1 | //===- ThreadSafety.cpp ---------------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // A intra-procedural analysis for thread safety (e.g. deadlocks and race |
10 | // conditions), based off of an annotation system. |
11 | // |
12 | // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html |
13 | // for more information. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "clang/Analysis/Analyses/ThreadSafety.h" |
18 | #include "clang/AST/Attr.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclGroup.h" |
22 | #include "clang/AST/Expr.h" |
23 | #include "clang/AST/ExprCXX.h" |
24 | #include "clang/AST/OperationKinds.h" |
25 | #include "clang/AST/Stmt.h" |
26 | #include "clang/AST/StmtVisitor.h" |
27 | #include "clang/AST/Type.h" |
28 | #include "clang/Analysis/Analyses/PostOrderCFGView.h" |
29 | #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" |
30 | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
31 | #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" |
32 | #include "clang/Analysis/AnalysisDeclContext.h" |
33 | #include "clang/Analysis/CFG.h" |
34 | #include "clang/Basic/Builtins.h" |
35 | #include "clang/Basic/LLVM.h" |
36 | #include "clang/Basic/OperatorKinds.h" |
37 | #include "clang/Basic/SourceLocation.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "llvm/ADT/DenseMap.h" |
40 | #include "llvm/ADT/ImmutableMap.h" |
41 | #include "llvm/ADT/STLExtras.h" |
42 | #include "llvm/ADT/SmallVector.h" |
43 | #include "llvm/ADT/StringRef.h" |
44 | #include "llvm/Support/Allocator.h" |
45 | #include "llvm/Support/ErrorHandling.h" |
46 | #include "llvm/Support/raw_ostream.h" |
47 | #include <cassert> |
48 | #include <functional> |
49 | #include <iterator> |
50 | #include <memory> |
51 | #include <optional> |
52 | #include <string> |
53 | #include <utility> |
54 | #include <vector> |
55 | |
56 | using namespace clang; |
57 | using namespace threadSafety; |
58 | |
59 | // Key method definition |
60 | ThreadSafetyHandler::~ThreadSafetyHandler() = default; |
61 | |
62 | /// Issue a warning about an invalid lock expression |
63 | static void warnInvalidLock(ThreadSafetyHandler &Handler, |
64 | const Expr *MutexExp, const NamedDecl *D, |
65 | const Expr *DeclExp, StringRef Kind) { |
66 | SourceLocation Loc; |
67 | if (DeclExp) |
68 | Loc = DeclExp->getExprLoc(); |
69 | |
70 | // FIXME: add a note about the attribute location in MutexExp or D |
71 | if (Loc.isValid()) |
72 | Handler.handleInvalidLockExp(Loc); |
73 | } |
74 | |
75 | namespace { |
76 | |
77 | /// A set of CapabilityExpr objects, which are compiled from thread safety |
78 | /// attributes on a function. |
79 | class CapExprSet : public SmallVector<CapabilityExpr, 4> { |
80 | public: |
81 | /// Push M onto list, but discard duplicates. |
82 | void push_back_nodup(const CapabilityExpr &CapE) { |
83 | if (llvm::none_of(Range&: *this, P: [=](const CapabilityExpr &CapE2) { |
84 | return CapE.equals(other: CapE2); |
85 | })) |
86 | push_back(Elt: CapE); |
87 | } |
88 | }; |
89 | |
90 | class FactManager; |
91 | class FactSet; |
92 | |
93 | /// This is a helper class that stores a fact that is known at a |
94 | /// particular point in program execution. Currently, a fact is a capability, |
95 | /// along with additional information, such as where it was acquired, whether |
96 | /// it is exclusive or shared, etc. |
97 | class FactEntry : public CapabilityExpr { |
98 | public: |
99 | enum FactEntryKind { Lockable, ScopedLockable }; |
100 | |
101 | /// Where a fact comes from. |
102 | enum SourceKind { |
103 | Acquired, ///< The fact has been directly acquired. |
104 | Asserted, ///< The fact has been asserted to be held. |
105 | Declared, ///< The fact is assumed to be held by callers. |
106 | Managed, ///< The fact has been acquired through a scoped capability. |
107 | }; |
108 | |
109 | private: |
110 | const FactEntryKind Kind : 8; |
111 | |
112 | /// Exclusive or shared. |
113 | LockKind LKind : 8; |
114 | |
115 | /// How it was acquired. |
116 | SourceKind Source : 8; |
117 | |
118 | /// Where it was acquired. |
119 | SourceLocation AcquireLoc; |
120 | |
121 | public: |
122 | FactEntry(FactEntryKind FK, const CapabilityExpr &CE, LockKind LK, |
123 | SourceLocation Loc, SourceKind Src) |
124 | : CapabilityExpr(CE), Kind(FK), LKind(LK), Source(Src), AcquireLoc(Loc) {} |
125 | virtual ~FactEntry() = default; |
126 | |
127 | LockKind kind() const { return LKind; } |
128 | SourceLocation loc() const { return AcquireLoc; } |
129 | FactEntryKind getFactEntryKind() const { return Kind; } |
130 | |
131 | bool asserted() const { return Source == Asserted; } |
132 | bool declared() const { return Source == Declared; } |
133 | bool managed() const { return Source == Managed; } |
134 | |
135 | virtual void |
136 | handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, |
137 | SourceLocation JoinLoc, LockErrorKind LEK, |
138 | ThreadSafetyHandler &Handler) const = 0; |
139 | virtual void handleLock(FactSet &FSet, FactManager &FactMan, |
140 | const FactEntry &entry, |
141 | ThreadSafetyHandler &Handler) const = 0; |
142 | virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, |
143 | const CapabilityExpr &Cp, SourceLocation UnlockLoc, |
144 | bool FullyRemove, |
145 | ThreadSafetyHandler &Handler) const = 0; |
146 | |
147 | // Return true if LKind >= LK, where exclusive > shared |
148 | bool isAtLeast(LockKind LK) const { |
149 | return (LKind == LK_Exclusive) || (LK == LK_Shared); |
150 | } |
151 | }; |
152 | |
153 | using FactID = unsigned short; |
154 | |
155 | /// FactManager manages the memory for all facts that are created during |
156 | /// the analysis of a single routine. |
157 | class FactManager { |
158 | private: |
159 | std::vector<std::unique_ptr<const FactEntry>> Facts; |
160 | |
161 | public: |
162 | FactID newFact(std::unique_ptr<FactEntry> Entry) { |
163 | Facts.push_back(x: std::move(Entry)); |
164 | assert(Facts.size() - 1 <= std::numeric_limits<FactID>::max() && |
165 | "FactID space exhausted"); |
166 | return static_cast<unsigned short>(Facts.size() - 1); |
167 | } |
168 | |
169 | const FactEntry &operator[](FactID F) const { return *Facts[F]; } |
170 | }; |
171 | |
172 | /// A FactSet is the set of facts that are known to be true at a |
173 | /// particular program point. FactSets must be small, because they are |
174 | /// frequently copied, and are thus implemented as a set of indices into a |
175 | /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 |
176 | /// locks, so we can get away with doing a linear search for lookup. Note |
177 | /// that a hashtable or map is inappropriate in this case, because lookups |
178 | /// may involve partial pattern matches, rather than exact matches. |
179 | class FactSet { |
180 | private: |
181 | using FactVec = SmallVector<FactID, 4>; |
182 | |
183 | FactVec FactIDs; |
184 | |
185 | public: |
186 | using iterator = FactVec::iterator; |
187 | using const_iterator = FactVec::const_iterator; |
188 | |
189 | iterator begin() { return FactIDs.begin(); } |
190 | const_iterator begin() const { return FactIDs.begin(); } |
191 | |
192 | iterator end() { return FactIDs.end(); } |
193 | const_iterator end() const { return FactIDs.end(); } |
194 | |
195 | bool isEmpty() const { return FactIDs.size() == 0; } |
196 | |
197 | // Return true if the set contains only negative facts |
198 | bool isEmpty(FactManager &FactMan) const { |
199 | for (const auto FID : *this) { |
200 | if (!FactMan[FID].negative()) |
201 | return false; |
202 | } |
203 | return true; |
204 | } |
205 | |
206 | void addLockByID(FactID ID) { FactIDs.push_back(Elt: ID); } |
207 | |
208 | FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { |
209 | FactID F = FM.newFact(Entry: std::move(Entry)); |
210 | FactIDs.push_back(Elt: F); |
211 | return F; |
212 | } |
213 | |
214 | bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { |
215 | unsigned n = FactIDs.size(); |
216 | if (n == 0) |
217 | return false; |
218 | |
219 | for (unsigned i = 0; i < n-1; ++i) { |
220 | if (FM[FactIDs[i]].matches(other: CapE)) { |
221 | FactIDs[i] = FactIDs[n-1]; |
222 | FactIDs.pop_back(); |
223 | return true; |
224 | } |
225 | } |
226 | if (FM[FactIDs[n-1]].matches(other: CapE)) { |
227 | FactIDs.pop_back(); |
228 | return true; |
229 | } |
230 | return false; |
231 | } |
232 | |
233 | std::optional<FactID> replaceLock(FactManager &FM, iterator It, |
234 | std::unique_ptr<FactEntry> Entry) { |
235 | if (It == end()) |
236 | return std::nullopt; |
237 | FactID F = FM.newFact(Entry: std::move(Entry)); |
238 | *It = F; |
239 | return F; |
240 | } |
241 | |
242 | std::optional<FactID> replaceLock(FactManager &FM, const CapabilityExpr &CapE, |
243 | std::unique_ptr<FactEntry> Entry) { |
244 | return replaceLock(FM, It: findLockIter(FM, CapE), Entry: std::move(Entry)); |
245 | } |
246 | |
247 | iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { |
248 | return llvm::find_if(Range&: *this, |
249 | P: [&](FactID ID) { return FM[ID].matches(other: CapE); }); |
250 | } |
251 | |
252 | const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { |
253 | auto I = |
254 | llvm::find_if(Range: *this, P: [&](FactID ID) { return FM[ID].matches(other: CapE); }); |
255 | return I != end() ? &FM[*I] : nullptr; |
256 | } |
257 | |
258 | const FactEntry *findLockUniv(FactManager &FM, |
259 | const CapabilityExpr &CapE) const { |
260 | auto I = llvm::find_if( |
261 | Range: *this, P: [&](FactID ID) -> bool { return FM[ID].matchesUniv(CapE); }); |
262 | return I != end() ? &FM[*I] : nullptr; |
263 | } |
264 | |
265 | const FactEntry *findPartialMatch(FactManager &FM, |
266 | const CapabilityExpr &CapE) const { |
267 | auto I = llvm::find_if(Range: *this, P: [&](FactID ID) -> bool { |
268 | return FM[ID].partiallyMatches(other: CapE); |
269 | }); |
270 | return I != end() ? &FM[*I] : nullptr; |
271 | } |
272 | |
273 | bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { |
274 | auto I = llvm::find_if( |
275 | Range: *this, P: [&](FactID ID) -> bool { return FM[ID].valueDecl() == Vd; }); |
276 | return I != end(); |
277 | } |
278 | }; |
279 | |
280 | class ThreadSafetyAnalyzer; |
281 | |
282 | } // namespace |
283 | |
284 | namespace clang { |
285 | namespace threadSafety { |
286 | |
287 | class BeforeSet { |
288 | private: |
289 | using BeforeVect = SmallVector<const ValueDecl *, 4>; |
290 | |
291 | struct BeforeInfo { |
292 | BeforeVect Vect; |
293 | int Visited = 0; |
294 | |
295 | BeforeInfo() = default; |
296 | BeforeInfo(BeforeInfo &&) = default; |
297 | }; |
298 | |
299 | using BeforeMap = |
300 | llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; |
301 | using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; |
302 | |
303 | public: |
304 | BeforeSet() = default; |
305 | |
306 | BeforeInfo* insertAttrExprs(const ValueDecl* Vd, |
307 | ThreadSafetyAnalyzer& Analyzer); |
308 | |
309 | BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, |
310 | ThreadSafetyAnalyzer &Analyzer); |
311 | |
312 | void checkBeforeAfter(const ValueDecl* Vd, |
313 | const FactSet& FSet, |
314 | ThreadSafetyAnalyzer& Analyzer, |
315 | SourceLocation Loc, StringRef CapKind); |
316 | |
317 | private: |
318 | BeforeMap BMap; |
319 | CycleMap CycMap; |
320 | }; |
321 | |
322 | } // namespace threadSafety |
323 | } // namespace clang |
324 | |
325 | namespace { |
326 | |
327 | class LocalVariableMap; |
328 | |
329 | using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; |
330 | |
331 | /// A side (entry or exit) of a CFG node. |
332 | enum CFGBlockSide { CBS_Entry, CBS_Exit }; |
333 | |
334 | /// CFGBlockInfo is a struct which contains all the information that is |
335 | /// maintained for each block in the CFG. See LocalVariableMap for more |
336 | /// information about the contexts. |
337 | struct CFGBlockInfo { |
338 | // Lockset held at entry to block |
339 | FactSet EntrySet; |
340 | |
341 | // Lockset held at exit from block |
342 | FactSet ExitSet; |
343 | |
344 | // Context held at entry to block |
345 | LocalVarContext EntryContext; |
346 | |
347 | // Context held at exit from block |
348 | LocalVarContext ExitContext; |
349 | |
350 | // Location of first statement in block |
351 | SourceLocation EntryLoc; |
352 | |
353 | // Location of last statement in block. |
354 | SourceLocation ExitLoc; |
355 | |
356 | // Used to replay contexts later |
357 | unsigned EntryIndex; |
358 | |
359 | // Is this block reachable? |
360 | bool Reachable = false; |
361 | |
362 | const FactSet &getSet(CFGBlockSide Side) const { |
363 | return Side == CBS_Entry ? EntrySet : ExitSet; |
364 | } |
365 | |
366 | SourceLocation getLocation(CFGBlockSide Side) const { |
367 | return Side == CBS_Entry ? EntryLoc : ExitLoc; |
368 | } |
369 | |
370 | private: |
371 | CFGBlockInfo(LocalVarContext EmptyCtx) |
372 | : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} |
373 | |
374 | public: |
375 | static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); |
376 | }; |
377 | |
378 | // A LocalVariableMap maintains a map from local variables to their currently |
379 | // valid definitions. It provides SSA-like functionality when traversing the |
380 | // CFG. Like SSA, each definition or assignment to a variable is assigned a |
381 | // unique name (an integer), which acts as the SSA name for that definition. |
382 | // The total set of names is shared among all CFG basic blocks. |
383 | // Unlike SSA, we do not rewrite expressions to replace local variables declrefs |
384 | // with their SSA-names. Instead, we compute a Context for each point in the |
385 | // code, which maps local variables to the appropriate SSA-name. This map |
386 | // changes with each assignment. |
387 | // |
388 | // The map is computed in a single pass over the CFG. Subsequent analyses can |
389 | // then query the map to find the appropriate Context for a statement, and use |
390 | // that Context to look up the definitions of variables. |
391 | class LocalVariableMap { |
392 | public: |
393 | using Context = LocalVarContext; |
394 | |
395 | /// A VarDefinition consists of an expression, representing the value of the |
396 | /// variable, along with the context in which that expression should be |
397 | /// interpreted. A reference VarDefinition does not itself contain this |
398 | /// information, but instead contains a pointer to a previous VarDefinition. |
399 | struct VarDefinition { |
400 | public: |
