1//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with generation of the layout of virtual tables.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/VTableBuilder.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTDiagnostic.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/RecordLayout.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/Support/Format.h"
23#include "llvm/Support/raw_ostream.h"
24#include <algorithm>
25#include <cstdio>
26
27using namespace clang;
28
29#define DUMP_OVERRIDERS 0
30
31namespace {
32
33/// BaseOffset - Represents an offset from a derived class to a direct or
34/// indirect base class.
35struct BaseOffset {
36 /// DerivedClass - The derived class.
37 const CXXRecordDecl *DerivedClass;
38
39 /// VirtualBase - If the path from the derived class to the base class
40 /// involves virtual base classes, this holds the declaration of the last
41 /// virtual base in this path (i.e. closest to the base class).
42 const CXXRecordDecl *VirtualBase;
43
44 /// NonVirtualOffset - The offset from the derived class to the base class.
45 /// (Or the offset from the virtual base class to the base class, if the
46 /// path from the derived class to the base class involves a virtual base
47 /// class.
48 CharUnits NonVirtualOffset;
49
50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51 NonVirtualOffset(CharUnits::Zero()) { }
52 BaseOffset(const CXXRecordDecl *DerivedClass,
53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55 NonVirtualOffset(NonVirtualOffset) { }
56
57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58};
59
60/// FinalOverriders - Contains the final overrider member functions for all
61/// member functions in the base subobjects of a class.
62class FinalOverriders {
63public:
64 /// OverriderInfo - Information about a final overrider.
65 struct OverriderInfo {
66 /// Method - The method decl of the overrider.
67 const CXXMethodDecl *Method;
68
69 /// VirtualBase - The virtual base class subobject of this overrider.
70 /// Note that this records the closest derived virtual base class subobject.
71 const CXXRecordDecl *VirtualBase;
72
73 /// Offset - the base offset of the overrider's parent in the layout class.
74 CharUnits Offset;
75
76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77 Offset(CharUnits::Zero()) { }
78 };
79
80private:
81 /// MostDerivedClass - The most derived class for which the final overriders
82 /// are stored.
83 const CXXRecordDecl *MostDerivedClass;
84
85 /// MostDerivedClassOffset - If we're building final overriders for a
86 /// construction vtable, this holds the offset from the layout class to the
87 /// most derived class.
88 const CharUnits MostDerivedClassOffset;
89
90 /// LayoutClass - The class we're using for layout information. Will be
91 /// different than the most derived class if the final overriders are for a
92 /// construction vtable.
93 const CXXRecordDecl *LayoutClass;
94
95 ASTContext &Context;
96
97 /// MostDerivedClassLayout - the AST record layout of the most derived class.
98 const ASTRecordLayout &MostDerivedClassLayout;
99
100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101 /// in a base subobject.
102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105 OverriderInfo> OverridersMapTy;
106
107 /// OverridersMap - The final overriders for all virtual member functions of
108 /// all the base subobjects of the most derived class.
109 OverridersMapTy OverridersMap;
110
111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112 /// as a record decl and a subobject number) and its offsets in the most
113 /// derived class as well as the layout class.
114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115 CharUnits> SubobjectOffsetMapTy;
116
117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120 /// given base.
121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122 CharUnits OffsetInLayoutClass,
123 SubobjectOffsetMapTy &SubobjectOffsets,
124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125 SubobjectCountMapTy &SubobjectCounts);
126
127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129 /// dump - dump the final overriders for a base subobject, and all its direct
130 /// and indirect base subobjects.
131 void dump(raw_ostream &Out, BaseSubobject Base,
132 VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134public:
135 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136 CharUnits MostDerivedClassOffset,
137 const CXXRecordDecl *LayoutClass);
138
139 /// getOverrider - Get the final overrider for the given method declaration in
140 /// the subobject with the given base offset.
141 OverriderInfo getOverrider(const CXXMethodDecl *MD,
142 CharUnits BaseOffset) const {
143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144 "Did not find overrider!");
145
146 return OverridersMap.lookup(Val: std::make_pair(x&: MD, y&: BaseOffset));
147 }
148
149 /// dump - dump the final overriders.
150 void dump() {
151 VisitedVirtualBasesSetTy VisitedVirtualBases;
152 dump(Out&: llvm::errs(), Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153 VisitedVirtualBases);
154 }
155
156};
157
158FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159 CharUnits MostDerivedClassOffset,
160 const CXXRecordDecl *LayoutClass)
161 : MostDerivedClass(MostDerivedClass),
162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163 Context(MostDerivedClass->getASTContext()),
164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166 // Compute base offsets.
167 SubobjectOffsetMapTy SubobjectOffsets;
168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169 SubobjectCountMapTy SubobjectCounts;
170 ComputeBaseOffsets(Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171 /*IsVirtual=*/false,
172 OffsetInLayoutClass: MostDerivedClassOffset,
173 SubobjectOffsets, SubobjectLayoutClassOffsets,
174 SubobjectCounts);
175
176 // Get the final overriders.
177 CXXFinalOverriderMap FinalOverriders;
178 MostDerivedClass->getFinalOverriders(FinaOverriders&: FinalOverriders);
179
180 for (const auto &Overrider : FinalOverriders) {
181 const CXXMethodDecl *MD = Overrider.first;
182 const OverridingMethods &Methods = Overrider.second;
183
184 for (const auto &M : Methods) {
185 unsigned SubobjectNumber = M.first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
189
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(x: MD->getParent(),
191 y&: SubobjectNumber)];
192
193 assert(M.second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = M.second.front();
195
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(x&: OverriderRD,
202 y: Method.Subobject)];
203
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(x&: MD, y&: BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
206
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
210 }
211 }
212
213#if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216#endif
217}
218
219static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
223
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
226
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
230
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
236 }
237 }
238
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
242
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
249 }
250
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256}
257
258static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264 if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
266
267 return ComputeBaseOffset(Context, DerivedRD, Path: Paths.front());
268}
269
270static BaseOffset
271ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
282
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
286
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
290 }
291
292 if (isa<ReferenceType>(Val: CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(Val: CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
304 }
305
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
313 }
314
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanDerivedReturnType)->getDecl());
317
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanBaseReturnType)->getDecl());
320
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322}
323
324void
325FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
331
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
335
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
341
342 SubobjectOffsets[std::make_pair(x&: RD, y&: SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(x&: RD, y&: SubobjectNumber)] =
344 OffsetInLayoutClass;
345
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(Val: std::make_pair(x&: BaseDecl, y: 0)))
355 continue;
356
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
359
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(Base: BaseDecl);
366
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369 }
370
371 ComputeBaseOffsets(Base: BaseSubobject(BaseDecl, BaseOffset),
372 IsVirtual: B.isVirtual(), OffsetInLayoutClass: BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
375 }
376}
377
378void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
389
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(Ptr: BaseDecl).second) {
393 // We've visited this base before.
394 continue;
395 }
396
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(Base: BaseDecl) + Base.getBaseOffset();
400 }
401
402 dump(Out, Base: BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403 }
404
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!VTableContextBase::hasVtableSlot(MD))
413 continue;
414 MD = MD->getCanonicalDecl();
415
416 OverriderInfo Overrider = getOverrider(MD, BaseOffset: Base.getBaseOffset());
417
418 Out << " ";
419 MD->printQualifiedName(Out);
420 Out << " - (";
421 Overrider.Method->printQualifiedName(Out);
422 Out << ", " << Overrider.Offset.getQuantity() << ')';
423
424 BaseOffset Offset;
425 if (!Overrider.Method->isPureVirtual())
426 Offset = ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: Overrider.Method, BaseMD: MD);
427
428 if (!Offset.isEmpty()) {
429 Out << " [ret-adj: ";
430 if (Offset.VirtualBase) {
431 Offset.VirtualBase->printQualifiedName(Out);
432 Out << " vbase, ";
433 }
434
435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436 }
437
438 Out << "\n";
439 }
440}
441
442/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443struct VCallOffsetMap {
444
445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447 /// Offsets - Keeps track of methods and their offsets.
448 // FIXME: This should be a real map and not a vector.
449 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452 /// can share the same vcall offset.
453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454 const CXXMethodDecl *RHS);
455
456public:
457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458 /// add was successful, or false if there was already a member function with
459 /// the same signature in the map.
460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463 /// vtable address point) for the given virtual member function.
464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466 // empty - Return whether the offset map is empty or not.
467 bool empty() const { return Offsets.empty(); }
468};
469
470static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471 const CXXMethodDecl *RHS) {
472 const FunctionProtoType *LT =
473 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474 const FunctionProtoType *RT =
475 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477 // Fast-path matches in the canonical types.
478 if (LT == RT) return true;
479
480 // Force the signatures to match. We can't rely on the overrides
481 // list here because there isn't necessarily an inheritance
482 // relationship between the two methods.
483 if (LT->getMethodQuals() != RT->getMethodQuals())
484 return false;
485 return LT->getParamTypes() == RT->getParamTypes();
486}
487
488bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489 const CXXMethodDecl *RHS) {
490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492
493 // A destructor can share a vcall offset with another destructor.
494 if (isa<CXXDestructorDecl>(Val: LHS))
495 return isa<CXXDestructorDecl>(Val: RHS);
496
497 // FIXME: We need to check more things here.
498
499 // The methods must have the same name.
500 DeclarationName LHSName = LHS->getDeclName();
501 DeclarationName RHSName = RHS->getDeclName();
502 if (LHSName != RHSName)
503 return false;
504
505 // And the same signatures.
506 return HasSameVirtualSignature(LHS, RHS);
507}
508
509bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510 CharUnits OffsetOffset) {
511 // Check if we can reuse an offset.
512 for (const auto &OffsetPair : Offsets) {
513 if (MethodsCanShareVCallOffset(LHS: OffsetPair.first, RHS: MD))
514 return false;
515 }
516
517 // Add the offset.
518 Offsets.push_back(Elt: MethodAndOffsetPairTy(MD, OffsetOffset));
519 return true;
520}
521
522CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523 // Look for an offset.
524 for (const auto &OffsetPair : Offsets) {
525 if (MethodsCanShareVCallOffset(LHS: OffsetPair.first, RHS: MD))
526 return OffsetPair.second;
527 }
528
529 llvm_unreachable("Should always find a vcall offset offset!");
530}
531
532/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533class VCallAndVBaseOffsetBuilder {
534public:
535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536 VBaseOffsetOffsetsMapTy;
537
538private:
539 const ItaniumVTableContext &VTables;
540
541 /// MostDerivedClass - The most derived class for which we're building vcall
542 /// and vbase offsets.
543 const CXXRecordDecl *MostDerivedClass;
544
545 /// LayoutClass - The class we're using for layout information. Will be
546 /// different than the most derived class if we're building a construction
547 /// vtable.
548 const CXXRecordDecl *LayoutClass;
549
550 /// Context - The ASTContext which we will use for layout information.
551 ASTContext &Context;
552
553 /// Components - vcall and vbase offset components
554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555 VTableComponentVectorTy Components;
556
557 /// VisitedVirtualBases - Visited virtual bases.
558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559
560 /// VCallOffsets - Keeps track of vcall offsets.
561 VCallOffsetMap VCallOffsets;
562
563
564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565 /// relative to the address point.
566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567
568 /// FinalOverriders - The final overriders of the most derived class.
569 /// (Can be null when we're not building a vtable of the most derived class).
570 const FinalOverriders *Overriders;
571
572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573 /// given base subobject.
574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575 CharUnits RealBaseOffset);
576
577 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579
580 /// AddVBaseOffsets - Add vbase offsets for the given class.
581 void AddVBaseOffsets(const CXXRecordDecl *Base,
582 CharUnits OffsetInLayoutClass);
583
584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585 /// chars, relative to the vtable address point.
586 CharUnits getCurrentOffsetOffset() const;
587
588public:
589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590 const CXXRecordDecl *MostDerivedClass,
591 const CXXRecordDecl *LayoutClass,
592 const FinalOverriders *Overriders,
593 BaseSubobject Base, bool BaseIsVirtual,
594 CharUnits OffsetInLayoutClass)
595 : VTables(VTables), MostDerivedClass(MostDerivedClass),
596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597 Overriders(Overriders) {
598
599 // Add vcall and vbase offsets.
600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, RealBaseOffset: OffsetInLayoutClass);
601 }
602
603 /// Methods for iterating over the components.
604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
605 const_iterator components_begin() const { return Components.rbegin(); }
606 const_iterator components_end() const { return Components.rend(); }
607
608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610 return VBaseOffsetOffsets;
611 }
612};
613
614void
615VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616 bool BaseIsVirtual,
617 CharUnits RealBaseOffset) {
618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619
620 // Itanium C++ ABI 2.5.2:
621 // ..in classes sharing a virtual table with a primary base class, the vcall
622 // and vbase offsets added by the derived class all come before the vcall
623 // and vbase offsets required by the base class, so that the latter may be
624 // laid out as required by the base class without regard to additions from
625 // the derived class(es).
626
627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628 // emit them for the primary base first).
629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631
632 CharUnits PrimaryBaseOffset;
633
634 // Get the base offset of the primary base.
635 if (PrimaryBaseIsVirtual) {
636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637 "Primary vbase should have a zero offset!");
638
639 const ASTRecordLayout &MostDerivedClassLayout =
640 Context.getASTRecordLayout(MostDerivedClass);
641
642 PrimaryBaseOffset =
643 MostDerivedClassLayout.getVBaseClassOffset(VBase: PrimaryBase);
644 } else {
645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646 "Primary base should have a zero offset!");
647
648 PrimaryBaseOffset = Base.getBaseOffset();
649 }
650
651 AddVCallAndVBaseOffsets(
652 Base: BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653 BaseIsVirtual: PrimaryBaseIsVirtual, RealBaseOffset);
654 }
655
656 AddVBaseOffsets(Base: Base.getBase(), OffsetInLayoutClass: RealBaseOffset);
657
658 // We only want to add vcall offsets for virtual bases.
659 if (BaseIsVirtual)
660 AddVCallOffsets(Base, VBaseOffset: RealBaseOffset);
661}
662
663CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664 // OffsetIndex is the index of this vcall or vbase offset, relative to the
665 // vtable address point. (We subtract 3 to account for the information just
666 // above the address point, the RTTI info, the offset to top, and the
667 // vcall offset itself).
668 size_t NumComponentsAboveAddrPoint = 3;
669 if (Context.getLangOpts().OmitVTableRTTI)
670 NumComponentsAboveAddrPoint--;
671 int64_t OffsetIndex =
672 -(int64_t)(NumComponentsAboveAddrPoint + Components.size());
673
674 // Under the relative ABI, the offset widths are 32-bit ints instead of
675 // pointer widths.
676 CharUnits OffsetWidth = Context.toCharUnitsFromBits(
677 BitSize: VTables.isRelativeLayout()
678 ? 32
679 : Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default));
680 CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
681
682 return OffsetOffset;
683}
684
685void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
686 CharUnits VBaseOffset) {
687 const CXXRecordDecl *RD = Base.getBase();
688 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
689
690 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
691
692 // Handle the primary base first.
693 // We only want to add vcall offsets if the base is non-virtual; a virtual
694 // primary base will have its vcall and vbase offsets emitted already.
695 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
696 // Get the base offset of the primary base.
697 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
698 "Primary base should have a zero offset!");
699
700 AddVCallOffsets(Base: BaseSubobject(PrimaryBase, Base.getBaseOffset()),
701 VBaseOffset);
702 }
703
704 // Add the vcall offsets.
