| 1 | //===- ThreadSafetyCommon.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of the interfaces declared in ThreadSafetyCommon.h |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" |
| 14 | #include "clang/AST/Attr.h" |
| 15 | #include "clang/AST/Decl.h" |
| 16 | #include "clang/AST/DeclCXX.h" |
| 17 | #include "clang/AST/DeclGroup.h" |
| 18 | #include "clang/AST/DeclObjC.h" |
| 19 | #include "clang/AST/Expr.h" |
| 20 | #include "clang/AST/ExprCXX.h" |
| 21 | #include "clang/AST/OperationKinds.h" |
| 22 | #include "clang/AST/Stmt.h" |
| 23 | #include "clang/AST/Type.h" |
| 24 | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
| 25 | #include "clang/Analysis/CFG.h" |
| 26 | #include "clang/Basic/LLVM.h" |
| 27 | #include "clang/Basic/OperatorKinds.h" |
| 28 | #include "clang/Basic/Specifiers.h" |
| 29 | #include "llvm/ADT/StringExtras.h" |
| 30 | #include "llvm/ADT/StringRef.h" |
| 31 | #include <algorithm> |
| 32 | #include <cassert> |
| 33 | #include <string> |
| 34 | #include <utility> |
| 35 | |
| 36 | using namespace clang; |
| 37 | using namespace threadSafety; |
| 38 | |
| 39 | // From ThreadSafetyUtil.h |
| 40 | std::string threadSafety::getSourceLiteralString(const Expr *CE) { |
| 41 | switch (CE->getStmtClass()) { |
| 42 | case Stmt::IntegerLiteralClass: |
| 43 | return toString(cast<IntegerLiteral>(Val: CE)->getValue(), 10, true); |
| 44 | case Stmt::StringLiteralClass: { |
| 45 | std::string ret("\"" ); |
| 46 | ret += cast<StringLiteral>(Val: CE)->getString(); |
| 47 | ret += "\"" ; |
| 48 | return ret; |
| 49 | } |
| 50 | case Stmt::CharacterLiteralClass: |
| 51 | case Stmt::CXXNullPtrLiteralExprClass: |
| 52 | case Stmt::GNUNullExprClass: |
| 53 | case Stmt::CXXBoolLiteralExprClass: |
| 54 | case Stmt::FloatingLiteralClass: |
| 55 | case Stmt::ImaginaryLiteralClass: |
| 56 | case Stmt::ObjCStringLiteralClass: |
| 57 | default: |
| 58 | return "#lit" ; |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | // Return true if E is a variable that points to an incomplete Phi node. |
| 63 | static bool isIncompletePhi(const til::SExpr *E) { |
| 64 | if (const auto *Ph = dyn_cast<til::Phi>(Val: E)) |
| 65 | return Ph->status() == til::Phi::PH_Incomplete; |
| 66 | return false; |
| 67 | } |
| 68 | |
| 69 | static constexpr std::pair<StringRef, bool> ClassifyCapabilityFallback{ |
| 70 | /*Kind=*/StringRef("mutex" ), |
| 71 | /*Reentrant=*/false}; |
| 72 | |
| 73 | // Returns pair (Kind, Reentrant). |
| 74 | static std::pair<StringRef, bool> classifyCapability(const TypeDecl &TD) { |
| 75 | if (const auto *CA = TD.getAttr<CapabilityAttr>()) |
| 76 | return {CA->getName(), TD.hasAttr<ReentrantCapabilityAttr>()}; |
| 77 | |
| 78 | return ClassifyCapabilityFallback; |
| 79 | } |
| 80 | |
| 81 | // Returns pair (Kind, Reentrant). |
| 82 | static std::pair<StringRef, bool> classifyCapability(QualType QT) { |
| 83 | // We need to look at the declaration of the type of the value to determine |
| 84 | // which it is. The type should either be a record or a typedef, or a pointer |
| 85 | // or reference thereof. |
| 86 | if (const auto *RT = QT->getAs<RecordType>()) { |
| 87 | if (const auto *RD = RT->getDecl()) |
| 88 | return classifyCapability(*RD); |
| 89 | } else if (const auto *TT = QT->getAs<TypedefType>()) { |
| 90 | if (const auto *TD = TT->getDecl()) |
| 91 | return classifyCapability(*TD); |
| 92 | } else if (QT->isPointerOrReferenceType()) |
| 93 | return classifyCapability(QT: QT->getPointeeType()); |
| 94 | |
| 95 | return ClassifyCapabilityFallback; |
| 96 | } |
| 97 | |
| 98 | CapabilityExpr::CapabilityExpr(const til::SExpr *E, QualType QT, bool Neg) { |
| 99 | const auto &[Kind, Reentrant] = classifyCapability(QT); |
| 100 | *this = CapabilityExpr(E, Kind, Neg, Reentrant); |
| 101 | } |
| 102 | |
| 103 | using CallingContext = SExprBuilder::CallingContext; |
| 104 | |
| 105 | til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(Val: S); } |
| 106 | |
| 107 | til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { |
| 108 | Walker.walk(V&: *this); |
| 109 | return Scfg; |
| 110 | } |
| 111 | |
| 112 | static bool isCalleeArrow(const Expr *E) { |
| 113 | const auto *ME = dyn_cast<MemberExpr>(Val: E->IgnoreParenCasts()); |
| 114 | return ME ? ME->isArrow() : false; |
| 115 | } |
| 116 | |
| 117 | /// Translate a clang expression in an attribute to a til::SExpr. |
| 118 | /// Constructs the context from D, DeclExp, and SelfDecl. |
| 119 | /// |
| 120 | /// \param AttrExp The expression to translate. |
| 121 | /// \param D The declaration to which the attribute is attached. |
| 122 | /// \param DeclExp An expression involving the Decl to which the attribute |
| 123 | /// is attached. E.g. the call to a function. |
| 124 | /// \param Self S-expression to substitute for a \ref CXXThisExpr in a call, |
| 125 | /// or argument to a cleanup function. |
| 126 | CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, |
| 127 | const NamedDecl *D, |
| 128 | const Expr *DeclExp, |
| 129 | til::SExpr *Self) { |
| 130 | // If we are processing a raw attribute expression, with no substitutions. |
| 131 | if (!DeclExp && !Self) |
| 132 | return translateAttrExpr(AttrExp, Ctx: nullptr); |
| 133 | |
| 134 | CallingContext Ctx(nullptr, D); |
| 135 | |
| 136 | // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute |
| 137 | // for formal parameters when we call buildMutexID later. |
| 138 | if (!DeclExp) |
