |
1851 | } |
1852 | |
1853 | void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, |
1854 | bool InsertExtraPadding) { |
1855 | auto *FieldClass = D->getType()->getAsCXXRecordDecl(); |
1856 | bool IsOverlappingEmptyField = |
1857 | D->isPotentiallyOverlapping() && FieldClass->isEmpty(); |
1858 | |
1859 | CharUnits FieldOffset = |
1860 | (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); |
1861 | |
1862 | const bool DefaultsToAIXPowerAlignment = |
1863 | Context.getTargetInfo().defaultsToAIXPowerAlignment(); |
1864 | bool FoundFirstNonOverlappingEmptyFieldForAIX = false; |
1865 | if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { |
1866 | assert(FieldOffset == CharUnits::Zero() && |
1867 | "The first non-overlapping empty field should have been handled."); |
1868 | |
1869 | if (!IsOverlappingEmptyField) { |
1870 | FoundFirstNonOverlappingEmptyFieldForAIX = true; |
1871 | |
1872 | // We're going to handle the "first member" based on |
1873 | // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current |
1874 | // invocation of this function; record it as handled for future |
1875 | // invocations (except for unions, because the current field does not |
1876 | // represent all "firsts"). |
1877 | HandledFirstNonOverlappingEmptyField = !IsUnion; |
1878 | } |
1879 | } |
1880 | |
1881 | if (D->isBitField()) { |
1882 | LayoutBitField(D); |
1883 | return; |
1884 | } |
1885 | |
1886 | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; |
1887 | // Reset the unfilled bits. |
1888 | UnfilledBitsInLastUnit = 0; |
1889 | LastBitfieldStorageUnitSize = 0; |
1890 | |
1891 | llvm::Triple Target = Context.getTargetInfo().getTriple(); |
1892 | |
1893 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; |
1894 | CharUnits FieldSize; |
1895 | CharUnits FieldAlign; |
1896 | // The amount of this class's dsize occupied by the field. |
1897 | // This is equal to FieldSize unless we're permitted to pack |
1898 | // into the field's tail padding. |
1899 | CharUnits EffectiveFieldSize; |
1900 | |
1901 | auto setDeclInfo = [&](bool IsIncompleteArrayType) { |
1902 | auto TI = Context.getTypeInfoInChars(D->getType()); |
1903 | FieldAlign = TI.Align; |
1904 | // Flexible array members don't have any size, but they have to be |
1905 | // aligned appropriately for their element type. |
1906 | EffectiveFieldSize = FieldSize = |
1907 | IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; |
1908 | AlignRequirement = TI.AlignRequirement; |
1909 | }; |
1910 | |
1911 | if (D->getType()->isIncompleteArrayType()) { |
1912 | setDeclInfo(true /* IsIncompleteArrayType */); |
1913 | } else { |
1914 | setDeclInfo(false /* IsIncompleteArrayType */); |
1915 | |
1916 | // A potentially-overlapping field occupies its dsize or nvsize, whichever |
1917 | // is larger. |
1918 | if (D->isPotentiallyOverlapping()) { |
1919 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: FieldClass); |
1920 | EffectiveFieldSize = |
1921 | std::max(a: Layout.getNonVirtualSize(), b: Layout.getDataSize()); |
1922 | } |
1923 | |
1924 | if (IsMsStruct) { |
1925 | // If MS bitfield layout is required, figure out what type is being |
1926 | // laid out and align the field to the width of that type. |
1927 | |
1928 | // Resolve all typedefs down to their base type and round up the field |
1929 | // alignment if necessary. |
1930 | QualType T = Context.getBaseElementType(D->getType()); |
1931 | if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { |
1932 | CharUnits TypeSize = Context.getTypeSizeInChars(BTy); |
1933 | |
1934 | if (!llvm::isPowerOf2_64(Value: TypeSize.getQuantity())) { |
1935 | assert( |
1936 | !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && |
1937 | "Non PowerOf2 size in MSVC mode"); |
1938 | // Base types with sizes that aren't a power of two don't work |
1939 | // with the layout rules for MS structs. This isn't an issue in |
1940 | // MSVC itself since there are no such base data types there. |
1941 | // On e.g. x86_32 mingw and linux, long double is 12 bytes though. |
1942 | // Any structs involving that data type obviously can't be ABI |
1943 | // compatible with MSVC regardless of how it is laid out. |
1944 | |
1945 | // Since ms_struct can be mass enabled (via a pragma or via the |
1946 | // -mms-bitfields command line parameter), this can trigger for |
1947 | // structs that don't actually need MSVC compatibility, so we |
1948 | // need to be able to sidestep the ms_struct layout for these types. |
1949 | |
1950 | // Since the combination of -mms-bitfields together with structs |
1951 | // like max_align_t (which contains a long double) for mingw is |
1952 | // quite common (and GCC handles it silently), just handle it |
1953 | // silently there. For other targets that have ms_struct enabled |
1954 | // (most probably via a pragma or attribute), trigger a diagnostic |
1955 | // that defaults to an error. |
1956 | if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) |
1957 | Diag(D->getLocation(), diag::warn_npot_ms_struct); |
1958 | } |
1959 | if (TypeSize > FieldAlign && |
1960 | llvm::isPowerOf2_64(Value: TypeSize.getQuantity())) |
1961 | FieldAlign = TypeSize; |
1962 | } |
1963 | } |
1964 | } |
1965 | |
1966 | bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || |
1967 | FieldClass->hasAttr<PackedAttr>() || |
1968 | Context.getLangOpts().getClangABICompat() <= |
1969 | LangOptions::ClangABI::Ver15 || |
1970 | Target.isPS() || Target.isOSDarwin() || |
1971 | Target.isOSAIX())) || |
1972 | D->hasAttr<PackedAttr>(); |
1973 | |
1974 | // When used as part of a typedef, or together with a 'packed' attribute, the |
1975 | // 'aligned' attribute can be used to decrease alignment. In that case, it |
1976 | // overrides any computed alignment we have, and there is no need to upgrade |
1977 | // the alignment. |
1978 | auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { |
1979 | // Enum alignment sources can be safely ignored here, because this only |
1980 | // helps decide whether we need the AIX alignment upgrade, which only |
1981 | // applies to floating-point types. |
1982 | return AlignRequirement == AlignRequirementKind::RequiredByTypedef || |
1983 | (AlignRequirement == AlignRequirementKind::RequiredByRecord && |
1984 | FieldPacked); |
1985 | }; |
1986 | |
1987 | // The AIX `power` alignment rules apply the natural alignment of the |
1988 | // "first member" if it is of a floating-point data type (or is an aggregate |
1989 | // whose recursively "first" member or element is such a type). The alignment |
1990 | // associated with these types for subsequent members use an alignment value |
1991 | // where the floating-point data type is considered to have 4-byte alignment. |
1992 | // |
1993 | // For the purposes of the foregoing: vtable pointers, non-empty base classes, |
1994 | // and zero-width bit-fields count as prior members; members of empty class |
1995 | // types marked `no_unique_address` are not considered to be prior members. |
1996 | CharUnits PreferredAlign = FieldAlign; |
1997 | if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && |
1998 | (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { |
1999 | auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { |
2000 | if (BTy->getKind() == BuiltinType::Double || |
2001 | BTy->getKind() == BuiltinType::LongDouble) { |
2002 | assert(PreferredAlign == CharUnits::fromQuantity(4) && |
2003 | "No need to upgrade the alignment value."); |
2004 | PreferredAlign = CharUnits::fromQuantity(Quantity: 8); |
2005 | } |
2006 | }; |
2007 | |
2008 | const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); |
2009 | if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { |
2010 | performBuiltinTypeAlignmentUpgrade( |
2011 | CTy->getElementType()->castAs<BuiltinType>()); |
2012 | } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { |
2013 | performBuiltinTypeAlignmentUpgrade(BTy); |
2014 | } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) { |
2015 | const RecordDecl *RD = RT->getDecl(); |
2016 | assert(RD && "Expected non-null RecordDecl."); |
2017 | const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(D: RD); |
2018 | PreferredAlign = FieldRecord.getPreferredAlignment(); |
2019 | } |
2020 | } |
2021 | |
2022 | // The align if the field is not packed. This is to check if the attribute |
2023 | // was unnecessary (-Wpacked). |
2024 | CharUnits UnpackedFieldAlign = FieldAlign; |
2025 | CharUnits PackedFieldAlign = CharUnits::One(); |
2026 | CharUnits UnpackedFieldOffset = FieldOffset; |
2027 | CharUnits OriginalFieldAlign = UnpackedFieldAlign; |
2028 | |
2029 | CharUnits MaxAlignmentInChars = |
2030 | Context.toCharUnitsFromBits(BitSize: D->getMaxAlignment()); |
2031 | PackedFieldAlign = std::max(a: PackedFieldAlign, b: MaxAlignmentInChars); |
2032 | PreferredAlign = std::max(a: PreferredAlign, b: MaxAlignmentInChars); |
2033 | UnpackedFieldAlign = std::max(a: UnpackedFieldAlign, b: MaxAlignmentInChars); |
2034 | |
2035 | // The maximum field alignment overrides the aligned attribute. |
2036 | if (!MaxFieldAlignment.isZero()) { |
2037 | PackedFieldAlign = std::min(a: PackedFieldAlign, b: MaxFieldAlignment); |
2038 | PreferredAlign = std::min(a: PreferredAlign, b: MaxFieldAlignment); |
2039 | UnpackedFieldAlign = std::min(a: UnpackedFieldAlign, b: MaxFieldAlignment); |
2040 | } |
2041 | |
2042 | |
2043 | if (!FieldPacked) |
2044 | FieldAlign = UnpackedFieldAlign; |
2045 | if (DefaultsToAIXPowerAlignment) |
2046 | UnpackedFieldAlign = PreferredAlign; |
2047 | if (FieldPacked) { |
2048 | PreferredAlign = PackedFieldAlign; |
2049 | FieldAlign = PackedFieldAlign; |
2050 | } |
2051 | |
2052 | CharUnits AlignTo = |
2053 | !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; |
2054 | // Round up the current record size to the field's alignment boundary. |
2055 | FieldOffset = FieldOffset.alignTo(Align: AlignTo); |
2056 | UnpackedFieldOffset = UnpackedFieldOffset.alignTo(Align: UnpackedFieldAlign); |
2057 | |
2058 | if (UseExternalLayout) { |
2059 | FieldOffset = Context.toCharUnitsFromBits( |
2060 | BitSize: updateExternalFieldOffset(Field: D, ComputedOffset: Context.toBits(CharSize: FieldOffset))); |
2061 | |
2062 | if (!IsUnion && EmptySubobjects) { |
2063 | // Record the fact that we're placing a field at this offset. |
2064 | bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(FD: D, Offset: FieldOffset); |
2065 | (void)Allowed; |
2066 | assert(Allowed && "Externally-placed field cannot be placed here"); |
2067 | } |
2068 | } else { |
2069 | if (!IsUnion && EmptySubobjects) { |
2070 | // Check if we can place the field at this offset. |
2071 | while (!EmptySubobjects->CanPlaceFieldAtOffset(FD: D, Offset: FieldOffset)) { |
2072 | // We couldn't place the field at the offset. Try again at a new offset. |
2073 | // We try offset 0 (for an empty field) and then dsize(C) onwards. |
2074 | if (FieldOffset == CharUnits::Zero() && |
2075 | getDataSize() != CharUnits::Zero()) |
2076 | FieldOffset = getDataSize().alignTo(Align: AlignTo); |
2077 | else |
2078 | FieldOffset += AlignTo; |
2079 | } |
2080 | } |
2081 | } |
2082 | |
2083 | // Place this field at the current location. |
2084 | FieldOffsets.push_back(Elt: Context.toBits(CharSize: FieldOffset)); |
2085 | |
2086 | if (!UseExternalLayout) |
2087 | CheckFieldPadding(Offset: Context.toBits(CharSize: FieldOffset), UnpaddedOffset: UnpaddedFieldOffset, |
2088 | UnpackedOffset: Context.toBits(CharSize: UnpackedFieldOffset), |
2089 | UnpackedAlign: Context.toBits(CharSize: UnpackedFieldAlign), isPacked: FieldPacked, D); |
2090 | |
2091 | if (InsertExtraPadding) { |
2092 | CharUnits ASanAlignment = CharUnits::fromQuantity(Quantity: 8); |
2093 | CharUnits ExtraSizeForAsan = ASanAlignment; |