705 for (const auto *MD : RD->methods()) {
706 if (!VTableContextBase::hasVtableSlot(MD))
707 continue;
708 MD = MD->getCanonicalDecl();
709
710 CharUnits OffsetOffset = getCurrentOffsetOffset();
711
712 // Don't add a vcall offset if we already have one for this member function
713 // signature.
714 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
715 continue;
716
717 CharUnits Offset = CharUnits::Zero();
718
719 if (Overriders) {
720 // Get the final overrider.
721 FinalOverriders::OverriderInfo Overrider =
722 Overriders->getOverrider(MD, BaseOffset: Base.getBaseOffset());
723
724 /// The vcall offset is the offset from the virtual base to the object
725 /// where the function was overridden.
726 Offset = Overrider.Offset - VBaseOffset;
727 }
728
729 Components.push_back(
730 Elt: VTableComponent::MakeVCallOffset(Offset));
731 }
732
733 // And iterate over all non-virtual bases (ignoring the primary base).
734 for (const auto &B : RD->bases()) {
735 if (B.isVirtual())
736 continue;
737
738 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
739 if (BaseDecl == PrimaryBase)
740 continue;
741
742 // Get the base offset of this base.
743 CharUnits BaseOffset = Base.getBaseOffset() +
744 Layout.getBaseClassOffset(Base: BaseDecl);
745
746 AddVCallOffsets(Base: BaseSubobject(BaseDecl, BaseOffset),
747 VBaseOffset);
748 }
749}
750
751void
752VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
753 CharUnits OffsetInLayoutClass) {
754 const ASTRecordLayout &LayoutClassLayout =
755 Context.getASTRecordLayout(LayoutClass);
756
757 // Add vbase offsets.
758 for (const auto &B : RD->bases()) {
759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
760
761 // Check if this is a virtual base that we haven't visited before.
762 if (B.isVirtual() && VisitedVirtualBases.insert(Ptr: BaseDecl).second) {
763 CharUnits Offset =
764 LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl) - OffsetInLayoutClass;
765
766 // Add the vbase offset offset.
767 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
768 "vbase offset offset already exists!");
769
770 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
771 VBaseOffsetOffsets.insert(
772 KV: std::make_pair(x&: BaseDecl, y&: VBaseOffsetOffset));
773
774 Components.push_back(
775 Elt: VTableComponent::MakeVBaseOffset(Offset));
776 }
777
778 // Check the base class looking for more vbase offsets.
779 AddVBaseOffsets(RD: BaseDecl, OffsetInLayoutClass);
780 }
781}
782
783/// ItaniumVTableBuilder - Class for building vtable layout information.
784class ItaniumVTableBuilder {
785public:
786 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
787 /// primary bases.
788 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
789 PrimaryBasesSetVectorTy;
790
791 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
792 VBaseOffsetOffsetsMapTy;
793
794 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
795
796 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
797
798private:
799 /// VTables - Global vtable information.
800 ItaniumVTableContext &VTables;
801
802 /// MostDerivedClass - The most derived class for which we're building this
803 /// vtable.
804 const CXXRecordDecl *MostDerivedClass;
805
806 /// MostDerivedClassOffset - If we're building a construction vtable, this
807 /// holds the offset from the layout class to the most derived class.
808 const CharUnits MostDerivedClassOffset;
809
810 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
811 /// base. (This only makes sense when building a construction vtable).
812 bool MostDerivedClassIsVirtual;
813
814 /// LayoutClass - The class we're using for layout information. Will be
815 /// different than the most derived class if we're building a construction
816 /// vtable.
817 const CXXRecordDecl *LayoutClass;
818
819 /// Context - The ASTContext which we will use for layout information.
820 ASTContext &Context;
821
822 /// FinalOverriders - The final overriders of the most derived class.
823 const FinalOverriders Overriders;
824
825 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
826 /// bases in this vtable.
827 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
828
829 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
830 /// the most derived class.
831 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
832
833 /// Components - The components of the vtable being built.
834 SmallVector<VTableComponent, 64> Components;
835
836 /// AddressPoints - Address points for the vtable being built.
837 AddressPointsMapTy AddressPoints;
838
839 /// MethodInfo - Contains information about a method in a vtable.
840 /// (Used for computing 'this' pointer adjustment thunks.
841 struct MethodInfo {
842 /// BaseOffset - The base offset of this method.
843 const CharUnits BaseOffset;
844
845 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
846 /// method.
847 const CharUnits BaseOffsetInLayoutClass;
848
849 /// VTableIndex - The index in the vtable that this method has.
850 /// (For destructors, this is the index of the complete destructor).
851 const uint64_t VTableIndex;
852
853 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
854 uint64_t VTableIndex)
855 : BaseOffset(BaseOffset),
856 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
857 VTableIndex(VTableIndex) { }
858
859 MethodInfo()
860 : BaseOffset(CharUnits::Zero()),
861 BaseOffsetInLayoutClass(CharUnits::Zero()),
862 VTableIndex(0) { }
863
864 MethodInfo(MethodInfo const&) = default;
865 };
866
867 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
868
869 /// MethodInfoMap - The information for all methods in the vtable we're
870 /// currently building.
871 MethodInfoMapTy MethodInfoMap;
872
873 /// MethodVTableIndices - Contains the index (relative to the vtable address
874 /// point) where the function pointer for a virtual function is stored.
875 MethodVTableIndicesTy MethodVTableIndices;
876
877 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
878
879 /// VTableThunks - The thunks by vtable index in the vtable currently being
880 /// built.
881 VTableThunksMapTy VTableThunks;
882
883 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
884 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
885
886 /// Thunks - A map that contains all the thunks needed for all methods in the
887 /// most derived class for which the vtable is currently being built.
888 ThunksMapTy Thunks;
889
890 /// AddThunk - Add a thunk for the given method.
891 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
892
893 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
894 /// part of the vtable we're currently building.
895 void ComputeThisAdjustments();
896
897 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
898
899 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
900 /// some other base.
901 VisitedVirtualBasesSetTy PrimaryVirtualBases;
902
903 /// ComputeReturnAdjustment - Compute the return adjustment given a return
904 /// adjustment base offset.
905 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
906
907 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
908 /// the 'this' pointer from the base subobject to the derived subobject.
909 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
910 BaseSubobject Derived) const;
911
912 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
913 /// given virtual member function, its offset in the layout class and its
914 /// final overrider.
915 ThisAdjustment
916 ComputeThisAdjustment(const CXXMethodDecl *MD,
917 CharUnits BaseOffsetInLayoutClass,
918 FinalOverriders::OverriderInfo Overrider);
919
920 /// AddMethod - Add a single virtual member function to the vtable
921 /// components vector.
922 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
923
924 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
925 /// part of the vtable.
926 ///
927 /// Itanium C++ ABI 2.5.2:
928 ///
929 /// struct A { virtual void f(); };
930 /// struct B : virtual public A { int i; };
931 /// struct C : virtual public A { int j; };
932 /// struct D : public B, public C {};
933 ///
934 /// When B and C are declared, A is a primary base in each case, so although
935 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
936 /// adjustment is required and no thunk is generated. However, inside D
937 /// objects, A is no longer a primary base of C, so if we allowed calls to
938 /// C::f() to use the copy of A's vtable in the C subobject, we would need
939 /// to adjust this from C* to B::A*, which would require a third-party
940 /// thunk. Since we require that a call to C::f() first convert to A*,
941 /// C-in-D's copy of A's vtable is never referenced, so this is not
942 /// necessary.
943 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
944 CharUnits BaseOffsetInLayoutClass,
945 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
946 CharUnits FirstBaseOffsetInLayoutClass) const;
947
948
949 /// AddMethods - Add the methods of this base subobject and all its
950 /// primary bases to the vtable components vector.
951 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
952 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
953 CharUnits FirstBaseOffsetInLayoutClass,
954 PrimaryBasesSetVectorTy &PrimaryBases);
955
956 // LayoutVTable - Layout the vtable for the given base class, including its
957 // secondary vtables and any vtables for virtual bases.
958 void LayoutVTable();
959
960 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
961 /// given base subobject, as well as all its secondary vtables.
962 ///
963 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
964 /// or a direct or indirect base of a virtual base.
965 ///
966 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
967 /// in the layout class.
968 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
969 bool BaseIsMorallyVirtual,
970 bool BaseIsVirtualInLayoutClass,
971 CharUnits OffsetInLayoutClass);
972
973 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
974 /// subobject.
975 ///
976 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
977 /// or a direct or indirect base of a virtual base.
978 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
979 CharUnits OffsetInLayoutClass);
980
981 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
982 /// class hierarchy.
983 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
984 CharUnits OffsetInLayoutClass,
985 VisitedVirtualBasesSetTy &VBases);
986
987 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
988 /// given base (excluding any primary bases).
989 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
990 VisitedVirtualBasesSetTy &VBases);
991
992 /// isBuildingConstructionVTable - Return whether this vtable builder is
993 /// building a construction vtable.
994 bool isBuildingConstructorVTable() const {
995 return MostDerivedClass != LayoutClass;
996 }
997
998public:
999 /// Component indices of the first component of each of the vtables in the
1000 /// vtable group.
1001 SmallVector<size_t, 4> VTableIndices;
1002
1003 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1004 const CXXRecordDecl *MostDerivedClass,
1005 CharUnits MostDerivedClassOffset,
1006 bool MostDerivedClassIsVirtual,
1007 const CXXRecordDecl *LayoutClass)
1008 : VTables(VTables), MostDerivedClass(MostDerivedClass),
1009 MostDerivedClassOffset(MostDerivedClassOffset),
1010 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1011 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1012 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1013 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1014
1015 LayoutVTable();
1016
1017 if (Context.getLangOpts().DumpVTableLayouts)
1018 dumpLayout(llvm::outs());
1019 }
1020
1021 uint64_t getNumThunks() const {
1022 return Thunks.size();
1023 }
1024
1025 ThunksMapTy::const_iterator thunks_begin() const {
1026 return Thunks.begin();
1027 }
1028
1029 ThunksMapTy::const_iterator thunks_end() const {
1030 return Thunks.end();
1031 }
1032
1033 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1034 return VBaseOffsetOffsets;
1035 }
1036
1037 const AddressPointsMapTy &getAddressPoints() const {
1038 return AddressPoints;
1039 }
1040
1041 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1042 return MethodVTableIndices.begin();
1043 }
1044
1045 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1046 return MethodVTableIndices.end();
1047 }
1048
1049 ArrayRef<VTableComponent> vtable_components() const { return Components; }
1050
1051 AddressPointsMapTy::const_iterator address_points_begin() const {
1052 return AddressPoints.begin();
1053 }
1054
1055 AddressPointsMapTy::const_iterator address_points_end() const {
1056 return AddressPoints.end();
1057 }
1058
1059 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1060 return VTableThunks.begin();
1061 }
1062
1063 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1064 return VTableThunks.end();
1065 }
1066
1067 /// dumpLayout - Dump the vtable layout.
1068 void dumpLayout(raw_ostream&);
1069};
1070
1071void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1072 const ThunkInfo &Thunk) {
1073 assert(!isBuildingConstructorVTable() &&
1074 "Can't add thunks for construction vtable");
1075
1076 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1077
1078 // Check if we have this thunk already.
1079 if (llvm::is_contained(Range&: ThunksVector, Element: Thunk))
1080 return;
1081
1082 ThunksVector.push_back(Elt: Thunk);
1083}
1084
1085typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1086
1087/// Visit all the methods overridden by the given method recursively,
1088/// in a depth-first pre-order. The Visitor's visitor method returns a bool
1089/// indicating whether to continue the recursion for the given overridden
1090/// method (i.e. returning false stops the iteration).
1091template <class VisitorTy>
1092static void
1093visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1094 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1095
1096 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1097 if (!Visitor(OverriddenMD))
1098 continue;
1099 visitAllOverriddenMethods(OverriddenMD, Visitor);
1100 }
1101}
1102
1103/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1104/// the overridden methods that the function decl overrides.
1105static void
1106ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1107 OverriddenMethodsSetTy& OverriddenMethods) {
1108 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1109 // Don't recurse on this method if we've already collected it.
1110 return OverriddenMethods.insert(Ptr: MD).second;
1111 };
1112 visitAllOverriddenMethods(MD, Visitor&: OverriddenMethodsCollector);
1113}
1114
1115void ItaniumVTableBuilder::ComputeThisAdjustments() {
1116 // Now go through the method info map and see if any of the methods need
1117 // 'this' pointer adjustments.
1118 for (const auto &MI : MethodInfoMap) {
1119 const CXXMethodDecl *MD = MI.first;
1120 const MethodInfo &MethodInfo = MI.second;
1121
1122 // Ignore adjustments for unused function pointers.
1123 uint64_t VTableIndex = MethodInfo.VTableIndex;
1124 if (Components[VTableIndex].getKind() ==
1125 VTableComponent::CK_UnusedFunctionPointer)
1126 continue;
1127
1128 // Get the final overrider for this method.
1129 FinalOverriders::OverriderInfo Overrider =
1130 Overriders.getOverrider(MD, BaseOffset: MethodInfo.BaseOffset);
1131
1132 // Check if we need an adjustment at all.
1133 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1134 // When a return thunk is needed by a derived class that overrides a
1135 // virtual base, gcc uses a virtual 'this' adjustment as well.
1136 // While the thunk itself might be needed by vtables in subclasses or
1137 // in construction vtables, there doesn't seem to be a reason for using
1138 // the thunk in this vtable. Still, we do so to match gcc.
1139 if (VTableThunks.lookup(Val: VTableIndex).Return.isEmpty())
1140 continue;
1141 }
1142
1143 ThisAdjustment ThisAdjustment =
1144 ComputeThisAdjustment(MD, BaseOffsetInLayoutClass: MethodInfo.BaseOffsetInLayoutClass, Overrider);
1145
1146 if (ThisAdjustment.isEmpty())
1147 continue;
1148
1149 // Add it.
1150 VTableThunks[VTableIndex].This = ThisAdjustment;
1151
1152 if (isa<CXXDestructorDecl>(Val: MD)) {
1153 // Add an adjustment for the deleting destructor as well.
1154 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1155 }
1156 }
1157
1158 /// Clear the method info map.
1159 MethodInfoMap.clear();
1160
1161 if (isBuildingConstructorVTable()) {
1162 // We don't need to store thunk information for construction vtables.
1163 return;
1164 }
1165
1166 for (const auto &TI : VTableThunks) {
1167 const VTableComponent &Component = Components[TI.first];
1168 const ThunkInfo &Thunk = TI.second;
1169 const CXXMethodDecl *MD;
1170
1171 switch (Component.getKind()) {
1172 default:
1173 llvm_unreachable("Unexpected vtable component kind!");
1174 case VTableComponent::CK_FunctionPointer:
1175 MD = Component.getFunctionDecl();
1176 break;
1177 case VTableComponent::CK_CompleteDtorPointer:
1178 MD = Component.getDestructorDecl();
1179 break;
1180 case VTableComponent::CK_DeletingDtorPointer:
1181 // We've already added the thunk when we saw the complete dtor pointer.
1182 continue;
1183 }
1184
1185 if (MD->getParent() == MostDerivedClass)
1186 AddThunk(MD, Thunk);
1187 }
1188}
1189
1190ReturnAdjustment
1191ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1192 ReturnAdjustment Adjustment;
1193
1194 if (!Offset.isEmpty()) {
1195 if (Offset.VirtualBase) {
1196 // Get the virtual base offset offset.
