| 1 | //====- LowerToLLVM.cpp - Lowering from CIR to LLVMIR ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements lowering of CIR operations to LLVMIR. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "LowerToLLVM.h" |
| 14 | |
| 15 | #include <deque> |
| 16 | #include <optional> |
| 17 | |
| 18 | #include "mlir/Conversion/LLVMCommon/TypeConverter.h" |
| 19 | #include "mlir/Dialect/DLTI/DLTI.h" |
| 20 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 21 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 22 | #include "mlir/Dialect/LLVMIR/LLVMTypes.h" |
| 23 | #include "mlir/IR/BuiltinAttributes.h" |
| 24 | #include "mlir/IR/BuiltinDialect.h" |
| 25 | #include "mlir/IR/BuiltinOps.h" |
| 26 | #include "mlir/IR/Types.h" |
| 27 | #include "mlir/Pass/Pass.h" |
| 28 | #include "mlir/Pass/PassManager.h" |
| 29 | #include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h" |
| 30 | #include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h" |
| 31 | #include "mlir/Target/LLVMIR/Export.h" |
| 32 | #include "mlir/Transforms/DialectConversion.h" |
| 33 | #include "clang/CIR/Dialect/IR/CIRAttrs.h" |
| 34 | #include "clang/CIR/Dialect/IR/CIRDialect.h" |
| 35 | #include "clang/CIR/Dialect/Passes.h" |
| 36 | #include "clang/CIR/LoweringHelpers.h" |
| 37 | #include "clang/CIR/MissingFeatures.h" |
| 38 | #include "clang/CIR/Passes.h" |
| 39 | #include "llvm/ADT/TypeSwitch.h" |
| 40 | #include "llvm/IR/Module.h" |
| 41 | #include "llvm/Support/ErrorHandling.h" |
| 42 | #include "llvm/Support/TimeProfiler.h" |
| 43 | |
| 44 | using namespace cir; |
| 45 | using namespace llvm; |
| 46 | |
| 47 | namespace cir { |
| 48 | namespace direct { |
| 49 | |
| 50 | //===----------------------------------------------------------------------===// |
| 51 | // Helper Methods |
| 52 | //===----------------------------------------------------------------------===// |
| 53 | |
| 54 | namespace { |
| 55 | /// If the given type is a vector type, return the vector's element type. |
| 56 | /// Otherwise return the given type unchanged. |
| 57 | mlir::Type elementTypeIfVector(mlir::Type type) { |
| 58 | return llvm::TypeSwitch<mlir::Type, mlir::Type>(type) |
| 59 | .Case<cir::VectorType, mlir::VectorType>( |
| 60 | [](auto p) { return p.getElementType(); }) |
| 61 | .Default([](mlir::Type p) { return p; }); |
| 62 | } |
| 63 | } // namespace |
| 64 | |
| 65 | /// Given a type convertor and a data layout, convert the given type to a type |
| 66 | /// that is suitable for memory operations. For example, this can be used to |
| 67 | /// lower cir.bool accesses to i8. |
| 68 | static mlir::Type convertTypeForMemory(const mlir::TypeConverter &converter, |
| 69 | mlir::DataLayout const &dataLayout, |
| 70 | mlir::Type type) { |
| 71 | // TODO(cir): Handle other types similarly to clang's codegen |
| 72 | // convertTypeForMemory |
| 73 | if (isa<cir::BoolType>(type)) { |
| 74 | return mlir::IntegerType::get(type.getContext(), |
| 75 | dataLayout.getTypeSizeInBits(type)); |
| 76 | } |
| 77 | |
| 78 | return converter.convertType(t: type); |
| 79 | } |
| 80 | |
| 81 | static mlir::Value createIntCast(mlir::OpBuilder &bld, mlir::Value src, |
| 82 | mlir::IntegerType dstTy, |
| 83 | bool isSigned = false) { |
| 84 | mlir::Type srcTy = src.getType(); |
| 85 | assert(mlir::isa<mlir::IntegerType>(srcTy)); |
| 86 | |
| 87 | unsigned srcWidth = mlir::cast<mlir::IntegerType>(srcTy).getWidth(); |
| 88 | unsigned dstWidth = mlir::cast<mlir::IntegerType>(dstTy).getWidth(); |
| 89 | mlir::Location loc = src.getLoc(); |
| 90 | |
| 91 | if (dstWidth > srcWidth && isSigned) |
| 92 | return bld.create<mlir::LLVM::SExtOp>(loc, dstTy, src); |
| 93 | if (dstWidth > srcWidth) |
| 94 | return bld.create<mlir::LLVM::ZExtOp>(loc, dstTy, src); |
| 95 | if (dstWidth < srcWidth) |
| 96 | return bld.create<mlir::LLVM::TruncOp>(loc, dstTy, src); |
| 97 | return bld.create<mlir::LLVM::BitcastOp>(loc, dstTy, src); |
| 98 | } |
| 99 | |
| 100 | /// Emits the value from memory as expected by its users. Should be called when |
| 101 | /// the memory represetnation of a CIR type is not equal to its scalar |
| 102 | /// representation. |
| 103 | static mlir::Value emitFromMemory(mlir::ConversionPatternRewriter &rewriter, |
| 104 | mlir::DataLayout const &dataLayout, |
| 105 | cir::LoadOp op, mlir::Value value) { |
| 106 | |
| 107 | // TODO(cir): Handle other types similarly to clang's codegen EmitFromMemory |
| 108 | if (auto boolTy = mlir::dyn_cast<cir::BoolType>(op.getType())) { |
| 109 | // Create a cast value from specified size in datalayout to i1 |
| 110 | assert(value.getType().isInteger(dataLayout.getTypeSizeInBits(boolTy))); |
| 111 | return createIntCast(rewriter, value, rewriter.getI1Type()); |
| 112 | } |
| 113 | |
| 114 | return value; |
| 115 | } |
| 116 | |
| 117 | /// Emits a value to memory with the expected scalar type. Should be called when |
| 118 | /// the memory represetnation of a CIR type is not equal to its scalar |
| 119 | /// representation. |
| 120 | static mlir::Value emitToMemory(mlir::ConversionPatternRewriter &rewriter, |
| 121 | mlir::DataLayout const &dataLayout, |
| 122 | mlir::Type origType, mlir::Value value) { |
| 123 | |
| 124 | // TODO(cir): Handle other types similarly to clang's codegen EmitToMemory |
| 125 | if (auto boolTy = mlir::dyn_cast<cir::BoolType>(origType)) { |
| 126 | // Create zext of value from i1 to i8 |
| 127 | mlir::IntegerType memType = |
| 128 | rewriter.getIntegerType(dataLayout.getTypeSizeInBits(boolTy)); |
| 129 | return createIntCast(rewriter, value, memType); |
| 130 | } |
| 131 | |
| 132 | return value; |
| 133 | } |
| 134 | |
| 135 | mlir::LLVM::Linkage convertLinkage(cir::GlobalLinkageKind linkage) { |
| 136 | using CIR = cir::GlobalLinkageKind; |
| 137 | using LLVM = mlir::LLVM::Linkage; |
| 138 | |
| 139 | switch (linkage) { |
| 140 | case CIR::AvailableExternallyLinkage: |
| 141 | return LLVM::AvailableExternally; |
| 142 | case CIR::CommonLinkage: |
| 143 | return LLVM::Common; |
| 144 | case CIR::ExternalLinkage: |
| 145 | return LLVM::External; |
| 146 | case CIR::ExternalWeakLinkage: |
| 147 | return LLVM::ExternWeak; |
| 148 | case CIR::InternalLinkage: |
| 149 | return LLVM::Internal; |
| 150 | case CIR::LinkOnceAnyLinkage: |
| 151 | return LLVM::Linkonce; |
| 152 | case CIR::LinkOnceODRLinkage: |
| 153 | return LLVM::LinkonceODR; |
| 154 | case CIR::PrivateLinkage: |
| 155 | return LLVM::Private; |
| 156 | case CIR::WeakAnyLinkage: |
| 157 | return LLVM::Weak; |
| 158 | case CIR::WeakODRLinkage: |
| 159 | return LLVM::WeakODR; |
| 160 | }; |
| 161 | llvm_unreachable("Unknown CIR linkage type" ); |
| 162 | } |
| 163 | |
| 164 | static mlir::Value getLLVMIntCast(mlir::ConversionPatternRewriter &rewriter, |
| 165 | mlir::Value llvmSrc, mlir::Type llvmDstIntTy, |
| 166 | bool isUnsigned, uint64_t cirSrcWidth, |
| 167 | uint64_t cirDstIntWidth) { |
| 168 | if (cirSrcWidth == cirDstIntWidth) |
| 169 | return llvmSrc; |
| 170 | |
| 171 | auto loc = llvmSrc.getLoc(); |
| 172 | if (cirSrcWidth < cirDstIntWidth) { |
| 173 | if (isUnsigned) |
| 174 | return rewriter.create<mlir::LLVM::ZExtOp>(loc, llvmDstIntTy, llvmSrc); |
| 175 | return rewriter.create<mlir::LLVM::SExtOp>(loc, llvmDstIntTy, llvmSrc); |
| 176 | } |
| 177 | |
| 178 | // Otherwise truncate |
| 179 | return rewriter.create<mlir::LLVM::TruncOp>(loc, llvmDstIntTy, llvmSrc); |
| 180 | } |
| 181 | |
| 182 | class CIRAttrToValue { |
| 183 | public: |
| 184 | CIRAttrToValue(mlir::Operation *parentOp, |
| 185 | mlir::ConversionPatternRewriter &rewriter, |
| 186 | const mlir::TypeConverter *converter) |
| 187 | : parentOp(parentOp), rewriter(rewriter), converter(converter) {} |
| 188 | |
| 189 | mlir::Value visit(mlir::Attribute attr) { |
| 190 | return llvm::TypeSwitch<mlir::Attribute, mlir::Value>(attr) |
| 191 | .Case<cir::IntAttr, cir::FPAttr, cir::ConstComplexAttr, |
| 192 | cir::ConstArrayAttr, cir::ConstVectorAttr, cir::ConstPtrAttr, |
| 193 | cir::ZeroAttr>([&](auto attrT) { return visitCirAttr(attrT); }) |
| 194 | .Default([&](auto attrT) { return mlir::Value(); }); |
| 195 | } |
| 196 | |
| 197 | mlir::Value visitCirAttr(cir::IntAttr intAttr); |
| 198 | mlir::Value visitCirAttr(cir::FPAttr fltAttr); |
| 199 | mlir::Value visitCirAttr(cir::ConstComplexAttr complexAttr); |
| 200 | mlir::Value visitCirAttr(cir::ConstPtrAttr ptrAttr); |
| 201 | mlir::Value visitCirAttr(cir::ConstArrayAttr attr); |
| 202 | mlir::Value visitCirAttr(cir::ConstVectorAttr attr); |
| 203 | mlir::Value visitCirAttr(cir::ZeroAttr attr); |
| 204 | |
| 205 | private: |
| 206 | mlir::Operation *parentOp; |
| 207 | mlir::ConversionPatternRewriter &rewriter; |
| 208 | const mlir::TypeConverter *converter; |
| 209 | }; |
| 210 | |
| 211 | /// Switches on the type of attribute and calls the appropriate conversion. |
| 212 | mlir::Value lowerCirAttrAsValue(mlir::Operation *parentOp, |
| 213 | const mlir::Attribute attr, |
| 214 | mlir::ConversionPatternRewriter &rewriter, |
| 215 | const mlir::TypeConverter *converter) { |
| 216 | CIRAttrToValue valueConverter(parentOp, rewriter, converter); |
| 217 | mlir::Value value = valueConverter.visit(attr); |
| 218 | if (!value) |
| 219 | llvm_unreachable("unhandled attribute type" ); |
| 220 | return value; |
| 221 | } |
| 222 | |
| 223 | /// IntAttr visitor. |
| 224 | mlir::Value CIRAttrToValue::visitCirAttr(cir::IntAttr intAttr) { |
| 225 | mlir::Location loc = parentOp->getLoc(); |
| 226 | return rewriter.create<mlir::LLVM::ConstantOp>( |
| 227 | loc, converter->convertType(intAttr.getType()), intAttr.getValue()); |
| 228 | } |
| 229 | |
| 230 | /// FPAttr visitor. |
| 231 | mlir::Value CIRAttrToValue::visitCirAttr(cir::FPAttr fltAttr) { |
| 232 | mlir::Location loc = parentOp->getLoc(); |
| 233 | return rewriter.create<mlir::LLVM::ConstantOp>( |
| 234 | loc, converter->convertType(fltAttr.getType()), fltAttr.getValue()); |
| 235 | } |
| 236 | |
| 237 | /// ConstComplexAttr visitor. |
| 238 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstComplexAttr complexAttr) { |
| 239 | auto complexType = mlir::cast<cir::ComplexType>(complexAttr.getType()); |
| 240 | mlir::Type complexElemTy = complexType.getElementType(); |
| 241 | mlir::Type complexElemLLVMTy = converter->convertType(t: complexElemTy); |
| 242 | |
| 243 | mlir::Attribute components[2]; |
| 244 | if (const auto intType = mlir::dyn_cast<cir::IntType>(complexElemTy)) { |
| 245 | components[0] = rewriter.getIntegerAttr( |
| 246 | complexElemLLVMTy, |
| 247 | mlir::cast<cir::IntAttr>(complexAttr.getReal()).getValue()); |
| 248 | components[1] = rewriter.getIntegerAttr( |
| 249 | complexElemLLVMTy, |
| 250 | mlir::cast<cir::IntAttr>(complexAttr.getImag()).getValue()); |
| 251 | } else { |
| 252 | components[0] = rewriter.getFloatAttr( |
| 253 | complexElemLLVMTy, |
| 254 | mlir::cast<cir::FPAttr>(complexAttr.getReal()).getValue()); |
| 255 | components[1] = rewriter.getFloatAttr( |
| 256 | complexElemLLVMTy, |
| 257 | mlir::cast<cir::FPAttr>(complexAttr.getImag()).getValue()); |
| 258 | } |
| 259 | |
| 260 | mlir::Location loc = parentOp->getLoc(); |
| 261 | return rewriter.create<mlir::LLVM::ConstantOp>( |
| 262 | loc, converter->convertType(complexAttr.getType()), |
| 263 | rewriter.getArrayAttr(components)); |
| 264 | } |
| 265 | |
| 266 | /// ConstPtrAttr visitor. |
| 267 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstPtrAttr ptrAttr) { |
| 268 | mlir::Location loc = parentOp->getLoc(); |
| 269 | if (ptrAttr.isNullValue()) { |
| 270 | return rewriter.create<mlir::LLVM::ZeroOp>( |
| 271 | loc, converter->convertType(ptrAttr.getType())); |
| 272 | } |
| 273 | mlir::DataLayout layout(parentOp->getParentOfType<mlir::ModuleOp>()); |
| 274 | mlir::Value ptrVal = rewriter.create<mlir::LLVM::ConstantOp>( |
| 275 | loc, rewriter.getIntegerType(layout.getTypeSizeInBits(ptrAttr.getType())), |
| 276 | ptrAttr.getValue().getInt()); |
| 277 | return rewriter.create<mlir::LLVM::IntToPtrOp>( |
| 278 | loc, converter->convertType(ptrAttr.getType()), ptrVal); |
| 279 | } |
| 280 | |
| 281 | // ConstArrayAttr visitor |
| 282 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstArrayAttr attr) { |
| 283 | mlir::Type llvmTy = converter->convertType(attr.getType()); |
| 284 | mlir::Location loc = parentOp->getLoc(); |
| 285 | mlir::Value result; |
| 286 | |
| 287 | if (attr.hasTrailingZeros()) { |
| 288 | mlir::Type arrayTy = attr.getType(); |
| 289 | result = rewriter.create<mlir::LLVM::ZeroOp>( |
