| 1 | //===- CIRDialect.cpp - MLIR CIR ops implementation -----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the CIR dialect and its operations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/CIR/Dialect/IR/CIRDialect.h" |
| 14 | |
| 15 | #include "clang/CIR/Dialect/IR/CIROpsEnums.h" |
| 16 | #include "clang/CIR/Dialect/IR/CIRTypes.h" |
| 17 | |
| 18 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 19 | #include "mlir/Interfaces/FunctionImplementation.h" |
| 20 | |
| 21 | #include "clang/CIR/Dialect/IR/CIROpsDialect.cpp.inc" |
| 22 | #include "clang/CIR/Dialect/IR/CIROpsEnums.cpp.inc" |
| 23 | #include "clang/CIR/MissingFeatures.h" |
| 24 | |
| 25 | #include <numeric> |
| 26 | |
| 27 | using namespace mlir; |
| 28 | using namespace cir; |
| 29 | |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | // CIR Dialect |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | namespace { |
| 34 | struct CIROpAsmDialectInterface : public OpAsmDialectInterface { |
| 35 | using OpAsmDialectInterface::OpAsmDialectInterface; |
| 36 | |
| 37 | AliasResult getAlias(Type type, raw_ostream &os) const final { |
| 38 | if (auto recordType = dyn_cast<cir::RecordType>(type)) { |
| 39 | StringAttr nameAttr = recordType.getName(); |
| 40 | if (!nameAttr) |
| 41 | os << "rec_anon_" << recordType.getKindAsStr(); |
| 42 | else |
| 43 | os << "rec_" << nameAttr.getValue(); |
| 44 | return AliasResult::OverridableAlias; |
| 45 | } |
| 46 | if (auto intType = dyn_cast<cir::IntType>(type)) { |
| 47 | // We only provide alias for standard integer types (i.e. integer types |
| 48 | // whose width is a power of 2 and at least 8). |
| 49 | unsigned width = intType.getWidth(); |
| 50 | if (width < 8 || !llvm::isPowerOf2_32(Value: width)) |
| 51 | return AliasResult::NoAlias; |
| 52 | os << intType.getAlias(); |
| 53 | return AliasResult::OverridableAlias; |
| 54 | } |
| 55 | if (auto voidType = dyn_cast<cir::VoidType>(type)) { |
| 56 | os << voidType.getAlias(); |
| 57 | return AliasResult::OverridableAlias; |
| 58 | } |
| 59 | |
| 60 | return AliasResult::NoAlias; |
| 61 | } |
| 62 | |
| 63 | AliasResult getAlias(Attribute attr, raw_ostream &os) const final { |
| 64 | if (auto boolAttr = mlir::dyn_cast<cir::BoolAttr>(attr)) { |
| 65 | os << (boolAttr.getValue() ? "true" : "false" ); |
| 66 | return AliasResult::FinalAlias; |
| 67 | } |
| 68 | return AliasResult::NoAlias; |
| 69 | } |
| 70 | }; |
| 71 | } // namespace |
| 72 | |
| 73 | void cir::CIRDialect::initialize() { |
| 74 | registerTypes(); |
| 75 | registerAttributes(); |
| 76 | addOperations< |
| 77 | #define GET_OP_LIST |
| 78 | #include "clang/CIR/Dialect/IR/CIROps.cpp.inc" |
| 79 | >(); |
| 80 | addInterfaces<CIROpAsmDialectInterface>(); |
| 81 | } |
| 82 | |
| 83 | Operation *cir::CIRDialect::materializeConstant(mlir::OpBuilder &builder, |
| 84 | mlir::Attribute value, |
| 85 | mlir::Type type, |
| 86 | mlir::Location loc) { |
| 87 | return builder.create<cir::ConstantOp>(loc, type, |
| 88 | mlir::cast<mlir::TypedAttr>(value)); |
| 89 | } |
| 90 | |
| 91 | //===----------------------------------------------------------------------===// |
| 92 | // Helpers |
| 93 | //===----------------------------------------------------------------------===// |
| 94 | |
| 95 | // Check if a region's termination omission is valid and, if so, creates and |
| 96 | // inserts the omitted terminator into the region. |
| 97 | static LogicalResult ensureRegionTerm(OpAsmParser &parser, Region ®ion, |
| 98 | SMLoc errLoc) { |
| 99 | Location eLoc = parser.getEncodedSourceLoc(loc: parser.getCurrentLocation()); |
| 100 | OpBuilder builder(parser.getBuilder().getContext()); |
| 101 | |
| 102 | // Insert empty block in case the region is empty to ensure the terminator |
| 103 | // will be inserted |
| 104 | if (region.empty()) |
| 105 | builder.createBlock(parent: ®ion); |
| 106 | |
| 107 | Block &block = region.back(); |
| 108 | // Region is properly terminated: nothing to do. |
| 109 | if (!block.empty() && block.back().hasTrait<OpTrait::IsTerminator>()) |
| 110 | return success(); |
| 111 | |
| 112 | // Check for invalid terminator omissions. |
| 113 | if (!region.hasOneBlock()) |
| 114 | return parser.emitError(loc: errLoc, |
| 115 | message: "multi-block region must not omit terminator" ); |
| 116 | |
| 117 | // Terminator was omitted correctly: recreate it. |
| 118 | builder.setInsertionPointToEnd(&block); |
| 119 | builder.create<cir::YieldOp>(eLoc); |
| 120 | return success(); |
| 121 | } |
| 122 | |
| 123 | // True if the region's terminator should be omitted. |
| 124 | static bool omitRegionTerm(mlir::Region &r) { |
| 125 | const auto singleNonEmptyBlock = r.hasOneBlock() && !r.back().empty(); |
| 126 | const auto yieldsNothing = [&r]() { |
| 127 | auto y = dyn_cast<cir::YieldOp>(r.back().getTerminator()); |
| 128 | return y && y.getArgs().empty(); |
| 129 | }; |
| 130 | return singleNonEmptyBlock && yieldsNothing(); |
| 131 | } |
| 132 | |
| 133 | //===----------------------------------------------------------------------===// |
| 134 | // CIR Custom Parsers/Printers |
| 135 | //===----------------------------------------------------------------------===// |
| 136 | |
| 137 | static mlir::ParseResult parseOmittedTerminatorRegion(mlir::OpAsmParser &parser, |
| 138 | mlir::Region ®ion) { |
| 139 | auto regionLoc = parser.getCurrentLocation(); |
| 140 | if (parser.parseRegion(region)) |
| 141 | return failure(); |
| 142 | if (ensureRegionTerm(parser, region, errLoc: regionLoc).failed()) |
| 143 | return failure(); |
| 144 | return success(); |
| 145 | } |
| 146 | |
| 147 | static void printOmittedTerminatorRegion(mlir::OpAsmPrinter &printer, |
| 148 | cir::ScopeOp &op, |
| 149 | mlir::Region ®ion) { |
| 150 | printer.printRegion(blocks&: region, |
| 151 | /*printEntryBlockArgs=*/false, |
| 152 | /*printBlockTerminators=*/!omitRegionTerm(r&: region)); |
| 153 | } |
| 154 | |
| 155 | //===----------------------------------------------------------------------===// |
| 156 | // AllocaOp |
| 157 | //===----------------------------------------------------------------------===// |
| 158 | |
| 159 | void cir::AllocaOp::build(mlir::OpBuilder &odsBuilder, |
| 160 | mlir::OperationState &odsState, mlir::Type addr, |
| 161 | mlir::Type allocaType, llvm::StringRef name, |
| 162 | mlir::IntegerAttr alignment) { |
| 163 | odsState.addAttribute(getAllocaTypeAttrName(odsState.name), |
| 164 | mlir::TypeAttr::get(allocaType)); |
| 165 | odsState.addAttribute(getNameAttrName(odsState.name), |
| 166 | odsBuilder.getStringAttr(name)); |
| 167 | if (alignment) { |
| 168 | odsState.addAttribute(getAlignmentAttrName(odsState.name), alignment); |
| 169 | } |
| 170 | odsState.addTypes(addr); |
| 171 | } |
| 172 | |
| 173 | //===----------------------------------------------------------------------===// |
| 174 | // BreakOp |
| 175 | //===----------------------------------------------------------------------===// |
| 176 | |
| 177 | LogicalResult cir::BreakOp::verify() { |
| 178 | assert(!cir::MissingFeatures::switchOp()); |
| 179 | if (!getOperation()->getParentOfType<LoopOpInterface>() && |
| 180 | !getOperation()->getParentOfType<SwitchOp>()) |
| 181 | return emitOpError("must be within a loop" ); |
| 182 | return success(); |
| 183 | } |
| 184 | |
| 185 | //===----------------------------------------------------------------------===// |
| 186 | // ConditionOp |
| 187 | //===----------------------------------------------------------------------===// |
| 188 | |
| 189 | //===---------------------------------- |
| 190 | // BranchOpTerminatorInterface Methods |
| 191 | //===---------------------------------- |
| 192 | |
| 193 | void cir::ConditionOp::getSuccessorRegions( |
| 194 | ArrayRef<Attribute> operands, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 195 | // TODO(cir): The condition value may be folded to a constant, narrowing |
| 196 | // down its list of possible successors. |
| 197 | |
| 198 | // Parent is a loop: condition may branch to the body or to the parent op. |
| 199 | if (auto loopOp = dyn_cast<LoopOpInterface>(getOperation()->getParentOp())) { |
| 200 | regions.emplace_back(&loopOp.getBody(), loopOp.getBody().getArguments()); |
| 201 | regions.emplace_back(loopOp->getResults()); |
| 202 | } |
| 203 | |
| 204 | assert(!cir::MissingFeatures::awaitOp()); |
| 205 | } |
| 206 | |
| 207 | MutableOperandRange |
| 208 | cir::ConditionOp::getMutableSuccessorOperands(RegionBranchPoint point) { |
| 209 | // No values are yielded to the successor region. |
| 210 | return MutableOperandRange(getOperation(), 0, 0); |
| 211 | } |
| 212 | |
| 213 | LogicalResult cir::ConditionOp::verify() { |
| 214 | assert(!cir::MissingFeatures::awaitOp()); |
| 215 | if (!isa<LoopOpInterface>(getOperation()->getParentOp())) |
| 216 | return emitOpError("condition must be within a conditional region" ); |
| 217 | return success(); |
| 218 | } |
| 219 | |
| 220 | //===----------------------------------------------------------------------===// |
| 221 | // ConstantOp |
| 222 | //===----------------------------------------------------------------------===// |
| 223 | |
| 224 | static LogicalResult checkConstantTypes(mlir::Operation *op, mlir::Type opType, |
| 225 | mlir::Attribute attrType) { |
| 226 | if (isa<cir::ConstPtrAttr>(attrType)) { |
