1 | //====- LowerToLLVM.cpp - Lowering from CIR to LLVMIR ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements lowering of CIR operations to LLVMIR. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "LowerToLLVM.h" |
14 | |
15 | #include <deque> |
16 | #include <optional> |
17 | |
18 | #include "mlir/Conversion/LLVMCommon/TypeConverter.h" |
19 | #include "mlir/Dialect/DLTI/DLTI.h" |
20 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
21 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
22 | #include "mlir/Dialect/LLVMIR/LLVMTypes.h" |
23 | #include "mlir/IR/BuiltinAttributes.h" |
24 | #include "mlir/IR/BuiltinDialect.h" |
25 | #include "mlir/IR/BuiltinOps.h" |
26 | #include "mlir/IR/Types.h" |
27 | #include "mlir/Pass/Pass.h" |
28 | #include "mlir/Pass/PassManager.h" |
29 | #include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h" |
30 | #include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h" |
31 | #include "mlir/Target/LLVMIR/Export.h" |
32 | #include "mlir/Transforms/DialectConversion.h" |
33 | #include "clang/CIR/Dialect/IR/CIRAttrs.h" |
34 | #include "clang/CIR/Dialect/IR/CIRDialect.h" |
35 | #include "clang/CIR/Dialect/Passes.h" |
36 | #include "clang/CIR/LoweringHelpers.h" |
37 | #include "clang/CIR/MissingFeatures.h" |
38 | #include "clang/CIR/Passes.h" |
39 | #include "llvm/ADT/TypeSwitch.h" |
40 | #include "llvm/IR/Module.h" |
41 | #include "llvm/Support/ErrorHandling.h" |
42 | #include "llvm/Support/TimeProfiler.h" |
43 | |
44 | using namespace cir; |
45 | using namespace llvm; |
46 | |
47 | namespace cir { |
48 | namespace direct { |
49 | |
50 | //===----------------------------------------------------------------------===// |
51 | // Helper Methods |
52 | //===----------------------------------------------------------------------===// |
53 | |
54 | namespace { |
55 | /// If the given type is a vector type, return the vector's element type. |
56 | /// Otherwise return the given type unchanged. |
57 | mlir::Type elementTypeIfVector(mlir::Type type) { |
58 | return llvm::TypeSwitch<mlir::Type, mlir::Type>(type) |
59 | .Case<cir::VectorType, mlir::VectorType>( |
60 | [](auto p) { return p.getElementType(); }) |
61 | .Default([](mlir::Type p) { return p; }); |
62 | } |
63 | } // namespace |
64 | |
65 | /// Given a type convertor and a data layout, convert the given type to a type |
66 | /// that is suitable for memory operations. For example, this can be used to |
67 | /// lower cir.bool accesses to i8. |
68 | static mlir::Type convertTypeForMemory(const mlir::TypeConverter &converter, |
69 | mlir::DataLayout const &dataLayout, |
70 | mlir::Type type) { |
71 | // TODO(cir): Handle other types similarly to clang's codegen |
72 | // convertTypeForMemory |
73 | if (isa<cir::BoolType>(type)) { |
74 | return mlir::IntegerType::get(type.getContext(), |
75 | dataLayout.getTypeSizeInBits(type)); |
76 | } |
77 | |
78 | return converter.convertType(t: type); |
79 | } |
80 | |
81 | static mlir::Value createIntCast(mlir::OpBuilder &bld, mlir::Value src, |
82 | mlir::IntegerType dstTy, |
83 | bool isSigned = false) { |
84 | mlir::Type srcTy = src.getType(); |
85 | assert(mlir::isa<mlir::IntegerType>(srcTy)); |
86 | |
87 | unsigned srcWidth = mlir::cast<mlir::IntegerType>(srcTy).getWidth(); |
88 | unsigned dstWidth = mlir::cast<mlir::IntegerType>(dstTy).getWidth(); |
89 | mlir::Location loc = src.getLoc(); |
90 | |
91 | if (dstWidth > srcWidth && isSigned) |
92 | return bld.create<mlir::LLVM::SExtOp>(loc, dstTy, src); |
93 | if (dstWidth > srcWidth) |
94 | return bld.create<mlir::LLVM::ZExtOp>(loc, dstTy, src); |
95 | if (dstWidth < srcWidth) |
96 | return bld.create<mlir::LLVM::TruncOp>(loc, dstTy, src); |
97 | return bld.create<mlir::LLVM::BitcastOp>(loc, dstTy, src); |
98 | } |
99 | |
100 | /// Emits the value from memory as expected by its users. Should be called when |
101 | /// the memory represetnation of a CIR type is not equal to its scalar |
102 | /// representation. |
103 | static mlir::Value emitFromMemory(mlir::ConversionPatternRewriter &rewriter, |
104 | mlir::DataLayout const &dataLayout, |
105 | cir::LoadOp op, mlir::Value value) { |
106 | |
107 | // TODO(cir): Handle other types similarly to clang's codegen EmitFromMemory |
108 | if (auto boolTy = mlir::dyn_cast<cir::BoolType>(op.getType())) { |
109 | // Create a cast value from specified size in datalayout to i1 |
110 | assert(value.getType().isInteger(dataLayout.getTypeSizeInBits(boolTy))); |
111 | return createIntCast(rewriter, value, rewriter.getI1Type()); |
112 | } |
113 | |
114 | return value; |
115 | } |
116 | |
117 | /// Emits a value to memory with the expected scalar type. Should be called when |
118 | /// the memory represetnation of a CIR type is not equal to its scalar |
119 | /// representation. |
120 | static mlir::Value emitToMemory(mlir::ConversionPatternRewriter &rewriter, |
121 | mlir::DataLayout const &dataLayout, |
122 | mlir::Type origType, mlir::Value value) { |
123 | |
124 | // TODO(cir): Handle other types similarly to clang's codegen EmitToMemory |
125 | if (auto boolTy = mlir::dyn_cast<cir::BoolType>(origType)) { |
126 | // Create zext of value from i1 to i8 |
127 | mlir::IntegerType memType = |
128 | rewriter.getIntegerType(dataLayout.getTypeSizeInBits(boolTy)); |
129 | return createIntCast(rewriter, value, memType); |
130 | } |
131 | |
132 | return value; |
133 | } |
134 | |
135 | mlir::LLVM::Linkage convertLinkage(cir::GlobalLinkageKind linkage) { |
136 | using CIR = cir::GlobalLinkageKind; |
137 | using LLVM = mlir::LLVM::Linkage; |
138 | |
139 | switch (linkage) { |
140 | case CIR::AvailableExternallyLinkage: |
141 | return LLVM::AvailableExternally; |
142 | case CIR::CommonLinkage: |
143 | return LLVM::Common; |
144 | case CIR::ExternalLinkage: |
145 | return LLVM::External; |
146 | case CIR::ExternalWeakLinkage: |
147 | return LLVM::ExternWeak; |
148 | case CIR::InternalLinkage: |
149 | return LLVM::Internal; |
150 | case CIR::LinkOnceAnyLinkage: |
151 | return LLVM::Linkonce; |
152 | case CIR::LinkOnceODRLinkage: |