| 139 | /* We'll use Self. */; |
| 140 | else if (const auto *ME = dyn_cast<MemberExpr>(Val: DeclExp)) { |
| 141 | Ctx.SelfArg = ME->getBase(); |
| 142 | Ctx.SelfArrow = ME->isArrow(); |
| 143 | } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Val: DeclExp)) { |
| 144 | Ctx.SelfArg = CE->getImplicitObjectArgument(); |
| 145 | Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); |
| 146 | Ctx.NumArgs = CE->getNumArgs(); |
| 147 | Ctx.FunArgs = CE->getArgs(); |
| 148 | } else if (const auto *CE = dyn_cast<CallExpr>(Val: DeclExp)) { |
| 149 | // Calls to operators that are members need to be treated like member calls. |
| 150 | if (isa<CXXOperatorCallExpr>(Val: CE) && isa<CXXMethodDecl>(Val: D)) { |
| 151 | Ctx.SelfArg = CE->getArg(Arg: 0); |
| 152 | Ctx.SelfArrow = false; |
| 153 | Ctx.NumArgs = CE->getNumArgs() - 1; |
| 154 | Ctx.FunArgs = CE->getArgs() + 1; |
| 155 | } else { |
| 156 | Ctx.NumArgs = CE->getNumArgs(); |
| 157 | Ctx.FunArgs = CE->getArgs(); |
| 158 | } |
| 159 | } else if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: DeclExp)) { |
| 160 | Ctx.SelfArg = nullptr; // Will be set below |
| 161 | Ctx.NumArgs = CE->getNumArgs(); |
| 162 | Ctx.FunArgs = CE->getArgs(); |
| 163 | } |
| 164 | |
| 165 | // Usually we want to substitute the self-argument for "this", but lambdas |
| 166 | // are an exception: "this" on or in a lambda call operator doesn't refer |
| 167 | // to the lambda, but to captured "this" in the context it was created in. |
| 168 | // This can happen for operator calls and member calls, so fix it up here. |
| 169 | if (const auto *CMD = dyn_cast<CXXMethodDecl>(Val: D)) |
| 170 | if (CMD->getParent()->isLambda()) |
| 171 | Ctx.SelfArg = nullptr; |
| 172 | |
| 173 | if (Self) { |
| 174 | assert(!Ctx.SelfArg && "Ambiguous self argument" ); |
| 175 | assert(isa<FunctionDecl>(D) && "Self argument requires function" ); |
| 176 | if (isa<CXXMethodDecl>(Val: D)) |
| 177 | Ctx.SelfArg = Self; |
| 178 | else |
| 179 | Ctx.FunArgs = Self; |
| 180 | |
| 181 | // If the attribute has no arguments, then assume the argument is "this". |
| 182 | if (!AttrExp) |
| 183 | return CapabilityExpr( |
| 184 | Self, cast<CXXMethodDecl>(Val: D)->getFunctionObjectParameterType(), |
| 185 | false); |
| 186 | else // For most attributes. |
| 187 | return translateAttrExpr(AttrExp, Ctx: &Ctx); |
| 188 | } |
| 189 | |
| 190 | // If the attribute has no arguments, then assume the argument is "this". |
| 191 | if (!AttrExp) |
| 192 | return translateAttrExpr(AttrExp: cast<const Expr *>(Val&: Ctx.SelfArg), Ctx: nullptr); |
| 193 | else // For most attributes. |
| 194 | return translateAttrExpr(AttrExp, Ctx: &Ctx); |
| 195 | } |
| 196 | |
| 197 | /// Translate a clang expression in an attribute to a til::SExpr. |
| 198 | // This assumes a CallingContext has already been created. |
| 199 | CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, |
| 200 | CallingContext *Ctx) { |
| 201 | if (!AttrExp) |
| 202 | return CapabilityExpr(); |
| 203 | |
| 204 | if (const auto* SLit = dyn_cast<StringLiteral>(Val: AttrExp)) { |
| 205 | if (SLit->getString() == "*" ) |
| 206 | // The "*" expr is a universal lock, which essentially turns off |
| 207 | // checks until it is removed from the lockset. |
| 208 | return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard" ), |
| 209 | /*Neg=*/false, /*Reentrant=*/false); |
| 210 | else |
| 211 | // Ignore other string literals for now. |
| 212 | return CapabilityExpr(); |
| 213 | } |
| 214 | |
| 215 | bool Neg = false; |
| 216 | if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Val: AttrExp)) { |
| 217 | if (OE->getOperator() == OO_Exclaim) { |
| 218 | Neg = true; |
| 219 | AttrExp = OE->getArg(0); |
| 220 | } |
| 221 | } |
| 222 | else if (const auto *UO = dyn_cast<UnaryOperator>(Val: AttrExp)) { |
| 223 | if (UO->getOpcode() == UO_LNot) { |
| 224 | Neg = true; |
| 225 | AttrExp = UO->getSubExpr()->IgnoreImplicit(); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | const til::SExpr *E = translate(AttrExp, Ctx); |
| 230 | |
| 231 | // Trap mutex expressions like nullptr, or 0. |
| 232 | // Any literal value is nonsense. |
| 233 | if (!E || isa<til::Literal>(Val: E)) |
| 234 | return CapabilityExpr(); |
| 235 | |
| 236 | // Hack to deal with smart pointers -- strip off top-level pointer casts. |
| 237 | if (const auto *CE = dyn_cast<til::Cast>(E)) { |
| 238 | if (CE->castOpcode() == til::CAST_objToPtr) |
| 239 | E = CE->expr(); |
| 240 | } |
| 241 | return CapabilityExpr(E, AttrExp->getType(), Neg); |
| 242 | } |
| 243 | |
| 244 | til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) { |
| 245 | return new (Arena) til::LiteralPtr(VD); |
| 246 | } |
| 247 | |
| 248 | // Translate a clang statement or expression to a TIL expression. |
| 249 | // Also performs substitution of variables; Ctx provides the context. |
| 250 | // Dispatches on the type of S. |
| 251 | til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { |
| 252 | if (!S) |
| 253 | return nullptr; |
| 254 | |
| 255 | // Check if S has already been translated and cached. |
| 256 | // This handles the lookup of SSA names for DeclRefExprs here. |
| 257 | if (til::SExpr *E = lookupStmt(S)) |
| 258 | return E; |
| 259 | |
| 260 | switch (S->getStmtClass()) { |
| 261 | case Stmt::DeclRefExprClass: |
| 262 | return translateDeclRefExpr(DRE: cast<DeclRefExpr>(Val: S), Ctx); |
| 263 | case Stmt::CXXThisExprClass: |