| 227 | if (!mlir::isa<cir::PointerType>(opType)) |
| 228 | return op->emitOpError( |
| 229 | message: "pointer constant initializing a non-pointer type" ); |
| 230 | return success(); |
| 231 | } |
| 232 | |
| 233 | if (isa<cir::ZeroAttr>(attrType)) { |
| 234 | if (isa<cir::RecordType, cir::ArrayType, cir::VectorType, cir::ComplexType>( |
| 235 | opType)) |
| 236 | return success(); |
| 237 | return op->emitOpError( |
| 238 | message: "zero expects struct, array, vector, or complex type" ); |
| 239 | } |
| 240 | |
| 241 | if (mlir::isa<cir::BoolAttr>(attrType)) { |
| 242 | if (!mlir::isa<cir::BoolType>(opType)) |
| 243 | return op->emitOpError(message: "result type (" ) |
| 244 | << opType << ") must be '!cir.bool' for '" << attrType << "'" ; |
| 245 | return success(); |
| 246 | } |
| 247 | |
| 248 | if (mlir::isa<cir::IntAttr, cir::FPAttr>(attrType)) { |
| 249 | auto at = cast<TypedAttr>(attrType); |
| 250 | if (at.getType() != opType) { |
| 251 | return op->emitOpError(message: "result type (" ) |
| 252 | << opType << ") does not match value type (" << at.getType() |
| 253 | << ")" ; |
| 254 | } |
| 255 | return success(); |
| 256 | } |
| 257 | |
| 258 | if (mlir::isa<cir::ConstArrayAttr, cir::ConstVectorAttr, |
| 259 | cir::ConstComplexAttr>(attrType)) |
| 260 | return success(); |
| 261 | |
| 262 | assert(isa<TypedAttr>(attrType) && "What else could we be looking at here?" ); |
| 263 | return op->emitOpError("global with type " ) |
| 264 | << cast<TypedAttr>(attrType).getType() << " not yet supported" ; |
| 265 | } |
| 266 | |
| 267 | LogicalResult cir::ConstantOp::verify() { |
| 268 | // ODS already generates checks to make sure the result type is valid. We just |
| 269 | // need to additionally check that the value's attribute type is consistent |
| 270 | // with the result type. |
| 271 | return checkConstantTypes(getOperation(), getType(), getValue()); |
| 272 | } |
| 273 | |
| 274 | OpFoldResult cir::ConstantOp::fold(FoldAdaptor /*adaptor*/) { |
| 275 | return getValue(); |
| 276 | } |
| 277 | |
| 278 | //===----------------------------------------------------------------------===// |
| 279 | // ContinueOp |
| 280 | //===----------------------------------------------------------------------===// |
| 281 | |
| 282 | LogicalResult cir::ContinueOp::verify() { |
| 283 | if (!getOperation()->getParentOfType<LoopOpInterface>()) |
| 284 | return emitOpError("must be within a loop" ); |
| 285 | return success(); |
| 286 | } |
| 287 | |
| 288 | //===----------------------------------------------------------------------===// |
| 289 | // CastOp |
| 290 | //===----------------------------------------------------------------------===// |
| 291 | |
| 292 | LogicalResult cir::CastOp::verify() { |
| 293 | mlir::Type resType = getType(); |
| 294 | mlir::Type srcType = getSrc().getType(); |
| 295 | |
| 296 | if (mlir::isa<cir::VectorType>(srcType) && |
| 297 | mlir::isa<cir::VectorType>(resType)) { |
| 298 | // Use the element type of the vector to verify the cast kind. (Except for |
| 299 | // bitcast, see below.) |
| 300 | srcType = mlir::dyn_cast<cir::VectorType>(srcType).getElementType(); |
| 301 | resType = mlir::dyn_cast<cir::VectorType>(resType).getElementType(); |
| 302 | } |
| 303 | |
| 304 | switch (getKind()) { |
| 305 | case cir::CastKind::int_to_bool: { |
| 306 | if (!mlir::isa<cir::BoolType>(resType)) |
| 307 | return emitOpError() << "requires !cir.bool type for result" ; |
| 308 | if (!mlir::isa<cir::IntType>(srcType)) |
| 309 | return emitOpError() << "requires !cir.int type for source" ; |
| 310 | return success(); |
| 311 | } |
| 312 | case cir::CastKind::ptr_to_bool: { |
| 313 | if (!mlir::isa<cir::BoolType>(resType)) |
| 314 | return emitOpError() << "requires !cir.bool type for result" ; |
| 315 | if (!mlir::isa<cir::PointerType>(srcType)) |
| 316 | return emitOpError() << "requires !cir.ptr type for source" ; |
| 317 | return success(); |
| 318 | } |
| 319 | case cir::CastKind::integral: { |
| 320 | if (!mlir::isa<cir::IntType>(resType)) |
| 321 | return emitOpError() << "requires !cir.int type for result" ; |
| 322 | if (!mlir::isa<cir::IntType>(srcType)) |
| 323 | return emitOpError() << "requires !cir.int type for source" ; |
| 324 | return success(); |
| 325 | } |
| 326 | case cir::CastKind::array_to_ptrdecay: { |
| 327 | const auto arrayPtrTy = mlir::dyn_cast<cir::PointerType>(srcType); |
| 328 | const auto flatPtrTy = mlir::dyn_cast<cir::PointerType>(resType); |
| 329 | if (!arrayPtrTy || !flatPtrTy) |
| 330 | return emitOpError() << "requires !cir.ptr type for source and result" ; |
| 331 | |
| 332 | // TODO(CIR): Make sure the AddrSpace of both types are equals |
| 333 | return success(); |
| 334 | } |
| 335 | case cir::CastKind::bitcast: { |
| 336 | // Handle the pointer types first. |
| 337 | auto srcPtrTy = mlir::dyn_cast<cir::PointerType>(srcType); |
| 338 | auto resPtrTy = mlir::dyn_cast<cir::PointerType>(resType); |
| 339 | |
| 340 | if (srcPtrTy && resPtrTy) { |
| 341 | return success(); |
| 342 | } |
| 343 | |
| 344 | return success(); |
| 345 | } |
| 346 | case cir::CastKind::floating: { |
| 347 | if (!mlir::isa<cir::CIRFPTypeInterface>(srcType) || |
| 348 | !mlir::isa<cir::CIRFPTypeInterface>(resType)) |
| 349 | return emitOpError() << "requires !cir.float type for source and result" ; |
| 350 | return success(); |
| 351 | } |
| 352 | case cir::CastKind::float_to_int: { |
| 353 | if (!mlir::isa<cir::CIRFPTypeInterface>(srcType)) |
| 354 | return emitOpError() << "requires !cir.float type for source" ; |
| 355 | if (!mlir::dyn_cast<cir::IntType>(resType)) |
| 356 | return emitOpError() << "requires !cir.int type for result" ; |
| 357 | return success(); |
| 358 | } |
| 359 | case cir::CastKind::int_to_ptr: { |
| 360 | if (!mlir::dyn_cast<cir::IntType>(srcType)) |
| 361 | return emitOpError() << "requires !cir.int type for source" ; |
| 362 | if (!mlir::dyn_cast<cir::PointerType>(resType)) |
| 363 | return emitOpError() << "requires !cir.ptr type for result" ; |
| 364 | return success(); |
| 365 | } |
| 366 | case cir::CastKind::ptr_to_int: { |
| 367 | if (!mlir::dyn_cast<cir::PointerType>(srcType)) |
| 368 | return emitOpError() << "requires !cir.ptr type for source" ; |
| 369 | if (!mlir::dyn_cast<cir::IntType>(resType)) |
| 370 | return emitOpError() << "requires !cir.int type for result" ; |
| 371 | return success(); |
| 372 | } |
| 373 | case cir::CastKind::float_to_bool: { |
| 374 | if (!mlir::isa<cir::CIRFPTypeInterface>(srcType)) |
| 375 | return emitOpError() << "requires !cir.float type for source" ; |
| 376 | if (!mlir::isa<cir::BoolType>(resType)) |
| 377 | return emitOpError() << "requires !cir.bool type for result" ; |
| 378 | return success(); |
| 379 | } |
| 380 | case cir::CastKind::bool_to_int: { |
| 381 | if (!mlir::isa<cir::BoolType>(srcType)) |
| 382 | return emitOpError() << "requires !cir.bool type for source" ; |
| 383 | if (!mlir::isa<cir::IntType>(resType)) |
| 384 | return emitOpError() << "requires !cir.int type for result" ; |
| 385 | return success(); |
| 386 | } |
| 387 | case cir::CastKind::int_to_float: { |
| 388 | if (!mlir::isa<cir::IntType>(srcType)) |
| 389 | return emitOpError() << "requires !cir.int type for source" ; |
| 390 | if (!mlir::isa<cir::CIRFPTypeInterface>(resType)) |
| 391 | return emitOpError() << "requires !cir.float type for result" ; |
| 392 | return success(); |
| 393 | } |
| 394 | case cir::CastKind::bool_to_float: { |
| 395 | if (!mlir::isa<cir::BoolType>(srcType)) |
| 396 | return emitOpError() << "requires !cir.bool type for source" ; |
| 397 | if (!mlir::isa<cir::CIRFPTypeInterface>(resType)) |
| 398 | return emitOpError() << "requires !cir.float type for result" ; |
| 399 | return success(); |
| 400 | } |
| 401 | case cir::CastKind::address_space: { |
| 402 | auto srcPtrTy = mlir::dyn_cast<cir::PointerType>(srcType); |
| 403 | auto resPtrTy = mlir::dyn_cast<cir::PointerType>(resType); |
| 404 | if (!srcPtrTy || !resPtrTy) |
| 405 | return emitOpError() << "requires !cir.ptr type for source and result" ; |
| 406 | if (srcPtrTy.getPointee() != resPtrTy.getPointee()) |
| 407 | return emitOpError() << "requires two types differ in addrspace only" ; |
| 408 | return success(); |
| 409 | } |
| 410 | default: |
| 411 | llvm_unreachable("Unknown CastOp kind?" ); |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | static bool isIntOrBoolCast(cir::CastOp op) { |
| 416 | auto kind = op.getKind(); |
| 417 | return kind == cir::CastKind::bool_to_int || |
| 418 | kind == cir::CastKind::int_to_bool || kind == cir::CastKind::integral; |
| 419 | } |
| 420 | |
| 421 | static Value tryFoldCastChain(cir::CastOp op) { |
| 422 | cir::CastOp head = op, tail = op; |
| 423 | |
| 424 | while (op) { |
| 425 | if (!isIntOrBoolCast(op)) |
| 426 | break; |
| 427 | head = op; |
| 428 | op = dyn_cast_or_null<cir::CastOp>(head.getSrc().getDefiningOp()); |
| 429 | } |
| 430 | |
| 431 | if (head == tail) |
| 432 | return {}; |
| 433 | |
| 434 | // if bool_to_int -> ... -> int_to_bool: take the bool |
| 435 | // as we had it was before all casts |
| 436 | if (head.getKind() == cir::CastKind::bool_to_int && |
| 437 | tail.getKind() == cir::CastKind::int_to_bool) |
| 438 | return head.getSrc(); |
| 439 | |
| 440 | // if int_to_bool -> ... -> int_to_bool: take the result |