153 | return LLVM::LinkonceODR; |
154 | case CIR::PrivateLinkage: |
155 | return LLVM::Private; |
156 | case CIR::WeakAnyLinkage: |
157 | return LLVM::Weak; |
158 | case CIR::WeakODRLinkage: |
159 | return LLVM::WeakODR; |
160 | }; |
161 | llvm_unreachable("Unknown CIR linkage type" ); |
162 | } |
163 | |
164 | static mlir::Value getLLVMIntCast(mlir::ConversionPatternRewriter &rewriter, |
165 | mlir::Value llvmSrc, mlir::Type llvmDstIntTy, |
166 | bool isUnsigned, uint64_t cirSrcWidth, |
167 | uint64_t cirDstIntWidth) { |
168 | if (cirSrcWidth == cirDstIntWidth) |
169 | return llvmSrc; |
170 | |
171 | auto loc = llvmSrc.getLoc(); |
172 | if (cirSrcWidth < cirDstIntWidth) { |
173 | if (isUnsigned) |
174 | return rewriter.create<mlir::LLVM::ZExtOp>(loc, llvmDstIntTy, llvmSrc); |
175 | return rewriter.create<mlir::LLVM::SExtOp>(loc, llvmDstIntTy, llvmSrc); |
176 | } |
177 | |
178 | // Otherwise truncate |
179 | return rewriter.create<mlir::LLVM::TruncOp>(loc, llvmDstIntTy, llvmSrc); |
180 | } |
181 | |
182 | class CIRAttrToValue { |
183 | public: |
184 | CIRAttrToValue(mlir::Operation *parentOp, |
185 | mlir::ConversionPatternRewriter &rewriter, |
186 | const mlir::TypeConverter *converter) |
187 | : parentOp(parentOp), rewriter(rewriter), converter(converter) {} |
188 | |
189 | mlir::Value visit(mlir::Attribute attr) { |
190 | return llvm::TypeSwitch<mlir::Attribute, mlir::Value>(attr) |
191 | .Case<cir::IntAttr, cir::FPAttr, cir::ConstComplexAttr, |
192 | cir::ConstArrayAttr, cir::ConstVectorAttr, cir::ConstPtrAttr, |
193 | cir::ZeroAttr>([&](auto attrT) { return visitCirAttr(attrT); }) |
194 | .Default([&](auto attrT) { return mlir::Value(); }); |
195 | } |
196 | |
197 | mlir::Value visitCirAttr(cir::IntAttr intAttr); |
198 | mlir::Value visitCirAttr(cir::FPAttr fltAttr); |
199 | mlir::Value visitCirAttr(cir::ConstComplexAttr complexAttr); |
200 | mlir::Value visitCirAttr(cir::ConstPtrAttr ptrAttr); |
201 | mlir::Value visitCirAttr(cir::ConstArrayAttr attr); |
202 | mlir::Value visitCirAttr(cir::ConstVectorAttr attr); |
203 | mlir::Value visitCirAttr(cir::ZeroAttr attr); |
204 | |
205 | private: |
206 | mlir::Operation *parentOp; |
207 | mlir::ConversionPatternRewriter &rewriter; |
208 | const mlir::TypeConverter *converter; |
209 | }; |
210 | |
211 | /// Switches on the type of attribute and calls the appropriate conversion. |
212 | mlir::Value lowerCirAttrAsValue(mlir::Operation *parentOp, |
213 | const mlir::Attribute attr, |
214 | mlir::ConversionPatternRewriter &rewriter, |
215 | const mlir::TypeConverter *converter) { |
216 | CIRAttrToValue valueConverter(parentOp, rewriter, converter); |
217 | mlir::Value value = valueConverter.visit(attr); |
218 | if (!value) |
219 | llvm_unreachable("unhandled attribute type" ); |
220 | return value; |
221 | } |
222 | |
223 | /// IntAttr visitor. |
224 | mlir::Value CIRAttrToValue::visitCirAttr(cir::IntAttr intAttr) { |
225 | mlir::Location loc = parentOp->getLoc(); |
226 | return rewriter.create<mlir::LLVM::ConstantOp>( |
227 | loc, converter->convertType(intAttr.getType()), intAttr.getValue()); |
228 | } |
229 | |
230 | /// FPAttr visitor. |
231 | mlir::Value CIRAttrToValue::visitCirAttr(cir::FPAttr fltAttr) { |
232 | mlir::Location loc = parentOp->getLoc(); |
233 | return rewriter.create<mlir::LLVM::ConstantOp>( |
234 | loc, converter->convertType(fltAttr.getType()), fltAttr.getValue()); |
235 | } |
236 | |
237 | /// ConstComplexAttr visitor. |
238 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstComplexAttr complexAttr) { |
239 | auto complexType = mlir::cast<cir::ComplexType>(complexAttr.getType()); |
240 | mlir::Type complexElemTy = complexType.getElementType(); |
241 | mlir::Type complexElemLLVMTy = converter->convertType(t: complexElemTy); |
242 | |
243 | mlir::Attribute components[2]; |
244 | if (const auto intType = mlir::dyn_cast<cir::IntType>(complexElemTy)) { |
245 | components[0] = rewriter.getIntegerAttr( |
246 | complexElemLLVMTy, |
247 | mlir::cast<cir::IntAttr>(complexAttr.getReal()).getValue()); |
248 | components[1] = rewriter.getIntegerAttr( |
249 | complexElemLLVMTy, |
250 | mlir::cast<cir::IntAttr>(complexAttr.getImag()).getValue()); |
251 | } else { |
252 | components[0] = rewriter.getFloatAttr( |
253 | complexElemLLVMTy, |
254 | mlir::cast<cir::FPAttr>(complexAttr.getReal()).getValue()); |
255 | components[1] = rewriter.getFloatAttr( |
256 | complexElemLLVMTy, |
257 | mlir::cast<cir::FPAttr>(complexAttr.getImag()).getValue()); |
258 | } |
259 | |
260 | mlir::Location loc = parentOp->getLoc(); |
261 | return rewriter.create<mlir::LLVM::ConstantOp>( |
262 | loc, converter->convertType(complexAttr.getType()), |
263 | rewriter.getArrayAttr(components)); |
264 | } |
265 | |
266 | /// ConstPtrAttr visitor. |
267 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstPtrAttr ptrAttr) { |
268 | mlir::Location loc = parentOp->getLoc(); |
269 | if (ptrAttr.isNullValue()) { |
270 | return rewriter.create<mlir::LLVM::ZeroOp>( |
271 | loc, converter->convertType(ptrAttr.getType())); |
272 | } |
273 | mlir::DataLayout layout(parentOp->getParentOfType<mlir::ModuleOp>()); |
274 | mlir::Value ptrVal = rewriter.create<mlir::LLVM::ConstantOp>( |
275 | loc, rewriter.getIntegerType(layout.getTypeSizeInBits(ptrAttr.getType())), |
276 | ptrAttr.getValue().getInt()); |
277 | return rewriter.create<mlir::LLVM::IntToPtrOp>( |
278 | loc, converter->convertType(ptrAttr.getType()), ptrVal); |
279 | } |
280 | |
281 | // ConstArrayAttr visitor |
282 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstArrayAttr attr) { |
283 | mlir::Type llvmTy = converter->convertType(attr.getType()); |
284 | mlir::Location loc = parentOp->getLoc(); |
285 | mlir::Value result; |
286 | |
287 | if (attr.hasTrailingZeros()) { |
288 | mlir::Type arrayTy = attr.getType(); |
289 | result = rewriter.create<mlir::LLVM::ZeroOp>( |
290 | loc, converter->convertType(arrayTy)); |
291 | } else { |
292 | result = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmTy); |
293 | } |
294 | |
295 | // Iteratively lower each constant element of the array. |