| 264 | return translateCXXThisExpr(TE: cast<CXXThisExpr>(Val: S), Ctx); |
| 265 | case Stmt::MemberExprClass: |
| 266 | return translateMemberExpr(ME: cast<MemberExpr>(Val: S), Ctx); |
| 267 | case Stmt::ObjCIvarRefExprClass: |
| 268 | return translateObjCIVarRefExpr(IVRE: cast<ObjCIvarRefExpr>(Val: S), Ctx); |
| 269 | case Stmt::CallExprClass: |
| 270 | return translateCallExpr(CE: cast<CallExpr>(Val: S), Ctx); |
| 271 | case Stmt::CXXMemberCallExprClass: |
| 272 | return translateCXXMemberCallExpr(ME: cast<CXXMemberCallExpr>(Val: S), Ctx); |
| 273 | case Stmt::CXXOperatorCallExprClass: |
| 274 | return translateCXXOperatorCallExpr(OCE: cast<CXXOperatorCallExpr>(Val: S), Ctx); |
| 275 | case Stmt::UnaryOperatorClass: |
| 276 | return translateUnaryOperator(UO: cast<UnaryOperator>(Val: S), Ctx); |
| 277 | case Stmt::BinaryOperatorClass: |
| 278 | case Stmt::CompoundAssignOperatorClass: |
| 279 | return translateBinaryOperator(BO: cast<BinaryOperator>(Val: S), Ctx); |
| 280 | |
| 281 | case Stmt::ArraySubscriptExprClass: |
| 282 | return translateArraySubscriptExpr(E: cast<ArraySubscriptExpr>(Val: S), Ctx); |
| 283 | case Stmt::ConditionalOperatorClass: |
| 284 | return translateAbstractConditionalOperator( |
| 285 | cast<ConditionalOperator>(Val: S), Ctx); |
| 286 | case Stmt::BinaryConditionalOperatorClass: |
| 287 | return translateAbstractConditionalOperator( |
| 288 | cast<BinaryConditionalOperator>(Val: S), Ctx); |
| 289 | |
| 290 | // We treat these as no-ops |
| 291 | case Stmt::ConstantExprClass: |
| 292 | return translate(S: cast<ConstantExpr>(Val: S)->getSubExpr(), Ctx); |
| 293 | case Stmt::ParenExprClass: |
| 294 | return translate(cast<ParenExpr>(Val: S)->getSubExpr(), Ctx); |
| 295 | case Stmt::ExprWithCleanupsClass: |
| 296 | return translate(S: cast<ExprWithCleanups>(Val: S)->getSubExpr(), Ctx); |
| 297 | case Stmt::CXXBindTemporaryExprClass: |
| 298 | return translate(cast<CXXBindTemporaryExpr>(Val: S)->getSubExpr(), Ctx); |
| 299 | case Stmt::MaterializeTemporaryExprClass: |
| 300 | return translate(cast<MaterializeTemporaryExpr>(Val: S)->getSubExpr(), Ctx); |
| 301 | |
| 302 | // Collect all literals |
| 303 | case Stmt::CharacterLiteralClass: |
| 304 | case Stmt::CXXNullPtrLiteralExprClass: |
| 305 | case Stmt::GNUNullExprClass: |
| 306 | case Stmt::CXXBoolLiteralExprClass: |
| 307 | case Stmt::FloatingLiteralClass: |
| 308 | case Stmt::ImaginaryLiteralClass: |
| 309 | case Stmt::IntegerLiteralClass: |
| 310 | case Stmt::StringLiteralClass: |
| 311 | case Stmt::ObjCStringLiteralClass: |
| 312 | return new (Arena) til::Literal(cast<Expr>(Val: S)); |
| 313 | |
| 314 | case Stmt::DeclStmtClass: |
| 315 | return translateDeclStmt(S: cast<DeclStmt>(Val: S), Ctx); |
| 316 | default: |
| 317 | break; |
| 318 | } |
| 319 | if (const auto *CE = dyn_cast<CastExpr>(Val: S)) |
| 320 | return translateCastExpr(CE, Ctx); |
| 321 | |
| 322 | return new (Arena) til::Undefined(S); |
| 323 | } |
| 324 | |
| 325 | til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, |
| 326 | CallingContext *Ctx) { |
| 327 | const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); |
| 328 | |
| 329 | // Function parameters require substitution and/or renaming. |
| 330 | if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) { |
| 331 | unsigned I = PV->getFunctionScopeIndex(); |
| 332 | const DeclContext *D = PV->getDeclContext(); |
| 333 | if (Ctx && Ctx->FunArgs) { |
| 334 | const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl(); |
| 335 | if (isa<FunctionDecl>(Val: D) |
| 336 | ? (cast<FunctionDecl>(Val: D)->getCanonicalDecl() == Canonical) |
| 337 | : (cast<ObjCMethodDecl>(Val: D)->getCanonicalDecl() == Canonical)) { |
| 338 | // Substitute call arguments for references to function parameters |
| 339 | if (const Expr *const *FunArgs = |
| 340 | dyn_cast<const Expr *const *>(Val&: Ctx->FunArgs)) { |
| 341 | assert(I < Ctx->NumArgs); |
| 342 | return translate(FunArgs[I], Ctx->Prev); |
| 343 | } |
| 344 | |
| 345 | assert(I == 0); |
| 346 | return cast<til::SExpr *>(Val&: Ctx->FunArgs); |
| 347 | } |
| 348 | } |
| 349 | // Map the param back to the param of the original function declaration |
| 350 | // for consistent comparisons. |
| 351 | VD = isa<FunctionDecl>(Val: D) |
| 352 | ? cast<FunctionDecl>(Val: D)->getCanonicalDecl()->getParamDecl(i: I) |
| 353 | : cast<ObjCMethodDecl>(Val: D)->getCanonicalDecl()->getParamDecl(Idx: I); |
| 354 | } |
| 355 | |
| 356 | // For non-local variables, treat it as a reference to a named object. |
| 357 | return new (Arena) til::LiteralPtr(VD); |
| 358 | } |
| 359 | |
| 360 | til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, |
| 361 | CallingContext *Ctx) { |
| 362 | // Substitute for 'this' |
| 363 | if (Ctx && Ctx->SelfArg) { |
| 364 | if (const auto *SelfArg = dyn_cast<const Expr *>(Val&: Ctx->SelfArg)) |
| 365 | return translate(SelfArg, Ctx->Prev); |
| 366 | else |
| 367 | return cast<til::SExpr *>(Val&: Ctx->SelfArg); |
| 368 | } |
| 369 | assert(SelfVar && "We have no variable for 'this'!" ); |
| 370 | return SelfVar; |
| 371 | } |
| 372 | |
| 373 | static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { |
| 374 | if (const auto *V = dyn_cast<til::Variable>(Val: E)) |
| 375 | return V->clangDecl(); |
| 376 | if (const auto *Ph = dyn_cast<til::Phi>(Val: E)) |
| 377 | return Ph->clangDecl(); |
| 378 | if (const auto *P = dyn_cast<til::Project>(Val: E)) |
| 379 | return P->clangDecl(); |