| 441 | // of the first one, as no other casts (and ext casts as well) |
| 442 | // don't change the first result |
| 443 | if (head.getKind() == cir::CastKind::int_to_bool && |
| 444 | tail.getKind() == cir::CastKind::int_to_bool) |
| 445 | return head.getResult(); |
| 446 | |
| 447 | return {}; |
| 448 | } |
| 449 | |
| 450 | OpFoldResult cir::CastOp::fold(FoldAdaptor adaptor) { |
| 451 | if (getSrc().getType() == getType()) { |
| 452 | switch (getKind()) { |
| 453 | case cir::CastKind::integral: { |
| 454 | // TODO: for sign differences, it's possible in certain conditions to |
| 455 | // create a new attribute that's capable of representing the source. |
| 456 | llvm::SmallVector<mlir::OpFoldResult, 1> foldResults; |
| 457 | auto foldOrder = getSrc().getDefiningOp()->fold(foldResults); |
| 458 | if (foldOrder.succeeded() && mlir::isa<mlir::Attribute>(foldResults[0])) |
| 459 | return mlir::cast<mlir::Attribute>(foldResults[0]); |
| 460 | return {}; |
| 461 | } |
| 462 | case cir::CastKind::bitcast: |
| 463 | case cir::CastKind::address_space: |
| 464 | case cir::CastKind::float_complex: |
| 465 | case cir::CastKind::int_complex: { |
| 466 | return getSrc(); |
| 467 | } |
| 468 | default: |
| 469 | return {}; |
| 470 | } |
| 471 | } |
| 472 | return tryFoldCastChain(*this); |
| 473 | } |
| 474 | |
| 475 | //===----------------------------------------------------------------------===// |
| 476 | // CallOp |
| 477 | //===----------------------------------------------------------------------===// |
| 478 | |
| 479 | mlir::OperandRange cir::CallOp::getArgOperands() { |
| 480 | if (isIndirect()) |
| 481 | return getArgs().drop_front(1); |
| 482 | return getArgs(); |
| 483 | } |
| 484 | |
| 485 | mlir::MutableOperandRange cir::CallOp::getArgOperandsMutable() { |
| 486 | mlir::MutableOperandRange args = getArgsMutable(); |
| 487 | if (isIndirect()) |
| 488 | return args.slice(1, args.size() - 1); |
| 489 | return args; |
| 490 | } |
| 491 | |
| 492 | mlir::Value cir::CallOp::getIndirectCall() { |
| 493 | assert(isIndirect()); |
| 494 | return getOperand(0); |
| 495 | } |
| 496 | |
| 497 | /// Return the operand at index 'i'. |
| 498 | Value cir::CallOp::getArgOperand(unsigned i) { |
| 499 | if (isIndirect()) |
| 500 | ++i; |
| 501 | return getOperand(i); |
| 502 | } |
| 503 | |
| 504 | /// Return the number of operands. |
| 505 | unsigned cir::CallOp::getNumArgOperands() { |
| 506 | if (isIndirect()) |
| 507 | return this->getOperation()->getNumOperands() - 1; |
| 508 | return this->getOperation()->getNumOperands(); |
| 509 | } |
| 510 | |
| 511 | static mlir::ParseResult parseCallCommon(mlir::OpAsmParser &parser, |
| 512 | mlir::OperationState &result) { |
| 513 | llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand, 4> ops; |
| 514 | llvm::SMLoc opsLoc; |
| 515 | mlir::FlatSymbolRefAttr calleeAttr; |
| 516 | llvm::ArrayRef<mlir::Type> allResultTypes; |
| 517 | |
| 518 | // If we cannot parse a string callee, it means this is an indirect call. |
| 519 | if (!parser.parseOptionalAttribute(result&: calleeAttr, attrName: "callee" , attrs&: result.attributes) |
| 520 | .has_value()) { |
| 521 | OpAsmParser::UnresolvedOperand indirectVal; |
| 522 | // Do not resolve right now, since we need to figure out the type |
| 523 | if (parser.parseOperand(result&: indirectVal).failed()) |
| 524 | return failure(); |
| 525 | ops.push_back(Elt: indirectVal); |
| 526 | } |
| 527 | |
| 528 | if (parser.parseLParen()) |
| 529 | return mlir::failure(); |
| 530 | |
| 531 | opsLoc = parser.getCurrentLocation(); |
| 532 | if (parser.parseOperandList(result&: ops)) |
| 533 | return mlir::failure(); |
| 534 | if (parser.parseRParen()) |
| 535 | return mlir::failure(); |
| 536 | |
| 537 | if (parser.parseOptionalAttrDict(result&: result.attributes)) |
| 538 | return ::mlir::failure(); |
| 539 | |
| 540 | if (parser.parseColon()) |
| 541 | return ::mlir::failure(); |
| 542 | |
| 543 | mlir::FunctionType opsFnTy; |
| 544 | if (parser.parseType(opsFnTy)) |
| 545 | return mlir::failure(); |
| 546 | |
| 547 | allResultTypes = opsFnTy.getResults(); |
| 548 | result.addTypes(newTypes: allResultTypes); |
| 549 | |
| 550 | if (parser.resolveOperands(ops, opsFnTy.getInputs(), opsLoc, result.operands)) |
| 551 | return mlir::failure(); |
| 552 | |
| 553 | return mlir::success(); |
| 554 | } |
| 555 | |
| 556 | static void printCallCommon(mlir::Operation *op, |
| 557 | mlir::FlatSymbolRefAttr calleeSym, |
| 558 | mlir::Value indirectCallee, |
| 559 | mlir::OpAsmPrinter &printer) { |
| 560 | printer << ' '; |
| 561 | |
| 562 | auto callLikeOp = mlir::cast<cir::CIRCallOpInterface>(op); |
| 563 | auto ops = callLikeOp.getArgOperands(); |
| 564 | |
| 565 | if (calleeSym) { |
| 566 | // Direct calls |
| 567 | printer.printAttributeWithoutType(calleeSym); |
| 568 | } else { |
| 569 | // Indirect calls |
| 570 | assert(indirectCallee); |
| 571 | printer << indirectCallee; |
| 572 | } |
| 573 | printer << "(" << ops << ")" ; |
| 574 | |
| 575 | printer.printOptionalAttrDict(attrs: op->getAttrs(), elidedAttrs: {"callee" }); |
| 576 | |
| 577 | printer << " : " ; |
| 578 | printer.printFunctionalType(inputs: op->getOperands().getTypes(), |
| 579 | results: op->getResultTypes()); |
| 580 | } |
| 581 | |
| 582 | mlir::ParseResult cir::CallOp::parse(mlir::OpAsmParser &parser, |
| 583 | mlir::OperationState &result) { |
| 584 | return parseCallCommon(parser, result); |
| 585 | } |
| 586 | |
| 587 | void cir::CallOp::print(mlir::OpAsmPrinter &p) { |
| 588 | mlir::Value indirectCallee = isIndirect() ? getIndirectCall() : nullptr; |
| 589 | printCallCommon(*this, getCalleeAttr(), indirectCallee, p); |
| 590 | } |
| 591 | |
| 592 | static LogicalResult |
| 593 | verifyCallCommInSymbolUses(mlir::Operation *op, |
| 594 | SymbolTableCollection &symbolTable) { |
| 595 | auto fnAttr = op->getAttrOfType<FlatSymbolRefAttr>(name: "callee" ); |
| 596 | if (!fnAttr) { |
| 597 | // This is an indirect call, thus we don't have to check the symbol uses. |
| 598 | return mlir::success(); |
| 599 | } |
| 600 | |
| 601 | auto fn = symbolTable.lookupNearestSymbolFrom<cir::FuncOp>(op, fnAttr); |
| 602 | if (!fn) |
| 603 | return op->emitOpError() << "'" << fnAttr.getValue() |
| 604 | << "' does not reference a valid function" ; |
| 605 | |
| 606 | auto callIf = dyn_cast<cir::CIRCallOpInterface>(op); |
| 607 | assert(callIf && "expected CIR call interface to be always available" ); |
| 608 | |
| 609 | // Verify that the operand and result types match the callee. Note that |
| 610 | // argument-checking is disabled for functions without a prototype. |
| 611 | auto fnType = fn.getFunctionType(); |
| 612 | if (!fn.getNoProto()) { |
| 613 | unsigned numCallOperands = callIf.getNumArgOperands(); |
| 614 | unsigned numFnOpOperands = fnType.getNumInputs(); |
| 615 | |
| 616 | if (!fnType.isVarArg() && numCallOperands != numFnOpOperands) |
| 617 | return op->emitOpError(message: "incorrect number of operands for callee" ); |
| 618 | if (fnType.isVarArg() && numCallOperands < numFnOpOperands) |
| 619 | return op->emitOpError(message: "too few operands for callee" ); |
| 620 | |
| 621 | for (unsigned i = 0, e = numFnOpOperands; i != e; ++i) |
| 622 | if (callIf.getArgOperand(i).getType() != fnType.getInput(i)) |
| 623 | return op->emitOpError(message: "operand type mismatch: expected operand type " ) |
| 624 | << fnType.getInput(i) << ", but provided " |
| 625 | << op->getOperand(idx: i).getType() << " for operand number " << i; |
| 626 | } |
| 627 | |
| 628 | assert(!cir::MissingFeatures::opCallCallConv()); |
| 629 | |
| 630 | // Void function must not return any results. |
| 631 | if (fnType.hasVoidReturn() && op->getNumResults() != 0) |
| 632 | return op->emitOpError(message: "callee returns void but call has results" ); |
| 633 | |
| 634 | // Non-void function calls must return exactly one result. |
| 635 | if (!fnType.hasVoidReturn() && op->getNumResults() != 1) |
| 636 | return op->emitOpError(message: "incorrect number of results for callee" ); |
| 637 | |
| 638 | // Parent function and return value types must match. |
| 639 | if (!fnType.hasVoidReturn() && |
| 640 | op->getResultTypes().front() != fnType.getReturnType()) { |
| 641 | return op->emitOpError(message: "result type mismatch: expected " ) |
| 642 | << fnType.getReturnType() << ", but provided " |
| 643 | << op->getResult(idx: 0).getType(); |
| 644 | } |
| 645 | |
| 646 | return mlir::success(); |
| 647 | } |
| 648 | |
| 649 | LogicalResult |
| 650 | cir::CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
| 651 | return verifyCallCommInSymbolUses(*this, symbolTable); |
| 652 | } |
| 653 | |
| 654 | //===----------------------------------------------------------------------===// |
| 655 | // ReturnOp |
| 656 | //===----------------------------------------------------------------------===// |
| 657 | |
| 658 | static mlir::LogicalResult checkReturnAndFunction(cir::ReturnOp op, |
| 659 | cir::FuncOp function) { |
| 660 | // ReturnOps currently only have a single optional operand. |
| 661 | if (op.getNumOperands() > 1) |
| 662 | return op.emitOpError() << "expects at most 1 return operand" ; |
| 663 | |
| 664 | // Ensure returned type matches the function signature. |
| 665 | auto expectedTy = function.getFunctionType().getReturnType(); |
