1 | //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code dealing with generation of the layout of virtual tables. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/VTableBuilder.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTDiagnostic.h" |
16 | #include "clang/AST/CXXInheritance.h" |
17 | #include "clang/AST/RecordLayout.h" |
18 | #include "clang/Basic/TargetInfo.h" |
19 | #include "llvm/ADT/SetOperations.h" |
20 | #include "llvm/ADT/SetVector.h" |
21 | #include "llvm/ADT/SmallPtrSet.h" |
22 | #include "llvm/Support/Format.h" |
23 | #include "llvm/Support/raw_ostream.h" |
24 | #include <algorithm> |
25 | #include <cstdio> |
26 | |
27 | using namespace clang; |
28 | |
29 | #define DUMP_OVERRIDERS 0 |
30 | |
31 | namespace { |
32 | |
33 | /// BaseOffset - Represents an offset from a derived class to a direct or |
34 | /// indirect base class. |
35 | struct BaseOffset { |
36 | /// DerivedClass - The derived class. |
37 | const CXXRecordDecl *DerivedClass; |
38 | |
39 | /// VirtualBase - If the path from the derived class to the base class |
40 | /// involves virtual base classes, this holds the declaration of the last |
41 | /// virtual base in this path (i.e. closest to the base class). |
42 | const CXXRecordDecl *VirtualBase; |
43 | |
44 | /// NonVirtualOffset - The offset from the derived class to the base class. |
45 | /// (Or the offset from the virtual base class to the base class, if the |
46 | /// path from the derived class to the base class involves a virtual base |
47 | /// class. |
48 | CharUnits NonVirtualOffset; |
49 | |
50 | BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), |
51 | NonVirtualOffset(CharUnits::Zero()) { } |
52 | BaseOffset(const CXXRecordDecl *DerivedClass, |
53 | const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) |
54 | : DerivedClass(DerivedClass), VirtualBase(VirtualBase), |
55 | NonVirtualOffset(NonVirtualOffset) { } |
56 | |
57 | bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } |
58 | }; |
59 | |
60 | /// FinalOverriders - Contains the final overrider member functions for all |
61 | /// member functions in the base subobjects of a class. |
62 | class FinalOverriders { |
63 | public: |
64 | /// OverriderInfo - Information about a final overrider. |
65 | struct OverriderInfo { |
66 | /// Method - The method decl of the overrider. |
67 | const CXXMethodDecl *Method; |
68 | |
69 | /// VirtualBase - The virtual base class subobject of this overrider. |
70 | /// Note that this records the closest derived virtual base class subobject. |
71 | const CXXRecordDecl *VirtualBase; |
72 | |
73 | /// Offset - the base offset of the overrider's parent in the layout class. |
74 | CharUnits Offset; |
75 | |
76 | OverriderInfo() : Method(nullptr), VirtualBase(nullptr), |
77 | Offset(CharUnits::Zero()) { } |
78 | }; |
79 | |
80 | private: |
81 | /// MostDerivedClass - The most derived class for which the final overriders |
82 | /// are stored. |
83 | const CXXRecordDecl *MostDerivedClass; |
84 | |
85 | /// MostDerivedClassOffset - If we're building final overriders for a |
86 | /// construction vtable, this holds the offset from the layout class to the |
87 | /// most derived class. |
88 | const CharUnits MostDerivedClassOffset; |
89 | |
90 | /// LayoutClass - The class we're using for layout information. Will be |
91 | /// different than the most derived class if the final overriders are for a |
92 | /// construction vtable. |
93 | const CXXRecordDecl *LayoutClass; |
94 | |
95 | ASTContext &Context; |
96 | |
97 | /// MostDerivedClassLayout - the AST record layout of the most derived class. |
98 | const ASTRecordLayout &MostDerivedClassLayout; |
99 | |
100 | /// MethodBaseOffsetPairTy - Uniquely identifies a member function |
101 | /// in a base subobject. |
102 | typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; |
103 | |
104 | typedef llvm::DenseMap<MethodBaseOffsetPairTy, |
105 | OverriderInfo> OverridersMapTy; |
106 | |
107 | /// OverridersMap - The final overriders for all virtual member functions of |
108 | /// all the base subobjects of the most derived class. |
109 | OverridersMapTy OverridersMap; |
110 | |
111 | /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented |
112 | /// as a record decl and a subobject number) and its offsets in the most |
113 | /// derived class as well as the layout class. |
114 | typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, |
115 | CharUnits> SubobjectOffsetMapTy; |
116 | |
117 | typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; |
118 | |
119 | /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the |
120 | /// given base. |
121 | void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, |
122 | CharUnits OffsetInLayoutClass, |
123 | SubobjectOffsetMapTy &SubobjectOffsets, |
124 | SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, |
125 | SubobjectCountMapTy &SubobjectCounts); |
126 | |
127 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
128 | |
129 | /// dump - dump the final overriders for a base subobject, and all its direct |
130 | /// and indirect base subobjects. |
131 | void dump(raw_ostream &Out, BaseSubobject Base, |
132 | VisitedVirtualBasesSetTy& VisitedVirtualBases); |
133 | |
134 | public: |
135 | FinalOverriders(const CXXRecordDecl *MostDerivedClass, |
136 | CharUnits MostDerivedClassOffset, |
137 | const CXXRecordDecl *LayoutClass); |
138 | |
139 | /// getOverrider - Get the final overrider for the given method declaration in |
140 | /// the subobject with the given base offset. |
141 | OverriderInfo getOverrider(const CXXMethodDecl *MD, |
142 | CharUnits BaseOffset) const { |
143 | assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && |
144 | "Did not find overrider!" ); |
145 | |
146 | return OverridersMap.lookup(Val: std::make_pair(x&: MD, y&: BaseOffset)); |
147 | } |
148 | |
149 | /// dump - dump the final overriders. |
150 | void dump() { |
151 | VisitedVirtualBasesSetTy VisitedVirtualBases; |
152 | dump(Out&: llvm::errs(), Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), |
153 | VisitedVirtualBases); |
154 | } |
155 | |
156 | }; |
157 | |
158 | FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, |
159 | CharUnits MostDerivedClassOffset, |
160 | const CXXRecordDecl *LayoutClass) |
161 | : MostDerivedClass(MostDerivedClass), |
162 | MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), |
163 | Context(MostDerivedClass->getASTContext()), |
164 | MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { |
165 | |
166 | // Compute base offsets. |
167 | SubobjectOffsetMapTy SubobjectOffsets; |
168 | SubobjectOffsetMapTy SubobjectLayoutClassOffsets; |
169 | SubobjectCountMapTy SubobjectCounts; |
170 | ComputeBaseOffsets(Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), |
171 | /*IsVirtual=*/false, |
172 | OffsetInLayoutClass: MostDerivedClassOffset, |
173 | SubobjectOffsets, SubobjectLayoutClassOffsets, |
174 | SubobjectCounts); |
175 | |
176 | // Get the final overriders. |
177 | CXXFinalOverriderMap FinalOverriders; |
178 | MostDerivedClass->getFinalOverriders(FinaOverriders&: FinalOverriders); |
179 | |
180 | for (const auto &Overrider : FinalOverriders) { |
181 | const CXXMethodDecl *MD = Overrider.first; |
182 | const OverridingMethods &Methods = Overrider.second; |
183 | |
184 | for (const auto &M : Methods) { |
185 | unsigned SubobjectNumber = M.first; |
186 | assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), |
187 | SubobjectNumber)) && |
188 | "Did not find subobject offset!" ); |
189 | |
190 | CharUnits BaseOffset = SubobjectOffsets[std::make_pair(x: MD->getParent(), |
191 | y&: SubobjectNumber)]; |
192 | |
193 | assert(M.second.size() == 1 && "Final overrider is not unique!" ); |
194 | const UniqueVirtualMethod &Method = M.second.front(); |
195 | |
196 | const CXXRecordDecl *OverriderRD = Method.Method->getParent(); |
197 | assert(SubobjectLayoutClassOffsets.count( |
198 | std::make_pair(OverriderRD, Method.Subobject)) |
199 | && "Did not find subobject offset!" ); |
200 | CharUnits OverriderOffset = |
201 | SubobjectLayoutClassOffsets[std::make_pair(x&: OverriderRD, |
202 | y: Method.Subobject)]; |
203 | |
204 | OverriderInfo& Overrider = OverridersMap[std::make_pair(x&: MD, y&: BaseOffset)]; |
205 | assert(!Overrider.Method && "Overrider should not exist yet!" ); |
206 | |
207 | Overrider.Offset = OverriderOffset; |
208 | Overrider.Method = Method.Method; |
209 | Overrider.VirtualBase = Method.InVirtualSubobject; |
210 | } |
211 | } |
212 | |
213 | #if DUMP_OVERRIDERS |
214 | // And dump them (for now). |
215 | dump(); |
216 | #endif |
217 | } |
218 | |
219 | static BaseOffset ComputeBaseOffset(const ASTContext &Context, |
220 | const CXXRecordDecl *DerivedRD, |
221 | const CXXBasePath &Path) { |
222 | CharUnits NonVirtualOffset = CharUnits::Zero(); |
223 | |
224 | unsigned NonVirtualStart = 0; |
225 | const CXXRecordDecl *VirtualBase = nullptr; |
226 | |
227 | // First, look for the virtual base class. |
228 | for (int I = Path.size(), E = 0; I != E; --I) { |
229 | const CXXBasePathElement &Element = Path[I - 1]; |
230 | |
231 | if (Element.Base->isVirtual()) { |
232 | NonVirtualStart = I; |
233 | QualType VBaseType = Element.Base->getType(); |
234 | VirtualBase = VBaseType->getAsCXXRecordDecl(); |
235 | break; |
236 | } |
237 | } |
238 | |
239 | // Now compute the non-virtual offset. |
240 | for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { |
241 | const CXXBasePathElement &Element = Path[I]; |
242 | |
243 | // Check the base class offset. |
244 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); |
245 | |
246 | const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); |
247 | |
248 | NonVirtualOffset += Layout.getBaseClassOffset(Base); |
249 | } |
250 | |
251 | // FIXME: This should probably use CharUnits or something. Maybe we should |
252 | // even change the base offsets in ASTRecordLayout to be specified in |
253 | // CharUnits. |
254 | return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); |
255 | |
256 | } |
257 | |
258 | static BaseOffset ComputeBaseOffset(const ASTContext &Context, |
259 | const CXXRecordDecl *BaseRD, |
260 | const CXXRecordDecl *DerivedRD) { |
261 | CXXBasePaths Paths(/*FindAmbiguities=*/false, |
262 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
263 | |
264 | if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths)) |
265 | llvm_unreachable("Class must be derived from the passed in base class!" ); |
266 | |
267 | return ComputeBaseOffset(Context, DerivedRD, Path: Paths.front()); |
268 | } |
269 | |
270 | static BaseOffset |
271 | ComputeReturnAdjustmentBaseOffset(ASTContext &Context, |
272 | const CXXMethodDecl *DerivedMD, |
273 | const CXXMethodDecl *BaseMD) { |
274 | const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); |
275 | const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); |
276 | |
277 | // Canonicalize the return types. |
278 | CanQualType CanDerivedReturnType = |
279 | Context.getCanonicalType(DerivedFT->getReturnType()); |
280 | CanQualType CanBaseReturnType = |
281 | Context.getCanonicalType(BaseFT->getReturnType()); |
282 | |
283 | assert(CanDerivedReturnType->getTypeClass() == |
284 | CanBaseReturnType->getTypeClass() && |
285 | "Types must have same type class!" ); |
286 | |
287 | if (CanDerivedReturnType == CanBaseReturnType) { |
288 | // No adjustment needed. |
289 | return BaseOffset(); |
290 | } |
291 | |
292 | if (isa<ReferenceType>(Val: CanDerivedReturnType)) { |
293 | CanDerivedReturnType = |
294 | CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); |
295 | CanBaseReturnType = |
296 | CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); |
297 | } else if (isa<PointerType>(Val: CanDerivedReturnType)) { |
298 | CanDerivedReturnType = |
299 | CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); |
300 | CanBaseReturnType = |
301 | CanBaseReturnType->getAs<PointerType>()->getPointeeType(); |
302 | } else { |
303 | llvm_unreachable("Unexpected return type!" ); |
304 | } |
305 | |
306 | // We need to compare unqualified types here; consider |
307 | // const T *Base::foo(); |
308 | // T *Derived::foo(); |
309 | if (CanDerivedReturnType.getUnqualifiedType() == |
310 | CanBaseReturnType.getUnqualifiedType()) { |
311 | // No adjustment needed. |
312 | return BaseOffset(); |
313 | } |
314 | |
315 | const CXXRecordDecl *DerivedRD = |
316 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanDerivedReturnType)->getDecl()); |
317 | |
318 | const CXXRecordDecl *BaseRD = |
319 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanBaseReturnType)->getDecl()); |
320 | |
321 | return ComputeBaseOffset(Context, BaseRD, DerivedRD); |
322 | } |
323 | |
324 | void |
325 | FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, |
326 | CharUnits OffsetInLayoutClass, |
327 | SubobjectOffsetMapTy &SubobjectOffsets, |
328 | SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, |
329 | SubobjectCountMapTy &SubobjectCounts) { |
330 | const CXXRecordDecl *RD = Base.getBase(); |
331 | |
332 | unsigned SubobjectNumber = 0; |
333 | if (!IsVirtual) |
334 | SubobjectNumber = ++SubobjectCounts[RD]; |
335 | |
336 | // Set up the subobject to offset mapping. |
337 | assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) |
338 | && "Subobject offset already exists!" ); |
339 | assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) |
340 | && "Subobject offset already exists!" ); |
341 | |
342 | SubobjectOffsets[std::make_pair(x&: RD, y&: SubobjectNumber)] = Base.getBaseOffset(); |
343 | SubobjectLayoutClassOffsets[std::make_pair(x&: RD, y&: SubobjectNumber)] = |
344 | OffsetInLayoutClass; |
345 | |
346 | // Traverse our bases. |
347 | for (const auto &B : RD->bases()) { |
348 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
349 | |
350 | CharUnits BaseOffset; |
351 | CharUnits BaseOffsetInLayoutClass; |
352 | if (B.isVirtual()) { |
353 | // Check if we've visited this virtual base before. |
354 | if (SubobjectOffsets.count(Val: std::make_pair(x&: BaseDecl, y: 0))) |
355 | continue; |
356 | |
357 | const ASTRecordLayout &LayoutClassLayout = |
358 | Context.getASTRecordLayout(LayoutClass); |
359 | |
360 | BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
361 | BaseOffsetInLayoutClass = |
362 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
363 | } else { |
364 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
365 | CharUnits Offset = Layout.getBaseClassOffset(Base: BaseDecl); |
366 | |
367 | BaseOffset = Base.getBaseOffset() + Offset; |
368 | BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; |
369 | } |
370 | |
371 | ComputeBaseOffsets(Base: BaseSubobject(BaseDecl, BaseOffset), |
372 | IsVirtual: B.isVirtual(), OffsetInLayoutClass: BaseOffsetInLayoutClass, |
373 | SubobjectOffsets, SubobjectLayoutClassOffsets, |
374 | SubobjectCounts); |
375 | } |
376 | } |
377 | |
378 | void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, |
379 | VisitedVirtualBasesSetTy &VisitedVirtualBases) { |
380 | const CXXRecordDecl *RD = Base.getBase(); |
381 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
382 | |
383 | for (const auto &B : RD->bases()) { |
384 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
385 | |
386 | // Ignore bases that don't have any virtual member functions. |
387 | if (!BaseDecl->isPolymorphic()) |
388 | continue; |
389 | |
390 | CharUnits BaseOffset; |
391 | if (B.isVirtual()) { |
392 | if (!VisitedVirtualBases.insert(Ptr: BaseDecl).second) { |
393 | // We've visited this base before. |
394 | continue; |
395 | } |
396 | |
397 | BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
398 | } else { |
399 | BaseOffset = Layout.getBaseClassOffset(Base: BaseDecl) + Base.getBaseOffset(); |
400 | } |
401 | |
402 | dump(Out, Base: BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); |
403 | } |
404 | |
405 | Out << "Final overriders for (" ; |
406 | RD->printQualifiedName(Out); |
407 | Out << ", " ; |
408 | Out << Base.getBaseOffset().getQuantity() << ")\n" ; |
409 | |
410 | // Now dump the overriders for this base subobject. |
411 | for (const auto *MD : RD->methods()) { |
412 | if (!VTableContextBase::hasVtableSlot(MD)) |
413 | continue; |
414 | MD = MD->getCanonicalDecl(); |
415 | |
416 | OverriderInfo Overrider = getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
417 | |
418 | Out << " " ; |
419 | MD->printQualifiedName(Out); |
420 | Out << " - (" ; |
421 | Overrider.Method->printQualifiedName(Out); |
422 | Out << ", " << Overrider.Offset.getQuantity() << ')'; |
423 | |
424 | BaseOffset Offset; |
425 | if (!Overrider.Method->isPureVirtual()) |
426 | Offset = ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: Overrider.Method, BaseMD: MD); |
427 | |
428 | if (!Offset.isEmpty()) { |
429 | Out << " [ret-adj: " ; |
430 | if (Offset.VirtualBase) { |
431 | Offset.VirtualBase->printQualifiedName(Out); |
432 | Out << " vbase, " ; |
433 | } |
434 | |
435 | Out << Offset.NonVirtualOffset.getQuantity() << " nv]" ; |
436 | } |
437 | |
438 | Out << "\n" ; |
439 | } |
440 | } |
441 | |
442 | /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. |
443 | struct VCallOffsetMap { |
444 | |
445 | typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; |
446 | |
447 | /// Offsets - Keeps track of methods and their offsets. |
448 | // FIXME: This should be a real map and not a vector. |
449 | SmallVector<MethodAndOffsetPairTy, 16> Offsets; |
450 | |
451 | /// MethodsCanShareVCallOffset - Returns whether two virtual member functions |
452 | /// can share the same vcall offset. |
453 | static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, |
454 | const CXXMethodDecl *RHS); |
455 | |
456 | public: |
457 | /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the |
458 | /// add was successful, or false if there was already a member function with |
459 | /// the same signature in the map. |
460 | bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); |
461 | |
462 | /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the |
463 | /// vtable address point) for the given virtual member function. |
464 | CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); |
465 | |
466 | // empty - Return whether the offset map is empty or not. |
467 | bool empty() const { return Offsets.empty(); } |
468 | }; |
469 | |
470 | static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, |
471 | const CXXMethodDecl *RHS) { |
472 | const FunctionProtoType *LT = |
473 | cast<FunctionProtoType>(LHS->getType().getCanonicalType()); |
474 | const FunctionProtoType *RT = |
475 | cast<FunctionProtoType>(RHS->getType().getCanonicalType()); |
476 | |
477 | // Fast-path matches in the canonical types. |
478 | if (LT == RT) return true; |
479 | |
480 | // Force the signatures to match. We can't rely on the overrides |
481 | // list here because there isn't necessarily an inheritance |
482 | // relationship between the two methods. |
483 | if (LT->getMethodQuals() != RT->getMethodQuals()) |
484 | return false; |
485 | return LT->getParamTypes() == RT->getParamTypes(); |
486 | } |
487 | |
488 | bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, |
489 | const CXXMethodDecl *RHS) { |
490 | assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!" ); |
491 | assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!" ); |
492 | |
493 | // A destructor can share a vcall offset with another destructor. |
494 | if (isa<CXXDestructorDecl>(Val: LHS)) |
495 | return isa<CXXDestructorDecl>(Val: RHS); |
496 | |
497 | // FIXME: We need to check more things here. |
498 | |
499 | // The methods must have the same name. |
500 | DeclarationName LHSName = LHS->getDeclName(); |
501 | DeclarationName RHSName = RHS->getDeclName(); |