| 290 | loc, converter->convertType(arrayTy)); |
| 291 | } else { |
| 292 | result = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmTy); |
| 293 | } |
| 294 | |
| 295 | // Iteratively lower each constant element of the array. |
| 296 | if (auto arrayAttr = mlir::dyn_cast<mlir::ArrayAttr>(attr.getElts())) { |
| 297 | for (auto [idx, elt] : llvm::enumerate(arrayAttr)) { |
| 298 | mlir::DataLayout dataLayout(parentOp->getParentOfType<mlir::ModuleOp>()); |
| 299 | mlir::Value init = visit(elt); |
| 300 | result = |
| 301 | rewriter.create<mlir::LLVM::InsertValueOp>(loc, result, init, idx); |
| 302 | } |
| 303 | } else if (auto strAttr = mlir::dyn_cast<mlir::StringAttr>(attr.getElts())) { |
| 304 | // TODO(cir): this diverges from traditional lowering. Normally the string |
| 305 | // would be a global constant that is memcopied. |
| 306 | auto arrayTy = mlir::dyn_cast<cir::ArrayType>(strAttr.getType()); |
| 307 | assert(arrayTy && "String attribute must have an array type" ); |
| 308 | mlir::Type eltTy = arrayTy.getElementType(); |
| 309 | for (auto [idx, elt] : llvm::enumerate(strAttr)) { |
| 310 | auto init = rewriter.create<mlir::LLVM::ConstantOp>( |
| 311 | loc, converter->convertType(eltTy), elt); |
| 312 | result = |
| 313 | rewriter.create<mlir::LLVM::InsertValueOp>(loc, result, init, idx); |
| 314 | } |
| 315 | } else { |
| 316 | llvm_unreachable("unexpected ConstArrayAttr elements" ); |
| 317 | } |
| 318 | |
| 319 | return result; |
| 320 | } |
| 321 | |
| 322 | /// ConstVectorAttr visitor. |
| 323 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstVectorAttr attr) { |
| 324 | const mlir::Type llvmTy = converter->convertType(attr.getType()); |
| 325 | const mlir::Location loc = parentOp->getLoc(); |
| 326 | |
| 327 | SmallVector<mlir::Attribute> mlirValues; |
| 328 | for (const mlir::Attribute elementAttr : attr.getElts()) { |
| 329 | mlir::Attribute mlirAttr; |
| 330 | if (auto intAttr = mlir::dyn_cast<cir::IntAttr>(elementAttr)) { |
| 331 | mlirAttr = rewriter.getIntegerAttr( |
| 332 | converter->convertType(intAttr.getType()), intAttr.getValue()); |
| 333 | } else if (auto floatAttr = mlir::dyn_cast<cir::FPAttr>(elementAttr)) { |
| 334 | mlirAttr = rewriter.getFloatAttr( |
| 335 | converter->convertType(floatAttr.getType()), floatAttr.getValue()); |
| 336 | } else { |
| 337 | llvm_unreachable( |
| 338 | "vector constant with an element that is neither an int nor a float" ); |
| 339 | } |
| 340 | mlirValues.push_back(mlirAttr); |
| 341 | } |
| 342 | |
| 343 | return rewriter.create<mlir::LLVM::ConstantOp>( |
| 344 | loc, llvmTy, |
| 345 | mlir::DenseElementsAttr::get(mlir::cast<mlir::ShapedType>(llvmTy), |
| 346 | mlirValues)); |
| 347 | } |
| 348 | |
| 349 | /// ZeroAttr visitor. |
| 350 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ZeroAttr attr) { |
| 351 | mlir::Location loc = parentOp->getLoc(); |
| 352 | return rewriter.create<mlir::LLVM::ZeroOp>( |
| 353 | loc, converter->convertType(attr.getType())); |
| 354 | } |
| 355 | |
| 356 | // This class handles rewriting initializer attributes for types that do not |
| 357 | // require region initialization. |
| 358 | class GlobalInitAttrRewriter { |
| 359 | public: |
| 360 | GlobalInitAttrRewriter(mlir::Type type, |
| 361 | mlir::ConversionPatternRewriter &rewriter) |
| 362 | : llvmType(type), rewriter(rewriter) {} |
| 363 | |
| 364 | mlir::Attribute visit(mlir::Attribute attr) { |
| 365 | return llvm::TypeSwitch<mlir::Attribute, mlir::Attribute>(attr) |
| 366 | .Case<cir::IntAttr, cir::FPAttr, cir::BoolAttr>( |
| 367 | [&](auto attrT) { return visitCirAttr(attrT); }) |
| 368 | .Default([&](auto attrT) { return mlir::Attribute(); }); |
| 369 | } |
| 370 | |
| 371 | mlir::Attribute visitCirAttr(cir::IntAttr attr) { |
| 372 | return rewriter.getIntegerAttr(llvmType, attr.getValue()); |
| 373 | } |
| 374 | |
| 375 | mlir::Attribute visitCirAttr(cir::FPAttr attr) { |
| 376 | return rewriter.getFloatAttr(llvmType, attr.getValue()); |
| 377 | } |
| 378 | |
| 379 | mlir::Attribute visitCirAttr(cir::BoolAttr attr) { |
| 380 | return rewriter.getBoolAttr(value: attr.getValue()); |
| 381 | } |
| 382 | |
| 383 | private: |
| 384 | mlir::Type llvmType; |
| 385 | mlir::ConversionPatternRewriter &rewriter; |
| 386 | }; |
| 387 | |
| 388 | // This pass requires the CIR to be in a "flat" state. All blocks in each |
| 389 | // function must belong to the parent region. Once scopes and control flow |
| 390 | // are implemented in CIR, a pass will be run before this one to flatten |
| 391 | // the CIR and get it into the state that this pass requires. |
| 392 | struct ConvertCIRToLLVMPass |
| 393 | : public mlir::PassWrapper<ConvertCIRToLLVMPass, |
| 394 | mlir::OperationPass<mlir::ModuleOp>> { |
| 395 | void getDependentDialects(mlir::DialectRegistry ®istry) const override { |
| 396 | registry.insert<mlir::BuiltinDialect, mlir::DLTIDialect, |
| 397 | mlir::LLVM::LLVMDialect, mlir::func::FuncDialect>(); |
| 398 | } |
| 399 | void runOnOperation() final; |
| 400 | |
| 401 | void processCIRAttrs(mlir::ModuleOp module); |
| 402 | |
| 403 | StringRef getDescription() const override { |
| 404 | return "Convert the prepared CIR dialect module to LLVM dialect" ; |
| 405 | } |
| 406 | |
| 407 | StringRef getArgument() const override { return "cir-flat-to-llvm" ; } |
| 408 | }; |
| 409 | |
| 410 | mlir::LogicalResult CIRToLLVMBrCondOpLowering::matchAndRewrite( |
| 411 | cir::BrCondOp brOp, OpAdaptor adaptor, |
| 412 | mlir::ConversionPatternRewriter &rewriter) const { |
| 413 | // When ZExtOp is implemented, we'll need to check if the condition is a |
| 414 | // ZExtOp and if so, delete it if it has a single use. |
| 415 | assert(!cir::MissingFeatures::zextOp()); |
| 416 | |
| 417 | mlir::Value i1Condition = adaptor.getCond(); |
| 418 | |
| 419 | rewriter.replaceOpWithNewOp<mlir::LLVM::CondBrOp>( |
| 420 | brOp, i1Condition, brOp.getDestTrue(), adaptor.getDestOperandsTrue(), |
| 421 | brOp.getDestFalse(), adaptor.getDestOperandsFalse()); |
| 422 | |
| 423 | return mlir::success(); |
| 424 | } |
| 425 | |
| 426 | mlir::Type CIRToLLVMCastOpLowering::convertTy(mlir::Type ty) const { |
| 427 | return getTypeConverter()->convertType(ty); |
| 428 | } |
| 429 | |
| 430 | mlir::LogicalResult CIRToLLVMCastOpLowering::matchAndRewrite( |
| 431 | cir::CastOp castOp, OpAdaptor adaptor, |
| 432 | mlir::ConversionPatternRewriter &rewriter) const { |
| 433 | // For arithmetic conversions, LLVM IR uses the same instruction to convert |
| 434 | // both individual scalars and entire vectors. This lowering pass handles |
| 435 | // both situations. |
| 436 | |
| 437 | switch (castOp.getKind()) { |
| 438 | case cir::CastKind::array_to_ptrdecay: { |
| 439 | const auto ptrTy = mlir::cast<cir::PointerType>(castOp.getType()); |
| 440 | mlir::Value sourceValue = adaptor.getSrc(); |
| 441 | mlir::Type targetType = convertTy(ty: ptrTy); |
| 442 | mlir::Type elementTy = convertTypeForMemory(*getTypeConverter(), dataLayout, |
| 443 | ptrTy.getPointee()); |
| 444 | llvm::SmallVector<mlir::LLVM::GEPArg> offset{0}; |
| 445 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>( |
| 446 | castOp, targetType, elementTy, sourceValue, offset); |
| 447 | break; |
| 448 | } |
| 449 | case cir::CastKind::int_to_bool: { |
| 450 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 451 | mlir::Value zeroInt = rewriter.create<mlir::LLVM::ConstantOp>( |
| 452 | castOp.getLoc(), llvmSrcVal.getType(), 0); |
| 453 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
| 454 | castOp, mlir::LLVM::ICmpPredicate::ne, llvmSrcVal, zeroInt); |
| 455 | break; |
| 456 | } |
| 457 | case cir::CastKind::integral: { |
| 458 | mlir::Type srcType = castOp.getSrc().getType(); |
| 459 | mlir::Type dstType = castOp.getType(); |
| 460 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 461 | mlir::Type llvmDstType = getTypeConverter()->convertType(dstType); |
| 462 | cir::IntType srcIntType = |
| 463 | mlir::cast<cir::IntType>(elementTypeIfVector(srcType)); |
| 464 | cir::IntType dstIntType = |
| 465 | mlir::cast<cir::IntType>(elementTypeIfVector(dstType)); |
| 466 | rewriter.replaceOp(castOp, getLLVMIntCast(rewriter, llvmSrcVal, llvmDstType, |
| 467 | srcIntType.isUnsigned(), |
| 468 | srcIntType.getWidth(), |
| 469 | dstIntType.getWidth())); |
| 470 | break; |
| 471 | } |
| 472 | case cir::CastKind::floating: { |
| 473 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 474 | mlir::Type llvmDstTy = getTypeConverter()->convertType(castOp.getType()); |
| 475 | |
| 476 | mlir::Type srcTy = elementTypeIfVector(castOp.getSrc().getType()); |
| 477 | mlir::Type dstTy = elementTypeIfVector(castOp.getType()); |
| 478 | |
| 479 | if (!mlir::isa<cir::CIRFPTypeInterface>(dstTy) || |
| 480 | !mlir::isa<cir::CIRFPTypeInterface>(srcTy)) |
| 481 | return castOp.emitError() << "NYI cast from " << srcTy << " to " << dstTy; |
| 482 | |
| 483 | auto getFloatWidth = [](mlir::Type ty) -> unsigned { |
| 484 | return mlir::cast<cir::CIRFPTypeInterface>(ty).getWidth(); |
| 485 | }; |
| 486 | |
| 487 | if (getFloatWidth(srcTy) > getFloatWidth(dstTy)) |
| 488 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPTruncOp>(castOp, llvmDstTy, |
| 489 | llvmSrcVal); |
| 490 | else |
| 491 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPExtOp>(castOp, llvmDstTy, |
| 492 | llvmSrcVal); |
| 493 | return mlir::success(); |
| 494 | } |
| 495 | case cir::CastKind::int_to_ptr: { |
| 496 | auto dstTy = mlir::cast<cir::PointerType>(castOp.getType()); |
| 497 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 498 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 499 | rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(castOp, llvmDstTy, |
| 500 | llvmSrcVal); |
| 501 | return mlir::success(); |
| 502 | } |
| 503 | case cir::CastKind::ptr_to_int: { |
| 504 | auto dstTy = mlir::cast<cir::IntType>(castOp.getType()); |
| 505 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 506 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 507 | rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(castOp, llvmDstTy, |
| 508 | llvmSrcVal); |
| 509 | return mlir::success(); |
| 510 | } |
| 511 | case cir::CastKind::float_to_bool: { |
| 512 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 513 | auto kind = mlir::LLVM::FCmpPredicate::une; |
| 514 | |
| 515 | // Check if float is not equal to zero. |
| 516 | auto zeroFloat = rewriter.create<mlir::LLVM::ConstantOp>( |
| 517 | castOp.getLoc(), llvmSrcVal.getType(), |
| 518 | mlir::FloatAttr::get(llvmSrcVal.getType(), 0.0)); |
| 519 | |
| 520 | // Extend comparison result to either bool (C++) or int (C). |
| 521 | rewriter.replaceOpWithNewOp<mlir::LLVM::FCmpOp>(castOp, kind, llvmSrcVal, |
| 522 | zeroFloat); |
| 523 | |
| 524 | return mlir::success(); |
| 525 | } |
| 526 | case cir::CastKind::bool_to_int: { |
| 527 | auto dstTy = mlir::cast<cir::IntType>(castOp.getType()); |
| 528 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 529 | auto llvmSrcTy = mlir::cast<mlir::IntegerType>(llvmSrcVal.getType()); |
| 530 | auto llvmDstTy = |
| 531 | mlir::cast<mlir::IntegerType>(getTypeConverter()->convertType(dstTy)); |
| 532 | if (llvmSrcTy.getWidth() == llvmDstTy.getWidth()) |
| 533 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(castOp, llvmDstTy, |
| 534 | llvmSrcVal); |
| 535 | else |
| 536 | rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(castOp, llvmDstTy, |
| 537 | llvmSrcVal); |
| 538 | return mlir::success(); |
| 539 | } |
| 540 | case cir::CastKind::bool_to_float: { |
| 541 | mlir::Type dstTy = castOp.getType(); |
| 542 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 543 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 544 | rewriter.replaceOpWithNewOp<mlir::LLVM::UIToFPOp>(castOp, llvmDstTy, |
| 545 | llvmSrcVal); |
| 546 | return mlir::success(); |
| 547 | } |
| 548 | case cir::CastKind::int_to_float: { |
| 549 | mlir::Type dstTy = castOp.getType(); |
| 550 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 551 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 552 | if (mlir::cast<cir::IntType>(elementTypeIfVector(castOp.getSrc().getType())) |
| 553 | .isSigned()) |
| 554 | rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(castOp, llvmDstTy, |
| 555 | llvmSrcVal); |
| 556 | else |
| 557 | rewriter.replaceOpWithNewOp<mlir::LLVM::UIToFPOp>(castOp, llvmDstTy, |
| 558 | llvmSrcVal); |
| 559 | return mlir::success(); |
| 560 | } |
| 561 | case cir::CastKind::float_to_int: { |
