| 1 | //===- ThreadSafetyCommon.h -------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Parts of thread safety analysis that are not specific to thread safety |
| 10 | // itself have been factored into classes here, where they can be potentially |
| 11 | // used by other analyses. Currently these include: |
| 12 | // |
| 13 | // * Generalize clang CFG visitors. |
| 14 | // * Conversion of the clang CFG to SSA form. |
| 15 | // * Translation of clang Exprs to TIL SExprs |
| 16 | // |
| 17 | // UNDER CONSTRUCTION. USE AT YOUR OWN RISK. |
| 18 | // |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | |
| 21 | #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYCOMMON_H |
| 22 | #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYCOMMON_H |
| 23 | |
| 24 | #include "clang/AST/Decl.h" |
| 25 | #include "clang/AST/Type.h" |
| 26 | #include "clang/Analysis/Analyses/PostOrderCFGView.h" |
| 27 | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
| 28 | #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" |
| 29 | #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" |
| 30 | #include "clang/Analysis/AnalysisDeclContext.h" |
| 31 | #include "clang/Analysis/CFG.h" |
| 32 | #include "clang/Basic/LLVM.h" |
| 33 | #include "llvm/ADT/DenseMap.h" |
| 34 | #include "llvm/ADT/PointerIntPair.h" |
| 35 | #include "llvm/ADT/PointerUnion.h" |
| 36 | #include "llvm/ADT/SmallVector.h" |
| 37 | #include "llvm/Support/Casting.h" |
| 38 | #include <sstream> |
| 39 | #include <string> |
| 40 | #include <utility> |
| 41 | #include <vector> |
| 42 | |
| 43 | namespace clang { |
| 44 | |
| 45 | class AbstractConditionalOperator; |
| 46 | class ArraySubscriptExpr; |
| 47 | class BinaryOperator; |
| 48 | class CallExpr; |
| 49 | class CastExpr; |
| 50 | class CXXDestructorDecl; |
| 51 | class CXXMemberCallExpr; |
| 52 | class CXXOperatorCallExpr; |
| 53 | class CXXThisExpr; |
| 54 | class DeclRefExpr; |
| 55 | class DeclStmt; |
| 56 | class Expr; |
| 57 | class MemberExpr; |
| 58 | class Stmt; |
| 59 | class UnaryOperator; |
| 60 | |
| 61 | namespace threadSafety { |
| 62 | |
| 63 | // Various helper functions on til::SExpr |
| 64 | namespace sx { |
| 65 | |
| 66 | inline bool equals(const til::SExpr *E1, const til::SExpr *E2) { |
| 67 | return til::EqualsComparator::compareExprs(E1, E2); |
| 68 | } |
| 69 | |
| 70 | inline bool matches(const til::SExpr *E1, const til::SExpr *E2) { |
| 71 | // We treat a top-level wildcard as the "univsersal" lock. |
| 72 | // It matches everything for the purpose of checking locks, but not |
| 73 | // for unlocking them. |
| 74 | if (isa<til::Wildcard>(Val: E1)) |
| 75 | return isa<til::Wildcard>(Val: E2); |
| 76 | if (isa<til::Wildcard>(Val: E2)) |
| 77 | return isa<til::Wildcard>(Val: E1); |
| 78 | |
| 79 | return til::MatchComparator::compareExprs(E1, E2); |
| 80 | } |
| 81 | |
| 82 | inline bool partiallyMatches(const til::SExpr *E1, const til::SExpr *E2) { |
| 83 | const auto *PE1 = dyn_cast_or_null<til::Project>(Val: E1); |
| 84 | if (!PE1) |
| 85 | return false; |
| 86 | const auto *PE2 = dyn_cast_or_null<til::Project>(Val: E2); |
| 87 | if (!PE2) |
| 88 | return false; |
| 89 | return PE1->clangDecl() == PE2->clangDecl(); |
| 90 | } |
| 91 | |
| 92 | inline std::string toString(const til::SExpr *E) { |
| 93 | std::stringstream ss; |
| 94 | til::StdPrinter::print(E, SS&: ss); |
| 95 | return ss.str(); |
| 96 | } |
| 97 | |
| 98 | } // namespace sx |
| 99 | |
| 100 | // This class defines the interface of a clang CFG Visitor. |
| 101 | // CFGWalker will invoke the following methods. |
