1//===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a flow-sensitive, path-insensitive analysis of
10// determining reachable blocks within a CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Analysis/Analyses/ReachableCode.h"
15#include "clang/AST/Attr.h"
16#include "clang/AST/DynamicRecursiveASTVisitor.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/ParentMap.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Analysis/AnalysisDeclContext.h"
23#include "clang/Analysis/CFG.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include <optional>
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// Core Reachability Analysis routines.
34//===----------------------------------------------------------------------===//
35
36static bool isEnumConstant(const Expr *Ex) {
37 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: Ex);
38 if (!DR)
39 return false;
40 return isa<EnumConstantDecl>(Val: DR->getDecl());
41}
42
43static bool isTrivialExpression(const Expr *Ex) {
44 Ex = Ex->IgnoreParenCasts();
45 return isa<IntegerLiteral>(Val: Ex) || isa<StringLiteral>(Val: Ex) ||
46 isa<CXXBoolLiteralExpr>(Val: Ex) || isa<ObjCBoolLiteralExpr>(Val: Ex) ||
47 isa<CharacterLiteral>(Val: Ex) ||
48 isEnumConstant(Ex);
49}
50
51static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
52 // Check if the block ends with a do...while() and see if 'S' is the
53 // condition.
54 if (const Stmt *Term = B->getTerminatorStmt()) {
55 if (const DoStmt *DS = dyn_cast<DoStmt>(Val: Term)) {
56 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
57 return Cond == S && isTrivialExpression(Ex: Cond);
58 }
59 }
60 return false;
61}
62
63static bool isBuiltinUnreachable(const Stmt *S) {
64 if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
65 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
66 return FDecl->getIdentifier() &&
67 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
68 return false;
69}
70
71static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
72 ASTContext &C) {
73 if (B->empty()) {
74 // Happens if S is B's terminator and B contains nothing else
75 // (e.g. a CFGBlock containing only a goto).
76 return false;
77 }
78 if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
79 if (const auto *CE = dyn_cast<CallExpr>(Val: CS->getStmt())) {
80 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(Ctx: C);
81 }
82 }
83 return false;
84}
85
86static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
87 // Look to see if the current control flow ends with a 'return', and see if
88 // 'S' is a substatement. The 'return' may not be the last element in the
89 // block, or may be in a subsequent block because of destructors.
90 const CFGBlock *Current = B;
91 while (true) {
92 for (const CFGElement &CE : llvm::reverse(C: *Current)) {
93 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
94 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(Val: CS->getStmt())) {
95 if (RS == S)
96 return true;
97 if (const Expr *RE = RS->getRetValue()) {
98 RE = RE->IgnoreParenCasts();
99 if (RE == S)
100 return true;
101 ParentMap PM(const_cast<Expr *>(RE));
102 // If 'S' is in the ParentMap, it is a subexpression of
103 // the return statement.
104 return PM.getParent(S);
105 }
106 }
107 break;
108 }
109 }
110 // Note also that we are restricting the search for the return statement
111 // to stop at control-flow; only part of a return statement may be dead,
112 // without the whole return statement being dead.
113 if (Current->getTerminator().isTemporaryDtorsBranch()) {
114 // Temporary destructors have a predictable control flow, thus we want to
115 // look into the next block for the return statement.
116 // We look into the false branch, as we know the true branch only contains
117 // the call to the destructor.
118 assert(Current->succ_size() == 2);
119 Current = *(Current->succ_begin() + 1);
120 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
121 // If there is only one successor, we're not dealing with outgoing control
122 // flow. Thus, look into the next block.
123 Current = *Current->succ_begin();
124 if (Current->pred_size() > 1) {
125 // If there is more than one predecessor, we're dealing with incoming
126 // control flow - if the return statement is in that block, it might
127 // well be reachable via a different control flow, thus it's not dead.
128 return false;
129 }
130 } else {
131 // We hit control flow or a dead end. Stop searching.
132 return false;
133 }
134 }
135 llvm_unreachable("Broke out of infinite loop.");
136}
137
138static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
139 assert(Loc.isMacroID());
140 SourceLocation Last;
141 do {
142 Last = Loc;
143 Loc = SM.getImmediateMacroCallerLoc(Loc);
144 } while (Loc.isMacroID());
145 return Last;
146}
147
148/// Returns true if the statement is expanded from a configuration macro.