502 | if (LHSName != RHSName) |
503 | return false; |
504 | |
505 | // And the same signatures. |
506 | return HasSameVirtualSignature(LHS, RHS); |
507 | } |
508 | |
509 | bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, |
510 | CharUnits OffsetOffset) { |
511 | // Check if we can reuse an offset. |
512 | for (const auto &OffsetPair : Offsets) { |
513 | if (MethodsCanShareVCallOffset(LHS: OffsetPair.first, RHS: MD)) |
514 | return false; |
515 | } |
516 | |
517 | // Add the offset. |
518 | Offsets.push_back(Elt: MethodAndOffsetPairTy(MD, OffsetOffset)); |
519 | return true; |
520 | } |
521 | |
522 | CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { |
523 | // Look for an offset. |
524 | for (const auto &OffsetPair : Offsets) { |
525 | if (MethodsCanShareVCallOffset(LHS: OffsetPair.first, RHS: MD)) |
526 | return OffsetPair.second; |
527 | } |
528 | |
529 | llvm_unreachable("Should always find a vcall offset offset!" ); |
530 | } |
531 | |
532 | /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. |
533 | class VCallAndVBaseOffsetBuilder { |
534 | public: |
535 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> |
536 | VBaseOffsetOffsetsMapTy; |
537 | |
538 | private: |
539 | const ItaniumVTableContext &VTables; |
540 | |
541 | /// MostDerivedClass - The most derived class for which we're building vcall |
542 | /// and vbase offsets. |
543 | const CXXRecordDecl *MostDerivedClass; |
544 | |
545 | /// LayoutClass - The class we're using for layout information. Will be |
546 | /// different than the most derived class if we're building a construction |
547 | /// vtable. |
548 | const CXXRecordDecl *LayoutClass; |
549 | |
550 | /// Context - The ASTContext which we will use for layout information. |
551 | ASTContext &Context; |
552 | |
553 | /// Components - vcall and vbase offset components |
554 | typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; |
555 | VTableComponentVectorTy Components; |
556 | |
557 | /// VisitedVirtualBases - Visited virtual bases. |
558 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; |
559 | |
560 | /// VCallOffsets - Keeps track of vcall offsets. |
561 | VCallOffsetMap VCallOffsets; |
562 | |
563 | |
564 | /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, |
565 | /// relative to the address point. |
566 | VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; |
567 | |
568 | /// FinalOverriders - The final overriders of the most derived class. |
569 | /// (Can be null when we're not building a vtable of the most derived class). |
570 | const FinalOverriders *Overriders; |
571 | |
572 | /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the |
573 | /// given base subobject. |
574 | void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, |
575 | CharUnits RealBaseOffset); |
576 | |
577 | /// AddVCallOffsets - Add vcall offsets for the given base subobject. |
578 | void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); |
579 | |
580 | /// AddVBaseOffsets - Add vbase offsets for the given class. |
581 | void AddVBaseOffsets(const CXXRecordDecl *Base, |
582 | CharUnits OffsetInLayoutClass); |
583 | |
584 | /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in |
585 | /// chars, relative to the vtable address point. |
586 | CharUnits getCurrentOffsetOffset() const; |
587 | |
588 | public: |
589 | VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, |
590 | const CXXRecordDecl *MostDerivedClass, |
591 | const CXXRecordDecl *LayoutClass, |
592 | const FinalOverriders *Overriders, |
593 | BaseSubobject Base, bool BaseIsVirtual, |
594 | CharUnits OffsetInLayoutClass) |
595 | : VTables(VTables), MostDerivedClass(MostDerivedClass), |
596 | LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), |
597 | Overriders(Overriders) { |
598 | |
599 | // Add vcall and vbase offsets. |
600 | AddVCallAndVBaseOffsets(Base, BaseIsVirtual, RealBaseOffset: OffsetInLayoutClass); |
601 | } |
602 | |
603 | /// Methods for iterating over the components. |
604 | typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; |
605 | const_iterator components_begin() const { return Components.rbegin(); } |
606 | const_iterator components_end() const { return Components.rend(); } |
607 | |
608 | const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } |
609 | const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { |
610 | return VBaseOffsetOffsets; |
611 | } |
612 | }; |
613 | |
614 | void |
615 | VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, |
616 | bool BaseIsVirtual, |
617 | CharUnits RealBaseOffset) { |
618 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); |
619 | |
620 | // Itanium C++ ABI 2.5.2: |
621 | // ..in classes sharing a virtual table with a primary base class, the vcall |
622 | // and vbase offsets added by the derived class all come before the vcall |
623 | // and vbase offsets required by the base class, so that the latter may be |
624 | // laid out as required by the base class without regard to additions from |
625 | // the derived class(es). |
626 | |
627 | // (Since we're emitting the vcall and vbase offsets in reverse order, we'll |
628 | // emit them for the primary base first). |
629 | if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
630 | bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); |
631 | |
632 | CharUnits PrimaryBaseOffset; |
633 | |
634 | // Get the base offset of the primary base. |
635 | if (PrimaryBaseIsVirtual) { |
636 | assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && |
637 | "Primary vbase should have a zero offset!" ); |
638 | |
639 | const ASTRecordLayout &MostDerivedClassLayout = |
640 | Context.getASTRecordLayout(MostDerivedClass); |
641 | |
642 | PrimaryBaseOffset = |
643 | MostDerivedClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
644 | } else { |
645 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
646 | "Primary base should have a zero offset!" ); |
647 | |
648 | PrimaryBaseOffset = Base.getBaseOffset(); |
649 | } |
650 | |
651 | AddVCallAndVBaseOffsets( |
652 | Base: BaseSubobject(PrimaryBase,PrimaryBaseOffset), |
653 | BaseIsVirtual: PrimaryBaseIsVirtual, RealBaseOffset); |
654 | } |
655 | |
656 | AddVBaseOffsets(Base: Base.getBase(), OffsetInLayoutClass: RealBaseOffset); |
657 | |
658 | // We only want to add vcall offsets for virtual bases. |
659 | if (BaseIsVirtual) |
660 | AddVCallOffsets(Base, VBaseOffset: RealBaseOffset); |
661 | } |
662 | |
663 | CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { |
664 | // OffsetIndex is the index of this vcall or vbase offset, relative to the |
665 | // vtable address point. (We subtract 3 to account for the information just |
666 | // above the address point, the RTTI info, the offset to top, and the |
667 | // vcall offset itself). |
668 | size_t NumComponentsAboveAddrPoint = 3; |
669 | if (Context.getLangOpts().OmitVTableRTTI) |
670 | NumComponentsAboveAddrPoint--; |
671 | int64_t OffsetIndex = |
672 | -(int64_t)(NumComponentsAboveAddrPoint + Components.size()); |
673 | |
674 | // Under the relative ABI, the offset widths are 32-bit ints instead of |
675 | // pointer widths. |
676 | CharUnits OffsetWidth = Context.toCharUnitsFromBits( |
677 | BitSize: VTables.isRelativeLayout() |
678 | ? 32 |
679 | : Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
680 | CharUnits OffsetOffset = OffsetWidth * OffsetIndex; |
681 | |
682 | return OffsetOffset; |
683 | } |
684 | |
685 | void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, |
686 | CharUnits VBaseOffset) { |
687 | const CXXRecordDecl *RD = Base.getBase(); |
688 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
689 | |
690 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
691 | |
692 | // Handle the primary base first. |
693 | // We only want to add vcall offsets if the base is non-virtual; a virtual |
694 | // primary base will have its vcall and vbase offsets emitted already. |
695 | if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { |
696 | // Get the base offset of the primary base. |
697 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
698 | "Primary base should have a zero offset!" ); |
699 | |
700 | AddVCallOffsets(Base: BaseSubobject(PrimaryBase, Base.getBaseOffset()), |
701 | VBaseOffset); |
702 | } |
703 | |
704 | // Add the vcall offsets. |
705 | for (const auto *MD : RD->methods()) { |
706 | if (!VTableContextBase::hasVtableSlot(MD)) |
707 | continue; |
708 | MD = MD->getCanonicalDecl(); |
709 | |
710 | CharUnits OffsetOffset = getCurrentOffsetOffset(); |
711 | |
712 | // Don't add a vcall offset if we already have one for this member function |
713 | // signature. |
714 | if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) |
715 | continue; |
716 | |
717 | CharUnits Offset = CharUnits::Zero(); |
718 | |
719 | if (Overriders) { |
720 | // Get the final overrider. |
721 | FinalOverriders::OverriderInfo Overrider = |
722 | Overriders->getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
723 | |
724 | /// The vcall offset is the offset from the virtual base to the object |
725 | /// where the function was overridden. |
726 | Offset = Overrider.Offset - VBaseOffset; |
727 | } |
728 | |
729 | Components.push_back( |
730 | Elt: VTableComponent::MakeVCallOffset(Offset)); |
731 | } |
732 | |
733 | // And iterate over all non-virtual bases (ignoring the primary base). |
734 | for (const auto &B : RD->bases()) { |
735 | if (B.isVirtual()) |
736 | continue; |
737 | |
738 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
739 | if (BaseDecl == PrimaryBase) |
740 | continue; |
741 | |
742 | // Get the base offset of this base. |
743 | CharUnits BaseOffset = Base.getBaseOffset() + |
744 | Layout.getBaseClassOffset(Base: BaseDecl); |
745 | |
746 | AddVCallOffsets(Base: BaseSubobject(BaseDecl, BaseOffset), |
747 | VBaseOffset); |
748 | } |
749 | } |
750 | |
751 | void |
752 | VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, |
753 | CharUnits OffsetInLayoutClass) { |
754 | const ASTRecordLayout &LayoutClassLayout = |
755 | Context.getASTRecordLayout(LayoutClass); |
756 | |
757 | // Add vbase offsets. |
758 | for (const auto &B : RD->bases()) { |
759 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
760 | |
761 | // Check if this is a virtual base that we haven't visited before. |
762 | if (B.isVirtual() && VisitedVirtualBases.insert(Ptr: BaseDecl).second) { |
763 | CharUnits Offset = |
764 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl) - OffsetInLayoutClass; |
765 | |
766 | // Add the vbase offset offset. |
767 | assert(!VBaseOffsetOffsets.count(BaseDecl) && |
768 | "vbase offset offset already exists!" ); |
769 | |
770 | CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); |
771 | VBaseOffsetOffsets.insert( |
772 | KV: std::make_pair(x&: BaseDecl, y&: VBaseOffsetOffset)); |
773 | |
774 | Components.push_back( |
775 | Elt: VTableComponent::MakeVBaseOffset(Offset)); |
776 | } |
777 | |
778 | // Check the base class looking for more vbase offsets. |
779 | AddVBaseOffsets(RD: BaseDecl, OffsetInLayoutClass); |
780 | } |
781 | } |
782 | |
783 | /// ItaniumVTableBuilder - Class for building vtable layout information. |
784 | class ItaniumVTableBuilder { |
785 | public: |
786 | /// PrimaryBasesSetVectorTy - A set vector of direct and indirect |
787 | /// primary bases. |
788 | typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> |
789 | PrimaryBasesSetVectorTy; |
790 | |
791 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> |
792 | VBaseOffsetOffsetsMapTy; |
793 | |
794 | typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; |
795 | |
796 | typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; |
797 | |
798 | private: |
799 | /// VTables - Global vtable information. |
800 | ItaniumVTableContext &VTables; |
801 | |
802 | /// MostDerivedClass - The most derived class for which we're building this |
803 | /// vtable. |
804 | const CXXRecordDecl *MostDerivedClass; |
805 | |
806 | /// MostDerivedClassOffset - If we're building a construction vtable, this |
807 | /// holds the offset from the layout class to the most derived class. |
808 | const CharUnits MostDerivedClassOffset; |
809 | |
810 | /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual |
811 | /// base. (This only makes sense when building a construction vtable). |
812 | bool MostDerivedClassIsVirtual; |
813 | |
814 | /// LayoutClass - The class we're using for layout information. Will be |
815 | /// different than the most derived class if we're building a construction |
816 | /// vtable. |
817 | const CXXRecordDecl *LayoutClass; |
818 | |
819 | /// Context - The ASTContext which we will use for layout information. |
820 | ASTContext &Context; |
821 | |
822 | /// FinalOverriders - The final overriders of the most derived class. |
823 | const FinalOverriders Overriders; |
824 | |
825 | /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual |
826 | /// bases in this vtable. |
827 | llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; |
828 | |
829 | /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for |
830 | /// the most derived class. |
831 | VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; |
832 | |
833 | /// Components - The components of the vtable being built. |
834 | SmallVector<VTableComponent, 64> Components; |
835 | |
836 | /// AddressPoints - Address points for the vtable being built. |
837 | AddressPointsMapTy AddressPoints; |
838 | |
839 | /// MethodInfo - Contains information about a method in a vtable. |
840 | /// (Used for computing 'this' pointer adjustment thunks. |
841 | struct MethodInfo { |
842 | /// BaseOffset - The base offset of this method. |
843 | const CharUnits BaseOffset; |
844 | |
845 | /// BaseOffsetInLayoutClass - The base offset in the layout class of this |
846 | /// method. |
847 | const CharUnits BaseOffsetInLayoutClass; |
848 | |
849 | /// VTableIndex - The index in the vtable that this method has. |
850 | /// (For destructors, this is the index of the complete destructor). |
851 | const uint64_t VTableIndex; |
852 | |
853 | MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, |
854 | uint64_t VTableIndex) |
855 | : BaseOffset(BaseOffset), |
856 | BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), |
857 | VTableIndex(VTableIndex) { } |
858 | |
859 | MethodInfo() |
860 | : BaseOffset(CharUnits::Zero()), |
861 | BaseOffsetInLayoutClass(CharUnits::Zero()), |
862 | VTableIndex(0) { } |
863 | |
864 | MethodInfo(MethodInfo const&) = default; |
865 | }; |
866 | |
867 | typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; |
868 | |
869 | /// MethodInfoMap - The information for all methods in the vtable we're |
870 | /// currently building. |
871 | MethodInfoMapTy MethodInfoMap; |
872 | |
873 | /// MethodVTableIndices - Contains the index (relative to the vtable address |
874 | /// point) where the function pointer for a virtual function is stored. |
875 | MethodVTableIndicesTy MethodVTableIndices; |
876 | |
877 | typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; |
878 | |
879 | /// VTableThunks - The thunks by vtable index in the vtable currently being |
880 | /// built. |
881 | VTableThunksMapTy VTableThunks; |
882 | |
883 | typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; |
884 | typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; |
885 | |
886 | /// Thunks - A map that contains all the thunks needed for all methods in the |
887 | /// most derived class for which the vtable is currently being built. |
888 | ThunksMapTy Thunks; |
889 | |
890 | /// AddThunk - Add a thunk for the given method. |
891 | void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); |
892 | |
893 | /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the |
894 | /// part of the vtable we're currently building. |
895 | void ComputeThisAdjustments(); |
896 | |
897 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
898 | |
899 | /// PrimaryVirtualBases - All known virtual bases who are a primary base of |
900 | /// some other base. |
901 | VisitedVirtualBasesSetTy PrimaryVirtualBases; |
902 | |
903 | /// ComputeReturnAdjustment - Compute the return adjustment given a return |
904 | /// adjustment base offset. |
905 | ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); |
906 | |
907 | /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting |
908 | /// the 'this' pointer from the base subobject to the derived subobject. |
909 | BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, |
910 | BaseSubobject Derived) const; |
911 | |
912 | /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the |
913 | /// given virtual member function, its offset in the layout class and its |
914 | /// final overrider. |
915 | ThisAdjustment |
916 | ComputeThisAdjustment(const CXXMethodDecl *MD, |
917 | CharUnits BaseOffsetInLayoutClass, |
918 | FinalOverriders::OverriderInfo Overrider); |
919 | |
920 | /// AddMethod - Add a single virtual member function to the vtable |
921 | /// components vector. |
922 | void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); |
923 | |
924 | /// IsOverriderUsed - Returns whether the overrider will ever be used in this |
925 | /// part of the vtable. |
926 | /// |
927 | /// Itanium C++ ABI 2.5.2: |
928 | /// |
929 | /// struct A { virtual void f(); }; |
930 | /// struct B : virtual public A { int i; }; |
931 | /// struct C : virtual public A { int j; }; |
932 | /// struct D : public B, public C {}; |
933 | /// |
934 | /// When B and C are declared, A is a primary base in each case, so although |
935 | /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this |
936 | /// adjustment is required and no thunk is generated. However, inside D |
937 | /// objects, A is no longer a primary base of C, so if we allowed calls to |
938 | /// C::f() to use the copy of A's vtable in the C subobject, we would need |
939 | /// to adjust this from C* to B::A*, which would require a third-party |
940 | /// thunk. Since we require that a call to C::f() first convert to A*, |
941 | /// C-in-D's copy of A's vtable is never referenced, so this is not |
942 | /// necessary. |
943 | bool IsOverriderUsed(const CXXMethodDecl *Overrider, |
944 | CharUnits BaseOffsetInLayoutClass, |
945 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
946 | CharUnits FirstBaseOffsetInLayoutClass) const; |
947 | |
948 | |
949 | /// AddMethods - Add the methods of this base subobject and all its |
950 | /// primary bases to the vtable components vector. |
951 | void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, |
952 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
953 | CharUnits FirstBaseOffsetInLayoutClass, |
954 | PrimaryBasesSetVectorTy &PrimaryBases); |
955 | |
956 | // LayoutVTable - Layout the vtable for the given base class, including its |
957 | // secondary vtables and any vtables for virtual bases. |
958 | void LayoutVTable(); |
959 | |
960 | /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the |
961 | /// given base subobject, as well as all its secondary vtables. |
962 | /// |
963 | /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base |
964 | /// or a direct or indirect base of a virtual base. |
965 | /// |
966 | /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual |
967 | /// in the layout class. |
968 | void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, |
969 | bool BaseIsMorallyVirtual, |
970 | bool BaseIsVirtualInLayoutClass, |
971 | CharUnits OffsetInLayoutClass); |
972 | |
973 | /// LayoutSecondaryVTables - Layout the secondary vtables for the given base |
974 | /// subobject. |
975 | /// |
976 | /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base |
977 | /// or a direct or indirect base of a virtual base. |