| 102 | // Note that methods are not virtual; the visitor is templatized. |
| 103 | class CFGVisitor { |
| 104 | // Enter the CFG for Decl D, and perform any initial setup operations. |
| 105 | void enterCFG(CFG *Cfg, const NamedDecl *D, const CFGBlock *First) {} |
| 106 | |
| 107 | // Enter a CFGBlock. |
| 108 | void enterCFGBlock(const CFGBlock *B) {} |
| 109 | |
| 110 | // Returns true if this visitor implements handlePredecessor |
| 111 | bool visitPredecessors() { return true; } |
| 112 | |
| 113 | // Process a predecessor edge. |
| 114 | void handlePredecessor(const CFGBlock *Pred) {} |
| 115 | |
| 116 | // Process a successor back edge to a previously visited block. |
| 117 | void handlePredecessorBackEdge(const CFGBlock *Pred) {} |
| 118 | |
| 119 | // Called just before processing statements. |
| 120 | void enterCFGBlockBody(const CFGBlock *B) {} |
| 121 | |
| 122 | // Process an ordinary statement. |
| 123 | void handleStatement(const Stmt *S) {} |
| 124 | |
| 125 | // Process a destructor call |
| 126 | void handleDestructorCall(const VarDecl *VD, const CXXDestructorDecl *DD) {} |
| 127 | |
| 128 | // Called after all statements have been handled. |
| 129 | void exitCFGBlockBody(const CFGBlock *B) {} |
| 130 | |
| 131 | // Return true |
| 132 | bool visitSuccessors() { return true; } |
| 133 | |
| 134 | // Process a successor edge. |
| 135 | void handleSuccessor(const CFGBlock *Succ) {} |
| 136 | |
| 137 | // Process a successor back edge to a previously visited block. |
| 138 | void handleSuccessorBackEdge(const CFGBlock *Succ) {} |
| 139 | |
| 140 | // Leave a CFGBlock. |
| 141 | void exitCFGBlock(const CFGBlock *B) {} |
| 142 | |
| 143 | // Leave the CFG, and perform any final cleanup operations. |
| 144 | void exitCFG(const CFGBlock *Last) {} |
| 145 | }; |
| 146 | |
| 147 | // Walks the clang CFG, and invokes methods on a given CFGVisitor. |
| 148 | class CFGWalker { |
| 149 | public: |
| 150 | CFGWalker() = default; |
| 151 | |
| 152 | // Initialize the CFGWalker. This setup only needs to be done once, even |
| 153 | // if there are multiple passes over the CFG. |
| 154 | bool init(AnalysisDeclContext &AC) { |
| 155 | ACtx = &AC; |
| 156 | CFGraph = AC.getCFG(); |
| 157 | if (!CFGraph) |
| 158 | return false; |
| 159 | |
| 160 | // Ignore anonymous functions. |
| 161 | if (!isa_and_nonnull<NamedDecl>(Val: AC.getDecl())) |
| 162 | return false; |
| 163 | |
| 164 | SortedGraph = AC.getAnalysis<PostOrderCFGView>(); |
| 165 | if (!SortedGraph) |
| 166 | return false; |
| 167 | |
| 168 | return true; |
| 169 | } |
| 170 | |
| 171 | // Traverse the CFG, calling methods on V as appropriate. |
| 172 | template <class Visitor> |
| 173 | void walk(Visitor &V) { |
| 174 | PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
| 175 | |
| 176 | V.enterCFG(CFGraph, getDecl(), &CFGraph->getEntry()); |
| 177 | |
| 178 | for (const auto *CurrBlock : *SortedGraph) { |
| 179 | VisitedBlocks.insert(Block: CurrBlock); |
| 180 | |
| 181 | V.enterCFGBlock(CurrBlock); |
| 182 | |
| 183 | // Process predecessors, handling back edges last |
| 184 | if (V.visitPredecessors()) { |
| 185 | SmallVector<CFGBlock*, 4> BackEdges; |
| 186 | // Process successors |
| 187 | for (CFGBlock::const_pred_iterator SI = CurrBlock->pred_begin(), |
| 188 | SE = CurrBlock->pred_end(); |
| 189 | SI != SE; ++SI) { |
| 190 | if (*SI == nullptr) |
| 191 | continue; |
| 192 | |
| 193 | if (!VisitedBlocks.alreadySet(Block: *SI)) { |
| 194 | BackEdges.push_back(Elt: *SI); |
| 195 | continue; |
| 196 | } |
