1//===- IdentifierTable.cpp - Hash table for identifier lookup -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the IdentifierInfo, IdentifierVisitor, and
10// IdentifierTable interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Basic/IdentifierTable.h"
15#include "clang/Basic/CharInfo.h"
16#include "clang/Basic/DiagnosticLex.h"
17#include "clang/Basic/LangOptions.h"
18#include "clang/Basic/OperatorKinds.h"
19#include "clang/Basic/Specifiers.h"
20#include "clang/Basic/TargetBuiltins.h"
21#include "clang/Basic/TokenKinds.h"
22#include "llvm/ADT/DenseMapInfo.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/StringMap.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/Support/Allocator.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstdio>
31#include <cstring>
32#include <string>
33
34using namespace clang;
35
36// A check to make sure the ObjCOrBuiltinID has sufficient room to store the
37// largest possible target/aux-target combination. If we exceed this, we likely
38// need to just change the ObjCOrBuiltinIDBits value in IdentifierTable.h.
39static_assert(2 * LargestBuiltinID < (2 << (InterestingIdentifierBits - 1)),
40 "Insufficient ObjCOrBuiltinID Bits");
41
42//===----------------------------------------------------------------------===//
43// IdentifierTable Implementation
44//===----------------------------------------------------------------------===//
45
46IdentifierIterator::~IdentifierIterator() = default;
47
48IdentifierInfoLookup::~IdentifierInfoLookup() = default;
49
50namespace {
51
52/// A simple identifier lookup iterator that represents an
53/// empty sequence of identifiers.
54class EmptyLookupIterator : public IdentifierIterator {
55public:
56 StringRef Next() override { return StringRef(); }
57};
58
59} // namespace
60
61IdentifierIterator *IdentifierInfoLookup::getIdentifiers() {
62 return new EmptyLookupIterator();
63}
64
65IdentifierTable::IdentifierTable(IdentifierInfoLookup *ExternalLookup)
66 : HashTable(8192), // Start with space for 8K identifiers.
67 ExternalLookup(ExternalLookup) {}
68
69IdentifierTable::IdentifierTable(const LangOptions &LangOpts,
70 IdentifierInfoLookup *ExternalLookup)
71 : IdentifierTable(ExternalLookup) {
72 // Populate the identifier table with info about keywords for the current
73 // language.
74 AddKeywords(LangOpts);
75}
76
77//===----------------------------------------------------------------------===//
78// Language Keyword Implementation
79//===----------------------------------------------------------------------===//
80
81// Constants for TokenKinds.def
82namespace {
83
84 enum TokenKey : unsigned {
85 KEYC99 = 0x1,
86 KEYCXX = 0x2,
87 KEYCXX11 = 0x4,
88 KEYGNU = 0x8,
89 KEYMS = 0x10,
90 BOOLSUPPORT = 0x20,
91 KEYALTIVEC = 0x40,
92 KEYNOCXX = 0x80,
93 KEYBORLAND = 0x100,
94 KEYOPENCLC = 0x200,
95 KEYC23 = 0x400,
96 KEYNOMS18 = 0x800,
97 KEYNOOPENCL = 0x1000,
98 WCHARSUPPORT = 0x2000,
99 HALFSUPPORT = 0x4000,
100 CHAR8SUPPORT = 0x8000,
101 KEYOBJC = 0x10000,
102 KEYZVECTOR = 0x20000,
103 KEYCOROUTINES = 0x40000,
104 KEYMODULES = 0x80000,
105 KEYCXX20 = 0x100000,
106 KEYOPENCLCXX = 0x200000,
107 KEYMSCOMPAT = 0x400000,
108 KEYSYCL = 0x800000,
109 KEYCUDA = 0x1000000,
110 KEYHLSL = 0x2000000,
111 KEYFIXEDPOINT = 0x4000000,
112 KEYMAX = KEYFIXEDPOINT, // The maximum key
113 KEYALLCXX = KEYCXX | KEYCXX11 | KEYCXX20,
114 KEYALL = (KEYMAX | (KEYMAX-1)) & ~KEYNOMS18 &
115 ~KEYNOOPENCL // KEYNOMS18 and KEYNOOPENCL are used to exclude.
116 };
117
118 /// How a keyword is treated in the selected standard. This enum is ordered
119 /// intentionally so that the value that 'wins' is the most 'permissive'.