| 380 | if (const auto *L = dyn_cast<til::LiteralPtr>(Val: E)) |
| 381 | return L->clangDecl(); |
| 382 | return nullptr; |
| 383 | } |
| 384 | |
| 385 | static bool hasAnyPointerType(const til::SExpr *E) { |
| 386 | auto *VD = getValueDeclFromSExpr(E); |
| 387 | if (VD && VD->getType()->isAnyPointerType()) |
| 388 | return true; |
| 389 | if (const auto *C = dyn_cast<til::Cast>(Val: E)) |
| 390 | return C->castOpcode() == til::CAST_objToPtr; |
| 391 | |
| 392 | return false; |
| 393 | } |
| 394 | |
| 395 | // Grab the very first declaration of virtual method D |
| 396 | static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { |
| 397 | while (true) { |
| 398 | D = D->getCanonicalDecl(); |
| 399 | auto OverriddenMethods = D->overridden_methods(); |
| 400 | if (OverriddenMethods.begin() == OverriddenMethods.end()) |
| 401 | return D; // Method does not override anything |
| 402 | // FIXME: this does not work with multiple inheritance. |
| 403 | D = *OverriddenMethods.begin(); |
| 404 | } |
| 405 | return nullptr; |
| 406 | } |
| 407 | |
| 408 | til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, |
| 409 | CallingContext *Ctx) { |
| 410 | til::SExpr *BE = translate(ME->getBase(), Ctx); |
| 411 | til::SExpr *E = new (Arena) til::SApply(BE); |
| 412 | |
| 413 | const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); |
| 414 | if (const auto *VD = dyn_cast<CXXMethodDecl>(D)) |
| 415 | D = getFirstVirtualDecl(VD); |
| 416 | |
| 417 | til::Project *P = new (Arena) til::Project(E, D); |
| 418 | if (hasAnyPointerType(E: BE)) |
| 419 | P->setArrow(true); |
| 420 | return P; |
| 421 | } |
| 422 | |
| 423 | til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE, |
| 424 | CallingContext *Ctx) { |
| 425 | til::SExpr *BE = translate(IVRE->getBase(), Ctx); |
| 426 | til::SExpr *E = new (Arena) til::SApply(BE); |
| 427 | |
| 428 | const auto *D = cast<ObjCIvarDecl>(Val: IVRE->getDecl()->getCanonicalDecl()); |
| 429 | |
| 430 | til::Project *P = new (Arena) til::Project(E, D); |
| 431 | if (hasAnyPointerType(E: BE)) |
| 432 | P->setArrow(true); |
| 433 | return P; |
| 434 | } |
| 435 | |
| 436 | til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, |
| 437 | CallingContext *Ctx, |
| 438 | const Expr *SelfE) { |
| 439 | if (CapabilityExprMode) { |
| 440 | // Handle LOCK_RETURNED |
| 441 | if (const FunctionDecl *FD = CE->getDirectCallee()) { |
| 442 | FD = FD->getMostRecentDecl(); |
| 443 | if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) { |
| 444 | CallingContext LRCallCtx(Ctx); |
| 445 | LRCallCtx.AttrDecl = CE->getDirectCallee(); |
| 446 | LRCallCtx.SelfArg = SelfE; |
| 447 | LRCallCtx.NumArgs = CE->getNumArgs(); |
| 448 | LRCallCtx.FunArgs = CE->getArgs(); |
| 449 | return const_cast<til::SExpr *>( |
| 450 | translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | til::SExpr *E = translate(CE->getCallee(), Ctx); |
| 456 | for (const auto *Arg : CE->arguments()) { |
| 457 | til::SExpr *A = translate(S: Arg, Ctx); |
| 458 | E = new (Arena) til::Apply(E, A); |
| 459 | } |
| 460 | return new (Arena) til::Call(E, CE); |
| 461 | } |
| 462 | |
| 463 | til::SExpr *SExprBuilder::translateCXXMemberCallExpr( |
| 464 | const CXXMemberCallExpr *ME, CallingContext *Ctx) { |
| 465 | if (CapabilityExprMode) { |
| 466 | // Ignore calls to get() on smart pointers. |
| 467 | if (ME->getMethodDecl()->getNameAsString() == "get" && |
| 468 | ME->getNumArgs() == 0) { |
| 469 | auto *E = translate(ME->getImplicitObjectArgument(), Ctx); |
| 470 | return new (Arena) til::Cast(til::CAST_objToPtr, E); |
| 471 | // return E; |
| 472 | } |
| 473 | } |
| 474 | return translateCallExpr(CE: cast<CallExpr>(Val: ME), Ctx, |
| 475 | SelfE: ME->getImplicitObjectArgument()); |
| 476 | } |
| 477 | |
| 478 | til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( |
| 479 | const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { |
| 480 | if (CapabilityExprMode) { |
| 481 | // Ignore operator * and operator -> on smart pointers. |
| 482 | OverloadedOperatorKind k = OCE->getOperator(); |
| 483 | if (k == OO_Star || k == OO_Arrow) { |
| 484 | auto *E = translate(S: OCE->getArg(0), Ctx); |
| 485 | return new (Arena) til::Cast(til::CAST_objToPtr, E); |
| 486 | // return E; |
| 487 | } |
| 488 | } |
| 489 | return translateCallExpr(CE: cast<CallExpr>(Val: OCE), Ctx); |
| 490 | } |
| 491 | |
| 492 | til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, |
| 493 | CallingContext *Ctx) { |
| 494 | switch (UO->getOpcode()) { |
| 495 | case UO_PostInc: |
| 496 | case UO_PostDec: |
| 497 | case UO_PreInc: |
| 498 | case UO_PreDec: |
| 499 | return new (Arena) til::Undefined(UO); |
| 500 | |
| 501 | case UO_AddrOf: |
| 502 | if (CapabilityExprMode) { |
| 503 | // interpret &Graph::mu_ as an existential. |
| 504 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr())) { |
| 505 | if (DRE->getDecl()->isCXXInstanceMember()) { |
| 506 | // This is a pointer-to-member expression, e.g. &MyClass::mu_. |
| 507 | // We interpret this syntax specially, as a wildcard. |
| 508 | auto *W = new (Arena) til::Wildcard(); |
| 509 | return new (Arena) til::Project(W, DRE->getDecl()); |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | // otherwise, & is a no-op |
| 514 | return translate(UO->getSubExpr(), Ctx); |
| 515 | |
| 516 | // We treat these as no-ops |
| 517 | case UO_Deref: |
| 518 | case UO_Plus: |
| 519 | return translate(UO->getSubExpr(), Ctx); |