978 | void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, |
979 | CharUnits OffsetInLayoutClass); |
980 | |
981 | /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this |
982 | /// class hierarchy. |
983 | void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, |
984 | CharUnits OffsetInLayoutClass, |
985 | VisitedVirtualBasesSetTy &VBases); |
986 | |
987 | /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the |
988 | /// given base (excluding any primary bases). |
989 | void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, |
990 | VisitedVirtualBasesSetTy &VBases); |
991 | |
992 | /// isBuildingConstructionVTable - Return whether this vtable builder is |
993 | /// building a construction vtable. |
994 | bool isBuildingConstructorVTable() const { |
995 | return MostDerivedClass != LayoutClass; |
996 | } |
997 | |
998 | public: |
999 | /// Component indices of the first component of each of the vtables in the |
1000 | /// vtable group. |
1001 | SmallVector<size_t, 4> VTableIndices; |
1002 | |
1003 | ItaniumVTableBuilder(ItaniumVTableContext &VTables, |
1004 | const CXXRecordDecl *MostDerivedClass, |
1005 | CharUnits MostDerivedClassOffset, |
1006 | bool MostDerivedClassIsVirtual, |
1007 | const CXXRecordDecl *LayoutClass) |
1008 | : VTables(VTables), MostDerivedClass(MostDerivedClass), |
1009 | MostDerivedClassOffset(MostDerivedClassOffset), |
1010 | MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), |
1011 | LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), |
1012 | Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { |
1013 | assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); |
1014 | |
1015 | LayoutVTable(); |
1016 | |
1017 | if (Context.getLangOpts().DumpVTableLayouts) |
1018 | dumpLayout(llvm::outs()); |
1019 | } |
1020 | |
1021 | uint64_t getNumThunks() const { |
1022 | return Thunks.size(); |
1023 | } |
1024 | |
1025 | ThunksMapTy::const_iterator thunks_begin() const { |
1026 | return Thunks.begin(); |
1027 | } |
1028 | |
1029 | ThunksMapTy::const_iterator thunks_end() const { |
1030 | return Thunks.end(); |
1031 | } |
1032 | |
1033 | const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { |
1034 | return VBaseOffsetOffsets; |
1035 | } |
1036 | |
1037 | const AddressPointsMapTy &getAddressPoints() const { |
1038 | return AddressPoints; |
1039 | } |
1040 | |
1041 | MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { |
1042 | return MethodVTableIndices.begin(); |
1043 | } |
1044 | |
1045 | MethodVTableIndicesTy::const_iterator vtable_indices_end() const { |
1046 | return MethodVTableIndices.end(); |
1047 | } |
1048 | |
1049 | ArrayRef<VTableComponent> vtable_components() const { return Components; } |
1050 | |
1051 | AddressPointsMapTy::const_iterator address_points_begin() const { |
1052 | return AddressPoints.begin(); |
1053 | } |
1054 | |
1055 | AddressPointsMapTy::const_iterator address_points_end() const { |
1056 | return AddressPoints.end(); |
1057 | } |
1058 | |
1059 | VTableThunksMapTy::const_iterator vtable_thunks_begin() const { |
1060 | return VTableThunks.begin(); |
1061 | } |
1062 | |
1063 | VTableThunksMapTy::const_iterator vtable_thunks_end() const { |
1064 | return VTableThunks.end(); |
1065 | } |
1066 | |
1067 | /// dumpLayout - Dump the vtable layout. |
1068 | void dumpLayout(raw_ostream&); |
1069 | }; |
1070 | |
1071 | void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, |
1072 | const ThunkInfo &Thunk) { |
1073 | assert(!isBuildingConstructorVTable() && |
1074 | "Can't add thunks for construction vtable" ); |
1075 | |
1076 | SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; |
1077 | |
1078 | // Check if we have this thunk already. |
1079 | if (llvm::is_contained(Range&: ThunksVector, Element: Thunk)) |
1080 | return; |
1081 | |
1082 | ThunksVector.push_back(Elt: Thunk); |
1083 | } |
1084 | |
1085 | typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; |
1086 | |
1087 | /// Visit all the methods overridden by the given method recursively, |
1088 | /// in a depth-first pre-order. The Visitor's visitor method returns a bool |
1089 | /// indicating whether to continue the recursion for the given overridden |
1090 | /// method (i.e. returning false stops the iteration). |
1091 | template <class VisitorTy> |
1092 | static void |
1093 | visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { |
1094 | assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!" ); |
1095 | |
1096 | for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { |
1097 | if (!Visitor(OverriddenMD)) |
1098 | continue; |
1099 | visitAllOverriddenMethods(OverriddenMD, Visitor); |
1100 | } |
1101 | } |
1102 | |
1103 | /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all |
1104 | /// the overridden methods that the function decl overrides. |
1105 | static void |
1106 | ComputeAllOverriddenMethods(const CXXMethodDecl *MD, |
1107 | OverriddenMethodsSetTy& OverriddenMethods) { |
1108 | auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { |
1109 | // Don't recurse on this method if we've already collected it. |
1110 | return OverriddenMethods.insert(Ptr: MD).second; |
1111 | }; |
1112 | visitAllOverriddenMethods(MD, Visitor&: OverriddenMethodsCollector); |
1113 | } |
1114 | |
1115 | void ItaniumVTableBuilder::ComputeThisAdjustments() { |
1116 | // Now go through the method info map and see if any of the methods need |
1117 | // 'this' pointer adjustments. |
1118 | for (const auto &MI : MethodInfoMap) { |
1119 | const CXXMethodDecl *MD = MI.first; |
1120 | const MethodInfo &MethodInfo = MI.second; |
1121 | |
1122 | // Ignore adjustments for unused function pointers. |
1123 | uint64_t VTableIndex = MethodInfo.VTableIndex; |
1124 | if (Components[VTableIndex].getKind() == |
1125 | VTableComponent::CK_UnusedFunctionPointer) |
1126 | continue; |
1127 | |
1128 | // Get the final overrider for this method. |
1129 | FinalOverriders::OverriderInfo Overrider = |
1130 | Overriders.getOverrider(MD, BaseOffset: MethodInfo.BaseOffset); |
1131 | |
1132 | // Check if we need an adjustment at all. |
1133 | if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { |
1134 | // When a return thunk is needed by a derived class that overrides a |
1135 | // virtual base, gcc uses a virtual 'this' adjustment as well. |
1136 | // While the thunk itself might be needed by vtables in subclasses or |
1137 | // in construction vtables, there doesn't seem to be a reason for using |
1138 | // the thunk in this vtable. Still, we do so to match gcc. |
1139 | if (VTableThunks.lookup(Val: VTableIndex).Return.isEmpty()) |
1140 | continue; |
1141 | } |
1142 | |
1143 | ThisAdjustment ThisAdjustment = |
1144 | ComputeThisAdjustment(MD, BaseOffsetInLayoutClass: MethodInfo.BaseOffsetInLayoutClass, Overrider); |
1145 | |
1146 | if (ThisAdjustment.isEmpty()) |
1147 | continue; |
1148 | |
1149 | // Add it. |
1150 | VTableThunks[VTableIndex].This = ThisAdjustment; |
1151 | |
1152 | if (isa<CXXDestructorDecl>(Val: MD)) { |
1153 | // Add an adjustment for the deleting destructor as well. |
1154 | VTableThunks[VTableIndex + 1].This = ThisAdjustment; |
1155 | } |
1156 | } |
1157 | |
1158 | /// Clear the method info map. |
1159 | MethodInfoMap.clear(); |
1160 | |
1161 | if (isBuildingConstructorVTable()) { |
1162 | // We don't need to store thunk information for construction vtables. |
1163 | return; |
1164 | } |
1165 | |
1166 | for (const auto &TI : VTableThunks) { |
1167 | const VTableComponent &Component = Components[TI.first]; |
1168 | const ThunkInfo &Thunk = TI.second; |
1169 | const CXXMethodDecl *MD; |
1170 | |
1171 | switch (Component.getKind()) { |
1172 | default: |
1173 | llvm_unreachable("Unexpected vtable component kind!" ); |
1174 | case VTableComponent::CK_FunctionPointer: |
1175 | MD = Component.getFunctionDecl(); |
1176 | break; |
1177 | case VTableComponent::CK_CompleteDtorPointer: |
1178 | MD = Component.getDestructorDecl(); |
1179 | break; |
1180 | case VTableComponent::CK_DeletingDtorPointer: |
1181 | // We've already added the thunk when we saw the complete dtor pointer. |
1182 | continue; |
1183 | } |
1184 | |
1185 | if (MD->getParent() == MostDerivedClass) |
1186 | AddThunk(MD, Thunk); |
1187 | } |
1188 | } |
1189 | |
1190 | ReturnAdjustment |
1191 | ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { |
1192 | ReturnAdjustment Adjustment; |
1193 | |
1194 | if (!Offset.isEmpty()) { |
1195 | if (Offset.VirtualBase) { |
1196 | // Get the virtual base offset offset. |
1197 | if (Offset.DerivedClass == MostDerivedClass) { |
1198 | // We can get the offset offset directly from our map. |
1199 | Adjustment.Virtual.Itanium.VBaseOffsetOffset = |
1200 | VBaseOffsetOffsets.lookup(Val: Offset.VirtualBase).getQuantity(); |
1201 | } else { |
1202 | Adjustment.Virtual.Itanium.VBaseOffsetOffset = |
1203 | VTables.getVirtualBaseOffsetOffset(RD: Offset.DerivedClass, |
1204 | VBase: Offset.VirtualBase).getQuantity(); |
1205 | } |
1206 | } |
1207 | |
1208 | Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); |
1209 | } |
1210 | |
1211 | return Adjustment; |
1212 | } |
1213 | |
1214 | BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( |
1215 | BaseSubobject Base, BaseSubobject Derived) const { |
1216 | const CXXRecordDecl *BaseRD = Base.getBase(); |
1217 | const CXXRecordDecl *DerivedRD = Derived.getBase(); |
1218 | |
1219 | CXXBasePaths Paths(/*FindAmbiguities=*/true, |
1220 | /*RecordPaths=*/true, /*DetectVirtual=*/true); |
1221 | |
1222 | if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths)) |
1223 | llvm_unreachable("Class must be derived from the passed in base class!" ); |
1224 | |
1225 | // We have to go through all the paths, and see which one leads us to the |
1226 | // right base subobject. |
1227 | for (const CXXBasePath &Path : Paths) { |
1228 | BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); |
1229 | |
1230 | CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; |
1231 | |
1232 | if (Offset.VirtualBase) { |
1233 | // If we have a virtual base class, the non-virtual offset is relative |
1234 | // to the virtual base class offset. |
1235 | const ASTRecordLayout &LayoutClassLayout = |
1236 | Context.getASTRecordLayout(LayoutClass); |
1237 | |
1238 | /// Get the virtual base offset, relative to the most derived class |
1239 | /// layout. |
1240 | OffsetToBaseSubobject += |
1241 | LayoutClassLayout.getVBaseClassOffset(VBase: Offset.VirtualBase); |
1242 | } else { |
1243 | // Otherwise, the non-virtual offset is relative to the derived class |
1244 | // offset. |
1245 | OffsetToBaseSubobject += Derived.getBaseOffset(); |
1246 | } |
1247 | |
1248 | // Check if this path gives us the right base subobject. |
1249 | if (OffsetToBaseSubobject == Base.getBaseOffset()) { |
1250 | // Since we're going from the base class _to_ the derived class, we'll |
1251 | // invert the non-virtual offset here. |
1252 | Offset.NonVirtualOffset = -Offset.NonVirtualOffset; |
1253 | return Offset; |
1254 | } |
1255 | } |
1256 | |
1257 | return BaseOffset(); |
1258 | } |
1259 | |
1260 | ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( |
1261 | const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, |
1262 | FinalOverriders::OverriderInfo Overrider) { |
1263 | // Ignore adjustments for pure virtual member functions. |
1264 | if (Overrider.Method->isPureVirtual()) |
1265 | return ThisAdjustment(); |
1266 | |
1267 | BaseSubobject OverriddenBaseSubobject(MD->getParent(), |
1268 | BaseOffsetInLayoutClass); |
1269 | |
1270 | BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), |
1271 | Overrider.Offset); |
1272 | |
1273 | // Compute the adjustment offset. |
1274 | BaseOffset Offset = ComputeThisAdjustmentBaseOffset(Base: OverriddenBaseSubobject, |
1275 | Derived: OverriderBaseSubobject); |
1276 | if (Offset.isEmpty()) |
1277 | return ThisAdjustment(); |
1278 | |
1279 | ThisAdjustment Adjustment; |
1280 | |
1281 | if (Offset.VirtualBase) { |
1282 | // Get the vcall offset map for this virtual base. |
1283 | VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; |
1284 | |
1285 | if (VCallOffsets.empty()) { |
1286 | // We don't have vcall offsets for this virtual base, go ahead and |
1287 | // build them. |
1288 | VCallAndVBaseOffsetBuilder Builder( |
1289 | VTables, MostDerivedClass, MostDerivedClass, |
1290 | /*Overriders=*/nullptr, |
1291 | BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), |
1292 | /*BaseIsVirtual=*/true, |
1293 | /*OffsetInLayoutClass=*/ |
1294 | CharUnits::Zero()); |
1295 | |
1296 | VCallOffsets = Builder.getVCallOffsets(); |
1297 | } |
1298 | |
1299 | Adjustment.Virtual.Itanium.VCallOffsetOffset = |
1300 | VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); |
1301 | } |
1302 | |
1303 | // Set the non-virtual part of the adjustment. |
1304 | Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); |
1305 | |
1306 | return Adjustment; |
1307 | } |
1308 | |
1309 | void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, |
1310 | ReturnAdjustment ReturnAdjustment) { |
1311 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1312 | assert(ReturnAdjustment.isEmpty() && |
1313 | "Destructor can't have return adjustment!" ); |
1314 | |
1315 | // Add both the complete destructor and the deleting destructor. |
1316 | Components.push_back(Elt: VTableComponent::MakeCompleteDtor(DD)); |
1317 | Components.push_back(Elt: VTableComponent::MakeDeletingDtor(DD)); |
1318 | } else { |
1319 | // Add the return adjustment if necessary. |
1320 | if (!ReturnAdjustment.isEmpty()) |
1321 | VTableThunks[Components.size()].Return = ReturnAdjustment; |
1322 | |
1323 | // Add the function. |
1324 | Components.push_back(Elt: VTableComponent::MakeFunction(MD)); |
1325 | } |
1326 | } |
1327 | |
1328 | /// OverridesIndirectMethodInBase - Return whether the given member function |
1329 | /// overrides any methods in the set of given bases. |
1330 | /// Unlike OverridesMethodInBase, this checks "overriders of overriders". |
1331 | /// For example, if we have: |
1332 | /// |
1333 | /// struct A { virtual void f(); } |
1334 | /// struct B : A { virtual void f(); } |
1335 | /// struct C : B { virtual void f(); } |
1336 | /// |
1337 | /// OverridesIndirectMethodInBase will return true if given C::f as the method |
1338 | /// and { A } as the set of bases. |
1339 | static bool OverridesIndirectMethodInBases( |
1340 | const CXXMethodDecl *MD, |
1341 | ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { |
1342 | if (Bases.count(key: MD->getParent())) |
1343 | return true; |
1344 | |
1345 | for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { |
1346 | // Check "indirect overriders". |
1347 | if (OverridesIndirectMethodInBases(MD: OverriddenMD, Bases)) |
1348 | return true; |
1349 | } |
1350 | |
1351 | return false; |
1352 | } |
1353 | |
1354 | bool ItaniumVTableBuilder::IsOverriderUsed( |
1355 | const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, |
1356 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
1357 | CharUnits FirstBaseOffsetInLayoutClass) const { |
1358 | // If the base and the first base in the primary base chain have the same |
1359 | // offsets, then this overrider will be used. |
1360 | if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) |
1361 | return true; |
1362 | |
1363 | // We know now that Base (or a direct or indirect base of it) is a primary |
1364 | // base in part of the class hierarchy, but not a primary base in the most |
1365 | // derived class. |
1366 | |
1367 | // If the overrider is the first base in the primary base chain, we know |
1368 | // that the overrider will be used. |
1369 | if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) |
1370 | return true; |
1371 | |
1372 | ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; |
1373 | |
1374 | const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; |
1375 | PrimaryBases.insert(X: RD); |
1376 | |
1377 | // Now traverse the base chain, starting with the first base, until we find |
1378 | // the base that is no longer a primary base. |
1379 | while (true) { |
1380 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1381 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
1382 | |
1383 | if (!PrimaryBase) |
1384 | break; |
1385 | |
1386 | if (Layout.isPrimaryBaseVirtual()) { |
1387 | assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && |
1388 | "Primary base should always be at offset 0!" ); |
1389 | |
1390 | const ASTRecordLayout &LayoutClassLayout = |
1391 | Context.getASTRecordLayout(LayoutClass); |
1392 | |
1393 | // Now check if this is the primary base that is not a primary base in the |
1394 | // most derived class. |
1395 | if (LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase) != |
1396 | FirstBaseOffsetInLayoutClass) { |
1397 | // We found it, stop walking the chain. |
1398 | break; |
1399 | } |
1400 | } else { |
1401 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
1402 | "Primary base should always be at offset 0!" ); |
1403 | } |
1404 | |
1405 | if (!PrimaryBases.insert(X: PrimaryBase)) |
1406 | llvm_unreachable("Found a duplicate primary base!" ); |
1407 | |
1408 | RD = PrimaryBase; |
1409 | } |
1410 | |
1411 | // If the final overrider is an override of one of the primary bases, |
1412 | // then we know that it will be used. |
1413 | return OverridesIndirectMethodInBases(MD: Overrider, Bases&: PrimaryBases); |
1414 | } |
1415 | |
1416 | typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; |
1417 | |
1418 | /// FindNearestOverriddenMethod - Given a method, returns the overridden method |
1419 | /// from the nearest base. Returns null if no method was found. |
1420 | /// The Bases are expected to be sorted in a base-to-derived order. |
1421 | static const CXXMethodDecl * |
1422 | FindNearestOverriddenMethod(const CXXMethodDecl *MD, |
1423 | BasesSetVectorTy &Bases) { |
1424 | OverriddenMethodsSetTy OverriddenMethods; |
1425 | ComputeAllOverriddenMethods(MD, OverriddenMethods); |
1426 | |
1427 | for (const CXXRecordDecl *PrimaryBase : llvm::reverse(C&: Bases)) { |
1428 | // Now check the overridden methods. |
1429 | for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { |
1430 | // We found our overridden method. |
1431 | if (OverriddenMD->getParent() == PrimaryBase) |
1432 | return OverriddenMD; |
1433 | } |
1434 | } |
1435 | |
1436 | return nullptr; |
1437 | } |
1438 | |
1439 | void ItaniumVTableBuilder::AddMethods( |
1440 | BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, |
1441 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
1442 | CharUnits FirstBaseOffsetInLayoutClass, |
1443 | PrimaryBasesSetVectorTy &PrimaryBases) { |
1444 | // Itanium C++ ABI 2.5.2: |
1445 | // The order of the virtual function pointers in a virtual table is the |
1446 | // order of declaration of the corresponding member functions in the class. |
1447 | // |
1448 | // There is an entry for any virtual function declared in a class, |
1449 | // whether it is a new function or overrides a base class function, |
1450 | // unless it overrides a function from the primary base, and conversion |
1451 | // between their return types does not require an adjustment. |
1452 | |
1453 | const CXXRecordDecl *RD = Base.getBase(); |
1454 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1455 | |
1456 | if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
1457 | CharUnits PrimaryBaseOffset; |
1458 | CharUnits PrimaryBaseOffsetInLayoutClass; |
1459 | if (Layout.isPrimaryBaseVirtual()) { |
1460 | assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && |
1461 | "Primary vbase should have a zero offset!" ); |
1462 | |
1463 | const ASTRecordLayout &MostDerivedClassLayout = |
1464 | Context.getASTRecordLayout(MostDerivedClass); |
1465 | |
1466 | PrimaryBaseOffset = |