149static bool isExpandedFromConfigurationMacro(const Stmt *S,
150 Preprocessor &PP,
151 bool IgnoreYES_NO = false) {
152 // FIXME: This is not very precise. Here we just check to see if the
153 // value comes from a macro, but we can do much better. This is likely
154 // to be over conservative. This logic is factored into a separate function
155 // so that we can refine it later.
156 SourceLocation L = S->getBeginLoc();
157 if (L.isMacroID()) {
158 SourceManager &SM = PP.getSourceManager();
159 if (IgnoreYES_NO) {
160 // The Objective-C constant 'YES' and 'NO'
161 // are defined as macros. Do not treat them
162 // as configuration values.
163 SourceLocation TopL = getTopMostMacro(Loc: L, SM);
164 StringRef MacroName = PP.getImmediateMacroName(Loc: TopL);
165 if (MacroName == "YES" || MacroName == "NO")
166 return false;
167 } else if (!PP.getLangOpts().CPlusPlus) {
168 // Do not treat C 'false' and 'true' macros as configuration values.
169 SourceLocation TopL = getTopMostMacro(Loc: L, SM);
170 StringRef MacroName = PP.getImmediateMacroName(Loc: TopL);
171 if (MacroName == "false" || MacroName == "true")
172 return false;
173 }
174 return true;
175 }
176 return false;
177}
178
179static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
180
181/// Returns true if the statement represents a configuration value.
182///
183/// A configuration value is something usually determined at compile-time
184/// to conditionally always execute some branch. Such guards are for
185/// "sometimes unreachable" code. Such code is usually not interesting
186/// to report as unreachable, and may mask truly unreachable code within
187/// those blocks.
188static bool isConfigurationValue(const Stmt *S,
189 Preprocessor &PP,
190 SourceRange *SilenceableCondVal = nullptr,
191 bool IncludeIntegers = true,
192 bool WrappedInParens = false) {
193 if (!S)
194 return false;
195
196 if (const auto *Ex = dyn_cast<Expr>(Val: S))
197 S = Ex->IgnoreImplicit();
198
199 if (const auto *Ex = dyn_cast<Expr>(Val: S))
200 S = Ex->IgnoreCasts();
201
202 // Special case looking for the sigil '()' around an integer literal.
203 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: S))
204 if (!PE->getBeginLoc().isMacroID())
205 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
206 IncludeIntegers, true);
207
208 if (const Expr *Ex = dyn_cast<Expr>(Val: S))
209 S = Ex->IgnoreCasts();
210
211 bool IgnoreYES_NO = false;
212
213 switch (S->getStmtClass()) {
214 case Stmt::CallExprClass: {
215 const FunctionDecl *Callee =
216 dyn_cast_or_null<FunctionDecl>(Val: cast<CallExpr>(Val: S)->getCalleeDecl());
217 return Callee ? Callee->isConstexpr() : false;
218 }
219 case Stmt::DeclRefExprClass:
220 return isConfigurationValue(D: cast<DeclRefExpr>(Val: S)->getDecl(), PP);
221 case Stmt::ObjCBoolLiteralExprClass:
222 IgnoreYES_NO = true;
223 [[fallthrough]];
224 case Stmt::CXXBoolLiteralExprClass:
225 case Stmt::IntegerLiteralClass: {
226 const Expr *E = cast<Expr>(Val: S);
227 if (IncludeIntegers) {
228 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
229 *SilenceableCondVal = E->getSourceRange();
230 return WrappedInParens ||
231 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
232 }
233 return false;
234 }
235 case Stmt::MemberExprClass:
236 return isConfigurationValue(D: cast<MemberExpr>(Val: S)->getMemberDecl(), PP);
237 case Stmt::UnaryExprOrTypeTraitExprClass:
238 return true;
239 case Stmt::BinaryOperatorClass: {
240 const BinaryOperator *B = cast<BinaryOperator>(Val: S);
241 // Only include raw integers (not enums) as configuration
242 // values if they are used in a logical or comparison operator
243 // (not arithmetic).
244 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
245 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
246 IncludeIntegers) ||
247 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
248 IncludeIntegers);
249 }
250 case Stmt::UnaryOperatorClass: {
251 const UnaryOperator *UO = cast<UnaryOperator>(Val: S);
252 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
253 return false;
254 bool SilenceableCondValNotSet =
255 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
256 bool IsSubExprConfigValue =
257 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
258 IncludeIntegers, WrappedInParens);
259 // Update the silenceable condition value source range only if the range
260 // was set directly by the child expression.