| 520 | |
| 521 | case UO_Minus: |
| 522 | return new (Arena) |
| 523 | til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); |
| 524 | case UO_Not: |
| 525 | return new (Arena) |
| 526 | til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); |
| 527 | case UO_LNot: |
| 528 | return new (Arena) |
| 529 | til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); |
| 530 | |
| 531 | // Currently unsupported |
| 532 | case UO_Real: |
| 533 | case UO_Imag: |
| 534 | case UO_Extension: |
| 535 | case UO_Coawait: |
| 536 | return new (Arena) til::Undefined(UO); |
| 537 | } |
| 538 | return new (Arena) til::Undefined(UO); |
| 539 | } |
| 540 | |
| 541 | til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, |
| 542 | const BinaryOperator *BO, |
| 543 | CallingContext *Ctx, bool Reverse) { |
| 544 | til::SExpr *E0 = translate(BO->getLHS(), Ctx); |
| 545 | til::SExpr *E1 = translate(BO->getRHS(), Ctx); |
| 546 | if (Reverse) |
| 547 | return new (Arena) til::BinaryOp(Op, E1, E0); |
| 548 | else |
| 549 | return new (Arena) til::BinaryOp(Op, E0, E1); |
| 550 | } |
| 551 | |
| 552 | til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, |
| 553 | const BinaryOperator *BO, |
| 554 | CallingContext *Ctx, |
| 555 | bool Assign) { |
| 556 | const Expr *LHS = BO->getLHS(); |
| 557 | const Expr *RHS = BO->getRHS(); |
| 558 | til::SExpr *E0 = translate(LHS, Ctx); |
| 559 | til::SExpr *E1 = translate(RHS, Ctx); |
| 560 | |
| 561 | const ValueDecl *VD = nullptr; |
| 562 | til::SExpr *CV = nullptr; |
| 563 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) { |
| 564 | VD = DRE->getDecl(); |
| 565 | CV = lookupVarDecl(VD); |
| 566 | } |
| 567 | |
| 568 | if (!Assign) { |
| 569 | til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); |
| 570 | E1 = new (Arena) til::BinaryOp(Op, Arg, E1); |
| 571 | E1 = addStatement(E: E1, S: nullptr, VD); |
| 572 | } |
| 573 | if (VD && CV) |
| 574 | return updateVarDecl(VD, E: E1); |
| 575 | return new (Arena) til::Store(E0, E1); |
| 576 | } |
| 577 | |
| 578 | til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, |
| 579 | CallingContext *Ctx) { |
| 580 | switch (BO->getOpcode()) { |
| 581 | case BO_PtrMemD: |
| 582 | case BO_PtrMemI: |
| 583 | return new (Arena) til::Undefined(BO); |
| 584 | |
| 585 | case BO_Mul: return translateBinOp(Op: til::BOP_Mul, BO, Ctx); |
| 586 | case BO_Div: return translateBinOp(Op: til::BOP_Div, BO, Ctx); |
| 587 | case BO_Rem: return translateBinOp(Op: til::BOP_Rem, BO, Ctx); |
| 588 | case BO_Add: return translateBinOp(Op: til::BOP_Add, BO, Ctx); |
| 589 | case BO_Sub: return translateBinOp(Op: til::BOP_Sub, BO, Ctx); |
| 590 | case BO_Shl: return translateBinOp(Op: til::BOP_Shl, BO, Ctx); |
| 591 | case BO_Shr: return translateBinOp(Op: til::BOP_Shr, BO, Ctx); |
| 592 | case BO_LT: return translateBinOp(Op: til::BOP_Lt, BO, Ctx); |
| 593 | case BO_GT: return translateBinOp(Op: til::BOP_Lt, BO, Ctx, Reverse: true); |
| 594 | case BO_LE: return translateBinOp(Op: til::BOP_Leq, BO, Ctx); |
| 595 | case BO_GE: return translateBinOp(Op: til::BOP_Leq, BO, Ctx, Reverse: true); |
| 596 | case BO_EQ: return translateBinOp(Op: til::BOP_Eq, BO, Ctx); |
| 597 | case BO_NE: return translateBinOp(Op: til::BOP_Neq, BO, Ctx); |
| 598 | case BO_Cmp: return translateBinOp(Op: til::BOP_Cmp, BO, Ctx); |
| 599 | case BO_And: return translateBinOp(Op: til::BOP_BitAnd, BO, Ctx); |
| 600 | case BO_Xor: return translateBinOp(Op: til::BOP_BitXor, BO, Ctx); |
| 601 | case BO_Or: return translateBinOp(Op: til::BOP_BitOr, BO, Ctx); |
| 602 | case BO_LAnd: return translateBinOp(Op: til::BOP_LogicAnd, BO, Ctx); |
| 603 | case BO_LOr: return translateBinOp(Op: til::BOP_LogicOr, BO, Ctx); |
| 604 | |
| 605 | case BO_Assign: return translateBinAssign(Op: til::BOP_Eq, BO, Ctx, Assign: true); |
| 606 | case BO_MulAssign: return translateBinAssign(Op: til::BOP_Mul, BO, Ctx); |
| 607 | case BO_DivAssign: return translateBinAssign(Op: til::BOP_Div, BO, Ctx); |
| 608 | case BO_RemAssign: return translateBinAssign(Op: til::BOP_Rem, BO, Ctx); |
| 609 | case BO_AddAssign: return translateBinAssign(Op: til::BOP_Add, BO, Ctx); |
| 610 | case BO_SubAssign: return translateBinAssign(Op: til::BOP_Sub, BO, Ctx); |
| 611 | case BO_ShlAssign: return translateBinAssign(Op: til::BOP_Shl, BO, Ctx); |
| 612 | case BO_ShrAssign: return translateBinAssign(Op: til::BOP_Shr, BO, Ctx); |
| 613 | case BO_AndAssign: return translateBinAssign(Op: til::BOP_BitAnd, BO, Ctx); |
| 614 | case BO_XorAssign: return translateBinAssign(Op: til::BOP_BitXor, BO, Ctx); |
| 615 | case BO_OrAssign: return translateBinAssign(Op: til::BOP_BitOr, BO, Ctx); |
| 616 | |
| 617 | case BO_Comma: |
| 618 | // The clang CFG should have already processed both sides. |
| 619 | return translate(BO->getRHS(), Ctx); |
| 620 | } |
| 621 | return new (Arena) til::Undefined(BO); |
| 622 | } |
| 623 | |
| 624 | til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, |
| 625 | CallingContext *Ctx) { |
| 626 | CastKind K = CE->getCastKind(); |
| 627 | switch (K) { |
| 628 | case CK_LValueToRValue: { |
| 629 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CE->getSubExpr())) { |
| 630 | til::SExpr *E0 = lookupVarDecl(VD: DRE->getDecl()); |
| 631 | if (E0) |
| 632 | return E0; |
| 633 | } |
| 634 | til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); |
| 635 | return E0; |
| 636 | // FIXME!! -- get Load working properly |