401 | friend class LocalVariableMap; |
402 | |
403 | // The original declaration for this variable. |
404 | const NamedDecl *Dec; |
405 | |
406 | // The expression for this variable, OR |
407 | const Expr *Exp = nullptr; |
408 | |
409 | // Reference to another VarDefinition |
410 | unsigned Ref = 0; |
411 | |
412 | // The map with which Exp should be interpreted. |
413 | Context Ctx; |
414 | |
415 | bool isReference() const { return !Exp; } |
416 | |
417 | private: |
418 | // Create ordinary variable definition |
419 | VarDefinition(const NamedDecl *D, const Expr *E, Context C) |
420 | : Dec(D), Exp(E), Ctx(C) {} |
421 | |
422 | // Create reference to previous definition |
423 | VarDefinition(const NamedDecl *D, unsigned R, Context C) |
424 | : Dec(D), Ref(R), Ctx(C) {} |
425 | }; |
426 | |
427 | private: |
428 | Context::Factory ContextFactory; |
429 | std::vector<VarDefinition> VarDefinitions; |
430 | std::vector<std::pair<const Stmt *, Context>> SavedContexts; |
431 | |
432 | public: |
433 | LocalVariableMap() { |
434 | // index 0 is a placeholder for undefined variables (aka phi-nodes). |
435 | VarDefinitions.push_back(x: VarDefinition(nullptr, 0u, getEmptyContext())); |
436 | } |
437 | |
438 | /// Look up a definition, within the given context. |
439 | const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { |
440 | const unsigned *i = Ctx.lookup(K: D); |
441 | if (!i) |
442 | return nullptr; |
443 | assert(*i < VarDefinitions.size()); |
444 | return &VarDefinitions[*i]; |
445 | } |
446 | |
447 | /// Look up the definition for D within the given context. Returns |
448 | /// NULL if the expression is not statically known. If successful, also |
449 | /// modifies Ctx to hold the context of the return Expr. |
450 | const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { |
451 | const unsigned *P = Ctx.lookup(K: D); |
452 | if (!P) |
453 | return nullptr; |
454 | |
455 | unsigned i = *P; |
456 | while (i > 0) { |
457 | if (VarDefinitions[i].Exp) { |
458 | Ctx = VarDefinitions[i].Ctx; |
459 | return VarDefinitions[i].Exp; |
460 | } |
461 | i = VarDefinitions[i].Ref; |
462 | } |
463 | return nullptr; |
464 | } |
465 | |
466 | Context getEmptyContext() { return ContextFactory.getEmptyMap(); } |
467 | |
468 | /// Return the next context after processing S. This function is used by |
469 | /// clients of the class to get the appropriate context when traversing the |
470 | /// CFG. It must be called for every assignment or DeclStmt. |
471 | Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { |
472 | if (SavedContexts[CtxIndex+1].first == S) { |
473 | CtxIndex++; |
474 | Context Result = SavedContexts[CtxIndex].second; |
475 | return Result; |
476 | } |
477 | return C; |
478 | } |
479 | |
480 | void dumpVarDefinitionName(unsigned i) { |
481 | if (i == 0) { |
482 | llvm::errs() << "Undefined"; |
483 | return; |
484 | } |
485 | const NamedDecl *Dec = VarDefinitions[i].Dec; |
486 | if (!Dec) { |
487 | llvm::errs() << "<<NULL>>"; |
488 | return; |
489 | } |
490 | Dec->printName(OS&: llvm::errs()); |
491 | llvm::errs() << "."<< i << " "<< ((const void*) Dec); |
492 | } |
493 | |
494 | /// Dumps an ASCII representation of the variable map to llvm::errs() |
495 | void dump() { |
496 | for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { |
497 | const Expr *Exp = VarDefinitions[i].Exp; |
498 | unsigned Ref = VarDefinitions[i].Ref; |
499 | |
500 | dumpVarDefinitionName(i); |
501 | llvm::errs() << " = "; |
502 | if (Exp) Exp->dump(); |
503 | else { |
504 | dumpVarDefinitionName(i: Ref); |
505 | llvm::errs() << "\n"; |
506 | } |
507 | } |
508 | } |
509 | |
510 | /// Dumps an ASCII representation of a Context to llvm::errs() |
511 | void dumpContext(Context C) { |
512 | for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { |
513 | const NamedDecl *D = I.getKey(); |
514 | D->printName(OS&: llvm::errs()); |
515 | llvm::errs() << " -> "; |
516 | dumpVarDefinitionName(i: I.getData()); |
517 | llvm::errs() << "\n"; |
518 | } |
519 | } |
520 | |
521 | /// Builds the variable map. |
522 | void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, |
523 | std::vector<CFGBlockInfo> &BlockInfo); |
524 | |
525 | protected: |
526 | friend class VarMapBuilder; |
527 | |
528 | // Get the current context index |
529 | unsigned getContextIndex() { return SavedContexts.size()-1; } |
530 | |
531 | // Save the current context for later replay |
532 | void saveContext(const Stmt *S, Context C) { |
533 | SavedContexts.push_back(x: std::make_pair(x&: S, y&: C)); |
534 | } |
535 | |
536 | // Adds a new definition to the given context, and returns a new context. |
537 | // This method should be called when declaring a new variable. |
538 | Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { |
539 | assert(!Ctx.contains(D)); |
540 | unsigned newID = VarDefinitions.size(); |
541 | Context NewCtx = ContextFactory.add(Old: Ctx, K: D, D: newID); |
542 | VarDefinitions.push_back(x: VarDefinition(D, Exp, Ctx)); |
543 | return NewCtx; |
544 | } |
545 | |
546 | // Add a new reference to an existing definition. |
547 | Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { |
548 | unsigned newID = VarDefinitions.size(); |
549 | Context NewCtx = ContextFactory.add(Old: Ctx, K: D, D: newID); |
550 | VarDefinitions.push_back(x: VarDefinition(D, i, Ctx)); |
551 | return NewCtx; |
552 | } |
553 | |
554 | // Updates a definition only if that definition is already in the map. |
555 | // This method should be called when assigning to an existing variable. |
556 | Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { |
557 | if (Ctx.contains(K: D)) { |
558 | unsigned newID = VarDefinitions.size(); |
559 | Context NewCtx = ContextFactory.remove(Old: Ctx, K: D); |
560 | NewCtx = ContextFactory.add(Old: NewCtx, K: D, D: newID); |
561 | VarDefinitions.push_back(x: VarDefinition(D, Exp, Ctx)); |
562 | return NewCtx; |
563 | } |
564 | return Ctx; |
565 | } |
566 | |
567 | // Removes a definition from the context, but keeps the variable name |
568 | // as a valid variable. The index 0 is a placeholder for cleared definitions. |
569 | Context clearDefinition(const NamedDecl *D, Context Ctx) { |
570 | Context NewCtx = Ctx; |
571 | if (NewCtx.contains(K: D)) { |
572 | NewCtx = ContextFactory.remove(Old: NewCtx, K: D); |
573 | NewCtx = ContextFactory.add(Old: NewCtx, K: D, D: 0); |
574 | } |
575 | return NewCtx; |
576 | } |
577 | |
578 | // Remove a definition entirely frmo the context. |
579 | Context removeDefinition(const NamedDecl *D, Context Ctx) { |
580 | Context NewCtx = Ctx; |
581 | if (NewCtx.contains(K: D)) { |
582 | NewCtx = ContextFactory.remove(Old: NewCtx, K: D); |
583 | } |
584 | return NewCtx; |
585 | } |
586 | |
587 | Context intersectContexts(Context C1, Context C2); |
588 | Context createReferenceContext(Context C); |
589 | void intersectBackEdge(Context C1, Context C2); |
590 | }; |
591 | |
592 | } // namespace |
593 | |
594 | // This has to be defined after LocalVariableMap. |
595 | CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { |
596 | return CFGBlockInfo(M.getEmptyContext()); |
597 | } |
598 | |
599 | namespace { |
600 | |
601 | /// Visitor which builds a LocalVariableMap |
602 | class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { |
603 | public: |
604 | LocalVariableMap* VMap; |
605 | LocalVariableMap::Context Ctx; |
606 | |
607 | VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) |
608 | : VMap(VM), Ctx(C) {} |
609 | |
610 | void VisitDeclStmt(const DeclStmt *S); |
611 | void VisitBinaryOperator(const BinaryOperator *BO); |
612 | }; |
613 | |
614 | } // namespace |
615 | |
616 | // Add new local variables to the variable map |
617 | void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { |
618 | bool modifiedCtx = false; |
619 | const DeclGroupRef DGrp = S->getDeclGroup(); |
620 | for (const auto *D : DGrp) { |
621 | if (const auto *VD = dyn_cast_or_null<VarDecl>(Val: D)) { |
622 | const Expr *E = VD->getInit(); |
623 | |
624 | // Add local variables with trivial type to the variable map |
625 | QualType T = VD->getType(); |
626 | if (T.isTrivialType(Context: VD->getASTContext())) { |
627 | Ctx = VMap->addDefinition(VD, E, Ctx); |
628 | modifiedCtx = true; |
629 | } |
630 | } |
631 | } |
632 | if (modifiedCtx) |
633 | VMap->saveContext(S, C: Ctx); |
634 | } |
635 | |
636 | // Update local variable definitions in variable map |
637 | void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { |
638 | if (!BO->isAssignmentOp()) |
639 | return; |
640 | |
641 | Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); |
642 | |
643 | // Update the variable map and current context. |
644 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSExp)) { |
645 | const ValueDecl *VDec = DRE->getDecl(); |
646 | if (Ctx.lookup(VDec)) { |
647 | if (BO->getOpcode() == BO_Assign) |
648 | Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); |
649 | else |
650 | // FIXME -- handle compound assignment operators |
651 | Ctx = VMap->clearDefinition(VDec, Ctx); |
652 | VMap->saveContext(BO, Ctx); |
653 | } |
654 | } |
655 | } |
656 | |
657 | // Computes the intersection of two contexts. The intersection is the |
658 | // set of variables which have the same definition in both contexts; |
659 | // variables with different definitions are discarded. |
660 | LocalVariableMap::Context |
661 | LocalVariableMap::intersectContexts(Context C1, Context C2) { |
662 | Context Result = C1; |
663 | for (const auto &P : C1) { |
664 | const NamedDecl *Dec = P.first; |
665 | const unsigned *i2 = C2.lookup(K: Dec); |
666 | if (!i2) // variable doesn't exist on second path |
667 | Result = removeDefinition(D: Dec, Ctx: Result); |
668 | else if (*i2 != P.second) // variable exists, but has different definition |
669 | Result = clearDefinition(D: Dec, Ctx: Result); |
670 | } |
671 | return Result; |
672 | } |
673 | |
674 | // For every variable in C, create a new variable that refers to the |
675 | // definition in C. Return a new context that contains these new variables. |
676 | // (We use this for a naive implementation of SSA on loop back-edges.) |
677 | LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { |
678 | Context Result = getEmptyContext(); |
679 | for (const auto &P : C) |
680 | Result = addReference(D: P.first, i: P.second, Ctx: Result); |
681 | return Result; |
682 | } |
683 | |
684 | // This routine also takes the intersection of C1 and C2, but it does so by |
685 | // altering the VarDefinitions. C1 must be the result of an earlier call to |
686 | // createReferenceContext. |
687 | void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { |
688 | for (const auto &P : C1) { |
689 | unsigned i1 = P.second; |
690 | VarDefinition *VDef = &VarDefinitions[i1]; |
691 | assert(VDef->isReference()); |
692 | |
693 | const unsigned *i2 = C2.lookup(K: P.first); |
694 | if (!i2 || (*i2 != i1)) |
695 | VDef->Ref = 0; // Mark this variable as undefined |
696 | } |
697 | } |
698 | |
699 | // Traverse the CFG in topological order, so all predecessors of a block |
700 | // (excluding back-edges) are visited before the block itself. At |
701 | // each point in the code, we calculate a Context, which holds the set of |
702 | // variable definitions which are visible at that point in execution. |
703 | // Visible variables are mapped to their definitions using an array that |
704 | // contains all definitions. |
705 | // |
706 | // At join points in the CFG, the set is computed as the intersection of |
707 | // the incoming sets along each edge, E.g. |
708 | // |
709 | // { Context | VarDefinitions } |
710 | // int x = 0; { x -> x1 | x1 = 0 } |
711 | // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } |
712 | // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } |
713 | // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } |
714 | // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } |
715 | // |
716 | // This is essentially a simpler and more naive version of the standard SSA |
717 | // algorithm. Those definitions that remain in the intersection are from blocks |
718 | // that strictly dominate the current block. We do not bother to insert proper |
719 | // phi nodes, because they are not used in our analysis; instead, wherever |
720 | // a phi node would be required, we simply remove that definition from the |
721 | // context (E.g. x above). |
722 | // |
723 | // The initial traversal does not capture back-edges, so those need to be |
724 | // handled on a separate pass. Whenever the first pass encounters an |
725 | // incoming back edge, it duplicates the context, creating new definitions |
726 | // that refer back to the originals. (These correspond to places where SSA |
727 | // might have to insert a phi node.) On the second pass, these definitions are |
728 | // set to NULL if the variable has changed on the back-edge (i.e. a phi |
729 | // node was actually required.) E.g. |
730 | // |
731 | // { Context | VarDefinitions } |
732 | // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } |
733 | // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } |
734 | // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } |
735 | // ... { y -> y1 | x3 = 2, x2 = 1, ... } |
736 | void LocalVariableMap::traverseCFG(CFG *CFGraph, |
737 | const PostOrderCFGView *SortedGraph, |
738 | std::vector<CFGBlockInfo> &BlockInfo) { |
739 | PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
740 | |
741 | for (const auto *CurrBlock : *SortedGraph) { |
742 | unsigned CurrBlockID = CurrBlock->getBlockID(); |
743 | CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; |
744 | |
745 | VisitedBlocks.insert(Block: CurrBlock); |
746 | |
747 | // Calculate the entry context for the current block |
748 | bool HasBackEdges = false; |
749 | bool CtxInit = true; |
750 | for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), |
751 | PE = CurrBlock->pred_end(); PI != PE; ++PI) { |
752 | // if *PI -> CurrBlock is a back edge, so skip it |
753 | if (*PI == nullptr || !VisitedBlocks.alreadySet(Block: *PI)) { |
754 | HasBackEdges = true; |
755 | continue; |
756 | } |
757 | |
758 | unsigned PrevBlockID = (*PI)->getBlockID(); |
759 | CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
760 | |
761 | if (CtxInit) { |
762 | CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; |
763 | CtxInit = false; |
764 | } |
765 | else { |
766 | CurrBlockInfo->EntryContext = |