| 197 | V.handlePredecessor(*SI); |
| 198 | } |
| 199 | |
| 200 | for (auto *Blk : BackEdges) |
| 201 | V.handlePredecessorBackEdge(Blk); |
| 202 | } |
| 203 | |
| 204 | V.enterCFGBlockBody(CurrBlock); |
| 205 | |
| 206 | // Process statements |
| 207 | for (const auto &BI : *CurrBlock) { |
| 208 | switch (BI.getKind()) { |
| 209 | case CFGElement::Statement: |
| 210 | V.handleStatement(BI.castAs<CFGStmt>().getStmt()); |
| 211 | break; |
| 212 | |
| 213 | case CFGElement::AutomaticObjectDtor: { |
| 214 | CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); |
| 215 | auto *DD = const_cast<CXXDestructorDecl *>( |
| 216 | AD.getDestructorDecl(astContext&: ACtx->getASTContext())); |
| 217 | auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); |
| 218 | V.handleDestructorCall(VD, DD); |
| 219 | break; |
| 220 | } |
| 221 | default: |
| 222 | break; |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | V.exitCFGBlockBody(CurrBlock); |
| 227 | |
| 228 | // Process successors, handling back edges first. |
| 229 | if (V.visitSuccessors()) { |
| 230 | SmallVector<CFGBlock*, 8> ForwardEdges; |
| 231 | |
| 232 | // Process successors |
| 233 | for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
| 234 | SE = CurrBlock->succ_end(); |
| 235 | SI != SE; ++SI) { |
| 236 | if (*SI == nullptr) |
| 237 | continue; |
| 238 | |
| 239 | if (!VisitedBlocks.alreadySet(Block: *SI)) { |
| 240 | ForwardEdges.push_back(Elt: *SI); |
| 241 | continue; |
| 242 | } |
| 243 | V.handleSuccessorBackEdge(*SI); |
| 244 | } |
| 245 | |
| 246 | for (auto *Blk : ForwardEdges) |
| 247 | V.handleSuccessor(Blk); |
| 248 | } |
| 249 | |
| 250 | V.exitCFGBlock(CurrBlock); |
| 251 | } |
| 252 | V.exitCFG(&CFGraph->getExit()); |
| 253 | } |
| 254 | |
| 255 | const CFG *getGraph() const { return CFGraph; } |
| 256 | CFG *getGraph() { return CFGraph; } |
| 257 | |
| 258 | const NamedDecl *getDecl() const { |
| 259 | return dyn_cast<NamedDecl>(Val: ACtx->getDecl()); |
| 260 | } |
| 261 | |
| 262 | const PostOrderCFGView *getSortedGraph() const { return SortedGraph; } |
| 263 | |
| 264 | private: |
| 265 | CFG *CFGraph = nullptr; |
| 266 | AnalysisDeclContext *ACtx = nullptr; |
| 267 | PostOrderCFGView *SortedGraph = nullptr; |
| 268 | }; |
| 269 | |
| 270 | // TODO: move this back into ThreadSafety.cpp |
| 271 | // This is specific to thread safety. It is here because |
| 272 | // translateAttrExpr needs it, but that should be moved too. |
| 273 | class CapabilityExpr { |
| 274 | private: |
| 275 | static constexpr unsigned FlagNegative = 1u << 0; |
| 276 | static constexpr unsigned FlagReentrant = 1u << 1; |
| 277 | |
| 278 | /// The capability expression and flags. |
| 279 | llvm::PointerIntPair<const til::SExpr *, 2, unsigned> CapExpr; |
| 280 | |
| 281 | /// The kind of capability as specified by @ref CapabilityAttr::getName. |
| 282 | StringRef CapKind; |
| 283 | |
| 284 | public: |
| 285 | CapabilityExpr() : CapExpr(nullptr, 0) {} |
| 286 | CapabilityExpr(const til::SExpr *E, StringRef Kind, bool Neg, bool Reentrant) |
| 287 | : CapExpr(E, (Neg ? FlagNegative : 0) | (Reentrant ? FlagReentrant : 0)), |
| 288 | CapKind(Kind) {} |
| 289 | // Infers `Kind` and `Reentrant` from `QT`. |
| 290 | CapabilityExpr(const til::SExpr *E, QualType QT, bool Neg); |
| 291 | |
| 292 | // Don't allow implicitly-constructed StringRefs since we'll capture them. |
| 293 | template <typename T> |
| 294 | CapabilityExpr(const til::SExpr *, T, bool, bool) = delete; |
| 295 | |
| 296 | const til::SExpr *sexpr() const { return CapExpr.getPointer(); } |