| 637 | // return new (Arena) til::Load(E0); |
| 638 | } |
| 639 | case CK_NoOp: |
| 640 | case CK_DerivedToBase: |
| 641 | case CK_UncheckedDerivedToBase: |
| 642 | case CK_ArrayToPointerDecay: |
| 643 | case CK_FunctionToPointerDecay: { |
| 644 | til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); |
| 645 | return E0; |
| 646 | } |
| 647 | default: { |
| 648 | // FIXME: handle different kinds of casts. |
| 649 | til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); |
| 650 | if (CapabilityExprMode) |
| 651 | return E0; |
| 652 | return new (Arena) til::Cast(til::CAST_none, E0); |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | til::SExpr * |
| 658 | SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, |
| 659 | CallingContext *Ctx) { |
| 660 | til::SExpr *E0 = translate(E->getBase(), Ctx); |
| 661 | til::SExpr *E1 = translate(E->getIdx(), Ctx); |
| 662 | return new (Arena) til::ArrayIndex(E0, E1); |
| 663 | } |
| 664 | |
| 665 | til::SExpr * |
| 666 | SExprBuilder::translateAbstractConditionalOperator( |
| 667 | const AbstractConditionalOperator *CO, CallingContext *Ctx) { |
| 668 | auto *C = translate(CO->getCond(), Ctx); |
| 669 | auto *T = translate(CO->getTrueExpr(), Ctx); |
| 670 | auto *E = translate(CO->getFalseExpr(), Ctx); |
| 671 | return new (Arena) til::IfThenElse(C, T, E); |
| 672 | } |
| 673 | |
| 674 | til::SExpr * |
| 675 | SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { |
| 676 | DeclGroupRef DGrp = S->getDeclGroup(); |
| 677 | for (auto *I : DGrp) { |
| 678 | if (auto *VD = dyn_cast_or_null<VarDecl>(Val: I)) { |
| 679 | Expr *E = VD->getInit(); |
| 680 | til::SExpr* SE = translate(E, Ctx); |
| 681 | |
| 682 | // Add local variables with trivial type to the variable map |
| 683 | QualType T = VD->getType(); |
| 684 | if (T.isTrivialType(Context: VD->getASTContext())) |
| 685 | return addVarDecl(VD, SE); |
| 686 | else { |
| 687 | // TODO: add alloca |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | return nullptr; |
| 692 | } |
| 693 | |
| 694 | // If (E) is non-trivial, then add it to the current basic block, and |
| 695 | // update the statement map so that S refers to E. Returns a new variable |
| 696 | // that refers to E. |
| 697 | // If E is trivial returns E. |
| 698 | til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, |
| 699 | const ValueDecl *VD) { |
| 700 | if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) |
| 701 | return E; |
| 702 | if (VD) |
| 703 | E = new (Arena) til::Variable(E, VD); |
| 704 | CurrentInstructions.push_back(x: E); |
| 705 | if (S) |
| 706 | insertStmt(S, E); |
| 707 | return E; |
| 708 | } |
| 709 | |
| 710 | // Returns the current value of VD, if known, and nullptr otherwise. |
| 711 | til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { |
| 712 | auto It = LVarIdxMap.find(Val: VD); |
| 713 | if (It != LVarIdxMap.end()) { |
| 714 | assert(CurrentLVarMap[It->second].first == VD); |
| 715 | return CurrentLVarMap[It->second].second; |
| 716 | } |
| 717 | return nullptr; |
| 718 | } |
| 719 | |
| 720 | // if E is a til::Variable, update its clangDecl. |
| 721 | static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { |
| 722 | if (!E) |
| 723 | return; |
| 724 | if (auto *V = dyn_cast<til::Variable>(Val: E)) { |
| 725 | if (!V->clangDecl()) |
| 726 | V->setClangDecl(VD); |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | // Adds a new variable declaration. |
| 731 | til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { |
| 732 | maybeUpdateVD(E, VD); |
| 733 | LVarIdxMap.insert(KV: std::make_pair(x&: VD, y: CurrentLVarMap.size())); |
| 734 | CurrentLVarMap.makeWritable(); |
| 735 | CurrentLVarMap.push_back(Elem: std::make_pair(x&: VD, y&: E)); |
| 736 | return E; |
| 737 | } |
| 738 | |
| 739 | // Updates a current variable declaration. (E.g. by assignment) |
| 740 | til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { |
| 741 | maybeUpdateVD(E, VD); |
| 742 | auto It = LVarIdxMap.find(Val: VD); |
| 743 | if (It == LVarIdxMap.end()) { |
| 744 | til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); |
| 745 | til::SExpr *St = new (Arena) til::Store(Ptr, E); |
| 746 | return St; |
| 747 | } |
| 748 | CurrentLVarMap.makeWritable(); |
| 749 | CurrentLVarMap.elem(i: It->second).second = E; |
| 750 | return E; |
| 751 | } |
| 752 | |
| 753 | // Make a Phi node in the current block for the i^th variable in CurrentVarMap. |
| 754 | // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. |
| 755 | // If E == null, this is a backedge and will be set later. |
| 756 | void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { |
| 757 | unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; |
| 758 | assert(ArgIndex > 0 && ArgIndex < NPreds); |
| 759 | |
| 760 | til::SExpr *CurrE = CurrentLVarMap[i].second; |
| 761 | if (CurrE->block() == CurrentBB) { |
| 762 | // We already have a Phi node in the current block, |
| 763 | // so just add the new variable to the Phi node. |
| 764 | auto *Ph = dyn_cast<til::Phi>(Val: CurrE); |
| 765 | assert(Ph && "Expecting Phi node." ); |
| 766 | if (E) |
| 767 | Ph->values()[ArgIndex] = E; |
| 768 | return; |
| 769 | } |
| 770 | |
| 771 | // Make a new phi node: phi(..., E) |
| 772 | // All phi args up to the current index are set to the current value. |
| 773 | til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); |
| 774 | Ph->values().setValues(Sz: NPreds, C: nullptr); |