767 | intersectContexts(C1: CurrBlockInfo->EntryContext, |
768 | C2: PrevBlockInfo->ExitContext); |
769 | } |
770 | } |
771 | |
772 | // Duplicate the context if we have back-edges, so we can call |
773 | // intersectBackEdges later. |
774 | if (HasBackEdges) |
775 | CurrBlockInfo->EntryContext = |
776 | createReferenceContext(C: CurrBlockInfo->EntryContext); |
777 | |
778 | // Create a starting context index for the current block |
779 | saveContext(S: nullptr, C: CurrBlockInfo->EntryContext); |
780 | CurrBlockInfo->EntryIndex = getContextIndex(); |
781 | |
782 | // Visit all the statements in the basic block. |
783 | VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); |
784 | for (const auto &BI : *CurrBlock) { |
785 | switch (BI.getKind()) { |
786 | case CFGElement::Statement: { |
787 | CFGStmt CS = BI.castAs<CFGStmt>(); |
788 | VMapBuilder.Visit(CS.getStmt()); |
789 | break; |
790 | } |
791 | default: |
792 | break; |
793 | } |
794 | } |
795 | CurrBlockInfo->ExitContext = VMapBuilder.Ctx; |
796 | |
797 | // Mark variables on back edges as "unknown" if they've been changed. |
798 | for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
799 | SE = CurrBlock->succ_end(); SI != SE; ++SI) { |
800 | // if CurrBlock -> *SI is *not* a back edge |
801 | if (*SI == nullptr || !VisitedBlocks.alreadySet(Block: *SI)) |
802 | continue; |
803 | |
804 | CFGBlock *FirstLoopBlock = *SI; |
805 | Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; |
806 | Context LoopEnd = CurrBlockInfo->ExitContext; |
807 | intersectBackEdge(C1: LoopBegin, C2: LoopEnd); |
808 | } |
809 | } |
810 | |
811 | // Put an extra entry at the end of the indexed context array |
812 | unsigned exitID = CFGraph->getExit().getBlockID(); |
813 | saveContext(S: nullptr, C: BlockInfo[exitID].ExitContext); |
814 | } |
815 | |
816 | /// Find the appropriate source locations to use when producing diagnostics for |
817 | /// each block in the CFG. |
818 | static void findBlockLocations(CFG *CFGraph, |
819 | const PostOrderCFGView *SortedGraph, |
820 | std::vector<CFGBlockInfo> &BlockInfo) { |
821 | for (const auto *CurrBlock : *SortedGraph) { |
822 | CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; |
823 | |
824 | // Find the source location of the last statement in the block, if the |
825 | // block is not empty. |
826 | if (const Stmt *S = CurrBlock->getTerminatorStmt()) { |
827 | CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); |
828 | } else { |
829 | for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), |
830 | BE = CurrBlock->rend(); BI != BE; ++BI) { |
831 | // FIXME: Handle other CFGElement kinds. |
832 | if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { |
833 | CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); |
834 | break; |
835 | } |
836 | } |
837 | } |
838 | |
839 | if (CurrBlockInfo->ExitLoc.isValid()) { |
840 | // This block contains at least one statement. Find the source location |
841 | // of the first statement in the block. |
842 | for (const auto &BI : *CurrBlock) { |
843 | // FIXME: Handle other CFGElement kinds. |
844 | if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { |
845 | CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); |
846 | break; |
847 | } |
848 | } |
849 | } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && |
850 | CurrBlock != &CFGraph->getExit()) { |
851 | // The block is empty, and has a single predecessor. Use its exit |
852 | // location. |
853 | CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = |
854 | BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; |
855 | } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { |
856 | // The block is empty, and has a single successor. Use its entry |
857 | // location. |
858 | CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = |
859 | BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; |
860 | } |
861 | } |
862 | } |
863 | |
864 | namespace { |
865 | |
866 | class LockableFactEntry : public FactEntry { |
867 | private: |
868 | /// Reentrancy depth: incremented when a capability has been acquired |
869 | /// reentrantly (after initial acquisition). Always 0 for non-reentrant |
870 | /// capabilities. |
871 | unsigned int ReentrancyDepth = 0; |
872 | |
873 | public: |
874 | LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, |
875 | SourceKind Src = Acquired) |
876 | : FactEntry(Lockable, CE, LK, Loc, Src) {} |
877 | |
878 | unsigned int getReentrancyDepth() const { return ReentrancyDepth; } |
879 | |
880 | void |
881 | handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, |
882 | SourceLocation JoinLoc, LockErrorKind LEK, |
883 | ThreadSafetyHandler &Handler) const override { |
884 | if (!asserted() && !negative() && !isUniversal()) { |
885 | Handler.handleMutexHeldEndOfScope(Kind: getKind(), LockName: toString(), LocLocked: loc(), LocEndOfScope: JoinLoc, |
886 | LEK); |
887 | } |
888 | } |
889 | |
890 | void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, |
891 | ThreadSafetyHandler &Handler) const override { |
892 | if (std::unique_ptr<FactEntry> RFact = tryReenter(ReenterKind: entry.kind())) { |
893 | // This capability has been reentrantly acquired. |
894 | FSet.replaceLock(FM&: FactMan, CapE: entry, Entry: std::move(RFact)); |
895 | } else { |
896 | Handler.handleDoubleLock(Kind: entry.getKind(), LockName: entry.toString(), LocLocked: loc(), |
897 | LocDoubleLock: entry.loc()); |
898 | } |
899 | } |
900 | |
901 | void handleUnlock(FactSet &FSet, FactManager &FactMan, |
902 | const CapabilityExpr &Cp, SourceLocation UnlockLoc, |
903 | bool FullyRemove, |
904 | ThreadSafetyHandler &Handler) const override { |
905 | FSet.removeLock(FM&: FactMan, CapE: Cp); |
906 | |
907 | if (std::unique_ptr<FactEntry> RFact = leaveReentrant()) { |
908 | // This capability remains reentrantly acquired. |
909 | FSet.addLock(FM&: FactMan, Entry: std::move(RFact)); |
910 | } else if (!Cp.negative()) { |
911 | FSet.addLock(FM&: FactMan, Entry: std::make_unique<LockableFactEntry>( |
912 | args: !Cp, args: LK_Exclusive, args&: UnlockLoc)); |
913 | } |
914 | } |
915 | |
916 | // Return an updated FactEntry if we can acquire this capability reentrant, |
917 | // nullptr otherwise. |
918 | std::unique_ptr<LockableFactEntry> tryReenter(LockKind ReenterKind) const { |
919 | if (!reentrant()) |
920 | return nullptr; |
921 | if (kind() != ReenterKind) |
922 | return nullptr; |
923 | auto NewFact = std::make_unique<LockableFactEntry>(args: *this); |
924 | NewFact->ReentrancyDepth++; |
925 | return NewFact; |
926 | } |
927 | |
928 | // Return an updated FactEntry if we are releasing a capability previously |
929 | // acquired reentrant, nullptr otherwise. |
930 | std::unique_ptr<LockableFactEntry> leaveReentrant() const { |
931 | if (!ReentrancyDepth) |
932 | return nullptr; |
933 | assert(reentrant()); |
934 | auto NewFact = std::make_unique<LockableFactEntry>(args: *this); |
935 | NewFact->ReentrancyDepth--; |
936 | return NewFact; |
937 | } |
938 | |
939 | static bool classof(const FactEntry *A) { |
940 | return A->getFactEntryKind() == Lockable; |
941 | } |
942 | }; |
943 | |
944 | class ScopedLockableFactEntry : public FactEntry { |
945 | private: |
946 | enum UnderlyingCapabilityKind { |
947 | UCK_Acquired, ///< Any kind of acquired capability. |
948 | UCK_ReleasedShared, ///< Shared capability that was released. |
949 | UCK_ReleasedExclusive, ///< Exclusive capability that was released. |
950 | }; |
951 | |
952 | struct UnderlyingCapability { |
953 | CapabilityExpr Cap; |
954 | UnderlyingCapabilityKind Kind; |
955 | }; |
956 | |
957 | SmallVector<UnderlyingCapability, 2> UnderlyingMutexes; |
958 | |
959 | public: |
960 | ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, |
961 | SourceKind Src) |
962 | : FactEntry(ScopedLockable, CE, LK_Exclusive, Loc, Src) {} |
963 | |
964 | CapExprSet getUnderlyingMutexes() const { |
965 | CapExprSet UnderlyingMutexesSet; |
966 | for (const UnderlyingCapability &UnderlyingMutex : UnderlyingMutexes) |
967 | UnderlyingMutexesSet.push_back(Elt: UnderlyingMutex.Cap); |
968 | return UnderlyingMutexesSet; |
969 | } |
970 | |
971 | void addLock(const CapabilityExpr &M) { |
972 | UnderlyingMutexes.push_back(Elt: UnderlyingCapability{.Cap: M, .Kind: UCK_Acquired}); |
973 | } |
974 | |
975 | void addExclusiveUnlock(const CapabilityExpr &M) { |
976 | UnderlyingMutexes.push_back(Elt: UnderlyingCapability{.Cap: M, .Kind: UCK_ReleasedExclusive}); |
977 | } |
978 | |
979 | void addSharedUnlock(const CapabilityExpr &M) { |
980 | UnderlyingMutexes.push_back(Elt: UnderlyingCapability{.Cap: M, .Kind: UCK_ReleasedShared}); |
981 | } |
982 | |
983 | void |
984 | handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, |
985 | SourceLocation JoinLoc, LockErrorKind LEK, |
986 | ThreadSafetyHandler &Handler) const override { |
987 | if (LEK == LEK_LockedAtEndOfFunction || LEK == LEK_NotLockedAtEndOfFunction) |
988 | return; |
989 | |
990 | for (const auto &UnderlyingMutex : UnderlyingMutexes) { |
991 | const auto *Entry = FSet.findLock(FM&: FactMan, CapE: UnderlyingMutex.Cap); |
992 | if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) || |
993 | (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) { |
994 | // If this scoped lock manages another mutex, and if the underlying |
995 | // mutex is still/not held, then warn about the underlying mutex. |
996 | Handler.handleMutexHeldEndOfScope(Kind: UnderlyingMutex.Cap.getKind(), |
997 | LockName: UnderlyingMutex.Cap.toString(), LocLocked: loc(), |
998 | LocEndOfScope: JoinLoc, LEK); |
999 | } |
1000 | } |
1001 | } |
1002 | |
1003 | void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, |
1004 | ThreadSafetyHandler &Handler) const override { |
1005 | for (const auto &UnderlyingMutex : UnderlyingMutexes) { |
1006 | if (UnderlyingMutex.Kind == UCK_Acquired) |
1007 | lock(FSet, FactMan, Cp: UnderlyingMutex.Cap, kind: entry.kind(), loc: entry.loc(), |
1008 | Handler: &Handler); |
1009 | else |
1010 | unlock(FSet, FactMan, Cp: UnderlyingMutex.Cap, loc: entry.loc(), Handler: &Handler); |
1011 | } |
1012 | } |
1013 | |
1014 | void handleUnlock(FactSet &FSet, FactManager &FactMan, |
1015 | const CapabilityExpr &Cp, SourceLocation UnlockLoc, |
1016 | bool FullyRemove, |
1017 | ThreadSafetyHandler &Handler) const override { |
1018 | assert(!Cp.negative() && "Managing object cannot be negative."); |
1019 | for (const auto &UnderlyingMutex : UnderlyingMutexes) { |
1020 | // Remove/lock the underlying mutex if it exists/is still unlocked; warn |
1021 | // on double unlocking/locking if we're not destroying the scoped object. |
1022 | ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; |
1023 | if (UnderlyingMutex.Kind == UCK_Acquired) { |
1024 | unlock(FSet, FactMan, Cp: UnderlyingMutex.Cap, loc: UnlockLoc, Handler: TSHandler); |
1025 | } else { |
1026 | LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared |
1027 | ? LK_Shared |
1028 | : LK_Exclusive; |
1029 | lock(FSet, FactMan, Cp: UnderlyingMutex.Cap, kind, loc: UnlockLoc, Handler: TSHandler); |
1030 | } |
1031 | } |
1032 | if (FullyRemove) |
1033 | FSet.removeLock(FM&: FactMan, CapE: Cp); |
1034 | } |
1035 | |
1036 | static bool classof(const FactEntry *A) { |
1037 | return A->getFactEntryKind() == ScopedLockable; |
1038 | } |
1039 | |
1040 | private: |
1041 | void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, |
1042 | LockKind kind, SourceLocation loc, |
1043 | ThreadSafetyHandler *Handler) const { |
1044 | if (const auto It = FSet.findLockIter(FM&: FactMan, CapE: Cp); It != FSet.end()) { |
1045 | const auto &Fact = cast<LockableFactEntry>(Val: FactMan[*It]); |
1046 | if (std::unique_ptr<FactEntry> RFact = Fact.tryReenter(ReenterKind: kind)) { |
1047 | // This capability has been reentrantly acquired. |
1048 | FSet.replaceLock(FM&: FactMan, It, Entry: std::move(RFact)); |
1049 | } else if (Handler) { |
1050 | Handler->handleDoubleLock(Kind: Cp.getKind(), LockName: Cp.toString(), LocLocked: Fact.loc(), LocDoubleLock: loc); |
1051 | } |
1052 | } else { |
1053 | FSet.removeLock(FM&: FactMan, CapE: !Cp); |
1054 | FSet.addLock(FM&: FactMan, |
1055 | Entry: std::make_unique<LockableFactEntry>(args: Cp, args&: kind, args&: loc, args: Managed)); |
1056 | } |
1057 | } |
1058 | |
1059 | void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, |
1060 | SourceLocation loc, ThreadSafetyHandler *Handler) const { |
1061 | if (const auto It = FSet.findLockIter(FM&: FactMan, CapE: Cp); It != FSet.end()) { |
1062 | const auto &Fact = cast<LockableFactEntry>(Val: FactMan[*It]); |
1063 | if (std::unique_ptr<FactEntry> RFact = Fact.leaveReentrant()) { |
1064 | // This capability remains reentrantly acquired. |
1065 | FSet.replaceLock(FM&: FactMan, It, Entry: std::move(RFact)); |
1066 | return; |
1067 | } |
1068 | |
1069 | FSet.replaceLock( |
1070 | FM&: FactMan, It, |
1071 | Entry: std::make_unique<LockableFactEntry>(args: !Cp, args: LK_Exclusive, args&: loc)); |
1072 | } else if (Handler) { |
1073 | SourceLocation PrevLoc; |
1074 | if (const FactEntry *Neg = FSet.findLock(FM&: FactMan, CapE: !Cp)) |
1075 | PrevLoc = Neg->loc(); |
1076 | Handler->handleUnmatchedUnlock(Kind: Cp.getKind(), LockName: Cp.toString(), Loc: loc, LocPreviousUnlock: PrevLoc); |
1077 | } |
1078 | } |
1079 | }; |
1080 | |
1081 | /// Class which implements the core thread safety analysis routines. |
1082 | class ThreadSafetyAnalyzer { |
1083 | friend class BuildLockset; |
1084 | friend class threadSafety::BeforeSet; |
1085 | |
1086 | llvm::BumpPtrAllocator Bpa; |
1087 | threadSafety::til::MemRegionRef Arena; |
1088 | threadSafety::SExprBuilder SxBuilder; |
1089 | |
1090 | ThreadSafetyHandler &Handler; |
1091 | const FunctionDecl *CurrentFunction; |
1092 | LocalVariableMap LocalVarMap; |
1093 | // Maps constructed objects to `this` placeholder prior to initialization. |
1094 | llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects; |
1095 | FactManager FactMan; |
1096 | std::vector<CFGBlockInfo> BlockInfo; |
1097 | |
1098 | BeforeSet *GlobalBeforeSet; |
1099 | |
1100 | public: |
1101 | ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) |
1102 | : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} |
1103 | |
1104 | bool inCurrentScope(const CapabilityExpr &CapE); |
1105 | |
1106 | void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, |
1107 | bool ReqAttr = false); |
1108 | void removeLock(FactSet &FSet, const CapabilityExpr &CapE, |