296 | if (auto arrayAttr = mlir::dyn_cast<mlir::ArrayAttr>(attr.getElts())) { |
297 | for (auto [idx, elt] : llvm::enumerate(arrayAttr)) { |
298 | mlir::DataLayout dataLayout(parentOp->getParentOfType<mlir::ModuleOp>()); |
299 | mlir::Value init = visit(elt); |
300 | result = |
301 | rewriter.create<mlir::LLVM::InsertValueOp>(loc, result, init, idx); |
302 | } |
303 | } else if (auto strAttr = mlir::dyn_cast<mlir::StringAttr>(attr.getElts())) { |
304 | // TODO(cir): this diverges from traditional lowering. Normally the string |
305 | // would be a global constant that is memcopied. |
306 | auto arrayTy = mlir::dyn_cast<cir::ArrayType>(strAttr.getType()); |
307 | assert(arrayTy && "String attribute must have an array type" ); |
308 | mlir::Type eltTy = arrayTy.getElementType(); |
309 | for (auto [idx, elt] : llvm::enumerate(strAttr)) { |
310 | auto init = rewriter.create<mlir::LLVM::ConstantOp>( |
311 | loc, converter->convertType(eltTy), elt); |
312 | result = |
313 | rewriter.create<mlir::LLVM::InsertValueOp>(loc, result, init, idx); |
314 | } |
315 | } else { |
316 | llvm_unreachable("unexpected ConstArrayAttr elements" ); |
317 | } |
318 | |
319 | return result; |
320 | } |
321 | |
322 | /// ConstVectorAttr visitor. |
323 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ConstVectorAttr attr) { |
324 | const mlir::Type llvmTy = converter->convertType(attr.getType()); |
325 | const mlir::Location loc = parentOp->getLoc(); |
326 | |
327 | SmallVector<mlir::Attribute> mlirValues; |
328 | for (const mlir::Attribute elementAttr : attr.getElts()) { |
329 | mlir::Attribute mlirAttr; |
330 | if (auto intAttr = mlir::dyn_cast<cir::IntAttr>(elementAttr)) { |
331 | mlirAttr = rewriter.getIntegerAttr( |
332 | converter->convertType(intAttr.getType()), intAttr.getValue()); |
333 | } else if (auto floatAttr = mlir::dyn_cast<cir::FPAttr>(elementAttr)) { |
334 | mlirAttr = rewriter.getFloatAttr( |
335 | converter->convertType(floatAttr.getType()), floatAttr.getValue()); |
336 | } else { |
337 | llvm_unreachable( |
338 | "vector constant with an element that is neither an int nor a float" ); |
339 | } |
340 | mlirValues.push_back(mlirAttr); |
341 | } |
342 | |
343 | return rewriter.create<mlir::LLVM::ConstantOp>( |
344 | loc, llvmTy, |
345 | mlir::DenseElementsAttr::get(mlir::cast<mlir::ShapedType>(llvmTy), |
346 | mlirValues)); |
347 | } |
348 | |
349 | /// ZeroAttr visitor. |
350 | mlir::Value CIRAttrToValue::visitCirAttr(cir::ZeroAttr attr) { |
351 | mlir::Location loc = parentOp->getLoc(); |
352 | return rewriter.create<mlir::LLVM::ZeroOp>( |
353 | loc, converter->convertType(attr.getType())); |
354 | } |
355 | |
356 | // This class handles rewriting initializer attributes for types that do not |
357 | // require region initialization. |
358 | class GlobalInitAttrRewriter { |
359 | public: |
360 | GlobalInitAttrRewriter(mlir::Type type, |
361 | mlir::ConversionPatternRewriter &rewriter) |
362 | : llvmType(type), rewriter(rewriter) {} |
363 | |
364 | mlir::Attribute visit(mlir::Attribute attr) { |
365 | return llvm::TypeSwitch<mlir::Attribute, mlir::Attribute>(attr) |
366 | .Case<cir::IntAttr, cir::FPAttr, cir::BoolAttr>( |
367 | [&](auto attrT) { return visitCirAttr(attrT); }) |
368 | .Default([&](auto attrT) { return mlir::Attribute(); }); |
369 | } |
370 | |
371 | mlir::Attribute visitCirAttr(cir::IntAttr attr) { |
372 | return rewriter.getIntegerAttr(llvmType, attr.getValue()); |
373 | } |
374 | |
375 | mlir::Attribute visitCirAttr(cir::FPAttr attr) { |
376 | return rewriter.getFloatAttr(llvmType, attr.getValue()); |
377 | } |
378 | |
379 | mlir::Attribute visitCirAttr(cir::BoolAttr attr) { |
380 | return rewriter.getBoolAttr(value: attr.getValue()); |
381 | } |
382 | |
383 | private: |
384 | mlir::Type llvmType; |
385 | mlir::ConversionPatternRewriter &rewriter; |
386 | }; |
387 | |
388 | // This pass requires the CIR to be in a "flat" state. All blocks in each |
389 | // function must belong to the parent region. Once scopes and control flow |
390 | // are implemented in CIR, a pass will be run before this one to flatten |
391 | // the CIR and get it into the state that this pass requires. |
392 | struct ConvertCIRToLLVMPass |
393 | : public mlir::PassWrapper<ConvertCIRToLLVMPass, |
394 | mlir::OperationPass<mlir::ModuleOp>> { |
395 | void getDependentDialects(mlir::DialectRegistry ®istry) const override { |
396 | registry.insert<mlir::BuiltinDialect, mlir::DLTIDialect, |
397 | mlir::LLVM::LLVMDialect, mlir::func::FuncDialect>(); |
398 | } |
399 | void runOnOperation() final; |
400 | |
401 | void processCIRAttrs(mlir::ModuleOp module); |
402 | |
403 | StringRef getDescription() const override { |
404 | return "Convert the prepared CIR dialect module to LLVM dialect" ; |
405 | } |
406 | |
407 | StringRef getArgument() const override { return "cir-flat-to-llvm" ; } |
408 | }; |
409 | |
410 | mlir::LogicalResult CIRToLLVMBrCondOpLowering::matchAndRewrite( |
411 | cir::BrCondOp brOp, OpAdaptor adaptor, |
412 | mlir::ConversionPatternRewriter &rewriter) const { |
413 | // When ZExtOp is implemented, we'll need to check if the condition is a |
414 | // ZExtOp and if so, delete it if it has a single use. |
415 | assert(!cir::MissingFeatures::zextOp()); |
416 | |
417 | mlir::Value i1Condition = adaptor.getCond(); |
418 | |
419 | rewriter.replaceOpWithNewOp<mlir::LLVM::CondBrOp>( |
420 | brOp, i1Condition, brOp.getDestTrue(), adaptor.getDestOperandsTrue(), |
421 | brOp.getDestFalse(), adaptor.getDestOperandsFalse()); |
422 | |
423 | return mlir::success(); |
424 | } |
425 | |
426 | mlir::Type CIRToLLVMCastOpLowering::convertTy(mlir::Type ty) const { |
427 | return getTypeConverter()->convertType(ty); |
428 | } |
429 | |
430 | mlir::LogicalResult CIRToLLVMCastOpLowering::matchAndRewrite( |
431 | cir::CastOp castOp, OpAdaptor adaptor, |
432 | mlir::ConversionPatternRewriter &rewriter) const { |
433 | // For arithmetic conversions, LLVM IR uses the same instruction to convert |
434 | // both individual scalars and entire vectors. This lowering pass handles |
435 | // both situations. |