120 enum KeywordStatus {
121 KS_Unknown, // Not yet calculated. Used when figuring out the status.
122 KS_Disabled, // Disabled
123 KS_Future, // Is a keyword in future standard
124 KS_Extension, // Is an extension
125 KS_Enabled, // Enabled
126 };
127
128} // namespace
129
130// This works on a single TokenKey flag and checks the LangOpts to get the
131// KeywordStatus based exclusively on this flag, so that it can be merged in
132// getKeywordStatus. Most should be enabled/disabled, but some might imply
133// 'future' versions, or extensions. Returns 'unknown' unless this is KNOWN to
134// be disabled, and the calling function makes it 'disabled' if no other flag
135// changes it. This is necessary for the KEYNOCXX and KEYNOOPENCL flags.
136static KeywordStatus getKeywordStatusHelper(const LangOptions &LangOpts,
137 TokenKey Flag) {
138 // Flag is a single bit version of TokenKey (that is, not
139 // KEYALL/KEYALLCXX/etc), so we can check with == throughout this function.
140 assert((Flag & ~(Flag - 1)) == Flag && "Multiple bits set?");
141
142 switch (Flag) {
143 case KEYC99:
144 if (LangOpts.C99)
145 return KS_Enabled;
146 return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown;
147 case KEYC23:
148 if (LangOpts.C23)
149 return KS_Enabled;
150 return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown;
151 case KEYCXX:
152 return LangOpts.CPlusPlus ? KS_Enabled : KS_Unknown;
153 case KEYCXX11:
154 if (LangOpts.CPlusPlus11)
155 return KS_Enabled;
156 return LangOpts.CPlusPlus ? KS_Future : KS_Unknown;
157 case KEYCXX20:
158 if (LangOpts.CPlusPlus20)
159 return KS_Enabled;
160 return LangOpts.CPlusPlus ? KS_Future : KS_Unknown;
161 case KEYGNU:
162 return LangOpts.GNUKeywords ? KS_Extension : KS_Unknown;
163 case KEYMS:
164 return LangOpts.MicrosoftExt ? KS_Extension : KS_Unknown;
165 case BOOLSUPPORT:
166 if (LangOpts.Bool) return KS_Enabled;
167 return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown;
168 case KEYALTIVEC:
169 return LangOpts.AltiVec ? KS_Enabled : KS_Unknown;
170 case KEYBORLAND:
171 return LangOpts.Borland ? KS_Extension : KS_Unknown;
172 case KEYOPENCLC:
173 return LangOpts.OpenCL && !LangOpts.OpenCLCPlusPlus ? KS_Enabled
174 : KS_Unknown;
175 case WCHARSUPPORT:
176 return LangOpts.WChar ? KS_Enabled : KS_Unknown;
177 case HALFSUPPORT:
178 return LangOpts.Half ? KS_Enabled : KS_Unknown;
179 case CHAR8SUPPORT:
180 if (LangOpts.Char8) return KS_Enabled;
181 if (LangOpts.CPlusPlus20) return KS_Unknown;
182 if (LangOpts.CPlusPlus) return KS_Future;
183 return KS_Unknown;
184 case KEYOBJC:
185 // We treat bridge casts as objective-C keywords so we can warn on them
186 // in non-arc mode.
187 return LangOpts.ObjC ? KS_Enabled : KS_Unknown;
188 case KEYZVECTOR:
189 return LangOpts.ZVector ? KS_Enabled : KS_Unknown;
190 case KEYCOROUTINES:
191 return LangOpts.Coroutines ? KS_Enabled : KS_Unknown;
192 case KEYMODULES:
193 return KS_Unknown;
194 case KEYOPENCLCXX:
195 return LangOpts.OpenCLCPlusPlus ? KS_Enabled : KS_Unknown;
196 case KEYMSCOMPAT:
197 return LangOpts.MSVCCompat ? KS_Enabled : KS_Unknown;
198 case KEYSYCL:
199 return LangOpts.isSYCL() ? KS_Enabled : KS_Unknown;
200 case KEYCUDA:
201 return LangOpts.CUDA ? KS_Enabled : KS_Unknown;
202 case KEYHLSL:
203 return LangOpts.HLSL ? KS_Enabled : KS_Unknown;
204 case KEYNOCXX:
205 // This is enabled in all non-C++ modes, but might be enabled for other
206 // reasons as well.
207 return LangOpts.CPlusPlus ? KS_Unknown : KS_Enabled;
208 case KEYNOOPENCL:
209 // The disable behavior for this is handled in getKeywordStatus.