1109 | SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind); |
1110 | |
1111 | template <typename AttrType> |
1112 | void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, |
1113 | const NamedDecl *D, til::SExpr *Self = nullptr); |
1114 | |
1115 | template <class AttrType> |
1116 | void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, |
1117 | const NamedDecl *D, |
1118 | const CFGBlock *PredBlock, const CFGBlock *CurrBlock, |
1119 | Expr *BrE, bool Neg); |
1120 | |
1121 | const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, |
1122 | bool &Negate); |
1123 | |
1124 | void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, |
1125 | const CFGBlock* PredBlock, |
1126 | const CFGBlock *CurrBlock); |
1127 | |
1128 | bool join(const FactEntry &A, const FactEntry &B, SourceLocation JoinLoc, |
1129 | LockErrorKind EntryLEK); |
1130 | |
1131 | void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, |
1132 | SourceLocation JoinLoc, LockErrorKind EntryLEK, |
1133 | LockErrorKind ExitLEK); |
1134 | |
1135 | void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, |
1136 | SourceLocation JoinLoc, LockErrorKind LEK) { |
1137 | intersectAndWarn(EntrySet, ExitSet, JoinLoc, EntryLEK: LEK, ExitLEK: LEK); |
1138 | } |
1139 | |
1140 | void runAnalysis(AnalysisDeclContext &AC); |
1141 | |
1142 | void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D, |
1143 | const Expr *Exp, AccessKind AK, Expr *MutexExp, |
1144 | ProtectedOperationKind POK, til::LiteralPtr *Self, |
1145 | SourceLocation Loc); |
1146 | void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp, |
1147 | Expr *MutexExp, til::LiteralPtr *Self, |
1148 | SourceLocation Loc); |
1149 | |
1150 | void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK, |
1151 | ProtectedOperationKind POK); |
1152 | void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK, |
1153 | ProtectedOperationKind POK); |
1154 | }; |
1155 | |
1156 | } // namespace |
1157 | |
1158 | /// Process acquired_before and acquired_after attributes on Vd. |
1159 | BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, |
1160 | ThreadSafetyAnalyzer& Analyzer) { |
1161 | // Create a new entry for Vd. |
1162 | BeforeInfo *Info = nullptr; |
1163 | { |
1164 | // Keep InfoPtr in its own scope in case BMap is modified later and the |
1165 | // reference becomes invalid. |
1166 | std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; |
1167 | if (!InfoPtr) |
1168 | InfoPtr.reset(p: new BeforeInfo()); |
1169 | Info = InfoPtr.get(); |
1170 | } |
1171 | |
1172 | for (const auto *At : Vd->attrs()) { |
1173 | switch (At->getKind()) { |
1174 | case attr::AcquiredBefore: { |
1175 | const auto *A = cast<AcquiredBeforeAttr>(At); |
1176 | |
1177 | // Read exprs from the attribute, and add them to BeforeVect. |
1178 | for (const auto *Arg : A->args()) { |
1179 | CapabilityExpr Cp = |
1180 | Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); |
1181 | if (const ValueDecl *Cpvd = Cp.valueDecl()) { |
1182 | Info->Vect.push_back(Cpvd); |
1183 | const auto It = BMap.find(Cpvd); |
1184 | if (It == BMap.end()) |
1185 | insertAttrExprs(Cpvd, Analyzer); |
1186 | } |
1187 | } |
1188 | break; |
1189 | } |
1190 | case attr::AcquiredAfter: { |
1191 | const auto *A = cast<AcquiredAfterAttr>(At); |
1192 | |
1193 | // Read exprs from the attribute, and add them to BeforeVect. |
1194 | for (const auto *Arg : A->args()) { |
1195 | CapabilityExpr Cp = |
1196 | Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); |
1197 | if (const ValueDecl *ArgVd = Cp.valueDecl()) { |
1198 | // Get entry for mutex listed in attribute |
1199 | BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); |
1200 | ArgInfo->Vect.push_back(Vd); |
1201 | } |
1202 | } |
1203 | break; |
1204 | } |
1205 | default: |
1206 | break; |
1207 | } |
1208 | } |
1209 | |
1210 | return Info; |
1211 | } |
1212 | |
1213 | BeforeSet::BeforeInfo * |
1214 | BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, |
1215 | ThreadSafetyAnalyzer &Analyzer) { |
1216 | auto It = BMap.find(Val: Vd); |
1217 | BeforeInfo *Info = nullptr; |
1218 | if (It == BMap.end()) |
1219 | Info = insertAttrExprs(Vd, Analyzer); |
1220 | else |
1221 | Info = It->second.get(); |
1222 | assert(Info && "BMap contained nullptr?"); |
1223 | return Info; |
1224 | } |
1225 | |
1226 | /// Return true if any mutexes in FSet are in the acquired_before set of Vd. |
1227 | void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, |
1228 | const FactSet& FSet, |
1229 | ThreadSafetyAnalyzer& Analyzer, |
1230 | SourceLocation Loc, StringRef CapKind) { |
1231 | SmallVector<BeforeInfo*, 8> InfoVect; |
1232 | |
1233 | // Do a depth-first traversal of Vd. |
1234 | // Return true if there are cycles. |
1235 | std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { |
1236 | if (!Vd) |
1237 | return false; |
1238 | |
1239 | BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); |
1240 | |
1241 | if (Info->Visited == 1) |
1242 | return true; |
1243 | |
1244 | if (Info->Visited == 2) |
1245 | return false; |
1246 | |
1247 | if (Info->Vect.empty()) |
1248 | return false; |
1249 | |
1250 | InfoVect.push_back(Elt: Info); |
1251 | Info->Visited = 1; |
1252 | for (const auto *Vdb : Info->Vect) { |
1253 | // Exclude mutexes in our immediate before set. |
1254 | if (FSet.containsMutexDecl(FM&: Analyzer.FactMan, Vd: Vdb)) { |
1255 | StringRef L1 = StartVd->getName(); |
1256 | StringRef L2 = Vdb->getName(); |
1257 | Analyzer.Handler.handleLockAcquiredBefore(Kind: CapKind, L1Name: L1, L2Name: L2, Loc); |
1258 | } |
1259 | // Transitively search other before sets, and warn on cycles. |
1260 | if (traverse(Vdb)) { |
1261 | if (CycMap.try_emplace(Key: Vd, Args: true).second) { |
1262 | StringRef L1 = Vd->getName(); |
1263 | Analyzer.Handler.handleBeforeAfterCycle(L1Name: L1, Loc: Vd->getLocation()); |
1264 | } |
1265 | } |
1266 | } |
1267 | Info->Visited = 2; |
1268 | return false; |
1269 | }; |
1270 | |
1271 | traverse(StartVd); |
1272 | |
1273 | for (auto *Info : InfoVect) |
1274 | Info->Visited = 0; |
1275 | } |
1276 | |
1277 | /// Gets the value decl pointer from DeclRefExprs or MemberExprs. |
1278 | static const ValueDecl *getValueDecl(const Expr *Exp) { |
1279 | if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: Exp)) |
1280 | return getValueDecl(CE->getSubExpr()); |
1281 | |
1282 | if (const auto *DR = dyn_cast<DeclRefExpr>(Val: Exp)) |
1283 | return DR->getDecl(); |
1284 | |
1285 | if (const auto *ME = dyn_cast<MemberExpr>(Val: Exp)) |
1286 | return ME->getMemberDecl(); |
1287 | |
1288 | return nullptr; |
1289 | } |
1290 | |
1291 | bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { |
1292 | const threadSafety::til::SExpr *SExp = CapE.sexpr(); |
1293 | assert(SExp && "Null expressions should be ignored"); |
1294 | |
1295 | if (const auto *LP = dyn_cast<til::LiteralPtr>(Val: SExp)) { |
1296 | const ValueDecl *VD = LP->clangDecl(); |
1297 | // Variables defined in a function are always inaccessible. |
1298 | if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) |
1299 | return false; |
1300 | // For now we consider static class members to be inaccessible. |
1301 | if (isa<CXXRecordDecl>(VD->getDeclContext())) |
1302 | return false; |
1303 | // Global variables are always in scope. |
1304 | return true; |
1305 | } |
1306 | |
1307 | // Members are in scope from methods of the same class. |
1308 | if (const auto *P = dyn_cast<til::Project>(Val: SExp)) { |
1309 | if (!isa_and_nonnull<CXXMethodDecl>(Val: CurrentFunction)) |
1310 | return false; |
1311 | const ValueDecl *VD = P->clangDecl(); |
1312 | return VD->getDeclContext() == CurrentFunction->getDeclContext(); |
1313 | } |
1314 | |
1315 | return false; |
1316 | } |
1317 | |
1318 | /// Add a new lock to the lockset, warning if the lock is already there. |
1319 | /// \param ReqAttr -- true if this is part of an initial Requires attribute. |
1320 | void ThreadSafetyAnalyzer::addLock(FactSet &FSet, |
1321 | std::unique_ptr<FactEntry> Entry, |
1322 | bool ReqAttr) { |
1323 | if (Entry->shouldIgnore()) |
1324 | return; |
1325 | |
1326 | if (!ReqAttr && !Entry->negative()) { |
1327 | // look for the negative capability, and remove it from the fact set. |
1328 | CapabilityExpr NegC = !*Entry; |
1329 | const FactEntry *Nen = FSet.findLock(FM&: FactMan, CapE: NegC); |
1330 | if (Nen) { |
1331 | FSet.removeLock(FM&: FactMan, CapE: NegC); |
1332 | } |
1333 | else { |
1334 | if (inCurrentScope(CapE: *Entry) && !Entry->asserted()) |
1335 | Handler.handleNegativeNotHeld(Kind: Entry->getKind(), LockName: Entry->toString(), |
1336 | Neg: NegC.toString(), Loc: Entry->loc()); |
1337 | } |
1338 | } |
1339 | |
1340 | // Check before/after constraints |
1341 | if (Handler.issueBetaWarnings() && |
1342 | !Entry->asserted() && !Entry->declared()) { |
1343 | GlobalBeforeSet->checkBeforeAfter(StartVd: Entry->valueDecl(), FSet, Analyzer&: *this, |
1344 | Loc: Entry->loc(), CapKind: Entry->getKind()); |
1345 | } |
1346 | |
1347 | if (const FactEntry *Cp = FSet.findLock(FM&: FactMan, CapE: *Entry)) { |
1348 | if (!Entry->asserted()) |
1349 | Cp->handleLock(FSet, FactMan, entry: *Entry, Handler); |
1350 | } else { |
1351 | FSet.addLock(FM&: FactMan, Entry: std::move(Entry)); |
1352 | } |
1353 | } |
1354 | |
1355 | /// Remove a lock from the lockset, warning if the lock is not there. |
1356 | /// \param UnlockLoc The source location of the unlock (only used in error msg) |
1357 | void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, |
1358 | SourceLocation UnlockLoc, |
1359 | bool FullyRemove, LockKind ReceivedKind) { |
1360 | if (Cp.shouldIgnore()) |
1361 | return; |
1362 | |
1363 | const FactEntry *LDat = FSet.findLock(FM&: FactMan, CapE: Cp); |
1364 | if (!LDat) { |
1365 | SourceLocation PrevLoc; |
1366 | if (const FactEntry *Neg = FSet.findLock(FM&: FactMan, CapE: !Cp)) |
1367 | PrevLoc = Neg->loc(); |
1368 | Handler.handleUnmatchedUnlock(Kind: Cp.getKind(), LockName: Cp.toString(), Loc: UnlockLoc, |
1369 | LocPreviousUnlock: PrevLoc); |
1370 | return; |
1371 | } |
1372 | |
1373 | // Generic lock removal doesn't care about lock kind mismatches, but |
1374 | // otherwise diagnose when the lock kinds are mismatched. |
1375 | if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { |
1376 | Handler.handleIncorrectUnlockKind(Kind: Cp.getKind(), LockName: Cp.toString(), Expected: LDat->kind(), |
1377 | Received: ReceivedKind, LocLocked: LDat->loc(), LocUnlock: UnlockLoc); |
1378 | } |
1379 | |
1380 | LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler); |
1381 | } |
1382 | |
1383 | /// Extract the list of mutexIDs from the attribute on an expression, |
1384 | /// and push them onto Mtxs, discarding any duplicates. |
1385 | template <typename AttrType> |
1386 | void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, |
1387 | const Expr *Exp, const NamedDecl *D, |
1388 | til::SExpr *Self) { |
1389 | if (Attr->args_size() == 0) { |
1390 | // The mutex held is the "this" object. |
1391 | CapabilityExpr Cp = SxBuilder.translateAttrExpr(AttrExp: nullptr, D, DeclExp: Exp, Self); |
1392 | if (Cp.isInvalid()) { |
1393 | warnInvalidLock(Handler, MutexExp: nullptr, D, DeclExp: Exp, Kind: Cp.getKind()); |
1394 | return; |
1395 | } |
1396 | //else |
1397 | if (!Cp.shouldIgnore()) |
1398 | Mtxs.push_back_nodup(CapE: Cp); |
1399 | return; |
1400 | } |
1401 | |
1402 | for (const auto *Arg : Attr->args()) { |
1403 | CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); |
1404 | if (Cp.isInvalid()) { |
1405 | warnInvalidLock(Handler, MutexExp: nullptr, D, DeclExp: Exp, Kind: Cp.getKind()); |
1406 | continue; |
1407 | } |
1408 | //else |
1409 | if (!Cp.shouldIgnore()) |
1410 | Mtxs.push_back_nodup(CapE: Cp); |
1411 | } |
1412 | } |
1413 | |
1414 | /// Extract the list of mutexIDs from a trylock attribute. If the |
1415 | /// trylock applies to the given edge, then push them onto Mtxs, discarding |
1416 | /// any duplicates. |
1417 | template <class AttrType> |
1418 | void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, |
1419 | const Expr *Exp, const NamedDecl *D, |
1420 | const CFGBlock *PredBlock, |
1421 | const CFGBlock *CurrBlock, |
1422 | Expr *BrE, bool Neg) { |
1423 | // Find out which branch has the lock |
1424 | bool branch = false; |
1425 | if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(Val: BrE)) |
1426 | branch = BLE->getValue(); |
1427 | else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(Val: BrE)) |
1428 | branch = ILE->getValue().getBoolValue(); |
1429 | |
1430 | int branchnum = branch ? 0 : 1; |
1431 | if (Neg) |
1432 | branchnum = !branchnum; |
1433 | |
1434 | // If we've taken the trylock branch, then add the lock |
1435 | int i = 0; |
1436 | for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), |
1437 | SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { |
1438 | if (*SI == CurrBlock && i == branchnum) |
1439 | getMutexIDs(Mtxs, Attr, Exp, D); |
1440 | } |
1441 | } |
1442 | |
1443 | static bool getStaticBooleanValue(Expr *E, bool &TCond) { |
1444 | if (isa<CXXNullPtrLiteralExpr>(Val: E) || isa<GNUNullExpr>(Val: E)) { |
1445 | TCond = false; |
1446 | return true; |
1447 | } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(Val: E)) { |
1448 | TCond = BLE->getValue(); |
1449 | return true; |
1450 | } else if (const auto *ILE = dyn_cast<IntegerLiteral>(Val: E)) { |
1451 | TCond = ILE->getValue().getBoolValue(); |
1452 | return true; |
1453 | } else if (auto *CE = dyn_cast<ImplicitCastExpr>(Val: E)) |
1454 | return getStaticBooleanValue(CE->getSubExpr(), TCond); |
1455 | return false; |
1456 | } |
1457 | |
1458 | // If Cond can be traced back to a function call, return the call expression. |
1459 | // The negate variable should be called with false, and will be set to true |
1460 | // if the function call is negated, e.g. if (!mu.tryLock(...)) |
1461 | const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, |
1462 | LocalVarContext C, |
1463 | bool &Negate) { |
1464 | if (!Cond) |
1465 | return nullptr; |
1466 | |
1467 | if (const auto *CallExp = dyn_cast<CallExpr>(Val: Cond)) { |
1468 | if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) |
1469 | return getTrylockCallExpr(CallExp->getArg(Arg: 0), C, Negate); |
1470 | return CallExp; |
1471 | } |
1472 | else if (const auto *PE = dyn_cast<ParenExpr>(Val: Cond)) |
1473 | return getTrylockCallExpr(PE->getSubExpr(), C, Negate); |
1474 | else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: Cond)) |