436 | |
437 | switch (castOp.getKind()) { |
438 | case cir::CastKind::array_to_ptrdecay: { |
439 | const auto ptrTy = mlir::cast<cir::PointerType>(castOp.getType()); |
440 | mlir::Value sourceValue = adaptor.getSrc(); |
441 | mlir::Type targetType = convertTy(ty: ptrTy); |
442 | mlir::Type elementTy = convertTypeForMemory(*getTypeConverter(), dataLayout, |
443 | ptrTy.getPointee()); |
444 | llvm::SmallVector<mlir::LLVM::GEPArg> offset{0}; |
445 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>( |
446 | castOp, targetType, elementTy, sourceValue, offset); |
447 | break; |
448 | } |
449 | case cir::CastKind::int_to_bool: { |
450 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
451 | mlir::Value zeroInt = rewriter.create<mlir::LLVM::ConstantOp>( |
452 | castOp.getLoc(), llvmSrcVal.getType(), 0); |
453 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
454 | castOp, mlir::LLVM::ICmpPredicate::ne, llvmSrcVal, zeroInt); |
455 | break; |
456 | } |
457 | case cir::CastKind::integral: { |
458 | mlir::Type srcType = castOp.getSrc().getType(); |
459 | mlir::Type dstType = castOp.getType(); |
460 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
461 | mlir::Type llvmDstType = getTypeConverter()->convertType(dstType); |
462 | cir::IntType srcIntType = |
463 | mlir::cast<cir::IntType>(elementTypeIfVector(srcType)); |
464 | cir::IntType dstIntType = |
465 | mlir::cast<cir::IntType>(elementTypeIfVector(dstType)); |
466 | rewriter.replaceOp(castOp, getLLVMIntCast(rewriter, llvmSrcVal, llvmDstType, |
467 | srcIntType.isUnsigned(), |
468 | srcIntType.getWidth(), |
469 | dstIntType.getWidth())); |
470 | break; |
471 | } |
472 | case cir::CastKind::floating: { |
473 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
474 | mlir::Type llvmDstTy = getTypeConverter()->convertType(castOp.getType()); |
475 | |
476 | mlir::Type srcTy = elementTypeIfVector(castOp.getSrc().getType()); |
477 | mlir::Type dstTy = elementTypeIfVector(castOp.getType()); |
478 | |
479 | if (!mlir::isa<cir::CIRFPTypeInterface>(dstTy) || |
480 | !mlir::isa<cir::CIRFPTypeInterface>(srcTy)) |
481 | return castOp.emitError() << "NYI cast from " << srcTy << " to " << dstTy; |
482 | |
483 | auto getFloatWidth = [](mlir::Type ty) -> unsigned { |
484 | return mlir::cast<cir::CIRFPTypeInterface>(ty).getWidth(); |
485 | }; |
486 | |
487 | if (getFloatWidth(srcTy) > getFloatWidth(dstTy)) |
488 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPTruncOp>(castOp, llvmDstTy, |
489 | llvmSrcVal); |
490 | else |
491 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPExtOp>(castOp, llvmDstTy, |
492 | llvmSrcVal); |
493 | return mlir::success(); |
494 | } |
495 | case cir::CastKind::int_to_ptr: { |
496 | auto dstTy = mlir::cast<cir::PointerType>(castOp.getType()); |
497 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
498 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
499 | rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(castOp, llvmDstTy, |
500 | llvmSrcVal); |
501 | return mlir::success(); |
502 | } |
503 | case cir::CastKind::ptr_to_int: { |
504 | auto dstTy = mlir::cast<cir::IntType>(castOp.getType()); |
505 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
506 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
507 | rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(castOp, llvmDstTy, |
508 | llvmSrcVal); |
509 | return mlir::success(); |
510 | } |
511 | case cir::CastKind::float_to_bool: { |
512 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
513 | auto kind = mlir::LLVM::FCmpPredicate::une; |
514 | |
515 | // Check if float is not equal to zero. |
516 | auto zeroFloat = rewriter.create<mlir::LLVM::ConstantOp>( |
517 | castOp.getLoc(), llvmSrcVal.getType(), |
518 | mlir::FloatAttr::get(llvmSrcVal.getType(), 0.0)); |
519 | |
520 | // Extend comparison result to either bool (C++) or int (C). |
521 | rewriter.replaceOpWithNewOp<mlir::LLVM::FCmpOp>(castOp, kind, llvmSrcVal, |
522 | zeroFloat); |
523 | |
524 | return mlir::success(); |
525 | } |
526 | case cir::CastKind::bool_to_int: { |
527 | auto dstTy = mlir::cast<cir::IntType>(castOp.getType()); |
528 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
529 | auto llvmSrcTy = mlir::cast<mlir::IntegerType>(llvmSrcVal.getType()); |
530 | auto llvmDstTy = |
531 | mlir::cast<mlir::IntegerType>(getTypeConverter()->convertType(dstTy)); |
532 | if (llvmSrcTy.getWidth() == llvmDstTy.getWidth()) |
533 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(castOp, llvmDstTy, |
534 | llvmSrcVal); |
535 | else |
536 | rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(castOp, llvmDstTy, |
537 | llvmSrcVal); |
538 | return mlir::success(); |
539 | } |
540 | case cir::CastKind::bool_to_float: { |
541 | mlir::Type dstTy = castOp.getType(); |
542 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
543 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
544 | rewriter.replaceOpWithNewOp<mlir::LLVM::UIToFPOp>(castOp, llvmDstTy, |
545 | llvmSrcVal); |
546 | return mlir::success(); |
547 | } |
548 | case cir::CastKind::int_to_float: { |
549 | mlir::Type dstTy = castOp.getType(); |
550 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
551 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
552 | if (mlir::cast<cir::IntType>(elementTypeIfVector(castOp.getSrc().getType())) |
553 | .isSigned()) |
554 | rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(castOp, llvmDstTy, |
555 | llvmSrcVal); |
556 | else |
557 | rewriter.replaceOpWithNewOp<mlir::LLVM::UIToFPOp>(castOp, llvmDstTy, |
558 | llvmSrcVal); |
559 | return mlir::success(); |
560 | } |
561 | case cir::CastKind::float_to_int: { |
562 | mlir::Type dstTy = castOp.getType(); |
563 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
564 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
565 | if (mlir::cast<cir::IntType>(elementTypeIfVector(castOp.getType())) |
566 | .isSigned()) |
567 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(castOp, llvmDstTy, |
568 | llvmSrcVal); |
569 | else |
570 | rewriter.replaceOpWithNewOp<mlir::LLVM::FPToUIOp>(castOp, llvmDstTy, |