1197 if (Offset.DerivedClass == MostDerivedClass) {
1198 // We can get the offset offset directly from our map.
1199 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1200 VBaseOffsetOffsets.lookup(Val: Offset.VirtualBase).getQuantity();
1201 } else {
1202 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1203 VTables.getVirtualBaseOffsetOffset(RD: Offset.DerivedClass,
1204 VBase: Offset.VirtualBase).getQuantity();
1205 }
1206 }
1207
1208 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1209 }
1210
1211 return Adjustment;
1212}
1213
1214BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1215 BaseSubobject Base, BaseSubobject Derived) const {
1216 const CXXRecordDecl *BaseRD = Base.getBase();
1217 const CXXRecordDecl *DerivedRD = Derived.getBase();
1218
1219 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1220 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1221
1222 if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths))
1223 llvm_unreachable("Class must be derived from the passed in base class!");
1224
1225 // We have to go through all the paths, and see which one leads us to the
1226 // right base subobject.
1227 for (const CXXBasePath &Path : Paths) {
1228 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1229
1230 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1231
1232 if (Offset.VirtualBase) {
1233 // If we have a virtual base class, the non-virtual offset is relative
1234 // to the virtual base class offset.
1235 const ASTRecordLayout &LayoutClassLayout =
1236 Context.getASTRecordLayout(LayoutClass);
1237
1238 /// Get the virtual base offset, relative to the most derived class
1239 /// layout.
1240 OffsetToBaseSubobject +=
1241 LayoutClassLayout.getVBaseClassOffset(VBase: Offset.VirtualBase);
1242 } else {
1243 // Otherwise, the non-virtual offset is relative to the derived class
1244 // offset.
1245 OffsetToBaseSubobject += Derived.getBaseOffset();
1246 }
1247
1248 // Check if this path gives us the right base subobject.
1249 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1250 // Since we're going from the base class _to_ the derived class, we'll
1251 // invert the non-virtual offset here.
1252 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1253 return Offset;
1254 }
1255 }
1256
1257 return BaseOffset();
1258}
1259
1260ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1261 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1262 FinalOverriders::OverriderInfo Overrider) {
1263 // Ignore adjustments for pure virtual member functions.
1264 if (Overrider.Method->isPureVirtual())
1265 return ThisAdjustment();
1266
1267 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1268 BaseOffsetInLayoutClass);
1269
1270 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1271 Overrider.Offset);
1272
1273 // Compute the adjustment offset.
1274 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(Base: OverriddenBaseSubobject,
1275 Derived: OverriderBaseSubobject);
1276 if (Offset.isEmpty())
1277 return ThisAdjustment();
1278
1279 ThisAdjustment Adjustment;
1280
1281 if (Offset.VirtualBase) {
1282 // Get the vcall offset map for this virtual base.
1283 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1284
1285 if (VCallOffsets.empty()) {
1286 // We don't have vcall offsets for this virtual base, go ahead and
1287 // build them.
1288 VCallAndVBaseOffsetBuilder Builder(
1289 VTables, MostDerivedClass, MostDerivedClass,
1290 /*Overriders=*/nullptr,
1291 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1292 /*BaseIsVirtual=*/true,
1293 /*OffsetInLayoutClass=*/
1294 CharUnits::Zero());
1295
1296 VCallOffsets = Builder.getVCallOffsets();
1297 }
1298
1299 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1300 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1301 }
1302
1303 // Set the non-virtual part of the adjustment.
1304 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1305
1306 return Adjustment;
1307}
1308
1309void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1310 ReturnAdjustment ReturnAdjustment) {
1311 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) {
1312 assert(ReturnAdjustment.isEmpty() &&
1313 "Destructor can't have return adjustment!");
1314
1315 // Add both the complete destructor and the deleting destructor.
1316 Components.push_back(Elt: VTableComponent::MakeCompleteDtor(DD));
1317 Components.push_back(Elt: VTableComponent::MakeDeletingDtor(DD));
1318 } else {
1319 // Add the return adjustment if necessary.
1320 if (!ReturnAdjustment.isEmpty())
1321 VTableThunks[Components.size()].Return = ReturnAdjustment;
1322
1323 // Add the function.
1324 Components.push_back(Elt: VTableComponent::MakeFunction(MD));
1325 }
1326}
1327
1328/// OverridesIndirectMethodInBase - Return whether the given member function
1329/// overrides any methods in the set of given bases.
1330/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1331/// For example, if we have:
1332///
1333/// struct A { virtual void f(); }
1334/// struct B : A { virtual void f(); }
1335/// struct C : B { virtual void f(); }
1336///
1337/// OverridesIndirectMethodInBase will return true if given C::f as the method
1338/// and { A } as the set of bases.
1339static bool OverridesIndirectMethodInBases(
1340 const CXXMethodDecl *MD,
1341 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1342 if (Bases.count(key: MD->getParent()))
1343 return true;
1344
1345 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1346 // Check "indirect overriders".
1347 if (OverridesIndirectMethodInBases(MD: OverriddenMD, Bases))
1348 return true;
1349 }
1350
1351 return false;
1352}
1353
1354bool ItaniumVTableBuilder::IsOverriderUsed(
1355 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1356 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1357 CharUnits FirstBaseOffsetInLayoutClass) const {
1358 // If the base and the first base in the primary base chain have the same
1359 // offsets, then this overrider will be used.
1360 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1361 return true;
1362
1363 // We know now that Base (or a direct or indirect base of it) is a primary
1364 // base in part of the class hierarchy, but not a primary base in the most
1365 // derived class.
1366
1367 // If the overrider is the first base in the primary base chain, we know
1368 // that the overrider will be used.
1369 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1370 return true;
1371
1372 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1373
1374 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1375 PrimaryBases.insert(X: RD);
1376
1377 // Now traverse the base chain, starting with the first base, until we find
1378 // the base that is no longer a primary base.
1379 while (true) {
1380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1381 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1382
1383 if (!PrimaryBase)
1384 break;
1385
1386 if (Layout.isPrimaryBaseVirtual()) {
1387 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1388 "Primary base should always be at offset 0!");
1389
1390 const ASTRecordLayout &LayoutClassLayout =
1391 Context.getASTRecordLayout(LayoutClass);
1392
1393 // Now check if this is the primary base that is not a primary base in the
1394 // most derived class.
1395 if (LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase) !=
1396 FirstBaseOffsetInLayoutClass) {
1397 // We found it, stop walking the chain.
1398 break;
1399 }
1400 } else {
1401 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1402 "Primary base should always be at offset 0!");
1403 }
1404
1405 if (!PrimaryBases.insert(X: PrimaryBase))
1406 llvm_unreachable("Found a duplicate primary base!");
1407
1408 RD = PrimaryBase;
1409 }
1410
1411 // If the final overrider is an override of one of the primary bases,
1412 // then we know that it will be used.
1413 return OverridesIndirectMethodInBases(MD: Overrider, Bases&: PrimaryBases);
1414}
1415
1416typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1417
1418/// FindNearestOverriddenMethod - Given a method, returns the overridden method
1419/// from the nearest base. Returns null if no method was found.
1420/// The Bases are expected to be sorted in a base-to-derived order.
1421static const CXXMethodDecl *
1422FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1423 BasesSetVectorTy &Bases) {
1424 OverriddenMethodsSetTy OverriddenMethods;
1425 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1426
1427 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(C&: Bases)) {
1428 // Now check the overridden methods.
1429 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1430 // We found our overridden method.
1431 if (OverriddenMD->getParent() == PrimaryBase)
1432 return OverriddenMD;
1433 }
1434 }
1435
1436 return nullptr;
1437}
1438
1439void ItaniumVTableBuilder::AddMethods(
1440 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1441 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1442 CharUnits FirstBaseOffsetInLayoutClass,
1443 PrimaryBasesSetVectorTy &PrimaryBases) {
1444 // Itanium C++ ABI 2.5.2:
1445 // The order of the virtual function pointers in a virtual table is the
1446 // order of declaration of the corresponding member functions in the class.
1447 //
1448 // There is an entry for any virtual function declared in a class,
1449 // whether it is a new function or overrides a base class function,
1450 // unless it overrides a function from the primary base, and conversion
1451 // between their return types does not require an adjustment.
1452
1453 const CXXRecordDecl *RD = Base.getBase();
1454 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1455
1456 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1457 CharUnits PrimaryBaseOffset;
1458 CharUnits PrimaryBaseOffsetInLayoutClass;
1459 if (Layout.isPrimaryBaseVirtual()) {
1460 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1461 "Primary vbase should have a zero offset!");
1462
1463 const ASTRecordLayout &MostDerivedClassLayout =
1464 Context.getASTRecordLayout(MostDerivedClass);
1465
1466 PrimaryBaseOffset =
1467 MostDerivedClassLayout.getVBaseClassOffset(VBase: PrimaryBase);
1468
1469 const ASTRecordLayout &LayoutClassLayout =
1470 Context.getASTRecordLayout(LayoutClass);
1471
1472 PrimaryBaseOffsetInLayoutClass =
1473 LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase);
1474 } else {
1475 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1476 "Primary base should have a zero offset!");
1477
1478 PrimaryBaseOffset = Base.getBaseOffset();
1479 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1480 }
1481
1482 AddMethods(Base: BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1483 BaseOffsetInLayoutClass: PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1484 FirstBaseOffsetInLayoutClass, PrimaryBases);
1485
1486 if (!PrimaryBases.insert(X: PrimaryBase))
1487 llvm_unreachable("Found a duplicate primary base!");
1488 }
1489
1490 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1491 NewVirtualFunctionsTy NewVirtualFunctions;
1492
1493 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1494
1495 // Now go through all virtual member functions and add them.
1496 for (const auto *MD : RD->methods()) {
1497 if (!ItaniumVTableContext::hasVtableSlot(MD))
1498 continue;
1499 MD = MD->getCanonicalDecl();
1500
1501 // Get the final overrider.
1502 FinalOverriders::OverriderInfo Overrider =
1503 Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset());
1504
1505 // Check if this virtual member function overrides a method in a primary
1506 // base. If this is the case, and the return type doesn't require adjustment
1507 // then we can just use the member function from the primary base.
1508 if (const CXXMethodDecl *OverriddenMD =
1509 FindNearestOverriddenMethod(MD, Bases&: PrimaryBases)) {
1510 if (ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: MD,
1511 BaseMD: OverriddenMD).isEmpty()) {
1512 // Replace the method info of the overridden method with our own
1513 // method.
1514 assert(MethodInfoMap.count(OverriddenMD) &&
1515 "Did not find the overridden method!");
1516 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1517
1518 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1519 OverriddenMethodInfo.VTableIndex);
1520
1521 assert(!MethodInfoMap.count(MD) &&
1522 "Should not have method info for this method yet!");
1523
1524 MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MethodInfo));
1525 MethodInfoMap.erase(Val: OverriddenMD);
1526
1527 // If the overridden method exists in a virtual base class or a direct
1528 // or indirect base class of a virtual base class, we need to emit a
1529 // thunk if we ever have a class hierarchy where the base class is not
1530 // a primary base in the complete object.
1531 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1532 // Compute the this adjustment.
1533 ThisAdjustment ThisAdjustment =
1534 ComputeThisAdjustment(MD: OverriddenMD, BaseOffsetInLayoutClass,
1535 Overrider);
1536
1537 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1538 Overrider.Method->getParent() == MostDerivedClass) {
1539
1540 // There's no return adjustment from OverriddenMD and MD,
1541 // but that doesn't mean there isn't one between MD and
1542 // the final overrider.
1543 BaseOffset ReturnAdjustmentOffset =
1544 ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: Overrider.Method, BaseMD: MD);
1545 ReturnAdjustment ReturnAdjustment =
1546 ComputeReturnAdjustment(Offset: ReturnAdjustmentOffset);
1547
1548 // This is a virtual thunk for the most derived class, add it.
1549 AddThunk(MD: Overrider.Method,
1550 Thunk: ThunkInfo(ThisAdjustment, ReturnAdjustment));
1551 }
1552 }
1553
1554 continue;
1555 }
1556 }
1557
1558 if (MD->isImplicit())
1559 NewImplicitVirtualFunctions.push_back(Elt: MD);
1560 else
1561 NewVirtualFunctions.push_back(Elt: MD);
1562 }
1563
1564 std::stable_sort(
1565 first: NewImplicitVirtualFunctions.begin(), last: NewImplicitVirtualFunctions.end(),
1566 comp: [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1567 if (A == B)
1568 return false;
1569 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1570 return A->isCopyAssignmentOperator();
1571 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1572 return A->isMoveAssignmentOperator();
1573 if (isa<CXXDestructorDecl>(Val: A) != isa<CXXDestructorDecl>(Val: B))
1574 return isa<CXXDestructorDecl>(Val: A);
1575 assert(A->getOverloadedOperator() == OO_EqualEqual &&
1576 B->getOverloadedOperator() == OO_EqualEqual &&
1577 "unexpected or duplicate implicit virtual function");
1578 // We rely on Sema to have declared the operator== members in the
1579 // same order as the corresponding operator<=> members.
1580 return false;
1581 });
1582 NewVirtualFunctions.append(in_start: NewImplicitVirtualFunctions.begin(),
1583 in_end: NewImplicitVirtualFunctions.end());
1584
1585 for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1586 // Get the final overrider.
1587 FinalOverriders::OverriderInfo Overrider =
1588 Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset());
1589
1590 // Insert the method info for this method.
1591 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1592 Components.size());
1593
1594 assert(!MethodInfoMap.count(MD) &&
1595 "Should not have method info for this method yet!");
1596 MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MethodInfo));
1597
1598 // Check if this overrider is going to be used.
1599 const CXXMethodDecl *OverriderMD = Overrider.Method;
1600 if (!IsOverriderUsed(Overrider: OverriderMD, BaseOffsetInLayoutClass,
1601 FirstBaseInPrimaryBaseChain,
1602 FirstBaseOffsetInLayoutClass)) {
1603 Components.push_back(Elt: VTableComponent::MakeUnusedFunction(MD: OverriderMD));
1604 continue;
1605 }
1606
1607 // Check if this overrider needs a return adjustment.
1608 // We don't want to do this for pure virtual member functions.
1609 BaseOffset ReturnAdjustmentOffset;
1610 if (!OverriderMD->isPureVirtual()) {
1611 ReturnAdjustmentOffset =
1612 ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: OverriderMD, BaseMD: MD);
1613 }
1614
1615 ReturnAdjustment ReturnAdjustment =
1616 ComputeReturnAdjustment(Offset: ReturnAdjustmentOffset);
1617
1618 AddMethod(MD: Overrider.Method, ReturnAdjustment);
1619 }
1620}
1621
1622void ItaniumVTableBuilder::LayoutVTable() {
1623 LayoutPrimaryAndSecondaryVTables(Base: BaseSubobject(MostDerivedClass,
1624 CharUnits::Zero()),
1625 /*BaseIsMorallyVirtual=*/false,
1626 BaseIsVirtualInLayoutClass: MostDerivedClassIsVirtual,
1627 OffsetInLayoutClass: MostDerivedClassOffset);
1628
1629 VisitedVirtualBasesSetTy VBases;
1630
1631 // Determine the primary virtual bases.
1632 DeterminePrimaryVirtualBases(RD: MostDerivedClass, OffsetInLayoutClass: MostDerivedClassOffset,
1633 VBases);
1634 VBases.clear();
1635
1636 LayoutVTablesForVirtualBases(RD: MostDerivedClass, VBases);
1637
1638 // -fapple-kext adds an extra entry at end of vtbl.