| 562 | mlir::Type dstTy = castOp.getType(); |
| 563 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 564 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 565 | if (mlir::cast<cir::IntType>(elementTypeIfVector(castOp.getType())) |
| 566 | .isSigned()) |
| 567 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(castOp, llvmDstTy, |
| 568 | llvmSrcVal); |
| 569 | else |
| 570 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPToUIOp>(castOp, llvmDstTy, |
| 571 | llvmSrcVal); |
| 572 | return mlir::success(); |
| 573 | } |
| 574 | case cir::CastKind::bitcast: { |
| 575 | mlir::Type dstTy = castOp.getType(); |
| 576 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 577 | |
| 578 | assert(!MissingFeatures::cxxABI()); |
| 579 | assert(!MissingFeatures::dataMemberType()); |
| 580 | |
| 581 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 582 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(castOp, llvmDstTy, |
| 583 | llvmSrcVal); |
| 584 | return mlir::success(); |
| 585 | } |
| 586 | case cir::CastKind::ptr_to_bool: { |
| 587 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 588 | mlir::Value zeroPtr = rewriter.create<mlir::LLVM::ZeroOp>( |
| 589 | castOp.getLoc(), llvmSrcVal.getType()); |
| 590 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
| 591 | castOp, mlir::LLVM::ICmpPredicate::ne, llvmSrcVal, zeroPtr); |
| 592 | break; |
| 593 | } |
| 594 | case cir::CastKind::address_space: { |
| 595 | mlir::Type dstTy = castOp.getType(); |
| 596 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
| 597 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
| 598 | rewriter.replaceOpWithNewOp<mlir::LLVM::AddrSpaceCastOp>(castOp, llvmDstTy, |
| 599 | llvmSrcVal); |
| 600 | break; |
| 601 | } |
| 602 | case cir::CastKind::member_ptr_to_bool: |
| 603 | assert(!MissingFeatures::cxxABI()); |
| 604 | assert(!MissingFeatures::methodType()); |
| 605 | break; |
| 606 | default: { |
| 607 | return castOp.emitError("Unhandled cast kind: " ) |
| 608 | << castOp.getKindAttrName(); |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | return mlir::success(); |
| 613 | } |
| 614 | |
| 615 | mlir::LogicalResult CIRToLLVMPtrStrideOpLowering::matchAndRewrite( |
| 616 | cir::PtrStrideOp ptrStrideOp, OpAdaptor adaptor, |
| 617 | mlir::ConversionPatternRewriter &rewriter) const { |
| 618 | |
| 619 | const mlir::TypeConverter *tc = getTypeConverter(); |
| 620 | const mlir::Type resultTy = tc->convertType(ptrStrideOp.getType()); |
| 621 | |
| 622 | mlir::Type elementTy = |
| 623 | convertTypeForMemory(*tc, dataLayout, ptrStrideOp.getElementTy()); |
| 624 | mlir::MLIRContext *ctx = elementTy.getContext(); |
| 625 | |
| 626 | // void and function types doesn't really have a layout to use in GEPs, |
| 627 | // make it i8 instead. |
| 628 | if (mlir::isa<mlir::LLVM::LLVMVoidType>(elementTy) || |
| 629 | mlir::isa<mlir::LLVM::LLVMFunctionType>(elementTy)) |
| 630 | elementTy = mlir::IntegerType::get(elementTy.getContext(), 8, |
| 631 | mlir::IntegerType::Signless); |
| 632 | // Zero-extend, sign-extend or trunc the pointer value. |
| 633 | mlir::Value index = adaptor.getStride(); |
| 634 | const unsigned width = |
| 635 | mlir::cast<mlir::IntegerType>(index.getType()).getWidth(); |
| 636 | const std::optional<std::uint64_t> layoutWidth = |
| 637 | dataLayout.getTypeIndexBitwidth(t: adaptor.getBase().getType()); |
| 638 | |
| 639 | mlir::Operation *indexOp = index.getDefiningOp(); |
| 640 | if (indexOp && layoutWidth && width != *layoutWidth) { |
| 641 | // If the index comes from a subtraction, make sure the extension happens |
| 642 | // before it. To achieve that, look at unary minus, which already got |
| 643 | // lowered to "sub 0, x". |
| 644 | const auto sub = dyn_cast<mlir::LLVM::SubOp>(indexOp); |
| 645 | auto unary = dyn_cast_if_present<cir::UnaryOp>( |
| 646 | ptrStrideOp.getStride().getDefiningOp()); |
| 647 | bool rewriteSub = |
| 648 | unary && unary.getKind() == cir::UnaryOpKind::Minus && sub; |
| 649 | if (rewriteSub) |
| 650 | index = indexOp->getOperand(idx: 1); |
| 651 | |
| 652 | // Handle the cast |
| 653 | const auto llvmDstType = mlir::IntegerType::get(ctx, *layoutWidth); |
| 654 | index = getLLVMIntCast(rewriter, index, llvmDstType, |
| 655 | ptrStrideOp.getStride().getType().isUnsigned(), |
| 656 | width, *layoutWidth); |
| 657 | |
| 658 | // Rewrite the sub in front of extensions/trunc |
| 659 | if (rewriteSub) { |
| 660 | index = rewriter.create<mlir::LLVM::SubOp>( |
| 661 | index.getLoc(), index.getType(), |
| 662 | rewriter.create<mlir::LLVM::ConstantOp>(index.getLoc(), |
| 663 | index.getType(), 0), |
| 664 | index); |
| 665 | rewriter.eraseOp(op: sub); |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>( |
| 670 | ptrStrideOp, resultTy, elementTy, adaptor.getBase(), index); |
| 671 | return mlir::success(); |
| 672 | } |
| 673 | |
| 674 | mlir::LogicalResult CIRToLLVMBaseClassAddrOpLowering::matchAndRewrite( |
| 675 | cir::BaseClassAddrOp baseClassOp, OpAdaptor adaptor, |
| 676 | mlir::ConversionPatternRewriter &rewriter) const { |
| 677 | const mlir::Type resultType = |
| 678 | getTypeConverter()->convertType(baseClassOp.getType()); |
| 679 | mlir::Value derivedAddr = adaptor.getDerivedAddr(); |
| 680 | llvm::SmallVector<mlir::LLVM::GEPArg, 1> offset = { |
| 681 | adaptor.getOffset().getZExtValue()}; |
| 682 | mlir::Type byteType = mlir::IntegerType::get(resultType.getContext(), 8, |
| 683 | mlir::IntegerType::Signless); |
| 684 | if (adaptor.getOffset().getZExtValue() == 0) { |
| 685 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>( |
| 686 | baseClassOp, resultType, adaptor.getDerivedAddr()); |
| 687 | return mlir::success(); |
| 688 | } |
| 689 | |
| 690 | if (baseClassOp.getAssumeNotNull()) { |
| 691 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>( |
| 692 | baseClassOp, resultType, byteType, derivedAddr, offset); |
| 693 | } else { |
| 694 | auto loc = baseClassOp.getLoc(); |
| 695 | mlir::Value isNull = rewriter.create<mlir::LLVM::ICmpOp>( |
| 696 | loc, mlir::LLVM::ICmpPredicate::eq, derivedAddr, |
| 697 | rewriter.create<mlir::LLVM::ZeroOp>(loc, derivedAddr.getType())); |
| 698 | mlir::Value adjusted = rewriter.create<mlir::LLVM::GEPOp>( |
| 699 | loc, resultType, byteType, derivedAddr, offset); |
| 700 | rewriter.replaceOpWithNewOp<mlir::LLVM::SelectOp>(baseClassOp, isNull, |
| 701 | derivedAddr, adjusted); |
| 702 | } |
| 703 | return mlir::success(); |
| 704 | } |
| 705 | |
| 706 | mlir::LogicalResult CIRToLLVMAllocaOpLowering::matchAndRewrite( |
| 707 | cir::AllocaOp op, OpAdaptor adaptor, |
| 708 | mlir::ConversionPatternRewriter &rewriter) const { |
| 709 | assert(!cir::MissingFeatures::opAllocaDynAllocSize()); |
| 710 | mlir::Value size = rewriter.create<mlir::LLVM::ConstantOp>( |
| 711 | op.getLoc(), typeConverter->convertType(rewriter.getIndexType()), 1); |
| 712 | mlir::Type elementTy = |
| 713 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getAllocaType()); |
| 714 | mlir::Type resultTy = |
| 715 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getType()); |
| 716 | |
| 717 | assert(!cir::MissingFeatures::addressSpace()); |
| 718 | assert(!cir::MissingFeatures::opAllocaAnnotations()); |
| 719 | |
| 720 | rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>( |
| 721 | op, resultTy, elementTy, size, op.getAlignmentAttr().getInt()); |
| 722 | |
| 723 | return mlir::success(); |
| 724 | } |
| 725 | |
| 726 | mlir::LogicalResult CIRToLLVMReturnOpLowering::matchAndRewrite( |
| 727 | cir::ReturnOp op, OpAdaptor adaptor, |
| 728 | mlir::ConversionPatternRewriter &rewriter) const { |
| 729 | rewriter.replaceOpWithNewOp<mlir::LLVM::ReturnOp>(op, adaptor.getOperands()); |
| 730 | return mlir::LogicalResult::success(); |
| 731 | } |
| 732 | |
| 733 | static mlir::LogicalResult |
| 734 | rewriteCallOrInvoke(mlir::Operation *op, mlir::ValueRange callOperands, |
| 735 | mlir::ConversionPatternRewriter &rewriter, |
| 736 | const mlir::TypeConverter *converter, |
| 737 | mlir::FlatSymbolRefAttr calleeAttr) { |
| 738 | llvm::SmallVector<mlir::Type, 8> llvmResults; |
| 739 | mlir::ValueTypeRange<mlir::ResultRange> cirResults = op->getResultTypes(); |
| 740 | |
| 741 | if (converter->convertTypes(types: cirResults, results&: llvmResults).failed()) |
| 742 | return mlir::failure(); |
| 743 | |
| 744 | assert(!cir::MissingFeatures::opCallCallConv()); |
| 745 | assert(!cir::MissingFeatures::opCallSideEffect()); |
| 746 | |
| 747 | mlir::LLVM::LLVMFunctionType llvmFnTy; |
| 748 | if (calleeAttr) { // direct call |
| 749 | mlir::FunctionOpInterface fn = |
| 750 | mlir::SymbolTable::lookupNearestSymbolFrom<mlir::FunctionOpInterface>( |
| 751 | op, calleeAttr); |
| 752 | assert(fn && "Did not find function for call" ); |
| 753 | llvmFnTy = cast<mlir::LLVM::LLVMFunctionType>( |
| 754 | converter->convertType(fn.getFunctionType())); |
| 755 | } else { // indirect call |
| 756 | assert(!op->getOperands().empty() && |
| 757 | "operands list must no be empty for the indirect call" ); |
| 758 | auto calleeTy = op->getOperands().front().getType(); |
| 759 | auto calleePtrTy = cast<cir::PointerType>(calleeTy); |
| 760 | auto calleeFuncTy = cast<cir::FuncType>(calleePtrTy.getPointee()); |
| 761 | calleeFuncTy.dump(); |
| 762 | converter->convertType(calleeFuncTy).dump(); |
| 763 | llvmFnTy = cast<mlir::LLVM::LLVMFunctionType>( |
| 764 | converter->convertType(calleeFuncTy)); |
| 765 | } |
| 766 | |
| 767 | assert(!cir::MissingFeatures::opCallLandingPad()); |
| 768 | assert(!cir::MissingFeatures::opCallContinueBlock()); |
| 769 | assert(!cir::MissingFeatures::opCallCallConv()); |
| 770 | assert(!cir::MissingFeatures::opCallSideEffect()); |
| 771 | |
| 772 | rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(op, llvmFnTy, calleeAttr, |
| 773 | callOperands); |
| 774 | return mlir::success(); |
| 775 | } |
| 776 | |
| 777 | mlir::LogicalResult CIRToLLVMCallOpLowering::matchAndRewrite( |
| 778 | cir::CallOp op, OpAdaptor adaptor, |
| 779 | mlir::ConversionPatternRewriter &rewriter) const { |
| 780 | return rewriteCallOrInvoke(op.getOperation(), adaptor.getOperands(), rewriter, |
| 781 | getTypeConverter(), op.getCalleeAttr()); |
| 782 | } |
| 783 | |
| 784 | mlir::LogicalResult CIRToLLVMLoadOpLowering::matchAndRewrite( |
| 785 | cir::LoadOp op, OpAdaptor adaptor, |
| 786 | mlir::ConversionPatternRewriter &rewriter) const { |
| 787 | const mlir::Type llvmTy = |
| 788 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getType()); |
| 789 | assert(!cir::MissingFeatures::opLoadStoreMemOrder()); |
| 790 | std::optional<size_t> opAlign = op.getAlignment(); |
| 791 | unsigned alignment = |
| 792 | (unsigned)opAlign.value_or(u: dataLayout.getTypeABIAlignment(t: llvmTy)); |
| 793 | |
| 794 | assert(!cir::MissingFeatures::lowerModeOptLevel()); |
| 795 | |
| 796 | // TODO: nontemporal, syncscope. |
| 797 | assert(!cir::MissingFeatures::opLoadStoreVolatile()); |
| 798 | mlir::LLVM::LoadOp newLoad = rewriter.create<mlir::LLVM::LoadOp>( |
| 799 | op->getLoc(), llvmTy, adaptor.getAddr(), alignment, |
| 800 | /*volatile=*/false, /*nontemporal=*/false, |
| 801 | /*invariant=*/false, /*invariantGroup=*/false, |
| 802 | mlir::LLVM::AtomicOrdering::not_atomic); |
| 803 | |
| 804 | // Convert adapted result to its original type if needed. |
| 805 | mlir::Value result = |
| 806 | emitFromMemory(rewriter, dataLayout, op, newLoad.getResult()); |
| 807 | rewriter.replaceOp(op, result); |
| 808 | assert(!cir::MissingFeatures::opLoadStoreTbaa()); |
| 809 | return mlir::LogicalResult::success(); |
| 810 | } |
| 811 | |
| 812 | mlir::LogicalResult CIRToLLVMStoreOpLowering::matchAndRewrite( |
| 813 | cir::StoreOp op, OpAdaptor adaptor, |
| 814 | mlir::ConversionPatternRewriter &rewriter) const { |
| 815 | assert(!cir::MissingFeatures::opLoadStoreMemOrder()); |
| 816 | const mlir::Type llvmTy = |
| 817 | getTypeConverter()->convertType(op.getValue().getType()); |
| 818 | std::optional<size_t> opAlign = op.getAlignment(); |
| 819 | unsigned alignment = |
| 820 | (unsigned)opAlign.value_or(u: dataLayout.getTypeABIAlignment(t: llvmTy)); |
| 821 | |
| 822 | assert(!cir::MissingFeatures::lowerModeOptLevel()); |
| 823 | |
| 824 | // Convert adapted value to its memory type if needed. |
| 825 | mlir::Value value = emitToMemory(rewriter, dataLayout, |
| 826 | op.getValue().getType(), adaptor.getValue()); |
| 827 | // TODO: nontemporal, syncscope. |
| 828 | assert(!cir::MissingFeatures::opLoadStoreVolatile()); |