571 | llvmSrcVal); |
572 | return mlir::success(); |
573 | } |
574 | case cir::CastKind::bitcast: { |
575 | mlir::Type dstTy = castOp.getType(); |
576 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
577 | |
578 | assert(!MissingFeatures::cxxABI()); |
579 | assert(!MissingFeatures::dataMemberType()); |
580 | |
581 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
582 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(castOp, llvmDstTy, |
583 | llvmSrcVal); |
584 | return mlir::success(); |
585 | } |
586 | case cir::CastKind::ptr_to_bool: { |
587 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
588 | mlir::Value zeroPtr = rewriter.create<mlir::LLVM::ZeroOp>( |
589 | castOp.getLoc(), llvmSrcVal.getType()); |
590 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
591 | castOp, mlir::LLVM::ICmpPredicate::ne, llvmSrcVal, zeroPtr); |
592 | break; |
593 | } |
594 | case cir::CastKind::address_space: { |
595 | mlir::Type dstTy = castOp.getType(); |
596 | mlir::Value llvmSrcVal = adaptor.getSrc(); |
597 | mlir::Type llvmDstTy = getTypeConverter()->convertType(dstTy); |
598 | rewriter.replaceOpWithNewOp<mlir::LLVM::AddrSpaceCastOp>(castOp, llvmDstTy, |
599 | llvmSrcVal); |
600 | break; |
601 | } |
602 | case cir::CastKind::member_ptr_to_bool: |
603 | assert(!MissingFeatures::cxxABI()); |
604 | assert(!MissingFeatures::methodType()); |
605 | break; |
606 | default: { |
607 | return castOp.emitError("Unhandled cast kind: " ) |
608 | << castOp.getKindAttrName(); |
609 | } |
610 | } |
611 | |
612 | return mlir::success(); |
613 | } |
614 | |
615 | mlir::LogicalResult CIRToLLVMPtrStrideOpLowering::matchAndRewrite( |
616 | cir::PtrStrideOp ptrStrideOp, OpAdaptor adaptor, |
617 | mlir::ConversionPatternRewriter &rewriter) const { |
618 | |
619 | const mlir::TypeConverter *tc = getTypeConverter(); |
620 | const mlir::Type resultTy = tc->convertType(ptrStrideOp.getType()); |
621 | |
622 | mlir::Type elementTy = |
623 | convertTypeForMemory(*tc, dataLayout, ptrStrideOp.getElementTy()); |
624 | mlir::MLIRContext *ctx = elementTy.getContext(); |
625 | |
626 | // void and function types doesn't really have a layout to use in GEPs, |
627 | // make it i8 instead. |
628 | if (mlir::isa<mlir::LLVM::LLVMVoidType>(elementTy) || |
629 | mlir::isa<mlir::LLVM::LLVMFunctionType>(elementTy)) |
630 | elementTy = mlir::IntegerType::get(elementTy.getContext(), 8, |
631 | mlir::IntegerType::Signless); |
632 | // Zero-extend, sign-extend or trunc the pointer value. |
633 | mlir::Value index = adaptor.getStride(); |
634 | const unsigned width = |
635 | mlir::cast<mlir::IntegerType>(index.getType()).getWidth(); |
636 | const std::optional<std::uint64_t> layoutWidth = |
637 | dataLayout.getTypeIndexBitwidth(t: adaptor.getBase().getType()); |
638 | |
639 | mlir::Operation *indexOp = index.getDefiningOp(); |
640 | if (indexOp && layoutWidth && width != *layoutWidth) { |
641 | // If the index comes from a subtraction, make sure the extension happens |
642 | // before it. To achieve that, look at unary minus, which already got |
643 | // lowered to "sub 0, x". |
644 | const auto sub = dyn_cast<mlir::LLVM::SubOp>(indexOp); |
645 | auto unary = dyn_cast_if_present<cir::UnaryOp>( |
646 | ptrStrideOp.getStride().getDefiningOp()); |
647 | bool rewriteSub = |
648 | unary && unary.getKind() == cir::UnaryOpKind::Minus && sub; |
649 | if (rewriteSub) |
650 | index = indexOp->getOperand(idx: 1); |
651 | |
652 | // Handle the cast |
653 | const auto llvmDstType = mlir::IntegerType::get(ctx, *layoutWidth); |
654 | index = getLLVMIntCast(rewriter, index, llvmDstType, |
655 | ptrStrideOp.getStride().getType().isUnsigned(), |
656 | width, *layoutWidth); |
657 | |
658 | // Rewrite the sub in front of extensions/trunc |
659 | if (rewriteSub) { |
660 | index = rewriter.create<mlir::LLVM::SubOp>( |
661 | index.getLoc(), index.getType(), |
662 | rewriter.create<mlir::LLVM::ConstantOp>(index.getLoc(), |
663 | index.getType(), 0), |
664 | index); |
665 | rewriter.eraseOp(op: sub); |
666 | } |
667 | } |
668 | |
669 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>( |
670 | ptrStrideOp, resultTy, elementTy, adaptor.getBase(), index); |
671 | return mlir::success(); |
672 | } |
673 | |
674 | mlir::LogicalResult CIRToLLVMBaseClassAddrOpLowering::matchAndRewrite( |
675 | cir::BaseClassAddrOp baseClassOp, OpAdaptor adaptor, |
676 | mlir::ConversionPatternRewriter &rewriter) const { |
677 | const mlir::Type resultType = |
678 | getTypeConverter()->convertType(baseClassOp.getType()); |
679 | mlir::Value derivedAddr = adaptor.getDerivedAddr(); |
680 | llvm::SmallVector<mlir::LLVM::GEPArg, 1> offset = { |
681 | adaptor.getOffset().getZExtValue()}; |
682 | mlir::Type byteType = mlir::IntegerType::get(resultType.getContext(), 8, |
683 | mlir::IntegerType::Signless); |
684 | if (adaptor.getOffset().getZExtValue() == 0) { |
685 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>( |
686 | baseClassOp, resultType, adaptor.getDerivedAddr()); |
687 | return mlir::success(); |
688 | } |
689 | |
690 | if (baseClassOp.getAssumeNotNull()) { |
691 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>( |
692 | baseClassOp, resultType, byteType, derivedAddr, offset); |
693 | } else { |
694 | auto loc = baseClassOp.getLoc(); |
695 | mlir::Value isNull = rewriter.create<mlir::LLVM::ICmpOp>( |
696 | loc, mlir::LLVM::ICmpPredicate::eq, derivedAddr, |
697 | rewriter.create<mlir::LLVM::ZeroOp>(loc, derivedAddr.getType())); |
698 | mlir::Value adjusted = rewriter.create<mlir::LLVM::GEPOp>( |
699 | loc, resultType, byteType, derivedAddr, offset); |
700 | rewriter.replaceOpWithNewOp<mlir::LLVM::SelectOp>(baseClassOp, isNull, |
701 | derivedAddr, adjusted); |
702 | } |
703 | return mlir::success(); |
704 | } |
705 | |
706 | mlir::LogicalResult CIRToLLVMAllocaOpLowering::matchAndRewrite( |
707 | cir::AllocaOp op, OpAdaptor adaptor, |
708 | mlir::ConversionPatternRewriter &rewriter) const { |
709 | assert(!cir::MissingFeatures::opAllocaDynAllocSize()); |
710 | mlir::Value size = rewriter.create<mlir::LLVM::ConstantOp>( |