1467 | MostDerivedClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
1468 | |
1469 | const ASTRecordLayout &LayoutClassLayout = |
1470 | Context.getASTRecordLayout(LayoutClass); |
1471 | |
1472 | PrimaryBaseOffsetInLayoutClass = |
1473 | LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
1474 | } else { |
1475 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
1476 | "Primary base should have a zero offset!" ); |
1477 | |
1478 | PrimaryBaseOffset = Base.getBaseOffset(); |
1479 | PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; |
1480 | } |
1481 | |
1482 | AddMethods(Base: BaseSubobject(PrimaryBase, PrimaryBaseOffset), |
1483 | BaseOffsetInLayoutClass: PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, |
1484 | FirstBaseOffsetInLayoutClass, PrimaryBases); |
1485 | |
1486 | if (!PrimaryBases.insert(X: PrimaryBase)) |
1487 | llvm_unreachable("Found a duplicate primary base!" ); |
1488 | } |
1489 | |
1490 | typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; |
1491 | NewVirtualFunctionsTy NewVirtualFunctions; |
1492 | |
1493 | llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; |
1494 | |
1495 | // Now go through all virtual member functions and add them. |
1496 | for (const auto *MD : RD->methods()) { |
1497 | if (!ItaniumVTableContext::hasVtableSlot(MD)) |
1498 | continue; |
1499 | MD = MD->getCanonicalDecl(); |
1500 | |
1501 | // Get the final overrider. |
1502 | FinalOverriders::OverriderInfo Overrider = |
1503 | Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
1504 | |
1505 | // Check if this virtual member function overrides a method in a primary |
1506 | // base. If this is the case, and the return type doesn't require adjustment |
1507 | // then we can just use the member function from the primary base. |
1508 | if (const CXXMethodDecl *OverriddenMD = |
1509 | FindNearestOverriddenMethod(MD, Bases&: PrimaryBases)) { |
1510 | if (ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: MD, |
1511 | BaseMD: OverriddenMD).isEmpty()) { |
1512 | // Replace the method info of the overridden method with our own |
1513 | // method. |
1514 | assert(MethodInfoMap.count(OverriddenMD) && |
1515 | "Did not find the overridden method!" ); |
1516 | MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; |
1517 | |
1518 | MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, |
1519 | OverriddenMethodInfo.VTableIndex); |
1520 | |
1521 | assert(!MethodInfoMap.count(MD) && |
1522 | "Should not have method info for this method yet!" ); |
1523 | |
1524 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MethodInfo)); |
1525 | MethodInfoMap.erase(Val: OverriddenMD); |
1526 | |
1527 | // If the overridden method exists in a virtual base class or a direct |
1528 | // or indirect base class of a virtual base class, we need to emit a |
1529 | // thunk if we ever have a class hierarchy where the base class is not |
1530 | // a primary base in the complete object. |
1531 | if (!isBuildingConstructorVTable() && OverriddenMD != MD) { |
1532 | // Compute the this adjustment. |
1533 | ThisAdjustment ThisAdjustment = |
1534 | ComputeThisAdjustment(MD: OverriddenMD, BaseOffsetInLayoutClass, |
1535 | Overrider); |
1536 | |
1537 | if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && |
1538 | Overrider.Method->getParent() == MostDerivedClass) { |
1539 | |
1540 | // There's no return adjustment from OverriddenMD and MD, |
1541 | // but that doesn't mean there isn't one between MD and |
1542 | // the final overrider. |
1543 | BaseOffset ReturnAdjustmentOffset = |
1544 | ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: Overrider.Method, BaseMD: MD); |
1545 | ReturnAdjustment ReturnAdjustment = |
1546 | ComputeReturnAdjustment(Offset: ReturnAdjustmentOffset); |
1547 | |
1548 | // This is a virtual thunk for the most derived class, add it. |
1549 | AddThunk(MD: Overrider.Method, |
1550 | Thunk: ThunkInfo(ThisAdjustment, ReturnAdjustment)); |
1551 | } |
1552 | } |
1553 | |
1554 | continue; |
1555 | } |
1556 | } |
1557 | |
1558 | if (MD->isImplicit()) |
1559 | NewImplicitVirtualFunctions.push_back(Elt: MD); |
1560 | else |
1561 | NewVirtualFunctions.push_back(Elt: MD); |
1562 | } |
1563 | |
1564 | std::stable_sort( |
1565 | first: NewImplicitVirtualFunctions.begin(), last: NewImplicitVirtualFunctions.end(), |
1566 | comp: [](const CXXMethodDecl *A, const CXXMethodDecl *B) { |
1567 | if (A == B) |
1568 | return false; |
1569 | if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) |
1570 | return A->isCopyAssignmentOperator(); |
1571 | if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) |
1572 | return A->isMoveAssignmentOperator(); |
1573 | if (isa<CXXDestructorDecl>(Val: A) != isa<CXXDestructorDecl>(Val: B)) |
1574 | return isa<CXXDestructorDecl>(Val: A); |
1575 | assert(A->getOverloadedOperator() == OO_EqualEqual && |
1576 | B->getOverloadedOperator() == OO_EqualEqual && |
1577 | "unexpected or duplicate implicit virtual function" ); |
1578 | // We rely on Sema to have declared the operator== members in the |
1579 | // same order as the corresponding operator<=> members. |
1580 | return false; |
1581 | }); |
1582 | NewVirtualFunctions.append(in_start: NewImplicitVirtualFunctions.begin(), |
1583 | in_end: NewImplicitVirtualFunctions.end()); |
1584 | |
1585 | for (const CXXMethodDecl *MD : NewVirtualFunctions) { |
1586 | // Get the final overrider. |
1587 | FinalOverriders::OverriderInfo Overrider = |
1588 | Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
1589 | |
1590 | // Insert the method info for this method. |
1591 | MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, |
1592 | Components.size()); |
1593 | |
1594 | assert(!MethodInfoMap.count(MD) && |
1595 | "Should not have method info for this method yet!" ); |
1596 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MethodInfo)); |
1597 | |
1598 | // Check if this overrider is going to be used. |
1599 | const CXXMethodDecl *OverriderMD = Overrider.Method; |
1600 | if (!IsOverriderUsed(Overrider: OverriderMD, BaseOffsetInLayoutClass, |
1601 | FirstBaseInPrimaryBaseChain, |
1602 | FirstBaseOffsetInLayoutClass)) { |
1603 | Components.push_back(Elt: VTableComponent::MakeUnusedFunction(MD: OverriderMD)); |
1604 | continue; |
1605 | } |
1606 | |
1607 | // Check if this overrider needs a return adjustment. |
1608 | // We don't want to do this for pure virtual member functions. |
1609 | BaseOffset ReturnAdjustmentOffset; |
1610 | if (!OverriderMD->isPureVirtual()) { |
1611 | ReturnAdjustmentOffset = |
1612 | ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: OverriderMD, BaseMD: MD); |
1613 | } |
1614 | |
1615 | ReturnAdjustment ReturnAdjustment = |
1616 | ComputeReturnAdjustment(Offset: ReturnAdjustmentOffset); |
1617 | |
1618 | AddMethod(MD: Overrider.Method, ReturnAdjustment); |
1619 | } |
1620 | } |
1621 | |
1622 | void ItaniumVTableBuilder::LayoutVTable() { |
1623 | LayoutPrimaryAndSecondaryVTables(Base: BaseSubobject(MostDerivedClass, |
1624 | CharUnits::Zero()), |
1625 | /*BaseIsMorallyVirtual=*/false, |
1626 | BaseIsVirtualInLayoutClass: MostDerivedClassIsVirtual, |
1627 | OffsetInLayoutClass: MostDerivedClassOffset); |
1628 | |
1629 | VisitedVirtualBasesSetTy VBases; |
1630 | |
1631 | // Determine the primary virtual bases. |
1632 | DeterminePrimaryVirtualBases(RD: MostDerivedClass, OffsetInLayoutClass: MostDerivedClassOffset, |
1633 | VBases); |
1634 | VBases.clear(); |
1635 | |
1636 | LayoutVTablesForVirtualBases(RD: MostDerivedClass, VBases); |
1637 | |
1638 | // -fapple-kext adds an extra entry at end of vtbl. |
1639 | bool IsAppleKext = Context.getLangOpts().AppleKext; |
1640 | if (IsAppleKext) |
1641 | Components.push_back(Elt: VTableComponent::MakeVCallOffset(Offset: CharUnits::Zero())); |
1642 | } |
1643 | |
1644 | void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( |
1645 | BaseSubobject Base, bool BaseIsMorallyVirtual, |
1646 | bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { |
1647 | assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!" ); |
1648 | |
1649 | unsigned VTableIndex = Components.size(); |
1650 | VTableIndices.push_back(Elt: VTableIndex); |
1651 | |
1652 | // Add vcall and vbase offsets for this vtable. |
1653 | VCallAndVBaseOffsetBuilder Builder( |
1654 | VTables, MostDerivedClass, LayoutClass, &Overriders, Base, |
1655 | BaseIsVirtualInLayoutClass, OffsetInLayoutClass); |
1656 | Components.append(in_start: Builder.components_begin(), in_end: Builder.components_end()); |
1657 | |
1658 | // Check if we need to add these vcall offsets. |
1659 | if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { |
1660 | VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; |
1661 | |
1662 | if (VCallOffsets.empty()) |
1663 | VCallOffsets = Builder.getVCallOffsets(); |
1664 | } |
1665 | |
1666 | // If we're laying out the most derived class we want to keep track of the |
1667 | // virtual base class offset offsets. |
1668 | if (Base.getBase() == MostDerivedClass) |
1669 | VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); |
1670 | |
1671 | // Add the offset to top. |
1672 | CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; |
1673 | Components.push_back(Elt: VTableComponent::MakeOffsetToTop(Offset: OffsetToTop)); |
1674 | |
1675 | // Next, add the RTTI. |
1676 | if (!Context.getLangOpts().OmitVTableRTTI) |
1677 | Components.push_back(Elt: VTableComponent::MakeRTTI(RD: MostDerivedClass)); |
1678 | |
1679 | uint64_t AddressPoint = Components.size(); |
1680 | |
1681 | // Now go through all virtual member functions and add them. |
1682 | PrimaryBasesSetVectorTy PrimaryBases; |
1683 | AddMethods(Base, BaseOffsetInLayoutClass: OffsetInLayoutClass, |
1684 | FirstBaseInPrimaryBaseChain: Base.getBase(), FirstBaseOffsetInLayoutClass: OffsetInLayoutClass, |
1685 | PrimaryBases); |
1686 | |
1687 | const CXXRecordDecl *RD = Base.getBase(); |
1688 | if (RD == MostDerivedClass) { |
1689 | assert(MethodVTableIndices.empty()); |
1690 | for (const auto &I : MethodInfoMap) { |
1691 | const CXXMethodDecl *MD = I.first; |
1692 | const MethodInfo &MI = I.second; |
1693 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1694 | MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] |
1695 | = MI.VTableIndex - AddressPoint; |
1696 | MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] |
1697 | = MI.VTableIndex + 1 - AddressPoint; |
1698 | } else { |
1699 | MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; |
1700 | } |
1701 | } |
1702 | } |
1703 | |
1704 | // Compute 'this' pointer adjustments. |
1705 | ComputeThisAdjustments(); |
1706 | |
1707 | // Add all address points. |
1708 | while (true) { |
1709 | AddressPoints.insert( |
1710 | KV: std::make_pair(x: BaseSubobject(RD, OffsetInLayoutClass), |
1711 | y: VTableLayout::AddressPointLocation{ |
1712 | .VTableIndex: unsigned(VTableIndices.size() - 1), |
1713 | .AddressPointIndex: unsigned(AddressPoint - VTableIndex)})); |
1714 | |
1715 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1716 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
1717 | |
1718 | if (!PrimaryBase) |
1719 | break; |
1720 | |
1721 | if (Layout.isPrimaryBaseVirtual()) { |
1722 | // Check if this virtual primary base is a primary base in the layout |
1723 | // class. If it's not, we don't want to add it. |
1724 | const ASTRecordLayout &LayoutClassLayout = |
1725 | Context.getASTRecordLayout(LayoutClass); |
1726 | |
1727 | if (LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase) != |
1728 | OffsetInLayoutClass) { |
1729 | // We don't want to add this class (or any of its primary bases). |
1730 | break; |
1731 | } |
1732 | } |
1733 | |
1734 | RD = PrimaryBase; |
1735 | } |
1736 | |
1737 | // Layout secondary vtables. |
1738 | LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); |
1739 | } |
1740 | |
1741 | void |
1742 | ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, |
1743 | bool BaseIsMorallyVirtual, |
1744 | CharUnits OffsetInLayoutClass) { |
1745 | // Itanium C++ ABI 2.5.2: |
1746 | // Following the primary virtual table of a derived class are secondary |
1747 | // virtual tables for each of its proper base classes, except any primary |
1748 | // base(s) with which it shares its primary virtual table. |
1749 | |
1750 | const CXXRecordDecl *RD = Base.getBase(); |
1751 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1752 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
1753 | |
1754 | for (const auto &B : RD->bases()) { |
1755 | // Ignore virtual bases, we'll emit them later. |
1756 | if (B.isVirtual()) |
1757 | continue; |
1758 | |
1759 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
1760 | |
1761 | // Ignore bases that don't have a vtable. |
1762 | if (!BaseDecl->isDynamicClass()) |
1763 | continue; |
1764 | |
1765 | if (isBuildingConstructorVTable()) { |
1766 | // Itanium C++ ABI 2.6.4: |
1767 | // Some of the base class subobjects may not need construction virtual |
1768 | // tables, which will therefore not be present in the construction |
1769 | // virtual table group, even though the subobject virtual tables are |
1770 | // present in the main virtual table group for the complete object. |
1771 | if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) |
1772 | continue; |
1773 | } |
1774 | |
1775 | // Get the base offset of this base. |
1776 | CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(Base: BaseDecl); |
1777 | CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; |
1778 | |
1779 | CharUnits BaseOffsetInLayoutClass = |
1780 | OffsetInLayoutClass + RelativeBaseOffset; |
1781 | |
1782 | // Don't emit a secondary vtable for a primary base. We might however want |
1783 | // to emit secondary vtables for other bases of this base. |
1784 | if (BaseDecl == PrimaryBase) { |
1785 | LayoutSecondaryVTables(Base: BaseSubobject(BaseDecl, BaseOffset), |
1786 | BaseIsMorallyVirtual, OffsetInLayoutClass: BaseOffsetInLayoutClass); |
1787 | continue; |
1788 | } |
1789 | |
1790 | // Layout the primary vtable (and any secondary vtables) for this base. |
1791 | LayoutPrimaryAndSecondaryVTables( |
1792 | Base: BaseSubobject(BaseDecl, BaseOffset), |
1793 | BaseIsMorallyVirtual, |
1794 | /*BaseIsVirtualInLayoutClass=*/false, |
1795 | OffsetInLayoutClass: BaseOffsetInLayoutClass); |
1796 | } |
1797 | } |
1798 | |
1799 | void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( |
1800 | const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, |
1801 | VisitedVirtualBasesSetTy &VBases) { |
1802 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1803 | |
1804 | // Check if this base has a primary base. |
1805 | if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
1806 | |
1807 | // Check if it's virtual. |
1808 | if (Layout.isPrimaryBaseVirtual()) { |
1809 | bool IsPrimaryVirtualBase = true; |
1810 | |
1811 | if (isBuildingConstructorVTable()) { |
1812 | // Check if the base is actually a primary base in the class we use for |
1813 | // layout. |
1814 | const ASTRecordLayout &LayoutClassLayout = |
1815 | Context.getASTRecordLayout(LayoutClass); |
1816 | |
1817 | CharUnits PrimaryBaseOffsetInLayoutClass = |
1818 | LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
1819 | |
1820 | // We know that the base is not a primary base in the layout class if |
1821 | // the base offsets are different. |
1822 | if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) |
1823 | IsPrimaryVirtualBase = false; |
1824 | } |
1825 | |
1826 | if (IsPrimaryVirtualBase) |
1827 | PrimaryVirtualBases.insert(Ptr: PrimaryBase); |
1828 | } |
1829 | } |
1830 | |
1831 | // Traverse bases, looking for more primary virtual bases. |
1832 | for (const auto &B : RD->bases()) { |
1833 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
1834 | |
1835 | CharUnits BaseOffsetInLayoutClass; |
1836 | |
1837 | if (B.isVirtual()) { |
1838 | if (!VBases.insert(Ptr: BaseDecl).second) |
1839 | continue; |
1840 | |
1841 | const ASTRecordLayout &LayoutClassLayout = |
1842 | Context.getASTRecordLayout(LayoutClass); |
1843 | |
1844 | BaseOffsetInLayoutClass = |
1845 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
1846 | } else { |
1847 | BaseOffsetInLayoutClass = |
1848 | OffsetInLayoutClass + Layout.getBaseClassOffset(Base: BaseDecl); |
1849 | } |
1850 | |
1851 | DeterminePrimaryVirtualBases(RD: BaseDecl, OffsetInLayoutClass: BaseOffsetInLayoutClass, VBases); |
1852 | } |
1853 | } |
1854 | |
1855 | void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( |
1856 | const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { |
1857 | // Itanium C++ ABI 2.5.2: |
1858 | // Then come the virtual base virtual tables, also in inheritance graph |
1859 | // order, and again excluding primary bases (which share virtual tables with |
1860 | // the classes for which they are primary). |
1861 | for (const auto &B : RD->bases()) { |
1862 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
1863 | |
1864 | // Check if this base needs a vtable. (If it's virtual, not a primary base |
1865 | // of some other class, and we haven't visited it before). |
1866 | if (B.isVirtual() && BaseDecl->isDynamicClass() && |
1867 | !PrimaryVirtualBases.count(Ptr: BaseDecl) && |
1868 | VBases.insert(Ptr: BaseDecl).second) { |
1869 | const ASTRecordLayout &MostDerivedClassLayout = |
1870 | Context.getASTRecordLayout(MostDerivedClass); |
1871 | CharUnits BaseOffset = |
1872 | MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
1873 | |
1874 | const ASTRecordLayout &LayoutClassLayout = |
1875 | Context.getASTRecordLayout(LayoutClass); |
1876 | CharUnits BaseOffsetInLayoutClass = |
1877 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
1878 | |
1879 | LayoutPrimaryAndSecondaryVTables( |
1880 | Base: BaseSubobject(BaseDecl, BaseOffset), |
1881 | /*BaseIsMorallyVirtual=*/true, |
1882 | /*BaseIsVirtualInLayoutClass=*/true, |
1883 | OffsetInLayoutClass: BaseOffsetInLayoutClass); |
1884 | } |
1885 | |
1886 | // We only need to check the base for virtual base vtables if it actually |
1887 | // has virtual bases. |
1888 | if (BaseDecl->getNumVBases()) |
1889 | LayoutVTablesForVirtualBases(RD: BaseDecl, VBases); |
1890 | } |
1891 | } |
1892 | |
1893 | /// dumpLayout - Dump the vtable layout. |
1894 | void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { |
1895 | // FIXME: write more tests that actually use the dumpLayout output to prevent |
1896 | // ItaniumVTableBuilder regressions. |
1897 | |
1898 | if (isBuildingConstructorVTable()) { |
1899 | Out << "Construction vtable for ('" ; |
1900 | MostDerivedClass->printQualifiedName(Out); |
1901 | Out << "', " ; |
1902 | Out << MostDerivedClassOffset.getQuantity() << ") in '" ; |
1903 | LayoutClass->printQualifiedName(Out); |
1904 | } else { |
1905 | Out << "Vtable for '" ; |
1906 | MostDerivedClass->printQualifiedName(Out); |
1907 | } |
1908 | Out << "' (" << Components.size() << " entries).\n" ; |
1909 | |
1910 | // Iterate through the address points and insert them into a new map where |
1911 | // they are keyed by the index and not the base object. |
1912 | // Since an address point can be shared by multiple subobjects, we use an |
1913 | // STL multimap. |
1914 | std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; |
1915 | for (const auto &AP : AddressPoints) { |
1916 | const BaseSubobject &Base = AP.first; |
1917 | uint64_t Index = |
1918 | VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; |
1919 | |
1920 | AddressPointsByIndex.insert(x: std::make_pair(x&: Index, y: Base)); |
1921 | } |
1922 | |
1923 | for (unsigned I = 0, E = Components.size(); I != E; ++I) { |
1924 | uint64_t Index = I; |
1925 | |
1926 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
1927 | |
1928 | const VTableComponent &Component = Components[I]; |