| 829 | mlir::LLVM::StoreOp storeOp = rewriter.create<mlir::LLVM::StoreOp>( |
| 830 | op->getLoc(), value, adaptor.getAddr(), alignment, /*volatile=*/false, |
| 831 | /*nontemporal=*/false, /*invariantGroup=*/false, |
| 832 | mlir::LLVM::AtomicOrdering::not_atomic); |
| 833 | rewriter.replaceOp(op, storeOp); |
| 834 | assert(!cir::MissingFeatures::opLoadStoreTbaa()); |
| 835 | return mlir::LogicalResult::success(); |
| 836 | } |
| 837 | |
| 838 | bool hasTrailingZeros(cir::ConstArrayAttr attr) { |
| 839 | auto array = mlir::dyn_cast<mlir::ArrayAttr>(attr.getElts()); |
| 840 | return attr.hasTrailingZeros() || |
| 841 | (array && std::count_if(array.begin(), array.end(), [](auto elt) { |
| 842 | auto ar = dyn_cast<cir::ConstArrayAttr>(elt); |
| 843 | return ar && hasTrailingZeros(ar); |
| 844 | })); |
| 845 | } |
| 846 | |
| 847 | mlir::LogicalResult CIRToLLVMConstantOpLowering::matchAndRewrite( |
| 848 | cir::ConstantOp op, OpAdaptor adaptor, |
| 849 | mlir::ConversionPatternRewriter &rewriter) const { |
| 850 | mlir::Attribute attr = op.getValue(); |
| 851 | |
| 852 | if (mlir::isa<mlir::IntegerType>(op.getType())) { |
| 853 | // Verified cir.const operations cannot actually be of these types, but the |
| 854 | // lowering pass may generate temporary cir.const operations with these |
| 855 | // types. This is OK since MLIR allows unverified operations to be alive |
| 856 | // during a pass as long as they don't live past the end of the pass. |
| 857 | attr = op.getValue(); |
| 858 | } else if (mlir::isa<cir::BoolType>(op.getType())) { |
| 859 | int value = mlir::cast<cir::BoolAttr>(op.getValue()).getValue(); |
| 860 | attr = rewriter.getIntegerAttr(typeConverter->convertType(op.getType()), |
| 861 | value); |
| 862 | } else if (mlir::isa<cir::IntType>(op.getType())) { |
| 863 | assert(!cir::MissingFeatures::opGlobalViewAttr()); |
| 864 | |
| 865 | attr = rewriter.getIntegerAttr( |
| 866 | typeConverter->convertType(op.getType()), |
| 867 | mlir::cast<cir::IntAttr>(op.getValue()).getValue()); |
| 868 | } else if (mlir::isa<cir::CIRFPTypeInterface>(op.getType())) { |
| 869 | attr = rewriter.getFloatAttr( |
| 870 | typeConverter->convertType(op.getType()), |
| 871 | mlir::cast<cir::FPAttr>(op.getValue()).getValue()); |
| 872 | } else if (mlir::isa<cir::PointerType>(op.getType())) { |
| 873 | // Optimize with dedicated LLVM op for null pointers. |
| 874 | if (mlir::isa<cir::ConstPtrAttr>(op.getValue())) { |
| 875 | if (mlir::cast<cir::ConstPtrAttr>(op.getValue()).isNullValue()) { |
| 876 | rewriter.replaceOpWithNewOp<mlir::LLVM::ZeroOp>( |
| 877 | op, typeConverter->convertType(op.getType())); |
| 878 | return mlir::success(); |
| 879 | } |
| 880 | } |
| 881 | assert(!cir::MissingFeatures::opGlobalViewAttr()); |
| 882 | attr = op.getValue(); |
| 883 | } else if (const auto arrTy = mlir::dyn_cast<cir::ArrayType>(op.getType())) { |
| 884 | const auto constArr = mlir::dyn_cast<cir::ConstArrayAttr>(op.getValue()); |
| 885 | if (!constArr && !isa<cir::ZeroAttr, cir::UndefAttr>(op.getValue())) |
| 886 | return op.emitError() << "array does not have a constant initializer" ; |
| 887 | |
| 888 | std::optional<mlir::Attribute> denseAttr; |
| 889 | if (constArr && hasTrailingZeros(constArr)) { |
| 890 | const mlir::Value newOp = |
| 891 | lowerCirAttrAsValue(op, constArr, rewriter, getTypeConverter()); |
| 892 | rewriter.replaceOp(op, newOp); |
| 893 | return mlir::success(); |
| 894 | } else if (constArr && |
| 895 | (denseAttr = lowerConstArrayAttr(constArr, typeConverter))) { |
| 896 | attr = denseAttr.value(); |
| 897 | } else { |
| 898 | const mlir::Value initVal = |
| 899 | lowerCirAttrAsValue(op, op.getValue(), rewriter, typeConverter); |
| 900 | rewriter.replaceAllUsesWith(op, initVal); |
| 901 | rewriter.eraseOp(op: op); |
| 902 | return mlir::success(); |
| 903 | } |
| 904 | } else { |
| 905 | return op.emitError() << "unsupported constant type " << op.getType(); |
| 906 | } |
| 907 | |
| 908 | rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
| 909 | op, getTypeConverter()->convertType(op.getType()), attr); |
| 910 | |
| 911 | return mlir::success(); |
| 912 | } |
| 913 | |
| 914 | /// Convert the `cir.func` attributes to `llvm.func` attributes. |
| 915 | /// Only retain those attributes that are not constructed by |
| 916 | /// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out |
| 917 | /// argument attributes. |
| 918 | void CIRToLLVMFuncOpLowering::lowerFuncAttributes( |
| 919 | cir::FuncOp func, bool filterArgAndResAttrs, |
| 920 | SmallVectorImpl<mlir::NamedAttribute> &result) const { |
| 921 | assert(!cir::MissingFeatures::opFuncCallingConv()); |
| 922 | for (mlir::NamedAttribute attr : func->getAttrs()) { |
| 923 | if (attr.getName() == mlir::SymbolTable::getSymbolAttrName() || |
| 924 | attr.getName() == func.getFunctionTypeAttrName() || |
| 925 | attr.getName() == getLinkageAttrNameString() || |
| 926 | (filterArgAndResAttrs && |
| 927 | (attr.getName() == func.getArgAttrsAttrName() || |
| 928 | attr.getName() == func.getResAttrsAttrName()))) |
| 929 | continue; |
| 930 | |
| 931 | assert(!cir::MissingFeatures::opFuncExtraAttrs()); |
| 932 | result.push_back(attr); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | mlir::LogicalResult CIRToLLVMFuncOpLowering::matchAndRewrite( |
| 937 | cir::FuncOp op, OpAdaptor adaptor, |
| 938 | mlir::ConversionPatternRewriter &rewriter) const { |
| 939 | |
| 940 | cir::FuncType fnType = op.getFunctionType(); |
| 941 | assert(!cir::MissingFeatures::opFuncDsolocal()); |
| 942 | bool isDsoLocal = false; |
| 943 | mlir::TypeConverter::SignatureConversion signatureConversion( |
| 944 | fnType.getNumInputs()); |
| 945 | |
| 946 | for (const auto &argType : llvm::enumerate(fnType.getInputs())) { |
| 947 | mlir::Type convertedType = typeConverter->convertType(argType.value()); |
| 948 | if (!convertedType) |
| 949 | return mlir::failure(); |
| 950 | signatureConversion.addInputs(argType.index(), convertedType); |
| 951 | } |
| 952 | |
| 953 | mlir::Type resultType = |
| 954 | getTypeConverter()->convertType(fnType.getReturnType()); |
| 955 | |
| 956 | // Create the LLVM function operation. |
| 957 | mlir::Type llvmFnTy = mlir::LLVM::LLVMFunctionType::get( |
| 958 | resultType ? resultType : mlir::LLVM::LLVMVoidType::get(getContext()), |
| 959 | signatureConversion.getConvertedTypes(), |
| 960 | /*isVarArg=*/fnType.isVarArg()); |
| 961 | // LLVMFuncOp expects a single FileLine Location instead of a fused |
| 962 | // location. |
| 963 | mlir::Location loc = op.getLoc(); |
| 964 | if (mlir::FusedLoc fusedLoc = mlir::dyn_cast<mlir::FusedLoc>(loc)) |
| 965 | loc = fusedLoc.getLocations()[0]; |
| 966 | assert((mlir::isa<mlir::FileLineColLoc>(loc) || |
| 967 | mlir::isa<mlir::UnknownLoc>(loc)) && |
| 968 | "expected single location or unknown location here" ); |
| 969 | |
| 970 | assert(!cir::MissingFeatures::opFuncLinkage()); |
| 971 | mlir::LLVM::Linkage linkage = mlir::LLVM::Linkage::External; |
| 972 | assert(!cir::MissingFeatures::opFuncCallingConv()); |
| 973 | mlir::LLVM::CConv cconv = mlir::LLVM::CConv::C; |
| 974 | SmallVector<mlir::NamedAttribute, 4> attributes; |
| 975 | lowerFuncAttributes(op, /*filterArgAndResAttrs=*/false, attributes); |
| 976 | |
| 977 | mlir::LLVM::LLVMFuncOp fn = rewriter.create<mlir::LLVM::LLVMFuncOp>( |
| 978 | loc, op.getName(), llvmFnTy, linkage, isDsoLocal, cconv, |
| 979 | mlir::SymbolRefAttr(), attributes); |
| 980 | |
| 981 | assert(!cir::MissingFeatures::opFuncVisibility()); |
| 982 | |
| 983 | rewriter.inlineRegionBefore(op.getBody(), fn.getBody(), fn.end()); |
| 984 | if (failed(rewriter.convertRegionTypes(&fn.getBody(), *typeConverter, |
| 985 | &signatureConversion))) |
| 986 | return mlir::failure(); |
| 987 | |
| 988 | rewriter.eraseOp(op: op); |
| 989 | |
| 990 | return mlir::LogicalResult::success(); |
| 991 | } |
| 992 | |
| 993 | mlir::LogicalResult CIRToLLVMGetGlobalOpLowering::matchAndRewrite( |
| 994 | cir::GetGlobalOp op, OpAdaptor adaptor, |
| 995 | mlir::ConversionPatternRewriter &rewriter) const { |
| 996 | // FIXME(cir): Premature DCE to avoid lowering stuff we're not using. |
| 997 | // CIRGen should mitigate this and not emit the get_global. |
| 998 | if (op->getUses().empty()) { |
| 999 | rewriter.eraseOp(op: op); |
| 1000 | return mlir::success(); |
| 1001 | } |
| 1002 | |
| 1003 | mlir::Type type = getTypeConverter()->convertType(op.getType()); |
| 1004 | mlir::Operation *newop = |
| 1005 | rewriter.create<mlir::LLVM::AddressOfOp>(op.getLoc(), type, op.getName()); |
| 1006 | |
| 1007 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| 1008 | |
| 1009 | rewriter.replaceOp(op, newop); |
| 1010 | return mlir::success(); |
| 1011 | } |
| 1012 | |
| 1013 | /// Replace CIR global with a region initialized LLVM global and update |
| 1014 | /// insertion point to the end of the initializer block. |
| 1015 | void CIRToLLVMGlobalOpLowering::setupRegionInitializedLLVMGlobalOp( |
| 1016 | cir::GlobalOp op, mlir::ConversionPatternRewriter &rewriter) const { |
| 1017 | const mlir::Type llvmType = |
| 1018 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getSymType()); |
| 1019 | |
| 1020 | // FIXME: These default values are placeholders until the the equivalent |
| 1021 | // attributes are available on cir.global ops. This duplicates code |
| 1022 | // in CIRToLLVMGlobalOpLowering::matchAndRewrite() but that will go |
| 1023 | // away when the placeholders are no longer needed. |
| 1024 | assert(!cir::MissingFeatures::opGlobalConstant()); |
| 1025 | const bool isConst = false; |
| 1026 | assert(!cir::MissingFeatures::addressSpace()); |
| 1027 | const unsigned addrSpace = 0; |
| 1028 | const bool isDsoLocal = op.getDsolocal(); |
| 1029 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| 1030 | const bool isThreadLocal = false; |
| 1031 | const uint64_t alignment = op.getAlignment().value_or(0); |
| 1032 | const mlir::LLVM::Linkage linkage = convertLinkage(op.getLinkage()); |
| 1033 | const StringRef symbol = op.getSymName(); |
| 1034 | mlir::SymbolRefAttr comdatAttr = getComdatAttr(op, rewriter); |
| 1035 | |
| 1036 | SmallVector<mlir::NamedAttribute> attributes; |
| 1037 | mlir::LLVM::GlobalOp newGlobalOp = |
| 1038 | rewriter.replaceOpWithNewOp<mlir::LLVM::GlobalOp>( |
| 1039 | op, llvmType, isConst, linkage, symbol, nullptr, alignment, addrSpace, |
| 1040 | isDsoLocal, isThreadLocal, comdatAttr, attributes); |
| 1041 | newGlobalOp.getRegion().emplaceBlock(); |
| 1042 | rewriter.setInsertionPointToEnd(newGlobalOp.getInitializerBlock()); |
| 1043 | } |
| 1044 | |
| 1045 | mlir::LogicalResult |
| 1046 | CIRToLLVMGlobalOpLowering::matchAndRewriteRegionInitializedGlobal( |
| 1047 | cir::GlobalOp op, mlir::Attribute init, |
| 1048 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1049 | // TODO: Generalize this handling when more types are needed here. |
| 1050 | assert((isa<cir::ConstArrayAttr, cir::ConstVectorAttr, cir::ConstPtrAttr, |
| 1051 | cir::ConstComplexAttr, cir::ZeroAttr>(init))); |
| 1052 | |
| 1053 | // TODO(cir): once LLVM's dialect has proper equivalent attributes this |
| 1054 | // should be updated. For now, we use a custom op to initialize globals |
| 1055 | // to the appropriate value. |
| 1056 | const mlir::Location loc = op.getLoc(); |
| 1057 | setupRegionInitializedLLVMGlobalOp(op, rewriter); |
| 1058 | CIRAttrToValue valueConverter(op, rewriter, typeConverter); |
| 1059 | mlir::Value value = valueConverter.visit(attr: init); |
| 1060 | rewriter.create<mlir::LLVM::ReturnOp>(loc, value); |
| 1061 | return mlir::success(); |
| 1062 | } |
| 1063 | |
| 1064 | mlir::LogicalResult CIRToLLVMGlobalOpLowering::matchAndRewrite( |
| 1065 | cir::GlobalOp op, OpAdaptor adaptor, |
| 1066 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1067 | |
| 1068 | std::optional<mlir::Attribute> init = op.getInitialValue(); |
| 1069 | |
| 1070 | // Fetch required values to create LLVM op. |
| 1071 | const mlir::Type cirSymType = op.getSymType(); |
| 1072 | |
| 1073 | // This is the LLVM dialect type. |
| 1074 | const mlir::Type llvmType = |
| 1075 | convertTypeForMemory(*getTypeConverter(), dataLayout, cirSymType); |
| 1076 | // FIXME: These default values are placeholders until the the equivalent |
| 1077 | // attributes are available on cir.global ops. |
| 1078 | assert(!cir::MissingFeatures::opGlobalConstant()); |
| 1079 | const bool isConst = false; |
| 1080 | assert(!cir::MissingFeatures::addressSpace()); |