711 | op.getLoc(), typeConverter->convertType(rewriter.getIndexType()), 1); |
712 | mlir::Type elementTy = |
713 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getAllocaType()); |
714 | mlir::Type resultTy = |
715 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getType()); |
716 | |
717 | assert(!cir::MissingFeatures::addressSpace()); |
718 | assert(!cir::MissingFeatures::opAllocaAnnotations()); |
719 | |
720 | rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>( |
721 | op, resultTy, elementTy, size, op.getAlignmentAttr().getInt()); |
722 | |
723 | return mlir::success(); |
724 | } |
725 | |
726 | mlir::LogicalResult CIRToLLVMReturnOpLowering::matchAndRewrite( |
727 | cir::ReturnOp op, OpAdaptor adaptor, |
728 | mlir::ConversionPatternRewriter &rewriter) const { |
729 | rewriter.replaceOpWithNewOp<mlir::LLVM::ReturnOp>(op, adaptor.getOperands()); |
730 | return mlir::LogicalResult::success(); |
731 | } |
732 | |
733 | static mlir::LogicalResult |
734 | rewriteCallOrInvoke(mlir::Operation *op, mlir::ValueRange callOperands, |
735 | mlir::ConversionPatternRewriter &rewriter, |
736 | const mlir::TypeConverter *converter, |
737 | mlir::FlatSymbolRefAttr calleeAttr) { |
738 | llvm::SmallVector<mlir::Type, 8> llvmResults; |
739 | mlir::ValueTypeRange<mlir::ResultRange> cirResults = op->getResultTypes(); |
740 | |
741 | if (converter->convertTypes(types: cirResults, results&: llvmResults).failed()) |
742 | return mlir::failure(); |
743 | |
744 | assert(!cir::MissingFeatures::opCallCallConv()); |
745 | assert(!cir::MissingFeatures::opCallSideEffect()); |
746 | |
747 | mlir::LLVM::LLVMFunctionType llvmFnTy; |
748 | if (calleeAttr) { // direct call |
749 | mlir::FunctionOpInterface fn = |
750 | mlir::SymbolTable::lookupNearestSymbolFrom<mlir::FunctionOpInterface>( |
751 | op, calleeAttr); |
752 | assert(fn && "Did not find function for call" ); |
753 | llvmFnTy = cast<mlir::LLVM::LLVMFunctionType>( |
754 | converter->convertType(fn.getFunctionType())); |
755 | } else { // indirect call |
756 | assert(!op->getOperands().empty() && |
757 | "operands list must no be empty for the indirect call" ); |
758 | auto calleeTy = op->getOperands().front().getType(); |
759 | auto calleePtrTy = cast<cir::PointerType>(calleeTy); |
760 | auto calleeFuncTy = cast<cir::FuncType>(calleePtrTy.getPointee()); |
761 | calleeFuncTy.dump(); |
762 | converter->convertType(calleeFuncTy).dump(); |
763 | llvmFnTy = cast<mlir::LLVM::LLVMFunctionType>( |
764 | converter->convertType(calleeFuncTy)); |
765 | } |
766 | |
767 | assert(!cir::MissingFeatures::opCallLandingPad()); |
768 | assert(!cir::MissingFeatures::opCallContinueBlock()); |
769 | assert(!cir::MissingFeatures::opCallCallConv()); |
770 | assert(!cir::MissingFeatures::opCallSideEffect()); |
771 | |
772 | rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(op, llvmFnTy, calleeAttr, |
773 | callOperands); |
774 | return mlir::success(); |
775 | } |
776 | |
777 | mlir::LogicalResult CIRToLLVMCallOpLowering::matchAndRewrite( |
778 | cir::CallOp op, OpAdaptor adaptor, |
779 | mlir::ConversionPatternRewriter &rewriter) const { |
780 | return rewriteCallOrInvoke(op.getOperation(), adaptor.getOperands(), rewriter, |
781 | getTypeConverter(), op.getCalleeAttr()); |
782 | } |
783 | |
784 | mlir::LogicalResult CIRToLLVMLoadOpLowering::matchAndRewrite( |
785 | cir::LoadOp op, OpAdaptor adaptor, |
786 | mlir::ConversionPatternRewriter &rewriter) const { |
787 | const mlir::Type llvmTy = |
788 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getType()); |
789 | assert(!cir::MissingFeatures::opLoadStoreMemOrder()); |
790 | std::optional<size_t> opAlign = op.getAlignment(); |
791 | unsigned alignment = |
792 | (unsigned)opAlign.value_or(u: dataLayout.getTypeABIAlignment(t: llvmTy)); |
793 | |
794 | assert(!cir::MissingFeatures::lowerModeOptLevel()); |
795 | |
796 | // TODO: nontemporal, syncscope. |
797 | assert(!cir::MissingFeatures::opLoadStoreVolatile()); |
798 | mlir::LLVM::LoadOp newLoad = rewriter.create<mlir::LLVM::LoadOp>( |
799 | op->getLoc(), llvmTy, adaptor.getAddr(), alignment, |
800 | /*volatile=*/false, /*nontemporal=*/false, |
801 | /*invariant=*/false, /*invariantGroup=*/false, |
802 | mlir::LLVM::AtomicOrdering::not_atomic); |
803 | |
804 | // Convert adapted result to its original type if needed. |
805 | mlir::Value result = |
806 | emitFromMemory(rewriter, dataLayout, op, newLoad.getResult()); |
807 | rewriter.replaceOp(op, result); |
808 | assert(!cir::MissingFeatures::opLoadStoreTbaa()); |
809 | return mlir::LogicalResult::success(); |
810 | } |
811 | |
812 | mlir::LogicalResult CIRToLLVMStoreOpLowering::matchAndRewrite( |
813 | cir::StoreOp op, OpAdaptor adaptor, |
814 | mlir::ConversionPatternRewriter &rewriter) const { |
815 | assert(!cir::MissingFeatures::opLoadStoreMemOrder()); |
816 | const mlir::Type llvmTy = |
817 | getTypeConverter()->convertType(op.getValue().getType()); |
818 | std::optional<size_t> opAlign = op.getAlignment(); |
819 | unsigned alignment = |
820 | (unsigned)opAlign.value_or(u: dataLayout.getTypeABIAlignment(t: llvmTy)); |
821 | |
822 | assert(!cir::MissingFeatures::lowerModeOptLevel()); |
823 | |
824 | // Convert adapted value to its memory type if needed. |
825 | mlir::Value value = emitToMemory(rewriter, dataLayout, |
826 | op.getValue().getType(), adaptor.getValue()); |
827 | // TODO: nontemporal, syncscope. |
828 | assert(!cir::MissingFeatures::opLoadStoreVolatile()); |
829 | mlir::LLVM::StoreOp storeOp = rewriter.create<mlir::LLVM::StoreOp>( |
830 | op->getLoc(), value, adaptor.getAddr(), alignment, /*volatile=*/false, |
831 | /*nontemporal=*/false, /*invariantGroup=*/false, |
832 | mlir::LLVM::AtomicOrdering::not_atomic); |
833 | rewriter.replaceOp(op, storeOp); |
834 | assert(!cir::MissingFeatures::opLoadStoreTbaa()); |
835 | return mlir::LogicalResult::success(); |
836 | } |
837 | |
838 | bool hasTrailingZeros(cir::ConstArrayAttr attr) { |
839 | auto array = mlir::dyn_cast<mlir::ArrayAttr>(attr.getElts()); |
840 | return attr.hasTrailingZeros() || |