1475 | return getTrylockCallExpr(Cond: CE->getSubExpr(), C, Negate); |
1476 | else if (const auto *FE = dyn_cast<FullExpr>(Val: Cond)) |
1477 | return getTrylockCallExpr(FE->getSubExpr(), C, Negate); |
1478 | else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Cond)) { |
1479 | const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); |
1480 | return getTrylockCallExpr(E, C, Negate); |
1481 | } |
1482 | else if (const auto *UOP = dyn_cast<UnaryOperator>(Val: Cond)) { |
1483 | if (UOP->getOpcode() == UO_LNot) { |
1484 | Negate = !Negate; |
1485 | return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); |
1486 | } |
1487 | return nullptr; |
1488 | } |
1489 | else if (const auto *BOP = dyn_cast<BinaryOperator>(Val: Cond)) { |
1490 | if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { |
1491 | if (BOP->getOpcode() == BO_NE) |
1492 | Negate = !Negate; |
1493 | |
1494 | bool TCond = false; |
1495 | if (getStaticBooleanValue(E: BOP->getRHS(), TCond)) { |
1496 | if (!TCond) Negate = !Negate; |
1497 | return getTrylockCallExpr(BOP->getLHS(), C, Negate); |
1498 | } |
1499 | TCond = false; |
1500 | if (getStaticBooleanValue(E: BOP->getLHS(), TCond)) { |
1501 | if (!TCond) Negate = !Negate; |
1502 | return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
1503 | } |
1504 | return nullptr; |
1505 | } |
1506 | if (BOP->getOpcode() == BO_LAnd) { |
1507 | // LHS must have been evaluated in a different block. |
1508 | return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
1509 | } |
1510 | if (BOP->getOpcode() == BO_LOr) |
1511 | return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
1512 | return nullptr; |
1513 | } else if (const auto *COP = dyn_cast<ConditionalOperator>(Val: Cond)) { |
1514 | bool TCond, FCond; |
1515 | if (getStaticBooleanValue(E: COP->getTrueExpr(), TCond) && |
1516 | getStaticBooleanValue(E: COP->getFalseExpr(), TCond&: FCond)) { |
1517 | if (TCond && !FCond) |
1518 | return getTrylockCallExpr(COP->getCond(), C, Negate); |
1519 | if (!TCond && FCond) { |
1520 | Negate = !Negate; |
1521 | return getTrylockCallExpr(COP->getCond(), C, Negate); |
1522 | } |
1523 | } |
1524 | } |
1525 | return nullptr; |
1526 | } |
1527 | |
1528 | /// Find the lockset that holds on the edge between PredBlock |
1529 | /// and CurrBlock. The edge set is the exit set of PredBlock (passed |
1530 | /// as the ExitSet parameter) plus any trylocks, which are conditionally held. |
1531 | void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, |
1532 | const FactSet &ExitSet, |
1533 | const CFGBlock *PredBlock, |
1534 | const CFGBlock *CurrBlock) { |
1535 | Result = ExitSet; |
1536 | |
1537 | const Stmt *Cond = PredBlock->getTerminatorCondition(); |
1538 | // We don't acquire try-locks on ?: branches, only when its result is used. |
1539 | if (!Cond || isa<ConditionalOperator>(Val: PredBlock->getTerminatorStmt())) |
1540 | return; |
1541 | |
1542 | bool Negate = false; |
1543 | const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; |
1544 | const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; |
1545 | |
1546 | const auto *Exp = getTrylockCallExpr(Cond, C: LVarCtx, Negate); |
1547 | if (!Exp) |
1548 | return; |
1549 | |
1550 | auto *FunDecl = dyn_cast_or_null<NamedDecl>(Val: Exp->getCalleeDecl()); |
1551 | if (!FunDecl || !FunDecl->hasAttr<TryAcquireCapabilityAttr>()) |
1552 | return; |
1553 | |
1554 | CapExprSet ExclusiveLocksToAdd; |
1555 | CapExprSet SharedLocksToAdd; |
1556 | |
1557 | // If the condition is a call to a Trylock function, then grab the attributes |
1558 | for (const auto *Attr : FunDecl->specific_attrs<TryAcquireCapabilityAttr>()) |
1559 | getMutexIDs(Attr->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, Attr, |
1560 | Exp, FunDecl, PredBlock, CurrBlock, Attr->getSuccessValue(), |
1561 | Negate); |
1562 | |
1563 | // Add and remove locks. |
1564 | SourceLocation Loc = Exp->getExprLoc(); |
1565 | for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) |
1566 | addLock(FSet&: Result, Entry: std::make_unique<LockableFactEntry>(args: ExclusiveLockToAdd, |
1567 | args: LK_Exclusive, args&: Loc)); |
1568 | for (const auto &SharedLockToAdd : SharedLocksToAdd) |
1569 | addLock(FSet&: Result, Entry: std::make_unique<LockableFactEntry>(args: SharedLockToAdd, |
1570 | args: LK_Shared, args&: Loc)); |
1571 | } |
1572 | |
1573 | namespace { |
1574 | |
1575 | /// We use this class to visit different types of expressions in |
1576 | /// CFGBlocks, and build up the lockset. |
1577 | /// An expression may cause us to add or remove locks from the lockset, or else |
1578 | /// output error messages related to missing locks. |
1579 | /// FIXME: In future, we may be able to not inherit from a visitor. |
1580 | class BuildLockset : public ConstStmtVisitor<BuildLockset> { |
1581 | friend class ThreadSafetyAnalyzer; |
1582 | |
1583 | ThreadSafetyAnalyzer *Analyzer; |
1584 | FactSet FSet; |
1585 | // The fact set for the function on exit. |
1586 | const FactSet &FunctionExitFSet; |
1587 | LocalVariableMap::Context LVarCtx; |
1588 | unsigned CtxIndex; |
1589 | |
1590 | // helper functions |
1591 | |
1592 | void checkAccess(const Expr *Exp, AccessKind AK, |
1593 | ProtectedOperationKind POK = POK_VarAccess) { |
1594 | Analyzer->checkAccess(FSet, Exp, AK, POK); |
1595 | } |
1596 | void checkPtAccess(const Expr *Exp, AccessKind AK, |
1597 | ProtectedOperationKind POK = POK_VarAccess) { |
1598 | Analyzer->checkPtAccess(FSet, Exp, AK, POK); |
1599 | } |
1600 | |
1601 | void handleCall(const Expr *Exp, const NamedDecl *D, |
1602 | til::LiteralPtr *Self = nullptr, |
1603 | SourceLocation Loc = SourceLocation()); |
1604 | void examineArguments(const FunctionDecl *FD, |
1605 | CallExpr::const_arg_iterator ArgBegin, |
1606 | CallExpr::const_arg_iterator ArgEnd, |
1607 | bool SkipFirstParam = false); |
1608 | |
1609 | public: |
1610 | BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info, |
1611 | const FactSet &FunctionExitFSet) |
1612 | : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), |
1613 | FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext), |
1614 | CtxIndex(Info.EntryIndex) {} |
1615 | |
1616 | void VisitUnaryOperator(const UnaryOperator *UO); |
1617 | void VisitBinaryOperator(const BinaryOperator *BO); |
1618 | void VisitCastExpr(const CastExpr *CE); |
1619 | void VisitCallExpr(const CallExpr *Exp); |
1620 | void VisitCXXConstructExpr(const CXXConstructExpr *Exp); |
1621 | void VisitDeclStmt(const DeclStmt *S); |
1622 | void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); |
1623 | void VisitReturnStmt(const ReturnStmt *S); |
1624 | }; |
1625 | |
1626 | } // namespace |
1627 | |
1628 | /// Warn if the LSet does not contain a lock sufficient to protect access |
1629 | /// of at least the passed in AccessKind. |
1630 | void ThreadSafetyAnalyzer::warnIfMutexNotHeld( |
1631 | const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK, |
1632 | Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self, |
1633 | SourceLocation Loc) { |
1634 | LockKind LK = getLockKindFromAccessKind(AK); |
1635 | CapabilityExpr Cp = SxBuilder.translateAttrExpr(AttrExp: MutexExp, D, DeclExp: Exp, Self); |
1636 | if (Cp.isInvalid()) { |
1637 | warnInvalidLock(Handler, MutexExp, D, DeclExp: Exp, Kind: Cp.getKind()); |
1638 | return; |
1639 | } else if (Cp.shouldIgnore()) { |
1640 | return; |
1641 | } |
1642 | |
1643 | if (Cp.negative()) { |
1644 | // Negative capabilities act like locks excluded |
1645 | const FactEntry *LDat = FSet.findLock(FM&: FactMan, CapE: !Cp); |
1646 | if (LDat) { |
1647 | Handler.handleFunExcludesLock(Kind: Cp.getKind(), FunName: D->getNameAsString(), |
1648 | LockName: (!Cp).toString(), Loc); |
1649 | return; |
1650 | } |
1651 | |
1652 | // If this does not refer to a negative capability in the same class, |
1653 | // then stop here. |
1654 | if (!inCurrentScope(CapE: Cp)) |
1655 | return; |
1656 | |
1657 | // Otherwise the negative requirement must be propagated to the caller. |
1658 | LDat = FSet.findLock(FM&: FactMan, CapE: Cp); |
1659 | if (!LDat) { |
1660 | Handler.handleNegativeNotHeld(D, LockName: Cp.toString(), Loc); |
1661 | } |
1662 | return; |
1663 | } |
1664 | |
1665 | const FactEntry *LDat = FSet.findLockUniv(FM&: FactMan, CapE: Cp); |
1666 | bool NoError = true; |
1667 | if (!LDat) { |
1668 | // No exact match found. Look for a partial match. |
1669 | LDat = FSet.findPartialMatch(FM&: FactMan, CapE: Cp); |
1670 | if (LDat) { |
1671 | // Warn that there's no precise match. |
1672 | std::string PartMatchStr = LDat->toString(); |
1673 | StringRef PartMatchName(PartMatchStr); |
1674 | Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK, LockName: Cp.toString(), LK, Loc, |
1675 | PossibleMatch: &PartMatchName); |
1676 | } else { |
1677 | // Warn that there's no match at all. |
1678 | Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK, LockName: Cp.toString(), LK, Loc); |
1679 | } |
1680 | NoError = false; |
1681 | } |
1682 | // Make sure the mutex we found is the right kind. |
1683 | if (NoError && LDat && !LDat->isAtLeast(LK)) { |
1684 | Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK, LockName: Cp.toString(), LK, Loc); |
1685 | } |
1686 | } |
1687 | |
1688 | /// Warn if the LSet contains the given lock. |
1689 | void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet, |
1690 | const NamedDecl *D, const Expr *Exp, |
1691 | Expr *MutexExp, |
1692 | til::LiteralPtr *Self, |
1693 | SourceLocation Loc) { |
1694 | CapabilityExpr Cp = SxBuilder.translateAttrExpr(AttrExp: MutexExp, D, DeclExp: Exp, Self); |
1695 | if (Cp.isInvalid()) { |
1696 | warnInvalidLock(Handler, MutexExp, D, DeclExp: Exp, Kind: Cp.getKind()); |
1697 | return; |
1698 | } else if (Cp.shouldIgnore()) { |
1699 | return; |
1700 | } |
1701 | |
1702 | const FactEntry *LDat = FSet.findLock(FM&: FactMan, CapE: Cp); |
1703 | if (LDat) { |
1704 | Handler.handleFunExcludesLock(Kind: Cp.getKind(), FunName: D->getNameAsString(), |
1705 | LockName: Cp.toString(), Loc); |
1706 | } |
1707 | } |
1708 | |
1709 | /// Checks guarded_by and pt_guarded_by attributes. |
1710 | /// Whenever we identify an access (read or write) to a DeclRefExpr that is |
1711 | /// marked with guarded_by, we must ensure the appropriate mutexes are held. |
1712 | /// Similarly, we check if the access is to an expression that dereferences |
1713 | /// a pointer marked with pt_guarded_by. |
1714 | void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp, |
1715 | AccessKind AK, |
1716 | ProtectedOperationKind POK) { |
1717 | Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); |
1718 | |
1719 | SourceLocation Loc = Exp->getExprLoc(); |
1720 | |
1721 | // Local variables of reference type cannot be re-assigned; |
1722 | // map them to their initializer. |
1723 | while (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Exp)) { |
1724 | const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); |
1725 | if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { |
1726 | if (const auto *E = VD->getInit()) { |
1727 | // Guard against self-initialization. e.g., int &i = i; |
1728 | if (E == Exp) |
1729 | break; |
1730 | Exp = E->IgnoreImplicit()->IgnoreParenCasts(); |
1731 | continue; |
1732 | } |
1733 | } |
1734 | break; |
1735 | } |
1736 | |
1737 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: Exp)) { |
1738 | // For dereferences |
1739 | if (UO->getOpcode() == UO_Deref) |
1740 | checkPtAccess(FSet, Exp: UO->getSubExpr(), AK, POK); |
1741 | return; |
1742 | } |
1743 | |
1744 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: Exp)) { |
1745 | switch (BO->getOpcode()) { |
1746 | case BO_PtrMemD: // .* |
1747 | return checkAccess(FSet, Exp: BO->getLHS(), AK, POK); |
1748 | case BO_PtrMemI: // ->* |
1749 | return checkPtAccess(FSet, Exp: BO->getLHS(), AK, POK); |
1750 | default: |
1751 | return; |
1752 | } |
1753 | } |
1754 | |
1755 | if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Val: Exp)) { |
1756 | checkPtAccess(FSet, Exp: AE->getLHS(), AK, POK); |
1757 | return; |
1758 | } |
1759 | |
1760 | if (const auto *ME = dyn_cast<MemberExpr>(Val: Exp)) { |
1761 | if (ME->isArrow()) |
1762 | checkPtAccess(FSet, Exp: ME->getBase(), AK, POK); |
1763 | else |
1764 | checkAccess(FSet, Exp: ME->getBase(), AK, POK); |
1765 | } |
1766 | |
1767 | const ValueDecl *D = getValueDecl(Exp); |
1768 | if (!D || !D->hasAttrs()) |
1769 | return; |
1770 | |
1771 | if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) { |
1772 | Handler.handleNoMutexHeld(D, POK, AK, Loc); |
1773 | } |
1774 | |
1775 | for (const auto *I : D->specific_attrs<GuardedByAttr>()) |
1776 | warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc); |
1777 | } |
1778 | |
1779 | /// Checks pt_guarded_by and pt_guarded_var attributes. |
1780 | /// POK is the same operationKind that was passed to checkAccess. |
1781 | void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp, |
1782 | AccessKind AK, |
1783 | ProtectedOperationKind POK) { |
1784 | // Strip off paren- and cast-expressions, checking if we encounter any other |
1785 | // operator that should be delegated to checkAccess() instead. |
1786 | while (true) { |
1787 | if (const auto *PE = dyn_cast<ParenExpr>(Val: Exp)) { |
1788 | Exp = PE->getSubExpr(); |
1789 | continue; |
1790 | } |
1791 | if (const auto *CE = dyn_cast<CastExpr>(Val: Exp)) { |
1792 | if (CE->getCastKind() == CK_ArrayToPointerDecay) { |
1793 | // If it's an actual array, and not a pointer, then it's elements |
1794 | // are protected by GUARDED_BY, not PT_GUARDED_BY; |
1795 | checkAccess(FSet, Exp: CE->getSubExpr(), AK, POK); |
1796 | return; |
1797 | } |
1798 | Exp = CE->getSubExpr(); |
1799 | continue; |
1800 | } |
1801 | break; |
1802 | } |
1803 | |
1804 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: Exp)) { |
1805 | if (UO->getOpcode() == UO_AddrOf) { |
1806 | // Pointer access via pointer taken of variable, so the dereferenced |
1807 | // variable is not actually a pointer. |
1808 | checkAccess(FSet, Exp: UO->getSubExpr(), AK, POK); |
1809 | return; |
1810 | } |
1811 | } |
1812 | |
1813 | // Pass by reference/pointer warnings are under a different flag. |
1814 | ProtectedOperationKind PtPOK = POK_VarDereference; |
1815 | switch (POK) { |
1816 | case POK_PassByRef: |
1817 | PtPOK = POK_PtPassByRef; |
1818 | break; |
1819 | case POK_ReturnByRef: |
1820 | PtPOK = POK_PtReturnByRef; |
1821 | break; |