261 if (SilenceableCondValNotSet &&
262 SilenceableCondVal->getBegin().isValid() &&
263 *SilenceableCondVal ==
264 UO->getSubExpr()->IgnoreCasts()->getSourceRange())
265 *SilenceableCondVal = UO->getSourceRange();
266 return IsSubExprConfigValue;
267 }
268 default:
269 return false;
270 }
271}
272
273static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
274 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(Val: D))
275 return isConfigurationValue(ED->getInitExpr(), PP);
276 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
277 // As a heuristic, treat globals as configuration values. Note
278 // that we only will get here if Sema evaluated this
279 // condition to a constant expression, which means the global
280 // had to be declared in a way to be a truly constant value.
281 // We could generalize this to local variables, but it isn't
282 // clear if those truly represent configuration values that
283 // gate unreachable code.
284 if (!VD->hasLocalStorage())
285 return true;
286
287 // As a heuristic, locals that have been marked 'const' explicitly
288 // can be treated as configuration values as well.
289 return VD->getType().isLocalConstQualified();
290 }
291 return false;
292}
293
294/// Returns true if we should always explore all successors of a block.
295static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
296 Preprocessor &PP) {
297 if (const Stmt *Term = B->getTerminatorStmt()) {
298 if (isa<SwitchStmt>(Val: Term))
299 return true;
300 // Specially handle '||' and '&&'.
301 if (isa<BinaryOperator>(Val: Term)) {
302 return isConfigurationValue(S: Term, PP);
303 }
304 // Do not treat constexpr if statement successors as unreachable in warnings
305 // since the point of these statements is to determine branches at compile
306 // time.
307 if (const auto *IS = dyn_cast<IfStmt>(Val: Term);
308 IS != nullptr && IS->isConstexpr())
309 return true;
310 }
311
312 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ StripParens: false);
313 return isConfigurationValue(S: Cond, PP);
314}
315
316static unsigned scanFromBlock(const CFGBlock *Start,
317 llvm::BitVector &Reachable,
318 Preprocessor *PP,
319 bool IncludeSometimesUnreachableEdges) {
320 unsigned count = 0;
321
322 // Prep work queue
323 SmallVector<const CFGBlock*, 32> WL;
324
325 // The entry block may have already been marked reachable
326 // by the caller.
327 if (!Reachable[Start->getBlockID()]) {
328 ++count;
329 Reachable[Start->getBlockID()] = true;
330 }
331
332 WL.push_back(Elt: Start);
333
334 // Find the reachable blocks from 'Start'.
335 while (!WL.empty()) {
336 const CFGBlock *item = WL.pop_back_val();
337
338 // There are cases where we want to treat all successors as reachable.
339 // The idea is that some "sometimes unreachable" code is not interesting,
340 // and that we should forge ahead and explore those branches anyway.
341 // This allows us to potentially uncover some "always unreachable" code
342 // within the "sometimes unreachable" code.
343 // Look at the successors and mark then reachable.
344 std::optional<bool> TreatAllSuccessorsAsReachable;
345 if (!IncludeSometimesUnreachableEdges)
346 TreatAllSuccessorsAsReachable = false;
347
348 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
349 E = item->succ_end(); I != E; ++I) {
350 const CFGBlock *B = *I;
351 if (!B) do {
352 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
353 if (!UB)
354 break;
355
356 if (!TreatAllSuccessorsAsReachable) {
357 assert(PP);
358 TreatAllSuccessorsAsReachable =
359 shouldTreatSuccessorsAsReachable(B: item, PP&: *PP);
360 }
361
362 if (*TreatAllSuccessorsAsReachable) {
363 B = UB;
364 break;
365 }
366 }
367 while (false);
368
369 if (B) {
370 unsigned blockID = B->getBlockID();
371 if (!Reachable[blockID]) {
372 Reachable.set(blockID);
373 WL.push_back(Elt: B);
374 ++count;
375 }
376 }
377 }
378 }
379 return count;
380}
381
382static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
383 Preprocessor &PP,
384 llvm::BitVector &Reachable) {
385 return scanFromBlock(Start, Reachable, PP: &PP, IncludeSometimesUnreachableEdges: true);
386}
387
388//===----------------------------------------------------------------------===//
389// Dead Code Scanner.