| 666 | auto actualTy = |
| 667 | (op.getNumOperands() == 0 ? cir::VoidType::get(op.getContext()) |
| 668 | : op.getOperand(0).getType()); |
| 669 | if (actualTy != expectedTy) |
| 670 | return op.emitOpError() << "returns " << actualTy |
| 671 | << " but enclosing function returns " << expectedTy; |
| 672 | |
| 673 | return mlir::success(); |
| 674 | } |
| 675 | |
| 676 | mlir::LogicalResult cir::ReturnOp::verify() { |
| 677 | // Returns can be present in multiple different scopes, get the |
| 678 | // wrapping function and start from there. |
| 679 | auto *fnOp = getOperation()->getParentOp(); |
| 680 | while (!isa<cir::FuncOp>(fnOp)) |
| 681 | fnOp = fnOp->getParentOp(); |
| 682 | |
| 683 | // Make sure return types match function return type. |
| 684 | if (checkReturnAndFunction(*this, cast<cir::FuncOp>(fnOp)).failed()) |
| 685 | return failure(); |
| 686 | |
| 687 | return success(); |
| 688 | } |
| 689 | |
| 690 | //===----------------------------------------------------------------------===// |
| 691 | // IfOp |
| 692 | //===----------------------------------------------------------------------===// |
| 693 | |
| 694 | ParseResult cir::IfOp::parse(OpAsmParser &parser, OperationState &result) { |
| 695 | // create the regions for 'then'. |
| 696 | result.regions.reserve(2); |
| 697 | Region *thenRegion = result.addRegion(); |
| 698 | Region *elseRegion = result.addRegion(); |
| 699 | |
| 700 | mlir::Builder &builder = parser.getBuilder(); |
| 701 | OpAsmParser::UnresolvedOperand cond; |
| 702 | Type boolType = cir::BoolType::get(builder.getContext()); |
| 703 | |
| 704 | if (parser.parseOperand(cond) || |
| 705 | parser.resolveOperand(cond, boolType, result.operands)) |
| 706 | return failure(); |
| 707 | |
| 708 | // Parse 'then' region. |
| 709 | mlir::SMLoc parseThenLoc = parser.getCurrentLocation(); |
| 710 | if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| 711 | return failure(); |
| 712 | |
| 713 | if (ensureRegionTerm(parser, *thenRegion, parseThenLoc).failed()) |
| 714 | return failure(); |
| 715 | |
| 716 | // If we find an 'else' keyword, parse the 'else' region. |
| 717 | if (!parser.parseOptionalKeyword("else" )) { |
| 718 | mlir::SMLoc parseElseLoc = parser.getCurrentLocation(); |
| 719 | if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| 720 | return failure(); |
| 721 | if (ensureRegionTerm(parser, *elseRegion, parseElseLoc).failed()) |
| 722 | return failure(); |
| 723 | } |
| 724 | |
| 725 | // Parse the optional attribute list. |
| 726 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 727 | return failure(); |
| 728 | return success(); |
| 729 | } |
| 730 | |
| 731 | void cir::IfOp::print(OpAsmPrinter &p) { |
| 732 | p << " " << getCondition() << " " ; |
| 733 | mlir::Region &thenRegion = this->getThenRegion(); |
| 734 | p.printRegion(thenRegion, |
| 735 | /*printEntryBlockArgs=*/false, |
| 736 | /*printBlockTerminators=*/!omitRegionTerm(thenRegion)); |
| 737 | |
| 738 | // Print the 'else' regions if it exists and has a block. |
| 739 | mlir::Region &elseRegion = this->getElseRegion(); |
| 740 | if (!elseRegion.empty()) { |
| 741 | p << " else " ; |
| 742 | p.printRegion(elseRegion, |
| 743 | /*printEntryBlockArgs=*/false, |
| 744 | /*printBlockTerminators=*/!omitRegionTerm(elseRegion)); |
| 745 | } |
| 746 | |
| 747 | p.printOptionalAttrDict(getOperation()->getAttrs()); |
| 748 | } |
| 749 | |
| 750 | /// Default callback for IfOp builders. |
| 751 | void cir::buildTerminatedBody(OpBuilder &builder, Location loc) { |
| 752 | // add cir.yield to end of the block |
| 753 | builder.create<cir::YieldOp>(loc); |
| 754 | } |
| 755 | |
| 756 | /// Given the region at `index`, or the parent operation if `index` is None, |
| 757 | /// return the successor regions. These are the regions that may be selected |
| 758 | /// during the flow of control. `operands` is a set of optional attributes that |
| 759 | /// correspond to a constant value for each operand, or null if that operand is |
| 760 | /// not a constant. |
| 761 | void cir::IfOp::getSuccessorRegions(mlir::RegionBranchPoint point, |
| 762 | SmallVectorImpl<RegionSuccessor> ®ions) { |
| 763 | // The `then` and the `else` region branch back to the parent operation. |
| 764 | if (!point.isParent()) { |
| 765 | regions.push_back(RegionSuccessor()); |
| 766 | return; |
| 767 | } |
| 768 | |
| 769 | // Don't consider the else region if it is empty. |
| 770 | Region *elseRegion = &this->getElseRegion(); |
| 771 | if (elseRegion->empty()) |
| 772 | elseRegion = nullptr; |
| 773 | |
| 774 | // If the condition isn't constant, both regions may be executed. |
| 775 | regions.push_back(RegionSuccessor(&getThenRegion())); |
| 776 | // If the else region does not exist, it is not a viable successor. |
| 777 | if (elseRegion) |
| 778 | regions.push_back(RegionSuccessor(elseRegion)); |
| 779 | |
| 780 | return; |
| 781 | } |
| 782 | |
| 783 | void cir::IfOp::build(OpBuilder &builder, OperationState &result, Value cond, |
| 784 | bool withElseRegion, BuilderCallbackRef thenBuilder, |
| 785 | BuilderCallbackRef elseBuilder) { |
| 786 | assert(thenBuilder && "the builder callback for 'then' must be present" ); |
| 787 | result.addOperands(cond); |
| 788 | |
| 789 | OpBuilder::InsertionGuard guard(builder); |
| 790 | Region *thenRegion = result.addRegion(); |
| 791 | builder.createBlock(thenRegion); |
| 792 | thenBuilder(builder, result.location); |
| 793 | |
| 794 | Region *elseRegion = result.addRegion(); |
| 795 | if (!withElseRegion) |
| 796 | return; |
| 797 | |
| 798 | builder.createBlock(elseRegion); |
| 799 | elseBuilder(builder, result.location); |
| 800 | } |
| 801 | |
| 802 | //===----------------------------------------------------------------------===// |
| 803 | // ScopeOp |
| 804 | //===----------------------------------------------------------------------===// |
| 805 | |
| 806 | /// Given the region at `index`, or the parent operation if `index` is None, |
| 807 | /// return the successor regions. These are the regions that may be selected |
| 808 | /// during the flow of control. `operands` is a set of optional attributes |
| 809 | /// that correspond to a constant value for each operand, or null if that |
| 810 | /// operand is not a constant. |
| 811 | void cir::ScopeOp::getSuccessorRegions( |
| 812 | mlir::RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 813 | // The only region always branch back to the parent operation. |
| 814 | if (!point.isParent()) { |
| 815 | regions.push_back(RegionSuccessor(getODSResults(0))); |
| 816 | return; |
| 817 | } |
| 818 | |
| 819 | // If the condition isn't constant, both regions may be executed. |
| 820 | regions.push_back(RegionSuccessor(&getScopeRegion())); |
| 821 | } |
| 822 | |
| 823 | void cir::ScopeOp::build( |
| 824 | OpBuilder &builder, OperationState &result, |
| 825 | function_ref<void(OpBuilder &, Type &, Location)> scopeBuilder) { |
| 826 | assert(scopeBuilder && "the builder callback for 'then' must be present" ); |
| 827 | |
| 828 | OpBuilder::InsertionGuard guard(builder); |
| 829 | Region *scopeRegion = result.addRegion(); |
| 830 | builder.createBlock(scopeRegion); |
| 831 | assert(!cir::MissingFeatures::opScopeCleanupRegion()); |
| 832 | |
| 833 | mlir::Type yieldTy; |
| 834 | scopeBuilder(builder, yieldTy, result.location); |
| 835 | |
| 836 | if (yieldTy) |
| 837 | result.addTypes(TypeRange{yieldTy}); |
| 838 | } |
| 839 | |
| 840 | void cir::ScopeOp::build( |
| 841 | OpBuilder &builder, OperationState &result, |
| 842 | function_ref<void(OpBuilder &, Location)> scopeBuilder) { |
| 843 | assert(scopeBuilder && "the builder callback for 'then' must be present" ); |
| 844 | OpBuilder::InsertionGuard guard(builder); |
| 845 | Region *scopeRegion = result.addRegion(); |
| 846 | builder.createBlock(scopeRegion); |
| 847 | assert(!cir::MissingFeatures::opScopeCleanupRegion()); |
| 848 | scopeBuilder(builder, result.location); |
| 849 | } |
| 850 | |
| 851 | LogicalResult cir::ScopeOp::verify() { |
| 852 | if (getRegion().empty()) { |
| 853 | return emitOpError() << "cir.scope must not be empty since it should " |
| 854 | "include at least an implicit cir.yield " ; |
| 855 | } |
| 856 | |
| 857 | mlir::Block &lastBlock = getRegion().back(); |
| 858 | if (lastBlock.empty() || !lastBlock.mightHaveTerminator() || |
| 859 | !lastBlock.getTerminator()->hasTrait<OpTrait::IsTerminator>()) |
| 860 | return emitOpError() << "last block of cir.scope must be terminated" ; |
| 861 | return success(); |
| 862 | } |
| 863 | |
| 864 | //===----------------------------------------------------------------------===// |
| 865 | // BrOp |
| 866 | //===----------------------------------------------------------------------===// |
| 867 | |
| 868 | mlir::SuccessorOperands cir::BrOp::getSuccessorOperands(unsigned index) { |
| 869 | assert(index == 0 && "invalid successor index" ); |
| 870 | return mlir::SuccessorOperands(getDestOperandsMutable()); |
| 871 | } |
| 872 | |
| 873 | Block *cir::BrOp::getSuccessorForOperands(ArrayRef<Attribute>) { |
| 874 | return getDest(); |
| 875 | } |
| 876 | |
| 877 | //===----------------------------------------------------------------------===// |
| 878 | // BrCondOp |
| 879 | //===----------------------------------------------------------------------===// |