1639 bool IsAppleKext = Context.getLangOpts().AppleKext;
1640 if (IsAppleKext)
1641 Components.push_back(Elt: VTableComponent::MakeVCallOffset(Offset: CharUnits::Zero()));
1642}
1643
1644void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1645 BaseSubobject Base, bool BaseIsMorallyVirtual,
1646 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1647 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1648
1649 unsigned VTableIndex = Components.size();
1650 VTableIndices.push_back(Elt: VTableIndex);
1651
1652 // Add vcall and vbase offsets for this vtable.
1653 VCallAndVBaseOffsetBuilder Builder(
1654 VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1655 BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1656 Components.append(in_start: Builder.components_begin(), in_end: Builder.components_end());
1657
1658 // Check if we need to add these vcall offsets.
1659 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1660 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1661
1662 if (VCallOffsets.empty())
1663 VCallOffsets = Builder.getVCallOffsets();
1664 }
1665
1666 // If we're laying out the most derived class we want to keep track of the
1667 // virtual base class offset offsets.
1668 if (Base.getBase() == MostDerivedClass)
1669 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1670
1671 // Add the offset to top.
1672 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1673 Components.push_back(Elt: VTableComponent::MakeOffsetToTop(Offset: OffsetToTop));
1674
1675 // Next, add the RTTI.
1676 if (!Context.getLangOpts().OmitVTableRTTI)
1677 Components.push_back(Elt: VTableComponent::MakeRTTI(RD: MostDerivedClass));
1678
1679 uint64_t AddressPoint = Components.size();
1680
1681 // Now go through all virtual member functions and add them.
1682 PrimaryBasesSetVectorTy PrimaryBases;
1683 AddMethods(Base, BaseOffsetInLayoutClass: OffsetInLayoutClass,
1684 FirstBaseInPrimaryBaseChain: Base.getBase(), FirstBaseOffsetInLayoutClass: OffsetInLayoutClass,
1685 PrimaryBases);
1686
1687 const CXXRecordDecl *RD = Base.getBase();
1688 if (RD == MostDerivedClass) {
1689 assert(MethodVTableIndices.empty());
1690 for (const auto &I : MethodInfoMap) {
1691 const CXXMethodDecl *MD = I.first;
1692 const MethodInfo &MI = I.second;
1693 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) {
1694 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1695 = MI.VTableIndex - AddressPoint;
1696 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1697 = MI.VTableIndex + 1 - AddressPoint;
1698 } else {
1699 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1700 }
1701 }
1702 }
1703
1704 // Compute 'this' pointer adjustments.
1705 ComputeThisAdjustments();
1706
1707 // Add all address points.
1708 while (true) {
1709 AddressPoints.insert(
1710 KV: std::make_pair(x: BaseSubobject(RD, OffsetInLayoutClass),
1711 y: VTableLayout::AddressPointLocation{
1712 .VTableIndex: unsigned(VTableIndices.size() - 1),
1713 .AddressPointIndex: unsigned(AddressPoint - VTableIndex)}));
1714
1715 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1716 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1717
1718 if (!PrimaryBase)
1719 break;
1720
1721 if (Layout.isPrimaryBaseVirtual()) {
1722 // Check if this virtual primary base is a primary base in the layout
1723 // class. If it's not, we don't want to add it.
1724 const ASTRecordLayout &LayoutClassLayout =
1725 Context.getASTRecordLayout(LayoutClass);
1726
1727 if (LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase) !=
1728 OffsetInLayoutClass) {
1729 // We don't want to add this class (or any of its primary bases).
1730 break;
1731 }
1732 }
1733
1734 RD = PrimaryBase;
1735 }
1736
1737 // Layout secondary vtables.
1738 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1739}
1740
1741void
1742ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1743 bool BaseIsMorallyVirtual,
1744 CharUnits OffsetInLayoutClass) {
1745 // Itanium C++ ABI 2.5.2:
1746 // Following the primary virtual table of a derived class are secondary
1747 // virtual tables for each of its proper base classes, except any primary
1748 // base(s) with which it shares its primary virtual table.
1749
1750 const CXXRecordDecl *RD = Base.getBase();
1751 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1752 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1753
1754 for (const auto &B : RD->bases()) {
1755 // Ignore virtual bases, we'll emit them later.
1756 if (B.isVirtual())
1757 continue;
1758
1759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1760
1761 // Ignore bases that don't have a vtable.
1762 if (!BaseDecl->isDynamicClass())
1763 continue;
1764
1765 if (isBuildingConstructorVTable()) {
1766 // Itanium C++ ABI 2.6.4:
1767 // Some of the base class subobjects may not need construction virtual
1768 // tables, which will therefore not be present in the construction
1769 // virtual table group, even though the subobject virtual tables are
1770 // present in the main virtual table group for the complete object.
1771 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1772 continue;
1773 }
1774
1775 // Get the base offset of this base.
1776 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(Base: BaseDecl);
1777 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1778
1779 CharUnits BaseOffsetInLayoutClass =
1780 OffsetInLayoutClass + RelativeBaseOffset;
1781
1782 // Don't emit a secondary vtable for a primary base. We might however want
1783 // to emit secondary vtables for other bases of this base.
1784 if (BaseDecl == PrimaryBase) {
1785 LayoutSecondaryVTables(Base: BaseSubobject(BaseDecl, BaseOffset),
1786 BaseIsMorallyVirtual, OffsetInLayoutClass: BaseOffsetInLayoutClass);
1787 continue;
1788 }
1789
1790 // Layout the primary vtable (and any secondary vtables) for this base.
1791 LayoutPrimaryAndSecondaryVTables(
1792 Base: BaseSubobject(BaseDecl, BaseOffset),
1793 BaseIsMorallyVirtual,
1794 /*BaseIsVirtualInLayoutClass=*/false,
1795 OffsetInLayoutClass: BaseOffsetInLayoutClass);
1796 }
1797}
1798
1799void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1800 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1801 VisitedVirtualBasesSetTy &VBases) {
1802 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1803
1804 // Check if this base has a primary base.
1805 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1806
1807 // Check if it's virtual.
1808 if (Layout.isPrimaryBaseVirtual()) {
1809 bool IsPrimaryVirtualBase = true;
1810
1811 if (isBuildingConstructorVTable()) {
1812 // Check if the base is actually a primary base in the class we use for
1813 // layout.
1814 const ASTRecordLayout &LayoutClassLayout =
1815 Context.getASTRecordLayout(LayoutClass);
1816
1817 CharUnits PrimaryBaseOffsetInLayoutClass =
1818 LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase);
1819
1820 // We know that the base is not a primary base in the layout class if
1821 // the base offsets are different.
1822 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1823 IsPrimaryVirtualBase = false;
1824 }
1825
1826 if (IsPrimaryVirtualBase)
1827 PrimaryVirtualBases.insert(Ptr: PrimaryBase);
1828 }
1829 }
1830
1831 // Traverse bases, looking for more primary virtual bases.
1832 for (const auto &B : RD->bases()) {
1833 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1834
1835 CharUnits BaseOffsetInLayoutClass;
1836
1837 if (B.isVirtual()) {
1838 if (!VBases.insert(Ptr: BaseDecl).second)
1839 continue;
1840
1841 const ASTRecordLayout &LayoutClassLayout =
1842 Context.getASTRecordLayout(LayoutClass);
1843
1844 BaseOffsetInLayoutClass =
1845 LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl);
1846 } else {
1847 BaseOffsetInLayoutClass =
1848 OffsetInLayoutClass + Layout.getBaseClassOffset(Base: BaseDecl);
1849 }
1850
1851 DeterminePrimaryVirtualBases(RD: BaseDecl, OffsetInLayoutClass: BaseOffsetInLayoutClass, VBases);
1852 }
1853}
1854
1855void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1856 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1857 // Itanium C++ ABI 2.5.2:
1858 // Then come the virtual base virtual tables, also in inheritance graph
1859 // order, and again excluding primary bases (which share virtual tables with
1860 // the classes for which they are primary).
1861 for (const auto &B : RD->bases()) {
1862 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1863
1864 // Check if this base needs a vtable. (If it's virtual, not a primary base
1865 // of some other class, and we haven't visited it before).
1866 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1867 !PrimaryVirtualBases.count(Ptr: BaseDecl) &&
1868 VBases.insert(Ptr: BaseDecl).second) {
1869 const ASTRecordLayout &MostDerivedClassLayout =
1870 Context.getASTRecordLayout(MostDerivedClass);
1871 CharUnits BaseOffset =
1872 MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl);
1873
1874 const ASTRecordLayout &LayoutClassLayout =
1875 Context.getASTRecordLayout(LayoutClass);
1876 CharUnits BaseOffsetInLayoutClass =
1877 LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl);
1878
1879 LayoutPrimaryAndSecondaryVTables(
1880 Base: BaseSubobject(BaseDecl, BaseOffset),
1881 /*BaseIsMorallyVirtual=*/true,
1882 /*BaseIsVirtualInLayoutClass=*/true,
1883 OffsetInLayoutClass: BaseOffsetInLayoutClass);
1884 }
1885
1886 // We only need to check the base for virtual base vtables if it actually
1887 // has virtual bases.
1888 if (BaseDecl->getNumVBases())
1889 LayoutVTablesForVirtualBases(RD: BaseDecl, VBases);
1890 }
1891}
1892
1893/// dumpLayout - Dump the vtable layout.
1894void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1895 // FIXME: write more tests that actually use the dumpLayout output to prevent
1896 // ItaniumVTableBuilder regressions.
1897
1898 if (isBuildingConstructorVTable()) {
1899 Out << "Construction vtable for ('";
1900 MostDerivedClass->printQualifiedName(Out);
1901 Out << "', ";
1902 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1903 LayoutClass->printQualifiedName(Out);
1904 } else {
1905 Out << "Vtable for '";
1906 MostDerivedClass->printQualifiedName(Out);
1907 }
1908 Out << "' (" << Components.size() << " entries).\n";
1909
1910 // Iterate through the address points and insert them into a new map where
1911 // they are keyed by the index and not the base object.
1912 // Since an address point can be shared by multiple subobjects, we use an
1913 // STL multimap.
1914 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1915 for (const auto &AP : AddressPoints) {
1916 const BaseSubobject &Base = AP.first;
1917 uint64_t Index =
1918 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1919
1920 AddressPointsByIndex.insert(x: std::make_pair(x&: Index, y: Base));
1921 }
1922
1923 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1924 uint64_t Index = I;
1925
1926 Out << llvm::format(Fmt: "%4d | ", Vals: I);
1927
1928 const VTableComponent &Component = Components[I];
1929
1930 // Dump the component.
1931 switch (Component.getKind()) {
1932
1933 case VTableComponent::CK_VCallOffset:
1934 Out << "vcall_offset ("
1935 << Component.getVCallOffset().getQuantity()
1936 << ")";
1937 break;
1938
1939 case VTableComponent::CK_VBaseOffset:
1940 Out << "vbase_offset ("
1941 << Component.getVBaseOffset().getQuantity()
1942 << ")";
1943 break;
1944
1945 case VTableComponent::CK_OffsetToTop:
1946 Out << "offset_to_top ("
1947 << Component.getOffsetToTop().getQuantity()
1948 << ")";
1949 break;
1950
1951 case VTableComponent::CK_RTTI:
1952 Component.getRTTIDecl()->printQualifiedName(Out);
1953 Out << " RTTI";
1954 break;
1955
1956 case VTableComponent::CK_FunctionPointer: {
1957 const CXXMethodDecl *MD = Component.getFunctionDecl();
1958
1959 std::string Str = PredefinedExpr::ComputeName(
1960 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
1961 Out << Str;
1962 if (MD->isPureVirtual())
1963 Out << " [pure]";
1964
1965 if (MD->isDeleted())
1966 Out << " [deleted]";
1967
1968 ThunkInfo Thunk = VTableThunks.lookup(Val: I);
1969 if (!Thunk.isEmpty()) {
1970 // If this function pointer has a return adjustment, dump it.
1971 if (!Thunk.Return.isEmpty()) {
1972 Out << "\n [return adjustment: ";
1973 Out << Thunk.Return.NonVirtual << " non-virtual";
1974
1975 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1976 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1977 Out << " vbase offset offset";
1978 }
1979
1980 Out << ']';
1981 }
1982
1983 // If this function pointer has a 'this' pointer adjustment, dump it.
1984 if (!Thunk.This.isEmpty()) {
1985 Out << "\n [this adjustment: ";
1986 Out << Thunk.This.NonVirtual << " non-virtual";
1987
1988 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1989 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1990 Out << " vcall offset offset";
1991 }
1992
1993 Out << ']';
1994 }
1995 }
1996
1997 break;
1998 }
1999
2000 case VTableComponent::CK_CompleteDtorPointer:
2001 case VTableComponent::CK_DeletingDtorPointer: {
2002 bool IsComplete =
2003 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2004
2005 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2006
2007 DD->printQualifiedName(Out);
2008 if (IsComplete)
2009 Out << "() [complete]";
2010 else
2011 Out << "() [deleting]";
2012
2013 if (DD->isPureVirtual())
2014 Out << " [pure]";
2015
2016 ThunkInfo Thunk = VTableThunks.lookup(Val: I);
2017 if (!Thunk.isEmpty()) {
2018 // If this destructor has a 'this' pointer adjustment, dump it.
2019 if (!Thunk.This.isEmpty()) {
2020 Out << "\n [this adjustment: ";
2021 Out << Thunk.This.NonVirtual << " non-virtual";
2022
2023 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2024 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2025 Out << " vcall offset offset";
2026 }
2027
2028 Out << ']';
2029 }
2030 }
2031
2032 break;
2033 }
2034
2035 case VTableComponent::CK_UnusedFunctionPointer: {
2036 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2037
2038 std::string Str = PredefinedExpr::ComputeName(
2039 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2040 Out << "[unused] " << Str;
2041 if (MD->isPureVirtual())
2042 Out << " [pure]";
2043 }
2044
2045 }
2046
2047 Out << '\n';
2048
2049 // Dump the next address point.
2050 uint64_t NextIndex = Index + 1;
2051 if (AddressPointsByIndex.count(x: NextIndex)) {
2052 if (AddressPointsByIndex.count(x: NextIndex) == 1) {
2053 const BaseSubobject &Base =
2054 AddressPointsByIndex.find(x: NextIndex)->second;
2055
2056 Out << " -- (";
2057 Base.getBase()->printQualifiedName(Out);
2058 Out << ", " << Base.getBaseOffset().getQuantity();
2059 Out << ") vtable address --\n";
2060 } else {
2061 CharUnits BaseOffset =
2062 AddressPointsByIndex.lower_bound(x: NextIndex)->second.getBaseOffset();
2063
2064 // We store the class names in a set to get a stable order.
2065 std::set<std::string> ClassNames;
2066 for (const auto &I :
2067 llvm::make_range(p: AddressPointsByIndex.equal_range(x: NextIndex))) {
2068 assert(I.second.getBaseOffset() == BaseOffset &&
2069 "Invalid base offset!");
2070 const CXXRecordDecl *RD = I.second.getBase();
2071 ClassNames.insert(RD->getQualifiedNameAsString());
2072 }
2073
2074 for (const std::string &Name : ClassNames) {
2075 Out << " -- (" << Name;
2076 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2077 }
2078 }
2079 }
2080 }
2081
2082 Out << '\n';
2083
2084 if (isBuildingConstructorVTable())
2085 return;
2086
2087 if (MostDerivedClass->getNumVBases()) {
2088 // We store the virtual base class names and their offsets in a map to get
2089 // a stable order.