210 return KS_Unknown;
211 case KEYNOMS18:
212 // The disable behavior for this is handled in getKeywordStatus.
213 return KS_Unknown;
214 case KEYFIXEDPOINT:
215 return LangOpts.FixedPoint ? KS_Enabled : KS_Disabled;
216 default:
217 llvm_unreachable("Unknown KeywordStatus flag");
218 }
219}
220
221/// Translates flags as specified in TokenKinds.def into keyword status
222/// in the given language standard.
223static KeywordStatus getKeywordStatus(const LangOptions &LangOpts,
224 unsigned Flags) {
225 // KEYALL means always enabled, so special case this one.
226 if (Flags == KEYALL) return KS_Enabled;
227 // These are tests that need to 'always win', as they are special in that they
228 // disable based on certain conditions.
229 if (LangOpts.OpenCL && (Flags & KEYNOOPENCL)) return KS_Disabled;
230 if (LangOpts.MSVCCompat && (Flags & KEYNOMS18) &&
231 !LangOpts.isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015))
232 return KS_Disabled;
233
234 KeywordStatus CurStatus = KS_Unknown;
235
236 while (Flags != 0) {
237 unsigned CurFlag = Flags & ~(Flags - 1);
238 Flags = Flags & ~CurFlag;
239 CurStatus = std::max(
240 a: CurStatus,
241 b: getKeywordStatusHelper(LangOpts, Flag: static_cast<TokenKey>(CurFlag)));
242 }
243
244 if (CurStatus == KS_Unknown)
245 return KS_Disabled;
246 return CurStatus;
247}
248
249/// AddKeyword - This method is used to associate a token ID with specific
250/// identifiers because they are language keywords. This causes the lexer to
251/// automatically map matching identifiers to specialized token codes.
252static void AddKeyword(StringRef Keyword,
253 tok::TokenKind TokenCode, unsigned Flags,
254 const LangOptions &LangOpts, IdentifierTable &Table) {
255 KeywordStatus AddResult = getKeywordStatus(LangOpts, Flags);
256
257 // Don't add this keyword if disabled in this language.
258 if (AddResult == KS_Disabled) return;
259
260 IdentifierInfo &Info =
261 Table.get(Name: Keyword, TokenCode: AddResult == KS_Future ? tok::identifier : TokenCode);
262 Info.setIsExtensionToken(AddResult == KS_Extension);
263 Info.setIsFutureCompatKeyword(AddResult == KS_Future);
264}
265
266/// AddCXXOperatorKeyword - Register a C++ operator keyword alternative
267/// representations.
268static void AddCXXOperatorKeyword(StringRef Keyword,
269 tok::TokenKind TokenCode,
270 IdentifierTable &Table) {
271 IdentifierInfo &Info = Table.get(Name: Keyword, TokenCode);
272 Info.setIsCPlusPlusOperatorKeyword();
273}
274
275/// AddObjCKeyword - Register an Objective-C \@keyword like "class" "selector"
276/// or "property".
277static void AddObjCKeyword(StringRef Name,
278 tok::ObjCKeywordKind ObjCID,
279 IdentifierTable &Table) {
280 Table.get(Name).setObjCKeywordID(ObjCID);
281}
282
283static void AddNotableIdentifier(StringRef Name,
284 tok::NotableIdentifierKind BTID,
285 IdentifierTable &Table) {
286 // Don't add 'not_notable' identifier.
287 if (BTID != tok::not_notable) {
288 IdentifierInfo &Info = Table.get(Name, TokenCode: tok::identifier);
289 Info.setNotableIdentifierID(BTID);
290 }
291}
292
293/// AddKeywords - Add all keywords to the symbol table.
294///
295void IdentifierTable::AddKeywords(const LangOptions &LangOpts) {
296 // Add keywords and tokens for the current language.