2094 | if (FieldSize % ASanAlignment) |
2095 | ExtraSizeForAsan += |
2096 | ASanAlignment - CharUnits::fromQuantity(Quantity: FieldSize % ASanAlignment); |
2097 | EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; |
2098 | } |
2099 | |
2100 | // Reserve space for this field. |
2101 | if (!IsOverlappingEmptyField) { |
2102 | uint64_t EffectiveFieldSizeInBits = Context.toBits(CharSize: EffectiveFieldSize); |
2103 | if (IsUnion) |
2104 | setDataSize(std::max(a: getDataSizeInBits(), b: EffectiveFieldSizeInBits)); |
2105 | else |
2106 | setDataSize(FieldOffset + EffectiveFieldSize); |
2107 | |
2108 | PaddedFieldSize = std::max(a: PaddedFieldSize, b: FieldOffset + FieldSize); |
2109 | setSize(std::max(a: getSizeInBits(), b: getDataSizeInBits())); |
2110 | } else { |
2111 | setSize(std::max(a: getSizeInBits(), |
2112 | b: (uint64_t)Context.toBits(CharSize: FieldOffset + FieldSize))); |
2113 | } |
2114 | |
2115 | // Remember max struct/class ABI-specified alignment. |
2116 | UnadjustedAlignment = std::max(a: UnadjustedAlignment, b: FieldAlign); |
2117 | UpdateAlignment(NewAlignment: FieldAlign, UnpackedNewAlignment: UnpackedFieldAlign, PreferredAlignment: PreferredAlign); |
2118 | |
2119 | // For checking the alignment of inner fields against |
2120 | // the alignment of its parent record. |
2121 | if (const RecordDecl *RD = D->getParent()) { |
2122 | // Check if packed attribute or pragma pack is present. |
2123 | if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) |
2124 | if (FieldAlign < OriginalFieldAlign) |
2125 | if (D->getType()->isRecordType()) { |
2126 | // If the offset is a multiple of the alignment of |
2127 | // the type, raise the warning. |
2128 | // TODO: Takes no account the alignment of the outer struct |
2129 | if (FieldOffset % OriginalFieldAlign != 0) |
2130 | Diag(D->getLocation(), diag::warn_unaligned_access) |
2131 | << Context.getTypeDeclType(RD) << D->getName() << D->getType(); |
2132 | } |
2133 | } |
2134 | |
2135 | if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) |
2136 | Diag(D->getLocation(), diag::warn_unpacked_field) << D; |
2137 | } |
2138 | |
2139 | void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { |
2140 | // In C++, records cannot be of size 0. |
2141 | if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { |
2142 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
2143 | // Compatibility with gcc requires a class (pod or non-pod) |
2144 | // which is not empty but of size 0; such as having fields of |
2145 | // array of zero-length, remains of Size 0 |
2146 | if (RD->isEmpty()) |
2147 | setSize(CharUnits::One()); |
2148 | } |
2149 | else |
2150 | setSize(CharUnits::One()); |
2151 | } |
2152 | |
2153 | // If we have any remaining field tail padding, include that in the overall |
2154 | // size. |
2155 | setSize(std::max(a: getSizeInBits(), b: (uint64_t)Context.toBits(CharSize: PaddedFieldSize))); |
2156 | |
2157 | // Finally, round the size of the record up to the alignment of the |
2158 | // record itself. |
2159 | uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; |
2160 | uint64_t UnpackedSizeInBits = |
2161 | llvm::alignTo(Value: getSizeInBits(), Align: Context.toBits(CharSize: UnpackedAlignment)); |
2162 | |
2163 | uint64_t RoundedSize = llvm::alignTo( |
2164 | Value: getSizeInBits(), |
2165 | Align: Context.toBits(CharSize: !Context.getTargetInfo().defaultsToAIXPowerAlignment() |
2166 | ? Alignment |
2167 | : PreferredAlignment)); |
2168 | |
2169 | if (UseExternalLayout) { |
2170 | // If we're inferring alignment, and the external size is smaller than |
2171 | // our size after we've rounded up to alignment, conservatively set the |
2172 | // alignment to 1. |
2173 | if (InferAlignment && External.Size < RoundedSize) { |
2174 | Alignment = CharUnits::One(); |
2175 | PreferredAlignment = CharUnits::One(); |
2176 | InferAlignment = false; |
2177 | } |
2178 | setSize(External.Size); |
2179 | return; |
2180 | } |
2181 | |
2182 | // Set the size to the final size. |
2183 | setSize(RoundedSize); |
2184 | |
2185 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); |
2186 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: D)) { |
2187 | // Warn if padding was introduced to the struct/class/union. |
2188 | if (getSizeInBits() > UnpaddedSize) { |
2189 | unsigned PadSize = getSizeInBits() - UnpaddedSize; |
2190 | bool InBits = true; |
2191 | if (PadSize % CharBitNum == 0) { |
2192 | PadSize = PadSize / CharBitNum; |
2193 | InBits = false; |
2194 | } |
2195 | Diag(RD->getLocation(), diag::warn_padded_struct_size) |
2196 | << Context.getTypeDeclType(RD) |
2197 | << PadSize |
2198 | << (InBits ? 1 : 0); // (byte|bit) |
2199 | } |
2200 | |
2201 | const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
2202 | |
2203 | // Warn if we packed it unnecessarily, when the unpacked alignment is not |
2204 | // greater than the one after packing, the size in bits doesn't change and |
2205 | // the offset of each field is identical. |
2206 | // Unless the type is non-POD (for Clang ABI > 15), where the packed |
2207 | // attribute on such a type does allow the type to be packed into other |
2208 | // structures that use the packed attribute. |
2209 | if (Packed && UnpackedAlignment <= Alignment && |
2210 | UnpackedSizeInBits == getSizeInBits() && !HasPackedField && |
2211 | (!CXXRD || CXXRD->isPOD() || |
2212 | Context.getLangOpts().getClangABICompat() <= |
2213 | LangOptions::ClangABI::Ver15)) |
2214 | Diag(D->getLocation(), diag::warn_unnecessary_packed) |
2215 | << Context.getTypeDeclType(RD); |
2216 | } |
2217 | } |
2218 | |
2219 | void ItaniumRecordLayoutBuilder::UpdateAlignment( |
2220 | CharUnits NewAlignment, CharUnits UnpackedNewAlignment, |
2221 | CharUnits PreferredNewAlignment) { |
2222 | // The alignment is not modified when using 'mac68k' alignment or when |
2223 | // we have an externally-supplied layout that also provides overall alignment. |
2224 | if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) |
2225 | return; |
2226 | |
2227 | if (NewAlignment > Alignment) { |
2228 | assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && |
2229 | "Alignment not a power of 2"); |
2230 | Alignment = NewAlignment; |
2231 | } |
2232 | |
2233 | if (UnpackedNewAlignment > UnpackedAlignment) { |
2234 | assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && |
2235 | "Alignment not a power of 2"); |
2236 | UnpackedAlignment = UnpackedNewAlignment; |
2237 | } |
2238 | |
2239 | if (PreferredNewAlignment > PreferredAlignment) { |
2240 | assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && |
2241 | "Alignment not a power of 2"); |
2242 | PreferredAlignment = PreferredNewAlignment; |
2243 | } |
2244 | } |
2245 | |
2246 | uint64_t |
2247 | ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, |
2248 | uint64_t ComputedOffset) { |
2249 | uint64_t ExternalFieldOffset = External.getExternalFieldOffset(FD: Field); |
2250 | |
2251 | if (InferAlignment && ExternalFieldOffset < ComputedOffset) { |
2252 | // The externally-supplied field offset is before the field offset we |
2253 | // computed. Assume that the structure is packed. |
2254 | Alignment = CharUnits::One(); |
2255 | PreferredAlignment = CharUnits::One(); |
2256 | InferAlignment = false; |
2257 | } |
2258 | |
2259 | // Use the externally-supplied field offset. |
2260 | return ExternalFieldOffset; |
2261 | } |
2262 | |
2263 | /// Get diagnostic %select index for tag kind for |
2264 | /// field padding diagnostic message. |
2265 | /// WARNING: Indexes apply to particular diagnostics only! |
2266 | /// |
2267 | /// \returns diagnostic %select index. |
2268 | static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { |
2269 | switch (Tag) { |
2270 | case TagTypeKind::Struct: |
2271 | return 0; |
2272 | case TagTypeKind::Interface: |
2273 | return 1; |
2274 | case TagTypeKind::Class: |
2275 | return 2; |
2276 | default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); |
2277 | } |
2278 | } |
2279 | |
2280 | static void CheckFieldPadding(const ASTContext &Context, bool IsUnion, |
2281 | uint64_t Offset, uint64_t UnpaddedOffset, |
2282 | const FieldDecl *D) { |
2283 | // We let objc ivars without warning, objc interfaces generally are not used |
2284 | // for padding tricks. |
2285 | if (isa<ObjCIvarDecl>(Val: D)) |
2286 | return; |
2287 | |
2288 | // Don't warn about structs created without a SourceLocation. This can |
2289 | // be done by clients of the AST, such as codegen. |
2290 | if (D->getLocation().isInvalid()) |
2291 | return; |
2292 | |
2293 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); |
2294 | |
2295 | // Warn if padding was introduced to the struct/class. |
2296 | if (!IsUnion && Offset > UnpaddedOffset) { |
2297 | unsigned PadSize = Offset - UnpaddedOffset; |
2298 | bool InBits = true; |
2299 | if (PadSize % CharBitNum == 0) { |
2300 | PadSize = PadSize / CharBitNum; |
2301 | InBits = false; |
2302 | } |
2303 | if (D->getIdentifier()) { |
2304 | auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_bitfield |
2305 | : diag::warn_padded_struct_field; |
2306 | Context.getDiagnostics().Report(D->getLocation(), |
2307 | Diagnostic) |
2308 | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) |
2309 | << Context.getTypeDeclType(D->getParent()) << PadSize |
2310 | << (InBits ? 1 : 0) // (byte|bit) |
2311 | << D->getIdentifier(); |
2312 | } else { |
2313 | auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_anon_bitfield |
2314 | : diag::warn_padded_struct_anon_field; |
2315 | Context.getDiagnostics().Report(D->getLocation(), |
2316 | Diagnostic) |
2317 | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) |
2318 | << Context.getTypeDeclType(D->getParent()) << PadSize |
2319 | << (InBits ? 1 : 0); // (byte|bit) |
2320 | } |
2321 | } |
2322 | } |
2323 | |
2324 | void ItaniumRecordLayoutBuilder::CheckFieldPadding( |
2325 | uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, |
2326 | unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { |
2327 | ::CheckFieldPadding(Context, IsUnion, Offset, UnpaddedOffset, D); |
2328 | if (isPacked && Offset != UnpackedOffset) { |
2329 | HasPackedField = true; |
2330 | } |
2331 | } |
2332 | |
2333 | static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, |
2334 | const CXXRecordDecl *RD) { |
2335 | // If a class isn't polymorphic it doesn't have a key function. |
2336 | if (!RD->isPolymorphic()) |
2337 | return nullptr; |
2338 | |
2339 | // A class that is not externally visible doesn't have a key function. (Or |
2340 | // at least, there's no point to assigning a key function to such a class; |
2341 | // this doesn't affect the ABI.) |
2342 | if (!RD->isExternallyVisible()) |
2343 | return nullptr; |
2344 | |
2345 | // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. |
2346 | // Same behavior as GCC. |
2347 | TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); |
2348 | if (TSK == TSK_ImplicitInstantiation || |
2349 | TSK == TSK_ExplicitInstantiationDeclaration || |
2350 | TSK == TSK_ExplicitInstantiationDefinition) |
2351 | return nullptr; |
2352 | |
2353 | bool allowInlineFunctions = |
2354 | Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); |
2355 | |
2356 | for (const CXXMethodDecl *MD : RD->methods()) { |
2357 | if (!MD->isVirtual()) |
2358 | continue; |
2359 | |
2360 | if (MD->isPureVirtual()) |
2361 | continue; |
2362 | |
2363 | // Ignore implicit member functions, they are always marked as inline, but |
2364 | // they don't have a body until they're defined. |
2365 | if (MD->isImplicit()) |
2366 | continue; |
2367 | |
2368 | if (MD->isInlineSpecified() || MD->isConstexpr()) |
2369 | continue; |
2370 | |
2371 | if (MD->hasInlineBody()) |
2372 | continue; |
2373 | |
2374 | // Ignore inline deleted or defaulted functions. |