2090
2091 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2092 for (const auto &I : VBaseOffsetOffsets) {
2093 std::string ClassName = I.first->getQualifiedNameAsString();
2094 CharUnits OffsetOffset = I.second;
2095 ClassNamesAndOffsets.insert(x: std::make_pair(x&: ClassName, y&: OffsetOffset));
2096 }
2097
2098 Out << "Virtual base offset offsets for '";
2099 MostDerivedClass->printQualifiedName(Out);
2100 Out << "' (";
2101 Out << ClassNamesAndOffsets.size();
2102 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2103
2104 for (const auto &I : ClassNamesAndOffsets)
2105 Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
2106
2107 Out << "\n";
2108 }
2109
2110 if (!Thunks.empty()) {
2111 // We store the method names in a map to get a stable order.
2112 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2113
2114 for (const auto &I : Thunks) {
2115 const CXXMethodDecl *MD = I.first;
2116 std::string MethodName = PredefinedExpr::ComputeName(
2117 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2118
2119 MethodNamesAndDecls.insert(x: std::make_pair(x&: MethodName, y&: MD));
2120 }
2121
2122 for (const auto &I : MethodNamesAndDecls) {
2123 const std::string &MethodName = I.first;
2124 const CXXMethodDecl *MD = I.second;
2125
2126 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2127 llvm::sort(C&: ThunksVector, Comp: [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2128 assert(LHS.Method == nullptr && RHS.Method == nullptr);
2129 return std::tie(args: LHS.This, args: LHS.Return) < std::tie(args: RHS.This, args: RHS.Return);
2130 });
2131
2132 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2133 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2134
2135 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2136 const ThunkInfo &Thunk = ThunksVector[I];
2137
2138 Out << llvm::format(Fmt: "%4d | ", Vals: I);
2139
2140 // If this function pointer has a return pointer adjustment, dump it.
2141 if (!Thunk.Return.isEmpty()) {
2142 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2143 Out << " non-virtual";
2144 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2145 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2146 Out << " vbase offset offset";
2147 }
2148
2149 if (!Thunk.This.isEmpty())
2150 Out << "\n ";
2151 }
2152
2153 // If this function pointer has a 'this' pointer adjustment, dump it.
2154 if (!Thunk.This.isEmpty()) {
2155 Out << "this adjustment: ";
2156 Out << Thunk.This.NonVirtual << " non-virtual";
2157
2158 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2159 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2160 Out << " vcall offset offset";
2161 }
2162 }
2163
2164 Out << '\n';
2165 }
2166
2167 Out << '\n';
2168 }
2169 }
2170
2171 // Compute the vtable indices for all the member functions.
2172 // Store them in a map keyed by the index so we'll get a sorted table.
2173 std::map<uint64_t, std::string> IndicesMap;
2174
2175 for (const auto *MD : MostDerivedClass->methods()) {
2176 // We only want virtual member functions.
2177 if (!ItaniumVTableContext::hasVtableSlot(MD))
2178 continue;
2179 MD = MD->getCanonicalDecl();
2180
2181 std::string MethodName = PredefinedExpr::ComputeName(
2182 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2183
2184 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) {
2185 GlobalDecl GD(DD, Dtor_Complete);
2186 assert(MethodVTableIndices.count(GD));
2187 uint64_t VTableIndex = MethodVTableIndices[GD];
2188 IndicesMap[VTableIndex] = MethodName + " [complete]";
2189 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2190 } else {
2191 assert(MethodVTableIndices.count(MD));
2192 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2193 }
2194 }
2195
2196 // Print the vtable indices for all the member functions.
2197 if (!IndicesMap.empty()) {
2198 Out << "VTable indices for '";
2199 MostDerivedClass->printQualifiedName(Out);
2200 Out << "' (" << IndicesMap.size() << " entries).\n";
2201
2202 for (const auto &I : IndicesMap) {
2203 uint64_t VTableIndex = I.first;
2204 const std::string &MethodName = I.second;
2205
2206 Out << llvm::format(Fmt: "%4" PRIu64 " | ", Vals: VTableIndex) << MethodName
2207 << '\n';
2208 }
2209 }
2210
2211 Out << '\n';
2212}
2213}
2214
2215static VTableLayout::AddressPointsIndexMapTy
2216MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2217 unsigned numVTables) {
2218 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2219
2220 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2221 const auto &addressPointLoc = it->second;
2222 unsigned vtableIndex = addressPointLoc.VTableIndex;
2223 unsigned addressPoint = addressPointLoc.AddressPointIndex;
2224 if (indexMap[vtableIndex]) {
2225 // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2226 // every vtable index should have a unique address point.
2227 assert(indexMap[vtableIndex] == addressPoint &&
2228 "Every vtable index should have a unique address point. Found a "
2229 "vtable that has two different address points.");
2230 } else {
2231 indexMap[vtableIndex] = addressPoint;
2232 }
2233 }
2234
2235 // Note that by this point, not all the address may be initialized if the
2236 // AddressPoints map is empty. This is ok if the map isn't needed. See
2237 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2238 // emprt map.
2239 return indexMap;
2240}
2241
2242VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2243 ArrayRef<VTableComponent> VTableComponents,
2244 ArrayRef<VTableThunkTy> VTableThunks,
2245 const AddressPointsMapTy &AddressPoints)
2246 : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2247 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2248 addressPoints: AddressPoints, numVTables: VTableIndices.size())) {
2249 if (VTableIndices.size() <= 1)
2250 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2251 else
2252 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2253
2254 llvm::sort(C&: this->VTableThunks, Comp: [](const VTableLayout::VTableThunkTy &LHS,
2255 const VTableLayout::VTableThunkTy &RHS) {
2256 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2257 "Different thunks should have unique indices!");
2258 return LHS.first < RHS.first;
2259 });
2260}
2261
2262VTableLayout::~VTableLayout() { }
2263
2264bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2265 return MD->isVirtual() && !MD->isImmediateFunction();
2266}
2267
2268ItaniumVTableContext::ItaniumVTableContext(
2269 ASTContext &Context, VTableComponentLayout ComponentLayout)
2270 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2271
2272ItaniumVTableContext::~ItaniumVTableContext() {}
2273
2274uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2275 GD = GD.getCanonicalDecl();
2276 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(Val: GD);
2277 if (I != MethodVTableIndices.end())
2278 return I->second;
2279
2280 const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent();
2281
2282 computeVTableRelatedInformation(RD);
2283
2284 I = MethodVTableIndices.find(Val: GD);
2285 assert(I != MethodVTableIndices.end() && "Did not find index!");
2286 return I->second;
2287}
2288
2289CharUnits
2290ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2291 const CXXRecordDecl *VBase) {
2292 ClassPairTy ClassPair(RD, VBase);
2293
2294 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2295 VirtualBaseClassOffsetOffsets.find(Val: ClassPair);
2296 if (I != VirtualBaseClassOffsetOffsets.end())
2297 return I->second;
2298
2299 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2300 BaseSubobject(RD, CharUnits::Zero()),
2301 /*BaseIsVirtual=*/false,
2302 /*OffsetInLayoutClass=*/CharUnits::Zero());
2303
2304 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2305 // Insert all types.
2306 ClassPairTy ClassPair(RD, I.first);
2307
2308 VirtualBaseClassOffsetOffsets.insert(KV: std::make_pair(x&: ClassPair, y: I.second));
2309 }
2310
2311 I = VirtualBaseClassOffsetOffsets.find(Val: ClassPair);
2312 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2313
2314 return I->second;
2315}
2316
2317static std::unique_ptr<VTableLayout>
2318CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2319 SmallVector<VTableLayout::VTableThunkTy, 1>
2320 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2321
2322 return std::make_unique<VTableLayout>(
2323 args: Builder.VTableIndices, args: Builder.vtable_components(), args&: VTableThunks,
2324 args: Builder.getAddressPoints());
2325}
2326
2327void
2328ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2329 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2330
2331 // Check if we've computed this information before.
2332 if (Entry)
2333 return;
2334
2335 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2336 /*MostDerivedClassIsVirtual=*/false, RD);
2337 Entry = CreateVTableLayout(Builder);
2338
2339 MethodVTableIndices.insert(I: Builder.vtable_indices_begin(),
2340 E: Builder.vtable_indices_end());
2341
2342 // Add the known thunks.
2343 Thunks.insert(I: Builder.thunks_begin(), E: Builder.thunks_end());
2344
2345 // If we don't have the vbase information for this class, insert it.
2346 // getVirtualBaseOffsetOffset will compute it separately without computing
2347 // the rest of the vtable related information.
2348 if (!RD->getNumVBases())
2349 return;
2350
2351 const CXXRecordDecl *VBase =
2352 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2353
2354 if (VirtualBaseClassOffsetOffsets.count(Val: std::make_pair(x&: RD, y&: VBase)))
2355 return;
2356
2357 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2358 // Insert all types.
2359 ClassPairTy ClassPair(RD, I.first);
2360
2361 VirtualBaseClassOffsetOffsets.insert(KV: std::make_pair(x&: ClassPair, y: I.second));
2362 }
2363}
2364
2365std::unique_ptr<VTableLayout>
2366ItaniumVTableContext::createConstructionVTableLayout(
2367 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2368 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2369 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2370 MostDerivedClassIsVirtual, LayoutClass);
2371 return CreateVTableLayout(Builder);
2372}
2373
2374namespace {
2375
2376// Vtables in the Microsoft ABI are different from the Itanium ABI.
2377//
2378// The main differences are:
2379// 1. Separate vftable and vbtable.
2380//
2381// 2. Each subobject with a vfptr gets its own vftable rather than an address
2382// point in a single vtable shared between all the subobjects.
2383// Each vftable is represented by a separate section and virtual calls
2384// must be done using the vftable which has a slot for the function to be
2385// called.
2386//
2387// 3. Virtual method definitions expect their 'this' parameter to point to the
2388// first vfptr whose table provides a compatible overridden method. In many
2389// cases, this permits the original vf-table entry to directly call
2390// the method instead of passing through a thunk.
2391// See example before VFTableBuilder::ComputeThisOffset below.
2392//
2393// A compatible overridden method is one which does not have a non-trivial
2394// covariant-return adjustment.
2395//
2396// The first vfptr is the one with the lowest offset in the complete-object
2397// layout of the defining class, and the method definition will subtract
2398// that constant offset from the parameter value to get the real 'this'
2399// value. Therefore, if the offset isn't really constant (e.g. if a virtual
2400// function defined in a virtual base is overridden in a more derived
2401// virtual base and these bases have a reverse order in the complete
2402// object), the vf-table may require a this-adjustment thunk.
2403//
2404// 4. vftables do not contain new entries for overrides that merely require
2405// this-adjustment. Together with #3, this keeps vf-tables smaller and
2406// eliminates the need for this-adjustment thunks in many cases, at the cost
2407// of often requiring redundant work to adjust the "this" pointer.
2408//
2409// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2410// Vtordisps are emitted into the class layout if a class has
2411// a) a user-defined ctor/dtor
2412// and
2413// b) a method overriding a method in a virtual base.
2414//
2415// To get a better understanding of this code,
2416// you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2417
2418class VFTableBuilder {
2419public:
2420 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2421 MethodVFTableLocationsTy;
2422
2423 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2424 method_locations_range;
2425
2426private:
2427 /// VTables - Global vtable information.
2428 MicrosoftVTableContext &VTables;
2429
2430 /// Context - The ASTContext which we will use for layout information.
2431 ASTContext &Context;
2432
2433 /// MostDerivedClass - The most derived class for which we're building this
2434 /// vtable.
2435 const CXXRecordDecl *MostDerivedClass;
2436
2437 const ASTRecordLayout &MostDerivedClassLayout;
2438
2439 const VPtrInfo &WhichVFPtr;
2440
2441 /// FinalOverriders - The final overriders of the most derived class.
2442 const FinalOverriders Overriders;
2443
2444 /// Components - The components of the vftable being built.
2445 SmallVector<VTableComponent, 64> Components;
2446
2447 MethodVFTableLocationsTy MethodVFTableLocations;
2448
2449 /// Does this class have an RTTI component?
2450 bool HasRTTIComponent = false;
2451
2452 /// MethodInfo - Contains information about a method in a vtable.
2453 /// (Used for computing 'this' pointer adjustment thunks.
2454 struct MethodInfo {
2455 /// VBTableIndex - The nonzero index in the vbtable that
2456 /// this method's base has, or zero.
2457 const uint64_t VBTableIndex;
2458
2459 /// VFTableIndex - The index in the vftable that this method has.
2460 const uint64_t VFTableIndex;
2461
2462 /// Shadowed - Indicates if this vftable slot is shadowed by
2463 /// a slot for a covariant-return override. If so, it shouldn't be printed
2464 /// or used for vcalls in the most derived class.
2465 bool Shadowed;
2466
2467 /// UsesExtraSlot - Indicates if this vftable slot was created because
2468 /// any of the overridden slots required a return adjusting thunk.
2469 bool UsesExtraSlot;
2470
2471 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2472 bool UsesExtraSlot = false)
2473 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2474 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2475
2476 MethodInfo()
2477 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2478 UsesExtraSlot(false) {}
2479 };
2480
2481 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2482
2483 /// MethodInfoMap - The information for all methods in the vftable we're
2484 /// currently building.
2485 MethodInfoMapTy MethodInfoMap;
2486
2487 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2488
2489 /// VTableThunks - The thunks by vftable index in the vftable currently being
2490 /// built.
2491 VTableThunksMapTy VTableThunks;
2492
2493 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2494 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2495
2496 /// Thunks - A map that contains all the thunks needed for all methods in the
2497 /// most derived class for which the vftable is currently being built.
2498 ThunksMapTy Thunks;
2499
2500 /// AddThunk - Add a thunk for the given method.
2501 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2502 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2503
2504 // Check if we have this thunk already.
2505 if (llvm::is_contained(Range&: ThunksVector, Element: Thunk))
2506 return;
2507
2508 ThunksVector.push_back(Elt: Thunk);
2509 }
2510
2511 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2512 /// method, relative to the beginning of the MostDerivedClass.
2513 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2514
2515 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2516 CharUnits ThisOffset, ThisAdjustment &TA);
2517
2518 /// AddMethod - Add a single virtual member function to the vftable
2519 /// components vector.
2520 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2521 if (!TI.isEmpty()) {
2522 VTableThunks[Components.size()] = TI;
2523 AddThunk(MD, Thunk: TI);
2524 }
2525 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) {
2526 assert(TI.Return.isEmpty() &&
2527 "Destructor can't have return adjustment!");
2528 Components.push_back(Elt: VTableComponent::MakeDeletingDtor(DD));
2529 } else {
2530 Components.push_back(Elt: VTableComponent::MakeFunction(MD));
2531 }
2532 }
2533
2534 /// AddMethods - Add the methods of this base subobject and the relevant
2535 /// subbases to the vftable we're currently laying out.
2536 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2537 const CXXRecordDecl *LastVBase,
2538 BasesSetVectorTy &VisitedBases);
2539
2540 void LayoutVFTable() {
2541 // RTTI data goes before all other entries.
2542 if (HasRTTIComponent)
2543 Components.push_back(Elt: VTableComponent::MakeRTTI(RD: MostDerivedClass));
2544
2545 BasesSetVectorTy VisitedBases;
2546 AddMethods(Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), BaseDepth: 0, LastVBase: nullptr,
2547 VisitedBases);
2548 // Note that it is possible for the vftable to contain only an RTTI
2549 // pointer, if all virtual functions are constewval.