841 | (array && std::count_if(array.begin(), array.end(), [](auto elt) { |
842 | auto ar = dyn_cast<cir::ConstArrayAttr>(elt); |
843 | return ar && hasTrailingZeros(ar); |
844 | })); |
845 | } |
846 | |
847 | mlir::LogicalResult CIRToLLVMConstantOpLowering::matchAndRewrite( |
848 | cir::ConstantOp op, OpAdaptor adaptor, |
849 | mlir::ConversionPatternRewriter &rewriter) const { |
850 | mlir::Attribute attr = op.getValue(); |
851 | |
852 | if (mlir::isa<mlir::IntegerType>(op.getType())) { |
853 | // Verified cir.const operations cannot actually be of these types, but the |
854 | // lowering pass may generate temporary cir.const operations with these |
855 | // types. This is OK since MLIR allows unverified operations to be alive |
856 | // during a pass as long as they don't live past the end of the pass. |
857 | attr = op.getValue(); |
858 | } else if (mlir::isa<cir::BoolType>(op.getType())) { |
859 | int value = mlir::cast<cir::BoolAttr>(op.getValue()).getValue(); |
860 | attr = rewriter.getIntegerAttr(typeConverter->convertType(op.getType()), |
861 | value); |
862 | } else if (mlir::isa<cir::IntType>(op.getType())) { |
863 | assert(!cir::MissingFeatures::opGlobalViewAttr()); |
864 | |
865 | attr = rewriter.getIntegerAttr( |
866 | typeConverter->convertType(op.getType()), |
867 | mlir::cast<cir::IntAttr>(op.getValue()).getValue()); |
868 | } else if (mlir::isa<cir::CIRFPTypeInterface>(op.getType())) { |
869 | attr = rewriter.getFloatAttr( |
870 | typeConverter->convertType(op.getType()), |
871 | mlir::cast<cir::FPAttr>(op.getValue()).getValue()); |
872 | } else if (mlir::isa<cir::PointerType>(op.getType())) { |
873 | // Optimize with dedicated LLVM op for null pointers. |
874 | if (mlir::isa<cir::ConstPtrAttr>(op.getValue())) { |
875 | if (mlir::cast<cir::ConstPtrAttr>(op.getValue()).isNullValue()) { |
876 | rewriter.replaceOpWithNewOp<mlir::LLVM::ZeroOp>( |
877 | op, typeConverter->convertType(op.getType())); |
878 | return mlir::success(); |
879 | } |
880 | } |
881 | assert(!cir::MissingFeatures::opGlobalViewAttr()); |
882 | attr = op.getValue(); |
883 | } else if (const auto arrTy = mlir::dyn_cast<cir::ArrayType>(op.getType())) { |
884 | const auto constArr = mlir::dyn_cast<cir::ConstArrayAttr>(op.getValue()); |
885 | if (!constArr && !isa<cir::ZeroAttr, cir::UndefAttr>(op.getValue())) |
886 | return op.emitError() << "array does not have a constant initializer" ; |
887 | |
888 | std::optional<mlir::Attribute> denseAttr; |
889 | if (constArr && hasTrailingZeros(constArr)) { |
890 | const mlir::Value newOp = |
891 | lowerCirAttrAsValue(op, constArr, rewriter, getTypeConverter()); |
892 | rewriter.replaceOp(op, newOp); |
893 | return mlir::success(); |
894 | } else if (constArr && |
895 | (denseAttr = lowerConstArrayAttr(constArr, typeConverter))) { |
896 | attr = denseAttr.value(); |
897 | } else { |
898 | const mlir::Value initVal = |
899 | lowerCirAttrAsValue(op, op.getValue(), rewriter, typeConverter); |
900 | rewriter.replaceAllUsesWith(op, initVal); |
901 | rewriter.eraseOp(op: op); |
902 | return mlir::success(); |
903 | } |
904 | } else { |
905 | return op.emitError() << "unsupported constant type " << op.getType(); |
906 | } |
907 | |
908 | rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
909 | op, getTypeConverter()->convertType(op.getType()), attr); |
910 | |
911 | return mlir::success(); |
912 | } |
913 | |
914 | /// Convert the `cir.func` attributes to `llvm.func` attributes. |
915 | /// Only retain those attributes that are not constructed by |
916 | /// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out |
917 | /// argument attributes. |
918 | void CIRToLLVMFuncOpLowering::lowerFuncAttributes( |
919 | cir::FuncOp func, bool filterArgAndResAttrs, |
920 | SmallVectorImpl<mlir::NamedAttribute> &result) const { |
921 | assert(!cir::MissingFeatures::opFuncCallingConv()); |
922 | for (mlir::NamedAttribute attr : func->getAttrs()) { |
923 | if (attr.getName() == mlir::SymbolTable::getSymbolAttrName() || |
924 | attr.getName() == func.getFunctionTypeAttrName() || |
925 | attr.getName() == getLinkageAttrNameString() || |
926 | (filterArgAndResAttrs && |
927 | (attr.getName() == func.getArgAttrsAttrName() || |
928 | attr.getName() == func.getResAttrsAttrName()))) |
929 | continue; |
930 | |
931 | assert(!cir::MissingFeatures::opFuncExtraAttrs()); |
932 | result.push_back(attr); |
933 | } |
934 | } |
935 | |
936 | mlir::LogicalResult CIRToLLVMFuncOpLowering::matchAndRewrite( |
937 | cir::FuncOp op, OpAdaptor adaptor, |
938 | mlir::ConversionPatternRewriter &rewriter) const { |
939 | |
940 | cir::FuncType fnType = op.getFunctionType(); |
941 | assert(!cir::MissingFeatures::opFuncDsolocal()); |
942 | bool isDsoLocal = false; |
943 | mlir::TypeConverter::SignatureConversion signatureConversion( |
944 | fnType.getNumInputs()); |
945 | |
946 | for (const auto &argType : llvm::enumerate(fnType.getInputs())) { |
947 | mlir::Type convertedType = typeConverter->convertType(argType.value()); |
948 | if (!convertedType) |
949 | return mlir::failure(); |
950 | signatureConversion.addInputs(argType.index(), convertedType); |
951 | } |
952 | |
953 | mlir::Type resultType = |
954 | getTypeConverter()->convertType(fnType.getReturnType()); |
955 | |
956 | // Create the LLVM function operation. |
957 | mlir::Type llvmFnTy = mlir::LLVM::LLVMFunctionType::get( |
958 | resultType ? resultType : mlir::LLVM::LLVMVoidType::get(getContext()), |
959 | signatureConversion.getConvertedTypes(), |
960 | /*isVarArg=*/fnType.isVarArg()); |
961 | // LLVMFuncOp expects a single FileLine Location instead of a fused |
962 | // location. |
963 | mlir::Location loc = op.getLoc(); |
964 | if (mlir::FusedLoc fusedLoc = mlir::dyn_cast<mlir::FusedLoc>(loc)) |
965 | loc = fusedLoc.getLocations()[0]; |
966 | assert((mlir::isa<mlir::FileLineColLoc>(loc) || |
967 | mlir::isa<mlir::UnknownLoc>(loc)) && |
968 | "expected single location or unknown location here" ); |
969 | |
970 | assert(!cir::MissingFeatures::opFuncLinkage()); |
971 | mlir::LLVM::Linkage linkage = mlir::LLVM::Linkage::External; |