1822 | case POK_PassPointer: |
1823 | PtPOK = POK_PtPassPointer; |
1824 | break; |
1825 | case POK_ReturnPointer: |
1826 | PtPOK = POK_PtReturnPointer; |
1827 | break; |
1828 | default: |
1829 | break; |
1830 | } |
1831 | |
1832 | const ValueDecl *D = getValueDecl(Exp); |
1833 | if (!D || !D->hasAttrs()) |
1834 | return; |
1835 | |
1836 | if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan)) |
1837 | Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc()); |
1838 | |
1839 | for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) |
1840 | warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr, |
1841 | Exp->getExprLoc()); |
1842 | } |
1843 | |
1844 | /// Process a function call, method call, constructor call, |
1845 | /// or destructor call. This involves looking at the attributes on the |
1846 | /// corresponding function/method/constructor/destructor, issuing warnings, |
1847 | /// and updating the locksets accordingly. |
1848 | /// |
1849 | /// FIXME: For classes annotated with one of the guarded annotations, we need |
1850 | /// to treat const method calls as reads and non-const method calls as writes, |
1851 | /// and check that the appropriate locks are held. Non-const method calls with |
1852 | /// the same signature as const method calls can be also treated as reads. |
1853 | /// |
1854 | /// \param Exp The call expression. |
1855 | /// \param D The callee declaration. |
1856 | /// \param Self If \p Exp = nullptr, the implicit this argument or the argument |
1857 | /// of an implicitly called cleanup function. |
1858 | /// \param Loc If \p Exp = nullptr, the location. |
1859 | void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, |
1860 | til::LiteralPtr *Self, SourceLocation Loc) { |
1861 | CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; |
1862 | CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; |
1863 | CapExprSet ScopedReqsAndExcludes; |
1864 | |
1865 | // Figure out if we're constructing an object of scoped lockable class |
1866 | CapabilityExpr Scp; |
1867 | if (Exp) { |
1868 | assert(!Self); |
1869 | const auto *TagT = Exp->getType()->getAs<TagType>(); |
1870 | if (D->hasAttrs() && TagT && Exp->isPRValue()) { |
1871 | til::LiteralPtr *Placeholder = |
1872 | Analyzer->SxBuilder.createVariable(VD: nullptr); |
1873 | [[maybe_unused]] auto inserted = |
1874 | Analyzer->ConstructedObjects.insert(KV: {Exp, Placeholder}); |
1875 | assert(inserted.second && "Are we visiting the same expression again?"); |
1876 | if (isa<CXXConstructExpr>(Val: Exp)) |
1877 | Self = Placeholder; |
1878 | if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) |
1879 | Scp = CapabilityExpr(Placeholder, Exp->getType(), /*Neg=*/false); |
1880 | } |
1881 | |
1882 | assert(Loc.isInvalid()); |
1883 | Loc = Exp->getExprLoc(); |
1884 | } |
1885 | |
1886 | for(const Attr *At : D->attrs()) { |
1887 | switch (At->getKind()) { |
1888 | // When we encounter a lock function, we need to add the lock to our |
1889 | // lockset. |
1890 | case attr::AcquireCapability: { |
1891 | const auto *A = cast<AcquireCapabilityAttr>(At); |
1892 | Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd |
1893 | : ExclusiveLocksToAdd, |
1894 | A, Exp, D, Self); |
1895 | break; |
1896 | } |
1897 | |
1898 | // An assert will add a lock to the lockset, but will not generate |
1899 | // a warning if it is already there, and will not generate a warning |
1900 | // if it is not removed. |
1901 | case attr::AssertCapability: { |
1902 | const auto *A = cast<AssertCapabilityAttr>(At); |
1903 | CapExprSet AssertLocks; |
1904 | Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); |
1905 | for (const auto &AssertLock : AssertLocks) |
1906 | Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( |
1907 | AssertLock, |
1908 | A->isShared() ? LK_Shared : LK_Exclusive, |
1909 | Loc, FactEntry::Asserted)); |
1910 | break; |
1911 | } |
1912 | |
1913 | // When we encounter an unlock function, we need to remove unlocked |
1914 | // mutexes from the lockset, and flag a warning if they are not there. |
1915 | case attr::ReleaseCapability: { |
1916 | const auto *A = cast<ReleaseCapabilityAttr>(At); |
1917 | if (A->isGeneric()) |
1918 | Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); |
1919 | else if (A->isShared()) |
1920 | Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); |
1921 | else |
1922 | Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); |
1923 | break; |
1924 | } |
1925 | |
1926 | case attr::RequiresCapability: { |
1927 | const auto *A = cast<RequiresCapabilityAttr>(At); |
1928 | for (auto *Arg : A->args()) { |
1929 | Analyzer->warnIfMutexNotHeld(FSet, D, Exp, |
1930 | A->isShared() ? AK_Read : AK_Written, |
1931 | Arg, POK_FunctionCall, Self, Loc); |
1932 | // use for adopting a lock |
1933 | if (!Scp.shouldIgnore()) |
1934 | Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); |
1935 | } |
1936 | break; |
1937 | } |
1938 | |
1939 | case attr::LocksExcluded: { |
1940 | const auto *A = cast<LocksExcludedAttr>(At); |
1941 | for (auto *Arg : A->args()) { |
1942 | Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc); |
1943 | // use for deferring a lock |
1944 | if (!Scp.shouldIgnore()) |
1945 | Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); |
1946 | } |
1947 | break; |
1948 | } |
1949 | |
1950 | // Ignore attributes unrelated to thread-safety |
1951 | default: |
1952 | break; |
1953 | } |
1954 | } |
1955 | |
1956 | std::optional<CallExpr::const_arg_range> Args; |
1957 | if (Exp) { |
1958 | if (const auto *CE = dyn_cast<CallExpr>(Val: Exp)) |
1959 | Args = CE->arguments(); |
1960 | else if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: Exp)) |
1961 | Args = CE->arguments(); |
1962 | else |
1963 | llvm_unreachable("Unknown call kind"); |
1964 | } |
1965 | const auto *CalledFunction = dyn_cast<FunctionDecl>(Val: D); |
1966 | if (CalledFunction && Args.has_value()) { |
1967 | for (auto [Param, Arg] : zip(t: CalledFunction->parameters(), u&: *Args)) { |
1968 | CapExprSet DeclaredLocks; |
1969 | for (const Attr *At : Param->attrs()) { |
1970 | switch (At->getKind()) { |
1971 | case attr::AcquireCapability: { |
1972 | const auto *A = cast<AcquireCapabilityAttr>(At); |
1973 | Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd |
1974 | : ExclusiveLocksToAdd, |
1975 | A, Exp, D, Self); |
1976 | Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self); |
1977 | break; |
1978 | } |
1979 | |
1980 | case attr::ReleaseCapability: { |
1981 | const auto *A = cast<ReleaseCapabilityAttr>(At); |
1982 | if (A->isGeneric()) |
1983 | Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); |
1984 | else if (A->isShared()) |
1985 | Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); |
1986 | else |
1987 | Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); |
1988 | Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self); |
1989 | break; |
1990 | } |
1991 | |
1992 | case attr::RequiresCapability: { |
1993 | const auto *A = cast<RequiresCapabilityAttr>(At); |
1994 | for (auto *Arg : A->args()) |
1995 | Analyzer->warnIfMutexNotHeld(FSet, D, Exp, |
1996 | A->isShared() ? AK_Read : AK_Written, |
1997 | Arg, POK_FunctionCall, Self, Loc); |
1998 | Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self); |
1999 | break; |
2000 | } |
2001 | |
2002 | case attr::LocksExcluded: { |
2003 | const auto *A = cast<LocksExcludedAttr>(At); |
2004 | for (auto *Arg : A->args()) |
2005 | Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc); |
2006 | Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self); |
2007 | break; |
2008 | } |
2009 | |
2010 | default: |
2011 | break; |
2012 | } |
2013 | } |
2014 | if (DeclaredLocks.empty()) |
2015 | continue; |
2016 | CapabilityExpr Cp(Analyzer->SxBuilder.translate(S: Arg, Ctx: nullptr), |
2017 | StringRef("mutex"), /*Neg=*/false, /*Reentrant=*/false); |
2018 | if (const auto *CBTE = dyn_cast<CXXBindTemporaryExpr>(Arg->IgnoreCasts()); |
2019 | Cp.isInvalid() && CBTE) { |
2020 | if (auto Object = Analyzer->ConstructedObjects.find(CBTE->getSubExpr()); |
2021 | Object != Analyzer->ConstructedObjects.end()) |
2022 | Cp = CapabilityExpr(Object->second, StringRef("mutex"), /*Neg=*/false, |
2023 | /*Reentrant=*/false); |
2024 | } |
2025 | const FactEntry *Fact = FSet.findLock(FM&: Analyzer->FactMan, CapE: Cp); |
2026 | if (!Fact) { |
2027 | Analyzer->Handler.handleMutexNotHeld(Kind: Cp.getKind(), D, POK: POK_FunctionCall, |
2028 | LockName: Cp.toString(), LK: LK_Exclusive, |
2029 | Loc: Exp->getExprLoc()); |
2030 | continue; |
2031 | } |
2032 | const auto *Scope = cast<ScopedLockableFactEntry>(Val: Fact); |
2033 | for (const auto &[a, b] : |
2034 | zip_longest(t&: DeclaredLocks, u: Scope->getUnderlyingMutexes())) { |
2035 | if (!a.has_value()) { |
2036 | Analyzer->Handler.handleExpectFewerUnderlyingMutexes( |
2037 | Loc: Exp->getExprLoc(), DLoc: D->getLocation(), ScopeName: Scope->toString(), |
2038 | Kind: b.value().getKind(), Actual: b.value().toString()); |
2039 | } else if (!b.has_value()) { |
2040 | Analyzer->Handler.handleExpectMoreUnderlyingMutexes( |
2041 | Loc: Exp->getExprLoc(), DLoc: D->getLocation(), ScopeName: Scope->toString(), |
2042 | Kind: a.value().getKind(), Expected: a.value().toString()); |
2043 | } else if (!a.value().equals(other: b.value())) { |
2044 | Analyzer->Handler.handleUnmatchedUnderlyingMutexes( |
2045 | Loc: Exp->getExprLoc(), DLoc: D->getLocation(), ScopeName: Scope->toString(), |
2046 | Kind: a.value().getKind(), Expected: a.value().toString(), Actual: b.value().toString()); |
2047 | break; |
2048 | } |
2049 | } |
2050 | } |
2051 | } |
2052 | // Remove locks first to allow lock upgrading/downgrading. |
2053 | // FIXME -- should only fully remove if the attribute refers to 'this'. |
2054 | bool Dtor = isa<CXXDestructorDecl>(Val: D); |
2055 | for (const auto &M : ExclusiveLocksToRemove) |
2056 | Analyzer->removeLock(FSet, Cp: M, UnlockLoc: Loc, FullyRemove: Dtor, ReceivedKind: LK_Exclusive); |
2057 | for (const auto &M : SharedLocksToRemove) |
2058 | Analyzer->removeLock(FSet, Cp: M, UnlockLoc: Loc, FullyRemove: Dtor, ReceivedKind: LK_Shared); |
2059 | for (const auto &M : GenericLocksToRemove) |
2060 | Analyzer->removeLock(FSet, Cp: M, UnlockLoc: Loc, FullyRemove: Dtor, ReceivedKind: LK_Generic); |
2061 | |
2062 | // Add locks. |
2063 | FactEntry::SourceKind Source = |
2064 | !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; |
2065 | for (const auto &M : ExclusiveLocksToAdd) |
2066 | Analyzer->addLock(FSet, Entry: std::make_unique<LockableFactEntry>(args: M, args: LK_Exclusive, |
2067 | args&: Loc, args&: Source)); |
2068 | for (const auto &M : SharedLocksToAdd) |
2069 | Analyzer->addLock( |
2070 | FSet, Entry: std::make_unique<LockableFactEntry>(args: M, args: LK_Shared, args&: Loc, args&: Source)); |
2071 | |
2072 | if (!Scp.shouldIgnore()) { |
2073 | // Add the managing object as a dummy mutex, mapped to the underlying mutex. |
2074 | auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>( |
2075 | args&: Scp, args&: Loc, args: FactEntry::Acquired); |
2076 | for (const auto &M : ExclusiveLocksToAdd) |
2077 | ScopedEntry->addLock(M); |
2078 | for (const auto &M : SharedLocksToAdd) |
2079 | ScopedEntry->addLock(M); |
2080 | for (const auto &M : ScopedReqsAndExcludes) |
2081 | ScopedEntry->addLock(M); |
2082 | for (const auto &M : ExclusiveLocksToRemove) |
2083 | ScopedEntry->addExclusiveUnlock(M); |
2084 | for (const auto &M : SharedLocksToRemove) |
2085 | ScopedEntry->addSharedUnlock(M); |
2086 | Analyzer->addLock(FSet, Entry: std::move(ScopedEntry)); |
2087 | } |
2088 | } |
2089 | |
2090 | /// For unary operations which read and write a variable, we need to |
2091 | /// check whether we hold any required mutexes. Reads are checked in |
2092 | /// VisitCastExpr. |
2093 | void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { |
2094 | switch (UO->getOpcode()) { |
2095 | case UO_PostDec: |
2096 | case UO_PostInc: |
2097 | case UO_PreDec: |
2098 | case UO_PreInc: |
2099 | checkAccess(Exp: UO->getSubExpr(), AK: AK_Written); |
2100 | break; |
2101 | default: |
2102 | break; |
2103 | } |
2104 | } |
2105 | |
2106 | /// For binary operations which assign to a variable (writes), we need to check |
2107 | /// whether we hold any required mutexes. |
2108 | /// FIXME: Deal with non-primitive types. |
2109 | void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { |
2110 | if (!BO->isAssignmentOp()) |
2111 | return; |
2112 | |
2113 | // adjust the context |
2114 | LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); |
2115 | |
2116 | checkAccess(Exp: BO->getLHS(), AK: AK_Written); |
2117 | } |
2118 | |
2119 | /// Whenever we do an LValue to Rvalue cast, we are reading a variable and |
2120 | /// need to ensure we hold any required mutexes. |
2121 | /// FIXME: Deal with non-primitive types. |
2122 | void BuildLockset::VisitCastExpr(const CastExpr *CE) { |
2123 | if (CE->getCastKind() != CK_LValueToRValue) |
2124 | return; |
2125 | checkAccess(Exp: CE->getSubExpr(), AK: AK_Read); |
2126 | } |
2127 | |
2128 | void BuildLockset::examineArguments(const FunctionDecl *FD, |
2129 | CallExpr::const_arg_iterator ArgBegin, |
2130 | CallExpr::const_arg_iterator ArgEnd, |
2131 | bool SkipFirstParam) { |
2132 | // Currently we can't do anything if we don't know the function declaration. |
2133 | if (!FD) |
2134 | return; |
2135 | |
2136 | // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it |
2137 | // only turns off checking within the body of a function, but we also |
2138 | // use it to turn off checking in arguments to the function. This |
2139 | // could result in some false negatives, but the alternative is to |
2140 | // create yet another attribute. |
2141 | if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) |
2142 | return; |
2143 | |
2144 | const ArrayRef<ParmVarDecl *> Params = FD->parameters(); |
2145 | auto Param = Params.begin(); |
2146 | if (SkipFirstParam) |
2147 | ++Param; |
2148 | |
2149 | // There can be default arguments, so we stop when one iterator is at end(). |
2150 | for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; |
2151 | ++Param, ++Arg) { |
2152 | QualType Qt = (*Param)->getType(); |
2153 | if (Qt->isReferenceType()) |
2154 | checkAccess(*Arg, AK_Read, POK_PassByRef); |
2155 | else if (Qt->isPointerType()) |
2156 | checkPtAccess(*Arg, AK_Read, POK_PassPointer); |
2157 | } |
2158 | } |
2159 | |
2160 | void BuildLockset::VisitCallExpr(const CallExpr *Exp) { |