| 1081 | const unsigned addrSpace = 0; |
| 1082 | const bool isDsoLocal = op.getDsolocal(); |
| 1083 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| 1084 | const bool isThreadLocal = false; |
| 1085 | const uint64_t alignment = op.getAlignment().value_or(0); |
| 1086 | const mlir::LLVM::Linkage linkage = convertLinkage(op.getLinkage()); |
| 1087 | const StringRef symbol = op.getSymName(); |
| 1088 | SmallVector<mlir::NamedAttribute> attributes; |
| 1089 | mlir::SymbolRefAttr comdatAttr = getComdatAttr(op, rewriter); |
| 1090 | |
| 1091 | if (init.has_value()) { |
| 1092 | if (mlir::isa<cir::FPAttr, cir::IntAttr, cir::BoolAttr>(init.value())) { |
| 1093 | GlobalInitAttrRewriter initRewriter(llvmType, rewriter); |
| 1094 | init = initRewriter.visit(attr: init.value()); |
| 1095 | // If initRewriter returned a null attribute, init will have a value but |
| 1096 | // the value will be null. If that happens, initRewriter didn't handle the |
| 1097 | // attribute type. It probably needs to be added to |
| 1098 | // GlobalInitAttrRewriter. |
| 1099 | if (!init.value()) { |
| 1100 | op.emitError() << "unsupported initializer '" << init.value() << "'" ; |
| 1101 | return mlir::failure(); |
| 1102 | } |
| 1103 | } else if (mlir::isa<cir::ConstArrayAttr, cir::ConstVectorAttr, |
| 1104 | cir::ConstPtrAttr, cir::ConstComplexAttr, |
| 1105 | cir::ZeroAttr>(init.value())) { |
| 1106 | // TODO(cir): once LLVM's dialect has proper equivalent attributes this |
| 1107 | // should be updated. For now, we use a custom op to initialize globals |
| 1108 | // to the appropriate value. |
| 1109 | return matchAndRewriteRegionInitializedGlobal(op, init.value(), rewriter); |
| 1110 | } else { |
| 1111 | // We will only get here if new initializer types are added and this |
| 1112 | // code is not updated to handle them. |
| 1113 | op.emitError() << "unsupported initializer '" << init.value() << "'" ; |
| 1114 | return mlir::failure(); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | // Rewrite op. |
| 1119 | rewriter.replaceOpWithNewOp<mlir::LLVM::GlobalOp>( |
| 1120 | op, llvmType, isConst, linkage, symbol, init.value_or(mlir::Attribute()), |
| 1121 | alignment, addrSpace, isDsoLocal, isThreadLocal, comdatAttr, attributes); |
| 1122 | return mlir::success(); |
| 1123 | } |
| 1124 | |
| 1125 | mlir::SymbolRefAttr |
| 1126 | CIRToLLVMGlobalOpLowering::getComdatAttr(cir::GlobalOp &op, |
| 1127 | mlir::OpBuilder &builder) const { |
| 1128 | if (!op.getComdat()) |
| 1129 | return mlir::SymbolRefAttr{}; |
| 1130 | |
| 1131 | mlir::ModuleOp module = op->getParentOfType<mlir::ModuleOp>(); |
| 1132 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 1133 | StringRef comdatName("__llvm_comdat_globals" ); |
| 1134 | if (!comdatOp) { |
| 1135 | builder.setInsertionPointToStart(module.getBody()); |
| 1136 | comdatOp = |
| 1137 | builder.create<mlir::LLVM::ComdatOp>(module.getLoc(), comdatName); |
| 1138 | } |
| 1139 | |
| 1140 | builder.setInsertionPointToStart(&comdatOp.getBody().back()); |
| 1141 | auto selectorOp = builder.create<mlir::LLVM::ComdatSelectorOp>( |
| 1142 | comdatOp.getLoc(), op.getSymName(), mlir::LLVM::comdat::Comdat::Any); |
| 1143 | return mlir::SymbolRefAttr::get( |
| 1144 | builder.getContext(), comdatName, |
| 1145 | mlir::FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())); |
| 1146 | } |
| 1147 | |
| 1148 | mlir::LogicalResult CIRToLLVMSwitchFlatOpLowering::matchAndRewrite( |
| 1149 | cir::SwitchFlatOp op, OpAdaptor adaptor, |
| 1150 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1151 | |
| 1152 | llvm::SmallVector<mlir::APInt, 8> caseValues; |
| 1153 | for (mlir::Attribute val : op.getCaseValues()) { |
| 1154 | auto intAttr = cast<cir::IntAttr>(val); |
| 1155 | caseValues.push_back(intAttr.getValue()); |
| 1156 | } |
| 1157 | |
| 1158 | llvm::SmallVector<mlir::Block *, 8> caseDestinations; |
| 1159 | llvm::SmallVector<mlir::ValueRange, 8> caseOperands; |
| 1160 | |
| 1161 | for (mlir::Block *x : op.getCaseDestinations()) |
| 1162 | caseDestinations.push_back(x); |
| 1163 | |
| 1164 | for (mlir::OperandRange x : op.getCaseOperands()) |
| 1165 | caseOperands.push_back(x); |
| 1166 | |
| 1167 | // Set switch op to branch to the newly created blocks. |
| 1168 | rewriter.setInsertionPoint(op); |
| 1169 | rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>( |
| 1170 | op, adaptor.getCondition(), op.getDefaultDestination(), |
| 1171 | op.getDefaultOperands(), caseValues, caseDestinations, caseOperands); |
| 1172 | return mlir::success(); |
| 1173 | } |
| 1174 | |
| 1175 | mlir::LogicalResult CIRToLLVMUnaryOpLowering::matchAndRewrite( |
| 1176 | cir::UnaryOp op, OpAdaptor adaptor, |
| 1177 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1178 | assert(op.getType() == op.getInput().getType() && |
| 1179 | "Unary operation's operand type and result type are different" ); |
| 1180 | mlir::Type type = op.getType(); |
| 1181 | mlir::Type elementType = elementTypeIfVector(type); |
| 1182 | bool isVector = mlir::isa<cir::VectorType>(type); |
| 1183 | mlir::Type llvmType = getTypeConverter()->convertType(type); |
| 1184 | mlir::Location loc = op.getLoc(); |
| 1185 | |
| 1186 | // Integer unary operations: + - ~ ++ -- |
| 1187 | if (mlir::isa<cir::IntType>(elementType)) { |
| 1188 | mlir::LLVM::IntegerOverflowFlags maybeNSW = |
| 1189 | op.getNoSignedWrap() ? mlir::LLVM::IntegerOverflowFlags::nsw |
| 1190 | : mlir::LLVM::IntegerOverflowFlags::none; |
| 1191 | switch (op.getKind()) { |
| 1192 | case cir::UnaryOpKind::Inc: { |
| 1193 | assert(!isVector && "++ not allowed on vector types" ); |
| 1194 | auto one = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 1); |
| 1195 | rewriter.replaceOpWithNewOp<mlir::LLVM::AddOp>( |
| 1196 | op, llvmType, adaptor.getInput(), one, maybeNSW); |
| 1197 | return mlir::success(); |
| 1198 | } |
| 1199 | case cir::UnaryOpKind::Dec: { |
| 1200 | assert(!isVector && "-- not allowed on vector types" ); |
| 1201 | auto one = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 1); |
| 1202 | rewriter.replaceOpWithNewOp<mlir::LLVM::SubOp>(op, adaptor.getInput(), |
| 1203 | one, maybeNSW); |
| 1204 | return mlir::success(); |
| 1205 | } |
| 1206 | case cir::UnaryOpKind::Plus: |
| 1207 | rewriter.replaceOp(op, adaptor.getInput()); |
| 1208 | return mlir::success(); |
| 1209 | case cir::UnaryOpKind::Minus: { |
| 1210 | mlir::Value zero; |
| 1211 | if (isVector) |
| 1212 | zero = rewriter.create<mlir::LLVM::ZeroOp>(loc, llvmType); |
| 1213 | else |
| 1214 | zero = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 0); |
| 1215 | rewriter.replaceOpWithNewOp<mlir::LLVM::SubOp>( |
| 1216 | op, zero, adaptor.getInput(), maybeNSW); |
| 1217 | return mlir::success(); |
| 1218 | } |
| 1219 | case cir::UnaryOpKind::Not: { |
| 1220 | // bit-wise compliment operator, implemented as an XOR with -1. |
| 1221 | mlir::Value minusOne; |
| 1222 | if (isVector) { |
| 1223 | const uint64_t numElements = |
| 1224 | mlir::dyn_cast<cir::VectorType>(type).getSize(); |
| 1225 | std::vector<int32_t> values(numElements, -1); |
| 1226 | mlir::DenseIntElementsAttr denseVec = rewriter.getI32VectorAttr(values); |
| 1227 | minusOne = |
| 1228 | rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, denseVec); |
| 1229 | } else { |
| 1230 | minusOne = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, -1); |
| 1231 | } |
| 1232 | rewriter.replaceOpWithNewOp<mlir::LLVM::XOrOp>(op, adaptor.getInput(), |
| 1233 | minusOne); |
| 1234 | return mlir::success(); |
| 1235 | } |
| 1236 | } |
| 1237 | llvm_unreachable("Unexpected unary op for int" ); |
| 1238 | } |
| 1239 | |
| 1240 | // Floating point unary operations: + - ++ -- |
| 1241 | if (mlir::isa<cir::CIRFPTypeInterface>(elementType)) { |
| 1242 | switch (op.getKind()) { |
| 1243 | case cir::UnaryOpKind::Inc: { |
| 1244 | assert(!isVector && "++ not allowed on vector types" ); |
| 1245 | mlir::LLVM::ConstantOp one = rewriter.create<mlir::LLVM::ConstantOp>( |
| 1246 | loc, llvmType, rewriter.getFloatAttr(llvmType, 1.0)); |
| 1247 | rewriter.replaceOpWithNewOp<mlir::LLVM::FAddOp>(op, llvmType, one, |
| 1248 | adaptor.getInput()); |
| 1249 | return mlir::success(); |
| 1250 | } |
| 1251 | case cir::UnaryOpKind::Dec: { |
| 1252 | assert(!isVector && "-- not allowed on vector types" ); |
| 1253 | mlir::LLVM::ConstantOp minusOne = rewriter.create<mlir::LLVM::ConstantOp>( |
| 1254 | loc, llvmType, rewriter.getFloatAttr(llvmType, -1.0)); |
| 1255 | rewriter.replaceOpWithNewOp<mlir::LLVM::FAddOp>(op, llvmType, minusOne, |
| 1256 | adaptor.getInput()); |
| 1257 | return mlir::success(); |
| 1258 | } |
| 1259 | case cir::UnaryOpKind::Plus: |
| 1260 | rewriter.replaceOp(op, adaptor.getInput()); |
| 1261 | return mlir::success(); |
| 1262 | case cir::UnaryOpKind::Minus: |
| 1263 | rewriter.replaceOpWithNewOp<mlir::LLVM::FNegOp>(op, llvmType, |
| 1264 | adaptor.getInput()); |
| 1265 | return mlir::success(); |
| 1266 | case cir::UnaryOpKind::Not: |
| 1267 | return op.emitError() << "Unary not is invalid for floating-point types" ; |
| 1268 | } |
| 1269 | llvm_unreachable("Unexpected unary op for float" ); |
| 1270 | } |
| 1271 | |
| 1272 | // Boolean unary operations: ! only. (For all others, the operand has |
| 1273 | // already been promoted to int.) |
| 1274 | if (mlir::isa<cir::BoolType>(elementType)) { |
| 1275 | switch (op.getKind()) { |
| 1276 | case cir::UnaryOpKind::Inc: |
| 1277 | case cir::UnaryOpKind::Dec: |
| 1278 | case cir::UnaryOpKind::Plus: |
| 1279 | case cir::UnaryOpKind::Minus: |
| 1280 | // Some of these are allowed in source code, but we shouldn't get here |
| 1281 | // with a boolean type. |
| 1282 | return op.emitError() << "Unsupported unary operation on boolean type" ; |
| 1283 | case cir::UnaryOpKind::Not: { |
| 1284 | assert(!isVector && "NYI: op! on vector mask" ); |
| 1285 | auto one = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 1); |
| 1286 | rewriter.replaceOpWithNewOp<mlir::LLVM::XOrOp>(op, adaptor.getInput(), |
| 1287 | one); |
| 1288 | return mlir::success(); |
| 1289 | } |
| 1290 | } |
| 1291 | llvm_unreachable("Unexpected unary op for bool" ); |
| 1292 | } |
| 1293 | |
| 1294 | // Pointer unary operations: + only. (++ and -- of pointers are implemented |
| 1295 | // with cir.ptr_stride, not cir.unary.) |
| 1296 | if (mlir::isa<cir::PointerType>(elementType)) { |
| 1297 | return op.emitError() |
| 1298 | << "Unary operation on pointer types is not yet implemented" ; |
| 1299 | } |
| 1300 | |
| 1301 | return op.emitError() << "Unary operation has unsupported type: " |
| 1302 | << elementType; |
| 1303 | } |
| 1304 | |
| 1305 | mlir::LLVM::IntegerOverflowFlags |
| 1306 | CIRToLLVMBinOpLowering::getIntOverflowFlag(cir::BinOp op) const { |
| 1307 | if (op.getNoUnsignedWrap()) |
| 1308 | return mlir::LLVM::IntegerOverflowFlags::nuw; |
| 1309 | |
| 1310 | if (op.getNoSignedWrap()) |
| 1311 | return mlir::LLVM::IntegerOverflowFlags::nsw; |
| 1312 | |
| 1313 | return mlir::LLVM::IntegerOverflowFlags::none; |
| 1314 | } |
| 1315 | |
| 1316 | static bool isIntTypeUnsigned(mlir::Type type) { |
| 1317 | // TODO: Ideally, we should only need to check cir::IntType here. |
| 1318 | return mlir::isa<cir::IntType>(type) |
| 1319 | ? mlir::cast<cir::IntType>(type).isUnsigned() |
| 1320 | : mlir::cast<mlir::IntegerType>(type).isUnsigned(); |
| 1321 | } |
| 1322 | |
| 1323 | mlir::LogicalResult CIRToLLVMBinOpLowering::matchAndRewrite( |
| 1324 | cir::BinOp op, OpAdaptor adaptor, |
| 1325 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1326 | if (adaptor.getLhs().getType() != adaptor.getRhs().getType()) |
| 1327 | return op.emitError() << "inconsistent operands' types not supported yet" ; |
| 1328 | |
| 1329 | mlir::Type type = op.getRhs().getType(); |
| 1330 | if (!mlir::isa<cir::IntType, cir::BoolType, cir::CIRFPTypeInterface, |
| 1331 | mlir::IntegerType, cir::VectorType>(type)) |
| 1332 | return op.emitError() << "operand type not supported yet" ; |
| 1333 | |
| 1334 | const mlir::Type llvmTy = getTypeConverter()->convertType(op.getType()); |
| 1335 | const mlir::Type llvmEltTy = elementTypeIfVector(type: llvmTy); |
| 1336 | |
| 1337 | const mlir::Value rhs = adaptor.getRhs(); |
| 1338 | const mlir::Value lhs = adaptor.getLhs(); |
| 1339 | type = elementTypeIfVector(type); |
| 1340 | |
| 1341 | switch (op.getKind()) { |
| 1342 | case cir::BinOpKind::Add: |
| 1343 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