| 880 | |
| 881 | mlir::SuccessorOperands cir::BrCondOp::getSuccessorOperands(unsigned index) { |
| 882 | assert(index < getNumSuccessors() && "invalid successor index" ); |
| 883 | return SuccessorOperands(index == 0 ? getDestOperandsTrueMutable() |
| 884 | : getDestOperandsFalseMutable()); |
| 885 | } |
| 886 | |
| 887 | Block *cir::BrCondOp::getSuccessorForOperands(ArrayRef<Attribute> operands) { |
| 888 | if (IntegerAttr condAttr = dyn_cast_if_present<IntegerAttr>(operands.front())) |
| 889 | return condAttr.getValue().isOne() ? getDestTrue() : getDestFalse(); |
| 890 | return nullptr; |
| 891 | } |
| 892 | |
| 893 | //===----------------------------------------------------------------------===// |
| 894 | // CaseOp |
| 895 | //===----------------------------------------------------------------------===// |
| 896 | |
| 897 | void cir::CaseOp::getSuccessorRegions( |
| 898 | mlir::RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 899 | if (!point.isParent()) { |
| 900 | regions.push_back(RegionSuccessor()); |
| 901 | return; |
| 902 | } |
| 903 | regions.push_back(RegionSuccessor(&getCaseRegion())); |
| 904 | } |
| 905 | |
| 906 | void cir::CaseOp::build(OpBuilder &builder, OperationState &result, |
| 907 | ArrayAttr value, CaseOpKind kind, |
| 908 | OpBuilder::InsertPoint &insertPoint) { |
| 909 | OpBuilder::InsertionGuard guardSwitch(builder); |
| 910 | result.addAttribute("value" , value); |
| 911 | result.getOrAddProperties<Properties>().kind = |
| 912 | cir::CaseOpKindAttr::get(builder.getContext(), kind); |
| 913 | Region *caseRegion = result.addRegion(); |
| 914 | builder.createBlock(caseRegion); |
| 915 | |
| 916 | insertPoint = builder.saveInsertionPoint(); |
| 917 | } |
| 918 | |
| 919 | //===----------------------------------------------------------------------===// |
| 920 | // SwitchOp |
| 921 | //===----------------------------------------------------------------------===// |
| 922 | |
| 923 | static ParseResult parseSwitchOp(OpAsmParser &parser, mlir::Region ®ions, |
| 924 | mlir::OpAsmParser::UnresolvedOperand &cond, |
| 925 | mlir::Type &condType) { |
| 926 | cir::IntType intCondType; |
| 927 | |
| 928 | if (parser.parseLParen()) |
| 929 | return mlir::failure(); |
| 930 | |
| 931 | if (parser.parseOperand(result&: cond)) |
| 932 | return mlir::failure(); |
| 933 | if (parser.parseColon()) |
| 934 | return mlir::failure(); |
| 935 | if (parser.parseCustomTypeWithFallback(intCondType)) |
| 936 | return mlir::failure(); |
| 937 | condType = intCondType; |
| 938 | |
| 939 | if (parser.parseRParen()) |
| 940 | return mlir::failure(); |
| 941 | if (parser.parseRegion(region&: regions, /*arguments=*/{}, /*argTypes=*/enableNameShadowing: {})) |
| 942 | return failure(); |
| 943 | |
| 944 | return mlir::success(); |
| 945 | } |
| 946 | |
| 947 | static void printSwitchOp(OpAsmPrinter &p, cir::SwitchOp op, |
| 948 | mlir::Region &bodyRegion, mlir::Value condition, |
| 949 | mlir::Type condType) { |
| 950 | p << "(" ; |
| 951 | p << condition; |
| 952 | p << " : " ; |
| 953 | p.printStrippedAttrOrType(attrOrType: condType); |
| 954 | p << ")" ; |
| 955 | |
| 956 | p << ' '; |
| 957 | p.printRegion(blocks&: bodyRegion, /*printEntryBlockArgs=*/false, |
| 958 | /*printBlockTerminators=*/true); |
| 959 | } |
| 960 | |
| 961 | void cir::SwitchOp::getSuccessorRegions( |
| 962 | mlir::RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ion) { |
| 963 | if (!point.isParent()) { |
| 964 | region.push_back(RegionSuccessor()); |
| 965 | return; |
| 966 | } |
| 967 | |
| 968 | region.push_back(RegionSuccessor(&getBody())); |
| 969 | } |
| 970 | |
| 971 | void cir::SwitchOp::build(OpBuilder &builder, OperationState &result, |
| 972 | Value cond, BuilderOpStateCallbackRef switchBuilder) { |
| 973 | assert(switchBuilder && "the builder callback for regions must be present" ); |
| 974 | OpBuilder::InsertionGuard guardSwitch(builder); |
| 975 | Region *switchRegion = result.addRegion(); |
| 976 | builder.createBlock(switchRegion); |
| 977 | result.addOperands({cond}); |
| 978 | switchBuilder(builder, result.location, result); |
| 979 | } |
| 980 | |
| 981 | void cir::SwitchOp::collectCases(llvm::SmallVectorImpl<CaseOp> &cases) { |
| 982 | walk<mlir::WalkOrder::PreOrder>([&](mlir::Operation *op) { |
| 983 | // Don't walk in nested switch op. |
| 984 | if (isa<cir::SwitchOp>(op) && op != *this) |
| 985 | return WalkResult::skip(); |
| 986 | |
| 987 | if (auto caseOp = dyn_cast<cir::CaseOp>(op)) |
| 988 | cases.push_back(caseOp); |
| 989 | |
| 990 | return WalkResult::advance(); |
| 991 | }); |
| 992 | } |
| 993 | |
| 994 | bool cir::SwitchOp::isSimpleForm(llvm::SmallVectorImpl<CaseOp> &cases) { |
| 995 | collectCases(cases); |
| 996 | |
| 997 | if (getBody().empty()) |
| 998 | return false; |
| 999 | |
| 1000 | if (!isa<YieldOp>(getBody().front().back())) |
| 1001 | return false; |
| 1002 | |
| 1003 | if (!llvm::all_of(getBody().front(), |
| 1004 | [](Operation &op) { return isa<CaseOp, YieldOp>(op); })) |
| 1005 | return false; |
| 1006 | |
| 1007 | return llvm::all_of(cases, [this](CaseOp op) { |
| 1008 | return op->getParentOfType<SwitchOp>() == *this; |
| 1009 | }); |
| 1010 | } |
| 1011 | |
| 1012 | //===----------------------------------------------------------------------===// |
| 1013 | // SwitchFlatOp |
| 1014 | //===----------------------------------------------------------------------===// |
| 1015 | |
| 1016 | void cir::SwitchFlatOp::build(OpBuilder &builder, OperationState &result, |
| 1017 | Value value, Block *defaultDestination, |
| 1018 | ValueRange defaultOperands, |
| 1019 | ArrayRef<APInt> caseValues, |
| 1020 | BlockRange caseDestinations, |
| 1021 | ArrayRef<ValueRange> caseOperands) { |
| 1022 | |
| 1023 | std::vector<mlir::Attribute> caseValuesAttrs; |
| 1024 | for (const APInt &val : caseValues) |
| 1025 | caseValuesAttrs.push_back(cir::IntAttr::get(value.getType(), val)); |
| 1026 | mlir::ArrayAttr attrs = ArrayAttr::get(builder.getContext(), caseValuesAttrs); |
| 1027 | |
| 1028 | build(builder, result, value, defaultOperands, caseOperands, attrs, |
| 1029 | defaultDestination, caseDestinations); |
| 1030 | } |
| 1031 | |
| 1032 | /// <cases> ::= `[` (case (`,` case )* )? `]` |
| 1033 | /// <case> ::= integer `:` bb-id (`(` ssa-use-and-type-list `)`)? |
| 1034 | static ParseResult parseSwitchFlatOpCases( |
| 1035 | OpAsmParser &parser, Type flagType, mlir::ArrayAttr &caseValues, |
| 1036 | SmallVectorImpl<Block *> &caseDestinations, |
| 1037 | SmallVectorImpl<llvm::SmallVector<OpAsmParser::UnresolvedOperand>> |
| 1038 | &caseOperands, |
| 1039 | SmallVectorImpl<llvm::SmallVector<Type>> &caseOperandTypes) { |
| 1040 | if (failed(Result: parser.parseLSquare())) |
| 1041 | return failure(); |
| 1042 | if (succeeded(Result: parser.parseOptionalRSquare())) |
| 1043 | return success(); |
| 1044 | llvm::SmallVector<mlir::Attribute> values; |
| 1045 | |
| 1046 | auto parseCase = [&]() { |
| 1047 | int64_t value = 0; |
| 1048 | if (failed(Result: parser.parseInteger(result&: value))) |
| 1049 | return failure(); |
| 1050 | |
| 1051 | values.push_back(cir::IntAttr::get(flagType, value)); |
| 1052 | |
| 1053 | Block *destination; |
| 1054 | llvm::SmallVector<OpAsmParser::UnresolvedOperand> operands; |
| 1055 | llvm::SmallVector<Type> operandTypes; |
| 1056 | if (parser.parseColon() || parser.parseSuccessor(dest&: destination)) |
| 1057 | return failure(); |
| 1058 | if (!parser.parseOptionalLParen()) { |
| 1059 | if (parser.parseOperandList(result&: operands, delimiter: OpAsmParser::Delimiter::None, |
| 1060 | /*allowResultNumber=*/false) || |
| 1061 | parser.parseColonTypeList(result&: operandTypes) || parser.parseRParen()) |
| 1062 | return failure(); |
| 1063 | } |
| 1064 | caseDestinations.push_back(Elt: destination); |
| 1065 | caseOperands.emplace_back(Args&: operands); |
| 1066 | caseOperandTypes.emplace_back(Args&: operandTypes); |
| 1067 | return success(); |
| 1068 | }; |
| 1069 | if (failed(Result: parser.parseCommaSeparatedList(parseElementFn: parseCase))) |
| 1070 | return failure(); |
| 1071 | |
| 1072 | caseValues = ArrayAttr::get(flagType.getContext(), values); |
| 1073 | |
| 1074 | return parser.parseRSquare(); |
| 1075 | } |
| 1076 | |
| 1077 | static void printSwitchFlatOpCases(OpAsmPrinter &p, cir::SwitchFlatOp op, |
| 1078 | Type flagType, mlir::ArrayAttr caseValues, |
| 1079 | SuccessorRange caseDestinations, |
| 1080 | OperandRangeRange caseOperands, |
| 1081 | const TypeRangeRange &caseOperandTypes) { |
| 1082 | p << '['; |
| 1083 | p.printNewline(); |
| 1084 | if (!caseValues) { |
| 1085 | p << ']'; |
| 1086 | return; |
| 1087 | } |
| 1088 | |
| 1089 | size_t index = 0; |
| 1090 | llvm::interleave( |
| 1091 | llvm::zip(caseValues, caseDestinations), |
| 1092 | [&](auto i) { |
| 1093 | p << " " ; |
| 1094 | mlir::Attribute a = std::get<0>(i); |
| 1095 | p << mlir::cast<cir::IntAttr>(a).getValue(); |
| 1096 | p << ": " ; |
| 1097 | p.printSuccessorAndUseList(successor: std::get<1>(i), succOperands: caseOperands[index++]); |
| 1098 | }, |
| 1099 | [&] { |
| 1100 | p << ','; |
| 1101 | p.printNewline(); |
| 1102 | }); |
| 1103 | p.printNewline(); |
| 1104 | p << ']'; |
| 1105 | } |
| 1106 | |
| 1107 | //===----------------------------------------------------------------------===// |