| 297 | StringRef getKind() const { return CapKind; } |
| 298 | bool negative() const { return CapExpr.getInt() & FlagNegative; } |
| 299 | bool reentrant() const { return CapExpr.getInt() & FlagReentrant; } |
| 300 | |
| 301 | CapabilityExpr operator!() const { |
| 302 | return CapabilityExpr(CapExpr.getPointer(), CapKind, !negative(), |
| 303 | reentrant()); |
| 304 | } |
| 305 | |
| 306 | bool equals(const CapabilityExpr &other) const { |
| 307 | return (negative() == other.negative()) && |
| 308 | sx::equals(E1: sexpr(), E2: other.sexpr()); |
| 309 | } |
| 310 | |
| 311 | bool matches(const CapabilityExpr &other) const { |
| 312 | return (negative() == other.negative()) && |
| 313 | sx::matches(E1: sexpr(), E2: other.sexpr()); |
| 314 | } |
| 315 | |
| 316 | bool matchesUniv(const CapabilityExpr &CapE) const { |
| 317 | return isUniversal() || matches(other: CapE); |
| 318 | } |
| 319 | |
| 320 | bool partiallyMatches(const CapabilityExpr &other) const { |
| 321 | return (negative() == other.negative()) && |
| 322 | sx::partiallyMatches(E1: sexpr(), E2: other.sexpr()); |
| 323 | } |
| 324 | |
| 325 | const ValueDecl* valueDecl() const { |
| 326 | if (negative() || sexpr() == nullptr) |
| 327 | return nullptr; |
| 328 | if (const auto *P = dyn_cast<til::Project>(Val: sexpr())) |
| 329 | return P->clangDecl(); |
| 330 | if (const auto *P = dyn_cast<til::LiteralPtr>(Val: sexpr())) |
| 331 | return P->clangDecl(); |
| 332 | return nullptr; |
| 333 | } |
| 334 | |
| 335 | std::string toString() const { |
| 336 | if (negative()) |
| 337 | return "!" + sx::toString(E: sexpr()); |
| 338 | return sx::toString(E: sexpr()); |
| 339 | } |
| 340 | |
| 341 | bool shouldIgnore() const { return sexpr() == nullptr; } |
| 342 | |
| 343 | bool isInvalid() const { return isa_and_nonnull<til::Undefined>(Val: sexpr()); } |
| 344 | |
| 345 | bool isUniversal() const { return isa_and_nonnull<til::Wildcard>(Val: sexpr()); } |
| 346 | }; |
| 347 | |
| 348 | // Translate clang::Expr to til::SExpr. |
| 349 | class SExprBuilder { |
| 350 | public: |
| 351 | /// Encapsulates the lexical context of a function call. The lexical |
| 352 | /// context includes the arguments to the call, including the implicit object |
| 353 | /// argument. When an attribute containing a mutex expression is attached to |
| 354 | /// a method, the expression may refer to formal parameters of the method. |
| 355 | /// Actual arguments must be substituted for formal parameters to derive |
| 356 | /// the appropriate mutex expression in the lexical context where the function |
| 357 | /// is called. PrevCtx holds the context in which the arguments themselves |
| 358 | /// should be evaluated; multiple calling contexts can be chained together |
| 359 | /// by the lock_returned attribute. |
| 360 | struct CallingContext { |
| 361 | // The previous context; or 0 if none. |
| 362 | CallingContext *Prev; |
| 363 | |
| 364 | // The decl to which the attr is attached. |
| 365 | const NamedDecl *AttrDecl; |
| 366 | |
| 367 | // Implicit object argument -- e.g. 'this' |
| 368 | llvm::PointerUnion<const Expr *, til::SExpr *> SelfArg = nullptr; |
| 369 | |
| 370 | // Number of funArgs |
| 371 | unsigned NumArgs = 0; |
| 372 | |
| 373 | // Function arguments |
| 374 | llvm::PointerUnion<const Expr *const *, til::SExpr *> FunArgs = nullptr; |
| 375 | |
| 376 | // is Self referred to with -> or .? |
| 377 | bool SelfArrow = false; |
| 378 | |
| 379 | CallingContext(CallingContext *P, const NamedDecl *D = nullptr) |
| 380 | : Prev(P), AttrDecl(D) {} |
| 381 | }; |
| 382 | |