| 1344 | if (op.getSaturated()) { |
| 1345 | if (isIntTypeUnsigned(type)) { |
| 1346 | rewriter.replaceOpWithNewOp<mlir::LLVM::UAddSat>(op, lhs, rhs); |
| 1347 | break; |
| 1348 | } |
| 1349 | rewriter.replaceOpWithNewOp<mlir::LLVM::SAddSat>(op, lhs, rhs); |
| 1350 | break; |
| 1351 | } |
| 1352 | rewriter.replaceOpWithNewOp<mlir::LLVM::AddOp>(op, llvmTy, lhs, rhs, |
| 1353 | getIntOverflowFlag(op)); |
| 1354 | } else { |
| 1355 | rewriter.replaceOpWithNewOp<mlir::LLVM::FAddOp>(op, lhs, rhs); |
| 1356 | } |
| 1357 | break; |
| 1358 | case cir::BinOpKind::Sub: |
| 1359 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
| 1360 | if (op.getSaturated()) { |
| 1361 | if (isIntTypeUnsigned(type)) { |
| 1362 | rewriter.replaceOpWithNewOp<mlir::LLVM::USubSat>(op, lhs, rhs); |
| 1363 | break; |
| 1364 | } |
| 1365 | rewriter.replaceOpWithNewOp<mlir::LLVM::SSubSat>(op, lhs, rhs); |
| 1366 | break; |
| 1367 | } |
| 1368 | rewriter.replaceOpWithNewOp<mlir::LLVM::SubOp>(op, llvmTy, lhs, rhs, |
| 1369 | getIntOverflowFlag(op)); |
| 1370 | } else { |
| 1371 | rewriter.replaceOpWithNewOp<mlir::LLVM::FSubOp>(op, lhs, rhs); |
| 1372 | } |
| 1373 | break; |
| 1374 | case cir::BinOpKind::Mul: |
| 1375 | if (mlir::isa<mlir::IntegerType>(llvmEltTy)) |
| 1376 | rewriter.replaceOpWithNewOp<mlir::LLVM::MulOp>(op, llvmTy, lhs, rhs, |
| 1377 | getIntOverflowFlag(op)); |
| 1378 | else |
| 1379 | rewriter.replaceOpWithNewOp<mlir::LLVM::FMulOp>(op, lhs, rhs); |
| 1380 | break; |
| 1381 | case cir::BinOpKind::Div: |
| 1382 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
| 1383 | auto isUnsigned = isIntTypeUnsigned(type); |
| 1384 | if (isUnsigned) |
| 1385 | rewriter.replaceOpWithNewOp<mlir::LLVM::UDivOp>(op, lhs, rhs); |
| 1386 | else |
| 1387 | rewriter.replaceOpWithNewOp<mlir::LLVM::SDivOp>(op, lhs, rhs); |
| 1388 | } else { |
| 1389 | rewriter.replaceOpWithNewOp<mlir::LLVM::FDivOp>(op, lhs, rhs); |
| 1390 | } |
| 1391 | break; |
| 1392 | case cir::BinOpKind::Rem: |
| 1393 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
| 1394 | auto isUnsigned = isIntTypeUnsigned(type); |
| 1395 | if (isUnsigned) |
| 1396 | rewriter.replaceOpWithNewOp<mlir::LLVM::URemOp>(op, lhs, rhs); |
| 1397 | else |
| 1398 | rewriter.replaceOpWithNewOp<mlir::LLVM::SRemOp>(op, lhs, rhs); |
| 1399 | } else { |
| 1400 | rewriter.replaceOpWithNewOp<mlir::LLVM::FRemOp>(op, lhs, rhs); |
| 1401 | } |
| 1402 | break; |
| 1403 | case cir::BinOpKind::And: |
| 1404 | rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(op, lhs, rhs); |
| 1405 | break; |
| 1406 | case cir::BinOpKind::Or: |
| 1407 | rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(op, lhs, rhs); |
| 1408 | break; |
| 1409 | case cir::BinOpKind::Xor: |
| 1410 | rewriter.replaceOpWithNewOp<mlir::LLVM::XOrOp>(op, lhs, rhs); |
| 1411 | break; |
| 1412 | case cir::BinOpKind::Max: |
| 1413 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
| 1414 | auto isUnsigned = isIntTypeUnsigned(type); |
| 1415 | if (isUnsigned) |
| 1416 | rewriter.replaceOpWithNewOp<mlir::LLVM::UMaxOp>(op, llvmTy, lhs, rhs); |
| 1417 | else |
| 1418 | rewriter.replaceOpWithNewOp<mlir::LLVM::SMaxOp>(op, llvmTy, lhs, rhs); |
| 1419 | } |
| 1420 | break; |
| 1421 | } |
| 1422 | return mlir::LogicalResult::success(); |
| 1423 | } |
| 1424 | |
| 1425 | /// Convert from a CIR comparison kind to an LLVM IR integral comparison kind. |
| 1426 | static mlir::LLVM::ICmpPredicate |
| 1427 | convertCmpKindToICmpPredicate(cir::CmpOpKind kind, bool isSigned) { |
| 1428 | using CIR = cir::CmpOpKind; |
| 1429 | using LLVMICmp = mlir::LLVM::ICmpPredicate; |
| 1430 | switch (kind) { |
| 1431 | case CIR::eq: |
| 1432 | return LLVMICmp::eq; |
| 1433 | case CIR::ne: |
| 1434 | return LLVMICmp::ne; |
| 1435 | case CIR::lt: |
| 1436 | return (isSigned ? LLVMICmp::slt : LLVMICmp::ult); |
| 1437 | case CIR::le: |
| 1438 | return (isSigned ? LLVMICmp::sle : LLVMICmp::ule); |
| 1439 | case CIR::gt: |
| 1440 | return (isSigned ? LLVMICmp::sgt : LLVMICmp::ugt); |
| 1441 | case CIR::ge: |
| 1442 | return (isSigned ? LLVMICmp::sge : LLVMICmp::uge); |
| 1443 | } |
| 1444 | llvm_unreachable("Unknown CmpOpKind" ); |
| 1445 | } |
| 1446 | |
| 1447 | /// Convert from a CIR comparison kind to an LLVM IR floating-point comparison |
| 1448 | /// kind. |
| 1449 | static mlir::LLVM::FCmpPredicate |
| 1450 | convertCmpKindToFCmpPredicate(cir::CmpOpKind kind) { |
| 1451 | using CIR = cir::CmpOpKind; |
| 1452 | using LLVMFCmp = mlir::LLVM::FCmpPredicate; |
| 1453 | switch (kind) { |
| 1454 | case CIR::eq: |
| 1455 | return LLVMFCmp::oeq; |
| 1456 | case CIR::ne: |
| 1457 | return LLVMFCmp::une; |
| 1458 | case CIR::lt: |
| 1459 | return LLVMFCmp::olt; |
| 1460 | case CIR::le: |
| 1461 | return LLVMFCmp::ole; |
| 1462 | case CIR::gt: |
| 1463 | return LLVMFCmp::ogt; |
| 1464 | case CIR::ge: |
| 1465 | return LLVMFCmp::oge; |
| 1466 | } |
| 1467 | llvm_unreachable("Unknown CmpOpKind" ); |
| 1468 | } |
| 1469 | |
| 1470 | mlir::LogicalResult CIRToLLVMCmpOpLowering::matchAndRewrite( |
| 1471 | cir::CmpOp cmpOp, OpAdaptor adaptor, |
| 1472 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1473 | mlir::Type type = cmpOp.getLhs().getType(); |
| 1474 | |
| 1475 | assert(!cir::MissingFeatures::dataMemberType()); |
| 1476 | assert(!cir::MissingFeatures::methodType()); |
| 1477 | |
| 1478 | // Lower to LLVM comparison op. |
| 1479 | if (mlir::isa<cir::IntType, mlir::IntegerType>(type)) { |
| 1480 | bool isSigned = mlir::isa<cir::IntType>(type) |
| 1481 | ? mlir::cast<cir::IntType>(type).isSigned() |
| 1482 | : mlir::cast<mlir::IntegerType>(type).isSigned(); |
| 1483 | mlir::LLVM::ICmpPredicate kind = |
| 1484 | convertCmpKindToICmpPredicate(cmpOp.getKind(), isSigned); |
| 1485 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
| 1486 | cmpOp, kind, adaptor.getLhs(), adaptor.getRhs()); |
| 1487 | } else if (auto ptrTy = mlir::dyn_cast<cir::PointerType>(type)) { |
| 1488 | mlir::LLVM::ICmpPredicate kind = |
| 1489 | convertCmpKindToICmpPredicate(cmpOp.getKind(), |
| 1490 | /* isSigned=*/false); |
| 1491 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
| 1492 | cmpOp, kind, adaptor.getLhs(), adaptor.getRhs()); |
| 1493 | } else if (mlir::isa<cir::CIRFPTypeInterface>(type)) { |
| 1494 | mlir::LLVM::FCmpPredicate kind = |
| 1495 | convertCmpKindToFCmpPredicate(cmpOp.getKind()); |
| 1496 | rewriter.replaceOpWithNewOp<mlir::LLVM::FCmpOp>( |
| 1497 | cmpOp, kind, adaptor.getLhs(), adaptor.getRhs()); |
| 1498 | } else { |
| 1499 | return cmpOp.emitError() << "unsupported type for CmpOp: " << type; |
| 1500 | } |
| 1501 | |
| 1502 | return mlir::success(); |
| 1503 | } |
| 1504 | |
| 1505 | mlir::LogicalResult CIRToLLVMShiftOpLowering::matchAndRewrite( |
| 1506 | cir::ShiftOp op, OpAdaptor adaptor, |
| 1507 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1508 | assert((op.getValue().getType() == op.getType()) && |
| 1509 | "inconsistent operands' types NYI" ); |
| 1510 | |
| 1511 | const mlir::Type llvmTy = getTypeConverter()->convertType(op.getType()); |
| 1512 | mlir::Value amt = adaptor.getAmount(); |
| 1513 | mlir::Value val = adaptor.getValue(); |
| 1514 | |
| 1515 | auto cirAmtTy = mlir::dyn_cast<cir::IntType>(op.getAmount().getType()); |
| 1516 | bool isUnsigned; |
| 1517 | if (cirAmtTy) { |
| 1518 | auto cirValTy = mlir::cast<cir::IntType>(op.getValue().getType()); |
| 1519 | isUnsigned = cirValTy.isUnsigned(); |
| 1520 | |
| 1521 | // Ensure shift amount is the same type as the value. Some undefined |
| 1522 | // behavior might occur in the casts below as per [C99 6.5.7.3]. |
| 1523 | // Vector type shift amount needs no cast as type consistency is expected to |
| 1524 | // be already be enforced at CIRGen. |
| 1525 | if (cirAmtTy) |
| 1526 | amt = getLLVMIntCast(rewriter, amt, llvmTy, true, cirAmtTy.getWidth(), |
| 1527 | cirValTy.getWidth()); |
| 1528 | } else { |
| 1529 | auto cirValVTy = mlir::cast<cir::VectorType>(op.getValue().getType()); |
| 1530 | isUnsigned = |
| 1531 | mlir::cast<cir::IntType>(cirValVTy.getElementType()).isUnsigned(); |
| 1532 | } |
| 1533 | |
| 1534 | // Lower to the proper LLVM shift operation. |
| 1535 | if (op.getIsShiftleft()) { |
| 1536 | rewriter.replaceOpWithNewOp<mlir::LLVM::ShlOp>(op, llvmTy, val, amt); |
| 1537 | return mlir::success(); |
| 1538 | } |
| 1539 | |
| 1540 | if (isUnsigned) |
| 1541 | rewriter.replaceOpWithNewOp<mlir::LLVM::LShrOp>(op, llvmTy, val, amt); |
| 1542 | else |
| 1543 | rewriter.replaceOpWithNewOp<mlir::LLVM::AShrOp>(op, llvmTy, val, amt); |
| 1544 | return mlir::success(); |
| 1545 | } |
| 1546 | |
| 1547 | mlir::LogicalResult CIRToLLVMSelectOpLowering::matchAndRewrite( |
| 1548 | cir::SelectOp op, OpAdaptor adaptor, |
| 1549 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1550 | auto getConstantBool = [](mlir::Value value) -> cir::BoolAttr { |
| 1551 | auto definingOp = |
| 1552 | mlir::dyn_cast_if_present<cir::ConstantOp>(value.getDefiningOp()); |
| 1553 | if (!definingOp) |
| 1554 | return {}; |
| 1555 | |
| 1556 | auto constValue = mlir::dyn_cast<cir::BoolAttr>(definingOp.getValue()); |
| 1557 | if (!constValue) |
| 1558 | return {}; |
| 1559 | |
| 1560 | return constValue; |
| 1561 | }; |
| 1562 | |
| 1563 | // Two special cases in the LLVMIR codegen of select op: |
| 1564 | // - select %0, %1, false => and %0, %1 |
| 1565 | // - select %0, true, %1 => or %0, %1 |
| 1566 | if (mlir::isa<cir::BoolType>(op.getTrueValue().getType())) { |
| 1567 | cir::BoolAttr trueValue = getConstantBool(op.getTrueValue()); |
| 1568 | cir::BoolAttr falseValue = getConstantBool(op.getFalseValue()); |
| 1569 | if (falseValue && !falseValue.getValue()) { |
| 1570 | // select %0, %1, false => and %0, %1 |
| 1571 | rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(op, adaptor.getCondition(), |
| 1572 | adaptor.getTrueValue()); |
| 1573 | return mlir::success(); |
| 1574 | } |
| 1575 | if (trueValue && trueValue.getValue()) { |
| 1576 | // select %0, true, %1 => or %0, %1 |
| 1577 | rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(op, adaptor.getCondition(), |
| 1578 | adaptor.getFalseValue()); |
| 1579 | return mlir::success(); |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | mlir::Value llvmCondition = adaptor.getCondition(); |
| 1584 | rewriter.replaceOpWithNewOp<mlir::LLVM::SelectOp>( |
| 1585 | op, llvmCondition, adaptor.getTrueValue(), adaptor.getFalseValue()); |
| 1586 | |
| 1587 | return mlir::success(); |
| 1588 | } |
| 1589 | |
| 1590 | static void prepareTypeConverter(mlir::LLVMTypeConverter &converter, |
| 1591 | mlir::DataLayout &dataLayout) { |
| 1592 | converter.addConversion(callback: [&](cir::PointerType type) -> mlir::Type { |
| 1593 | // Drop pointee type since LLVM dialect only allows opaque pointers. |
| 1594 | assert(!cir::MissingFeatures::addressSpace()); |
| 1595 | unsigned targetAS = 0; |
| 1596 | |
| 1597 | return mlir::LLVM::LLVMPointerType::get(type.getContext(), targetAS); |
| 1598 | }); |
| 1599 | converter.addConversion(callback: [&](cir::ArrayType type) -> mlir::Type { |
| 1600 | mlir::Type ty = |
| 1601 | convertTypeForMemory(converter, dataLayout, type.getElementType()); |
| 1602 | return mlir::LLVM::LLVMArrayType::get(ty, type.getSize()); |
| 1603 | }); |
| 1604 | converter.addConversion(callback: [&](cir::VectorType type) -> mlir::Type { |
| 1605 | const mlir::Type ty = converter.convertType(type.getElementType()); |
| 1606 | return mlir::VectorType::get(type.getSize(), ty); |
| 1607 | }); |
| 1608 | converter.addConversion(callback: [&](cir::BoolType type) -> mlir::Type { |
| 1609 | return mlir::IntegerType::get(type.getContext(), 1, |
| 1610 | mlir::IntegerType::Signless); |
| 1611 | }); |
| 1612 | converter.addConversion(callback: [&](cir::IntType type) -> mlir::Type { |
| 1613 | // LLVM doesn't work with signed types, so we drop the CIR signs here. |
| 1614 | return mlir::IntegerType::get(type.getContext(), type.getWidth()); |
| 1615 | }); |
| 1616 | converter.addConversion(callback: [&](cir::SingleType type) -> mlir::Type { |
| 1617 | return mlir::Float32Type::get(type.getContext()); |
| 1618 | }); |
| 1619 | converter.addConversion(callback: [&](cir::DoubleType type) -> mlir::Type { |
| 1620 | return mlir::Float64Type::get(type.getContext()); |
| 1621 | }); |
| 1622 | converter.addConversion(callback: [&](cir::FP80Type type) -> mlir::Type { |
| 1623 | return mlir::Float80Type::get(type.getContext()); |
| 1624 | }); |
| 1625 | converter.addConversion(callback: [&](cir::FP128Type type) -> mlir::Type { |