2161 | if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Val: Exp)) { |
2162 | const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); |
2163 | // ME can be null when calling a method pointer |
2164 | const CXXMethodDecl *MD = CE->getMethodDecl(); |
2165 | |
2166 | if (ME && MD) { |
2167 | if (ME->isArrow()) { |
2168 | // Should perhaps be AK_Written if !MD->isConst(). |
2169 | checkPtAccess(Exp: CE->getImplicitObjectArgument(), AK: AK_Read); |
2170 | } else { |
2171 | // Should perhaps be AK_Written if !MD->isConst(). |
2172 | checkAccess(Exp: CE->getImplicitObjectArgument(), AK: AK_Read); |
2173 | } |
2174 | } |
2175 | |
2176 | examineArguments(FD: CE->getDirectCallee(), ArgBegin: CE->arg_begin(), ArgEnd: CE->arg_end()); |
2177 | } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Val: Exp)) { |
2178 | OverloadedOperatorKind OEop = OE->getOperator(); |
2179 | switch (OEop) { |
2180 | case OO_Equal: |
2181 | case OO_PlusEqual: |
2182 | case OO_MinusEqual: |
2183 | case OO_StarEqual: |
2184 | case OO_SlashEqual: |
2185 | case OO_PercentEqual: |
2186 | case OO_CaretEqual: |
2187 | case OO_AmpEqual: |
2188 | case OO_PipeEqual: |
2189 | case OO_LessLessEqual: |
2190 | case OO_GreaterGreaterEqual: |
2191 | checkAccess(Exp: OE->getArg(1), AK: AK_Read); |
2192 | [[fallthrough]]; |
2193 | case OO_PlusPlus: |
2194 | case OO_MinusMinus: |
2195 | checkAccess(Exp: OE->getArg(0), AK: AK_Written); |
2196 | break; |
2197 | case OO_Star: |
2198 | case OO_ArrowStar: |
2199 | case OO_Arrow: |
2200 | case OO_Subscript: |
2201 | if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { |
2202 | // Grrr. operator* can be multiplication... |
2203 | checkPtAccess(Exp: OE->getArg(0), AK: AK_Read); |
2204 | } |
2205 | [[fallthrough]]; |
2206 | default: { |
2207 | // TODO: get rid of this, and rely on pass-by-ref instead. |
2208 | const Expr *Obj = OE->getArg(0); |
2209 | checkAccess(Exp: Obj, AK: AK_Read); |
2210 | // Check the remaining arguments. For method operators, the first |
2211 | // argument is the implicit self argument, and doesn't appear in the |
2212 | // FunctionDecl, but for non-methods it does. |
2213 | const FunctionDecl *FD = OE->getDirectCallee(); |
2214 | examineArguments(FD, ArgBegin: std::next(OE->arg_begin()), ArgEnd: OE->arg_end(), |
2215 | /*SkipFirstParam*/ !isa<CXXMethodDecl>(Val: FD)); |
2216 | break; |
2217 | } |
2218 | } |
2219 | } else { |
2220 | examineArguments(FD: Exp->getDirectCallee(), ArgBegin: Exp->arg_begin(), ArgEnd: Exp->arg_end()); |
2221 | } |
2222 | |
2223 | auto *D = dyn_cast_or_null<NamedDecl>(Val: Exp->getCalleeDecl()); |
2224 | if (!D) |
2225 | return; |
2226 | handleCall(Exp, D); |
2227 | } |
2228 | |
2229 | void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { |
2230 | const CXXConstructorDecl *D = Exp->getConstructor(); |
2231 | if (D && D->isCopyConstructor()) { |
2232 | const Expr* Source = Exp->getArg(Arg: 0); |
2233 | checkAccess(Exp: Source, AK: AK_Read); |
2234 | } else { |
2235 | examineArguments(FD: D, ArgBegin: Exp->arg_begin(), ArgEnd: Exp->arg_end()); |
2236 | } |
2237 | if (D && D->hasAttrs()) |
2238 | handleCall(Exp, D); |
2239 | } |
2240 | |
2241 | static const Expr *UnpackConstruction(const Expr *E) { |
2242 | if (auto *CE = dyn_cast<CastExpr>(Val: E)) |
2243 | if (CE->getCastKind() == CK_NoOp) |
2244 | E = CE->getSubExpr()->IgnoreParens(); |
2245 | if (auto *CE = dyn_cast<CastExpr>(Val: E)) |
2246 | if (CE->getCastKind() == CK_ConstructorConversion || |
2247 | CE->getCastKind() == CK_UserDefinedConversion) |
2248 | E = CE->getSubExpr(); |
2249 | if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
2250 | E = BTE->getSubExpr(); |
2251 | return E; |
2252 | } |
2253 | |
2254 | void BuildLockset::VisitDeclStmt(const DeclStmt *S) { |
2255 | // adjust the context |
2256 | LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, C: LVarCtx); |
2257 | |
2258 | for (auto *D : S->getDeclGroup()) { |
2259 | if (auto *VD = dyn_cast_or_null<VarDecl>(Val: D)) { |
2260 | const Expr *E = VD->getInit(); |
2261 | if (!E) |
2262 | continue; |
2263 | E = E->IgnoreParens(); |
2264 | |
2265 | // handle constructors that involve temporaries |
2266 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: E)) |
2267 | E = EWC->getSubExpr()->IgnoreParens(); |
2268 | E = UnpackConstruction(E); |
2269 | |
2270 | if (auto Object = Analyzer->ConstructedObjects.find(Val: E); |
2271 | Object != Analyzer->ConstructedObjects.end()) { |
2272 | Object->second->setClangDecl(VD); |
2273 | Analyzer->ConstructedObjects.erase(I: Object); |
2274 | } |
2275 | } |
2276 | } |
2277 | } |
2278 | |
2279 | void BuildLockset::VisitMaterializeTemporaryExpr( |
2280 | const MaterializeTemporaryExpr *Exp) { |
2281 | if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { |
2282 | if (auto Object = Analyzer->ConstructedObjects.find( |
2283 | Val: UnpackConstruction(E: Exp->getSubExpr())); |
2284 | Object != Analyzer->ConstructedObjects.end()) { |
2285 | Object->second->setClangDecl(ExtD); |
2286 | Analyzer->ConstructedObjects.erase(I: Object); |
2287 | } |
2288 | } |
2289 | } |
2290 | |
2291 | void BuildLockset::VisitReturnStmt(const ReturnStmt *S) { |
2292 | if (Analyzer->CurrentFunction == nullptr) |
2293 | return; |
2294 | const Expr *RetVal = S->getRetValue(); |
2295 | if (!RetVal) |
2296 | return; |
2297 | |
2298 | // If returning by reference or pointer, check that the function requires the |
2299 | // appropriate capabilities. |
2300 | const QualType ReturnType = |
2301 | Analyzer->CurrentFunction->getReturnType().getCanonicalType(); |
2302 | if (ReturnType->isLValueReferenceType()) { |
2303 | Analyzer->checkAccess( |
2304 | FSet: FunctionExitFSet, Exp: RetVal, |
2305 | AK: ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written, |
2306 | POK: POK_ReturnByRef); |
2307 | } else if (ReturnType->isPointerType()) { |
2308 | Analyzer->checkPtAccess( |
2309 | FSet: FunctionExitFSet, Exp: RetVal, |
2310 | AK: ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written, |
2311 | POK: POK_ReturnPointer); |
2312 | } |
2313 | } |
2314 | |
2315 | /// Given two facts merging on a join point, possibly warn and decide whether to |
2316 | /// keep or replace. |
2317 | /// |
2318 | /// \return false if we should keep \p A, true if we should take \p B. |
2319 | bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, |
2320 | SourceLocation JoinLoc, |
2321 | LockErrorKind EntryLEK) { |
2322 | // Whether we can replace \p A by \p B. |
2323 | const bool CanModify = EntryLEK != LEK_LockedSomeLoopIterations; |
2324 | unsigned int ReentrancyDepthA = 0; |
2325 | unsigned int ReentrancyDepthB = 0; |
2326 | |
2327 | if (const auto *LFE = dyn_cast<LockableFactEntry>(Val: &A)) |
2328 | ReentrancyDepthA = LFE->getReentrancyDepth(); |
2329 | if (const auto *LFE = dyn_cast<LockableFactEntry>(Val: &B)) |
2330 | ReentrancyDepthB = LFE->getReentrancyDepth(); |
2331 | |
2332 | if (ReentrancyDepthA != ReentrancyDepthB) { |
2333 | Handler.handleMutexHeldEndOfScope(Kind: B.getKind(), LockName: B.toString(), LocLocked: B.loc(), |
2334 | LocEndOfScope: JoinLoc, LEK: EntryLEK, |
2335 | /*ReentrancyMismatch=*/true); |
2336 | // Pick the FactEntry with the greater reentrancy depth as the "good" |
2337 | // fact to reduce potential later warnings. |
2338 | return CanModify && ReentrancyDepthA < ReentrancyDepthB; |
2339 | } else if (A.kind() != B.kind()) { |
2340 | // For managed capabilities, the destructor should unlock in the right mode |
2341 | // anyway. For asserted capabilities no unlocking is needed. |
2342 | if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { |
2343 | // The shared capability subsumes the exclusive capability, if possible. |
2344 | bool ShouldTakeB = B.kind() == LK_Shared; |
2345 | if (CanModify || !ShouldTakeB) |
2346 | return ShouldTakeB; |
2347 | } |
2348 | Handler.handleExclusiveAndShared(Kind: B.getKind(), LockName: B.toString(), Loc1: B.loc(), |
2349 | Loc2: A.loc()); |
2350 | // Take the exclusive capability to reduce further warnings. |
2351 | return CanModify && B.kind() == LK_Exclusive; |
2352 | } else { |
2353 | // The non-asserted capability is the one we want to track. |
2354 | return CanModify && A.asserted() && !B.asserted(); |
2355 | } |
2356 | } |
2357 | |
2358 | /// Compute the intersection of two locksets and issue warnings for any |
2359 | /// locks in the symmetric difference. |
2360 | /// |
2361 | /// This function is used at a merge point in the CFG when comparing the lockset |
2362 | /// of each branch being merged. For example, given the following sequence: |
2363 | /// A; if () then B; else C; D; we need to check that the lockset after B and C |
2364 | /// are the same. In the event of a difference, we use the intersection of these |
2365 | /// two locksets at the start of D. |
2366 | /// |
2367 | /// \param EntrySet A lockset for entry into a (possibly new) block. |
2368 | /// \param ExitSet The lockset on exiting a preceding block. |
2369 | /// \param JoinLoc The location of the join point for error reporting |
2370 | /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. |
2371 | /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. |
2372 | void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, |
2373 | const FactSet &ExitSet, |
2374 | SourceLocation JoinLoc, |
2375 | LockErrorKind EntryLEK, |
2376 | LockErrorKind ExitLEK) { |
2377 | FactSet EntrySetOrig = EntrySet; |
2378 | |
2379 | // Find locks in ExitSet that conflict or are not in EntrySet, and warn. |
2380 | for (const auto &Fact : ExitSet) { |
2381 | const FactEntry &ExitFact = FactMan[Fact]; |
2382 | |
2383 | FactSet::iterator EntryIt = EntrySet.findLockIter(FM&: FactMan, CapE: ExitFact); |
2384 | if (EntryIt != EntrySet.end()) { |
2385 | if (join(A: FactMan[*EntryIt], B: ExitFact, JoinLoc, EntryLEK)) |
2386 | *EntryIt = Fact; |
2387 | } else if (!ExitFact.managed() || EntryLEK == LEK_LockedAtEndOfFunction) { |
2388 | ExitFact.handleRemovalFromIntersection(FSet: ExitSet, FactMan, JoinLoc, |
2389 | LEK: EntryLEK, Handler); |
2390 | } |
2391 | } |
2392 | |
2393 | // Find locks in EntrySet that are not in ExitSet, and remove them. |
2394 | for (const auto &Fact : EntrySetOrig) { |
2395 | const FactEntry *EntryFact = &FactMan[Fact]; |
2396 | const FactEntry *ExitFact = ExitSet.findLock(FM&: FactMan, CapE: *EntryFact); |
2397 | |
2398 | if (!ExitFact) { |
2399 | if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations || |
2400 | ExitLEK == LEK_NotLockedAtEndOfFunction) |
2401 | EntryFact->handleRemovalFromIntersection(FSet: EntrySetOrig, FactMan, JoinLoc, |
2402 | LEK: ExitLEK, Handler); |
2403 | if (ExitLEK == LEK_LockedSomePredecessors) |
2404 | EntrySet.removeLock(FM&: FactMan, CapE: *EntryFact); |
2405 | } |
2406 | } |
2407 | } |
2408 | |
2409 | // Return true if block B never continues to its successors. |
2410 | static bool neverReturns(const CFGBlock *B) { |
2411 | if (B->hasNoReturnElement()) |
2412 | return true; |
2413 | if (B->empty()) |
2414 | return false; |
2415 | |
2416 | CFGElement Last = B->back(); |
2417 | if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) { |
2418 | if (isa<CXXThrowExpr>(Val: S->getStmt())) |
2419 | return true; |
2420 | } |
2421 | return false; |
2422 | } |
2423 | |
2424 | /// Check a function's CFG for thread-safety violations. |
2425 | /// |
2426 | /// We traverse the blocks in the CFG, compute the set of mutexes that are held |
2427 | /// at the end of each block, and issue warnings for thread safety violations. |
2428 | /// Each block in the CFG is traversed exactly once. |
2429 | void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { |
2430 | // TODO: this whole function needs be rewritten as a visitor for CFGWalker. |
2431 | // For now, we just use the walker to set things up. |
2432 | threadSafety::CFGWalker walker; |
2433 | if (!walker.init(AC)) |
2434 | return; |
2435 | |
2436 | // AC.dumpCFG(true); |
2437 | // threadSafety::printSCFG(walker); |
2438 | |
2439 | CFG *CFGraph = walker.getGraph(); |
2440 | const NamedDecl *D = walker.getDecl(); |
2441 | CurrentFunction = dyn_cast<FunctionDecl>(Val: D); |
2442 | |
2443 | if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) |
2444 | return; |
2445 | |
2446 | // FIXME: Do something a bit more intelligent inside constructor and |
2447 | // destructor code. Constructors and destructors must assume unique access |
2448 | // to 'this', so checks on member variable access is disabled, but we should |
2449 | // still enable checks on other objects. |
2450 | if (isa<CXXConstructorDecl>(Val: D)) |
2451 | return; // Don't check inside constructors. |
2452 | if (isa<CXXDestructorDecl>(Val: D)) |
2453 | return; // Don't check inside destructors. |
2454 | |
2455 | Handler.enterFunction(FD: CurrentFunction); |
2456 | |
2457 | BlockInfo.resize(new_size: CFGraph->getNumBlockIDs(), |
2458 | x: CFGBlockInfo::getEmptyBlockInfo(M&: LocalVarMap)); |
2459 | |
2460 | // We need to explore the CFG via a "topological" ordering. |
2461 | // That way, we will be guaranteed to have information about required |
2462 | // predecessor locksets when exploring a new block. |
2463 | const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); |
2464 | PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
2465 | |
2466 | CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()]; |
2467 | CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()]; |
2468 | |
2469 | // Mark entry block as reachable |
2470 | Initial.Reachable = true; |
2471 | |
2472 | // Compute SSA names for local variables |
2473 | LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); |
2474 | |
2475 | // Fill in source locations for all CFGBlocks. |
2476 | findBlockLocations(CFGraph, SortedGraph, BlockInfo); |
2477 | |
2478 | CapExprSet ExclusiveLocksAcquired; |
2479 | CapExprSet SharedLocksAcquired; |
2480 | CapExprSet LocksReleased; |
2481 | |
2482 | // Add locks from exclusive_locks_required and shared_locks_required |
2483 | // to initial lockset. Also turn off checking for lock and unlock functions. |
2484 | // FIXME: is there a more intelligent way to check lock/unlock functions? |
2485 | if (!SortedGraph->empty()) { |
2486 | assert(*SortedGraph->begin() == &CFGraph->getEntry()); |
2487 | FactSet &InitialLockset = Initial.EntrySet; |
2488 | |
2489 | CapExprSet ExclusiveLocksToAdd; |
2490 | CapExprSet SharedLocksToAdd; |
2491 | |
2492 | SourceLocation Loc = D->getLocation(); |