297#define KEYWORD(NAME, FLAGS) \
298 AddKeyword(StringRef(#NAME), tok::kw_ ## NAME, \
299 FLAGS, LangOpts, *this);
300#define ALIAS(NAME, TOK, FLAGS) \
301 AddKeyword(StringRef(NAME), tok::kw_ ## TOK, \
302 FLAGS, LangOpts, *this);
303#define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \
304 if (LangOpts.CXXOperatorNames) \
305 AddCXXOperatorKeyword(StringRef(#NAME), tok::ALIAS, *this);
306#define OBJC_AT_KEYWORD(NAME) \
307 if (LangOpts.ObjC) \
308 AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this);
309#define NOTABLE_IDENTIFIER(NAME) \
310 AddNotableIdentifier(StringRef(#NAME), tok::NAME, *this);
311
312#define TESTING_KEYWORD(NAME, FLAGS)
313#include "clang/Basic/TokenKinds.def"
314
315 if (LangOpts.ParseUnknownAnytype)
316 AddKeyword(Keyword: "__unknown_anytype", TokenCode: tok::kw___unknown_anytype, Flags: KEYALL,
317 LangOpts, Table&: *this);
318
319 if (LangOpts.DeclSpecKeyword)
320 AddKeyword(Keyword: "__declspec", TokenCode: tok::kw___declspec, Flags: KEYALL, LangOpts, Table&: *this);
321
322 if (LangOpts.IEEE128)
323 AddKeyword(Keyword: "__ieee128", TokenCode: tok::kw___float128, Flags: KEYALL, LangOpts, Table&: *this);
324
325 // Add the 'import' contextual keyword.
326 get(Name: "import").setModulesImport(true);
327}
328
329/// Checks if the specified token kind represents a keyword in the
330/// specified language.
331/// \returns Status of the keyword in the language.
332static KeywordStatus getTokenKwStatus(const LangOptions &LangOpts,
333 tok::TokenKind K) {
334 switch (K) {
335#define KEYWORD(NAME, FLAGS) \
336 case tok::kw_##NAME: return getKeywordStatus(LangOpts, FLAGS);
337#include "clang/Basic/TokenKinds.def"
338 default: return KS_Disabled;
339 }
340}
341
342/// Returns true if the identifier represents a keyword in the
343/// specified language.
344bool IdentifierInfo::isKeyword(const LangOptions &LangOpts) const {
345 switch (getTokenKwStatus(LangOpts, K: getTokenID())) {
346 case KS_Enabled:
347 case KS_Extension:
348 return true;
349 default:
350 return false;
351 }
352}
353
354/// Returns true if the identifier represents a C++ keyword in the
355/// specified language.
356bool IdentifierInfo::isCPlusPlusKeyword(const LangOptions &LangOpts) const {
357 if (!LangOpts.CPlusPlus || !isKeyword(LangOpts))
358 return false;
359 // This is a C++ keyword if this identifier is not a keyword when checked
360 // using LangOptions without C++ support.
361 LangOptions LangOptsNoCPP = LangOpts;
362 LangOptsNoCPP.CPlusPlus = false;
363 LangOptsNoCPP.CPlusPlus11 = false;
364 LangOptsNoCPP.CPlusPlus20 = false;
365 return !isKeyword(LangOpts: LangOptsNoCPP);
366}
367
368ReservedIdentifierStatus
369IdentifierInfo::isReserved(const LangOptions &LangOpts) const {
370 StringRef Name = getName();
371
372 // '_' is a reserved identifier, but its use is so common (e.g. to store
373 // ignored values) that we don't warn on it.
374 if (Name.size() <= 1)
375 return ReservedIdentifierStatus::NotReserved;
376
377 // [lex.name] p3
378 if (Name[0] == '_') {
379
380 // Each name that begins with an underscore followed by an uppercase letter
381 // or another underscore is reserved.
382 if (Name[1] == '_')
383 return ReservedIdentifierStatus::StartsWithDoubleUnderscore;
384
385 if ('A' <= Name[1] && Name[1] <= 'Z')
386 return ReservedIdentifierStatus::
387 StartsWithUnderscoreFollowedByCapitalLetter;
388
389 // This is a bit misleading: it actually means it's only reserved if we're
390 // at global scope because it starts with an underscore.
391 return ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope;
392 }
393
394 // Each name that contains a double underscore (__) is reserved.
395 if (LangOpts.CPlusPlus && Name.contains(Other: "__"))
396 return ReservedIdentifierStatus::ContainsDoubleUnderscore;
397
398 return ReservedIdentifierStatus::NotReserved;
399}
400
401ReservedLiteralSuffixIdStatus
402IdentifierInfo::isReservedLiteralSuffixId() const {
403 StringRef Name = getName();
404
405 if (Name[0] != '_')
406 return ReservedLiteralSuffixIdStatus::NotStartsWithUnderscore;
407
408 if (Name.contains(Other: "__"))
409 return ReservedLiteralSuffixIdStatus::ContainsDoubleUnderscore;
410
411 return ReservedLiteralSuffixIdStatus::NotReserved;
412}
413
414StringRef IdentifierInfo::deuglifiedName() const {
415 StringRef Name = getName();
416 if (Name.size() >= 2 && Name.front() == '_' &&
417 (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z')))
418 return Name.ltrim(Char: '_');
419 return Name;
420}
421
422tok::PPKeywordKind IdentifierInfo::getPPKeywordID() const {
423 // We use a perfect hash function here involving the length of the keyword,
424 // the first and third character. For preprocessor ID's there are no
425 // collisions (if there were, the switch below would complain about duplicate
426 // case values). Note that this depends on 'if' being null terminated.