| 1108 | // GlobalOp |
| 1109 | //===----------------------------------------------------------------------===// |
| 1110 | |
| 1111 | static ParseResult parseConstantValue(OpAsmParser &parser, |
| 1112 | mlir::Attribute &valueAttr) { |
| 1113 | NamedAttrList attr; |
| 1114 | return parser.parseAttribute(result&: valueAttr, attrName: "value" , attrs&: attr); |
| 1115 | } |
| 1116 | |
| 1117 | static void printConstant(OpAsmPrinter &p, Attribute value) { |
| 1118 | p.printAttribute(attr: value); |
| 1119 | } |
| 1120 | |
| 1121 | mlir::LogicalResult cir::GlobalOp::verify() { |
| 1122 | // Verify that the initial value, if present, is either a unit attribute or |
| 1123 | // an attribute CIR supports. |
| 1124 | if (getInitialValue().has_value()) { |
| 1125 | if (checkConstantTypes(getOperation(), getSymType(), *getInitialValue()) |
| 1126 | .failed()) |
| 1127 | return failure(); |
| 1128 | } |
| 1129 | |
| 1130 | // TODO(CIR): Many other checks for properties that haven't been upstreamed |
| 1131 | // yet. |
| 1132 | |
| 1133 | return success(); |
| 1134 | } |
| 1135 | |
| 1136 | void cir::GlobalOp::build(OpBuilder &odsBuilder, OperationState &odsState, |
| 1137 | llvm::StringRef sym_name, mlir::Type sym_type, |
| 1138 | cir::GlobalLinkageKind linkage) { |
| 1139 | odsState.addAttribute(getSymNameAttrName(odsState.name), |
| 1140 | odsBuilder.getStringAttr(sym_name)); |
| 1141 | odsState.addAttribute(getSymTypeAttrName(odsState.name), |
| 1142 | mlir::TypeAttr::get(sym_type)); |
| 1143 | |
| 1144 | cir::GlobalLinkageKindAttr linkageAttr = |
| 1145 | cir::GlobalLinkageKindAttr::get(odsBuilder.getContext(), linkage); |
| 1146 | odsState.addAttribute(getLinkageAttrName(odsState.name), linkageAttr); |
| 1147 | |
| 1148 | odsState.addAttribute(getGlobalVisibilityAttrName(odsState.name), |
| 1149 | cir::VisibilityAttr::get(odsBuilder.getContext())); |
| 1150 | } |
| 1151 | |
| 1152 | static void printGlobalOpTypeAndInitialValue(OpAsmPrinter &p, cir::GlobalOp op, |
| 1153 | TypeAttr type, |
| 1154 | Attribute initAttr) { |
| 1155 | if (!op.isDeclaration()) { |
| 1156 | p << "= " ; |
| 1157 | // This also prints the type... |
| 1158 | if (initAttr) |
| 1159 | printConstant(p, value: initAttr); |
| 1160 | } else { |
| 1161 | p << ": " << type; |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | static ParseResult |
| 1166 | parseGlobalOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, |
| 1167 | Attribute &initialValueAttr) { |
| 1168 | mlir::Type opTy; |
| 1169 | if (parser.parseOptionalEqual().failed()) { |
| 1170 | // Absence of equal means a declaration, so we need to parse the type. |
| 1171 | // cir.global @a : !cir.int<s, 32> |
| 1172 | if (parser.parseColonType(result&: opTy)) |
| 1173 | return failure(); |
| 1174 | } else { |
| 1175 | // Parse constant with initializer, examples: |
| 1176 | // cir.global @y = #cir.fp<1.250000e+00> : !cir.double |
| 1177 | // cir.global @rgb = #cir.const_array<[...] : !cir.array<i8 x 3>> |
| 1178 | if (parseConstantValue(parser, valueAttr&: initialValueAttr).failed()) |
| 1179 | return failure(); |
| 1180 | |
| 1181 | assert(mlir::isa<mlir::TypedAttr>(initialValueAttr) && |
| 1182 | "Non-typed attrs shouldn't appear here." ); |
| 1183 | auto typedAttr = mlir::cast<mlir::TypedAttr>(initialValueAttr); |
| 1184 | opTy = typedAttr.getType(); |
| 1185 | } |
| 1186 | |
| 1187 | typeAttr = TypeAttr::get(opTy); |
| 1188 | return success(); |
| 1189 | } |
| 1190 | |
| 1191 | //===----------------------------------------------------------------------===// |
| 1192 | // GetGlobalOp |
| 1193 | //===----------------------------------------------------------------------===// |
| 1194 | |
| 1195 | LogicalResult |
| 1196 | cir::GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
| 1197 | // Verify that the result type underlying pointer type matches the type of |
| 1198 | // the referenced cir.global or cir.func op. |
| 1199 | mlir::Operation *op = |
| 1200 | symbolTable.lookupNearestSymbolFrom(*this, getNameAttr()); |
| 1201 | if (op == nullptr || !(isa<GlobalOp>(op) || isa<FuncOp>(op))) |
| 1202 | return emitOpError("'" ) |
| 1203 | << getName() |
| 1204 | << "' does not reference a valid cir.global or cir.func" ; |
| 1205 | |
| 1206 | mlir::Type symTy; |
| 1207 | if (auto g = dyn_cast<GlobalOp>(op)) { |
| 1208 | symTy = g.getSymType(); |
| 1209 | assert(!cir::MissingFeatures::addressSpace()); |
| 1210 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| 1211 | } else if (auto f = dyn_cast<FuncOp>(op)) { |
| 1212 | symTy = f.getFunctionType(); |
| 1213 | } else { |
| 1214 | llvm_unreachable("Unexpected operation for GetGlobalOp" ); |
| 1215 | } |
| 1216 | |
| 1217 | auto resultType = dyn_cast<PointerType>(getAddr().getType()); |
| 1218 | if (!resultType || symTy != resultType.getPointee()) |
| 1219 | return emitOpError("result type pointee type '" ) |
| 1220 | << resultType.getPointee() << "' does not match type " << symTy |
| 1221 | << " of the global @" << getName(); |
| 1222 | |
| 1223 | return success(); |
| 1224 | } |
| 1225 | |
| 1226 | //===----------------------------------------------------------------------===// |
| 1227 | // FuncOp |
| 1228 | //===----------------------------------------------------------------------===// |
| 1229 | |
| 1230 | void cir::FuncOp::build(OpBuilder &builder, OperationState &result, |
| 1231 | StringRef name, FuncType type) { |
| 1232 | result.addRegion(); |
| 1233 | result.addAttribute(SymbolTable::getSymbolAttrName(), |
| 1234 | builder.getStringAttr(name)); |
| 1235 | result.addAttribute(getFunctionTypeAttrName(result.name), |
| 1236 | TypeAttr::get(type)); |
| 1237 | } |
| 1238 | |
| 1239 | ParseResult cir::FuncOp::parse(OpAsmParser &parser, OperationState &state) { |
| 1240 | llvm::SMLoc loc = parser.getCurrentLocation(); |
| 1241 | mlir::Builder &builder = parser.getBuilder(); |
| 1242 | |
| 1243 | StringAttr nameAttr; |
| 1244 | if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), |
| 1245 | state.attributes)) |
| 1246 | return failure(); |
| 1247 | llvm::SmallVector<OpAsmParser::Argument, 8> arguments; |
| 1248 | llvm::SmallVector<mlir::Type> resultTypes; |
| 1249 | llvm::SmallVector<DictionaryAttr> resultAttrs; |
| 1250 | bool isVariadic = false; |
| 1251 | if (function_interface_impl::parseFunctionSignatureWithArguments( |
| 1252 | parser, /*allowVariadic=*/true, arguments, isVariadic, resultTypes, |
| 1253 | resultAttrs)) |
| 1254 | return failure(); |
| 1255 | llvm::SmallVector<mlir::Type> argTypes; |
| 1256 | for (OpAsmParser::Argument &arg : arguments) |
| 1257 | argTypes.push_back(arg.type); |
| 1258 | |
| 1259 | if (resultTypes.size() > 1) { |
| 1260 | return parser.emitError( |
| 1261 | loc, "functions with multiple return types are not supported" ); |
| 1262 | } |
| 1263 | |
| 1264 | mlir::Type returnType = |
| 1265 | (resultTypes.empty() ? cir::VoidType::get(builder.getContext()) |
| 1266 | : resultTypes.front()); |
| 1267 | |
| 1268 | cir::FuncType fnType = cir::FuncType::get(argTypes, returnType, isVariadic); |
| 1269 | if (!fnType) |
| 1270 | return failure(); |
| 1271 | state.addAttribute(getFunctionTypeAttrName(state.name), |
| 1272 | TypeAttr::get(fnType)); |
| 1273 | |
| 1274 | // Parse the optional function body. |
| 1275 | auto *body = state.addRegion(); |
| 1276 | OptionalParseResult parseResult = parser.parseOptionalRegion( |
| 1277 | *body, arguments, /*enableNameShadowing=*/false); |
| 1278 | if (parseResult.has_value()) { |
| 1279 | if (failed(*parseResult)) |
| 1280 | return failure(); |
| 1281 | // Function body was parsed, make sure its not empty. |
| 1282 | if (body->empty()) |
| 1283 | return parser.emitError(loc, "expected non-empty function body" ); |
| 1284 | } |
| 1285 | |
| 1286 | return success(); |
| 1287 | } |
| 1288 | |
| 1289 | bool cir::FuncOp::isDeclaration() { |
| 1290 | // TODO(CIR): This function will actually do something once external |
| 1291 | // function declarations and aliases are upstreamed. |
| 1292 | return false; |
| 1293 | } |
| 1294 | |
| 1295 | mlir::Region *cir::FuncOp::getCallableRegion() { |
| 1296 | // TODO(CIR): This function will have special handling for aliases and a |
| 1297 | // check for an external function, once those features have been upstreamed. |
| 1298 | return &getBody(); |
| 1299 | } |
| 1300 | |
| 1301 | void cir::FuncOp::print(OpAsmPrinter &p) { |
| 1302 | p << ' '; |
| 1303 | p.printSymbolName(getSymName()); |
| 1304 | cir::FuncType fnType = getFunctionType(); |
| 1305 | function_interface_impl::printFunctionSignature( |
| 1306 | p, *this, fnType.getInputs(), fnType.isVarArg(), fnType.getReturnTypes()); |
| 1307 | |
| 1308 | // Print the body if this is not an external function. |
| 1309 | Region &body = getOperation()->getRegion(0); |
| 1310 | if (!body.empty()) { |
| 1311 | p << ' '; |
| 1312 | p.printRegion(body, /*printEntryBlockArgs=*/false, |
| 1313 | /*printBlockTerminators=*/true); |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | //===----------------------------------------------------------------------===// |
| 1318 | // CIR defined traits |
| 1319 | //===----------------------------------------------------------------------===// |
| 1320 | |
| 1321 | LogicalResult |
| 1322 | mlir::OpTrait::impl::verifySameFirstOperandAndResultType(Operation *op) { |