1929 | |
1930 | // Dump the component. |
1931 | switch (Component.getKind()) { |
1932 | |
1933 | case VTableComponent::CK_VCallOffset: |
1934 | Out << "vcall_offset (" |
1935 | << Component.getVCallOffset().getQuantity() |
1936 | << ")" ; |
1937 | break; |
1938 | |
1939 | case VTableComponent::CK_VBaseOffset: |
1940 | Out << "vbase_offset (" |
1941 | << Component.getVBaseOffset().getQuantity() |
1942 | << ")" ; |
1943 | break; |
1944 | |
1945 | case VTableComponent::CK_OffsetToTop: |
1946 | Out << "offset_to_top (" |
1947 | << Component.getOffsetToTop().getQuantity() |
1948 | << ")" ; |
1949 | break; |
1950 | |
1951 | case VTableComponent::CK_RTTI: |
1952 | Component.getRTTIDecl()->printQualifiedName(Out); |
1953 | Out << " RTTI" ; |
1954 | break; |
1955 | |
1956 | case VTableComponent::CK_FunctionPointer: { |
1957 | const CXXMethodDecl *MD = Component.getFunctionDecl(); |
1958 | |
1959 | std::string Str = PredefinedExpr::ComputeName( |
1960 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
1961 | Out << Str; |
1962 | if (MD->isPureVirtual()) |
1963 | Out << " [pure]" ; |
1964 | |
1965 | if (MD->isDeleted()) |
1966 | Out << " [deleted]" ; |
1967 | |
1968 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
1969 | if (!Thunk.isEmpty()) { |
1970 | // If this function pointer has a return adjustment, dump it. |
1971 | if (!Thunk.Return.isEmpty()) { |
1972 | Out << "\n [return adjustment: " ; |
1973 | Out << Thunk.Return.NonVirtual << " non-virtual" ; |
1974 | |
1975 | if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { |
1976 | Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; |
1977 | Out << " vbase offset offset" ; |
1978 | } |
1979 | |
1980 | Out << ']'; |
1981 | } |
1982 | |
1983 | // If this function pointer has a 'this' pointer adjustment, dump it. |
1984 | if (!Thunk.This.isEmpty()) { |
1985 | Out << "\n [this adjustment: " ; |
1986 | Out << Thunk.This.NonVirtual << " non-virtual" ; |
1987 | |
1988 | if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { |
1989 | Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; |
1990 | Out << " vcall offset offset" ; |
1991 | } |
1992 | |
1993 | Out << ']'; |
1994 | } |
1995 | } |
1996 | |
1997 | break; |
1998 | } |
1999 | |
2000 | case VTableComponent::CK_CompleteDtorPointer: |
2001 | case VTableComponent::CK_DeletingDtorPointer: { |
2002 | bool IsComplete = |
2003 | Component.getKind() == VTableComponent::CK_CompleteDtorPointer; |
2004 | |
2005 | const CXXDestructorDecl *DD = Component.getDestructorDecl(); |
2006 | |
2007 | DD->printQualifiedName(Out); |
2008 | if (IsComplete) |
2009 | Out << "() [complete]" ; |
2010 | else |
2011 | Out << "() [deleting]" ; |
2012 | |
2013 | if (DD->isPureVirtual()) |
2014 | Out << " [pure]" ; |
2015 | |
2016 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
2017 | if (!Thunk.isEmpty()) { |
2018 | // If this destructor has a 'this' pointer adjustment, dump it. |
2019 | if (!Thunk.This.isEmpty()) { |
2020 | Out << "\n [this adjustment: " ; |
2021 | Out << Thunk.This.NonVirtual << " non-virtual" ; |
2022 | |
2023 | if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { |
2024 | Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; |
2025 | Out << " vcall offset offset" ; |
2026 | } |
2027 | |
2028 | Out << ']'; |
2029 | } |
2030 | } |
2031 | |
2032 | break; |
2033 | } |
2034 | |
2035 | case VTableComponent::CK_UnusedFunctionPointer: { |
2036 | const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); |
2037 | |
2038 | std::string Str = PredefinedExpr::ComputeName( |
2039 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
2040 | Out << "[unused] " << Str; |
2041 | if (MD->isPureVirtual()) |
2042 | Out << " [pure]" ; |
2043 | } |
2044 | |
2045 | } |
2046 | |
2047 | Out << '\n'; |
2048 | |
2049 | // Dump the next address point. |
2050 | uint64_t NextIndex = Index + 1; |
2051 | if (AddressPointsByIndex.count(x: NextIndex)) { |
2052 | if (AddressPointsByIndex.count(x: NextIndex) == 1) { |
2053 | const BaseSubobject &Base = |
2054 | AddressPointsByIndex.find(x: NextIndex)->second; |
2055 | |
2056 | Out << " -- (" ; |
2057 | Base.getBase()->printQualifiedName(Out); |
2058 | Out << ", " << Base.getBaseOffset().getQuantity(); |
2059 | Out << ") vtable address --\n" ; |
2060 | } else { |
2061 | CharUnits BaseOffset = |
2062 | AddressPointsByIndex.lower_bound(x: NextIndex)->second.getBaseOffset(); |
2063 | |
2064 | // We store the class names in a set to get a stable order. |
2065 | std::set<std::string> ClassNames; |
2066 | for (const auto &I : |
2067 | llvm::make_range(p: AddressPointsByIndex.equal_range(x: NextIndex))) { |
2068 | assert(I.second.getBaseOffset() == BaseOffset && |
2069 | "Invalid base offset!" ); |
2070 | const CXXRecordDecl *RD = I.second.getBase(); |
2071 | ClassNames.insert(RD->getQualifiedNameAsString()); |
2072 | } |
2073 | |
2074 | for (const std::string &Name : ClassNames) { |
2075 | Out << " -- (" << Name; |
2076 | Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n" ; |
2077 | } |
2078 | } |
2079 | } |
2080 | } |
2081 | |
2082 | Out << '\n'; |
2083 | |
2084 | if (isBuildingConstructorVTable()) |
2085 | return; |
2086 | |
2087 | if (MostDerivedClass->getNumVBases()) { |
2088 | // We store the virtual base class names and their offsets in a map to get |
2089 | // a stable order. |
2090 | |
2091 | std::map<std::string, CharUnits> ClassNamesAndOffsets; |
2092 | for (const auto &I : VBaseOffsetOffsets) { |
2093 | std::string ClassName = I.first->getQualifiedNameAsString(); |
2094 | CharUnits OffsetOffset = I.second; |
2095 | ClassNamesAndOffsets.insert(x: std::make_pair(x&: ClassName, y&: OffsetOffset)); |
2096 | } |
2097 | |
2098 | Out << "Virtual base offset offsets for '" ; |
2099 | MostDerivedClass->printQualifiedName(Out); |
2100 | Out << "' (" ; |
2101 | Out << ClassNamesAndOffsets.size(); |
2102 | Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
2103 | |
2104 | for (const auto &I : ClassNamesAndOffsets) |
2105 | Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; |
2106 | |
2107 | Out << "\n" ; |
2108 | } |
2109 | |
2110 | if (!Thunks.empty()) { |
2111 | // We store the method names in a map to get a stable order. |
2112 | std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; |
2113 | |
2114 | for (const auto &I : Thunks) { |
2115 | const CXXMethodDecl *MD = I.first; |
2116 | std::string MethodName = PredefinedExpr::ComputeName( |
2117 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
2118 | |
2119 | MethodNamesAndDecls.insert(x: std::make_pair(x&: MethodName, y&: MD)); |
2120 | } |
2121 | |
2122 | for (const auto &I : MethodNamesAndDecls) { |
2123 | const std::string &MethodName = I.first; |
2124 | const CXXMethodDecl *MD = I.second; |
2125 | |
2126 | ThunkInfoVectorTy ThunksVector = Thunks[MD]; |
2127 | llvm::sort(C&: ThunksVector, Comp: [](const ThunkInfo &LHS, const ThunkInfo &RHS) { |
2128 | assert(LHS.Method == nullptr && RHS.Method == nullptr); |
2129 | return std::tie(args: LHS.This, args: LHS.Return) < std::tie(args: RHS.This, args: RHS.Return); |
2130 | }); |
2131 | |
2132 | Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); |
2133 | Out << (ThunksVector.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
2134 | |
2135 | for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { |
2136 | const ThunkInfo &Thunk = ThunksVector[I]; |
2137 | |
2138 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
2139 | |
2140 | // If this function pointer has a return pointer adjustment, dump it. |
2141 | if (!Thunk.Return.isEmpty()) { |
2142 | Out << "return adjustment: " << Thunk.Return.NonVirtual; |
2143 | Out << " non-virtual" ; |
2144 | if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { |
2145 | Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; |
2146 | Out << " vbase offset offset" ; |
2147 | } |
2148 | |
2149 | if (!Thunk.This.isEmpty()) |
2150 | Out << "\n " ; |
2151 | } |
2152 | |
2153 | // If this function pointer has a 'this' pointer adjustment, dump it. |
2154 | if (!Thunk.This.isEmpty()) { |
2155 | Out << "this adjustment: " ; |
2156 | Out << Thunk.This.NonVirtual << " non-virtual" ; |
2157 | |
2158 | if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { |
2159 | Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; |
2160 | Out << " vcall offset offset" ; |
2161 | } |
2162 | } |
2163 | |
2164 | Out << '\n'; |
2165 | } |
2166 | |
2167 | Out << '\n'; |
2168 | } |
2169 | } |
2170 | |
2171 | // Compute the vtable indices for all the member functions. |
2172 | // Store them in a map keyed by the index so we'll get a sorted table. |
2173 | std::map<uint64_t, std::string> IndicesMap; |
2174 | |
2175 | for (const auto *MD : MostDerivedClass->methods()) { |
2176 | // We only want virtual member functions. |
2177 | if (!ItaniumVTableContext::hasVtableSlot(MD)) |
2178 | continue; |
2179 | MD = MD->getCanonicalDecl(); |
2180 | |
2181 | std::string MethodName = PredefinedExpr::ComputeName( |
2182 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
2183 | |
2184 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
2185 | GlobalDecl GD(DD, Dtor_Complete); |
2186 | assert(MethodVTableIndices.count(GD)); |
2187 | uint64_t VTableIndex = MethodVTableIndices[GD]; |
2188 | IndicesMap[VTableIndex] = MethodName + " [complete]" ; |
2189 | IndicesMap[VTableIndex + 1] = MethodName + " [deleting]" ; |
2190 | } else { |
2191 | assert(MethodVTableIndices.count(MD)); |
2192 | IndicesMap[MethodVTableIndices[MD]] = MethodName; |
2193 | } |
2194 | } |
2195 | |
2196 | // Print the vtable indices for all the member functions. |
2197 | if (!IndicesMap.empty()) { |
2198 | Out << "VTable indices for '" ; |
2199 | MostDerivedClass->printQualifiedName(Out); |
2200 | Out << "' (" << IndicesMap.size() << " entries).\n" ; |
2201 | |
2202 | for (const auto &I : IndicesMap) { |
2203 | uint64_t VTableIndex = I.first; |
2204 | const std::string &MethodName = I.second; |
2205 | |
2206 | Out << llvm::format(Fmt: "%4" PRIu64 " | " , Vals: VTableIndex) << MethodName |
2207 | << '\n'; |
2208 | } |
2209 | } |
2210 | |
2211 | Out << '\n'; |
2212 | } |
2213 | } |
2214 | |
2215 | static VTableLayout::AddressPointsIndexMapTy |
2216 | MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, |
2217 | unsigned numVTables) { |
2218 | VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); |
2219 | |
2220 | for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { |
2221 | const auto &addressPointLoc = it->second; |
2222 | unsigned vtableIndex = addressPointLoc.VTableIndex; |
2223 | unsigned addressPoint = addressPointLoc.AddressPointIndex; |
2224 | if (indexMap[vtableIndex]) { |
2225 | // Multiple BaseSubobjects can map to the same AddressPointLocation, but |
2226 | // every vtable index should have a unique address point. |
2227 | assert(indexMap[vtableIndex] == addressPoint && |
2228 | "Every vtable index should have a unique address point. Found a " |
2229 | "vtable that has two different address points." ); |
2230 | } else { |
2231 | indexMap[vtableIndex] = addressPoint; |
2232 | } |
2233 | } |
2234 | |
2235 | // Note that by this point, not all the address may be initialized if the |
2236 | // AddressPoints map is empty. This is ok if the map isn't needed. See |
2237 | // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an |
2238 | // emprt map. |
2239 | return indexMap; |
2240 | } |
2241 | |
2242 | VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, |
2243 | ArrayRef<VTableComponent> VTableComponents, |
2244 | ArrayRef<VTableThunkTy> VTableThunks, |
2245 | const AddressPointsMapTy &AddressPoints) |
2246 | : VTableComponents(VTableComponents), VTableThunks(VTableThunks), |
2247 | AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( |
2248 | addressPoints: AddressPoints, numVTables: VTableIndices.size())) { |
2249 | if (VTableIndices.size() <= 1) |
2250 | assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); |
2251 | else |
2252 | this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); |
2253 | |
2254 | llvm::sort(C&: this->VTableThunks, Comp: [](const VTableLayout::VTableThunkTy &LHS, |
2255 | const VTableLayout::VTableThunkTy &RHS) { |
2256 | assert((LHS.first != RHS.first || LHS.second == RHS.second) && |
2257 | "Different thunks should have unique indices!" ); |
2258 | return LHS.first < RHS.first; |
2259 | }); |
2260 | } |
2261 | |
2262 | VTableLayout::~VTableLayout() { } |
2263 | |
2264 | bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { |
2265 | return MD->isVirtual() && !MD->isImmediateFunction(); |
2266 | } |
2267 | |
2268 | ItaniumVTableContext::ItaniumVTableContext( |
2269 | ASTContext &Context, VTableComponentLayout ComponentLayout) |
2270 | : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} |
2271 | |
2272 | ItaniumVTableContext::~ItaniumVTableContext() {} |
2273 | |
2274 | uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { |
2275 | GD = GD.getCanonicalDecl(); |
2276 | MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(Val: GD); |
2277 | if (I != MethodVTableIndices.end()) |
2278 | return I->second; |
2279 | |
2280 | const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent(); |
2281 | |
2282 | computeVTableRelatedInformation(RD); |
2283 | |
2284 | I = MethodVTableIndices.find(Val: GD); |
2285 | assert(I != MethodVTableIndices.end() && "Did not find index!" ); |
2286 | return I->second; |
2287 | } |
2288 | |
2289 | CharUnits |
2290 | ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, |
2291 | const CXXRecordDecl *VBase) { |
2292 | ClassPairTy ClassPair(RD, VBase); |
2293 | |
2294 | VirtualBaseClassOffsetOffsetsMapTy::iterator I = |
2295 | VirtualBaseClassOffsetOffsets.find(Val: ClassPair); |
2296 | if (I != VirtualBaseClassOffsetOffsets.end()) |
2297 | return I->second; |
2298 | |
2299 | VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, |
2300 | BaseSubobject(RD, CharUnits::Zero()), |
2301 | /*BaseIsVirtual=*/false, |
2302 | /*OffsetInLayoutClass=*/CharUnits::Zero()); |
2303 | |
2304 | for (const auto &I : Builder.getVBaseOffsetOffsets()) { |
2305 | // Insert all types. |
2306 | ClassPairTy ClassPair(RD, I.first); |
2307 | |
2308 | VirtualBaseClassOffsetOffsets.insert(KV: std::make_pair(x&: ClassPair, y: I.second)); |
2309 | } |
2310 | |
2311 | I = VirtualBaseClassOffsetOffsets.find(Val: ClassPair); |
2312 | assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!" ); |
2313 | |
2314 | return I->second; |
2315 | } |
2316 | |
2317 | static std::unique_ptr<VTableLayout> |
2318 | CreateVTableLayout(const ItaniumVTableBuilder &Builder) { |
2319 | SmallVector<VTableLayout::VTableThunkTy, 1> |
2320 | VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); |
2321 | |
2322 | return std::make_unique<VTableLayout>( |
2323 | args: Builder.VTableIndices, args: Builder.vtable_components(), args&: VTableThunks, |
2324 | args: Builder.getAddressPoints()); |
2325 | } |
2326 | |
2327 | void |
2328 | ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { |
2329 | std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; |
2330 | |
2331 | // Check if we've computed this information before. |
2332 | if (Entry) |
2333 | return; |
2334 | |
2335 | ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), |
2336 | /*MostDerivedClassIsVirtual=*/false, RD); |
2337 | Entry = CreateVTableLayout(Builder); |
2338 | |
2339 | MethodVTableIndices.insert(I: Builder.vtable_indices_begin(), |
2340 | E: Builder.vtable_indices_end()); |
2341 | |
2342 | // Add the known thunks. |
2343 | Thunks.insert(I: Builder.thunks_begin(), E: Builder.thunks_end()); |
2344 | |
2345 | // If we don't have the vbase information for this class, insert it. |
2346 | // getVirtualBaseOffsetOffset will compute it separately without computing |
2347 | // the rest of the vtable related information. |
2348 | if (!RD->getNumVBases()) |
2349 | return; |
2350 | |
2351 | const CXXRecordDecl *VBase = |
2352 | RD->vbases_begin()->getType()->getAsCXXRecordDecl(); |
2353 | |
2354 | if (VirtualBaseClassOffsetOffsets.count(Val: std::make_pair(x&: RD, y&: VBase))) |
2355 | return; |
2356 | |
2357 | for (const auto &I : Builder.getVBaseOffsetOffsets()) { |
2358 | // Insert all types. |
2359 | ClassPairTy ClassPair(RD, I.first); |
2360 | |
2361 | VirtualBaseClassOffsetOffsets.insert(KV: std::make_pair(x&: ClassPair, y: I.second)); |
2362 | } |
2363 | } |
2364 | |
2365 | std::unique_ptr<VTableLayout> |
2366 | ItaniumVTableContext::createConstructionVTableLayout( |
2367 | const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, |
2368 | bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { |
2369 | ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, |
2370 | MostDerivedClassIsVirtual, LayoutClass); |
2371 | return CreateVTableLayout(Builder); |
2372 | } |
2373 | |
2374 | namespace { |
2375 | |
2376 | // Vtables in the Microsoft ABI are different from the Itanium ABI. |
2377 | // |
2378 | // The main differences are: |
2379 | // 1. Separate vftable and vbtable. |
2380 | // |
2381 | // 2. Each subobject with a vfptr gets its own vftable rather than an address |
2382 | // point in a single vtable shared between all the subobjects. |
2383 | // Each vftable is represented by a separate section and virtual calls |
2384 | // must be done using the vftable which has a slot for the function to be |
2385 | // called. |
2386 | // |
2387 | // 3. Virtual method definitions expect their 'this' parameter to point to the |
2388 | // first vfptr whose table provides a compatible overridden method. In many |
2389 | // cases, this permits the original vf-table entry to directly call |
2390 | // the method instead of passing through a thunk. |
2391 | // See example before VFTableBuilder::ComputeThisOffset below. |
2392 | // |
2393 | // A compatible overridden method is one which does not have a non-trivial |
2394 | // covariant-return adjustment. |
2395 | // |
2396 | // The first vfptr is the one with the lowest offset in the complete-object |
2397 | // layout of the defining class, and the method definition will subtract |
2398 | // that constant offset from the parameter value to get the real 'this' |
2399 | // value. Therefore, if the offset isn't really constant (e.g. if a virtual |
2400 | // function defined in a virtual base is overridden in a more derived |
2401 | // virtual base and these bases have a reverse order in the complete |
2402 | // object), the vf-table may require a this-adjustment thunk. |
2403 | // |
2404 | // 4. vftables do not contain new entries for overrides that merely require |
2405 | // this-adjustment. Together with #3, this keeps vf-tables smaller and |
2406 | // eliminates the need for this-adjustment thunks in many cases, at the cost |
2407 | // of often requiring redundant work to adjust the "this" pointer. |
2408 | // |
2409 | // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. |
2410 | // Vtordisps are emitted into the class layout if a class has |
2411 | // a) a user-defined ctor/dtor |
2412 | // and |
2413 | // b) a method overriding a method in a virtual base. |
2414 | // |
2415 | // To get a better understanding of this code, |
2416 | // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp |
2417 | |
2418 | class VFTableBuilder { |
2419 | public: |
2420 | typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> |
2421 | MethodVFTableLocationsTy; |
2422 | |
2423 | typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> |
2424 | method_locations_range; |
2425 | |
2426 | private: |
2427 | /// VTables - Global vtable information. |
2428 | MicrosoftVTableContext &VTables; |
2429 | |
2430 | /// Context - The ASTContext which we will use for layout information. |
2431 | ASTContext &Context; |
2432 | |
2433 | /// MostDerivedClass - The most derived class for which we're building this |