2493 | for (const auto *Attr : D->attrs()) { |
2494 | Loc = Attr->getLocation(); |
2495 | if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { |
2496 | getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, |
2497 | nullptr, D); |
2498 | } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { |
2499 | // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. |
2500 | // We must ignore such methods. |
2501 | if (A->args_size() == 0) |
2502 | return; |
2503 | getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, |
2504 | nullptr, D); |
2505 | getMutexIDs(LocksReleased, A, nullptr, D); |
2506 | } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { |
2507 | if (A->args_size() == 0) |
2508 | return; |
2509 | getMutexIDs(A->isShared() ? SharedLocksAcquired |
2510 | : ExclusiveLocksAcquired, |
2511 | A, nullptr, D); |
2512 | } else if (isa<TryAcquireCapabilityAttr>(Attr)) { |
2513 | // Don't try to check trylock functions for now. |
2514 | return; |
2515 | } |
2516 | } |
2517 | ArrayRef<ParmVarDecl *> Params; |
2518 | if (CurrentFunction) |
2519 | Params = CurrentFunction->getCanonicalDecl()->parameters(); |
2520 | else if (auto CurrentMethod = dyn_cast<ObjCMethodDecl>(Val: D)) |
2521 | Params = CurrentMethod->getCanonicalDecl()->parameters(); |
2522 | else |
2523 | llvm_unreachable("Unknown function kind"); |
2524 | for (const ParmVarDecl *Param : Params) { |
2525 | CapExprSet UnderlyingLocks; |
2526 | for (const auto *Attr : Param->attrs()) { |
2527 | Loc = Attr->getLocation(); |
2528 | if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { |
2529 | getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, |
2530 | nullptr, Param); |
2531 | getMutexIDs(LocksReleased, A, nullptr, Param); |
2532 | getMutexIDs(UnderlyingLocks, A, nullptr, Param); |
2533 | } else if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { |
2534 | getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, |
2535 | nullptr, Param); |
2536 | getMutexIDs(UnderlyingLocks, A, nullptr, Param); |
2537 | } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { |
2538 | getMutexIDs(A->isShared() ? SharedLocksAcquired |
2539 | : ExclusiveLocksAcquired, |
2540 | A, nullptr, Param); |
2541 | getMutexIDs(UnderlyingLocks, A, nullptr, Param); |
2542 | } else if (const auto *A = dyn_cast<LocksExcludedAttr>(Attr)) { |
2543 | getMutexIDs(UnderlyingLocks, A, nullptr, Param); |
2544 | } |
2545 | } |
2546 | if (UnderlyingLocks.empty()) |
2547 | continue; |
2548 | CapabilityExpr Cp(SxBuilder.createVariable(Param), StringRef(), |
2549 | /*Neg=*/false, /*Reentrant=*/false); |
2550 | auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>( |
2551 | Cp, Param->getLocation(), FactEntry::Declared); |
2552 | for (const CapabilityExpr &M : UnderlyingLocks) |
2553 | ScopedEntry->addLock(M); |
2554 | addLock(FSet&: InitialLockset, Entry: std::move(ScopedEntry), ReqAttr: true); |
2555 | } |
2556 | |
2557 | // FIXME -- Loc can be wrong here. |
2558 | for (const auto &Mu : ExclusiveLocksToAdd) { |
2559 | auto Entry = std::make_unique<LockableFactEntry>(args: Mu, args: LK_Exclusive, args&: Loc, |
2560 | args: FactEntry::Declared); |
2561 | addLock(FSet&: InitialLockset, Entry: std::move(Entry), ReqAttr: true); |
2562 | } |
2563 | for (const auto &Mu : SharedLocksToAdd) { |
2564 | auto Entry = std::make_unique<LockableFactEntry>(args: Mu, args: LK_Shared, args&: Loc, |
2565 | args: FactEntry::Declared); |
2566 | addLock(FSet&: InitialLockset, Entry: std::move(Entry), ReqAttr: true); |
2567 | } |
2568 | } |
2569 | |
2570 | // Compute the expected exit set. |
2571 | // By default, we expect all locks held on entry to be held on exit. |
2572 | FactSet ExpectedFunctionExitSet = Initial.EntrySet; |
2573 | |
2574 | // Adjust the expected exit set by adding or removing locks, as declared |
2575 | // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then |
2576 | // issue the appropriate warning. |
2577 | // FIXME: the location here is not quite right. |
2578 | for (const auto &Lock : ExclusiveLocksAcquired) |
2579 | ExpectedFunctionExitSet.addLock( |
2580 | FM&: FactMan, Entry: std::make_unique<LockableFactEntry>(Lock, LK_Exclusive, |
2581 | D->getLocation())); |
2582 | for (const auto &Lock : SharedLocksAcquired) |
2583 | ExpectedFunctionExitSet.addLock( |
2584 | FM&: FactMan, |
2585 | Entry: std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation())); |
2586 | for (const auto &Lock : LocksReleased) |
2587 | ExpectedFunctionExitSet.removeLock(FM&: FactMan, CapE: Lock); |
2588 | |
2589 | for (const auto *CurrBlock : *SortedGraph) { |
2590 | unsigned CurrBlockID = CurrBlock->getBlockID(); |
2591 | CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; |
2592 | |
2593 | // Use the default initial lockset in case there are no predecessors. |
2594 | VisitedBlocks.insert(Block: CurrBlock); |
2595 | |
2596 | // Iterate through the predecessor blocks and warn if the lockset for all |
2597 | // predecessors is not the same. We take the entry lockset of the current |
2598 | // block to be the intersection of all previous locksets. |
2599 | // FIXME: By keeping the intersection, we may output more errors in future |
2600 | // for a lock which is not in the intersection, but was in the union. We |
2601 | // may want to also keep the union in future. As an example, let's say |
2602 | // the intersection contains Mutex L, and the union contains L and M. |
2603 | // Later we unlock M. At this point, we would output an error because we |
2604 | // never locked M; although the real error is probably that we forgot to |
2605 | // lock M on all code paths. Conversely, let's say that later we lock M. |
2606 | // In this case, we should compare against the intersection instead of the |
2607 | // union because the real error is probably that we forgot to unlock M on |
2608 | // all code paths. |
2609 | bool LocksetInitialized = false; |
2610 | for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), |
2611 | PE = CurrBlock->pred_end(); PI != PE; ++PI) { |
2612 | // if *PI -> CurrBlock is a back edge |
2613 | if (*PI == nullptr || !VisitedBlocks.alreadySet(Block: *PI)) |
2614 | continue; |
2615 | |
2616 | unsigned PrevBlockID = (*PI)->getBlockID(); |
2617 | CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
2618 | |
2619 | // Ignore edges from blocks that can't return. |
2620 | if (neverReturns(B: *PI) || !PrevBlockInfo->Reachable) |
2621 | continue; |
2622 | |
2623 | // Okay, we can reach this block from the entry. |
2624 | CurrBlockInfo->Reachable = true; |
2625 | |
2626 | FactSet PrevLockset; |
2627 | getEdgeLockset(Result&: PrevLockset, ExitSet: PrevBlockInfo->ExitSet, PredBlock: *PI, CurrBlock); |
2628 | |
2629 | if (!LocksetInitialized) { |
2630 | CurrBlockInfo->EntrySet = PrevLockset; |
2631 | LocksetInitialized = true; |
2632 | } else { |
2633 | // Surprisingly 'continue' doesn't always produce back edges, because |
2634 | // the CFG has empty "transition" blocks where they meet with the end |
2635 | // of the regular loop body. We still want to diagnose them as loop. |
2636 | intersectAndWarn( |
2637 | EntrySet&: CurrBlockInfo->EntrySet, ExitSet: PrevLockset, JoinLoc: CurrBlockInfo->EntryLoc, |
2638 | LEK: isa_and_nonnull<ContinueStmt>(Val: (*PI)->getTerminatorStmt()) |
2639 | ? LEK_LockedSomeLoopIterations |
2640 | : LEK_LockedSomePredecessors); |
2641 | } |
2642 | } |
2643 | |
2644 | // Skip rest of block if it's not reachable. |
2645 | if (!CurrBlockInfo->Reachable) |
2646 | continue; |
2647 | |
2648 | BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet); |
2649 | |
2650 | // Visit all the statements in the basic block. |
2651 | for (const auto &BI : *CurrBlock) { |
2652 | switch (BI.getKind()) { |
2653 | case CFGElement::Statement: { |
2654 | CFGStmt CS = BI.castAs<CFGStmt>(); |
2655 | LocksetBuilder.Visit(CS.getStmt()); |
2656 | break; |
2657 | } |
2658 | // Ignore BaseDtor and MemberDtor for now. |
2659 | case CFGElement::AutomaticObjectDtor: { |
2660 | CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); |
2661 | const auto *DD = AD.getDestructorDecl(astContext&: AC.getASTContext()); |
2662 | if (!DD->hasAttrs()) |
2663 | break; |
2664 | |
2665 | LocksetBuilder.handleCall(nullptr, DD, |
2666 | SxBuilder.createVariable(VD: AD.getVarDecl()), |
2667 | AD.getTriggerStmt()->getEndLoc()); |
2668 | break; |
2669 | } |
2670 | |
2671 | case CFGElement::CleanupFunction: { |
2672 | const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>(); |
2673 | LocksetBuilder.handleCall(/*Exp=*/nullptr, D: CF.getFunctionDecl(), |
2674 | Self: SxBuilder.createVariable(VD: CF.getVarDecl()), |
2675 | Loc: CF.getVarDecl()->getLocation()); |
2676 | break; |
2677 | } |
2678 | |
2679 | case CFGElement::TemporaryDtor: { |
2680 | auto TD = BI.castAs<CFGTemporaryDtor>(); |
2681 | |
2682 | // Clean up constructed object even if there are no attributes to |
2683 | // keep the number of objects in limbo as small as possible. |
2684 | if (auto Object = ConstructedObjects.find( |
2685 | Val: TD.getBindTemporaryExpr()->getSubExpr()); |
2686 | Object != ConstructedObjects.end()) { |
2687 | const auto *DD = TD.getDestructorDecl(astContext&: AC.getASTContext()); |
2688 | if (DD->hasAttrs()) |
2689 | // TODO: the location here isn't quite correct. |
2690 | LocksetBuilder.handleCall(nullptr, DD, Object->second, |
2691 | TD.getBindTemporaryExpr()->getEndLoc()); |
2692 | ConstructedObjects.erase(I: Object); |
2693 | } |
2694 | break; |
2695 | } |
2696 | default: |
2697 | break; |
2698 | } |
2699 | } |
2700 | CurrBlockInfo->ExitSet = LocksetBuilder.FSet; |
2701 | |
2702 | // For every back edge from CurrBlock (the end of the loop) to another block |
2703 | // (FirstLoopBlock) we need to check that the Lockset of Block is equal to |
2704 | // the one held at the beginning of FirstLoopBlock. We can look up the |
2705 | // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. |
2706 | for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
2707 | SE = CurrBlock->succ_end(); SI != SE; ++SI) { |
2708 | // if CurrBlock -> *SI is *not* a back edge |
2709 | if (*SI == nullptr || !VisitedBlocks.alreadySet(Block: *SI)) |
2710 | continue; |
2711 | |
2712 | CFGBlock *FirstLoopBlock = *SI; |
2713 | CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; |
2714 | CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; |
2715 | intersectAndWarn(EntrySet&: PreLoop->EntrySet, ExitSet: LoopEnd->ExitSet, JoinLoc: PreLoop->EntryLoc, |
2716 | LEK: LEK_LockedSomeLoopIterations); |
2717 | } |
2718 | } |
2719 | |
2720 | // Skip the final check if the exit block is unreachable. |
2721 | if (!Final.Reachable) |
2722 | return; |
2723 | |
2724 | // FIXME: Should we call this function for all blocks which exit the function? |
2725 | intersectAndWarn(EntrySet&: ExpectedFunctionExitSet, ExitSet: Final.ExitSet, JoinLoc: Final.ExitLoc, |
2726 | EntryLEK: LEK_LockedAtEndOfFunction, ExitLEK: LEK_NotLockedAtEndOfFunction); |
2727 | |
2728 | Handler.leaveFunction(FD: CurrentFunction); |
2729 | } |
2730 | |
2731 | /// Check a function's CFG for thread-safety violations. |
2732 | /// |
2733 | /// We traverse the blocks in the CFG, compute the set of mutexes that are held |
2734 | /// at the end of each block, and issue warnings for thread safety violations. |
2735 | /// Each block in the CFG is traversed exactly once. |
2736 | void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, |
2737 | ThreadSafetyHandler &Handler, |
2738 | BeforeSet **BSet) { |
2739 | if (!*BSet) |
2740 | *BSet = new BeforeSet; |
2741 | ThreadSafetyAnalyzer Analyzer(Handler, *BSet); |
2742 | Analyzer.runAnalysis(AC); |
2743 | } |
2744 | |
2745 | void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } |
2746 | |
2747 | /// Helper function that returns a LockKind required for the given level |
2748 | /// of access. |
2749 | LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { |
2750 | switch (AK) { |
2751 | case AK_Read : |
2752 | return LK_Shared; |
2753 | case AK_Written : |
2754 | return LK_Exclusive; |
2755 | } |
2756 | llvm_unreachable("Unknown AccessKind"); |
2757 | } |
2758 |
Definitions
- ~ThreadSafetyHandler
- warnInvalidLock
- CapExprSet
- push_back_nodup
- FactEntry
- FactEntryKind
- SourceKind
- FactEntry
- ~FactEntry
- kind
- loc
- getFactEntryKind
- asserted
- declared
- managed
- isAtLeast
- FactManager
- newFact
- operator[]
- FactSet
- begin
- begin
- end
- end
- isEmpty
- isEmpty
- addLockByID
- addLock
- removeLock
- replaceLock
- replaceLock
- findLockIter
- findLock
- findLockUniv
- findPartialMatch
- containsMutexDecl
- BeforeSet
- BeforeInfo
- BeforeInfo
- BeforeInfo
- BeforeSet
- CFGBlockSide
- CFGBlockInfo
- getSet
- getLocation
- CFGBlockInfo
- LocalVariableMap
- VarDefinition
- isReference
- VarDefinition
- VarDefinition
- LocalVariableMap
- lookup
- lookupExpr
- getEmptyContext
- getNextContext
- dumpVarDefinitionName
- dump
- dumpContext
- getContextIndex
- saveContext
- addDefinition
- addReference
- updateDefinition
- clearDefinition
- removeDefinition
- getEmptyBlockInfo
- VarMapBuilder
- VarMapBuilder
- VisitDeclStmt
- VisitBinaryOperator
- intersectContexts
- createReferenceContext
- intersectBackEdge
- traverseCFG
- findBlockLocations
- LockableFactEntry
- LockableFactEntry
- getReentrancyDepth
- handleRemovalFromIntersection
- handleLock
- handleUnlock
- tryReenter
- leaveReentrant
- classof
- ScopedLockableFactEntry
- UnderlyingCapabilityKind
- UnderlyingCapability
- ScopedLockableFactEntry
- getUnderlyingMutexes
- addLock
- addExclusiveUnlock
- addSharedUnlock
- handleRemovalFromIntersection
- handleLock
- handleUnlock
- classof
- lock
- unlock
- ThreadSafetyAnalyzer
- ThreadSafetyAnalyzer
- intersectAndWarn
- insertAttrExprs
- getBeforeInfoForDecl
- checkBeforeAfter
- getValueDecl
- inCurrentScope
- addLock
- removeLock
- getMutexIDs
- getMutexIDs
- getStaticBooleanValue
- getTrylockCallExpr
- getEdgeLockset
- BuildLockset
- checkAccess
- checkPtAccess
- BuildLockset
- warnIfMutexNotHeld
- warnIfMutexHeld
- checkAccess
- checkPtAccess
- handleCall
- VisitUnaryOperator
- VisitBinaryOperator
- VisitCastExpr
- examineArguments
- VisitCallExpr
- VisitCXXConstructExpr
- UnpackConstruction
- VisitDeclStmt
- VisitMaterializeTemporaryExpr
- VisitReturnStmt
- join
- intersectAndWarn
- neverReturns
- runAnalysis
- runThreadSafetyAnalysis
- threadSafetyCleanup
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more