390//===----------------------------------------------------------------------===//
391
392namespace {
393 class DeadCodeScan {
394 llvm::BitVector Visited;
395 llvm::BitVector &Reachable;
396 SmallVector<const CFGBlock *, 10> WorkList;
397 Preprocessor &PP;
398 ASTContext &C;
399
400 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
401 DeferredLocsTy;
402
403 DeferredLocsTy DeferredLocs;
404
405 public:
406 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
407 : Visited(reachable.size()),
408 Reachable(reachable),
409 PP(PP), C(C) {}
410
411 void enqueue(const CFGBlock *block);
412 unsigned scanBackwards(const CFGBlock *Start,
413 clang::reachable_code::Callback &CB);
414
415 bool isDeadCodeRoot(const CFGBlock *Block);
416
417 const Stmt *findDeadCode(const CFGBlock *Block);
418
419 void reportDeadCode(const CFGBlock *B,
420 const Stmt *S,
421 clang::reachable_code::Callback &CB);
422 };
423}
424
425void DeadCodeScan::enqueue(const CFGBlock *block) {
426 unsigned blockID = block->getBlockID();
427 if (Reachable[blockID] || Visited[blockID])
428 return;
429 Visited[blockID] = true;
430 WorkList.push_back(Elt: block);
431}
432
433bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
434 bool isDeadRoot = true;
435
436 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
437 E = Block->pred_end(); I != E; ++I) {
438 if (const CFGBlock *PredBlock = *I) {
439 unsigned blockID = PredBlock->getBlockID();
440 if (Visited[blockID]) {
441 isDeadRoot = false;
442 continue;
443 }
444 if (!Reachable[blockID]) {
445 isDeadRoot = false;
446 Visited[blockID] = true;
447 WorkList.push_back(Elt: PredBlock);
448 continue;
449 }
450 }
451 }
452
453 return isDeadRoot;
454}
455
456// Check if the given `DeadStmt` is a coroutine statement and is a substmt of
457// the coroutine statement. `Block` is the CFGBlock containing the `DeadStmt`.
458static bool isInCoroutineStmt(const Stmt *DeadStmt, const CFGBlock *Block) {
459 // The coroutine statement, co_return, co_await, or co_yield.
460 const Stmt *CoroStmt = nullptr;
461 // Find the first coroutine statement after the DeadStmt in the block.
462 bool AfterDeadStmt = false;
463 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I != E;
464 ++I)
465 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
466 const Stmt *S = CS->getStmt();
467 if (S == DeadStmt)
468 AfterDeadStmt = true;
469 if (AfterDeadStmt &&
470 // For simplicity, we only check simple coroutine statements.
471 (llvm::isa<CoreturnStmt>(Val: S) || llvm::isa<CoroutineSuspendExpr>(Val: S))) {
472 CoroStmt = S;
473 break;
474 }
475 }
476 if (!CoroStmt)
477 return false;
478 struct Checker : DynamicRecursiveASTVisitor {
479 const Stmt *DeadStmt;
480 bool CoroutineSubStmt = false;
481 Checker(const Stmt *S) : DeadStmt(S) {
482 // Statements captured in the CFG can be implicit.
483 ShouldVisitImplicitCode = true;
484 }
485
486 bool VisitStmt(Stmt *S) override {
487 if (S == DeadStmt)
488 CoroutineSubStmt = true;
489 return true;
490 }
491 };
492 Checker checker(DeadStmt);
493 checker.TraverseStmt(const_cast<Stmt *>(CoroStmt));
494 return checker.CoroutineSubStmt;
495}
496
497static bool isValidDeadStmt(const Stmt *S, const clang::CFGBlock *Block) {
498 if (S->getBeginLoc().isInvalid())
499 return false;
500 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: S))
501 return BO->getOpcode() != BO_Comma;
502 // Coroutine statements are never considered dead statements, because removing
503 // them may change the function semantic if it is the only coroutine statement
504 // of the coroutine.
505 return !isInCoroutineStmt(DeadStmt: S, Block);
506}
507
508const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
509 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
510 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
511 const Stmt *S = CS->getStmt();
512 if (isValidDeadStmt(S, Block))
513 return S;
514 }
515
516 CFGTerminator T = Block->getTerminator();
517 if (T.isStmtBranch()) {
518 const Stmt *S = T.getStmt();
519 if (S && isValidDeadStmt(S, Block))
520 return S;
521 }
522
523 return nullptr;
524}
525
526static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
527 const std::pair<const CFGBlock *, const Stmt *> *p2) {
528 if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
529 return -1;
530 if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
531 return 1;
532 return 0;
533}
534
535unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
536 clang::reachable_code::Callback &CB) {
537
538 unsigned count = 0;
539 enqueue(block: Start);
540
541 while (!WorkList.empty()) {
542 const CFGBlock *Block = WorkList.pop_back_val();
543
544 // It is possible that this block has been marked reachable after
545 // it was enqueued.