2550 assert(!Components.empty() && "vftable can't be empty");
2551
2552 assert(MethodVFTableLocations.empty());
2553 for (const auto &I : MethodInfoMap) {
2554 const CXXMethodDecl *MD = I.first;
2555 const MethodInfo &MI = I.second;
2556 assert(MD == MD->getCanonicalDecl());
2557
2558 // Skip the methods that the MostDerivedClass didn't override
2559 // and the entries shadowed by return adjusting thunks.
2560 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2561 continue;
2562 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2563 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2564 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) {
2565 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2566 } else {
2567 MethodVFTableLocations[MD] = Loc;
2568 }
2569 }
2570 }
2571
2572public:
2573 VFTableBuilder(MicrosoftVTableContext &VTables,
2574 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2575 : VTables(VTables),
2576 Context(MostDerivedClass->getASTContext()),
2577 MostDerivedClass(MostDerivedClass),
2578 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2579 WhichVFPtr(Which),
2580 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2581 // Provide the RTTI component if RTTIData is enabled. If the vftable would
2582 // be available externally, we should not provide the RTTI componenent. It
2583 // is currently impossible to get available externally vftables with either
2584 // dllimport or extern template instantiations, but eventually we may add a
2585 // flag to support additional devirtualization that needs this.
2586 if (Context.getLangOpts().RTTIData)
2587 HasRTTIComponent = true;
2588
2589 LayoutVFTable();
2590
2591 if (Context.getLangOpts().DumpVTableLayouts)
2592 dumpLayout(llvm::outs());
2593 }
2594
2595 uint64_t getNumThunks() const { return Thunks.size(); }
2596
2597 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2598
2599 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2600
2601 method_locations_range vtable_locations() const {
2602 return method_locations_range(MethodVFTableLocations.begin(),
2603 MethodVFTableLocations.end());
2604 }
2605
2606 ArrayRef<VTableComponent> vtable_components() const { return Components; }
2607
2608 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2609 return VTableThunks.begin();
2610 }
2611
2612 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2613 return VTableThunks.end();
2614 }
2615
2616 void dumpLayout(raw_ostream &);
2617};
2618
2619} // end namespace
2620
2621// Let's study one class hierarchy as an example:
2622// struct A {
2623// virtual void f();
2624// int x;
2625// };
2626//
2627// struct B : virtual A {
2628// virtual void f();
2629// };
2630//
2631// Record layouts:
2632// struct A:
2633// 0 | (A vftable pointer)
2634// 4 | int x
2635//
2636// struct B:
2637// 0 | (B vbtable pointer)
2638// 4 | struct A (virtual base)
2639// 4 | (A vftable pointer)
2640// 8 | int x
2641//
2642// Let's assume we have a pointer to the A part of an object of dynamic type B:
2643// B b;
2644// A *a = (A*)&b;
2645// a->f();
2646//
2647// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2648// "this" parameter to point at the A subobject, which is B+4.
2649// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2650// performed as a *static* adjustment.
2651//
2652// Interesting thing happens when we alter the relative placement of A and B
2653// subobjects in a class:
2654// struct C : virtual B { };
2655//
2656// C c;
2657// A *a = (A*)&c;
2658// a->f();
2659//
2660// Respective record layout is:
2661// 0 | (C vbtable pointer)
2662// 4 | struct A (virtual base)
2663// 4 | (A vftable pointer)
2664// 8 | int x
2665// 12 | struct B (virtual base)
2666// 12 | (B vbtable pointer)
2667//
2668// The final overrider of f() in class C is still B::f(), so B+4 should be
2669// passed as "this" to that code. However, "a" points at B-8, so the respective
2670// vftable entry should hold a thunk that adds 12 to the "this" argument before
2671// performing a tail call to B::f().
2672//
2673// With this example in mind, we can now calculate the 'this' argument offset
2674// for the given method, relative to the beginning of the MostDerivedClass.
2675CharUnits
2676VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2677 BasesSetVectorTy Bases;
2678
2679 {
2680 // Find the set of least derived bases that define the given method.
2681 OverriddenMethodsSetTy VisitedOverriddenMethods;
2682 auto InitialOverriddenDefinitionCollector = [&](
2683 const CXXMethodDecl *OverriddenMD) {
2684 if (OverriddenMD->size_overridden_methods() == 0)
2685 Bases.insert(X: OverriddenMD->getParent());
2686 // Don't recurse on this method if we've already collected it.
2687 return VisitedOverriddenMethods.insert(Ptr: OverriddenMD).second;
2688 };
2689 visitAllOverriddenMethods(MD: Overrider.Method,
2690 Visitor&: InitialOverriddenDefinitionCollector);
2691 }
2692
2693 // If there are no overrides then 'this' is located
2694 // in the base that defines the method.
2695 if (Bases.size() == 0)
2696 return Overrider.Offset;
2697
2698 CXXBasePaths Paths;
2699 Overrider.Method->getParent()->lookupInBases(
2700 BaseMatches: [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2701 return Bases.count(key: Specifier->getType()->getAsCXXRecordDecl());
2702 },
2703 Paths);
2704
2705 // This will hold the smallest this offset among overridees of MD.
2706 // This implies that an offset of a non-virtual base will dominate an offset
2707 // of a virtual base to potentially reduce the number of thunks required
2708 // in the derived classes that inherit this method.
2709 CharUnits Ret;
2710 bool First = true;
2711
2712 const ASTRecordLayout &OverriderRDLayout =
2713 Context.getASTRecordLayout(Overrider.Method->getParent());
2714 for (const CXXBasePath &Path : Paths) {
2715 CharUnits ThisOffset = Overrider.Offset;
2716 CharUnits LastVBaseOffset;
2717
2718 // For each path from the overrider to the parents of the overridden
2719 // methods, traverse the path, calculating the this offset in the most
2720 // derived class.
2721 for (const CXXBasePathElement &Element : Path) {
2722 QualType CurTy = Element.Base->getType();
2723 const CXXRecordDecl *PrevRD = Element.Class,
2724 *CurRD = CurTy->getAsCXXRecordDecl();
2725 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2726
2727 if (Element.Base->isVirtual()) {
2728 // The interesting things begin when you have virtual inheritance.
2729 // The final overrider will use a static adjustment equal to the offset
2730 // of the vbase in the final overrider class.
2731 // For example, if the final overrider is in a vbase B of the most
2732 // derived class and it overrides a method of the B's own vbase A,
2733 // it uses A* as "this". In its prologue, it can cast A* to B* with
2734 // a static offset. This offset is used regardless of the actual
2735 // offset of A from B in the most derived class, requiring an
2736 // this-adjusting thunk in the vftable if A and B are laid out
2737 // differently in the most derived class.
2738 LastVBaseOffset = ThisOffset =
2739 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(VBase: CurRD);
2740 } else {
2741 ThisOffset += Layout.getBaseClassOffset(Base: CurRD);
2742 }
2743 }
2744
2745 if (isa<CXXDestructorDecl>(Val: Overrider.Method)) {
2746 if (LastVBaseOffset.isZero()) {
2747 // If a "Base" class has at least one non-virtual base with a virtual
2748 // destructor, the "Base" virtual destructor will take the address
2749 // of the "Base" subobject as the "this" argument.
2750 ThisOffset = Overrider.Offset;
2751 } else {
2752 // A virtual destructor of a virtual base takes the address of the
2753 // virtual base subobject as the "this" argument.
2754 ThisOffset = LastVBaseOffset;
2755 }
2756 }
2757
2758 if (Ret > ThisOffset || First) {
2759 First = false;
2760 Ret = ThisOffset;
2761 }
2762 }
2763
2764 assert(!First && "Method not found in the given subobject?");
2765 return Ret;
2766}
2767
2768// Things are getting even more complex when the "this" adjustment has to
2769// use a dynamic offset instead of a static one, or even two dynamic offsets.
2770// This is sometimes required when a virtual call happens in the middle of
2771// a non-most-derived class construction or destruction.
2772//
2773// Let's take a look at the following example:
2774// struct A {
2775// virtual void f();
2776// };
2777//
2778// void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2779//
2780// struct B : virtual A {
2781// virtual void f();
2782// B() {
2783// foo(this);
2784// }
2785// };
2786//
2787// struct C : virtual B {
2788// virtual void f();
2789// };
2790//
2791// Record layouts for these classes are:
2792// struct A
2793// 0 | (A vftable pointer)
2794//
2795// struct B
2796// 0 | (B vbtable pointer)
2797// 4 | (vtordisp for vbase A)
2798// 8 | struct A (virtual base)
2799// 8 | (A vftable pointer)
2800//
2801// struct C
2802// 0 | (C vbtable pointer)
2803// 4 | (vtordisp for vbase A)
2804// 8 | struct A (virtual base) // A precedes B!
2805// 8 | (A vftable pointer)
2806// 12 | struct B (virtual base)
2807// 12 | (B vbtable pointer)
2808//
2809// When one creates an object of type C, the C constructor:
2810// - initializes all the vbptrs, then
2811// - calls the A subobject constructor
2812// (initializes A's vfptr with an address of A vftable), then
2813// - calls the B subobject constructor
2814// (initializes A's vfptr with an address of B vftable and vtordisp for A),
2815// that in turn calls foo(), then
2816// - initializes A's vfptr with an address of C vftable and zeroes out the
2817// vtordisp
2818// FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2819// without vtordisp thunks?
2820// FIXME: how are vtordisp handled in the presence of nooverride/final?
2821//
2822// When foo() is called, an object with a layout of class C has a vftable
2823// referencing B::f() that assumes a B layout, so the "this" adjustments are
2824// incorrect, unless an extra adjustment is done. This adjustment is called
2825// "vtordisp adjustment". Vtordisp basically holds the difference between the
2826// actual location of a vbase in the layout class and the location assumed by
2827// the vftable of the class being constructed/destructed. Vtordisp is only
2828// needed if "this" escapes a
2829// structor (or we can't prove otherwise).
2830// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2831// estimation of a dynamic adjustment]
2832//
2833// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2834// so it just passes that pointer as "this" in a virtual call.
2835// If there was no vtordisp, that would just dispatch to B::f().
2836// However, B::f() assumes B+8 is passed as "this",
2837// yet the pointer foo() passes along is B-4 (i.e. C+8).
2838// An extra adjustment is needed, so we emit a thunk into the B vftable.
2839// This vtordisp thunk subtracts the value of vtordisp
2840// from the "this" argument (-12) before making a tailcall to B::f().
2841//
2842// Let's consider an even more complex example:
2843// struct D : virtual B, virtual C {
2844// D() {
2845// foo(this);
2846// }
2847// };
2848//
2849// struct D
2850// 0 | (D vbtable pointer)
2851// 4 | (vtordisp for vbase A)
2852// 8 | struct A (virtual base) // A precedes both B and C!
2853// 8 | (A vftable pointer)
2854// 12 | struct B (virtual base) // B precedes C!
2855// 12 | (B vbtable pointer)
2856// 16 | struct C (virtual base)
2857// 16 | (C vbtable pointer)
2858//
2859// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2860// to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2861// passes along A, which is C-8. The A vtordisp holds
2862// "D.vbptr[index_of_A] - offset_of_A_in_D"
2863// and we statically know offset_of_A_in_D, so can get a pointer to D.
2864// When we know it, we can make an extra vbtable lookup to locate the C vbase
2865// and one extra static adjustment to calculate the expected value of C+8.
2866void VFTableBuilder::CalculateVtordispAdjustment(
2867 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2868 ThisAdjustment &TA) {
2869 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2870 MostDerivedClassLayout.getVBaseOffsetsMap();
2871 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2872 VBaseMap.find(Val: WhichVFPtr.getVBaseWithVPtr());
2873 assert(VBaseMapEntry != VBaseMap.end());
2874
2875 // If there's no vtordisp or the final overrider is defined in the same vbase
2876 // as the initial declaration, we don't need any vtordisp adjustment.
2877 if (!VBaseMapEntry->second.hasVtorDisp() ||
2878 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2879 return;
2880
2881 // OK, now we know we need to use a vtordisp thunk.
2882 // The implicit vtordisp field is located right before the vbase.
2883 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2884 TA.Virtual.Microsoft.VtordispOffset =
2885 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2886
2887 // A simple vtordisp thunk will suffice if the final overrider is defined
2888 // in either the most derived class or its non-virtual base.
2889 if (Overrider.Method->getParent() == MostDerivedClass ||
2890 !Overrider.VirtualBase)
2891 return;
2892
2893 // Otherwise, we need to do use the dynamic offset of the final overrider
2894 // in order to get "this" adjustment right.
2895 TA.Virtual.Microsoft.VBPtrOffset =
2896 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2897 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2898 TA.Virtual.Microsoft.VBOffsetOffset =
2899 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2900 VTables.getVBTableIndex(Derived: MostDerivedClass, VBase: Overrider.VirtualBase);
2901
2902 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2903}
2904
2905static void GroupNewVirtualOverloads(
2906 const CXXRecordDecl *RD,
2907 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2908 // Put the virtual methods into VirtualMethods in the proper order:
2909 // 1) Group overloads by declaration name. New groups are added to the
2910 // vftable in the order of their first declarations in this class
2911 // (including overrides, non-virtual methods and any other named decl that
2912 // might be nested within the class).
2913 // 2) In each group, new overloads appear in the reverse order of declaration.
2914 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2915 SmallVector<MethodGroup, 10> Groups;
2916 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2917 VisitedGroupIndicesTy VisitedGroupIndices;
2918 for (const auto *D : RD->decls()) {
2919 const auto *ND = dyn_cast<NamedDecl>(D);
2920 if (!ND)
2921 continue;
2922 VisitedGroupIndicesTy::iterator J;
2923 bool Inserted;
2924 std::tie(J, Inserted) = VisitedGroupIndices.insert(
2925 std::make_pair(ND->getDeclName(), Groups.size()));
2926 if (Inserted)
2927 Groups.push_back(MethodGroup());
2928 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2929 if (MicrosoftVTableContext::hasVtableSlot(MD))
2930 Groups[J->second].push_back(MD->getCanonicalDecl());
2931 }
2932
2933 for (const MethodGroup &Group : Groups)
2934 VirtualMethods.append(in_start: Group.rbegin(), in_end: Group.rend());
2935}
2936
2937static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2938 for (const auto &B : RD->bases()) {
2939 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2940 return true;
2941 }
2942 return false;
2943}
2944
2945void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2946 const CXXRecordDecl *LastVBase,
2947 BasesSetVectorTy &VisitedBases) {
2948 const CXXRecordDecl *RD = Base.getBase();
2949 if (!RD->isPolymorphic())
2950 return;
2951
2952 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2953
2954 // See if this class expands a vftable of the base we look at, which is either
2955 // the one defined by the vfptr base path or the primary base of the current
2956 // class.
2957 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2958 CharUnits NextBaseOffset;
2959 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2960 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2961 if (isDirectVBase(Base: NextBase, RD)) {
2962 NextLastVBase = NextBase;
2963 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: NextBase);
2964 } else {
2965 NextBaseOffset =
2966 Base.getBaseOffset() + Layout.getBaseClassOffset(Base: NextBase);
2967 }
2968 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2969 assert(!Layout.isPrimaryBaseVirtual() &&
2970 "No primary virtual bases in this ABI");
2971 NextBase = PrimaryBase;
2972 NextBaseOffset = Base.getBaseOffset();
2973 }
2974
2975 if (NextBase) {
2976 AddMethods(Base: BaseSubobject(NextBase, NextBaseOffset), BaseDepth: BaseDepth + 1,
2977 LastVBase: NextLastVBase, VisitedBases);
2978 if (!VisitedBases.insert(X: NextBase))
2979 llvm_unreachable("Found a duplicate primary base!");
2980 }
2981
2982 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2983 // Put virtual methods in the proper order.