2375 | if (!MD->isUserProvided()) |
2376 | continue; |
2377 | |
2378 | // In certain ABIs, ignore functions with out-of-line inline definitions. |
2379 | if (!allowInlineFunctions) { |
2380 | const FunctionDecl *Def; |
2381 | if (MD->hasBody(Def) && Def->isInlineSpecified()) |
2382 | continue; |
2383 | } |
2384 | |
2385 | if (Context.getLangOpts().CUDA) { |
2386 | // While compiler may see key method in this TU, during CUDA |
2387 | // compilation we should ignore methods that are not accessible |
2388 | // on this side of compilation. |
2389 | if (Context.getLangOpts().CUDAIsDevice) { |
2390 | // In device mode ignore methods without __device__ attribute. |
2391 | if (!MD->hasAttr<CUDADeviceAttr>()) |
2392 | continue; |
2393 | } else { |
2394 | // In host mode ignore __device__-only methods. |
2395 | if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) |
2396 | continue; |
2397 | } |
2398 | } |
2399 | |
2400 | // If the key function is dllimport but the class isn't, then the class has |
2401 | // no key function. The DLL that exports the key function won't export the |
2402 | // vtable in this case. |
2403 | if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && |
2404 | !Context.getTargetInfo().hasPS4DLLImportExport()) |
2405 | return nullptr; |
2406 | |
2407 | // We found it. |
2408 | return MD; |
2409 | } |
2410 | |
2411 | return nullptr; |
2412 | } |
2413 | |
2414 | DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, |
2415 | unsigned DiagID) { |
2416 | return Context.getDiagnostics().Report(Loc, DiagID); |
2417 | } |
2418 | |
2419 | /// Does the target C++ ABI require us to skip over the tail-padding |
2420 | /// of the given class (considering it as a base class) when allocating |
2421 | /// objects? |
2422 | static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { |
2423 | switch (ABI.getTailPaddingUseRules()) { |
2424 | case TargetCXXABI::AlwaysUseTailPadding: |
2425 | return false; |
2426 | |
2427 | case TargetCXXABI::UseTailPaddingUnlessPOD03: |
2428 | // FIXME: To the extent that this is meant to cover the Itanium ABI |
2429 | // rules, we should implement the restrictions about over-sized |
2430 | // bitfields: |
2431 | // |
2432 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : |
2433 | // In general, a type is considered a POD for the purposes of |
2434 | // layout if it is a POD type (in the sense of ISO C++ |
2435 | // [basic.types]). However, a POD-struct or POD-union (in the |
2436 | // sense of ISO C++ [class]) with a bitfield member whose |
2437 | // declared width is wider than the declared type of the |
2438 | // bitfield is not a POD for the purpose of layout. Similarly, |
2439 | // an array type is not a POD for the purpose of layout if the |
2440 | // element type of the array is not a POD for the purpose of |
2441 | // layout. |
2442 | // |
2443 | // Where references to the ISO C++ are made in this paragraph, |
2444 | // the Technical Corrigendum 1 version of the standard is |
2445 | // intended. |
2446 | return RD->isPOD(); |
2447 | |
2448 | case TargetCXXABI::UseTailPaddingUnlessPOD11: |
2449 | // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), |
2450 | // but with a lot of abstraction penalty stripped off. This does |
2451 | // assume that these properties are set correctly even in C++98 |
2452 | // mode; fortunately, that is true because we want to assign |
2453 | // consistently semantics to the type-traits intrinsics (or at |
2454 | // least as many of them as possible). |
2455 | return RD->isTrivial() && RD->isCXX11StandardLayout(); |
2456 | } |
2457 | |
2458 | llvm_unreachable("bad tail-padding use kind"); |
2459 | } |
2460 | |
2461 | static bool isMsLayout(const ASTContext &Context) { |
2462 | // Check if it's CUDA device compilation; ensure layout consistency with host. |
2463 | if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice && |
2464 | Context.getAuxTargetInfo()) |
2465 | return Context.getAuxTargetInfo()->getCXXABI().isMicrosoft(); |
2466 | |
2467 | return Context.getTargetInfo().getCXXABI().isMicrosoft(); |
2468 | } |
2469 | |
2470 | // This section contains an implementation of struct layout that is, up to the |
2471 | // included tests, compatible with cl.exe (2013). The layout produced is |
2472 | // significantly different than those produced by the Itanium ABI. Here we note |
2473 | // the most important differences. |
2474 | // |
2475 | // * The alignment of bitfields in unions is ignored when computing the |
2476 | // alignment of the union. |
2477 | // * The existence of zero-width bitfield that occurs after anything other than |
2478 | // a non-zero length bitfield is ignored. |
2479 | // * There is no explicit primary base for the purposes of layout. All bases |
2480 | // with vfptrs are laid out first, followed by all bases without vfptrs. |
2481 | // * The Itanium equivalent vtable pointers are split into a vfptr (virtual |
2482 | // function pointer) and a vbptr (virtual base pointer). They can each be |
2483 | // shared with a, non-virtual bases. These bases need not be the same. vfptrs |
2484 | // always occur at offset 0. vbptrs can occur at an arbitrary offset and are |
2485 | // placed after the lexicographically last non-virtual base. This placement |
2486 | // is always before fields but can be in the middle of the non-virtual bases |
2487 | // due to the two-pass layout scheme for non-virtual-bases. |
2488 | // * Virtual bases sometimes require a 'vtordisp' field that is laid out before |
2489 | // the virtual base and is used in conjunction with virtual overrides during |
2490 | // construction and destruction. This is always a 4 byte value and is used as |
2491 | // an alternative to constructor vtables. |
2492 | // * vtordisps are allocated in a block of memory with size and alignment equal |
2493 | // to the alignment of the completed structure (before applying __declspec( |
2494 | // align())). The vtordisp always occur at the end of the allocation block, |
2495 | // immediately prior to the virtual base. |
2496 | // * vfptrs are injected after all bases and fields have been laid out. In |
2497 | // order to guarantee proper alignment of all fields, the vfptr injection |
2498 | // pushes all bases and fields back by the alignment imposed by those bases |
2499 | // and fields. This can potentially add a significant amount of padding. |
2500 | // vfptrs are always injected at offset 0. |
2501 | // * vbptrs are injected after all bases and fields have been laid out. In |
2502 | // order to guarantee proper alignment of all fields, the vfptr injection |
2503 | // pushes all bases and fields back by the alignment imposed by those bases |
2504 | // and fields. This can potentially add a significant amount of padding. |
2505 | // vbptrs are injected immediately after the last non-virtual base as |
2506 | // lexicographically ordered in the code. If this site isn't pointer aligned |
2507 | // the vbptr is placed at the next properly aligned location. Enough padding |
2508 | // is added to guarantee a fit. |
2509 | // * The last zero sized non-virtual base can be placed at the end of the |
2510 | // struct (potentially aliasing another object), or may alias with the first |
2511 | // field, even if they are of the same type. |
2512 | // * The last zero size virtual base may be placed at the end of the struct |
2513 | // potentially aliasing another object. |
2514 | // * The ABI attempts to avoid aliasing of zero sized bases by adding padding |
2515 | // between bases or vbases with specific properties. The criteria for |
2516 | // additional padding between two bases is that the first base is zero sized |
2517 | // or ends with a zero sized subobject and the second base is zero sized or |
2518 | // trails with a zero sized base or field (sharing of vfptrs can reorder the |
2519 | // layout of the so the leading base is not always the first one declared). |
2520 | // This rule does take into account fields that are not records, so padding |
2521 | // will occur even if the last field is, e.g. an int. The padding added for |
2522 | // bases is 1 byte. The padding added between vbases depends on the alignment |
2523 | // of the object but is at least 4 bytes (in both 32 and 64 bit modes). |
2524 | // * There is no concept of non-virtual alignment, non-virtual alignment and |
2525 | // alignment are always identical. |
2526 | // * There is a distinction between alignment and required alignment. |
2527 | // __declspec(align) changes the required alignment of a struct. This |
2528 | // alignment is _always_ obeyed, even in the presence of #pragma pack. A |
2529 | // record inherits required alignment from all of its fields and bases. |
2530 | // * __declspec(align) on bitfields has the effect of changing the bitfield's |
2531 | // alignment instead of its required alignment. This is the only known way |
2532 | // to make the alignment of a struct bigger than 8. Interestingly enough |
2533 | // this alignment is also immune to the effects of #pragma pack and can be |
2534 | // used to create structures with large alignment under #pragma pack. |
2535 | // However, because it does not impact required alignment, such a structure, |
2536 | // when used as a field or base, will not be aligned if #pragma pack is |
2537 | // still active at the time of use. |
2538 | // |
2539 | // Known incompatibilities: |
2540 | // * all: #pragma pack between fields in a record |
2541 | // * 2010 and back: If the last field in a record is a bitfield, every object |
2542 | // laid out after the record will have extra padding inserted before it. The |
2543 | // extra padding will have size equal to the size of the storage class of the |
2544 | // bitfield. 0 sized bitfields don't exhibit this behavior and the extra |
2545 | // padding can be avoided by adding a 0 sized bitfield after the non-zero- |
2546 | // sized bitfield. |
2547 | // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or |
2548 | // greater due to __declspec(align()) then a second layout phase occurs after |
2549 | // The locations of the vf and vb pointers are known. This layout phase |
2550 | // suffers from the "last field is a bitfield" bug in 2010 and results in |
2551 | // _every_ field getting padding put in front of it, potentially including the |
2552 | // vfptr, leaving the vfprt at a non-zero location which results in a fault if |
2553 | // anything tries to read the vftbl. The second layout phase also treats |
2554 | // bitfields as separate entities and gives them each storage rather than |
2555 | // packing them. Additionally, because this phase appears to perform a |
2556 | // (an unstable) sort on the members before laying them out and because merged |
2557 | // bitfields have the same address, the bitfields end up in whatever order |
2558 | // the sort left them in, a behavior we could never hope to replicate. |
2559 | |
2560 | namespace { |
2561 | struct MicrosoftRecordLayoutBuilder { |
2562 | struct ElementInfo { |
2563 | CharUnits Size; |
2564 | CharUnits Alignment; |
2565 | }; |
2566 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; |
2567 | MicrosoftRecordLayoutBuilder(const ASTContext &Context, |
2568 | EmptySubobjectMap *EmptySubobjects) |
2569 | : Context(Context), EmptySubobjects(EmptySubobjects), |
2570 | RemainingBitsInField(0) {} |
2571 | |
2572 | private: |
2573 | MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; |
2574 | void operator=(const MicrosoftRecordLayoutBuilder &) = delete; |
2575 | public: |
2576 | void layout(const RecordDecl *RD); |
2577 | void cxxLayout(const CXXRecordDecl *RD); |
2578 | /// Initializes size and alignment and honors some flags. |
2579 | void initializeLayout(const RecordDecl *RD); |