| 383 | SExprBuilder(til::MemRegionRef A) : Arena(A) { |
| 384 | // FIXME: we don't always have a self-variable. |
| 385 | SelfVar = new (Arena) til::Variable(nullptr); |
| 386 | SelfVar->setKind(til::Variable::VK_SFun); |
| 387 | } |
| 388 | |
| 389 | // Translate a clang expression in an attribute to a til::SExpr. |
| 390 | // Constructs the context from D, DeclExp, and SelfDecl. |
| 391 | CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, |
| 392 | const Expr *DeclExp, |
| 393 | til::SExpr *Self = nullptr); |
| 394 | |
| 395 | CapabilityExpr translateAttrExpr(const Expr *AttrExp, CallingContext *Ctx); |
| 396 | |
| 397 | // Translate a variable reference. |
| 398 | til::LiteralPtr *createVariable(const VarDecl *VD); |
| 399 | |
| 400 | // Translate a clang statement or expression to a TIL expression. |
| 401 | // Also performs substitution of variables; Ctx provides the context. |
| 402 | // Dispatches on the type of S. |
| 403 | til::SExpr *translate(const Stmt *S, CallingContext *Ctx); |
| 404 | til::SCFG *buildCFG(CFGWalker &Walker); |
| 405 | |
| 406 | til::SExpr *lookupStmt(const Stmt *S); |
| 407 | |
| 408 | til::BasicBlock *lookupBlock(const CFGBlock *B) { |
| 409 | return BlockMap[B->getBlockID()]; |
| 410 | } |
| 411 | |
| 412 | const til::SCFG *getCFG() const { return Scfg; } |
| 413 | til::SCFG *getCFG() { return Scfg; } |
| 414 | |
| 415 | private: |
| 416 | // We implement the CFGVisitor API |
| 417 | friend class CFGWalker; |
| 418 | |
| 419 | til::SExpr *translateDeclRefExpr(const DeclRefExpr *DRE, |
| 420 | CallingContext *Ctx) ; |
| 421 | til::SExpr *translateCXXThisExpr(const CXXThisExpr *TE, CallingContext *Ctx); |
| 422 | til::SExpr *translateMemberExpr(const MemberExpr *ME, CallingContext *Ctx); |
| 423 | til::SExpr *translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE, |
| 424 | CallingContext *Ctx); |
| 425 | til::SExpr *translateCallExpr(const CallExpr *CE, CallingContext *Ctx, |
| 426 | const Expr *SelfE = nullptr); |
| 427 | til::SExpr *translateCXXMemberCallExpr(const CXXMemberCallExpr *ME, |
| 428 | CallingContext *Ctx); |
| 429 | til::SExpr *translateCXXOperatorCallExpr(const CXXOperatorCallExpr *OCE, |
| 430 | CallingContext *Ctx); |
| 431 | til::SExpr *translateUnaryOperator(const UnaryOperator *UO, |
| 432 | CallingContext *Ctx); |
| 433 | til::SExpr *translateBinOp(til::TIL_BinaryOpcode Op, |
| 434 | const BinaryOperator *BO, |
| 435 | CallingContext *Ctx, bool Reverse = false); |
| 436 | til::SExpr *translateBinAssign(til::TIL_BinaryOpcode Op, |
| 437 | const BinaryOperator *BO, |
| 438 | CallingContext *Ctx, bool Assign = false); |
| 439 | til::SExpr *translateBinaryOperator(const BinaryOperator *BO, |
| 440 | CallingContext *Ctx); |
| 441 | til::SExpr *translateCastExpr(const CastExpr *CE, CallingContext *Ctx); |
| 442 | til::SExpr *translateArraySubscriptExpr(const ArraySubscriptExpr *E, |
| 443 | CallingContext *Ctx); |
| 444 | til::SExpr *translateAbstractConditionalOperator( |
| 445 | const AbstractConditionalOperator *C, CallingContext *Ctx); |
| 446 | |
| 447 | til::SExpr *translateDeclStmt(const DeclStmt *S, CallingContext *Ctx); |
| 448 | |
| 449 | // Map from statements in the clang CFG to SExprs in the til::SCFG. |
| 450 | using StatementMap = llvm::DenseMap<const Stmt *, til::SExpr *>; |
| 451 | |
| 452 | // Map from clang local variables to indices in a LVarDefinitionMap. |
| 453 | using LVarIndexMap = llvm::DenseMap<const ValueDecl *, unsigned>; |
| 454 | |
| 455 | // Map from local variable indices to SSA variables (or constants). |