2984 GroupNewVirtualOverloads(RD, VirtualMethods);
2985
2986 // Now go through all virtual member functions and add them to the current
2987 // vftable. This is done by
2988 // - replacing overridden methods in their existing slots, as long as they
2989 // don't require return adjustment; calculating This adjustment if needed.
2990 // - adding new slots for methods of the current base not present in any
2991 // sub-bases;
2992 // - adding new slots for methods that require Return adjustment.
2993 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2994 for (const CXXMethodDecl *MD : VirtualMethods) {
2995 FinalOverriders::OverriderInfo FinalOverrider =
2996 Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset());
2997 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2998 const CXXMethodDecl *OverriddenMD =
2999 FindNearestOverriddenMethod(MD, Bases&: VisitedBases);
3000
3001 ThisAdjustment ThisAdjustmentOffset;
3002 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3003 CharUnits ThisOffset = ComputeThisOffset(Overrider: FinalOverrider);
3004 ThisAdjustmentOffset.NonVirtual =
3005 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3006 if ((OverriddenMD || FinalOverriderMD != MD) &&
3007 WhichVFPtr.getVBaseWithVPtr())
3008 CalculateVtordispAdjustment(Overrider: FinalOverrider, ThisOffset,
3009 TA&: ThisAdjustmentOffset);
3010
3011 unsigned VBIndex =
3012 LastVBase ? VTables.getVBTableIndex(Derived: MostDerivedClass, VBase: LastVBase) : 0;
3013
3014 if (OverriddenMD) {
3015 // If MD overrides anything in this vftable, we need to update the
3016 // entries.
3017 MethodInfoMapTy::iterator OverriddenMDIterator =
3018 MethodInfoMap.find(Val: OverriddenMD);
3019
3020 // If the overridden method went to a different vftable, skip it.
3021 if (OverriddenMDIterator == MethodInfoMap.end())
3022 continue;
3023
3024 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3025
3026 VBIndex = OverriddenMethodInfo.VBTableIndex;
3027
3028 // Let's check if the overrider requires any return adjustments.
3029 // We must create a new slot if the MD's return type is not trivially
3030 // convertible to the OverriddenMD's one.
3031 // Once a chain of method overrides adds a return adjusting vftable slot,
3032 // all subsequent overrides will also use an extra method slot.
3033 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3034 Context, DerivedMD: MD, BaseMD: OverriddenMD).isEmpty() ||
3035 OverriddenMethodInfo.UsesExtraSlot;
3036
3037 if (!ReturnAdjustingThunk) {
3038 // No return adjustment needed - just replace the overridden method info
3039 // with the current info.
3040 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3041 MethodInfoMap.erase(I: OverriddenMDIterator);
3042
3043 assert(!MethodInfoMap.count(MD) &&
3044 "Should not have method info for this method yet!");
3045 MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MI));
3046 continue;
3047 }
3048
3049 // In case we need a return adjustment, we'll add a new slot for
3050 // the overrider. Mark the overridden method as shadowed by the new slot.
3051 OverriddenMethodInfo.Shadowed = true;
3052
3053 // Force a special name mangling for a return-adjusting thunk
3054 // unless the method is the final overrider without this adjustment.
3055 ForceReturnAdjustmentMangling =
3056 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3057 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3058 MD->size_overridden_methods()) {
3059 // Skip methods that don't belong to the vftable of the current class,
3060 // e.g. each method that wasn't seen in any of the visited sub-bases
3061 // but overrides multiple methods of other sub-bases.
3062 continue;
3063 }
3064
3065 // If we got here, MD is a method not seen in any of the sub-bases or
3066 // it requires return adjustment. Insert the method info for this method.
3067 MethodInfo MI(VBIndex,
3068 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3069 ReturnAdjustingThunk);
3070
3071 assert(!MethodInfoMap.count(MD) &&
3072 "Should not have method info for this method yet!");
3073 MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MI));
3074
3075 // Check if this overrider needs a return adjustment.
3076 // We don't want to do this for pure virtual member functions.
3077 BaseOffset ReturnAdjustmentOffset;
3078 ReturnAdjustment ReturnAdjustment;
3079 if (!FinalOverriderMD->isPureVirtual()) {
3080 ReturnAdjustmentOffset =
3081 ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: FinalOverriderMD, BaseMD: MD);
3082 }
3083 if (!ReturnAdjustmentOffset.isEmpty()) {
3084 ForceReturnAdjustmentMangling = true;
3085 ReturnAdjustment.NonVirtual =
3086 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3087 if (ReturnAdjustmentOffset.VirtualBase) {
3088 const ASTRecordLayout &DerivedLayout =
3089 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3090 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3091 DerivedLayout.getVBPtrOffset().getQuantity();
3092 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3093 VTables.getVBTableIndex(Derived: ReturnAdjustmentOffset.DerivedClass,
3094 VBase: ReturnAdjustmentOffset.VirtualBase);
3095 }
3096 }
3097
3098 AddMethod(MD: FinalOverriderMD,
3099 TI: ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3100 ForceReturnAdjustmentMangling ? MD : nullptr));
3101 }
3102}
3103
3104static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3105 for (const CXXRecordDecl *Elem : llvm::reverse(C: Path)) {
3106 Out << "'";
3107 Elem->printQualifiedName(Out);
3108 Out << "' in ";
3109 }
3110}
3111
3112static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3113 bool ContinueFirstLine) {
3114 const ReturnAdjustment &R = TI.Return;
3115 bool Multiline = false;
3116 const char *LinePrefix = "\n ";
3117 if (!R.isEmpty() || TI.Method) {
3118 if (!ContinueFirstLine)
3119 Out << LinePrefix;
3120 Out << "[return adjustment (to type '"
3121 << TI.Method->getReturnType().getCanonicalType() << "'): ";
3122 if (R.Virtual.Microsoft.VBPtrOffset)
3123 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3124 if (R.Virtual.Microsoft.VBIndex)
3125 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3126 Out << R.NonVirtual << " non-virtual]";
3127 Multiline = true;
3128 }
3129
3130 const ThisAdjustment &T = TI.This;
3131 if (!T.isEmpty()) {
3132 if (Multiline || !ContinueFirstLine)
3133 Out << LinePrefix;
3134 Out << "[this adjustment: ";
3135 if (!TI.This.Virtual.isEmpty()) {
3136 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3137 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3138 if (T.Virtual.Microsoft.VBPtrOffset) {
3139 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3140 << " to the left,";
3141 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3142 Out << LinePrefix << " vboffset at "
3143 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3144 }
3145 }
3146 Out << T.NonVirtual << " non-virtual]";
3147 }
3148}
3149
3150void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3151 Out << "VFTable for ";
3152 PrintBasePath(Path: WhichVFPtr.PathToIntroducingObject, Out);
3153 Out << "'";
3154 MostDerivedClass->printQualifiedName(Out);
3155 Out << "' (" << Components.size()
3156 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3157
3158 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3159 Out << llvm::format(Fmt: "%4d | ", Vals: I);
3160
3161 const VTableComponent &Component = Components[I];
3162
3163 // Dump the component.
3164 switch (Component.getKind()) {
3165 case VTableComponent::CK_RTTI:
3166 Component.getRTTIDecl()->printQualifiedName(Out);
3167 Out << " RTTI";
3168 break;
3169
3170 case VTableComponent::CK_FunctionPointer: {
3171 const CXXMethodDecl *MD = Component.getFunctionDecl();
3172
3173 // FIXME: Figure out how to print the real thunk type, since they can
3174 // differ in the return type.
3175 std::string Str = PredefinedExpr::ComputeName(
3176 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3177 Out << Str;
3178 if (MD->isPureVirtual())
3179 Out << " [pure]";
3180
3181 if (MD->isDeleted())
3182 Out << " [deleted]";
3183
3184 ThunkInfo Thunk = VTableThunks.lookup(Val: I);
3185 if (!Thunk.isEmpty())
3186 dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/false);
3187
3188 break;
3189 }
3190
3191 case VTableComponent::CK_DeletingDtorPointer: {
3192 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3193
3194 DD->printQualifiedName(Out);
3195 Out << "() [scalar deleting]";
3196
3197 if (DD->isPureVirtual())
3198 Out << " [pure]";
3199
3200 ThunkInfo Thunk = VTableThunks.lookup(Val: I);
3201 if (!Thunk.isEmpty()) {
3202 assert(Thunk.Return.isEmpty() &&
3203 "No return adjustment needed for destructors!");
3204 dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/false);
3205 }
3206
3207 break;
3208 }
3209
3210 default:
3211 DiagnosticsEngine &Diags = Context.getDiagnostics();
3212 unsigned DiagID = Diags.getCustomDiagID(
3213 L: DiagnosticsEngine::Error,
3214 FormatString: "Unexpected vftable component type %0 for component number %1");
3215 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3216 << I << Component.getKind();
3217 }
3218
3219 Out << '\n';
3220 }
3221
3222 Out << '\n';
3223
3224 if (!Thunks.empty()) {
3225 // We store the method names in a map to get a stable order.
3226 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3227
3228 for (const auto &I : Thunks) {
3229 const CXXMethodDecl *MD = I.first;
3230 std::string MethodName = PredefinedExpr::ComputeName(
3231 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3232
3233 MethodNamesAndDecls.insert(x: std::make_pair(x&: MethodName, y&: MD));
3234 }
3235
3236 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3237 const std::string &MethodName = MethodNameAndDecl.first;
3238 const CXXMethodDecl *MD = MethodNameAndDecl.second;
3239
3240 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3241 llvm::stable_sort(Range&: ThunksVector, C: [](const ThunkInfo &LHS,
3242 const ThunkInfo &RHS) {
3243 // Keep different thunks with the same adjustments in the order they
3244 // were put into the vector.
3245 return std::tie(args: LHS.This, args: LHS.Return) < std::tie(args: RHS.This, args: RHS.Return);
3246 });
3247
3248 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3249 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3250
3251 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3252 const ThunkInfo &Thunk = ThunksVector[I];
3253
3254 Out << llvm::format(Fmt: "%4d | ", Vals: I);
3255 dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/true);
3256 Out << '\n';
3257 }
3258
3259 Out << '\n';
3260 }
3261 }
3262
3263 Out.flush();
3264}
3265
3266static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3267 ArrayRef<const CXXRecordDecl *> B) {
3268 for (const CXXRecordDecl *Decl : B) {
3269 if (A.count(Ptr: Decl))
3270 return true;
3271 }
3272 return false;
3273}
3274
3275static bool rebucketPaths(VPtrInfoVector &Paths);
3276
3277/// Produces MSVC-compatible vbtable data. The symbols produced by this
3278/// algorithm match those produced by MSVC 2012 and newer, which is different
3279/// from MSVC 2010.
3280///
3281/// MSVC 2012 appears to minimize the vbtable names using the following
3282/// algorithm. First, walk the class hierarchy in the usual order, depth first,
3283/// left to right, to find all of the subobjects which contain a vbptr field.
3284/// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3285/// record with a vbptr creates an initially empty path.
3286///
3287/// To combine paths from child nodes, the paths are compared to check for
3288/// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3289/// components in the same order. Each group of ambiguous paths is extended by
3290/// appending the class of the base from which it came. If the current class
3291/// node produced an ambiguous path, its path is extended with the current class.
3292/// After extending paths, MSVC again checks for ambiguity, and extends any
3293/// ambiguous path which wasn't already extended. Because each node yields an
3294/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3295/// to produce an unambiguous set of paths.
3296///
3297/// TODO: Presumably vftables use the same algorithm.
3298void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3299 const CXXRecordDecl *RD,
3300 VPtrInfoVector &Paths) {
3301 assert(Paths.empty());
3302 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3303
3304 // Base case: this subobject has its own vptr.
3305 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3306 Paths.push_back(Elt: std::make_unique<VPtrInfo>(args&: RD));
3307
3308 // Recursive case: get all the vbtables from our bases and remove anything
3309 // that shares a virtual base.
3310 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3311 for (const auto &B : RD->bases()) {
3312 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3313 if (B.isVirtual() && VBasesSeen.count(Ptr: Base))
3314 continue;
3315
3316 if (!Base->isDynamicClass())
3317 continue;
3318
3319 const VPtrInfoVector &BasePaths =
3320 ForVBTables ? enumerateVBTables(RD: Base) : getVFPtrOffsets(RD: Base);
3321
3322 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3323 // Don't include the path if it goes through a virtual base that we've
3324 // already included.
3325 if (setsIntersect(A: VBasesSeen, B: BaseInfo->ContainingVBases))
3326 continue;
3327
3328 // Copy the path and adjust it as necessary.
3329 auto P = std::make_unique<VPtrInfo>(args&: *BaseInfo);
3330
3331 // We mangle Base into the path if the path would've been ambiguous and it
3332 // wasn't already extended with Base.
3333 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3334 P->NextBaseToMangle = Base;
3335
3336 // Keep track of which vtable the derived class is going to extend with
3337 // new methods or bases. We append to either the vftable of our primary
3338 // base, or the first non-virtual base that has a vbtable.
3339 if (P->ObjectWithVPtr == Base &&
3340 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3341 : Layout.getPrimaryBase()))
3342 P->ObjectWithVPtr = RD;
3343
3344 // Keep track of the full adjustment from the MDC to this vtable. The
3345 // adjustment is captured by an optional vbase and a non-virtual offset.
3346 if (B.isVirtual())
3347 P->ContainingVBases.push_back(Elt: Base);
3348 else if (P->ContainingVBases.empty())
3349 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3350
3351 // Update the full offset in the MDC.
3352 P->FullOffsetInMDC = P->NonVirtualOffset;
3353 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3354 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VBase: VB);
3355
3356 Paths.push_back(Elt: std::move(P));
3357 }
3358
3359 if (B.isVirtual())
3360 VBasesSeen.insert(Ptr: Base);
3361
3362 // After visiting any direct base, we've transitively visited all of its
3363 // morally virtual bases.
3364 for (const auto &VB : Base->vbases())
3365 VBasesSeen.insert(Ptr: VB.getType()->getAsCXXRecordDecl());
3366 }
3367
3368 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3369 // paths in ambiguous buckets.
3370 bool Changed = true;
3371 while (Changed)
3372 Changed = rebucketPaths(Paths);
3373}
3374
3375static bool extendPath(VPtrInfo &P) {
3376 if (P.NextBaseToMangle) {
3377 P.MangledPath.push_back(Elt: P.NextBaseToMangle);
3378 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3379 return true;
3380 }
3381 return false;
3382}
3383
3384static bool rebucketPaths(VPtrInfoVector &Paths) {
3385 // What we're essentially doing here is bucketing together ambiguous paths.
3386 // Any bucket with more than one path in it gets extended by NextBase, which
3387 // is usually the direct base of the inherited the vbptr. This code uses a
3388 // sorted vector to implement a multiset to form the buckets. Note that the
3389 // ordering is based on pointers, but it doesn't change our output order. The
3390 // current algorithm is designed to match MSVC 2012's names.