2580 | /// Initialized C++ layout, compute alignment and virtual alignment and |
2581 | /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is |
2582 | /// laid out. |
2583 | void initializeCXXLayout(const CXXRecordDecl *RD); |
2584 | void layoutNonVirtualBases(const CXXRecordDecl *RD); |
2585 | void layoutNonVirtualBase(const CXXRecordDecl *RD, |
2586 | const CXXRecordDecl *BaseDecl, |
2587 | const ASTRecordLayout &BaseLayout, |
2588 | const ASTRecordLayout *&PreviousBaseLayout); |
2589 | void injectVFPtr(const CXXRecordDecl *RD); |
2590 | void injectVBPtr(const CXXRecordDecl *RD); |
2591 | /// Lays out the fields of the record. Also rounds size up to |
2592 | /// alignment. |
2593 | void layoutFields(const RecordDecl *RD); |
2594 | void layoutField(const FieldDecl *FD); |
2595 | void layoutBitField(const FieldDecl *FD); |
2596 | /// Lays out a single zero-width bit-field in the record and handles |
2597 | /// special cases associated with zero-width bit-fields. |
2598 | void layoutZeroWidthBitField(const FieldDecl *FD); |
2599 | void layoutVirtualBases(const CXXRecordDecl *RD); |
2600 | void finalizeLayout(const RecordDecl *RD); |
2601 | /// Gets the size and alignment of a base taking pragma pack and |
2602 | /// __declspec(align) into account. |
2603 | ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); |
2604 | /// Gets the size and alignment of a field taking pragma pack and |
2605 | /// __declspec(align) into account. It also updates RequiredAlignment as a |
2606 | /// side effect because it is most convenient to do so here. |
2607 | ElementInfo getAdjustedElementInfo(const FieldDecl *FD); |
2608 | /// Places a field at an offset in CharUnits. |
2609 | void placeFieldAtOffset(CharUnits FieldOffset) { |
2610 | FieldOffsets.push_back(Elt: Context.toBits(CharSize: FieldOffset)); |
2611 | } |
2612 | /// Places a bitfield at a bit offset. |
2613 | void placeFieldAtBitOffset(uint64_t FieldOffset) { |
2614 | FieldOffsets.push_back(Elt: FieldOffset); |
2615 | } |
2616 | /// Compute the set of virtual bases for which vtordisps are required. |
2617 | void computeVtorDispSet( |
2618 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, |
2619 | const CXXRecordDecl *RD) const; |
2620 | const ASTContext &Context; |
2621 | EmptySubobjectMap *EmptySubobjects; |
2622 | |
2623 | /// The size of the record being laid out. |
2624 | CharUnits Size; |
2625 | /// The non-virtual size of the record layout. |
2626 | CharUnits NonVirtualSize; |
2627 | /// The data size of the record layout. |
2628 | CharUnits DataSize; |
2629 | /// The current alignment of the record layout. |
2630 | CharUnits Alignment; |
2631 | /// The maximum allowed field alignment. This is set by #pragma pack. |
2632 | CharUnits MaxFieldAlignment; |
2633 | /// The alignment that this record must obey. This is imposed by |
2634 | /// __declspec(align()) on the record itself or one of its fields or bases. |
2635 | CharUnits RequiredAlignment; |
2636 | /// The size of the allocation of the currently active bitfield. |
2637 | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield |
2638 | /// is true. |
2639 | CharUnits CurrentBitfieldSize; |
2640 | /// Offset to the virtual base table pointer (if one exists). |
2641 | CharUnits VBPtrOffset; |
2642 | /// Minimum record size possible. |
2643 | CharUnits MinEmptyStructSize; |
2644 | /// The size and alignment info of a pointer. |
2645 | ElementInfo PointerInfo; |
2646 | /// The primary base class (if one exists). |
2647 | const CXXRecordDecl *PrimaryBase; |
2648 | /// The class we share our vb-pointer with. |
2649 | const CXXRecordDecl *SharedVBPtrBase; |
2650 | /// The collection of field offsets. |
2651 | SmallVector<uint64_t, 16> FieldOffsets; |
2652 | /// Base classes and their offsets in the record. |
2653 | BaseOffsetsMapTy Bases; |
2654 | /// virtual base classes and their offsets in the record. |
2655 | ASTRecordLayout::VBaseOffsetsMapTy VBases; |
2656 | /// The number of remaining bits in our last bitfield allocation. |
2657 | unsigned RemainingBitsInField; |
2658 | bool IsUnion : 1; |
2659 | /// True if the last field laid out was a bitfield and was not 0 |
2660 | /// width. |
2661 | bool LastFieldIsNonZeroWidthBitfield : 1; |
2662 | /// True if the class has its own vftable pointer. |
2663 | bool HasOwnVFPtr : 1; |
2664 | /// True if the class has a vbtable pointer. |
2665 | bool HasVBPtr : 1; |
2666 | /// True if the last sub-object within the type is zero sized or the |
2667 | /// object itself is zero sized. This *does not* count members that are not |
2668 | /// records. Only used for MS-ABI. |
2669 | bool EndsWithZeroSizedObject : 1; |
2670 | /// True if this class is zero sized or first base is zero sized or |
2671 | /// has this property. Only used for MS-ABI. |
2672 | bool LeadsWithZeroSizedBase : 1; |
2673 | |
2674 | /// True if the external AST source provided a layout for this record. |
2675 | bool UseExternalLayout : 1; |
2676 | |
2677 | /// The layout provided by the external AST source. Only active if |
2678 | /// UseExternalLayout is true. |
2679 | ExternalLayout External; |
2680 | }; |
2681 | } // namespace |
2682 | |
2683 | MicrosoftRecordLayoutBuilder::ElementInfo |
2684 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( |
2685 | const ASTRecordLayout &Layout) { |
2686 | ElementInfo Info; |
2687 | Info.Alignment = Layout.getAlignment(); |
2688 | // Respect pragma pack. |
2689 | if (!MaxFieldAlignment.isZero()) |
2690 | Info.Alignment = std::min(a: Info.Alignment, b: MaxFieldAlignment); |
2691 | // Track zero-sized subobjects here where it's already available. |
2692 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); |
2693 | // Respect required alignment, this is necessary because we may have adjusted |
2694 | // the alignment in the case of pragma pack. Note that the required alignment |
2695 | // doesn't actually apply to the struct alignment at this point. |
2696 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
2697 | RequiredAlignment = std::max(a: RequiredAlignment, b: Layout.getRequiredAlignment()); |
2698 | Info.Alignment = std::max(a: Info.Alignment, b: Layout.getRequiredAlignment()); |
2699 | Info.Size = Layout.getNonVirtualSize(); |
2700 | return Info; |
2701 | } |
2702 | |
2703 | MicrosoftRecordLayoutBuilder::ElementInfo |
2704 | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( |
2705 | const FieldDecl *FD) { |
2706 | // Get the alignment of the field type's natural alignment, ignore any |
2707 | // alignment attributes. |
2708 | auto TInfo = |
2709 | Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); |
2710 | ElementInfo Info{TInfo.Width, TInfo.Align}; |
2711 | // Respect align attributes on the field. |
2712 | CharUnits FieldRequiredAlignment = |
2713 | Context.toCharUnitsFromBits(BitSize: FD->getMaxAlignment()); |
2714 | // Respect align attributes on the type. |
2715 | if (Context.isAlignmentRequired(FD->getType())) |
2716 | FieldRequiredAlignment = std::max( |
2717 | Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); |
2718 | // Respect attributes applied to subobjects of the field. |
2719 | if (FD->isBitField()) |
2720 | // For some reason __declspec align impacts alignment rather than required |
2721 | // alignment when it is applied to bitfields. |
2722 | Info.Alignment = std::max(a: Info.Alignment, b: FieldRequiredAlignment); |
2723 | else { |
2724 | if (auto RT = |
2725 | FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { |
2726 | auto const &Layout = Context.getASTRecordLayout(D: RT->getDecl()); |
2727 | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); |
2728 | FieldRequiredAlignment = std::max(FieldRequiredAlignment, |
2729 | Layout.getRequiredAlignment()); |
2730 | } |
2731 | // Capture required alignment as a side-effect. |
2732 | RequiredAlignment = std::max(a: RequiredAlignment, b: FieldRequiredAlignment); |
2733 | } |
2734 | // Respect pragma pack, attribute pack and declspec align |
2735 | if (!MaxFieldAlignment.isZero()) |
2736 | Info.Alignment = std::min(a: Info.Alignment, b: MaxFieldAlignment); |
2737 | if (FD->hasAttr<PackedAttr>()) |
2738 | Info.Alignment = CharUnits::One(); |
2739 | Info.Alignment = std::max(a: Info.Alignment, b: FieldRequiredAlignment); |
2740 | return Info; |
2741 | } |
2742 | |
2743 | void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { |
2744 | // For C record layout, zero-sized records always have size 4. |
2745 | MinEmptyStructSize = CharUnits::fromQuantity(Quantity: 4); |
2746 | initializeLayout(RD); |
2747 | layoutFields(RD); |
2748 | DataSize = Size = Size.alignTo(Align: Alignment); |
2749 | RequiredAlignment = std::max( |
2750 | RequiredAlignment, Context.toCharUnitsFromBits(BitSize: RD->getMaxAlignment())); |
2751 | finalizeLayout(RD); |
2752 | } |
2753 | |
2754 | void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { |
2755 | // The C++ standard says that empty structs have size 1. |
2756 | MinEmptyStructSize = CharUnits::One(); |
2757 | initializeLayout(RD); |
2758 | initializeCXXLayout(RD); |
2759 | layoutNonVirtualBases(RD); |
2760 | layoutFields(RD); |
2761 | injectVBPtr(RD); |
2762 | injectVFPtr(RD); |
2763 | if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) |
2764 | Alignment = std::max(a: Alignment, b: PointerInfo.Alignment); |
2765 | auto RoundingAlignment = Alignment; |
2766 | if (!MaxFieldAlignment.isZero()) |
2767 | RoundingAlignment = std::min(a: RoundingAlignment, b: MaxFieldAlignment); |
2768 | if (!UseExternalLayout) |
2769 | Size = Size.alignTo(Align: RoundingAlignment); |
2770 | NonVirtualSize = Size; |
2771 | RequiredAlignment = std::max( |
2772 | RequiredAlignment, Context.toCharUnitsFromBits(BitSize: RD->getMaxAlignment())); |
2773 | layoutVirtualBases(RD); |
2774 | finalizeLayout(RD); |
2775 | } |
2776 | |
2777 | void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { |
2778 | IsUnion = RD->isUnion(); |
2779 | Size = CharUnits::Zero(); |
2780 | Alignment = CharUnits::One(); |
2781 | // In 64-bit mode we always perform an alignment step after laying out vbases. |
2782 | // In 32-bit mode we do not. The check to see if we need to perform alignment |
2783 | // checks the RequiredAlignment field and performs alignment if it isn't 0. |
2784 | RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() |
2785 | ? CharUnits::One() |
2786 | : CharUnits::Zero(); |
2787 | // Compute the maximum field alignment. |
2788 | MaxFieldAlignment = CharUnits::Zero(); |
2789 | // Honor the default struct packing maximum alignment flag. |
2790 | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) |
2791 | MaxFieldAlignment = CharUnits::fromQuantity(Quantity: DefaultMaxFieldAlignment); |
2792 | // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger |
2793 | // than the pointer size. |
2794 | if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ |
2795 | unsigned PackedAlignment = MFAA->getAlignment(); |
2796 | if (PackedAlignment <= |
2797 | Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)) |
2798 | MaxFieldAlignment = Context.toCharUnitsFromBits(BitSize: PackedAlignment); |
2799 | } |
2800 | // Packed attribute forces max field alignment to be 1. |
2801 | if (RD->hasAttr<PackedAttr>()) |
2802 | MaxFieldAlignment = CharUnits::One(); |
2803 | |
2804 | // Try to respect the external layout if present. |
2805 | UseExternalLayout = false; |
2806 | if (ExternalASTSource *Source = Context.getExternalSource()) |
2807 | UseExternalLayout = Source->layoutRecordType( |
2808 | Record: RD, Size&: External.Size, Alignment&: External.Align, FieldOffsets&: External.FieldOffsets, |
2809 | BaseOffsets&: External.BaseOffsets, VirtualBaseOffsets&: External.VirtualBaseOffsets); |
2810 | } |
2811 | |
2812 | void |
2813 | MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { |
2814 | EndsWithZeroSizedObject = false; |
2815 | LeadsWithZeroSizedBase = false; |
2816 | HasOwnVFPtr = false; |
2817 | HasVBPtr = false; |
2818 | PrimaryBase = nullptr; |
2819 | SharedVBPtrBase = nullptr; |
2820 | // Calculate pointer size and alignment. These are used for vfptr and vbprt |
2821 | // injection. |
2822 | PointerInfo.Size = Context.toCharUnitsFromBits( |
2823 | BitSize: Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
2824 | PointerInfo.Alignment = Context.toCharUnitsFromBits( |
2825 | BitSize: Context.getTargetInfo().getPointerAlign(AddrSpace: LangAS::Default)); |
2826 | // Respect pragma pack. |
2827 | if (!MaxFieldAlignment.isZero()) |
2828 | PointerInfo.Alignment = std::min(a: PointerInfo.Alignment, b: MaxFieldAlignment); |
2829 | } |
2830 | |
2831 | void |
2832 | MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { |
2833 | // The MS-ABI lays out all bases that contain leading vfptrs before it lays |
2834 | // out any bases that do not contain vfptrs. We implement this as two passes |
2835 | // over the bases. This approach guarantees that the primary base is laid out |
2836 | // first. We use these passes to calculate some additional aggregated |
2837 | // information about the bases, such as required alignment and the presence of |
2838 | // zero sized members. |
2839 | const ASTRecordLayout *PreviousBaseLayout = nullptr; |
2840 | bool HasPolymorphicBaseClass = false; |
2841 | // Iterate through the bases and lay out the non-virtual ones. |
2842 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
2843 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
2844 | HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); |
2845 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); |
2846 | // Mark and skip virtual bases. |
2847 | if (Base.isVirtual()) { |
2848 | HasVBPtr = true; |
2849 | continue; |
2850 | } |
2851 | // Check for a base to share a VBPtr with. |
2852 | if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { |
2853 | SharedVBPtrBase = BaseDecl; |
2854 | HasVBPtr = true; |
2855 | } |
2856 | // Only lay out bases with extendable VFPtrs on the first pass. |
2857 | if (!BaseLayout.hasExtendableVFPtr()) |
2858 | continue; |
2859 | // If we don't have a primary base, this one qualifies. |
2860 | if (!PrimaryBase) { |
2861 | PrimaryBase = BaseDecl; |
2862 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); |
2863 | } |
2864 | // Lay out the base. |
2865 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); |
2866 | } |
2867 | // Figure out if we need a fresh VFPtr for this class. |
2868 | if (RD->isPolymorphic()) { |
2869 | if (!HasPolymorphicBaseClass) |
2870 | // This class introduces polymorphism, so we need a vftable to store the |
2871 | // RTTI information. |
2872 | HasOwnVFPtr = true; |
2873 | else if (!PrimaryBase) { |
2874 | // We have a polymorphic base class but can't extend its vftable. Add a |
2875 | // new vfptr if we would use any vftable slots. |
2876 | for (CXXMethodDecl *M : RD->methods()) { |
2877 | if (MicrosoftVTableContext::hasVtableSlot(MD: M) && |
2878 | M->size_overridden_methods() == 0) { |
2879 | HasOwnVFPtr = true; |
2880 | break; |
2881 | } |
2882 | } |
2883 | } |
2884 | } |
2885 | // If we don't have a primary base then we have a leading object that could |
2886 | // itself lead with a zero-sized object, something we track. |
2887 | bool CheckLeadingLayout = !PrimaryBase; |
2888 | // Iterate through the bases and lay out the non-virtual ones. |
2889 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
2890 | if (Base.isVirtual()) |
2891 | continue; |
2892 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
2893 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); |
2894 | // Only lay out bases without extendable VFPtrs on the second pass. |
2895 | if (BaseLayout.hasExtendableVFPtr()) { |
2896 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); |
2897 | continue; |
2898 | } |
2899 | // If this is the first layout, check to see if it leads with a zero sized |
2900 | // object. If it does, so do we. |
2901 | if (CheckLeadingLayout) { |
2902 | CheckLeadingLayout = false; |
2903 | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); |
2904 | } |
2905 | // Lay out the base. |
2906 | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); |
2907 | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); |
2908 | } |
2909 | // Set our VBPtroffset if we know it at this point. |
2910 | if (!HasVBPtr) |
2911 | VBPtrOffset = CharUnits::fromQuantity(Quantity: -1); |
2912 | else if (SharedVBPtrBase) { |
2913 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); |
2914 | VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); |
2915 | } |
2916 | } |
2917 | |
2918 | static bool recordUsesEBO(const RecordDecl *RD) { |
2919 | if (!isa<CXXRecordDecl>(Val: RD)) |
2920 | return false; |
2921 | if (RD->hasAttr<EmptyBasesAttr>()) |
2922 | return true; |
2923 | if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) |
2924 | // TODO: Double check with the next version of MSVC. |
2925 | if (LVA->getVersion() <= LangOptions::MSVC2015) |
2926 | return false; |
2927 | // TODO: Some later version of MSVC will change the default behavior of the |
2928 | // compiler to enable EBO by default. When this happens, we will need an |
2929 | // additional isCompatibleWithMSVC check. |
2930 | return false; |
2931 | } |
2932 | |
2933 | void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( |
2934 | const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl, |
2935 | const ASTRecordLayout &BaseLayout, |
2936 | const ASTRecordLayout *&PreviousBaseLayout) { |
2937 | // Insert padding between two bases if the left first one is zero sized or |
2938 | // contains a zero sized subobject and the right is zero sized or one leads |
2939 | // with a zero sized base. |
2940 | bool MDCUsesEBO = recordUsesEBO(RD); |
2941 | if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && |
2942 | BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) |
2943 | Size++; |
2944 | ElementInfo Info = getAdjustedElementInfo(Layout: BaseLayout); |
2945 | CharUnits BaseOffset; |
2946 | |
2947 | // Respect the external AST source base offset, if present. |
2948 | bool FoundBase = false; |
2949 | if (UseExternalLayout) { |
2950 | FoundBase = External.getExternalNVBaseOffset(RD: BaseDecl, BaseOffset); |
2951 | if (BaseOffset > Size) { |
2952 | Size = BaseOffset; |
2953 | } |
2954 | } |
2955 | |
2956 | if (!FoundBase) { |
2957 | if (MDCUsesEBO && BaseDecl->isEmpty() && |
2958 | (BaseLayout.getNonVirtualSize() == CharUnits::Zero())) { |
2959 | BaseOffset = CharUnits::Zero(); |
2960 | } else { |
2961 | // Otherwise, lay the base out at the end of the MDC. |
2962 | BaseOffset = Size = Size.alignTo(Align: Info.Alignment); |
2963 | } |
2964 | } |
2965 | Bases.insert(KV: std::make_pair(x&: BaseDecl, y&: BaseOffset)); |
2966 | Size += BaseLayout.getNonVirtualSize(); |
2967 | DataSize = Size; |
2968 | PreviousBaseLayout = &BaseLayout; |
2969 | } |
2970 | |
2971 | void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { |
2972 | LastFieldIsNonZeroWidthBitfield = false; |
2973 | for (const FieldDecl *Field : RD->fields()) |
2974 | layoutField(FD: Field); |
2975 | } |
2976 | |
2977 | void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { |
2978 | if (FD->isBitField()) { |
2979 | layoutBitField(FD); |
2980 | return; |
2981 | } |
2982 | LastFieldIsNonZeroWidthBitfield = false; |
2983 | ElementInfo Info = getAdjustedElementInfo(FD); |
2984 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
2985 | |
2986 | const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl(); |
2987 | bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() && |
2988 | FieldClass->isEmpty() && |
2989 | FieldClass->fields().empty(); |
2990 | CharUnits FieldOffset = CharUnits::Zero(); |
2991 | |
2992 | if (UseExternalLayout) { |
2993 | FieldOffset = |
2994 | Context.toCharUnitsFromBits(BitSize: External.getExternalFieldOffset(FD)); |
2995 | } else if (IsUnion) { |
2996 | FieldOffset = CharUnits::Zero(); |
2997 | } else if (EmptySubobjects) { |
2998 | if (!IsOverlappingEmptyField) |
2999 | FieldOffset = DataSize.alignTo(Align: Info.Alignment); |
3000 | |
3001 | while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, Offset: FieldOffset)) { |
3002 | const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent()); |
3003 | bool HasBases = ParentClass && (!ParentClass->bases().empty() || |
3004 | !ParentClass->vbases().empty()); |
3005 | if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() && |
3006 | HasBases) { |
3007 | // MSVC appears to only do this when there are base classes; |
3008 | // otherwise it overlaps no_unique_address fields in non-zero offsets. |
3009 | FieldOffset = DataSize.alignTo(Align: Info.Alignment); |
3010 | } else { |
3011 | FieldOffset += Info.Alignment; |
3012 | } |
3013 | } |
3014 | } else { |
3015 | FieldOffset = Size.alignTo(Align: Info.Alignment); |
3016 | } |
3017 | |
3018 | uint64_t UnpaddedFielddOffsetInBits = |
3019 | Context.toBits(CharSize: DataSize) - RemainingBitsInField; |
3020 | |
3021 | ::CheckFieldPadding(Context, IsUnion, Offset: Context.toBits(CharSize: FieldOffset), |
3022 | UnpaddedOffset: UnpaddedFielddOffsetInBits, D: FD); |
3023 | |
3024 | RemainingBitsInField = 0; |
3025 | |
3026 | placeFieldAtOffset(FieldOffset); |
3027 | |
3028 | if (!IsOverlappingEmptyField) |
3029 | DataSize = std::max(a: DataSize, b: FieldOffset + Info.Size); |
3030 | |
3031 | Size = std::max(a: Size, b: FieldOffset + Info.Size); |
3032 | } |
3033 | |
3034 | void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { |
3035 | unsigned Width = FD->getBitWidthValue(); |
3036 | if (Width == 0) { |
3037 | layoutZeroWidthBitField(FD); |
3038 | return; |
3039 | } |
3040 | ElementInfo Info = getAdjustedElementInfo(FD); |
3041 | // Clamp the bitfield to a containable size for the sake of being able |
3042 | // to lay them out. Sema will throw an error. |
3043 | if (Width > Context.toBits(CharSize: Info.Size)) |
3044 | Width = Context.toBits(CharSize: Info.Size); |
3045 | // Check to see if this bitfield fits into an existing allocation. Note: |
3046 | // MSVC refuses to pack bitfields of formal types with different sizes |
3047 | // into the same allocation. |
3048 | if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && |
3049 | CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { |
3050 | placeFieldAtBitOffset(FieldOffset: Context.toBits(CharSize: Size) - RemainingBitsInField); |
3051 | RemainingBitsInField -= Width; |
3052 | return; |
3053 | } |
3054 | LastFieldIsNonZeroWidthBitfield = true; |
3055 | CurrentBitfieldSize = Info.Size; |
3056 | if (UseExternalLayout) { |
3057 | auto FieldBitOffset = External.getExternalFieldOffset(FD); |
3058 | placeFieldAtBitOffset(FieldOffset: FieldBitOffset); |
3059 | auto NewSize = Context.toCharUnitsFromBits( |
3060 | BitSize: llvm::alignDown(Value: FieldBitOffset, Align: Context.toBits(CharSize: Info.Alignment)) + |
3061 | Context.toBits(CharSize: Info.Size)); |
3062 | Size = std::max(a: Size, b: NewSize); |
3063 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
3064 | } else if (IsUnion) { |
3065 | placeFieldAtOffset(FieldOffset: CharUnits::Zero()); |
3066 | Size = std::max(a: Size, b: Info.Size); |
3067 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. |
3068 | } else { |
3069 | // Allocate a new block of memory and place the bitfield in it. |
3070 | CharUnits FieldOffset = Size.alignTo(Align: Info.Alignment); |
3071 | uint64_t UnpaddedFieldOffsetInBits = |
3072 | Context.toBits(CharSize: DataSize) - RemainingBitsInField; |
3073 | placeFieldAtOffset(FieldOffset); |
3074 | Size = FieldOffset + Info.Size; |
3075 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