427
428#define HASH(LEN, FIRST, THIRD) \
429 (LEN << 5) + (((FIRST-'a') + (THIRD-'a')) & 31)
430#define CASE(LEN, FIRST, THIRD, NAME) \
431 case HASH(LEN, FIRST, THIRD): \
432 return memcmp(Name, #NAME, LEN) ? tok::pp_not_keyword : tok::pp_ ## NAME
433
434 unsigned Len = getLength();
435 if (Len < 2) return tok::pp_not_keyword;
436 const char *Name = getNameStart();
437 switch (HASH(Len, Name[0], Name[2])) {
438 default: return tok::pp_not_keyword;
439 CASE( 2, 'i', '\0', if);
440 CASE( 4, 'e', 'i', elif);
441 CASE( 4, 'e', 's', else);
442 CASE( 4, 'l', 'n', line);
443 CASE( 4, 's', 'c', sccs);
444 CASE( 5, 'e', 'd', endif);
445 CASE( 5, 'e', 'r', error);
446 CASE( 5, 'i', 'e', ident);
447 CASE( 5, 'i', 'd', ifdef);
448 CASE( 5, 'u', 'd', undef);
449
450 CASE( 6, 'a', 's', assert);
451 CASE( 6, 'd', 'f', define);
452 CASE( 6, 'i', 'n', ifndef);
453 CASE( 6, 'i', 'p', import);
454 CASE( 6, 'p', 'a', pragma);
455
456 CASE( 7, 'd', 'f', defined);
457 CASE( 7, 'e', 'i', elifdef);
458 CASE( 7, 'i', 'c', include);
459 CASE( 7, 'w', 'r', warning);
460
461 CASE( 8, 'e', 'i', elifndef);
462 CASE( 8, 'u', 'a', unassert);
463 CASE(12, 'i', 'c', include_next);
464
465 CASE(14, '_', 'p', __public_macro);
466
467 CASE(15, '_', 'p', __private_macro);
468
469 CASE(16, '_', 'i', __include_macros);
470#undef CASE
471#undef HASH
472 }
473}
474
475//===----------------------------------------------------------------------===//
476// Stats Implementation
477//===----------------------------------------------------------------------===//
478
479/// PrintStats - Print statistics about how well the identifier table is doing
480/// at hashing identifiers.
481void IdentifierTable::PrintStats() const {
482 unsigned NumBuckets = HashTable.getNumBuckets();
483 unsigned NumIdentifiers = HashTable.getNumItems();
484 unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers;
485 unsigned AverageIdentifierSize = 0;
486 unsigned MaxIdentifierLength = 0;
487
488 // TODO: Figure out maximum times an identifier had to probe for -stats.
489 for (llvm::StringMap<IdentifierInfo*, llvm::BumpPtrAllocator>::const_iterator
490 I = HashTable.begin(), E = HashTable.end(); I != E; ++I) {
491 unsigned IdLen = I->getKeyLength();
492 AverageIdentifierSize += IdLen;
493 if (MaxIdentifierLength < IdLen)
494 MaxIdentifierLength = IdLen;
495 }
496
497 fprintf(stderr, format: "\n*** Identifier Table Stats:\n");
498 fprintf(stderr, format: "# Identifiers: %d\n", NumIdentifiers);
499 fprintf(stderr, format: "# Empty Buckets: %d\n", NumEmptyBuckets);
500 fprintf(stderr, format: "Hash density (#identifiers per bucket): %f\n",
501 NumIdentifiers/(double)NumBuckets);
502 fprintf(stderr, format: "Ave identifier length: %f\n",
503 (AverageIdentifierSize/(double)NumIdentifiers));
504 fprintf(stderr, format: "Max identifier length: %d\n", MaxIdentifierLength);
505
506 // Compute statistics about the memory allocated for identifiers.