| 1626 | return mlir::Float128Type::get(type.getContext()); |
| 1627 | }); |
| 1628 | converter.addConversion(callback: [&](cir::LongDoubleType type) -> mlir::Type { |
| 1629 | return converter.convertType(type.getUnderlying()); |
| 1630 | }); |
| 1631 | converter.addConversion(callback: [&](cir::FP16Type type) -> mlir::Type { |
| 1632 | return mlir::Float16Type::get(type.getContext()); |
| 1633 | }); |
| 1634 | converter.addConversion(callback: [&](cir::BF16Type type) -> mlir::Type { |
| 1635 | return mlir::BFloat16Type::get(type.getContext()); |
| 1636 | }); |
| 1637 | converter.addConversion(callback: [&](cir::ComplexType type) -> mlir::Type { |
| 1638 | // A complex type is lowered to an LLVM struct that contains the real and |
| 1639 | // imaginary part as data fields. |
| 1640 | mlir::Type elementTy = converter.convertType(type.getElementType()); |
| 1641 | mlir::Type structFields[2] = {elementTy, elementTy}; |
| 1642 | return mlir::LLVM::LLVMStructType::getLiteral(type.getContext(), |
| 1643 | structFields); |
| 1644 | }); |
| 1645 | converter.addConversion(callback: [&](cir::FuncType type) -> std::optional<mlir::Type> { |
| 1646 | auto result = converter.convertType(type.getReturnType()); |
| 1647 | llvm::SmallVector<mlir::Type> arguments; |
| 1648 | arguments.reserve(N: type.getNumInputs()); |
| 1649 | if (converter.convertTypes(types: type.getInputs(), results&: arguments).failed()) |
| 1650 | return std::nullopt; |
| 1651 | auto varArg = type.isVarArg(); |
| 1652 | return mlir::LLVM::LLVMFunctionType::get(result, arguments, varArg); |
| 1653 | }); |
| 1654 | converter.addConversion(callback: [&](cir::RecordType type) -> mlir::Type { |
| 1655 | // Convert struct members. |
| 1656 | llvm::SmallVector<mlir::Type> llvmMembers; |
| 1657 | switch (type.getKind()) { |
| 1658 | case cir::RecordType::Class: |
| 1659 | case cir::RecordType::Struct: |
| 1660 | for (mlir::Type ty : type.getMembers()) |
| 1661 | llvmMembers.push_back(convertTypeForMemory(converter, dataLayout, ty)); |
| 1662 | break; |
| 1663 | // Unions are lowered as only the largest member. |
| 1664 | case cir::RecordType::Union: |
| 1665 | if (auto largestMember = type.getLargestMember(dataLayout)) |
| 1666 | llvmMembers.push_back( |
| 1667 | Elt: convertTypeForMemory(converter, dataLayout, largestMember)); |
| 1668 | if (type.getPadded()) { |
| 1669 | auto last = *type.getMembers().rbegin(); |
| 1670 | llvmMembers.push_back( |
| 1671 | Elt: convertTypeForMemory(converter, dataLayout, last)); |
| 1672 | } |
| 1673 | break; |
| 1674 | } |
| 1675 | |
| 1676 | // Record has a name: lower as an identified record. |
| 1677 | mlir::LLVM::LLVMStructType llvmStruct; |
| 1678 | if (type.getName()) { |
| 1679 | llvmStruct = mlir::LLVM::LLVMStructType::getIdentified( |
| 1680 | type.getContext(), type.getPrefixedName()); |
| 1681 | if (llvmStruct.setBody(llvmMembers, type.getPacked()).failed()) |
| 1682 | llvm_unreachable("Failed to set body of record" ); |
| 1683 | } else { // Record has no name: lower as literal record. |
| 1684 | llvmStruct = mlir::LLVM::LLVMStructType::getLiteral( |
| 1685 | type.getContext(), llvmMembers, type.getPacked()); |
| 1686 | } |
| 1687 | |
| 1688 | return llvmStruct; |
| 1689 | }); |
| 1690 | } |
| 1691 | |
| 1692 | // The applyPartialConversion function traverses blocks in the dominance order, |
| 1693 | // so it does not lower and operations that are not reachachable from the |
| 1694 | // operations passed in as arguments. Since we do need to lower such code in |
| 1695 | // order to avoid verification errors occur, we cannot just pass the module op |
| 1696 | // to applyPartialConversion. We must build a set of unreachable ops and |
| 1697 | // explicitly add them, along with the module, to the vector we pass to |
| 1698 | // applyPartialConversion. |
| 1699 | // |
| 1700 | // For instance, this CIR code: |
| 1701 | // |
| 1702 | // cir.func @foo(%arg0: !s32i) -> !s32i { |
| 1703 | // %4 = cir.cast(int_to_bool, %arg0 : !s32i), !cir.bool |
| 1704 | // cir.if %4 { |
| 1705 | // %5 = cir.const #cir.int<1> : !s32i |
| 1706 | // cir.return %5 : !s32i |
| 1707 | // } else { |
| 1708 | // %5 = cir.const #cir.int<0> : !s32i |
| 1709 | // cir.return %5 : !s32i |
| 1710 | // } |
| 1711 | // cir.return %arg0 : !s32i |
| 1712 | // } |
| 1713 | // |
| 1714 | // contains an unreachable return operation (the last one). After the flattening |
| 1715 | // pass it will be placed into the unreachable block. The possible error |
| 1716 | // after the lowering pass is: error: 'cir.return' op expects parent op to be |
| 1717 | // one of 'cir.func, cir.scope, cir.if ... The reason that this operation was |
| 1718 | // not lowered and the new parent is llvm.func. |
| 1719 | // |
| 1720 | // In the future we may want to get rid of this function and use a DCE pass or |
| 1721 | // something similar. But for now we need to guarantee the absence of the |
| 1722 | // dialect verification errors. |
| 1723 | static void collectUnreachable(mlir::Operation *parent, |
| 1724 | llvm::SmallVector<mlir::Operation *> &ops) { |
| 1725 | |
| 1726 | llvm::SmallVector<mlir::Block *> unreachableBlocks; |
| 1727 | parent->walk(callback: [&](mlir::Block *blk) { // check |
| 1728 | if (blk->hasNoPredecessors() && !blk->isEntryBlock()) |
| 1729 | unreachableBlocks.push_back(Elt: blk); |
| 1730 | }); |
| 1731 | |
| 1732 | std::set<mlir::Block *> visited; |
| 1733 | for (mlir::Block *root : unreachableBlocks) { |
| 1734 | // We create a work list for each unreachable block. |
| 1735 | // Thus we traverse operations in some order. |
| 1736 | std::deque<mlir::Block *> workList; |
| 1737 | workList.push_back(x: root); |
| 1738 | |
| 1739 | while (!workList.empty()) { |
| 1740 | mlir::Block *blk = workList.back(); |
| 1741 | workList.pop_back(); |
| 1742 | if (visited.count(x: blk)) |
| 1743 | continue; |
| 1744 | visited.emplace(args&: blk); |
| 1745 | |
| 1746 | for (mlir::Operation &op : *blk) |
| 1747 | ops.push_back(Elt: &op); |
| 1748 | |
| 1749 | for (mlir::Block *succ : blk->getSuccessors()) |
| 1750 | workList.push_back(x: succ); |
| 1751 | } |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | void ConvertCIRToLLVMPass::processCIRAttrs(mlir::ModuleOp module) { |
| 1756 | // Lower the module attributes to LLVM equivalents. |
| 1757 | if (mlir::Attribute tripleAttr = |
| 1758 | module->getAttr(cir::CIRDialect::getTripleAttrName())) |
| 1759 | module->setAttr(mlir::LLVM::LLVMDialect::getTargetTripleAttrName(), |
| 1760 | tripleAttr); |
| 1761 | } |
| 1762 | |
| 1763 | void ConvertCIRToLLVMPass::runOnOperation() { |
| 1764 | llvm::TimeTraceScope scope("Convert CIR to LLVM Pass" ); |
| 1765 | |
| 1766 | mlir::ModuleOp module = getOperation(); |
| 1767 | mlir::DataLayout dl(module); |
| 1768 | mlir::LLVMTypeConverter converter(&getContext()); |
| 1769 | prepareTypeConverter(converter, dataLayout&: dl); |
| 1770 | |
| 1771 | mlir::RewritePatternSet patterns(&getContext()); |
| 1772 | |
| 1773 | patterns.add<CIRToLLVMReturnOpLowering>(arg: patterns.getContext()); |
| 1774 | // This could currently be merged with the group below, but it will get more |
| 1775 | // arguments later, so we'll keep it separate for now. |
| 1776 | patterns.add<CIRToLLVMAllocaOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
| 1777 | patterns.add<CIRToLLVMLoadOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
| 1778 | patterns.add<CIRToLLVMStoreOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
| 1779 | patterns.add<CIRToLLVMGlobalOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
| 1780 | patterns.add<CIRToLLVMCastOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
| 1781 | patterns.add<CIRToLLVMPtrStrideOpLowering>(arg&: converter, args: patterns.getContext(), |
| 1782 | args&: dl); |
| 1783 | patterns.add< |
| 1784 | // clang-format off |
| 1785 | CIRToLLVMBaseClassAddrOpLowering, |
| 1786 | CIRToLLVMBinOpLowering, |
| 1787 | CIRToLLVMBrCondOpLowering, |
| 1788 | CIRToLLVMBrOpLowering, |
| 1789 | CIRToLLVMCallOpLowering, |
| 1790 | CIRToLLVMCmpOpLowering, |
| 1791 | CIRToLLVMConstantOpLowering, |
| 1792 | CIRToLLVMFuncOpLowering, |
| 1793 | CIRToLLVMGetGlobalOpLowering, |
| 1794 | CIRToLLVMGetMemberOpLowering, |
| 1795 | CIRToLLVMSelectOpLowering, |
| 1796 | CIRToLLVMSwitchFlatOpLowering, |
| 1797 | CIRToLLVMShiftOpLowering, |
| 1798 | CIRToLLVMStackSaveOpLowering, |
| 1799 | CIRToLLVMStackRestoreOpLowering, |
| 1800 | CIRToLLVMTrapOpLowering, |
| 1801 | CIRToLLVMUnaryOpLowering, |
| 1802 | CIRToLLVMVecCreateOpLowering, |
| 1803 | CIRToLLVMVecExtractOpLowering, |
| 1804 | CIRToLLVMVecInsertOpLowering, |
| 1805 | CIRToLLVMVecCmpOpLowering, |
| 1806 | CIRToLLVMVecSplatOpLowering, |
| 1807 | CIRToLLVMVecShuffleOpLowering, |
| 1808 | CIRToLLVMVecShuffleDynamicOpLowering, |
| 1809 | CIRToLLVMVecTernaryOpLowering |
| 1810 | // clang-format on |
| 1811 | >(arg&: converter, args: patterns.getContext()); |
| 1812 | |
| 1813 | processCIRAttrs(module: module); |
| 1814 | |
| 1815 | mlir::ConversionTarget target(getContext()); |
| 1816 | target.addLegalOp<mlir::ModuleOp>(); |
| 1817 | target.addLegalDialect<mlir::LLVM::LLVMDialect>(); |
| 1818 | target.addIllegalDialect<mlir::BuiltinDialect, cir::CIRDialect, |
| 1819 | mlir::func::FuncDialect>(); |
| 1820 | |
| 1821 | llvm::SmallVector<mlir::Operation *> ops; |
| 1822 | ops.push_back(Elt: module); |
| 1823 | collectUnreachable(module, ops); |
| 1824 | |
| 1825 | if (failed(applyPartialConversion(ops, target, std::move(patterns)))) |
| 1826 | signalPassFailure(); |
| 1827 | } |
| 1828 | |
| 1829 | mlir::LogicalResult CIRToLLVMBrOpLowering::matchAndRewrite( |
| 1830 | cir::BrOp op, OpAdaptor adaptor, |
| 1831 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1832 | rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(op, adaptor.getOperands(), |
| 1833 | op.getDest()); |
| 1834 | return mlir::LogicalResult::success(); |
| 1835 | } |
| 1836 | |
| 1837 | mlir::LogicalResult CIRToLLVMGetMemberOpLowering::matchAndRewrite( |
| 1838 | cir::GetMemberOp op, OpAdaptor adaptor, |
| 1839 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1840 | mlir::Type llResTy = getTypeConverter()->convertType(op.getType()); |
| 1841 | const auto recordTy = |
| 1842 | mlir::cast<cir::RecordType>(op.getAddrTy().getPointee()); |
| 1843 | assert(recordTy && "expected record type" ); |
| 1844 | |
| 1845 | switch (recordTy.getKind()) { |
| 1846 | case cir::RecordType::Class: |
| 1847 | case cir::RecordType::Struct: { |
| 1848 | // Since the base address is a pointer to an aggregate, the first offset |
| 1849 | // is always zero. The second offset tell us which member it will access. |
| 1850 | llvm::SmallVector<mlir::LLVM::GEPArg, 2> offset{0, op.getIndex()}; |
| 1851 | const mlir::Type elementTy = getTypeConverter()->convertType(recordTy); |
| 1852 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(op, llResTy, elementTy, |
| 1853 | adaptor.getAddr(), offset); |
| 1854 | return mlir::success(); |
| 1855 | } |
| 1856 | case cir::RecordType::Union: |
| 1857 | // Union members share the address space, so we just need a bitcast to |
| 1858 | // conform to type-checking. |
| 1859 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(op, llResTy, |
| 1860 | adaptor.getAddr()); |
| 1861 | return mlir::success(); |
| 1862 | } |
| 1863 | } |
| 1864 | |
| 1865 | mlir::LogicalResult CIRToLLVMTrapOpLowering::matchAndRewrite( |
| 1866 | cir::TrapOp op, OpAdaptor adaptor, |
| 1867 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1868 | mlir::Location loc = op->getLoc(); |
| 1869 | rewriter.eraseOp(op: op); |
| 1870 | |
| 1871 | rewriter.create<mlir::LLVM::Trap>(loc); |
| 1872 | |
| 1873 | // Note that the call to llvm.trap is not a terminator in LLVM dialect. |
| 1874 | // So we must emit an additional llvm.unreachable to terminate the current |
| 1875 | // block. |
| 1876 | rewriter.create<mlir::LLVM::UnreachableOp>(loc); |
| 1877 | |
| 1878 | return mlir::success(); |
| 1879 | } |
| 1880 | |
| 1881 | mlir::LogicalResult CIRToLLVMStackSaveOpLowering::matchAndRewrite( |
| 1882 | cir::StackSaveOp op, OpAdaptor adaptor, |
| 1883 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1884 | const mlir::Type ptrTy = getTypeConverter()->convertType(op.getType()); |
| 1885 | rewriter.replaceOpWithNewOp<mlir::LLVM::StackSaveOp>(op, ptrTy); |
| 1886 | return mlir::success(); |
| 1887 | } |
| 1888 | |