2434 | /// vtable. |
2435 | const CXXRecordDecl *MostDerivedClass; |
2436 | |
2437 | const ASTRecordLayout &MostDerivedClassLayout; |
2438 | |
2439 | const VPtrInfo &WhichVFPtr; |
2440 | |
2441 | /// FinalOverriders - The final overriders of the most derived class. |
2442 | const FinalOverriders Overriders; |
2443 | |
2444 | /// Components - The components of the vftable being built. |
2445 | SmallVector<VTableComponent, 64> Components; |
2446 | |
2447 | MethodVFTableLocationsTy MethodVFTableLocations; |
2448 | |
2449 | /// Does this class have an RTTI component? |
2450 | bool HasRTTIComponent = false; |
2451 | |
2452 | /// MethodInfo - Contains information about a method in a vtable. |
2453 | /// (Used for computing 'this' pointer adjustment thunks. |
2454 | struct MethodInfo { |
2455 | /// VBTableIndex - The nonzero index in the vbtable that |
2456 | /// this method's base has, or zero. |
2457 | const uint64_t VBTableIndex; |
2458 | |
2459 | /// VFTableIndex - The index in the vftable that this method has. |
2460 | const uint64_t VFTableIndex; |
2461 | |
2462 | /// Shadowed - Indicates if this vftable slot is shadowed by |
2463 | /// a slot for a covariant-return override. If so, it shouldn't be printed |
2464 | /// or used for vcalls in the most derived class. |
2465 | bool Shadowed; |
2466 | |
2467 | /// UsesExtraSlot - Indicates if this vftable slot was created because |
2468 | /// any of the overridden slots required a return adjusting thunk. |
2469 | bool ; |
2470 | |
2471 | MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, |
2472 | bool = false) |
2473 | : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), |
2474 | Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} |
2475 | |
2476 | MethodInfo() |
2477 | : VBTableIndex(0), VFTableIndex(0), Shadowed(false), |
2478 | UsesExtraSlot(false) {} |
2479 | }; |
2480 | |
2481 | typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; |
2482 | |
2483 | /// MethodInfoMap - The information for all methods in the vftable we're |
2484 | /// currently building. |
2485 | MethodInfoMapTy MethodInfoMap; |
2486 | |
2487 | typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; |
2488 | |
2489 | /// VTableThunks - The thunks by vftable index in the vftable currently being |
2490 | /// built. |
2491 | VTableThunksMapTy VTableThunks; |
2492 | |
2493 | typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; |
2494 | typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; |
2495 | |
2496 | /// Thunks - A map that contains all the thunks needed for all methods in the |
2497 | /// most derived class for which the vftable is currently being built. |
2498 | ThunksMapTy Thunks; |
2499 | |
2500 | /// AddThunk - Add a thunk for the given method. |
2501 | void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { |
2502 | SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; |
2503 | |
2504 | // Check if we have this thunk already. |
2505 | if (llvm::is_contained(Range&: ThunksVector, Element: Thunk)) |
2506 | return; |
2507 | |
2508 | ThunksVector.push_back(Elt: Thunk); |
2509 | } |
2510 | |
2511 | /// ComputeThisOffset - Returns the 'this' argument offset for the given |
2512 | /// method, relative to the beginning of the MostDerivedClass. |
2513 | CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); |
2514 | |
2515 | void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, |
2516 | CharUnits ThisOffset, ThisAdjustment &TA); |
2517 | |
2518 | /// AddMethod - Add a single virtual member function to the vftable |
2519 | /// components vector. |
2520 | void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { |
2521 | if (!TI.isEmpty()) { |
2522 | VTableThunks[Components.size()] = TI; |
2523 | AddThunk(MD, Thunk: TI); |
2524 | } |
2525 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
2526 | assert(TI.Return.isEmpty() && |
2527 | "Destructor can't have return adjustment!" ); |
2528 | Components.push_back(Elt: VTableComponent::MakeDeletingDtor(DD)); |
2529 | } else { |
2530 | Components.push_back(Elt: VTableComponent::MakeFunction(MD)); |
2531 | } |
2532 | } |
2533 | |
2534 | /// AddMethods - Add the methods of this base subobject and the relevant |
2535 | /// subbases to the vftable we're currently laying out. |
2536 | void AddMethods(BaseSubobject Base, unsigned BaseDepth, |
2537 | const CXXRecordDecl *LastVBase, |
2538 | BasesSetVectorTy &VisitedBases); |
2539 | |
2540 | void LayoutVFTable() { |
2541 | // RTTI data goes before all other entries. |
2542 | if (HasRTTIComponent) |
2543 | Components.push_back(Elt: VTableComponent::MakeRTTI(RD: MostDerivedClass)); |
2544 | |
2545 | BasesSetVectorTy VisitedBases; |
2546 | AddMethods(Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), BaseDepth: 0, LastVBase: nullptr, |
2547 | VisitedBases); |
2548 | // Note that it is possible for the vftable to contain only an RTTI |
2549 | // pointer, if all virtual functions are constewval. |
2550 | assert(!Components.empty() && "vftable can't be empty" ); |
2551 | |
2552 | assert(MethodVFTableLocations.empty()); |
2553 | for (const auto &I : MethodInfoMap) { |
2554 | const CXXMethodDecl *MD = I.first; |
2555 | const MethodInfo &MI = I.second; |
2556 | assert(MD == MD->getCanonicalDecl()); |
2557 | |
2558 | // Skip the methods that the MostDerivedClass didn't override |
2559 | // and the entries shadowed by return adjusting thunks. |
2560 | if (MD->getParent() != MostDerivedClass || MI.Shadowed) |
2561 | continue; |
2562 | MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), |
2563 | WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); |
2564 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
2565 | MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; |
2566 | } else { |
2567 | MethodVFTableLocations[MD] = Loc; |
2568 | } |
2569 | } |
2570 | } |
2571 | |
2572 | public: |
2573 | VFTableBuilder(MicrosoftVTableContext &VTables, |
2574 | const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) |
2575 | : VTables(VTables), |
2576 | Context(MostDerivedClass->getASTContext()), |
2577 | MostDerivedClass(MostDerivedClass), |
2578 | MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), |
2579 | WhichVFPtr(Which), |
2580 | Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { |
2581 | // Provide the RTTI component if RTTIData is enabled. If the vftable would |
2582 | // be available externally, we should not provide the RTTI componenent. It |
2583 | // is currently impossible to get available externally vftables with either |
2584 | // dllimport or extern template instantiations, but eventually we may add a |
2585 | // flag to support additional devirtualization that needs this. |
2586 | if (Context.getLangOpts().RTTIData) |
2587 | HasRTTIComponent = true; |
2588 | |
2589 | LayoutVFTable(); |
2590 | |
2591 | if (Context.getLangOpts().DumpVTableLayouts) |
2592 | dumpLayout(llvm::outs()); |
2593 | } |
2594 | |
2595 | uint64_t getNumThunks() const { return Thunks.size(); } |
2596 | |
2597 | ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } |
2598 | |
2599 | ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } |
2600 | |
2601 | method_locations_range vtable_locations() const { |
2602 | return method_locations_range(MethodVFTableLocations.begin(), |
2603 | MethodVFTableLocations.end()); |
2604 | } |
2605 | |
2606 | ArrayRef<VTableComponent> vtable_components() const { return Components; } |
2607 | |
2608 | VTableThunksMapTy::const_iterator vtable_thunks_begin() const { |
2609 | return VTableThunks.begin(); |
2610 | } |
2611 | |
2612 | VTableThunksMapTy::const_iterator vtable_thunks_end() const { |
2613 | return VTableThunks.end(); |
2614 | } |
2615 | |
2616 | void dumpLayout(raw_ostream &); |
2617 | }; |
2618 | |
2619 | } // end namespace |
2620 | |
2621 | // Let's study one class hierarchy as an example: |
2622 | // struct A { |
2623 | // virtual void f(); |
2624 | // int x; |
2625 | // }; |
2626 | // |
2627 | // struct B : virtual A { |
2628 | // virtual void f(); |
2629 | // }; |
2630 | // |
2631 | // Record layouts: |
2632 | // struct A: |
2633 | // 0 | (A vftable pointer) |
2634 | // 4 | int x |
2635 | // |
2636 | // struct B: |
2637 | // 0 | (B vbtable pointer) |
2638 | // 4 | struct A (virtual base) |
2639 | // 4 | (A vftable pointer) |
2640 | // 8 | int x |
2641 | // |
2642 | // Let's assume we have a pointer to the A part of an object of dynamic type B: |
2643 | // B b; |
2644 | // A *a = (A*)&b; |
2645 | // a->f(); |
2646 | // |
2647 | // In this hierarchy, f() belongs to the vftable of A, so B::f() expects |
2648 | // "this" parameter to point at the A subobject, which is B+4. |
2649 | // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, |
2650 | // performed as a *static* adjustment. |
2651 | // |
2652 | // Interesting thing happens when we alter the relative placement of A and B |
2653 | // subobjects in a class: |
2654 | // struct C : virtual B { }; |
2655 | // |
2656 | // C c; |
2657 | // A *a = (A*)&c; |
2658 | // a->f(); |
2659 | // |
2660 | // Respective record layout is: |
2661 | // 0 | (C vbtable pointer) |
2662 | // 4 | struct A (virtual base) |
2663 | // 4 | (A vftable pointer) |
2664 | // 8 | int x |
2665 | // 12 | struct B (virtual base) |
2666 | // 12 | (B vbtable pointer) |
2667 | // |
2668 | // The final overrider of f() in class C is still B::f(), so B+4 should be |
2669 | // passed as "this" to that code. However, "a" points at B-8, so the respective |
2670 | // vftable entry should hold a thunk that adds 12 to the "this" argument before |
2671 | // performing a tail call to B::f(). |
2672 | // |
2673 | // With this example in mind, we can now calculate the 'this' argument offset |
2674 | // for the given method, relative to the beginning of the MostDerivedClass. |
2675 | CharUnits |
2676 | VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { |
2677 | BasesSetVectorTy Bases; |
2678 | |
2679 | { |
2680 | // Find the set of least derived bases that define the given method. |
2681 | OverriddenMethodsSetTy VisitedOverriddenMethods; |
2682 | auto InitialOverriddenDefinitionCollector = [&]( |
2683 | const CXXMethodDecl *OverriddenMD) { |
2684 | if (OverriddenMD->size_overridden_methods() == 0) |
2685 | Bases.insert(X: OverriddenMD->getParent()); |
2686 | // Don't recurse on this method if we've already collected it. |
2687 | return VisitedOverriddenMethods.insert(Ptr: OverriddenMD).second; |
2688 | }; |
2689 | visitAllOverriddenMethods(MD: Overrider.Method, |
2690 | Visitor&: InitialOverriddenDefinitionCollector); |
2691 | } |
2692 | |
2693 | // If there are no overrides then 'this' is located |
2694 | // in the base that defines the method. |
2695 | if (Bases.size() == 0) |
2696 | return Overrider.Offset; |
2697 | |
2698 | CXXBasePaths Paths; |
2699 | Overrider.Method->getParent()->lookupInBases( |
2700 | BaseMatches: [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { |
2701 | return Bases.count(key: Specifier->getType()->getAsCXXRecordDecl()); |
2702 | }, |
2703 | Paths); |
2704 | |
2705 | // This will hold the smallest this offset among overridees of MD. |
2706 | // This implies that an offset of a non-virtual base will dominate an offset |
2707 | // of a virtual base to potentially reduce the number of thunks required |
2708 | // in the derived classes that inherit this method. |
2709 | CharUnits Ret; |
2710 | bool First = true; |
2711 | |
2712 | const ASTRecordLayout &OverriderRDLayout = |
2713 | Context.getASTRecordLayout(Overrider.Method->getParent()); |
2714 | for (const CXXBasePath &Path : Paths) { |
2715 | CharUnits ThisOffset = Overrider.Offset; |
2716 | CharUnits LastVBaseOffset; |
2717 | |
2718 | // For each path from the overrider to the parents of the overridden |
2719 | // methods, traverse the path, calculating the this offset in the most |
2720 | // derived class. |
2721 | for (const CXXBasePathElement &Element : Path) { |
2722 | QualType CurTy = Element.Base->getType(); |
2723 | const CXXRecordDecl *PrevRD = Element.Class, |
2724 | *CurRD = CurTy->getAsCXXRecordDecl(); |
2725 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); |
2726 | |
2727 | if (Element.Base->isVirtual()) { |
2728 | // The interesting things begin when you have virtual inheritance. |
2729 | // The final overrider will use a static adjustment equal to the offset |
2730 | // of the vbase in the final overrider class. |
2731 | // For example, if the final overrider is in a vbase B of the most |
2732 | // derived class and it overrides a method of the B's own vbase A, |
2733 | // it uses A* as "this". In its prologue, it can cast A* to B* with |
2734 | // a static offset. This offset is used regardless of the actual |
2735 | // offset of A from B in the most derived class, requiring an |
2736 | // this-adjusting thunk in the vftable if A and B are laid out |
2737 | // differently in the most derived class. |
2738 | LastVBaseOffset = ThisOffset = |
2739 | Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(VBase: CurRD); |
2740 | } else { |
2741 | ThisOffset += Layout.getBaseClassOffset(Base: CurRD); |
2742 | } |
2743 | } |
2744 | |
2745 | if (isa<CXXDestructorDecl>(Val: Overrider.Method)) { |
2746 | if (LastVBaseOffset.isZero()) { |
2747 | // If a "Base" class has at least one non-virtual base with a virtual |
2748 | // destructor, the "Base" virtual destructor will take the address |
2749 | // of the "Base" subobject as the "this" argument. |
2750 | ThisOffset = Overrider.Offset; |
2751 | } else { |
2752 | // A virtual destructor of a virtual base takes the address of the |
2753 | // virtual base subobject as the "this" argument. |
2754 | ThisOffset = LastVBaseOffset; |
2755 | } |
2756 | } |
2757 | |
2758 | if (Ret > ThisOffset || First) { |
2759 | First = false; |
2760 | Ret = ThisOffset; |
2761 | } |
2762 | } |
2763 | |
2764 | assert(!First && "Method not found in the given subobject?" ); |
2765 | return Ret; |
2766 | } |
2767 | |
2768 | // Things are getting even more complex when the "this" adjustment has to |
2769 | // use a dynamic offset instead of a static one, or even two dynamic offsets. |
2770 | // This is sometimes required when a virtual call happens in the middle of |
2771 | // a non-most-derived class construction or destruction. |
2772 | // |
2773 | // Let's take a look at the following example: |
2774 | // struct A { |
2775 | // virtual void f(); |
2776 | // }; |
2777 | // |
2778 | // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. |
2779 | // |
2780 | // struct B : virtual A { |
2781 | // virtual void f(); |
2782 | // B() { |
2783 | // foo(this); |
2784 | // } |
2785 | // }; |
2786 | // |
2787 | // struct C : virtual B { |
2788 | // virtual void f(); |
2789 | // }; |
2790 | // |
2791 | // Record layouts for these classes are: |
2792 | // struct A |
2793 | // 0 | (A vftable pointer) |
2794 | // |
2795 | // struct B |
2796 | // 0 | (B vbtable pointer) |
2797 | // 4 | (vtordisp for vbase A) |
2798 | // 8 | struct A (virtual base) |
2799 | // 8 | (A vftable pointer) |
2800 | // |
2801 | // struct C |
2802 | // 0 | (C vbtable pointer) |
2803 | // 4 | (vtordisp for vbase A) |
2804 | // 8 | struct A (virtual base) // A precedes B! |
2805 | // 8 | (A vftable pointer) |
2806 | // 12 | struct B (virtual base) |
2807 | // 12 | (B vbtable pointer) |
2808 | // |
2809 | // When one creates an object of type C, the C constructor: |
2810 | // - initializes all the vbptrs, then |
2811 | // - calls the A subobject constructor |
2812 | // (initializes A's vfptr with an address of A vftable), then |
2813 | // - calls the B subobject constructor |
2814 | // (initializes A's vfptr with an address of B vftable and vtordisp for A), |
2815 | // that in turn calls foo(), then |
2816 | // - initializes A's vfptr with an address of C vftable and zeroes out the |
2817 | // vtordisp |
2818 | // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable |
2819 | // without vtordisp thunks? |
2820 | // FIXME: how are vtordisp handled in the presence of nooverride/final? |
2821 | // |
2822 | // When foo() is called, an object with a layout of class C has a vftable |
2823 | // referencing B::f() that assumes a B layout, so the "this" adjustments are |
2824 | // incorrect, unless an extra adjustment is done. This adjustment is called |
2825 | // "vtordisp adjustment". Vtordisp basically holds the difference between the |
2826 | // actual location of a vbase in the layout class and the location assumed by |
2827 | // the vftable of the class being constructed/destructed. Vtordisp is only |
2828 | // needed if "this" escapes a |
2829 | // structor (or we can't prove otherwise). |
2830 | // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an |
2831 | // estimation of a dynamic adjustment] |
2832 | // |
2833 | // foo() gets a pointer to the A vbase and doesn't know anything about B or C, |
2834 | // so it just passes that pointer as "this" in a virtual call. |
2835 | // If there was no vtordisp, that would just dispatch to B::f(). |
2836 | // However, B::f() assumes B+8 is passed as "this", |
2837 | // yet the pointer foo() passes along is B-4 (i.e. C+8). |
2838 | // An extra adjustment is needed, so we emit a thunk into the B vftable. |
2839 | // This vtordisp thunk subtracts the value of vtordisp |
2840 | // from the "this" argument (-12) before making a tailcall to B::f(). |
2841 | // |
2842 | // Let's consider an even more complex example: |
2843 | // struct D : virtual B, virtual C { |
2844 | // D() { |
2845 | // foo(this); |
2846 | // } |
2847 | // }; |
2848 | // |
2849 | // struct D |
2850 | // 0 | (D vbtable pointer) |
2851 | // 4 | (vtordisp for vbase A) |
2852 | // 8 | struct A (virtual base) // A precedes both B and C! |
2853 | // 8 | (A vftable pointer) |
2854 | // 12 | struct B (virtual base) // B precedes C! |
2855 | // 12 | (B vbtable pointer) |
2856 | // 16 | struct C (virtual base) |
2857 | // 16 | (C vbtable pointer) |
2858 | // |
2859 | // When D::D() calls foo(), we find ourselves in a thunk that should tailcall |
2860 | // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() |
2861 | // passes along A, which is C-8. The A vtordisp holds |
2862 | // "D.vbptr[index_of_A] - offset_of_A_in_D" |
2863 | // and we statically know offset_of_A_in_D, so can get a pointer to D. |
2864 | // When we know it, we can make an extra vbtable lookup to locate the C vbase |
2865 | // and one extra static adjustment to calculate the expected value of C+8. |
2866 | void VFTableBuilder::CalculateVtordispAdjustment( |
2867 | FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, |
2868 | ThisAdjustment &TA) { |
2869 | const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = |
2870 | MostDerivedClassLayout.getVBaseOffsetsMap(); |
2871 | const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = |
2872 | VBaseMap.find(Val: WhichVFPtr.getVBaseWithVPtr()); |
2873 | assert(VBaseMapEntry != VBaseMap.end()); |
2874 | |
2875 | // If there's no vtordisp or the final overrider is defined in the same vbase |
2876 | // as the initial declaration, we don't need any vtordisp adjustment. |
2877 | if (!VBaseMapEntry->second.hasVtorDisp() || |
2878 | Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) |
2879 | return; |
2880 | |
2881 | // OK, now we know we need to use a vtordisp thunk. |
2882 | // The implicit vtordisp field is located right before the vbase. |
2883 | CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; |
2884 | TA.Virtual.Microsoft.VtordispOffset = |
2885 | (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; |
2886 | |
2887 | // A simple vtordisp thunk will suffice if the final overrider is defined |
2888 | // in either the most derived class or its non-virtual base. |