507 HashTable.getAllocator().PrintStats();
508}
509
510//===----------------------------------------------------------------------===//
511// SelectorTable Implementation
512//===----------------------------------------------------------------------===//
513
514unsigned llvm::DenseMapInfo<clang::Selector>::getHashValue(clang::Selector S) {
515 return DenseMapInfo<void*>::getHashValue(PtrVal: S.getAsOpaquePtr());
516}
517
518bool Selector::isKeywordSelector(ArrayRef<StringRef> Names) const {
519 assert(!Names.empty() && "must have >= 1 selector slots");
520 if (getNumArgs() != Names.size())
521 return false;
522 for (unsigned I = 0, E = Names.size(); I != E; ++I) {
523 if (getNameForSlot(argIndex: I) != Names[I])
524 return false;
525 }
526 return true;
527}
528
529bool Selector::isUnarySelector(StringRef Name) const {
530 return isUnarySelector() && getNameForSlot(argIndex: 0) == Name;
531}
532
533unsigned Selector::getNumArgs() const {
534 unsigned IIF = getIdentifierInfoFlag();
535 if (IIF <= ZeroArg)
536 return 0;
537 if (IIF == OneArg)
538 return 1;
539 // We point to a MultiKeywordSelector.
540 MultiKeywordSelector *SI = getMultiKeywordSelector();
541 return SI->getNumArgs();
542}
543
544const IdentifierInfo *
545Selector::getIdentifierInfoForSlot(unsigned argIndex) const {
546 if (getIdentifierInfoFlag() < MultiArg) {
547 assert(argIndex == 0 && "illegal keyword index");
548 return getAsIdentifierInfo();
549 }
550
551 // We point to a MultiKeywordSelector.
552 MultiKeywordSelector *SI = getMultiKeywordSelector();
553 return SI->getIdentifierInfoForSlot(i: argIndex);
554}
555
556StringRef Selector::getNameForSlot(unsigned int argIndex) const {
557 const IdentifierInfo *II = getIdentifierInfoForSlot(argIndex);
558 return II ? II->getName() : StringRef();
559}
560
561std::string MultiKeywordSelector::getName() const {
562 SmallString<256> Str;
563 llvm::raw_svector_ostream OS(Str);
564 for (keyword_iterator I = keyword_begin(), E = keyword_end(); I != E; ++I) {
565 if (*I)
566 OS << (*I)->getName();
567 OS << ':';
568 }
569
570 return std::string(OS.str());
571}
572
573std::string Selector::getAsString() const {
574 if (isNull())
575 return "<null selector>";
576
577 if (getIdentifierInfoFlag() < MultiArg) {
578 const IdentifierInfo *II = getAsIdentifierInfo();
579
580 if (getNumArgs() == 0) {
581 assert(II && "If the number of arguments is 0 then II is guaranteed to "
582 "not be null.");
583 return std::string(II->getName());
584 }
585
586 if (!II)
587 return ":";
588
589 return II->getName().str() + ":";
590 }
591
592 // We have a multiple keyword selector.
593 return getMultiKeywordSelector()->getName();
594}
595
596void Selector::print(llvm::raw_ostream &OS) const {
597 OS << getAsString();
598}
599
600LLVM_DUMP_METHOD void Selector::dump() const { print(OS&: llvm::errs()); }
601
602/// Interpreting the given string using the normal CamelCase
603/// conventions, determine whether the given string starts with the
604/// given "word", which is assumed to end in a lowercase letter.
605static bool startsWithWord(StringRef name, StringRef word) {
606 if (name.size() < word.size()) return false;
607 return ((name.size() == word.size() || !isLowercase(c: name[word.size()])) &&
608 name.starts_with(Prefix: word));
609}
610
611ObjCMethodFamily Selector::getMethodFamilyImpl(Selector sel) {
612 const IdentifierInfo *first = sel.getIdentifierInfoForSlot(argIndex: 0);
613 if (!first) return OMF_None;
614
615 StringRef name = first->getName();
616 if (sel.isUnarySelector()) {
617 if (name == "autorelease") return OMF_autorelease;
618 if (name == "dealloc") return OMF_dealloc;
619 if (name == "finalize") return OMF_finalize;
620 if (name == "release") return OMF_release;
621 if (name == "retain") return OMF_retain;
622 if (name == "retainCount") return OMF_retainCount;
623 if (name == "self") return OMF_self;
624 if (name == "initialize") return OMF_initialize;
625 }
626
627 if (name == "performSelector" || name == "performSelectorInBackground" ||
628 name == "performSelectorOnMainThread")
629 return OMF_performSelector;
630
631 // The other method families may begin with a prefix of underscores.