546 if (Reachable[Block->getBlockID()])
547 continue;
548
549 // Look for any dead code within the block.
550 const Stmt *S = findDeadCode(Block);
551
552 if (!S) {
553 // No dead code. Possibly an empty block. Look at dead predecessors.
554 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
555 E = Block->pred_end(); I != E; ++I) {
556 if (const CFGBlock *predBlock = *I)
557 enqueue(block: predBlock);
558 }
559 continue;
560 }
561
562 // Specially handle macro-expanded code.
563 if (S->getBeginLoc().isMacroID()) {
564 count += scanMaybeReachableFromBlock(Start: Block, PP, Reachable);
565 continue;
566 }
567
568 if (isDeadCodeRoot(Block)) {
569 reportDeadCode(B: Block, S, CB);
570 count += scanMaybeReachableFromBlock(Start: Block, PP, Reachable);
571 }
572 else {
573 // Record this statement as the possibly best location in a
574 // strongly-connected component of dead code for emitting a
575 // warning.
576 DeferredLocs.push_back(Elt: std::make_pair(x&: Block, y&: S));
577 }
578 }
579
580 // If we didn't find a dead root, then report the dead code with the
581 // earliest location.
582 if (!DeferredLocs.empty()) {
583 llvm::array_pod_sort(Start: DeferredLocs.begin(), End: DeferredLocs.end(), Compare: SrcCmp);
584 for (const auto &I : DeferredLocs) {
585 const CFGBlock *Block = I.first;
586 if (Reachable[Block->getBlockID()])
587 continue;
588 reportDeadCode(B: Block, S: I.second, CB);
589 count += scanMaybeReachableFromBlock(Start: Block, PP, Reachable);
590 }
591 }
592
593 return count;
594}
595
596static SourceLocation GetUnreachableLoc(const Stmt *S,
597 SourceRange &R1,
598 SourceRange &R2) {
599 R1 = R2 = SourceRange();
600
601 if (const Expr *Ex = dyn_cast<Expr>(Val: S))
602 S = Ex->IgnoreParenImpCasts();
603
604 switch (S->getStmtClass()) {
605 case Expr::BinaryOperatorClass: {
606 const BinaryOperator *BO = cast<BinaryOperator>(Val: S);
607 return BO->getOperatorLoc();
608 }
609 case Expr::UnaryOperatorClass: {
610 const UnaryOperator *UO = cast<UnaryOperator>(Val: S);
611 R1 = UO->getSubExpr()->getSourceRange();
612 return UO->getOperatorLoc();
613 }
614 case Expr::CompoundAssignOperatorClass: {
615 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(Val: S);
616 R1 = CAO->getLHS()->getSourceRange();
617 R2 = CAO->getRHS()->getSourceRange();
618 return CAO->getOperatorLoc();
619 }
620 case Expr::BinaryConditionalOperatorClass:
621 case Expr::ConditionalOperatorClass: {
622 const AbstractConditionalOperator *CO =
623 cast<AbstractConditionalOperator>(Val: S);
624 return CO->getQuestionLoc();
625 }
626 case Expr::MemberExprClass: {
627 const MemberExpr *ME = cast<MemberExpr>(Val: S);
628 R1 = ME->getSourceRange();
629 return ME->getMemberLoc();
630 }
631 case Expr::ArraySubscriptExprClass: {
632 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Val: S);
633 R1 = ASE->getLHS()->getSourceRange();
634 R2 = ASE->getRHS()->getSourceRange();
635 return ASE->getRBracketLoc();
636 }
637 case Expr::CStyleCastExprClass: {
638 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(Val: S);
639 R1 = CSC->getSubExpr()->getSourceRange();
640 return CSC->getLParenLoc();
641 }
642 case Expr::CXXFunctionalCastExprClass: {
643 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(Val: S);
644 R1 = CE->getSubExpr()->getSourceRange();
645 return CE->getBeginLoc();
646 }
647 case Stmt::CXXTryStmtClass: {
648 return cast<CXXTryStmt>(Val: S)->getHandler(i: 0)->getCatchLoc();
649 }
650 case Expr::ObjCBridgedCastExprClass: {
651 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(Val: S);
652 R1 = CSC->getSubExpr()->getSourceRange();
653 return CSC->getLParenLoc();
654 }
655 default: ;
656 }
657 R1 = S->getSourceRange();
658 return S->getBeginLoc();
659}
660
661void DeadCodeScan::reportDeadCode(const CFGBlock *B,
662 const Stmt *S,
663 clang::reachable_code::Callback &CB) {
664 // Classify the unreachable code found, or suppress it in some cases.