3076 | RemainingBitsInField = Context.toBits(CharSize: Info.Size) - Width; |
3077 | ::CheckFieldPadding(Context, IsUnion, Offset: Context.toBits(CharSize: FieldOffset), |
3078 | UnpaddedOffset: UnpaddedFieldOffsetInBits, D: FD); |
3079 | } |
3080 | DataSize = Size; |
3081 | } |
3082 | |
3083 | void |
3084 | MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { |
3085 | // Zero-width bitfields are ignored unless they follow a non-zero-width |
3086 | // bitfield. |
3087 | if (!LastFieldIsNonZeroWidthBitfield) { |
3088 | placeFieldAtOffset(FieldOffset: IsUnion ? CharUnits::Zero() : Size); |
3089 | // TODO: Add a Sema warning that MS ignores alignment for zero |
3090 | // sized bitfields that occur after zero-size bitfields or non-bitfields. |
3091 | return; |
3092 | } |
3093 | LastFieldIsNonZeroWidthBitfield = false; |
3094 | ElementInfo Info = getAdjustedElementInfo(FD); |
3095 | if (IsUnion) { |
3096 | placeFieldAtOffset(FieldOffset: CharUnits::Zero()); |
3097 | Size = std::max(a: Size, b: Info.Size); |
3098 | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. |
3099 | } else { |
3100 | // Round up the current record size to the field's alignment boundary. |
3101 | CharUnits FieldOffset = Size.alignTo(Align: Info.Alignment); |
3102 | uint64_t UnpaddedFieldOffsetInBits = |
3103 | Context.toBits(CharSize: DataSize) - RemainingBitsInField; |
3104 | placeFieldAtOffset(FieldOffset); |
3105 | RemainingBitsInField = 0; |
3106 | Size = FieldOffset; |
3107 | Alignment = std::max(a: Alignment, b: Info.Alignment); |
3108 | ::CheckFieldPadding(Context, IsUnion, Offset: Context.toBits(CharSize: FieldOffset), |
3109 | UnpaddedOffset: UnpaddedFieldOffsetInBits, D: FD); |
3110 | } |
3111 | DataSize = Size; |
3112 | } |
3113 | |
3114 | void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { |
3115 | if (!HasVBPtr || SharedVBPtrBase) |
3116 | return; |
3117 | // Inject the VBPointer at the injection site. |
3118 | CharUnits InjectionSite = VBPtrOffset; |
3119 | // But before we do, make sure it's properly aligned. |
3120 | VBPtrOffset = VBPtrOffset.alignTo(Align: PointerInfo.Alignment); |
3121 | // Determine where the first field should be laid out after the vbptr. |
3122 | CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; |
3123 | // Shift everything after the vbptr down, unless we're using an external |
3124 | // layout. |
3125 | if (UseExternalLayout) { |
3126 | // It is possible that there were no fields or bases located after vbptr, |
3127 | // so the size was not adjusted before. |
3128 | if (Size < FieldStart) |
3129 | Size = FieldStart; |
3130 | return; |
3131 | } |
3132 | // Make sure that the amount we push the fields back by is a multiple of the |
3133 | // alignment. |
3134 | CharUnits Offset = (FieldStart - InjectionSite) |
3135 | .alignTo(Align: std::max(a: RequiredAlignment, b: Alignment)); |
3136 | Size += Offset; |
3137 | for (uint64_t &FieldOffset : FieldOffsets) |
3138 | FieldOffset += Context.toBits(CharSize: Offset); |
3139 | for (BaseOffsetsMapTy::value_type &Base : Bases) |
3140 | if (Base.second >= InjectionSite) |
3141 | Base.second += Offset; |
3142 | } |
3143 | |
3144 | void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { |
3145 | if (!HasOwnVFPtr) |
3146 | return; |
3147 | // Make sure that the amount we push the struct back by is a multiple of the |
3148 | // alignment. |
3149 | CharUnits Offset = |
3150 | PointerInfo.Size.alignTo(Align: std::max(a: RequiredAlignment, b: Alignment)); |
3151 | // Push back the vbptr, but increase the size of the object and push back |
3152 | // regular fields by the offset only if not using external record layout. |
3153 | if (HasVBPtr) |
3154 | VBPtrOffset += Offset; |
3155 | |
3156 | if (UseExternalLayout) { |
3157 | // The class may have size 0 and a vfptr (e.g. it's an interface class). The |
3158 | // size was not correctly set before in this case. |
3159 | if (Size.isZero()) |
3160 | Size += Offset; |
3161 | return; |
3162 | } |
3163 | |
3164 | Size += Offset; |
3165 | |
3166 | // If we're using an external layout, the fields offsets have already |
3167 | // accounted for this adjustment. |
3168 | for (uint64_t &FieldOffset : FieldOffsets) |
3169 | FieldOffset += Context.toBits(CharSize: Offset); |
3170 | for (BaseOffsetsMapTy::value_type &Base : Bases) |
3171 | Base.second += Offset; |
3172 | } |
3173 | |
3174 | void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { |
3175 | if (!HasVBPtr) |
3176 | return; |
3177 | // Vtordisps are always 4 bytes (even in 64-bit mode) |
3178 | CharUnits VtorDispSize = CharUnits::fromQuantity(Quantity: 4); |
3179 | CharUnits VtorDispAlignment = VtorDispSize; |
3180 | // vtordisps respect pragma pack. |
3181 | if (!MaxFieldAlignment.isZero()) |
3182 | VtorDispAlignment = std::min(a: VtorDispAlignment, b: MaxFieldAlignment); |
3183 | // The alignment of the vtordisp is at least the required alignment of the |
3184 | // entire record. This requirement may be present to support vtordisp |
3185 | // injection. |
3186 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { |
3187 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); |
3188 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); |
3189 | RequiredAlignment = |
3190 | std::max(a: RequiredAlignment, b: BaseLayout.getRequiredAlignment()); |
3191 | } |
3192 | VtorDispAlignment = std::max(a: VtorDispAlignment, b: RequiredAlignment); |
3193 | // Compute the vtordisp set. |
3194 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; |
3195 | computeVtorDispSet(HasVtorDispSet, RD); |
3196 | // Iterate through the virtual bases and lay them out. |
3197 | const ASTRecordLayout *PreviousBaseLayout = nullptr; |
3198 | for (const CXXBaseSpecifier &VBase : RD->vbases()) { |
3199 | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); |
3200 | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); |
3201 | bool HasVtordisp = HasVtorDispSet.contains(Ptr: BaseDecl); |
3202 | // Insert padding between two bases if the left first one is zero sized or |
3203 | // contains a zero sized subobject and the right is zero sized or one leads |
3204 | // with a zero sized base. The padding between virtual bases is 4 |
3205 | // bytes (in both 32 and 64 bits modes) and always involves rounding up to |
3206 | // the required alignment, we don't know why. |
3207 | if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && |
3208 | BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || |
3209 | HasVtordisp) { |
3210 | Size = Size.alignTo(Align: VtorDispAlignment) + VtorDispSize; |
3211 | Alignment = std::max(a: VtorDispAlignment, b: Alignment); |
3212 | } |
3213 | // Insert the virtual base. |
3214 | ElementInfo Info = getAdjustedElementInfo(Layout: BaseLayout); |
3215 | CharUnits BaseOffset; |
3216 | |
3217 | // Respect the external AST source base offset, if present. |
3218 | if (UseExternalLayout) { |
3219 | if (!External.getExternalVBaseOffset(RD: BaseDecl, BaseOffset)) |
3220 | BaseOffset = Size; |
3221 | } else |
3222 | BaseOffset = Size.alignTo(Align: Info.Alignment); |
3223 | |
3224 | assert(BaseOffset >= Size && "base offset already allocated"); |
3225 | |
3226 | VBases.insert(KV: std::make_pair(x&: BaseDecl, |
3227 | y: ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); |
3228 | Size = BaseOffset + BaseLayout.getNonVirtualSize(); |
3229 | PreviousBaseLayout = &BaseLayout; |
3230 | } |
3231 | } |
3232 | |
3233 | void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { |
3234 | uint64_t UnpaddedSizeInBits = Context.toBits(CharSize: DataSize); |
3235 | UnpaddedSizeInBits -= RemainingBitsInField; |
3236 | |
3237 | // MS ABI allocates 1 byte for empty class |
3238 | // (not padding) |
3239 | if (Size.isZero()) |
3240 | UnpaddedSizeInBits += 8; |
3241 | |
3242 | // Respect required alignment. Note that in 32-bit mode Required alignment |
3243 | // may be 0 and cause size not to be updated. |
3244 | DataSize = Size; |
3245 | if (!RequiredAlignment.isZero()) { |
3246 | Alignment = std::max(a: Alignment, b: RequiredAlignment); |
3247 | auto RoundingAlignment = Alignment; |
3248 | if (!MaxFieldAlignment.isZero()) |
3249 | RoundingAlignment = std::min(a: RoundingAlignment, b: MaxFieldAlignment); |
3250 | RoundingAlignment = std::max(a: RoundingAlignment, b: RequiredAlignment); |
3251 | Size = Size.alignTo(Align: RoundingAlignment); |
3252 | } |
3253 | if (Size.isZero()) { |
3254 | if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(Val: RD)->isEmpty()) { |
3255 | EndsWithZeroSizedObject = true; |
3256 | LeadsWithZeroSizedBase = true; |
3257 | } |
3258 | // Zero-sized structures have size equal to their alignment if a |
3259 | // __declspec(align) came into play. |
3260 | if (RequiredAlignment >= MinEmptyStructSize) |
3261 | Size = Alignment; |
3262 | else |
3263 | Size = MinEmptyStructSize; |
3264 | } |
3265 | |
3266 | if (UseExternalLayout) { |
3267 | Size = Context.toCharUnitsFromBits(BitSize: External.Size); |
3268 | if (External.Align) |
3269 | Alignment = Context.toCharUnitsFromBits(BitSize: External.Align); |
3270 | return; |
3271 | } |
3272 | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); |
3273 | uint64_t SizeInBits = Context.toBits(CharSize: Size); |
3274 | |
3275 | if (SizeInBits > UnpaddedSizeInBits) { |
3276 | unsigned int PadSize = SizeInBits - UnpaddedSizeInBits; |
3277 | bool InBits = true; |
3278 | if (PadSize % CharBitNum == 0) { |
3279 | PadSize = PadSize / CharBitNum; |
3280 | InBits = false; |
3281 | } |
3282 | |
3283 | Context.getDiagnostics().Report(RD->getLocation(), |
3284 | diag::warn_padded_struct_size) |
3285 | << Context.getTypeDeclType(RD) << PadSize |
3286 | << (InBits ? 1 : 0); // (byte|bit) |
3287 | } |
3288 | } |
3289 | |
3290 | // Recursively walks the non-virtual bases of a class and determines if any of |
3291 | // them are in the bases with overridden methods set. |
3292 | static bool |
3293 | RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & |
3294 | BasesWithOverriddenMethods, |
3295 | const CXXRecordDecl *RD) { |
3296 | if (BasesWithOverriddenMethods.count(Ptr: RD)) |
3297 | return true; |
3298 | // If any of a virtual bases non-virtual bases (recursively) requires a |
3299 | // vtordisp than so does this virtual base. |
3300 | for (const CXXBaseSpecifier &Base : RD->bases()) |
3301 | if (!Base.isVirtual() && |
3302 | RequiresVtordisp(BasesWithOverriddenMethods, |
3303 | RD: Base.getType()->getAsCXXRecordDecl())) |
3304 | return true; |
3305 | return false; |
3306 | } |
3307 | |
3308 | void MicrosoftRecordLayoutBuilder::computeVtorDispSet( |
3309 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, |
3310 | const CXXRecordDecl *RD) const { |
3311 | // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with |
3312 | // vftables. |
3313 | if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { |
3314 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
3315 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
3316 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); |
3317 | if (Layout.hasExtendableVFPtr()) |
3318 | HasVtordispSet.insert(Ptr: BaseDecl); |
3319 | } |
3320 | return; |
3321 | } |
3322 | |
3323 | // If any of our bases need a vtordisp for this type, so do we. Check our |
3324 | // direct bases for vtordisp requirements. |
3325 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
3326 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
3327 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); |
3328 | for (const auto &bi : Layout.getVBaseOffsetsMap()) |
3329 | if (bi.second.hasVtorDisp()) |
3330 | HasVtordispSet.insert(bi.first); |
3331 | } |
3332 | // We don't introduce any additional vtordisps if either: |
3333 | // * A user declared constructor or destructor aren't declared. |