2889 | if (Overrider.Method->getParent() == MostDerivedClass || |
2890 | !Overrider.VirtualBase) |
2891 | return; |
2892 | |
2893 | // Otherwise, we need to do use the dynamic offset of the final overrider |
2894 | // in order to get "this" adjustment right. |
2895 | TA.Virtual.Microsoft.VBPtrOffset = |
2896 | (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - |
2897 | MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); |
2898 | TA.Virtual.Microsoft.VBOffsetOffset = |
2899 | Context.getTypeSizeInChars(Context.IntTy).getQuantity() * |
2900 | VTables.getVBTableIndex(Derived: MostDerivedClass, VBase: Overrider.VirtualBase); |
2901 | |
2902 | TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); |
2903 | } |
2904 | |
2905 | static void GroupNewVirtualOverloads( |
2906 | const CXXRecordDecl *RD, |
2907 | SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { |
2908 | // Put the virtual methods into VirtualMethods in the proper order: |
2909 | // 1) Group overloads by declaration name. New groups are added to the |
2910 | // vftable in the order of their first declarations in this class |
2911 | // (including overrides, non-virtual methods and any other named decl that |
2912 | // might be nested within the class). |
2913 | // 2) In each group, new overloads appear in the reverse order of declaration. |
2914 | typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; |
2915 | SmallVector<MethodGroup, 10> Groups; |
2916 | typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; |
2917 | VisitedGroupIndicesTy VisitedGroupIndices; |
2918 | for (const auto *D : RD->decls()) { |
2919 | const auto *ND = dyn_cast<NamedDecl>(D); |
2920 | if (!ND) |
2921 | continue; |
2922 | VisitedGroupIndicesTy::iterator J; |
2923 | bool Inserted; |
2924 | std::tie(J, Inserted) = VisitedGroupIndices.insert( |
2925 | std::make_pair(ND->getDeclName(), Groups.size())); |
2926 | if (Inserted) |
2927 | Groups.push_back(MethodGroup()); |
2928 | if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) |
2929 | if (MicrosoftVTableContext::hasVtableSlot(MD)) |
2930 | Groups[J->second].push_back(MD->getCanonicalDecl()); |
2931 | } |
2932 | |
2933 | for (const MethodGroup &Group : Groups) |
2934 | VirtualMethods.append(in_start: Group.rbegin(), in_end: Group.rend()); |
2935 | } |
2936 | |
2937 | static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { |
2938 | for (const auto &B : RD->bases()) { |
2939 | if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) |
2940 | return true; |
2941 | } |
2942 | return false; |
2943 | } |
2944 | |
2945 | void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, |
2946 | const CXXRecordDecl *LastVBase, |
2947 | BasesSetVectorTy &VisitedBases) { |
2948 | const CXXRecordDecl *RD = Base.getBase(); |
2949 | if (!RD->isPolymorphic()) |
2950 | return; |
2951 | |
2952 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
2953 | |
2954 | // See if this class expands a vftable of the base we look at, which is either |
2955 | // the one defined by the vfptr base path or the primary base of the current |
2956 | // class. |
2957 | const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; |
2958 | CharUnits NextBaseOffset; |
2959 | if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { |
2960 | NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; |
2961 | if (isDirectVBase(Base: NextBase, RD)) { |
2962 | NextLastVBase = NextBase; |
2963 | NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: NextBase); |
2964 | } else { |
2965 | NextBaseOffset = |
2966 | Base.getBaseOffset() + Layout.getBaseClassOffset(Base: NextBase); |
2967 | } |
2968 | } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
2969 | assert(!Layout.isPrimaryBaseVirtual() && |
2970 | "No primary virtual bases in this ABI" ); |
2971 | NextBase = PrimaryBase; |
2972 | NextBaseOffset = Base.getBaseOffset(); |
2973 | } |
2974 | |
2975 | if (NextBase) { |
2976 | AddMethods(Base: BaseSubobject(NextBase, NextBaseOffset), BaseDepth: BaseDepth + 1, |
2977 | LastVBase: NextLastVBase, VisitedBases); |
2978 | if (!VisitedBases.insert(X: NextBase)) |
2979 | llvm_unreachable("Found a duplicate primary base!" ); |
2980 | } |
2981 | |
2982 | SmallVector<const CXXMethodDecl*, 10> VirtualMethods; |
2983 | // Put virtual methods in the proper order. |
2984 | GroupNewVirtualOverloads(RD, VirtualMethods); |
2985 | |
2986 | // Now go through all virtual member functions and add them to the current |
2987 | // vftable. This is done by |
2988 | // - replacing overridden methods in their existing slots, as long as they |
2989 | // don't require return adjustment; calculating This adjustment if needed. |
2990 | // - adding new slots for methods of the current base not present in any |
2991 | // sub-bases; |
2992 | // - adding new slots for methods that require Return adjustment. |
2993 | // We keep track of the methods visited in the sub-bases in MethodInfoMap. |
2994 | for (const CXXMethodDecl *MD : VirtualMethods) { |
2995 | FinalOverriders::OverriderInfo FinalOverrider = |
2996 | Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
2997 | const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; |
2998 | const CXXMethodDecl *OverriddenMD = |
2999 | FindNearestOverriddenMethod(MD, Bases&: VisitedBases); |
3000 | |
3001 | ThisAdjustment ThisAdjustmentOffset; |
3002 | bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; |
3003 | CharUnits ThisOffset = ComputeThisOffset(Overrider: FinalOverrider); |
3004 | ThisAdjustmentOffset.NonVirtual = |
3005 | (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); |
3006 | if ((OverriddenMD || FinalOverriderMD != MD) && |
3007 | WhichVFPtr.getVBaseWithVPtr()) |
3008 | CalculateVtordispAdjustment(Overrider: FinalOverrider, ThisOffset, |
3009 | TA&: ThisAdjustmentOffset); |
3010 | |
3011 | unsigned VBIndex = |
3012 | LastVBase ? VTables.getVBTableIndex(Derived: MostDerivedClass, VBase: LastVBase) : 0; |
3013 | |
3014 | if (OverriddenMD) { |
3015 | // If MD overrides anything in this vftable, we need to update the |
3016 | // entries. |
3017 | MethodInfoMapTy::iterator OverriddenMDIterator = |
3018 | MethodInfoMap.find(Val: OverriddenMD); |
3019 | |
3020 | // If the overridden method went to a different vftable, skip it. |
3021 | if (OverriddenMDIterator == MethodInfoMap.end()) |
3022 | continue; |
3023 | |
3024 | MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; |
3025 | |
3026 | VBIndex = OverriddenMethodInfo.VBTableIndex; |
3027 | |
3028 | // Let's check if the overrider requires any return adjustments. |
3029 | // We must create a new slot if the MD's return type is not trivially |
3030 | // convertible to the OverriddenMD's one. |
3031 | // Once a chain of method overrides adds a return adjusting vftable slot, |
3032 | // all subsequent overrides will also use an extra method slot. |
3033 | ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( |
3034 | Context, DerivedMD: MD, BaseMD: OverriddenMD).isEmpty() || |
3035 | OverriddenMethodInfo.UsesExtraSlot; |
3036 | |
3037 | if (!ReturnAdjustingThunk) { |
3038 | // No return adjustment needed - just replace the overridden method info |
3039 | // with the current info. |
3040 | MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); |
3041 | MethodInfoMap.erase(I: OverriddenMDIterator); |
3042 | |
3043 | assert(!MethodInfoMap.count(MD) && |
3044 | "Should not have method info for this method yet!" ); |
3045 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MI)); |
3046 | continue; |
3047 | } |
3048 | |
3049 | // In case we need a return adjustment, we'll add a new slot for |
3050 | // the overrider. Mark the overridden method as shadowed by the new slot. |
3051 | OverriddenMethodInfo.Shadowed = true; |
3052 | |
3053 | // Force a special name mangling for a return-adjusting thunk |
3054 | // unless the method is the final overrider without this adjustment. |
3055 | ForceReturnAdjustmentMangling = |
3056 | !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); |
3057 | } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || |
3058 | MD->size_overridden_methods()) { |
3059 | // Skip methods that don't belong to the vftable of the current class, |
3060 | // e.g. each method that wasn't seen in any of the visited sub-bases |
3061 | // but overrides multiple methods of other sub-bases. |
3062 | continue; |
3063 | } |
3064 | |
3065 | // If we got here, MD is a method not seen in any of the sub-bases or |
3066 | // it requires return adjustment. Insert the method info for this method. |
3067 | MethodInfo MI(VBIndex, |
3068 | HasRTTIComponent ? Components.size() - 1 : Components.size(), |
3069 | ReturnAdjustingThunk); |
3070 | |
3071 | assert(!MethodInfoMap.count(MD) && |
3072 | "Should not have method info for this method yet!" ); |
3073 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MI)); |
3074 | |
3075 | // Check if this overrider needs a return adjustment. |
3076 | // We don't want to do this for pure virtual member functions. |
3077 | BaseOffset ReturnAdjustmentOffset; |
3078 | ReturnAdjustment ReturnAdjustment; |
3079 | if (!FinalOverriderMD->isPureVirtual()) { |
3080 | ReturnAdjustmentOffset = |
3081 | ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: FinalOverriderMD, BaseMD: MD); |
3082 | } |
3083 | if (!ReturnAdjustmentOffset.isEmpty()) { |
3084 | ForceReturnAdjustmentMangling = true; |
3085 | ReturnAdjustment.NonVirtual = |
3086 | ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); |
3087 | if (ReturnAdjustmentOffset.VirtualBase) { |
3088 | const ASTRecordLayout &DerivedLayout = |
3089 | Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); |
3090 | ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = |
3091 | DerivedLayout.getVBPtrOffset().getQuantity(); |
3092 | ReturnAdjustment.Virtual.Microsoft.VBIndex = |
3093 | VTables.getVBTableIndex(Derived: ReturnAdjustmentOffset.DerivedClass, |
3094 | VBase: ReturnAdjustmentOffset.VirtualBase); |
3095 | } |
3096 | } |
3097 | |
3098 | AddMethod(MD: FinalOverriderMD, |
3099 | TI: ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, |
3100 | ForceReturnAdjustmentMangling ? MD : nullptr)); |
3101 | } |
3102 | } |
3103 | |
3104 | static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { |
3105 | for (const CXXRecordDecl *Elem : llvm::reverse(C: Path)) { |
3106 | Out << "'" ; |
3107 | Elem->printQualifiedName(Out); |
3108 | Out << "' in " ; |
3109 | } |
3110 | } |
3111 | |
3112 | static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, |
3113 | bool ContinueFirstLine) { |
3114 | const ReturnAdjustment &R = TI.Return; |
3115 | bool Multiline = false; |
3116 | const char *LinePrefix = "\n " ; |
3117 | if (!R.isEmpty() || TI.Method) { |
3118 | if (!ContinueFirstLine) |
3119 | Out << LinePrefix; |
3120 | Out << "[return adjustment (to type '" |
3121 | << TI.Method->getReturnType().getCanonicalType() << "'): " ; |
3122 | if (R.Virtual.Microsoft.VBPtrOffset) |
3123 | Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", " ; |
3124 | if (R.Virtual.Microsoft.VBIndex) |
3125 | Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", " ; |
3126 | Out << R.NonVirtual << " non-virtual]" ; |
3127 | Multiline = true; |
3128 | } |
3129 | |
3130 | const ThisAdjustment &T = TI.This; |
3131 | if (!T.isEmpty()) { |
3132 | if (Multiline || !ContinueFirstLine) |
3133 | Out << LinePrefix; |
3134 | Out << "[this adjustment: " ; |
3135 | if (!TI.This.Virtual.isEmpty()) { |
3136 | assert(T.Virtual.Microsoft.VtordispOffset < 0); |
3137 | Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", " ; |
3138 | if (T.Virtual.Microsoft.VBPtrOffset) { |
3139 | Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset |
3140 | << " to the left," ; |
3141 | assert(T.Virtual.Microsoft.VBOffsetOffset > 0); |
3142 | Out << LinePrefix << " vboffset at " |
3143 | << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, " ; |
3144 | } |
3145 | } |
3146 | Out << T.NonVirtual << " non-virtual]" ; |
3147 | } |
3148 | } |
3149 | |
3150 | void VFTableBuilder::dumpLayout(raw_ostream &Out) { |
3151 | Out << "VFTable for " ; |
3152 | PrintBasePath(Path: WhichVFPtr.PathToIntroducingObject, Out); |
3153 | Out << "'" ; |
3154 | MostDerivedClass->printQualifiedName(Out); |
3155 | Out << "' (" << Components.size() |
3156 | << (Components.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
3157 | |
3158 | for (unsigned I = 0, E = Components.size(); I != E; ++I) { |
3159 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
3160 | |
3161 | const VTableComponent &Component = Components[I]; |
3162 | |
3163 | // Dump the component. |
3164 | switch (Component.getKind()) { |
3165 | case VTableComponent::CK_RTTI: |
3166 | Component.getRTTIDecl()->printQualifiedName(Out); |
3167 | Out << " RTTI" ; |
3168 | break; |
3169 | |
3170 | case VTableComponent::CK_FunctionPointer: { |
3171 | const CXXMethodDecl *MD = Component.getFunctionDecl(); |
3172 | |
3173 | // FIXME: Figure out how to print the real thunk type, since they can |
3174 | // differ in the return type. |
3175 | std::string Str = PredefinedExpr::ComputeName( |
3176 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
3177 | Out << Str; |
3178 | if (MD->isPureVirtual()) |
3179 | Out << " [pure]" ; |
3180 | |
3181 | if (MD->isDeleted()) |
3182 | Out << " [deleted]" ; |
3183 | |
3184 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
3185 | if (!Thunk.isEmpty()) |
3186 | dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/false); |
3187 | |
3188 | break; |
3189 | } |
3190 | |
3191 | case VTableComponent::CK_DeletingDtorPointer: { |
3192 | const CXXDestructorDecl *DD = Component.getDestructorDecl(); |
3193 | |
3194 | DD->printQualifiedName(Out); |
3195 | Out << "() [scalar deleting]" ; |
3196 | |
3197 | if (DD->isPureVirtual()) |
3198 | Out << " [pure]" ; |
3199 | |
3200 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
3201 | if (!Thunk.isEmpty()) { |
3202 | assert(Thunk.Return.isEmpty() && |
3203 | "No return adjustment needed for destructors!" ); |
3204 | dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/false); |
3205 | } |
3206 | |
3207 | break; |
3208 | } |
3209 | |
3210 | default: |
3211 | DiagnosticsEngine &Diags = Context.getDiagnostics(); |
3212 | unsigned DiagID = Diags.getCustomDiagID( |
3213 | L: DiagnosticsEngine::Error, |
3214 | FormatString: "Unexpected vftable component type %0 for component number %1" ); |
3215 | Diags.Report(MostDerivedClass->getLocation(), DiagID) |
3216 | << I << Component.getKind(); |
3217 | } |
3218 | |
3219 | Out << '\n'; |
3220 | } |
3221 | |
3222 | Out << '\n'; |
3223 | |
3224 | if (!Thunks.empty()) { |
3225 | // We store the method names in a map to get a stable order. |
3226 | std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; |
3227 | |
3228 | for (const auto &I : Thunks) { |
3229 | const CXXMethodDecl *MD = I.first; |
3230 | std::string MethodName = PredefinedExpr::ComputeName( |
3231 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
3232 | |
3233 | MethodNamesAndDecls.insert(x: std::make_pair(x&: MethodName, y&: MD)); |
3234 | } |
3235 | |
3236 | for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { |
3237 | const std::string &MethodName = MethodNameAndDecl.first; |
3238 | const CXXMethodDecl *MD = MethodNameAndDecl.second; |
3239 | |
3240 | ThunkInfoVectorTy ThunksVector = Thunks[MD]; |
3241 | llvm::stable_sort(Range&: ThunksVector, C: [](const ThunkInfo &LHS, |
3242 | const ThunkInfo &RHS) { |
3243 | // Keep different thunks with the same adjustments in the order they |
3244 | // were put into the vector. |
3245 | return std::tie(args: LHS.This, args: LHS.Return) < std::tie(args: RHS.This, args: RHS.Return); |
3246 | }); |
3247 | |
3248 | Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); |
3249 | Out << (ThunksVector.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
3250 | |
3251 | for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { |
3252 | const ThunkInfo &Thunk = ThunksVector[I]; |
3253 | |
3254 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
3255 | dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/true); |
3256 | Out << '\n'; |
3257 | } |
3258 | |
3259 | Out << '\n'; |
3260 | } |
3261 | } |
3262 | |
3263 | Out.flush(); |
3264 | } |
3265 | |
3266 | static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, |
3267 | ArrayRef<const CXXRecordDecl *> B) { |
3268 | for (const CXXRecordDecl *Decl : B) { |
3269 | if (A.count(Ptr: Decl)) |
3270 | return true; |
3271 | } |
3272 | return false; |
3273 | } |
3274 | |
3275 | static bool rebucketPaths(VPtrInfoVector &Paths); |
3276 | |
3277 | /// Produces MSVC-compatible vbtable data. The symbols produced by this |
3278 | /// algorithm match those produced by MSVC 2012 and newer, which is different |
3279 | /// from MSVC 2010. |
3280 | /// |
3281 | /// MSVC 2012 appears to minimize the vbtable names using the following |
3282 | /// algorithm. First, walk the class hierarchy in the usual order, depth first, |
3283 | /// left to right, to find all of the subobjects which contain a vbptr field. |
3284 | /// Visiting each class node yields a list of inheritance paths to vbptrs. Each |
3285 | /// record with a vbptr creates an initially empty path. |
3286 | /// |
3287 | /// To combine paths from child nodes, the paths are compared to check for |
3288 | /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of |
3289 | /// components in the same order. Each group of ambiguous paths is extended by |
3290 | /// appending the class of the base from which it came. If the current class |
3291 | /// node produced an ambiguous path, its path is extended with the current class. |
3292 | /// After extending paths, MSVC again checks for ambiguity, and extends any |
3293 | /// ambiguous path which wasn't already extended. Because each node yields an |
3294 | /// unambiguous set of paths, MSVC doesn't need to extend any path more than once |
3295 | /// to produce an unambiguous set of paths. |
3296 | /// |
3297 | /// TODO: Presumably vftables use the same algorithm. |
3298 | void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, |
3299 | const CXXRecordDecl *RD, |
3300 | VPtrInfoVector &Paths) { |
3301 | assert(Paths.empty()); |
3302 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
3303 | |
3304 | // Base case: this subobject has its own vptr. |
3305 | if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) |
3306 | Paths.push_back(Elt: std::make_unique<VPtrInfo>(args&: RD)); |
3307 | |
3308 | // Recursive case: get all the vbtables from our bases and remove anything |
3309 | // that shares a virtual base. |
3310 | llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; |
3311 | for (const auto &B : RD->bases()) { |
3312 | const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); |
3313 | if (B.isVirtual() && VBasesSeen.count(Ptr: Base)) |
3314 | continue; |
3315 | |
3316 | if (!Base->isDynamicClass()) |
3317 | continue; |
3318 | |
3319 | const VPtrInfoVector &BasePaths = |
3320 | ForVBTables ? enumerateVBTables(RD: Base) : getVFPtrOffsets(RD: Base); |
3321 | |
3322 | for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { |
3323 | // Don't include the path if it goes through a virtual base that we've |
3324 | // already included. |
3325 | if (setsIntersect(A: VBasesSeen, B: BaseInfo->ContainingVBases)) |
3326 | continue; |
3327 | |
3328 | // Copy the path and adjust it as necessary. |
3329 | auto P = std::make_unique<VPtrInfo>(args&: *BaseInfo); |
3330 | |
3331 | // We mangle Base into the path if the path would've been ambiguous and it |
3332 | // wasn't already extended with Base. |
3333 | if (P->MangledPath.empty() || P->MangledPath.back() != Base) |
3334 | P->NextBaseToMangle = Base; |
3335 | |
3336 | // Keep track of which vtable the derived class is going to extend with |