| 456 | using NameVarPair = std::pair<const ValueDecl *, til::SExpr *>; |
| 457 | using LVarDefinitionMap = CopyOnWriteVector<NameVarPair>; |
| 458 | |
| 459 | struct BlockInfo { |
| 460 | LVarDefinitionMap ExitMap; |
| 461 | bool HasBackEdges = false; |
| 462 | |
| 463 | // Successors yet to be processed |
| 464 | unsigned UnprocessedSuccessors = 0; |
| 465 | |
| 466 | // Predecessors already processed |
| 467 | unsigned ProcessedPredecessors = 0; |
| 468 | |
| 469 | BlockInfo() = default; |
| 470 | BlockInfo(BlockInfo &&) = default; |
| 471 | BlockInfo &operator=(BlockInfo &&) = default; |
| 472 | }; |
| 473 | |
| 474 | void enterCFG(CFG *Cfg, const NamedDecl *D, const CFGBlock *First); |
| 475 | void enterCFGBlock(const CFGBlock *B); |
| 476 | bool visitPredecessors() { return true; } |
| 477 | void handlePredecessor(const CFGBlock *Pred); |
| 478 | void handlePredecessorBackEdge(const CFGBlock *Pred); |
| 479 | void enterCFGBlockBody(const CFGBlock *B); |
| 480 | void handleStatement(const Stmt *S); |
| 481 | void handleDestructorCall(const VarDecl *VD, const CXXDestructorDecl *DD); |
| 482 | void exitCFGBlockBody(const CFGBlock *B); |
| 483 | bool visitSuccessors() { return true; } |
| 484 | void handleSuccessor(const CFGBlock *Succ); |
| 485 | void handleSuccessorBackEdge(const CFGBlock *Succ); |
| 486 | void exitCFGBlock(const CFGBlock *B); |
| 487 | void exitCFG(const CFGBlock *Last); |
| 488 | |
| 489 | void insertStmt(const Stmt *S, til::SExpr *E) { |
| 490 | SMap.insert(KV: std::make_pair(x&: S, y&: E)); |
| 491 | } |
| 492 | |
| 493 | til::SExpr *addStatement(til::SExpr *E, const Stmt *S, |
| 494 | const ValueDecl *VD = nullptr); |
| 495 | til::SExpr *lookupVarDecl(const ValueDecl *VD); |
| 496 | til::SExpr *addVarDecl(const ValueDecl *VD, til::SExpr *E); |
| 497 | til::SExpr *updateVarDecl(const ValueDecl *VD, til::SExpr *E); |
| 498 | |
| 499 | void makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E); |
| 500 | void mergeEntryMap(LVarDefinitionMap Map); |
| 501 | void mergeEntryMapBackEdge(); |
| 502 | void mergePhiNodesBackEdge(const CFGBlock *Blk); |
| 503 | |
| 504 | private: |
| 505 | // Set to true when parsing capability expressions, which get translated |
| 506 | // inaccurately in order to hack around smart pointers etc. |
| 507 | static const bool CapabilityExprMode = true; |
| 508 | |
| 509 | til::MemRegionRef Arena; |
| 510 | |
| 511 | // Variable to use for 'this'. May be null. |
| 512 | til::Variable *SelfVar = nullptr; |
| 513 | |
| 514 | til::SCFG *Scfg = nullptr; |
| 515 | |
| 516 | // Map from Stmt to TIL Variables |
| 517 | StatementMap SMap; |
| 518 | |
| 519 | // Indices of clang local vars. |
| 520 | LVarIndexMap LVarIdxMap; |
| 521 | |
| 522 | // Map from clang to til BBs. |
| 523 | std::vector<til::BasicBlock *> BlockMap; |
| 524 | |
| 525 | // Extra information per BB. Indexed by clang BlockID. |
| 526 | std::vector<BlockInfo> BBInfo; |
| 527 | |
| 528 | LVarDefinitionMap CurrentLVarMap; |
| 529 | std::vector<til::Phi *> CurrentArguments; |
| 530 | std::vector<til::SExpr *> CurrentInstructions; |
| 531 | std::vector<til::Phi *> IncompleteArgs; |
| 532 | til::BasicBlock *CurrentBB = nullptr; |
| 533 | BlockInfo *CurrentBlockInfo = nullptr; |
| 534 | }; |
| 535 | |
| 536 | #ifndef NDEBUG |
| 537 | // Dump an SCFG to llvm::errs(). |
| 538 | void printSCFG(CFGWalker &Walker); |
| 539 | #endif // NDEBUG |
| 540 | |
| 541 | } // namespace threadSafety |
| 542 | } // namespace clang |
| 543 | |
| 544 | #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYCOMMON_H |
| 545 | |