3334 | // * #pragma vtordisp(0) or the /vd0 flag are in use. |
3335 | if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || |
3336 | RD->getMSVtorDispMode() == MSVtorDispMode::Never) |
3337 | return; |
3338 | // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's |
3339 | // possible for a partially constructed object with virtual base overrides to |
3340 | // escape a non-trivial constructor. |
3341 | assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride); |
3342 | // Compute a set of base classes which define methods we override. A virtual |
3343 | // base in this set will require a vtordisp. A virtual base that transitively |
3344 | // contains one of these bases as a non-virtual base will also require a |
3345 | // vtordisp. |
3346 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; |
3347 | llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; |
3348 | // Seed the working set with our non-destructor, non-pure virtual methods. |
3349 | for (const CXXMethodDecl *MD : RD->methods()) |
3350 | if (MicrosoftVTableContext::hasVtableSlot(MD) && |
3351 | !isa<CXXDestructorDecl>(Val: MD) && !MD->isPureVirtual()) |
3352 | Work.insert(Ptr: MD); |
3353 | while (!Work.empty()) { |
3354 | const CXXMethodDecl *MD = *Work.begin(); |
3355 | auto MethodRange = MD->overridden_methods(); |
3356 | // If a virtual method has no-overrides it lives in its parent's vtable. |
3357 | if (MethodRange.begin() == MethodRange.end()) |
3358 | BasesWithOverriddenMethods.insert(Ptr: MD->getParent()); |
3359 | else |
3360 | Work.insert_range(R&: MethodRange); |
3361 | // We've finished processing this element, remove it from the working set. |
3362 | Work.erase(Ptr: MD); |
3363 | } |
3364 | // For each of our virtual bases, check if it is in the set of overridden |
3365 | // bases or if it transitively contains a non-virtual base that is. |
3366 | for (const CXXBaseSpecifier &Base : RD->vbases()) { |
3367 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
3368 | if (!HasVtordispSet.count(Ptr: BaseDecl) && |
3369 | RequiresVtordisp(BasesWithOverriddenMethods, RD: BaseDecl)) |
3370 | HasVtordispSet.insert(Ptr: BaseDecl); |
3371 | } |
3372 | } |
3373 | |
3374 | /// getASTRecordLayout - Get or compute information about the layout of the |
3375 | /// specified record (struct/union/class), which indicates its size and field |
3376 | /// position information. |
3377 | const ASTRecordLayout & |
3378 | ASTContext::getASTRecordLayout(const RecordDecl *D) const { |
3379 | // These asserts test different things. A record has a definition |
3380 | // as soon as we begin to parse the definition. That definition is |
3381 | // not a complete definition (which is what isDefinition() tests) |
3382 | // until we *finish* parsing the definition. |
3383 | |
3384 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) |
3385 | getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); |
3386 | // Complete the redecl chain (if necessary). |
3387 | (void)D->getMostRecentDecl(); |
3388 | |
3389 | D = D->getDefinition(); |
3390 | assert(D && "Cannot get layout of forward declarations!"); |
3391 | assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); |
3392 | assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); |
3393 | |
3394 | // Look up this layout, if already laid out, return what we have. |
3395 | // Note that we can't save a reference to the entry because this function |
3396 | // is recursive. |
3397 | const ASTRecordLayout *Entry = ASTRecordLayouts[D]; |
3398 | if (Entry) return *Entry; |
3399 | |
3400 | const ASTRecordLayout *NewEntry = nullptr; |
3401 | |
3402 | if (isMsLayout(Context: *this)) { |
3403 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
3404 | EmptySubobjectMap EmptySubobjects(*this, RD); |
3405 | MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects); |
3406 | Builder.cxxLayout(RD); |
3407 | NewEntry = new (*this) ASTRecordLayout( |
3408 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, |
3409 | Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, |
3410 | Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, |
3411 | Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, |
3412 | Builder.Alignment, Builder.Alignment, CharUnits::Zero(), |
3413 | Builder.PrimaryBase, false, Builder.SharedVBPtrBase, |
3414 | Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, |
3415 | Builder.Bases, Builder.VBases); |
3416 | } else { |
3417 | MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); |
3418 | Builder.layout(RD: D); |
3419 | NewEntry = new (*this) ASTRecordLayout( |
3420 | *this, Builder.Size, Builder.Alignment, Builder.Alignment, |
3421 | Builder.Alignment, Builder.RequiredAlignment, Builder.Size, |
3422 | Builder.FieldOffsets); |
3423 | } |
3424 | } else { |
3425 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
3426 | EmptySubobjectMap EmptySubobjects(*this, RD); |
3427 | ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); |
3428 | Builder.Layout(RD); |
3429 | |
3430 | // In certain situations, we are allowed to lay out objects in the |
3431 | // tail-padding of base classes. This is ABI-dependent. |
3432 | // FIXME: this should be stored in the record layout. |
3433 | bool skipTailPadding = |
3434 | mustSkipTailPadding(ABI: getTargetInfo().getCXXABI(), RD); |
3435 | |
3436 | // FIXME: This should be done in FinalizeLayout. |
3437 | CharUnits DataSize = |
3438 | skipTailPadding ? Builder.getSize() : Builder.getDataSize(); |
3439 | CharUnits NonVirtualSize = |
3440 | skipTailPadding ? DataSize : Builder.NonVirtualSize; |
3441 | NewEntry = new (*this) ASTRecordLayout( |
3442 | *this, Builder.getSize(), Builder.Alignment, |
3443 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, |
3444 | /*RequiredAlignment : used by MS-ABI)*/ |
3445 | Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), |
3446 | CharUnits::fromQuantity(Quantity: -1), DataSize, Builder.FieldOffsets, |
3447 | NonVirtualSize, Builder.NonVirtualAlignment, |
3448 | Builder.PreferredNVAlignment, |
3449 | EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, |
3450 | Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, |
3451 | Builder.VBases); |
3452 | } else { |
3453 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); |
3454 | Builder.Layout(D); |
3455 | |
3456 | NewEntry = new (*this) ASTRecordLayout( |
3457 | *this, Builder.getSize(), Builder.Alignment, |
3458 | Builder.PreferredAlignment, Builder.UnadjustedAlignment, |
3459 | /*RequiredAlignment : used by MS-ABI)*/ |
3460 | Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); |
3461 | } |
3462 | } |
3463 | |
3464 | ASTRecordLayouts[D] = NewEntry; |
3465 | |
3466 | if (getLangOpts().DumpRecordLayouts) { |
3467 | llvm::outs() << "\n*** Dumping AST Record Layout\n"; |
3468 | DumpRecordLayout(RD: D, OS&: llvm::outs(), Simple: getLangOpts().DumpRecordLayoutsSimple); |
3469 | } |
3470 | |
3471 | return *NewEntry; |
3472 | } |
3473 | |
3474 | const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { |
3475 | if (!getTargetInfo().getCXXABI().hasKeyFunctions()) |
3476 | return nullptr; |
3477 | |
3478 | assert(RD->getDefinition() && "Cannot get key function for forward decl!"); |
3479 | RD = RD->getDefinition(); |
3480 | |
3481 | // Beware: |
3482 | // 1) computing the key function might trigger deserialization, which might |
3483 | // invalidate iterators into KeyFunctions |
3484 | // 2) 'get' on the LazyDeclPtr might also trigger deserialization and |
3485 | // invalidate the LazyDeclPtr within the map itself |
3486 | LazyDeclPtr Entry = KeyFunctions[RD]; |
3487 | const Decl *Result = |
3488 | Entry ? Entry.get(Source: getExternalSource()) : computeKeyFunction(Context&: *this, RD); |
3489 | |
3490 | // Store it back if it changed. |
3491 | if (Entry.isOffset() || Entry.isValid() != bool(Result)) |
3492 | KeyFunctions[RD] = const_cast<Decl*>(Result); |
3493 | |
3494 | return cast_or_null<CXXMethodDecl>(Val: Result); |
3495 | } |
3496 | |
3497 | void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { |
3498 | assert(Method == Method->getFirstDecl() && |
3499 | "not working with method declaration from class definition"); |
3500 | |
3501 | // Look up the cache entry. Since we're working with the first |
3502 | // declaration, its parent must be the class definition, which is |
3503 | // the correct key for the KeyFunctions hash. |
3504 | const auto &Map = KeyFunctions; |
3505 | auto I = Map.find(Val: Method->getParent()); |
3506 | |
3507 | // If it's not cached, there's nothing to do. |
3508 | if (I == Map.end()) return; |
3509 | |
3510 | // If it is cached, check whether it's the target method, and if so, |
3511 | // remove it from the cache. Note, the call to 'get' might invalidate |
3512 | // the iterator and the LazyDeclPtr object within the map. |
3513 | LazyDeclPtr Ptr = I->second; |
3514 | if (Ptr.get(Source: getExternalSource()) == Method) { |
3515 | // FIXME: remember that we did this for module / chained PCH state? |
3516 | KeyFunctions.erase(Val: Method->getParent()); |
3517 | } |
3518 | } |
3519 | |
3520 | static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { |
3521 | const ASTRecordLayout &Layout = C.getASTRecordLayout(D: FD->getParent()); |
3522 | return Layout.getFieldOffset(FieldNo: FD->getFieldIndex()); |
3523 | } |
3524 | |
3525 | uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { |
3526 | uint64_t OffsetInBits; |
3527 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: VD)) { |
3528 | OffsetInBits = ::getFieldOffset(C: *this, FD); |
3529 | } else { |
3530 | const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(Val: VD); |
3531 | |
3532 | OffsetInBits = 0; |
3533 | for (const NamedDecl *ND : IFD->chain()) |
3534 | OffsetInBits += ::getFieldOffset(C: *this, FD: cast<FieldDecl>(Val: ND)); |
3535 | } |
3536 | |
3537 | return OffsetInBits; |
3538 | } |
3539 | |
3540 | uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, |
3541 | const ObjCIvarDecl *Ivar) const { |
3542 | Ivar = Ivar->getCanonicalDecl(); |
3543 | const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); |
3544 | const ASTRecordLayout *RL = &getASTObjCInterfaceLayout(D: Container); |
3545 | |
3546 | // Compute field index. |
3547 | // |
3548 | // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is |
3549 | // implemented. This should be fixed to get the information from the layout |
3550 | // directly. |
3551 | unsigned Index = 0; |
3552 | |
3553 | for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); |
3554 | IVD; IVD = IVD->getNextIvar()) { |
3555 | if (Ivar == IVD) |
3556 | break; |
3557 | ++Index; |
3558 | } |
3559 | assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); |
3560 | |
3561 | return RL->getFieldOffset(FieldNo: Index); |
3562 | } |
3563 | |
3564 | /// getObjCLayout - Get or compute information about the layout of the |
3565 | /// given interface. |
3566 | /// |
3567 | /// \param Impl - If given, also include the layout of the interface's |
3568 | /// implementation. This may differ by including synthesized ivars. |
3569 | const ASTRecordLayout & |
3570 | ASTContext::getObjCLayout(const ObjCInterfaceDecl *D) const { |
3571 | // Retrieve the definition |
3572 | if (D->hasExternalLexicalStorage() && !D->getDefinition()) |
3573 | getExternalSource()->CompleteType(Class: const_cast<ObjCInterfaceDecl*>(D)); |
3574 | D = D->getDefinition(); |
3575 | assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && |
3576 | "Invalid interface decl!"); |
3577 | |
3578 | // Look up this layout, if already laid out, return what we have. |
3579 | if (const ASTRecordLayout *Entry = ObjCLayouts[D]) |
3580 | return *Entry; |
3581 | |
3582 | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); |
3583 | Builder.Layout(D); |
3584 | |