| 1323 | if (failed(Result: verifyAtLeastNOperands(op, numOperands: 1)) || failed(Result: verifyOneResult(op))) |
| 1324 | return failure(); |
| 1325 | |
| 1326 | const Type type = op->getResult(idx: 0).getType(); |
| 1327 | const Type opType = op->getOperand(idx: 0).getType(); |
| 1328 | |
| 1329 | if (type != opType) |
| 1330 | return op->emitOpError() |
| 1331 | << "requires the same type for first operand and result" ; |
| 1332 | |
| 1333 | return success(); |
| 1334 | } |
| 1335 | |
| 1336 | // TODO(CIR): The properties of functions that require verification haven't |
| 1337 | // been implemented yet. |
| 1338 | mlir::LogicalResult cir::FuncOp::verify() { return success(); } |
| 1339 | |
| 1340 | //===----------------------------------------------------------------------===// |
| 1341 | // BinOp |
| 1342 | //===----------------------------------------------------------------------===// |
| 1343 | LogicalResult cir::BinOp::verify() { |
| 1344 | bool noWrap = getNoUnsignedWrap() || getNoSignedWrap(); |
| 1345 | bool saturated = getSaturated(); |
| 1346 | |
| 1347 | if (!isa<cir::IntType>(getType()) && noWrap) |
| 1348 | return emitError() |
| 1349 | << "only operations on integer values may have nsw/nuw flags" ; |
| 1350 | |
| 1351 | bool noWrapOps = getKind() == cir::BinOpKind::Add || |
| 1352 | getKind() == cir::BinOpKind::Sub || |
| 1353 | getKind() == cir::BinOpKind::Mul; |
| 1354 | |
| 1355 | bool saturatedOps = |
| 1356 | getKind() == cir::BinOpKind::Add || getKind() == cir::BinOpKind::Sub; |
| 1357 | |
| 1358 | if (noWrap && !noWrapOps) |
| 1359 | return emitError() << "The nsw/nuw flags are applicable to opcodes: 'add', " |
| 1360 | "'sub' and 'mul'" ; |
| 1361 | if (saturated && !saturatedOps) |
| 1362 | return emitError() << "The saturated flag is applicable to opcodes: 'add' " |
| 1363 | "and 'sub'" ; |
| 1364 | if (noWrap && saturated) |
| 1365 | return emitError() << "The nsw/nuw flags and the saturated flag are " |
| 1366 | "mutually exclusive" ; |
| 1367 | |
| 1368 | assert(!cir::MissingFeatures::complexType()); |
| 1369 | // TODO(cir): verify for complex binops |
| 1370 | |
| 1371 | return mlir::success(); |
| 1372 | } |
| 1373 | |
| 1374 | //===----------------------------------------------------------------------===// |
| 1375 | // TernaryOp |
| 1376 | //===----------------------------------------------------------------------===// |
| 1377 | |
| 1378 | /// Given the region at `point`, or the parent operation if `point` is None, |
| 1379 | /// return the successor regions. These are the regions that may be selected |
| 1380 | /// during the flow of control. `operands` is a set of optional attributes that |
| 1381 | /// correspond to a constant value for each operand, or null if that operand is |
| 1382 | /// not a constant. |
| 1383 | void cir::TernaryOp::getSuccessorRegions( |
| 1384 | mlir::RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| 1385 | // The `true` and the `false` region branch back to the parent operation. |
| 1386 | if (!point.isParent()) { |
| 1387 | regions.push_back(RegionSuccessor(this->getODSResults(0))); |
| 1388 | return; |
| 1389 | } |
| 1390 | |
| 1391 | // When branching from the parent operation, both the true and false |
| 1392 | // regions are considered possible successors |
| 1393 | regions.push_back(RegionSuccessor(&getTrueRegion())); |
| 1394 | regions.push_back(RegionSuccessor(&getFalseRegion())); |
| 1395 | } |
| 1396 | |
| 1397 | void cir::TernaryOp::build( |
| 1398 | OpBuilder &builder, OperationState &result, Value cond, |
| 1399 | function_ref<void(OpBuilder &, Location)> trueBuilder, |
| 1400 | function_ref<void(OpBuilder &, Location)> falseBuilder) { |
| 1401 | result.addOperands(cond); |
| 1402 | OpBuilder::InsertionGuard guard(builder); |
| 1403 | Region *trueRegion = result.addRegion(); |
| 1404 | Block *block = builder.createBlock(trueRegion); |
| 1405 | trueBuilder(builder, result.location); |
| 1406 | Region *falseRegion = result.addRegion(); |
| 1407 | builder.createBlock(falseRegion); |
| 1408 | falseBuilder(builder, result.location); |
| 1409 | |
| 1410 | auto yield = dyn_cast<YieldOp>(block->getTerminator()); |
| 1411 | assert((yield && yield.getNumOperands() <= 1) && |
| 1412 | "expected zero or one result type" ); |
| 1413 | if (yield.getNumOperands() == 1) |
| 1414 | result.addTypes(TypeRange{yield.getOperandTypes().front()}); |
| 1415 | } |
| 1416 | |
| 1417 | //===----------------------------------------------------------------------===// |
| 1418 | // SelectOp |
| 1419 | //===----------------------------------------------------------------------===// |
| 1420 | |
| 1421 | OpFoldResult cir::SelectOp::fold(FoldAdaptor adaptor) { |
| 1422 | mlir::Attribute condition = adaptor.getCondition(); |
| 1423 | if (condition) { |
| 1424 | bool conditionValue = mlir::cast<cir::BoolAttr>(condition).getValue(); |
| 1425 | return conditionValue ? getTrueValue() : getFalseValue(); |
| 1426 | } |
| 1427 | |
| 1428 | // cir.select if %0 then x else x -> x |
| 1429 | mlir::Attribute trueValue = adaptor.getTrueValue(); |
| 1430 | mlir::Attribute falseValue = adaptor.getFalseValue(); |
| 1431 | if (trueValue == falseValue) |
| 1432 | return trueValue; |
| 1433 | if (getTrueValue() == getFalseValue()) |
| 1434 | return getTrueValue(); |
| 1435 | |
| 1436 | return {}; |
| 1437 | } |
| 1438 | |
| 1439 | //===----------------------------------------------------------------------===// |
| 1440 | // ShiftOp |
| 1441 | //===----------------------------------------------------------------------===// |
| 1442 | LogicalResult cir::ShiftOp::verify() { |
| 1443 | mlir::Operation *op = getOperation(); |
| 1444 | auto op0VecTy = mlir::dyn_cast<cir::VectorType>(op->getOperand(0).getType()); |
| 1445 | auto op1VecTy = mlir::dyn_cast<cir::VectorType>(op->getOperand(1).getType()); |
| 1446 | if (!op0VecTy ^ !op1VecTy) |
| 1447 | return emitOpError() << "input types cannot be one vector and one scalar" ; |
| 1448 | |
| 1449 | if (op0VecTy) { |
| 1450 | if (op0VecTy.getSize() != op1VecTy.getSize()) |
| 1451 | return emitOpError() << "input vector types must have the same size" ; |
| 1452 | |
| 1453 | auto opResultTy = mlir::dyn_cast<cir::VectorType>(getType()); |
| 1454 | if (!opResultTy) |
| 1455 | return emitOpError() << "the type of the result must be a vector " |
| 1456 | << "if it is vector shift" ; |
| 1457 | |
| 1458 | auto op0VecEleTy = mlir::cast<cir::IntType>(op0VecTy.getElementType()); |
| 1459 | auto op1VecEleTy = mlir::cast<cir::IntType>(op1VecTy.getElementType()); |
| 1460 | if (op0VecEleTy.getWidth() != op1VecEleTy.getWidth()) |
| 1461 | return emitOpError() |
| 1462 | << "vector operands do not have the same elements sizes" ; |
| 1463 | |
| 1464 | auto resVecEleTy = mlir::cast<cir::IntType>(opResultTy.getElementType()); |
| 1465 | if (op0VecEleTy.getWidth() != resVecEleTy.getWidth()) |
| 1466 | return emitOpError() << "vector operands and result type do not have the " |
| 1467 | "same elements sizes" ; |
| 1468 | } |
| 1469 | |
| 1470 | return mlir::success(); |
| 1471 | } |
| 1472 | |
| 1473 | //===----------------------------------------------------------------------===// |
| 1474 | // UnaryOp |
| 1475 | //===----------------------------------------------------------------------===// |
| 1476 | |
| 1477 | LogicalResult cir::UnaryOp::verify() { |
| 1478 | switch (getKind()) { |
| 1479 | case cir::UnaryOpKind::Inc: |
| 1480 | case cir::UnaryOpKind::Dec: |
| 1481 | case cir::UnaryOpKind::Plus: |
| 1482 | case cir::UnaryOpKind::Minus: |
| 1483 | case cir::UnaryOpKind::Not: |
| 1484 | // Nothing to verify. |
| 1485 | return success(); |
| 1486 | } |
| 1487 | |
| 1488 | llvm_unreachable("Unknown UnaryOp kind?" ); |
| 1489 | } |
| 1490 | |
| 1491 | static bool isBoolNot(cir::UnaryOp op) { |
| 1492 | return isa<cir::BoolType>(op.getInput().getType()) && |
| 1493 | op.getKind() == cir::UnaryOpKind::Not; |
| 1494 | } |
| 1495 | |
| 1496 | // This folder simplifies the sequential boolean not operations. |
| 1497 | // For instance, the next two unary operations will be eliminated: |
| 1498 | // |
| 1499 | // ```mlir |
| 1500 | // %1 = cir.unary(not, %0) : !cir.bool, !cir.bool |
| 1501 | // %2 = cir.unary(not, %1) : !cir.bool, !cir.bool |
| 1502 | // ``` |
| 1503 | // |
| 1504 | // and the argument of the first one (%0) will be used instead. |
| 1505 | OpFoldResult cir::UnaryOp::fold(FoldAdaptor adaptor) { |
| 1506 | if (isBoolNot(*this)) |
| 1507 | if (auto previous = dyn_cast_or_null<UnaryOp>(getInput().getDefiningOp())) |
| 1508 | if (isBoolNot(previous)) |
| 1509 | return previous.getInput(); |
| 1510 | |
| 1511 | return {}; |
| 1512 | } |
| 1513 | |
| 1514 | //===----------------------------------------------------------------------===// |
| 1515 | // GetMemberOp Definitions |
| 1516 | //===----------------------------------------------------------------------===// |
| 1517 | |
| 1518 | LogicalResult cir::GetMemberOp::verify() { |
| 1519 | const auto recordTy = dyn_cast<RecordType>(getAddrTy().getPointee()); |
| 1520 | if (!recordTy) |
| 1521 | return emitError() << "expected pointer to a record type" ; |
| 1522 | |
| 1523 | if (recordTy.getMembers().size() <= getIndex()) |
| 1524 | return emitError() << "member index out of bounds" ; |
| 1525 | |