632 name = name.ltrim(Char: '_');
633
634 if (name.empty()) return OMF_None;
635 switch (name.front()) {
636 case 'a':
637 if (startsWithWord(name, word: "alloc")) return OMF_alloc;
638 break;
639 case 'c':
640 if (startsWithWord(name, word: "copy")) return OMF_copy;
641 break;
642 case 'i':
643 if (startsWithWord(name, word: "init")) return OMF_init;
644 break;
645 case 'm':
646 if (startsWithWord(name, word: "mutableCopy")) return OMF_mutableCopy;
647 break;
648 case 'n':
649 if (startsWithWord(name, word: "new")) return OMF_new;
650 break;
651 default:
652 break;
653 }
654
655 return OMF_None;
656}
657
658ObjCInstanceTypeFamily Selector::getInstTypeMethodFamily(Selector sel) {
659 const IdentifierInfo *first = sel.getIdentifierInfoForSlot(argIndex: 0);
660 if (!first) return OIT_None;
661
662 StringRef name = first->getName();
663
664 if (name.empty()) return OIT_None;
665 switch (name.front()) {
666 case 'a':
667 if (startsWithWord(name, word: "array")) return OIT_Array;
668 break;
669 case 'd':
670 if (startsWithWord(name, word: "default")) return OIT_ReturnsSelf;
671 if (startsWithWord(name, word: "dictionary")) return OIT_Dictionary;
672 break;
673 case 's':
674 if (startsWithWord(name, word: "shared")) return OIT_ReturnsSelf;
675 if (startsWithWord(name, word: "standard")) return OIT_Singleton;
676 break;
677 case 'i':
678 if (startsWithWord(name, word: "init")) return OIT_Init;
679 break;
680 default:
681 break;
682 }
683 return OIT_None;
684}
685
686ObjCStringFormatFamily Selector::getStringFormatFamilyImpl(Selector sel) {
687 const IdentifierInfo *first = sel.getIdentifierInfoForSlot(argIndex: 0);
688 if (!first) return SFF_None;
689
690 StringRef name = first->getName();
691
692 switch (name.front()) {
693 case 'a':
694 if (name == "appendFormat") return SFF_NSString;
695 break;
696
697 case 'i':
698 if (name == "initWithFormat") return SFF_NSString;
699 break;
700
701 case 'l':
702 if (name == "localizedStringWithFormat") return SFF_NSString;
703 break;
704
705 case 's':
706 if (name == "stringByAppendingFormat" ||
707 name == "stringWithFormat") return SFF_NSString;
708 break;
709 }
710 return SFF_None;
711}
712
713namespace {
714
715struct SelectorTableImpl {
716 llvm::FoldingSet<MultiKeywordSelector> Table;
717 llvm::BumpPtrAllocator Allocator;
718};
719
720} // namespace
721
722static SelectorTableImpl &getSelectorTableImpl(void *P) {
723 return *static_cast<SelectorTableImpl*>(P);
724}
725
726SmallString<64>
727SelectorTable::constructSetterName(StringRef Name) {
728 SmallString<64> SetterName("set");
729 SetterName += Name;
730 SetterName[3] = toUppercase(c: SetterName[3]);
731 return SetterName;
732}
733
734Selector
735SelectorTable::constructSetterSelector(IdentifierTable &Idents,
736 SelectorTable &SelTable,
737 const IdentifierInfo *Name) {
738 IdentifierInfo *SetterName =
739 &Idents.get(Name: constructSetterName(Name: Name->getName()));
740 return SelTable.getUnarySelector(ID: SetterName);
741}
742
743std::string SelectorTable::getPropertyNameFromSetterSelector(Selector Sel) {
744 StringRef Name = Sel.getNameForSlot(argIndex: 0);
745 assert(Name.starts_with("set") && "invalid setter name");
746 return (Twine(toLowercase(c: Name[3])) + Name.drop_front(N: 4)).str();
747}
748
749size_t SelectorTable::getTotalMemory() const {
750 SelectorTableImpl &SelTabImpl = getSelectorTableImpl(P: Impl);
751 return SelTabImpl.Allocator.getTotalMemory();
752}
753
754Selector SelectorTable::getSelector(unsigned nKeys,
755 const IdentifierInfo **IIV) {
756 if (nKeys < 2)
757 return Selector(IIV[0], nKeys);
758
759 SelectorTableImpl &SelTabImpl = getSelectorTableImpl(P: Impl);
760
761 // Unique selector, to guarantee there is one per name.