665 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
666
667 if (isa<BreakStmt>(Val: S)) {
668 UK = reachable_code::UK_Break;
669 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
670 isBuiltinAssumeFalse(B, S, C)) {
671 return;
672 }
673 else if (isDeadReturn(B, S)) {
674 UK = reachable_code::UK_Return;
675 }
676
677 const auto *AS = dyn_cast<AttributedStmt>(Val: S);
678 bool HasFallThroughAttr =
679 AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs());
680
681 SourceRange SilenceableCondVal;
682
683 if (UK == reachable_code::UK_Other) {
684 // Check if the dead code is part of the "loop target" of
685 // a for/for-range loop. This is the block that contains
686 // the increment code.
687 if (const Stmt *LoopTarget = B->getLoopTarget()) {
688 SourceLocation Loc = LoopTarget->getBeginLoc();
689 SourceRange R1(Loc, Loc), R2;
690
691 if (const ForStmt *FS = dyn_cast<ForStmt>(Val: LoopTarget)) {
692 const Expr *Inc = FS->getInc();
693 Loc = Inc->getBeginLoc();
694 R2 = Inc->getSourceRange();
695 }
696
697 CB.HandleUnreachable(UK: reachable_code::UK_Loop_Increment, L: Loc,
698 ConditionVal: SourceRange(), R1: SourceRange(Loc, Loc), R2,
699 HasFallThroughAttr);
700 return;
701 }
702
703 // Check if the dead block has a predecessor whose branch has
704 // a configuration value that *could* be modified to
705 // silence the warning.
706 CFGBlock::const_pred_iterator PI = B->pred_begin();
707 if (PI != B->pred_end()) {
708 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
709 const Stmt *TermCond =
710 PredBlock->getTerminatorCondition(/* strip parens */ StripParens: false);
711 isConfigurationValue(S: TermCond, PP, SilenceableCondVal: &SilenceableCondVal);
712 }
713 }
714 }
715
716 SourceRange R1, R2;
717 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
718 CB.HandleUnreachable(UK, L: Loc, ConditionVal: SilenceableCondVal, R1, R2, HasFallThroughAttr);
719}
720
721//===----------------------------------------------------------------------===//
722// Reachability APIs.
723//===----------------------------------------------------------------------===//
724
725namespace clang { namespace reachable_code {
726
727void Callback::anchor() { }
728
729unsigned ScanReachableFromBlock(const CFGBlock *Start,
730 llvm::BitVector &Reachable) {
731 return scanFromBlock(Start, Reachable, /* SourceManager* */ PP: nullptr, IncludeSometimesUnreachableEdges: false);
732}
733
734void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
735 Callback &CB) {
736
737 CFG *cfg = AC.getCFG();
738 if (!cfg)
739 return;
740
741 // Scan for reachable blocks from the entrance of the CFG.
742 // If there are no unreachable blocks, we're done.
743 llvm::BitVector reachable(cfg->getNumBlockIDs());
744 unsigned numReachable =
745 scanMaybeReachableFromBlock(Start: &cfg->getEntry(), PP, Reachable&: reachable);
746 if (numReachable == cfg->getNumBlockIDs())
747 return;
748
749 // If there aren't explicit EH edges, we should include the 'try' dispatch
750 // blocks as roots.
751 if (!AC.getCFGBuildOptions().AddEHEdges) {
752 for (const CFGBlock *B : cfg->try_blocks())
753 numReachable += scanMaybeReachableFromBlock(Start: B, PP, Reachable&: reachable);
754 if (numReachable == cfg->getNumBlockIDs())
755 return;
756 }
757
758 // There are some unreachable blocks. We need to find the root blocks that
759 // contain code that should be considered unreachable.
760 for (const CFGBlock *block : *cfg) {
761 // A block may have been marked reachable during this loop.
762 if (reachable[block->getBlockID()])
763 continue;
764
765 DeadCodeScan DS(reachable, PP, AC.getASTContext());
766 numReachable += DS.scanBackwards(Start: block, CB);
767
768 if (numReachable == cfg->getNumBlockIDs())
769 return;
770 }
771}
772
773}} // end namespace clang::reachable_code
774

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of clang/lib/Analysis/ReachableCode.cpp