| 775 | for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) |
| 776 | Ph->values()[PIdx] = CurrE; |
| 777 | if (E) |
| 778 | Ph->values()[ArgIndex] = E; |
| 779 | Ph->setClangDecl(CurrentLVarMap[i].first); |
| 780 | // If E is from a back-edge, or either E or CurrE are incomplete, then |
| 781 | // mark this node as incomplete; we may need to remove it later. |
| 782 | if (!E || isIncompletePhi(E) || isIncompletePhi(E: CurrE)) |
| 783 | Ph->setStatus(til::Phi::PH_Incomplete); |
| 784 | |
| 785 | // Add Phi node to current block, and update CurrentLVarMap[i] |
| 786 | CurrentArguments.push_back(x: Ph); |
| 787 | if (Ph->status() == til::Phi::PH_Incomplete) |
| 788 | IncompleteArgs.push_back(x: Ph); |
| 789 | |
| 790 | CurrentLVarMap.makeWritable(); |
| 791 | CurrentLVarMap.elem(i).second = Ph; |
| 792 | } |
| 793 | |
| 794 | // Merge values from Map into the current variable map. |
| 795 | // This will construct Phi nodes in the current basic block as necessary. |
| 796 | void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { |
| 797 | assert(CurrentBlockInfo && "Not processing a block!" ); |
| 798 | |
| 799 | if (!CurrentLVarMap.valid()) { |
| 800 | // Steal Map, using copy-on-write. |
| 801 | CurrentLVarMap = std::move(Map); |
| 802 | return; |
| 803 | } |
| 804 | if (CurrentLVarMap.sameAs(V: Map)) |
| 805 | return; // Easy merge: maps from different predecessors are unchanged. |
| 806 | |
| 807 | unsigned NPreds = CurrentBB->numPredecessors(); |
| 808 | unsigned ESz = CurrentLVarMap.size(); |
| 809 | unsigned MSz = Map.size(); |
| 810 | unsigned Sz = std::min(a: ESz, b: MSz); |
| 811 | |
| 812 | for (unsigned i = 0; i < Sz; ++i) { |
| 813 | if (CurrentLVarMap[i].first != Map[i].first) { |
| 814 | // We've reached the end of variables in common. |
| 815 | CurrentLVarMap.makeWritable(); |
| 816 | CurrentLVarMap.downsize(i); |
| 817 | break; |
| 818 | } |
| 819 | if (CurrentLVarMap[i].second != Map[i].second) |
| 820 | makePhiNodeVar(i, NPreds, E: Map[i].second); |
| 821 | } |
| 822 | if (ESz > MSz) { |
| 823 | CurrentLVarMap.makeWritable(); |
| 824 | CurrentLVarMap.downsize(i: Map.size()); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | // Merge a back edge into the current variable map. |
| 829 | // This will create phi nodes for all variables in the variable map. |
| 830 | void SExprBuilder::mergeEntryMapBackEdge() { |
| 831 | // We don't have definitions for variables on the backedge, because we |
| 832 | // haven't gotten that far in the CFG. Thus, when encountering a back edge, |
| 833 | // we conservatively create Phi nodes for all variables. Unnecessary Phi |
| 834 | // nodes will be marked as incomplete, and stripped out at the end. |
| 835 | // |
| 836 | // An Phi node is unnecessary if it only refers to itself and one other |
| 837 | // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. |
| 838 | |
| 839 | assert(CurrentBlockInfo && "Not processing a block!" ); |
| 840 | |
| 841 | if (CurrentBlockInfo->HasBackEdges) |
| 842 | return; |
| 843 | CurrentBlockInfo->HasBackEdges = true; |
| 844 | |
| 845 | CurrentLVarMap.makeWritable(); |
| 846 | unsigned Sz = CurrentLVarMap.size(); |
| 847 | unsigned NPreds = CurrentBB->numPredecessors(); |
| 848 | |
| 849 | for (unsigned i = 0; i < Sz; ++i) |
| 850 | makePhiNodeVar(i, NPreds, E: nullptr); |
| 851 | } |
| 852 | |
| 853 | // Update the phi nodes that were initially created for a back edge |
| 854 | // once the variable definitions have been computed. |
| 855 | // I.e., merge the current variable map into the phi nodes for Blk. |
| 856 | void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { |
| 857 | til::BasicBlock *BB = lookupBlock(B: Blk); |
| 858 | unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; |
| 859 | assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); |
| 860 | |
| 861 | for (til::SExpr *PE : BB->arguments()) { |
| 862 | auto *Ph = dyn_cast_or_null<til::Phi>(Val: PE); |
| 863 | assert(Ph && "Expecting Phi Node." ); |
| 864 | assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge." ); |
| 865 | |
| 866 | til::SExpr *E = lookupVarDecl(VD: Ph->clangDecl()); |
| 867 | assert(E && "Couldn't find local variable for Phi node." ); |
| 868 | Ph->values()[ArgIndex] = E; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, |
| 873 | const CFGBlock *First) { |
| 874 | // Perform initial setup operations. |
| 875 | unsigned NBlocks = Cfg->getNumBlockIDs(); |
| 876 | Scfg = new (Arena) til::SCFG(Arena, NBlocks); |
| 877 | |
| 878 | // allocate all basic blocks immediately, to handle forward references. |
| 879 | BBInfo.resize(new_size: NBlocks); |
| 880 | BlockMap.resize(new_size: NBlocks, x: nullptr); |
| 881 | // create map from clang blockID to til::BasicBlocks |
| 882 | for (auto *B : *Cfg) { |
| 883 | auto *BB = new (Arena) til::BasicBlock(Arena); |
| 884 | BB->reserveInstructions(Nins: B->size()); |
| 885 | BlockMap[B->getBlockID()] = BB; |
| 886 | } |
| 887 | |
| 888 | CurrentBB = lookupBlock(B: &Cfg->getEntry()); |
| 889 | auto Parms = isa<ObjCMethodDecl>(Val: D) ? cast<ObjCMethodDecl>(Val: D)->parameters() |
| 890 | : cast<FunctionDecl>(Val: D)->parameters(); |
| 891 | for (auto *Pm : Parms) { |
| 892 | QualType T = Pm->getType(); |
| 893 | if (!T.isTrivialType(Context: Pm->getASTContext())) |
| 894 | continue; |
| 895 | |
| 896 | // Add parameters to local variable map. |
| 897 | // FIXME: right now we emulate params with loads; that should be fixed. |