762 llvm::FoldingSetNodeID ID;
763 MultiKeywordSelector::Profile(ID, ArgTys: IIV, NumArgs: nKeys);
764
765 void *InsertPos = nullptr;
766 if (MultiKeywordSelector *SI =
767 SelTabImpl.Table.FindNodeOrInsertPos(ID, InsertPos))
768 return Selector(SI);
769
770 // MultiKeywordSelector objects are not allocated with new because they have a
771 // variable size array (for parameter types) at the end of them.
772 unsigned Size = sizeof(MultiKeywordSelector) + nKeys*sizeof(IdentifierInfo *);
773 MultiKeywordSelector *SI =
774 (MultiKeywordSelector *)SelTabImpl.Allocator.Allocate(
775 Size, Alignment: alignof(MultiKeywordSelector));
776 new (SI) MultiKeywordSelector(nKeys, IIV);
777 SelTabImpl.Table.InsertNode(N: SI, InsertPos);
778 return Selector(SI);
779}
780
781SelectorTable::SelectorTable() {
782 Impl = new SelectorTableImpl();
783}
784
785SelectorTable::~SelectorTable() {
786 delete &getSelectorTableImpl(P: Impl);
787}
788
789const char *clang::getOperatorSpelling(OverloadedOperatorKind Operator) {
790 switch (Operator) {
791 case OO_None:
792 case NUM_OVERLOADED_OPERATORS:
793 return nullptr;
794
795#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
796 case OO_##Name: return Spelling;
797#include "clang/Basic/OperatorKinds.def"
798 }
799
800 llvm_unreachable("Invalid OverloadedOperatorKind!");
801}
802
803StringRef clang::getNullabilitySpelling(NullabilityKind kind,
804 bool isContextSensitive) {
805 switch (kind) {
806 case NullabilityKind::NonNull:
807 return isContextSensitive ? "nonnull" : "_Nonnull";
808
809 case NullabilityKind::Nullable:
810 return isContextSensitive ? "nullable" : "_Nullable";
811
812 case NullabilityKind::NullableResult:
813 assert(!isContextSensitive &&
814 "_Nullable_result isn't supported as context-sensitive keyword");
815 return "_Nullable_result";
816
817 case NullabilityKind::Unspecified:
818 return isContextSensitive ? "null_unspecified" : "_Null_unspecified";
819 }
820 llvm_unreachable("Unknown nullability kind.");
821}
822
823llvm::raw_ostream &clang::operator<<(llvm::raw_ostream &OS,
824 NullabilityKind NK) {
825 switch (NK) {
826 case NullabilityKind::NonNull:
827 return OS << "NonNull";
828 case NullabilityKind::Nullable:
829 return OS << "Nullable";
830 case NullabilityKind::NullableResult:
831 return OS << "NullableResult";
832 case NullabilityKind::Unspecified:
833 return OS << "Unspecified";
834 }
835 llvm_unreachable("Unknown nullability kind.");
836}
837
838diag::kind
839IdentifierTable::getFutureCompatDiagKind(const IdentifierInfo &II,
840 const LangOptions &LangOpts) {
841 assert(II.isFutureCompatKeyword() && "diagnostic should not be needed");
842
843 unsigned Flags = llvm::StringSwitch<unsigned>(II.getName())
844#define KEYWORD(NAME, FLAGS) .Case(#NAME, FLAGS)
845#include "clang/Basic/TokenKinds.def"
846#undef KEYWORD
847 ;
848
849 if (LangOpts.CPlusPlus) {
850 if ((Flags & KEYCXX11) == KEYCXX11)
851 return diag::warn_cxx11_keyword;
852
853 // char8_t is not modeled as a CXX20_KEYWORD because it's not
854 // unconditionally enabled in C++20 mode. (It can be disabled
855 // by -fno-char8_t.)
856 if (((Flags & KEYCXX20) == KEYCXX20) ||
857 ((Flags & CHAR8SUPPORT) == CHAR8SUPPORT))
858 return diag::warn_cxx20_keyword;
859 } else {
860 if ((Flags & KEYC99) == KEYC99)
861 return diag::warn_c99_keyword;
862 if ((Flags & KEYC23) == KEYC23)
863 return diag::warn_c23_keyword;
864 }
865
866 llvm_unreachable(
867 "Keyword not known to come from a newer Standard or proposed Standard");
868}
869

source code of clang/lib/Basic/IdentifierTable.cpp