3391 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3392 llvm::make_pointee_range(Range&: Paths));
3393 llvm::sort(C&: PathsSorted, Comp: [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3394 return LHS.MangledPath < RHS.MangledPath;
3395 });
3396 bool Changed = false;
3397 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3398 // Scan forward to find the end of the bucket.
3399 size_t BucketStart = I;
3400 do {
3401 ++I;
3402 } while (I != E &&
3403 PathsSorted[BucketStart].get().MangledPath ==
3404 PathsSorted[I].get().MangledPath);
3405
3406 // If this bucket has multiple paths, extend them all.
3407 if (I - BucketStart > 1) {
3408 for (size_t II = BucketStart; II != I; ++II)
3409 Changed |= extendPath(P&: PathsSorted[II]);
3410 assert(Changed && "no paths were extended to fix ambiguity");
3411 }
3412 }
3413 return Changed;
3414}
3415
3416MicrosoftVTableContext::~MicrosoftVTableContext() {}
3417
3418namespace {
3419typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3420 llvm::DenseSet<BaseSubobject>> FullPathTy;
3421}
3422
3423// This recursive function finds all paths from a subobject centered at
3424// (RD, Offset) to the subobject located at IntroducingObject.
3425static void findPathsToSubobject(ASTContext &Context,
3426 const ASTRecordLayout &MostDerivedLayout,
3427 const CXXRecordDecl *RD, CharUnits Offset,
3428 BaseSubobject IntroducingObject,
3429 FullPathTy &FullPath,
3430 std::list<FullPathTy> &Paths) {
3431 if (BaseSubobject(RD, Offset) == IntroducingObject) {
3432 Paths.push_back(x: FullPath);
3433 return;
3434 }
3435
3436 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3437
3438 for (const CXXBaseSpecifier &BS : RD->bases()) {
3439 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3440 CharUnits NewOffset = BS.isVirtual()
3441 ? MostDerivedLayout.getVBaseClassOffset(VBase: Base)
3442 : Offset + Layout.getBaseClassOffset(Base);
3443 FullPath.insert(X: BaseSubobject(Base, NewOffset));
3444 findPathsToSubobject(Context, MostDerivedLayout, RD: Base, Offset: NewOffset,
3445 IntroducingObject, FullPath, Paths);
3446 FullPath.pop_back();
3447 }
3448}
3449
3450// Return the paths which are not subsets of other paths.
3451static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3452 FullPaths.remove_if(pred: [&](const FullPathTy &SpecificPath) {
3453 for (const FullPathTy &OtherPath : FullPaths) {
3454 if (&SpecificPath == &OtherPath)
3455 continue;
3456 if (llvm::all_of(Range: SpecificPath, P: [&](const BaseSubobject &BSO) {
3457 return OtherPath.contains(key: BSO);
3458 })) {
3459 return true;
3460 }
3461 }
3462 return false;
3463 });
3464}
3465
3466static CharUnits getOffsetOfFullPath(ASTContext &Context,
3467 const CXXRecordDecl *RD,
3468 const FullPathTy &FullPath) {
3469 const ASTRecordLayout &MostDerivedLayout =
3470 Context.getASTRecordLayout(RD);
3471 CharUnits Offset = CharUnits::fromQuantity(Quantity: -1);
3472 for (const BaseSubobject &BSO : FullPath) {
3473 const CXXRecordDecl *Base = BSO.getBase();
3474 // The first entry in the path is always the most derived record, skip it.
3475 if (Base == RD) {
3476 assert(Offset.getQuantity() == -1);
3477 Offset = CharUnits::Zero();
3478 continue;
3479 }
3480 assert(Offset.getQuantity() != -1);
3481 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3482 // While we know which base has to be traversed, we don't know if that base
3483 // was a virtual base.
3484 const CXXBaseSpecifier *BaseBS = std::find_if(
3485 first: RD->bases_begin(), last: RD->bases_end(), pred: [&](const CXXBaseSpecifier &BS) {
3486 return BS.getType()->getAsCXXRecordDecl() == Base;
3487 });
3488 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(VBase: Base)
3489 : Offset + Layout.getBaseClassOffset(Base);
3490 RD = Base;
3491 }
3492 return Offset;
3493}
3494
3495// We want to select the path which introduces the most covariant overrides. If
3496// two paths introduce overrides which the other path doesn't contain, issue a
3497// diagnostic.
3498static const FullPathTy *selectBestPath(ASTContext &Context,
3499 const CXXRecordDecl *RD,
3500 const VPtrInfo &Info,
3501 std::list<FullPathTy> &FullPaths) {
3502 // Handle some easy cases first.
3503 if (FullPaths.empty())
3504 return nullptr;
3505 if (FullPaths.size() == 1)
3506 return &FullPaths.front();
3507
3508 const FullPathTy *BestPath = nullptr;
3509 typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3510 OverriderSetTy LastOverrides;
3511 for (const FullPathTy &SpecificPath : FullPaths) {
3512 assert(!SpecificPath.empty());
3513 OverriderSetTy CurrentOverrides;
3514 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3515 // Find the distance from the start of the path to the subobject with the
3516 // VPtr.
3517 CharUnits BaseOffset =
3518 getOffsetOfFullPath(Context, RD: TopLevelRD, FullPath: SpecificPath);
3519 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3520 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3521 if (!MicrosoftVTableContext::hasVtableSlot(MD))
3522 continue;
3523 FinalOverriders::OverriderInfo OI =
3524 Overriders.getOverrider(MD: MD->getCanonicalDecl(), BaseOffset);
3525 const CXXMethodDecl *OverridingMethod = OI.Method;
3526 // Only overriders which have a return adjustment introduce problematic
3527 // thunks.
3528 if (ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: OverridingMethod, BaseMD: MD)
3529 .isEmpty())
3530 continue;
3531 // It's possible that the overrider isn't in this path. If so, skip it
3532 // because this path didn't introduce it.
3533 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3534 if (llvm::none_of(Range: SpecificPath, P: [&](const BaseSubobject &BSO) {
3535 return BSO.getBase() == OverridingParent;
3536 }))
3537 continue;
3538 CurrentOverrides.insert(x: OverridingMethod);
3539 }
3540 OverriderSetTy NewOverrides =
3541 llvm::set_difference(S1: CurrentOverrides, S2: LastOverrides);
3542 if (NewOverrides.empty())
3543 continue;
3544 OverriderSetTy MissingOverrides =
3545 llvm::set_difference(S1: LastOverrides, S2: CurrentOverrides);
3546 if (MissingOverrides.empty()) {
3547 // This path is a strict improvement over the last path, let's use it.
3548 BestPath = &SpecificPath;
3549 std::swap(x&: CurrentOverrides, y&: LastOverrides);
3550 } else {
3551 // This path introduces an overrider with a conflicting covariant thunk.
3552 DiagnosticsEngine &Diags = Context.getDiagnostics();
3553 const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3554 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3555 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3556 << RD;
3557 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3558 << CovariantMD;
3559 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3560 << ConflictMD;
3561 }
3562 }
3563 // Go with the path that introduced the most covariant overrides. If there is
3564 // no such path, pick the first path.
3565 return BestPath ? BestPath : &FullPaths.front();
3566}
3567
3568static void computeFullPathsForVFTables(ASTContext &Context,
3569 const CXXRecordDecl *RD,
3570 VPtrInfoVector &Paths) {
3571 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3572 FullPathTy FullPath;
3573 std::list<FullPathTy> FullPaths;
3574 for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3575 findPathsToSubobject(
3576 Context, MostDerivedLayout, RD, Offset: CharUnits::Zero(),
3577 IntroducingObject: BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3578 Paths&: FullPaths);
3579 FullPath.clear();
3580 removeRedundantPaths(FullPaths);
3581 Info->PathToIntroducingObject.clear();
3582 if (const FullPathTy *BestPath =
3583 selectBestPath(Context, RD, Info: *Info, FullPaths))
3584 for (const BaseSubobject &BSO : *BestPath)
3585 Info->PathToIntroducingObject.push_back(Elt: BSO.getBase());
3586 FullPaths.clear();
3587 }
3588}
3589
3590static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3591 const MethodVFTableLocation &LHS,
3592 const MethodVFTableLocation &RHS) {
3593 CharUnits L = LHS.VFPtrOffset;
3594 CharUnits R = RHS.VFPtrOffset;
3595 if (LHS.VBase)
3596 L += Layout.getVBaseClassOffset(VBase: LHS.VBase);
3597 if (RHS.VBase)
3598 R += Layout.getVBaseClassOffset(VBase: RHS.VBase);
3599 return L < R;
3600}
3601
3602void MicrosoftVTableContext::computeVTableRelatedInformation(
3603 const CXXRecordDecl *RD) {
3604 assert(RD->isDynamicClass());
3605
3606 // Check if we've computed this information before.
3607 if (VFPtrLocations.count(Val: RD))
3608 return;
3609
3610 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3611
3612 {
3613 auto VFPtrs = std::make_unique<VPtrInfoVector>();
3614 computeVTablePaths(/*ForVBTables=*/false, RD, Paths&: *VFPtrs);
3615 computeFullPathsForVFTables(Context, RD, Paths&: *VFPtrs);
3616 VFPtrLocations[RD] = std::move(VFPtrs);
3617 }
3618
3619 MethodVFTableLocationsTy NewMethodLocations;
3620 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3621 VFTableBuilder Builder(*this, RD, *VFPtr);
3622
3623 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3624 assert(VFTableLayouts.count(id) == 0);
3625 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3626 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3627 VFTableLayouts[id] = std::make_unique<VTableLayout>(
3628 args: ArrayRef<size_t>{0}, args: Builder.vtable_components(), args&: VTableThunks,
3629 args: EmptyAddressPointsMap);
3630 Thunks.insert(I: Builder.thunks_begin(), E: Builder.thunks_end());
3631
3632 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3633 for (const auto &Loc : Builder.vtable_locations()) {
3634 auto Insert = NewMethodLocations.insert(KV: Loc);
3635 if (!Insert.second) {
3636 const MethodVFTableLocation &NewLoc = Loc.second;
3637 MethodVFTableLocation &OldLoc = Insert.first->second;
3638 if (vfptrIsEarlierInMDC(Layout, LHS: NewLoc, RHS: OldLoc))
3639 OldLoc = NewLoc;
3640 }
3641 }
3642 }
3643
3644 MethodVFTableLocations.insert(I: NewMethodLocations.begin(),
3645 E: NewMethodLocations.end());
3646 if (Context.getLangOpts().DumpVTableLayouts)
3647 dumpMethodLocations(RD, NewMethods: NewMethodLocations, llvm::outs());
3648}
3649
3650void MicrosoftVTableContext::dumpMethodLocations(
3651 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3652 raw_ostream &Out) {
3653 // Compute the vtable indices for all the member functions.
3654 // Store them in a map keyed by the location so we'll get a sorted table.
3655 std::map<MethodVFTableLocation, std::string> IndicesMap;
3656 bool HasNonzeroOffset = false;
3657
3658 for (const auto &I : NewMethods) {
3659 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(Val: I.first.getDecl());
3660 assert(hasVtableSlot(MD));
3661
3662 std::string MethodName = PredefinedExpr::ComputeName(
3663 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3664
3665 if (isa<CXXDestructorDecl>(Val: MD)) {
3666 IndicesMap[I.second] = MethodName + " [scalar deleting]";
3667 } else {
3668 IndicesMap[I.second] = MethodName;
3669 }
3670
3671 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3672 HasNonzeroOffset = true;
3673 }
3674
3675 // Print the vtable indices for all the member functions.
3676 if (!IndicesMap.empty()) {
3677 Out << "VFTable indices for ";
3678 Out << "'";
3679 RD->printQualifiedName(Out);
3680 Out << "' (" << IndicesMap.size()
3681 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3682
3683 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(Quantity: -1);
3684 uint64_t LastVBIndex = 0;
3685 for (const auto &I : IndicesMap) {
3686 CharUnits VFPtrOffset = I.first.VFPtrOffset;
3687 uint64_t VBIndex = I.first.VBTableIndex;
3688 if (HasNonzeroOffset &&
3689 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3690 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3691 Out << " -- accessible via ";
3692 if (VBIndex)
3693 Out << "vbtable index " << VBIndex << ", ";
3694 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3695 LastVFPtrOffset = VFPtrOffset;
3696 LastVBIndex = VBIndex;
3697 }
3698
3699 uint64_t VTableIndex = I.first.Index;
3700 const std::string &MethodName = I.second;
3701 Out << llvm::format(Fmt: "%4" PRIu64 " | ", Vals: VTableIndex) << MethodName << '\n';
3702 }
3703 Out << '\n';
3704 }
3705
3706 Out.flush();
3707}
3708
3709const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3710 const CXXRecordDecl *RD) {
3711 VirtualBaseInfo *VBI;
3712
3713 {
3714 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3715 // as it may be modified and rehashed under us.
3716 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3717 if (Entry)
3718 return *Entry;
3719 Entry = std::make_unique<VirtualBaseInfo>();
3720 VBI = Entry.get();
3721 }
3722
3723 computeVTablePaths(/*ForVBTables=*/true, RD, Paths&: VBI->VBPtrPaths);
3724
3725 // First, see if the Derived class shared the vbptr with a non-virtual base.
3726 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3727 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3728 // If the Derived class shares the vbptr with a non-virtual base, the shared
3729 // virtual bases come first so that the layout is the same.
3730 const VirtualBaseInfo &BaseInfo =
3731 computeVBTableRelatedInformation(RD: VBPtrBase);
3732 VBI->VBTableIndices.insert(I: BaseInfo.VBTableIndices.begin(),
3733 E: BaseInfo.VBTableIndices.end());
3734 }
3735
3736 // New vbases are added to the end of the vbtable.
3737 // Skip the self entry and vbases visited in the non-virtual base, if any.
3738 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3739 for (const auto &VB : RD->vbases()) {
3740 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3741 if (!VBI->VBTableIndices.count(Val: CurVBase))
3742 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3743 }
3744
3745 return *VBI;
3746}
3747
3748unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3749 const CXXRecordDecl *VBase) {
3750 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(RD: Derived);
3751 assert(VBInfo.VBTableIndices.count(VBase));
3752 return VBInfo.VBTableIndices.find(Val: VBase)->second;
3753}
3754
3755const VPtrInfoVector &
3756MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3757 return computeVBTableRelatedInformation(RD).VBPtrPaths;
3758}
3759
3760const VPtrInfoVector &
3761MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3762 computeVTableRelatedInformation(RD);
3763
3764 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3765 return *VFPtrLocations[RD];
3766}
3767
3768const VTableLayout &
3769MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3770 CharUnits VFPtrOffset) {
3771 computeVTableRelatedInformation(RD);
3772
3773 VFTableIdTy id(RD, VFPtrOffset);
3774 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3775 return *VFTableLayouts[id];
3776}
3777
3778MethodVFTableLocation
3779MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3780 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3781 "Only use this method for virtual methods or dtors");
3782 if (isa<CXXDestructorDecl>(Val: GD.getDecl()))
3783 assert(GD.getDtorType() == Dtor_Deleting);
3784
3785 GD = GD.getCanonicalDecl();
3786
3787 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(Val: GD);
3788 if (I != MethodVFTableLocations.end())
3789 return I->second;
3790
3791 const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent();
3792
3793 computeVTableRelatedInformation(RD);
3794
3795 I = MethodVFTableLocations.find(Val: GD);
3796 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3797 return I->second;
3798}
3799

source code of clang/lib/AST/VTableBuilder.cpp