| 1889 | mlir::LogicalResult CIRToLLVMStackRestoreOpLowering::matchAndRewrite( |
| 1890 | cir::StackRestoreOp op, OpAdaptor adaptor, |
| 1891 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1892 | rewriter.replaceOpWithNewOp<mlir::LLVM::StackRestoreOp>(op, adaptor.getPtr()); |
| 1893 | return mlir::success(); |
| 1894 | } |
| 1895 | |
| 1896 | mlir::LogicalResult CIRToLLVMVecCreateOpLowering::matchAndRewrite( |
| 1897 | cir::VecCreateOp op, OpAdaptor adaptor, |
| 1898 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1899 | // Start with an 'undef' value for the vector. Then 'insertelement' for |
| 1900 | // each of the vector elements. |
| 1901 | const auto vecTy = mlir::cast<cir::VectorType>(op.getType()); |
| 1902 | const mlir::Type llvmTy = typeConverter->convertType(vecTy); |
| 1903 | const mlir::Location loc = op.getLoc(); |
| 1904 | mlir::Value result = rewriter.create<mlir::LLVM::PoisonOp>(loc, llvmTy); |
| 1905 | assert(vecTy.getSize() == op.getElements().size() && |
| 1906 | "cir.vec.create op count doesn't match vector type elements count" ); |
| 1907 | |
| 1908 | for (uint64_t i = 0; i < vecTy.getSize(); ++i) { |
| 1909 | const mlir::Value indexValue = |
| 1910 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), i); |
| 1911 | result = rewriter.create<mlir::LLVM::InsertElementOp>( |
| 1912 | loc, result, adaptor.getElements()[i], indexValue); |
| 1913 | } |
| 1914 | |
| 1915 | rewriter.replaceOp(op, result); |
| 1916 | return mlir::success(); |
| 1917 | } |
| 1918 | |
| 1919 | mlir::LogicalResult CIRToLLVMVecExtractOpLowering::matchAndRewrite( |
| 1920 | cir::VecExtractOp op, OpAdaptor adaptor, |
| 1921 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1922 | rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractElementOp>( |
| 1923 | op, adaptor.getVec(), adaptor.getIndex()); |
| 1924 | return mlir::success(); |
| 1925 | } |
| 1926 | |
| 1927 | mlir::LogicalResult CIRToLLVMVecInsertOpLowering::matchAndRewrite( |
| 1928 | cir::VecInsertOp op, OpAdaptor adaptor, |
| 1929 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1930 | rewriter.replaceOpWithNewOp<mlir::LLVM::InsertElementOp>( |
| 1931 | op, adaptor.getVec(), adaptor.getValue(), adaptor.getIndex()); |
| 1932 | return mlir::success(); |
| 1933 | } |
| 1934 | |
| 1935 | mlir::LogicalResult CIRToLLVMVecCmpOpLowering::matchAndRewrite( |
| 1936 | cir::VecCmpOp op, OpAdaptor adaptor, |
| 1937 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1938 | mlir::Type elementType = elementTypeIfVector(op.getLhs().getType()); |
| 1939 | mlir::Value bitResult; |
| 1940 | if (auto intType = mlir::dyn_cast<cir::IntType>(elementType)) { |
| 1941 | bitResult = rewriter.create<mlir::LLVM::ICmpOp>( |
| 1942 | op.getLoc(), |
| 1943 | convertCmpKindToICmpPredicate(op.getKind(), intType.isSigned()), |
| 1944 | adaptor.getLhs(), adaptor.getRhs()); |
| 1945 | } else if (mlir::isa<cir::CIRFPTypeInterface>(elementType)) { |
| 1946 | bitResult = rewriter.create<mlir::LLVM::FCmpOp>( |
| 1947 | op.getLoc(), convertCmpKindToFCmpPredicate(op.getKind()), |
| 1948 | adaptor.getLhs(), adaptor.getRhs()); |
| 1949 | } else { |
| 1950 | return op.emitError() << "unsupported type for VecCmpOp: " << elementType; |
| 1951 | } |
| 1952 | |
| 1953 | // LLVM IR vector comparison returns a vector of i1. This one-bit vector |
| 1954 | // must be sign-extended to the correct result type. |
| 1955 | rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>( |
| 1956 | op, typeConverter->convertType(op.getType()), bitResult); |
| 1957 | return mlir::success(); |
| 1958 | } |
| 1959 | |
| 1960 | mlir::LogicalResult CIRToLLVMVecSplatOpLowering::matchAndRewrite( |
| 1961 | cir::VecSplatOp op, OpAdaptor adaptor, |
| 1962 | mlir::ConversionPatternRewriter &rewriter) const { |
| 1963 | // Vector splat can be implemented with an `insertelement` and a |
| 1964 | // `shufflevector`, which is better than an `insertelement` for each |
| 1965 | // element in the vector. Start with an undef vector. Insert the value into |
| 1966 | // the first element. Then use a `shufflevector` with a mask of all 0 to |
| 1967 | // fill out the entire vector with that value. |
| 1968 | cir::VectorType vecTy = op.getType(); |
| 1969 | mlir::Type llvmTy = typeConverter->convertType(vecTy); |
| 1970 | mlir::Location loc = op.getLoc(); |
| 1971 | mlir::Value poison = rewriter.create<mlir::LLVM::PoisonOp>(loc, llvmTy); |
| 1972 | |
| 1973 | mlir::Value elementValue = adaptor.getValue(); |
| 1974 | if (mlir::isa<mlir::LLVM::PoisonOp>(elementValue.getDefiningOp())) { |
| 1975 | // If the splat value is poison, then we can just use poison value |
| 1976 | // for the entire vector. |
| 1977 | rewriter.replaceOp(op, poison); |
| 1978 | return mlir::success(); |
| 1979 | } |
| 1980 | |
| 1981 | if (auto constValue = |
| 1982 | dyn_cast<mlir::LLVM::ConstantOp>(elementValue.getDefiningOp())) { |
| 1983 | if (auto intAttr = dyn_cast<mlir::IntegerAttr>(constValue.getValue())) { |
| 1984 | mlir::DenseIntElementsAttr denseVec = mlir::DenseIntElementsAttr::get( |
| 1985 | mlir::cast<mlir::ShapedType>(llvmTy), intAttr.getValue()); |
| 1986 | rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
| 1987 | op, denseVec.getType(), denseVec); |
| 1988 | return mlir::success(); |
| 1989 | } |
| 1990 | |
| 1991 | if (auto fpAttr = dyn_cast<mlir::FloatAttr>(constValue.getValue())) { |
| 1992 | mlir::DenseFPElementsAttr denseVec = mlir::DenseFPElementsAttr::get( |
| 1993 | mlir::cast<mlir::ShapedType>(llvmTy), fpAttr.getValue()); |
| 1994 | rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
| 1995 | op, denseVec.getType(), denseVec); |
| 1996 | return mlir::success(); |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | mlir::Value indexValue = |
| 2001 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), 0); |
| 2002 | mlir::Value oneElement = rewriter.create<mlir::LLVM::InsertElementOp>( |
| 2003 | loc, poison, elementValue, indexValue); |
| 2004 | SmallVector<int32_t> zeroValues(vecTy.getSize(), 0); |
| 2005 | rewriter.replaceOpWithNewOp<mlir::LLVM::ShuffleVectorOp>(op, oneElement, |
| 2006 | poison, zeroValues); |
| 2007 | return mlir::success(); |
| 2008 | } |
| 2009 | |
| 2010 | mlir::LogicalResult CIRToLLVMVecShuffleOpLowering::matchAndRewrite( |
| 2011 | cir::VecShuffleOp op, OpAdaptor adaptor, |
| 2012 | mlir::ConversionPatternRewriter &rewriter) const { |
| 2013 | // LLVM::ShuffleVectorOp takes an ArrayRef of int for the list of indices. |
| 2014 | // Convert the ClangIR ArrayAttr of IntAttr constants into a |
| 2015 | // SmallVector<int>. |
| 2016 | SmallVector<int, 8> indices; |
| 2017 | std::transform( |
| 2018 | op.getIndices().begin(), op.getIndices().end(), |
| 2019 | std::back_inserter(x&: indices), [](mlir::Attribute intAttr) { |
| 2020 | return mlir::cast<cir::IntAttr>(intAttr).getValue().getSExtValue(); |
| 2021 | }); |
| 2022 | rewriter.replaceOpWithNewOp<mlir::LLVM::ShuffleVectorOp>( |
| 2023 | op, adaptor.getVec1(), adaptor.getVec2(), indices); |
| 2024 | return mlir::success(); |
| 2025 | } |
| 2026 | |
| 2027 | mlir::LogicalResult CIRToLLVMVecShuffleDynamicOpLowering::matchAndRewrite( |
| 2028 | cir::VecShuffleDynamicOp op, OpAdaptor adaptor, |
| 2029 | mlir::ConversionPatternRewriter &rewriter) const { |
| 2030 | // LLVM IR does not have an operation that corresponds to this form of |
| 2031 | // the built-in. |
| 2032 | // __builtin_shufflevector(V, I) |
| 2033 | // is implemented as this pseudocode, where the for loop is unrolled |
| 2034 | // and N is the number of elements: |
| 2035 | // |
| 2036 | // result = undef |
| 2037 | // maskbits = NextPowerOf2(N - 1) |
| 2038 | // masked = I & maskbits |
| 2039 | // for (i in 0 <= i < N) |
| 2040 | // result[i] = V[masked[i]] |
| 2041 | mlir::Location loc = op.getLoc(); |
| 2042 | mlir::Value input = adaptor.getVec(); |
| 2043 | mlir::Type llvmIndexVecType = |
| 2044 | getTypeConverter()->convertType(op.getIndices().getType()); |
| 2045 | mlir::Type llvmIndexType = getTypeConverter()->convertType( |
| 2046 | elementTypeIfVector(op.getIndices().getType())); |
| 2047 | uint64_t numElements = |
| 2048 | mlir::cast<cir::VectorType>(op.getVec().getType()).getSize(); |
| 2049 | |
| 2050 | uint64_t maskBits = llvm::NextPowerOf2(A: numElements - 1) - 1; |
| 2051 | mlir::Value maskValue = rewriter.create<mlir::LLVM::ConstantOp>( |
| 2052 | loc, llvmIndexType, rewriter.getIntegerAttr(llvmIndexType, maskBits)); |
| 2053 | mlir::Value maskVector = |
| 2054 | rewriter.create<mlir::LLVM::UndefOp>(loc, llvmIndexVecType); |
| 2055 | |
| 2056 | for (uint64_t i = 0; i < numElements; ++i) { |
| 2057 | mlir::Value idxValue = |
| 2058 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), i); |
| 2059 | maskVector = rewriter.create<mlir::LLVM::InsertElementOp>( |
| 2060 | loc, maskVector, maskValue, idxValue); |
| 2061 | } |
| 2062 | |
| 2063 | mlir::Value maskedIndices = rewriter.create<mlir::LLVM::AndOp>( |
| 2064 | loc, llvmIndexVecType, adaptor.getIndices(), maskVector); |
| 2065 | mlir::Value result = rewriter.create<mlir::LLVM::UndefOp>( |
| 2066 | loc, getTypeConverter()->convertType(op.getVec().getType())); |
| 2067 | for (uint64_t i = 0; i < numElements; ++i) { |
| 2068 | mlir::Value iValue = |
| 2069 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), i); |
| 2070 | mlir::Value indexValue = rewriter.create<mlir::LLVM::ExtractElementOp>( |
| 2071 | loc, maskedIndices, iValue); |
| 2072 | mlir::Value valueAtIndex = |
| 2073 | rewriter.create<mlir::LLVM::ExtractElementOp>(loc, input, indexValue); |
| 2074 | result = rewriter.create<mlir::LLVM::InsertElementOp>(loc, result, |
| 2075 | valueAtIndex, iValue); |
| 2076 | } |
| 2077 | rewriter.replaceOp(op, result); |
| 2078 | return mlir::success(); |
| 2079 | } |
| 2080 | |
| 2081 | mlir::LogicalResult CIRToLLVMVecTernaryOpLowering::matchAndRewrite( |
| 2082 | cir::VecTernaryOp op, OpAdaptor adaptor, |
| 2083 | mlir::ConversionPatternRewriter &rewriter) const { |
| 2084 | // Convert `cond` into a vector of i1, then use that in a `select` op. |
| 2085 | mlir::Value bitVec = rewriter.create<mlir::LLVM::ICmpOp>( |
| 2086 | op.getLoc(), mlir::LLVM::ICmpPredicate::ne, adaptor.getCond(), |
| 2087 | rewriter.create<mlir::LLVM::ZeroOp>( |
| 2088 | op.getCond().getLoc(), |
| 2089 | typeConverter->convertType(op.getCond().getType()))); |
| 2090 | rewriter.replaceOpWithNewOp<mlir::LLVM::SelectOp>( |
| 2091 | op, bitVec, adaptor.getLhs(), adaptor.getRhs()); |
| 2092 | return mlir::success(); |
| 2093 | } |
| 2094 | |
| 2095 | std::unique_ptr<mlir::Pass> createConvertCIRToLLVMPass() { |
| 2096 | return std::make_unique<ConvertCIRToLLVMPass>(); |
| 2097 | } |
| 2098 | |
| 2099 | void populateCIRToLLVMPasses(mlir::OpPassManager &pm) { |
| 2100 | mlir::populateCIRPreLoweringPasses(pm); |
| 2101 | pm.addPass(pass: createConvertCIRToLLVMPass()); |
| 2102 | } |
| 2103 | |
| 2104 | std::unique_ptr<llvm::Module> |
| 2105 | lowerDirectlyFromCIRToLLVMIR(mlir::ModuleOp mlirModule, LLVMContext &llvmCtx) { |
| 2106 | llvm::TimeTraceScope scope("lower from CIR to LLVM directly" ); |
| 2107 | |
| 2108 | mlir::MLIRContext *mlirCtx = mlirModule.getContext(); |
| 2109 | |
| 2110 | mlir::PassManager pm(mlirCtx); |
| 2111 | populateCIRToLLVMPasses(pm); |
| 2112 | |
| 2113 | (void)mlir::applyPassManagerCLOptions(pm); |
| 2114 | |
| 2115 | if (mlir::failed(Result: pm.run(op: mlirModule))) { |
| 2116 | // FIXME: Handle any errors where they occurs and return a nullptr here. |
| 2117 | report_fatal_error( |
| 2118 | reason: "The pass manager failed to lower CIR to LLVMIR dialect!" ); |
| 2119 | } |
| 2120 | |
| 2121 | mlir::registerBuiltinDialectTranslation(context&: *mlirCtx); |
| 2122 | mlir::registerLLVMDialectTranslation(context&: *mlirCtx); |
| 2123 | mlir::registerCIRDialectTranslation(*mlirCtx); |
| 2124 | |
| 2125 | llvm::TimeTraceScope translateScope("translateModuleToLLVMIR" ); |
| 2126 | |
| 2127 | StringRef moduleName = mlirModule.getName().value_or("CIRToLLVMModule" ); |
| 2128 | std::unique_ptr<llvm::Module> llvmModule = |
| 2129 | mlir::translateModuleToLLVMIR(module: mlirModule, llvmContext&: llvmCtx, name: moduleName); |
| 2130 | |
| 2131 | if (!llvmModule) { |
| 2132 | // FIXME: Handle any errors where they occurs and return a nullptr here. |
| 2133 | report_fatal_error(reason: "Lowering from LLVMIR dialect to llvm IR failed!" ); |
| 2134 | } |
| 2135 | |
| 2136 | return llvmModule; |
| 2137 | } |
| 2138 | } // namespace direct |
| 2139 | } // namespace cir |
| 2140 | |