3585 | const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( |
3586 | *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, |
3587 | Builder.UnadjustedAlignment, |
3588 | /*RequiredAlignment : used by MS-ABI)*/ |
3589 | Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); |
3590 | |
3591 | ObjCLayouts[D] = NewEntry; |
3592 | |
3593 | return *NewEntry; |
3594 | } |
3595 | |
3596 | static void PrintOffset(raw_ostream &OS, |
3597 | CharUnits Offset, unsigned IndentLevel) { |
3598 | OS << llvm::format(Fmt: "%10"PRId64 " | ", Vals: (int64_t)Offset.getQuantity()); |
3599 | OS.indent(NumSpaces: IndentLevel * 2); |
3600 | } |
3601 | |
3602 | static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, |
3603 | unsigned Begin, unsigned Width, |
3604 | unsigned IndentLevel) { |
3605 | llvm::SmallString<10> Buffer; |
3606 | { |
3607 | llvm::raw_svector_ostream BufferOS(Buffer); |
3608 | BufferOS << Offset.getQuantity() << ':'; |
3609 | if (Width == 0) { |
3610 | BufferOS << '-'; |
3611 | } else { |
3612 | BufferOS << Begin << '-' << (Begin + Width - 1); |
3613 | } |
3614 | } |
3615 | |
3616 | OS << llvm::right_justify(Str: Buffer, Width: 10) << " | "; |
3617 | OS.indent(NumSpaces: IndentLevel * 2); |
3618 | } |
3619 | |
3620 | static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { |
3621 | OS << " | "; |
3622 | OS.indent(NumSpaces: IndentLevel * 2); |
3623 | } |
3624 | |
3625 | static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, |
3626 | const ASTContext &C, |
3627 | CharUnits Offset, |
3628 | unsigned IndentLevel, |
3629 | const char* Description, |
3630 | bool PrintSizeInfo, |
3631 | bool IncludeVirtualBases) { |
3632 | const ASTRecordLayout &Layout = C.getASTRecordLayout(D: RD); |
3633 | auto CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
3634 | |
3635 | PrintOffset(OS, Offset, IndentLevel); |
3636 | OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD)); |
3637 | if (Description) |
3638 | OS << ' ' << Description; |
3639 | if (CXXRD && CXXRD->isEmpty()) |
3640 | OS << " (empty)"; |
3641 | OS << '\n'; |
3642 | |
3643 | IndentLevel++; |
3644 | |
3645 | // Dump bases. |
3646 | if (CXXRD) { |
3647 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
3648 | bool HasOwnVFPtr = Layout.hasOwnVFPtr(); |
3649 | bool HasOwnVBPtr = Layout.hasOwnVBPtr(); |
3650 | |
3651 | // Vtable pointer. |
3652 | if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(Context: C)) { |
3653 | PrintOffset(OS, Offset, IndentLevel); |
3654 | OS << '(' << *RD << " vtable pointer)\n"; |
3655 | } else if (HasOwnVFPtr) { |
3656 | PrintOffset(OS, Offset, IndentLevel); |
3657 | // vfptr (for Microsoft C++ ABI) |
3658 | OS << '(' << *RD << " vftable pointer)\n"; |
3659 | } |
3660 | |
3661 | // Collect nvbases. |
3662 | SmallVector<const CXXRecordDecl *, 4> Bases; |
3663 | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { |
3664 | assert(!Base.getType()->isDependentType() && |
3665 | "Cannot layout class with dependent bases."); |
3666 | if (!Base.isVirtual()) |
3667 | Bases.push_back(Elt: Base.getType()->getAsCXXRecordDecl()); |
3668 | } |
3669 | |
3670 | // Sort nvbases by offset. |
3671 | llvm::stable_sort( |
3672 | Range&: Bases, C: [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { |
3673 | return Layout.getBaseClassOffset(Base: L) < Layout.getBaseClassOffset(Base: R); |
3674 | }); |
3675 | |
3676 | // Dump (non-virtual) bases |
3677 | for (const CXXRecordDecl *Base : Bases) { |
3678 | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); |
3679 | DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, |
3680 | Base == PrimaryBase ? "(primary base)": "(base)", |
3681 | /*PrintSizeInfo=*/false, |
3682 | /*IncludeVirtualBases=*/false); |
3683 | } |
3684 | |
3685 | // vbptr (for Microsoft C++ ABI) |
3686 | if (HasOwnVBPtr) { |
3687 | PrintOffset(OS, Offset: Offset + Layout.getVBPtrOffset(), IndentLevel); |
3688 | OS << '(' << *RD << " vbtable pointer)\n"; |
3689 | } |
3690 | } |
3691 | |
3692 | // Dump fields. |
3693 | for (const FieldDecl *Field : RD->fields()) { |
3694 | uint64_t LocalFieldOffsetInBits = |
3695 | Layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
3696 | CharUnits FieldOffset = |
3697 | Offset + C.toCharUnitsFromBits(BitSize: LocalFieldOffsetInBits); |
3698 | |
3699 | // Recursively dump fields of record type. |
3700 | if (auto RT = Field->getType()->getAs<RecordType>()) { |
3701 | DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, |
3702 | Field->getName().data(), |
3703 | /*PrintSizeInfo=*/false, |
3704 | /*IncludeVirtualBases=*/true); |
3705 | continue; |
3706 | } |
3707 | |
3708 | if (Field->isBitField()) { |
3709 | uint64_t LocalFieldByteOffsetInBits = C.toBits(CharSize: FieldOffset - Offset); |
3710 | unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; |
3711 | unsigned Width = Field->getBitWidthValue(); |
3712 | PrintBitFieldOffset(OS, Offset: FieldOffset, Begin, Width, IndentLevel); |
3713 | } else { |
3714 | PrintOffset(OS, Offset: FieldOffset, IndentLevel); |
3715 | } |
3716 | const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical |
3717 | ? Field->getType().getCanonicalType() |
3718 | : Field->getType(); |
3719 | OS << FieldType << ' ' << *Field << '\n'; |
3720 | } |
3721 | |
3722 | // Dump virtual bases. |
3723 | if (CXXRD && IncludeVirtualBases) { |
3724 | const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = |
3725 | Layout.getVBaseOffsetsMap(); |
3726 | |
3727 | for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { |
3728 | assert(Base.isVirtual() && "Found non-virtual class!"); |
3729 | const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); |
3730 | |
3731 | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); |
3732 | |
3733 | if (VtorDisps.find(Val: VBase)->second.hasVtorDisp()) { |
3734 | PrintOffset(OS, Offset: VBaseOffset - CharUnits::fromQuantity(Quantity: 4), IndentLevel); |
3735 | OS << "(vtordisp for vbase "<< *VBase << ")\n"; |
3736 | } |
3737 | |
3738 | DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, |
3739 | VBase == Layout.getPrimaryBase() ? |
3740 | "(primary virtual base)": "(virtual base)", |
3741 | /*PrintSizeInfo=*/false, |
3742 | /*IncludeVirtualBases=*/false); |
3743 | } |
3744 | } |
3745 | |
3746 | if (!PrintSizeInfo) return; |
3747 | |
3748 | PrintIndentNoOffset(OS, IndentLevel: IndentLevel - 1); |
3749 | OS << "[sizeof="<< Layout.getSize().getQuantity(); |
3750 | if (CXXRD && !isMsLayout(Context: C)) |
3751 | OS << ", dsize="<< Layout.getDataSize().getQuantity(); |
3752 | OS << ", align="<< Layout.getAlignment().getQuantity(); |
3753 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) |
3754 | OS << ", preferredalign="<< Layout.getPreferredAlignment().getQuantity(); |
3755 | |
3756 | if (CXXRD) { |
3757 | OS << ",\n"; |
3758 | PrintIndentNoOffset(OS, IndentLevel: IndentLevel - 1); |
3759 | OS << " nvsize="<< Layout.getNonVirtualSize().getQuantity(); |
3760 | OS << ", nvalign="<< Layout.getNonVirtualAlignment().getQuantity(); |
3761 | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) |
3762 | OS << ", preferrednvalign=" |
3763 | << Layout.getPreferredNVAlignment().getQuantity(); |
3764 | } |
3765 | OS << "]\n"; |
3766 | } |
3767 | |
3768 | void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, |
3769 | bool Simple) const { |
3770 | if (!Simple) { |
3771 | ::DumpRecordLayout(OS, RD, C: *this, Offset: CharUnits(), IndentLevel: 0, Description: nullptr, |
3772 | /*PrintSizeInfo*/ true, |
3773 | /*IncludeVirtualBases=*/true); |
3774 | return; |
3775 | } |
3776 | |
3777 | // The "simple" format is designed to be parsed by the |
3778 | // layout-override testing code. There shouldn't be any external |
3779 | // uses of this format --- when LLDB overrides a layout, it sets up |
3780 | // the data structures directly --- so feel free to adjust this as |
3781 | // you like as long as you also update the rudimentary parser for it |
3782 | // in libFrontend. |
3783 | |
3784 | const ASTRecordLayout &Info = getASTRecordLayout(D: RD); |
3785 | OS << "Type: "<< getTypeDeclType(RD) << "\n"; |
3786 | OS << "\nLayout: "; |
3787 | OS << "<ASTRecordLayout\n"; |
3788 | OS << " Size:"<< toBits(CharSize: Info.getSize()) << "\n"; |
3789 | if (!isMsLayout(Context: *this)) |
3790 | OS << " DataSize:"<< toBits(CharSize: Info.getDataSize()) << "\n"; |
3791 | OS << " Alignment:"<< toBits(CharSize: Info.getAlignment()) << "\n"; |
3792 | if (Target->defaultsToAIXPowerAlignment()) |
3793 | OS << " PreferredAlignment:"<< toBits(CharSize: Info.getPreferredAlignment()) |
3794 | << "\n"; |
3795 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
3796 | OS << " BaseOffsets: ["; |
3797 | const CXXRecordDecl *Base = nullptr; |
3798 | for (auto I : CXXRD->bases()) { |
3799 | if (I.isVirtual()) |
3800 | continue; |
3801 | if (Base) |
3802 | OS << ", "; |
3803 | Base = I.getType()->getAsCXXRecordDecl(); |
3804 | OS << Info.CXXInfo->BaseOffsets[Base].getQuantity(); |
3805 | } |
3806 | OS << "]>\n"; |
3807 | OS << " VBaseOffsets: ["; |
3808 | const CXXRecordDecl *VBase = nullptr; |
3809 | for (auto I : CXXRD->vbases()) { |
3810 | if (VBase) |
3811 | OS << ", "; |
3812 | VBase = I.getType()->getAsCXXRecordDecl(); |
3813 | OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity(); |
3814 | } |
3815 | OS << "]>\n"; |
3816 | } |
3817 | OS << " FieldOffsets: ["; |
3818 | for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { |
3819 | if (i) |
3820 | OS << ", "; |
3821 | OS << Info.getFieldOffset(FieldNo: i); |
3822 | } |
3823 | OS << "]>\n"; |
3824 | } |
3825 |
Definitions
- BaseSubobjectInfo
- ExternalLayout
- ExternalLayout
- getExternalFieldOffset
- getExternalNVBaseOffset
- getExternalVBaseOffset
- EmptySubobjectMap
- AnyEmptySubobjectsBeyondOffset
- getFieldOffset
- EmptySubobjectMap
- ComputeEmptySubobjectSizes
- CanPlaceSubobjectAtOffset
- AddSubobjectAtOffset
- CanPlaceBaseSubobjectAtOffset
- UpdateEmptyBaseSubobjects
- CanPlaceBaseAtOffset
- CanPlaceFieldSubobjectAtOffset
- CanPlaceFieldSubobjectAtOffset
- CanPlaceFieldAtOffset
- UpdateEmptyFieldSubobjects
- UpdateEmptyFieldSubobjects
- ItaniumRecordLayoutBuilder
- ItaniumRecordLayoutBuilder
- getCXXABI
- UpdateAlignment
- UpdateAlignment
- getSize
- getSizeInBits
- setSize
- setSize
- getAlignment
- getDataSize
- getDataSizeInBits
- setDataSize
- setDataSize
- ItaniumRecordLayoutBuilder
- operator=
- SelectPrimaryVBase
- DeterminePrimaryBase
- ComputeBaseSubobjectInfo
- ComputeBaseSubobjectInfo
- EnsureVTablePointerAlignment
- LayoutNonVirtualBases
- LayoutNonVirtualBase
- AddPrimaryVirtualBaseOffsets
- LayoutVirtualBases
- LayoutVirtualBase
- LayoutBase
- InitializeLayout
- Layout
- Layout
- Layout
- LayoutFields
- roundUpSizeToCharAlignment
- LayoutWideBitField
- isAIXLayout
- LayoutBitField
- LayoutField
- FinishLayout
- UpdateAlignment
- updateExternalFieldOffset
- getPaddingDiagFromTagKind
- CheckFieldPadding
- CheckFieldPadding
- computeKeyFunction
- Diag
- mustSkipTailPadding
- isMsLayout
- MicrosoftRecordLayoutBuilder
- ElementInfo
- MicrosoftRecordLayoutBuilder
- MicrosoftRecordLayoutBuilder
- operator=
- placeFieldAtOffset
- placeFieldAtBitOffset
- getAdjustedElementInfo
- getAdjustedElementInfo
- layout
- cxxLayout
- initializeLayout
- initializeCXXLayout
- layoutNonVirtualBases
- recordUsesEBO
- layoutNonVirtualBase
- layoutFields
- layoutField
- layoutBitField
- layoutZeroWidthBitField
- injectVBPtr
- injectVFPtr
- layoutVirtualBases
- finalizeLayout
- RequiresVtordisp
- computeVtorDispSet
- getASTRecordLayout
- getCurrentKeyFunction
- setNonKeyFunction
- getFieldOffset
- getFieldOffset
- lookupFieldBitOffset
- getObjCLayout
- PrintOffset
- PrintBitFieldOffset
- PrintIndentNoOffset
- DumpRecordLayout
Learn to use CMake with our Intro Training
Find out more