3337 | // new methods or bases. We append to either the vftable of our primary |
3338 | // base, or the first non-virtual base that has a vbtable. |
3339 | if (P->ObjectWithVPtr == Base && |
3340 | Base == (ForVBTables ? Layout.getBaseSharingVBPtr() |
3341 | : Layout.getPrimaryBase())) |
3342 | P->ObjectWithVPtr = RD; |
3343 | |
3344 | // Keep track of the full adjustment from the MDC to this vtable. The |
3345 | // adjustment is captured by an optional vbase and a non-virtual offset. |
3346 | if (B.isVirtual()) |
3347 | P->ContainingVBases.push_back(Elt: Base); |
3348 | else if (P->ContainingVBases.empty()) |
3349 | P->NonVirtualOffset += Layout.getBaseClassOffset(Base); |
3350 | |
3351 | // Update the full offset in the MDC. |
3352 | P->FullOffsetInMDC = P->NonVirtualOffset; |
3353 | if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) |
3354 | P->FullOffsetInMDC += Layout.getVBaseClassOffset(VBase: VB); |
3355 | |
3356 | Paths.push_back(Elt: std::move(P)); |
3357 | } |
3358 | |
3359 | if (B.isVirtual()) |
3360 | VBasesSeen.insert(Ptr: Base); |
3361 | |
3362 | // After visiting any direct base, we've transitively visited all of its |
3363 | // morally virtual bases. |
3364 | for (const auto &VB : Base->vbases()) |
3365 | VBasesSeen.insert(Ptr: VB.getType()->getAsCXXRecordDecl()); |
3366 | } |
3367 | |
3368 | // Sort the paths into buckets, and if any of them are ambiguous, extend all |
3369 | // paths in ambiguous buckets. |
3370 | bool Changed = true; |
3371 | while (Changed) |
3372 | Changed = rebucketPaths(Paths); |
3373 | } |
3374 | |
3375 | static bool extendPath(VPtrInfo &P) { |
3376 | if (P.NextBaseToMangle) { |
3377 | P.MangledPath.push_back(Elt: P.NextBaseToMangle); |
3378 | P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. |
3379 | return true; |
3380 | } |
3381 | return false; |
3382 | } |
3383 | |
3384 | static bool rebucketPaths(VPtrInfoVector &Paths) { |
3385 | // What we're essentially doing here is bucketing together ambiguous paths. |
3386 | // Any bucket with more than one path in it gets extended by NextBase, which |
3387 | // is usually the direct base of the inherited the vbptr. This code uses a |
3388 | // sorted vector to implement a multiset to form the buckets. Note that the |
3389 | // ordering is based on pointers, but it doesn't change our output order. The |
3390 | // current algorithm is designed to match MSVC 2012's names. |
3391 | llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted( |
3392 | llvm::make_pointee_range(Range&: Paths)); |
3393 | llvm::sort(C&: PathsSorted, Comp: [](const VPtrInfo &LHS, const VPtrInfo &RHS) { |
3394 | return LHS.MangledPath < RHS.MangledPath; |
3395 | }); |
3396 | bool Changed = false; |
3397 | for (size_t I = 0, E = PathsSorted.size(); I != E;) { |
3398 | // Scan forward to find the end of the bucket. |
3399 | size_t BucketStart = I; |
3400 | do { |
3401 | ++I; |
3402 | } while (I != E && |
3403 | PathsSorted[BucketStart].get().MangledPath == |
3404 | PathsSorted[I].get().MangledPath); |
3405 | |
3406 | // If this bucket has multiple paths, extend them all. |
3407 | if (I - BucketStart > 1) { |
3408 | for (size_t II = BucketStart; II != I; ++II) |
3409 | Changed |= extendPath(P&: PathsSorted[II]); |
3410 | assert(Changed && "no paths were extended to fix ambiguity" ); |
3411 | } |
3412 | } |
3413 | return Changed; |
3414 | } |
3415 | |
3416 | MicrosoftVTableContext::~MicrosoftVTableContext() {} |
3417 | |
3418 | namespace { |
3419 | typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, |
3420 | llvm::DenseSet<BaseSubobject>> FullPathTy; |
3421 | } |
3422 | |
3423 | // This recursive function finds all paths from a subobject centered at |
3424 | // (RD, Offset) to the subobject located at IntroducingObject. |
3425 | static void findPathsToSubobject(ASTContext &Context, |
3426 | const ASTRecordLayout &MostDerivedLayout, |
3427 | const CXXRecordDecl *RD, CharUnits Offset, |
3428 | BaseSubobject IntroducingObject, |
3429 | FullPathTy &FullPath, |
3430 | std::list<FullPathTy> &Paths) { |
3431 | if (BaseSubobject(RD, Offset) == IntroducingObject) { |
3432 | Paths.push_back(x: FullPath); |
3433 | return; |
3434 | } |
3435 | |
3436 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
3437 | |
3438 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
3439 | const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); |
3440 | CharUnits NewOffset = BS.isVirtual() |
3441 | ? MostDerivedLayout.getVBaseClassOffset(VBase: Base) |
3442 | : Offset + Layout.getBaseClassOffset(Base); |
3443 | FullPath.insert(X: BaseSubobject(Base, NewOffset)); |
3444 | findPathsToSubobject(Context, MostDerivedLayout, RD: Base, Offset: NewOffset, |
3445 | IntroducingObject, FullPath, Paths); |
3446 | FullPath.pop_back(); |
3447 | } |
3448 | } |
3449 | |
3450 | // Return the paths which are not subsets of other paths. |
3451 | static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { |
3452 | FullPaths.remove_if(pred: [&](const FullPathTy &SpecificPath) { |
3453 | for (const FullPathTy &OtherPath : FullPaths) { |
3454 | if (&SpecificPath == &OtherPath) |
3455 | continue; |
3456 | if (llvm::all_of(Range: SpecificPath, P: [&](const BaseSubobject &BSO) { |
3457 | return OtherPath.contains(key: BSO); |
3458 | })) { |
3459 | return true; |
3460 | } |
3461 | } |
3462 | return false; |
3463 | }); |
3464 | } |
3465 | |
3466 | static CharUnits getOffsetOfFullPath(ASTContext &Context, |
3467 | const CXXRecordDecl *RD, |
3468 | const FullPathTy &FullPath) { |
3469 | const ASTRecordLayout &MostDerivedLayout = |
3470 | Context.getASTRecordLayout(RD); |
3471 | CharUnits Offset = CharUnits::fromQuantity(Quantity: -1); |
3472 | for (const BaseSubobject &BSO : FullPath) { |
3473 | const CXXRecordDecl *Base = BSO.getBase(); |
3474 | // The first entry in the path is always the most derived record, skip it. |
3475 | if (Base == RD) { |
3476 | assert(Offset.getQuantity() == -1); |
3477 | Offset = CharUnits::Zero(); |
3478 | continue; |
3479 | } |
3480 | assert(Offset.getQuantity() != -1); |
3481 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
3482 | // While we know which base has to be traversed, we don't know if that base |
3483 | // was a virtual base. |
3484 | const CXXBaseSpecifier *BaseBS = std::find_if( |
3485 | first: RD->bases_begin(), last: RD->bases_end(), pred: [&](const CXXBaseSpecifier &BS) { |
3486 | return BS.getType()->getAsCXXRecordDecl() == Base; |
3487 | }); |
3488 | Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(VBase: Base) |
3489 | : Offset + Layout.getBaseClassOffset(Base); |
3490 | RD = Base; |
3491 | } |
3492 | return Offset; |
3493 | } |
3494 | |
3495 | // We want to select the path which introduces the most covariant overrides. If |
3496 | // two paths introduce overrides which the other path doesn't contain, issue a |
3497 | // diagnostic. |
3498 | static const FullPathTy *selectBestPath(ASTContext &Context, |
3499 | const CXXRecordDecl *RD, |
3500 | const VPtrInfo &Info, |
3501 | std::list<FullPathTy> &FullPaths) { |
3502 | // Handle some easy cases first. |
3503 | if (FullPaths.empty()) |
3504 | return nullptr; |
3505 | if (FullPaths.size() == 1) |
3506 | return &FullPaths.front(); |
3507 | |
3508 | const FullPathTy *BestPath = nullptr; |
3509 | typedef std::set<const CXXMethodDecl *> OverriderSetTy; |
3510 | OverriderSetTy LastOverrides; |
3511 | for (const FullPathTy &SpecificPath : FullPaths) { |
3512 | assert(!SpecificPath.empty()); |
3513 | OverriderSetTy CurrentOverrides; |
3514 | const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); |
3515 | // Find the distance from the start of the path to the subobject with the |
3516 | // VPtr. |
3517 | CharUnits BaseOffset = |
3518 | getOffsetOfFullPath(Context, RD: TopLevelRD, FullPath: SpecificPath); |
3519 | FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); |
3520 | for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { |
3521 | if (!MicrosoftVTableContext::hasVtableSlot(MD)) |
3522 | continue; |
3523 | FinalOverriders::OverriderInfo OI = |
3524 | Overriders.getOverrider(MD: MD->getCanonicalDecl(), BaseOffset); |
3525 | const CXXMethodDecl *OverridingMethod = OI.Method; |
3526 | // Only overriders which have a return adjustment introduce problematic |
3527 | // thunks. |
3528 | if (ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: OverridingMethod, BaseMD: MD) |
3529 | .isEmpty()) |
3530 | continue; |
3531 | // It's possible that the overrider isn't in this path. If so, skip it |
3532 | // because this path didn't introduce it. |
3533 | const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); |
3534 | if (llvm::none_of(Range: SpecificPath, P: [&](const BaseSubobject &BSO) { |
3535 | return BSO.getBase() == OverridingParent; |
3536 | })) |
3537 | continue; |
3538 | CurrentOverrides.insert(x: OverridingMethod); |
3539 | } |
3540 | OverriderSetTy NewOverrides = |
3541 | llvm::set_difference(S1: CurrentOverrides, S2: LastOverrides); |
3542 | if (NewOverrides.empty()) |
3543 | continue; |
3544 | OverriderSetTy MissingOverrides = |
3545 | llvm::set_difference(S1: LastOverrides, S2: CurrentOverrides); |
3546 | if (MissingOverrides.empty()) { |
3547 | // This path is a strict improvement over the last path, let's use it. |
3548 | BestPath = &SpecificPath; |
3549 | std::swap(x&: CurrentOverrides, y&: LastOverrides); |
3550 | } else { |
3551 | // This path introduces an overrider with a conflicting covariant thunk. |
3552 | DiagnosticsEngine &Diags = Context.getDiagnostics(); |
3553 | const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); |
3554 | const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); |
3555 | Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) |
3556 | << RD; |
3557 | Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) |
3558 | << CovariantMD; |
3559 | Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) |
3560 | << ConflictMD; |
3561 | } |
3562 | } |
3563 | // Go with the path that introduced the most covariant overrides. If there is |
3564 | // no such path, pick the first path. |
3565 | return BestPath ? BestPath : &FullPaths.front(); |
3566 | } |
3567 | |
3568 | static void computeFullPathsForVFTables(ASTContext &Context, |
3569 | const CXXRecordDecl *RD, |
3570 | VPtrInfoVector &Paths) { |
3571 | const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); |
3572 | FullPathTy FullPath; |
3573 | std::list<FullPathTy> FullPaths; |
3574 | for (const std::unique_ptr<VPtrInfo>& Info : Paths) { |
3575 | findPathsToSubobject( |
3576 | Context, MostDerivedLayout, RD, Offset: CharUnits::Zero(), |
3577 | IntroducingObject: BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, |
3578 | Paths&: FullPaths); |
3579 | FullPath.clear(); |
3580 | removeRedundantPaths(FullPaths); |
3581 | Info->PathToIntroducingObject.clear(); |
3582 | if (const FullPathTy *BestPath = |
3583 | selectBestPath(Context, RD, Info: *Info, FullPaths)) |
3584 | for (const BaseSubobject &BSO : *BestPath) |
3585 | Info->PathToIntroducingObject.push_back(Elt: BSO.getBase()); |
3586 | FullPaths.clear(); |
3587 | } |
3588 | } |
3589 | |
3590 | static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, |
3591 | const MethodVFTableLocation &LHS, |
3592 | const MethodVFTableLocation &RHS) { |
3593 | CharUnits L = LHS.VFPtrOffset; |
3594 | CharUnits R = RHS.VFPtrOffset; |
3595 | if (LHS.VBase) |
3596 | L += Layout.getVBaseClassOffset(VBase: LHS.VBase); |
3597 | if (RHS.VBase) |
3598 | R += Layout.getVBaseClassOffset(VBase: RHS.VBase); |
3599 | return L < R; |
3600 | } |
3601 | |
3602 | void MicrosoftVTableContext::computeVTableRelatedInformation( |
3603 | const CXXRecordDecl *RD) { |
3604 | assert(RD->isDynamicClass()); |
3605 | |
3606 | // Check if we've computed this information before. |
3607 | if (VFPtrLocations.count(Val: RD)) |
3608 | return; |
3609 | |
3610 | const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; |
3611 | |
3612 | { |
3613 | auto VFPtrs = std::make_unique<VPtrInfoVector>(); |
3614 | computeVTablePaths(/*ForVBTables=*/false, RD, Paths&: *VFPtrs); |
3615 | computeFullPathsForVFTables(Context, RD, Paths&: *VFPtrs); |
3616 | VFPtrLocations[RD] = std::move(VFPtrs); |
3617 | } |
3618 | |
3619 | MethodVFTableLocationsTy NewMethodLocations; |
3620 | for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { |
3621 | VFTableBuilder Builder(*this, RD, *VFPtr); |
3622 | |
3623 | VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); |
3624 | assert(VFTableLayouts.count(id) == 0); |
3625 | SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( |
3626 | Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); |
3627 | VFTableLayouts[id] = std::make_unique<VTableLayout>( |
3628 | args: ArrayRef<size_t>{0}, args: Builder.vtable_components(), args&: VTableThunks, |
3629 | args: EmptyAddressPointsMap); |
3630 | Thunks.insert(I: Builder.thunks_begin(), E: Builder.thunks_end()); |
3631 | |
3632 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
3633 | for (const auto &Loc : Builder.vtable_locations()) { |
3634 | auto Insert = NewMethodLocations.insert(KV: Loc); |
3635 | if (!Insert.second) { |
3636 | const MethodVFTableLocation &NewLoc = Loc.second; |
3637 | MethodVFTableLocation &OldLoc = Insert.first->second; |
3638 | if (vfptrIsEarlierInMDC(Layout, LHS: NewLoc, RHS: OldLoc)) |
3639 | OldLoc = NewLoc; |
3640 | } |
3641 | } |
3642 | } |
3643 | |
3644 | MethodVFTableLocations.insert(I: NewMethodLocations.begin(), |
3645 | E: NewMethodLocations.end()); |
3646 | if (Context.getLangOpts().DumpVTableLayouts) |
3647 | dumpMethodLocations(RD, NewMethods: NewMethodLocations, llvm::outs()); |
3648 | } |
3649 | |
3650 | void MicrosoftVTableContext::dumpMethodLocations( |
3651 | const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, |
3652 | raw_ostream &Out) { |
3653 | // Compute the vtable indices for all the member functions. |
3654 | // Store them in a map keyed by the location so we'll get a sorted table. |
3655 | std::map<MethodVFTableLocation, std::string> IndicesMap; |
3656 | bool HasNonzeroOffset = false; |
3657 | |
3658 | for (const auto &I : NewMethods) { |
3659 | const CXXMethodDecl *MD = cast<const CXXMethodDecl>(Val: I.first.getDecl()); |
3660 | assert(hasVtableSlot(MD)); |
3661 | |
3662 | std::string MethodName = PredefinedExpr::ComputeName( |
3663 | PredefinedIdentKind::PrettyFunctionNoVirtual, MD); |
3664 | |
3665 | if (isa<CXXDestructorDecl>(Val: MD)) { |
3666 | IndicesMap[I.second] = MethodName + " [scalar deleting]" ; |
3667 | } else { |
3668 | IndicesMap[I.second] = MethodName; |
3669 | } |
3670 | |
3671 | if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) |
3672 | HasNonzeroOffset = true; |
3673 | } |
3674 | |
3675 | // Print the vtable indices for all the member functions. |
3676 | if (!IndicesMap.empty()) { |
3677 | Out << "VFTable indices for " ; |
3678 | Out << "'" ; |
3679 | RD->printQualifiedName(Out); |
3680 | Out << "' (" << IndicesMap.size() |
3681 | << (IndicesMap.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
3682 | |
3683 | CharUnits LastVFPtrOffset = CharUnits::fromQuantity(Quantity: -1); |
3684 | uint64_t LastVBIndex = 0; |
3685 | for (const auto &I : IndicesMap) { |
3686 | CharUnits VFPtrOffset = I.first.VFPtrOffset; |
3687 | uint64_t VBIndex = I.first.VBTableIndex; |
3688 | if (HasNonzeroOffset && |
3689 | (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { |
3690 | assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); |
3691 | Out << " -- accessible via " ; |
3692 | if (VBIndex) |
3693 | Out << "vbtable index " << VBIndex << ", " ; |
3694 | Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n" ; |
3695 | LastVFPtrOffset = VFPtrOffset; |
3696 | LastVBIndex = VBIndex; |
3697 | } |
3698 | |
3699 | uint64_t VTableIndex = I.first.Index; |
3700 | const std::string &MethodName = I.second; |
3701 | Out << llvm::format(Fmt: "%4" PRIu64 " | " , Vals: VTableIndex) << MethodName << '\n'; |
3702 | } |
3703 | Out << '\n'; |
3704 | } |
3705 | |
3706 | Out.flush(); |
3707 | } |
3708 | |
3709 | const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( |
3710 | const CXXRecordDecl *RD) { |
3711 | VirtualBaseInfo *VBI; |
3712 | |
3713 | { |
3714 | // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, |
3715 | // as it may be modified and rehashed under us. |
3716 | std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; |
3717 | if (Entry) |
3718 | return *Entry; |
3719 | Entry = std::make_unique<VirtualBaseInfo>(); |
3720 | VBI = Entry.get(); |
3721 | } |
3722 | |
3723 | computeVTablePaths(/*ForVBTables=*/true, RD, Paths&: VBI->VBPtrPaths); |
3724 | |
3725 | // First, see if the Derived class shared the vbptr with a non-virtual base. |
3726 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
3727 | if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { |
3728 | // If the Derived class shares the vbptr with a non-virtual base, the shared |
3729 | // virtual bases come first so that the layout is the same. |
3730 | const VirtualBaseInfo &BaseInfo = |
3731 | computeVBTableRelatedInformation(RD: VBPtrBase); |
3732 | VBI->VBTableIndices.insert(I: BaseInfo.VBTableIndices.begin(), |
3733 | E: BaseInfo.VBTableIndices.end()); |
3734 | } |
3735 | |
3736 | // New vbases are added to the end of the vbtable. |
3737 | // Skip the self entry and vbases visited in the non-virtual base, if any. |
3738 | unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); |
3739 | for (const auto &VB : RD->vbases()) { |
3740 | const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); |
3741 | if (!VBI->VBTableIndices.count(Val: CurVBase)) |
3742 | VBI->VBTableIndices[CurVBase] = VBTableIndex++; |
3743 | } |
3744 | |
3745 | return *VBI; |
3746 | } |
3747 | |
3748 | unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, |
3749 | const CXXRecordDecl *VBase) { |
3750 | const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(RD: Derived); |
3751 | assert(VBInfo.VBTableIndices.count(VBase)); |
3752 | return VBInfo.VBTableIndices.find(Val: VBase)->second; |
3753 | } |
3754 | |
3755 | const VPtrInfoVector & |
3756 | MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { |
3757 | return computeVBTableRelatedInformation(RD).VBPtrPaths; |
3758 | } |
3759 | |
3760 | const VPtrInfoVector & |
3761 | MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { |
3762 | computeVTableRelatedInformation(RD); |
3763 | |
3764 | assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations" ); |
3765 | return *VFPtrLocations[RD]; |
3766 | } |
3767 | |
3768 | const VTableLayout & |
3769 | MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, |
3770 | CharUnits VFPtrOffset) { |
3771 | computeVTableRelatedInformation(RD); |
3772 | |
3773 | VFTableIdTy id(RD, VFPtrOffset); |
3774 | assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset" ); |
3775 | return *VFTableLayouts[id]; |
3776 | } |
3777 | |
3778 | MethodVFTableLocation |
3779 | MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { |
3780 | assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && |
3781 | "Only use this method for virtual methods or dtors" ); |
3782 | if (isa<CXXDestructorDecl>(Val: GD.getDecl())) |
3783 | assert(GD.getDtorType() == Dtor_Deleting); |
3784 | |
3785 | GD = GD.getCanonicalDecl(); |
3786 | |
3787 | MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(Val: GD); |
3788 | if (I != MethodVFTableLocations.end()) |
3789 | return I->second; |
3790 | |
3791 | const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent(); |
3792 | |
3793 | computeVTableRelatedInformation(RD); |
3794 | |
3795 | I = MethodVFTableLocations.find(Val: GD); |
3796 | assert(I != MethodVFTableLocations.end() && "Did not find index!" ); |
3797 | return I->second; |
3798 | } |
3799 | |