| 1526 | if (recordTy.getMembers()[getIndex()] != getType().getPointee()) |
| 1527 | return emitError() << "member type mismatch" ; |
| 1528 | |
| 1529 | return mlir::success(); |
| 1530 | } |
| 1531 | |
| 1532 | //===----------------------------------------------------------------------===// |
| 1533 | // VecCreateOp |
| 1534 | //===----------------------------------------------------------------------===// |
| 1535 | |
| 1536 | LogicalResult cir::VecCreateOp::verify() { |
| 1537 | // Verify that the number of arguments matches the number of elements in the |
| 1538 | // vector, and that the type of all the arguments matches the type of the |
| 1539 | // elements in the vector. |
| 1540 | const cir::VectorType vecTy = getType(); |
| 1541 | if (getElements().size() != vecTy.getSize()) { |
| 1542 | return emitOpError() << "operand count of " << getElements().size() |
| 1543 | << " doesn't match vector type " << vecTy |
| 1544 | << " element count of " << vecTy.getSize(); |
| 1545 | } |
| 1546 | |
| 1547 | const mlir::Type elementType = vecTy.getElementType(); |
| 1548 | for (const mlir::Value element : getElements()) { |
| 1549 | if (element.getType() != elementType) { |
| 1550 | return emitOpError() << "operand type " << element.getType() |
| 1551 | << " doesn't match vector element type " |
| 1552 | << elementType; |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | return success(); |
| 1557 | } |
| 1558 | |
| 1559 | //===----------------------------------------------------------------------===// |
| 1560 | // VecExtractOp |
| 1561 | //===----------------------------------------------------------------------===// |
| 1562 | |
| 1563 | OpFoldResult cir::VecExtractOp::fold(FoldAdaptor adaptor) { |
| 1564 | const auto vectorAttr = |
| 1565 | llvm::dyn_cast_if_present<cir::ConstVectorAttr>(adaptor.getVec()); |
| 1566 | if (!vectorAttr) |
| 1567 | return {}; |
| 1568 | |
| 1569 | const auto indexAttr = |
| 1570 | llvm::dyn_cast_if_present<cir::IntAttr>(adaptor.getIndex()); |
| 1571 | if (!indexAttr) |
| 1572 | return {}; |
| 1573 | |
| 1574 | const mlir::ArrayAttr elements = vectorAttr.getElts(); |
| 1575 | const uint64_t index = indexAttr.getUInt(); |
| 1576 | if (index >= elements.size()) |
| 1577 | return {}; |
| 1578 | |
| 1579 | return elements[index]; |
| 1580 | } |
| 1581 | |
| 1582 | //===----------------------------------------------------------------------===// |
| 1583 | // VecShuffleOp |
| 1584 | //===----------------------------------------------------------------------===// |
| 1585 | |
| 1586 | OpFoldResult cir::VecShuffleOp::fold(FoldAdaptor adaptor) { |
| 1587 | auto vec1Attr = |
| 1588 | mlir::dyn_cast_if_present<cir::ConstVectorAttr>(adaptor.getVec1()); |
| 1589 | auto vec2Attr = |
| 1590 | mlir::dyn_cast_if_present<cir::ConstVectorAttr>(adaptor.getVec2()); |
| 1591 | if (!vec1Attr || !vec2Attr) |
| 1592 | return {}; |
| 1593 | |
| 1594 | mlir::Type vec1ElemTy = |
| 1595 | mlir::cast<cir::VectorType>(vec1Attr.getType()).getElementType(); |
| 1596 | |
| 1597 | mlir::ArrayAttr vec1Elts = vec1Attr.getElts(); |
| 1598 | mlir::ArrayAttr vec2Elts = vec2Attr.getElts(); |
| 1599 | mlir::ArrayAttr indicesElts = adaptor.getIndices(); |
| 1600 | |
| 1601 | SmallVector<mlir::Attribute, 16> elements; |
| 1602 | elements.reserve(indicesElts.size()); |
| 1603 | |
| 1604 | uint64_t vec1Size = vec1Elts.size(); |
| 1605 | for (const auto &idxAttr : indicesElts.getAsRange<cir::IntAttr>()) { |
| 1606 | if (idxAttr.getSInt() == -1) { |
| 1607 | elements.push_back(cir::UndefAttr::get(vec1ElemTy)); |
| 1608 | continue; |
| 1609 | } |
| 1610 | |
| 1611 | uint64_t idxValue = idxAttr.getUInt(); |
| 1612 | elements.push_back(idxValue < vec1Size ? vec1Elts[idxValue] |
| 1613 | : vec2Elts[idxValue - vec1Size]); |
| 1614 | } |
| 1615 | |
| 1616 | return cir::ConstVectorAttr::get( |
| 1617 | getType(), mlir::ArrayAttr::get(getContext(), elements)); |
| 1618 | } |
| 1619 | |
| 1620 | LogicalResult cir::VecShuffleOp::verify() { |
| 1621 | // The number of elements in the indices array must match the number of |
| 1622 | // elements in the result type. |
| 1623 | if (getIndices().size() != getResult().getType().getSize()) { |
| 1624 | return emitOpError() << ": the number of elements in " << getIndices() |
| 1625 | << " and " << getResult().getType() << " don't match" ; |
| 1626 | } |
| 1627 | |
| 1628 | // The element types of the two input vectors and of the result type must |
| 1629 | // match. |
| 1630 | if (getVec1().getType().getElementType() != |
| 1631 | getResult().getType().getElementType()) { |
| 1632 | return emitOpError() << ": element types of " << getVec1().getType() |
| 1633 | << " and " << getResult().getType() << " don't match" ; |
| 1634 | } |
| 1635 | |
| 1636 | return success(); |
| 1637 | } |
| 1638 | |
| 1639 | //===----------------------------------------------------------------------===// |
| 1640 | // VecShuffleDynamicOp |
| 1641 | //===----------------------------------------------------------------------===// |
| 1642 | |
| 1643 | OpFoldResult cir::VecShuffleDynamicOp::fold(FoldAdaptor adaptor) { |
| 1644 | mlir::Attribute vec = adaptor.getVec(); |
| 1645 | mlir::Attribute indices = adaptor.getIndices(); |
| 1646 | if (mlir::isa_and_nonnull<cir::ConstVectorAttr>(vec) && |
| 1647 | mlir::isa_and_nonnull<cir::ConstVectorAttr>(indices)) { |
| 1648 | auto vecAttr = mlir::cast<cir::ConstVectorAttr>(vec); |
| 1649 | auto indicesAttr = mlir::cast<cir::ConstVectorAttr>(indices); |
| 1650 | |
| 1651 | mlir::ArrayAttr vecElts = vecAttr.getElts(); |
| 1652 | mlir::ArrayAttr indicesElts = indicesAttr.getElts(); |
| 1653 | |
| 1654 | const uint64_t numElements = vecElts.size(); |
| 1655 | |
| 1656 | SmallVector<mlir::Attribute, 16> elements; |
| 1657 | elements.reserve(numElements); |
| 1658 | |
| 1659 | const uint64_t maskBits = llvm::NextPowerOf2(numElements - 1) - 1; |
| 1660 | for (const auto &idxAttr : indicesElts.getAsRange<cir::IntAttr>()) { |
| 1661 | uint64_t idxValue = idxAttr.getUInt(); |
| 1662 | uint64_t newIdx = idxValue & maskBits; |
| 1663 | elements.push_back(vecElts[newIdx]); |
| 1664 | } |
| 1665 | |
| 1666 | return cir::ConstVectorAttr::get( |
| 1667 | getType(), mlir::ArrayAttr::get(getContext(), elements)); |
| 1668 | } |
| 1669 | |
| 1670 | return {}; |
| 1671 | } |
| 1672 | |
| 1673 | LogicalResult cir::VecShuffleDynamicOp::verify() { |
| 1674 | // The number of elements in the two input vectors must match. |
| 1675 | if (getVec().getType().getSize() != |
| 1676 | mlir::cast<cir::VectorType>(getIndices().getType()).getSize()) { |
| 1677 | return emitOpError() << ": the number of elements in " << getVec().getType() |
| 1678 | << " and " << getIndices().getType() << " don't match" ; |
| 1679 | } |
| 1680 | return success(); |
| 1681 | } |
| 1682 | |
| 1683 | //===----------------------------------------------------------------------===// |
| 1684 | // VecTernaryOp |
| 1685 | //===----------------------------------------------------------------------===// |
| 1686 | |
| 1687 | LogicalResult cir::VecTernaryOp::verify() { |
| 1688 | // Verify that the condition operand has the same number of elements as the |
| 1689 | // other operands. (The automatic verification already checked that all |
| 1690 | // operands are vector types and that the second and third operands are the |
| 1691 | // same type.) |
| 1692 | if (getCond().getType().getSize() != getLhs().getType().getSize()) { |
| 1693 | return emitOpError() << ": the number of elements in " |
| 1694 | << getCond().getType() << " and " << getLhs().getType() |
| 1695 | << " don't match" ; |
| 1696 | } |
| 1697 | return success(); |
| 1698 | } |
| 1699 | |
| 1700 | OpFoldResult cir::VecTernaryOp::fold(FoldAdaptor adaptor) { |
| 1701 | mlir::Attribute cond = adaptor.getCond(); |
| 1702 | mlir::Attribute lhs = adaptor.getLhs(); |
| 1703 | mlir::Attribute rhs = adaptor.getRhs(); |
| 1704 | |
| 1705 | if (!mlir::isa_and_nonnull<cir::ConstVectorAttr>(cond) || |
| 1706 | !mlir::isa_and_nonnull<cir::ConstVectorAttr>(lhs) || |
| 1707 | !mlir::isa_and_nonnull<cir::ConstVectorAttr>(rhs)) |
| 1708 | return {}; |
| 1709 | auto condVec = mlir::cast<cir::ConstVectorAttr>(cond); |
| 1710 | auto lhsVec = mlir::cast<cir::ConstVectorAttr>(lhs); |
| 1711 | auto rhsVec = mlir::cast<cir::ConstVectorAttr>(rhs); |
| 1712 | |
| 1713 | mlir::ArrayAttr condElts = condVec.getElts(); |
| 1714 | |
| 1715 | SmallVector<mlir::Attribute, 16> elements; |
| 1716 | elements.reserve(condElts.size()); |
| 1717 | |
| 1718 | for (const auto &[idx, condAttr] : |
| 1719 | llvm::enumerate(condElts.getAsRange<cir::IntAttr>())) { |
| 1720 | if (condAttr.getSInt()) { |
| 1721 | elements.push_back(lhsVec.getElts()[idx]); |
| 1722 | } else { |
| 1723 | elements.push_back(rhsVec.getElts()[idx]); |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | cir::VectorType vecTy = getLhs().getType(); |
| 1728 | return cir::ConstVectorAttr::get( |
| 1729 | vecTy, mlir::ArrayAttr::get(getContext(), elements)); |
| 1730 | } |
| 1731 | |
| 1732 | //===----------------------------------------------------------------------===// |
| 1733 | // TableGen'd op method definitions |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | |
| 1736 | #define GET_OP_CLASSES |
| 1737 | #include "clang/CIR/Dialect/IR/CIROps.cpp.inc" |
| 1738 | |