| 898 | til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); |
| 899 | til::SExpr *Ld = new (Arena) til::Load(Lp); |
| 900 | til::SExpr *V = addStatement(Ld, nullptr, Pm); |
| 901 | addVarDecl(Pm, V); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | void SExprBuilder::enterCFGBlock(const CFGBlock *B) { |
| 906 | // Initialize TIL basic block and add it to the CFG. |
| 907 | CurrentBB = lookupBlock(B); |
| 908 | CurrentBB->reservePredecessors(NumPreds: B->pred_size()); |
| 909 | Scfg->add(BB: CurrentBB); |
| 910 | |
| 911 | CurrentBlockInfo = &BBInfo[B->getBlockID()]; |
| 912 | |
| 913 | // CurrentLVarMap is moved to ExitMap on block exit. |
| 914 | // FIXME: the entry block will hold function parameters. |
| 915 | // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); |
| 916 | } |
| 917 | |
| 918 | void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { |
| 919 | // Compute CurrentLVarMap on entry from ExitMaps of predecessors |
| 920 | |
| 921 | CurrentBB->addPredecessor(Pred: BlockMap[Pred->getBlockID()]); |
| 922 | BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; |
| 923 | assert(PredInfo->UnprocessedSuccessors > 0); |
| 924 | |
| 925 | if (--PredInfo->UnprocessedSuccessors == 0) |
| 926 | mergeEntryMap(Map: std::move(PredInfo->ExitMap)); |
| 927 | else |
| 928 | mergeEntryMap(Map: PredInfo->ExitMap.clone()); |
| 929 | |
| 930 | ++CurrentBlockInfo->ProcessedPredecessors; |
| 931 | } |
| 932 | |
| 933 | void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { |
| 934 | mergeEntryMapBackEdge(); |
| 935 | } |
| 936 | |
| 937 | void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { |
| 938 | // The merge*() methods have created arguments. |
| 939 | // Push those arguments onto the basic block. |
| 940 | CurrentBB->arguments().reserve( |
| 941 | Ncp: static_cast<unsigned>(CurrentArguments.size()), A: Arena); |
| 942 | for (auto *A : CurrentArguments) |
| 943 | CurrentBB->addArgument(V: A); |
| 944 | } |
| 945 | |
| 946 | void SExprBuilder::handleStatement(const Stmt *S) { |
| 947 | til::SExpr *E = translate(S, Ctx: nullptr); |
| 948 | addStatement(E, S); |
| 949 | } |
| 950 | |
| 951 | void SExprBuilder::handleDestructorCall(const VarDecl *VD, |
| 952 | const CXXDestructorDecl *DD) { |
| 953 | til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); |
| 954 | til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); |
| 955 | til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); |
| 956 | til::SExpr *E = new (Arena) til::Call(Ap); |
| 957 | addStatement(E, S: nullptr); |
| 958 | } |
| 959 | |
| 960 | void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { |
| 961 | CurrentBB->instructions().reserve( |
| 962 | Ncp: static_cast<unsigned>(CurrentInstructions.size()), A: Arena); |
| 963 | for (auto *V : CurrentInstructions) |
| 964 | CurrentBB->addInstruction(V); |
| 965 | |
| 966 | // Create an appropriate terminator |
| 967 | unsigned N = B->succ_size(); |
| 968 | auto It = B->succ_begin(); |
| 969 | if (N == 1) { |
| 970 | til::BasicBlock *BB = *It ? lookupBlock(B: *It) : nullptr; |
| 971 | // TODO: set index |
| 972 | unsigned Idx = BB ? BB->findPredecessorIndex(BB: CurrentBB) : 0; |
| 973 | auto *Tm = new (Arena) til::Goto(BB, Idx); |
| 974 | CurrentBB->setTerminator(Tm); |
| 975 | } |
| 976 | else if (N == 2) { |
| 977 | til::SExpr *C = translate(S: B->getTerminatorCondition(StripParens: true), Ctx: nullptr); |
| 978 | til::BasicBlock *BB1 = *It ? lookupBlock(B: *It) : nullptr; |
| 979 | ++It; |
| 980 | til::BasicBlock *BB2 = *It ? lookupBlock(B: *It) : nullptr; |
| 981 | // FIXME: make sure these aren't critical edges. |
| 982 | auto *Tm = new (Arena) til::Branch(C, BB1, BB2); |
| 983 | CurrentBB->setTerminator(Tm); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { |
| 988 | ++CurrentBlockInfo->UnprocessedSuccessors; |
| 989 | } |
| 990 | |
| 991 | void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { |
| 992 | mergePhiNodesBackEdge(Blk: Succ); |
| 993 | ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; |
| 994 | } |
| 995 | |
| 996 | void SExprBuilder::exitCFGBlock(const CFGBlock *B) { |
| 997 | CurrentArguments.clear(); |
| 998 | CurrentInstructions.clear(); |
| 999 | CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); |
| 1000 | CurrentBB = nullptr; |
| 1001 | CurrentBlockInfo = nullptr; |
| 1002 | } |
| 1003 | |
| 1004 | void SExprBuilder::exitCFG(const CFGBlock *Last) { |
| 1005 | for (auto *Ph : IncompleteArgs) { |
| 1006 | if (Ph->status() == til::Phi::PH_Incomplete) |
| 1007 | simplifyIncompleteArg(Ph); |
| 1008 | } |
| 1009 | |
| 1010 | CurrentArguments.clear(); |
| 1011 | CurrentInstructions.clear(); |
| 1012 | IncompleteArgs.clear(); |
| 1013 | } |
| 1014 | |
| 1015 | #ifndef NDEBUG |
| 1016 | namespace { |
| 1017 | |
| 1018 | class TILPrinter : |
| 1019 | public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; |
| 1020 | |
| 1021 | } // namespace |
| 1022 | |
| 1023 | namespace clang { |
| 1024 | namespace threadSafety { |
| 1025 | |
| 1026 | void printSCFG(CFGWalker &Walker) { |
| 1027 | llvm::BumpPtrAllocator Bpa; |
| 1028 | til::MemRegionRef Arena(&Bpa); |
| 1029 | SExprBuilder SxBuilder(Arena); |
| 1030 | til::SCFG *Scfg = SxBuilder.buildCFG(Walker); |
| 1031 | TILPrinter::print(E: Scfg, SS&: llvm::errs()); |
| 1032 | } |
| 1033 | |
| 1034 | } // namespace threadSafety |
| 1035 | } // namespace clang |
| 1036 | #endif // NDEBUG |
| 1037 | |