972 | assert(!cir::MissingFeatures::opFuncCallingConv()); |
973 | mlir::LLVM::CConv cconv = mlir::LLVM::CConv::C; |
974 | SmallVector<mlir::NamedAttribute, 4> attributes; |
975 | lowerFuncAttributes(op, /*filterArgAndResAttrs=*/false, attributes); |
976 | |
977 | mlir::LLVM::LLVMFuncOp fn = rewriter.create<mlir::LLVM::LLVMFuncOp>( |
978 | loc, op.getName(), llvmFnTy, linkage, isDsoLocal, cconv, |
979 | mlir::SymbolRefAttr(), attributes); |
980 | |
981 | assert(!cir::MissingFeatures::opFuncVisibility()); |
982 | |
983 | rewriter.inlineRegionBefore(op.getBody(), fn.getBody(), fn.end()); |
984 | if (failed(rewriter.convertRegionTypes(&fn.getBody(), *typeConverter, |
985 | &signatureConversion))) |
986 | return mlir::failure(); |
987 | |
988 | rewriter.eraseOp(op: op); |
989 | |
990 | return mlir::LogicalResult::success(); |
991 | } |
992 | |
993 | mlir::LogicalResult CIRToLLVMGetGlobalOpLowering::matchAndRewrite( |
994 | cir::GetGlobalOp op, OpAdaptor adaptor, |
995 | mlir::ConversionPatternRewriter &rewriter) const { |
996 | // FIXME(cir): Premature DCE to avoid lowering stuff we're not using. |
997 | // CIRGen should mitigate this and not emit the get_global. |
998 | if (op->getUses().empty()) { |
999 | rewriter.eraseOp(op: op); |
1000 | return mlir::success(); |
1001 | } |
1002 | |
1003 | mlir::Type type = getTypeConverter()->convertType(op.getType()); |
1004 | mlir::Operation *newop = |
1005 | rewriter.create<mlir::LLVM::AddressOfOp>(op.getLoc(), type, op.getName()); |
1006 | |
1007 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
1008 | |
1009 | rewriter.replaceOp(op, newop); |
1010 | return mlir::success(); |
1011 | } |
1012 | |
1013 | /// Replace CIR global with a region initialized LLVM global and update |
1014 | /// insertion point to the end of the initializer block. |
1015 | void CIRToLLVMGlobalOpLowering::setupRegionInitializedLLVMGlobalOp( |
1016 | cir::GlobalOp op, mlir::ConversionPatternRewriter &rewriter) const { |
1017 | const mlir::Type llvmType = |
1018 | convertTypeForMemory(*getTypeConverter(), dataLayout, op.getSymType()); |
1019 | |
1020 | // FIXME: These default values are placeholders until the the equivalent |
1021 | // attributes are available on cir.global ops. This duplicates code |
1022 | // in CIRToLLVMGlobalOpLowering::matchAndRewrite() but that will go |
1023 | // away when the placeholders are no longer needed. |
1024 | assert(!cir::MissingFeatures::opGlobalConstant()); |
1025 | const bool isConst = false; |
1026 | assert(!cir::MissingFeatures::addressSpace()); |
1027 | const unsigned addrSpace = 0; |
1028 | const bool isDsoLocal = op.getDsolocal(); |
1029 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
1030 | const bool isThreadLocal = false; |
1031 | const uint64_t alignment = op.getAlignment().value_or(0); |
1032 | const mlir::LLVM::Linkage linkage = convertLinkage(op.getLinkage()); |
1033 | const StringRef symbol = op.getSymName(); |
1034 | mlir::SymbolRefAttr comdatAttr = getComdatAttr(op, rewriter); |
1035 | |
1036 | SmallVector<mlir::NamedAttribute> attributes; |
1037 | mlir::LLVM::GlobalOp newGlobalOp = |
1038 | rewriter.replaceOpWithNewOp<mlir::LLVM::GlobalOp>( |
1039 | op, llvmType, isConst, linkage, symbol, nullptr, alignment, addrSpace, |
1040 | isDsoLocal, isThreadLocal, comdatAttr, attributes); |
1041 | newGlobalOp.getRegion().emplaceBlock(); |
1042 | rewriter.setInsertionPointToEnd(newGlobalOp.getInitializerBlock()); |
1043 | } |
1044 | |
1045 | mlir::LogicalResult |
1046 | CIRToLLVMGlobalOpLowering::matchAndRewriteRegionInitializedGlobal( |
1047 | cir::GlobalOp op, mlir::Attribute init, |
1048 | mlir::ConversionPatternRewriter &rewriter) const { |
1049 | // TODO: Generalize this handling when more types are needed here. |
1050 | assert((isa<cir::ConstArrayAttr, cir::ConstVectorAttr, cir::ConstPtrAttr, |
1051 | cir::ConstComplexAttr, cir::ZeroAttr>(init))); |
1052 | |
1053 | // TODO(cir): once LLVM's dialect has proper equivalent attributes this |
1054 | // should be updated. For now, we use a custom op to initialize globals |
1055 | // to the appropriate value. |
1056 | const mlir::Location loc = op.getLoc(); |
1057 | setupRegionInitializedLLVMGlobalOp(op, rewriter); |
1058 | CIRAttrToValue valueConverter(op, rewriter, typeConverter); |
1059 | mlir::Value value = valueConverter.visit(attr: init); |
1060 | rewriter.create<mlir::LLVM::ReturnOp>(loc, value); |
1061 | return mlir::success(); |
1062 | } |
1063 | |
1064 | mlir::LogicalResult CIRToLLVMGlobalOpLowering::matchAndRewrite( |
1065 | cir::GlobalOp op, OpAdaptor adaptor, |
1066 | mlir::ConversionPatternRewriter &rewriter) const { |
1067 | |
1068 | std::optional<mlir::Attribute> init = op.getInitialValue(); |
1069 | |
1070 | // Fetch required values to create LLVM op. |
1071 | const mlir::Type cirSymType = op.getSymType(); |
1072 | |
1073 | // This is the LLVM dialect type. |
1074 | const mlir::Type llvmType = |
1075 | convertTypeForMemory(*getTypeConverter(), dataLayout, cirSymType); |
1076 | // FIXME: These default values are placeholders until the the equivalent |
1077 | // attributes are available on cir.global ops. |
1078 | assert(!cir::MissingFeatures::opGlobalConstant()); |
1079 | const bool isConst = false; |
1080 | assert(!cir::MissingFeatures::addressSpace()); |
1081 | const unsigned addrSpace = 0; |
1082 | const bool isDsoLocal = op.getDsolocal(); |
1083 | assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
1084 | const bool isThreadLocal = false; |
1085 | const uint64_t alignment = op.getAlignment().value_or(0); |
1086 | const mlir::LLVM::Linkage linkage = convertLinkage(op.getLinkage()); |
1087 | const StringRef symbol = op.getSymName(); |
1088 | SmallVector<mlir::NamedAttribute> attributes; |
1089 | mlir::SymbolRefAttr comdatAttr = getComdatAttr(op, rewriter); |
1090 | |
1091 | if (init.has_value()) { |
1092 | if (mlir::isa<cir::FPAttr, cir::IntAttr, cir::BoolAttr>(init.value())) { |
1093 | GlobalInitAttrRewriter initRewriter(llvmType, rewriter); |
1094 | init = initRewriter.visit(attr: init.value()); |
1095 | // If initRewriter returned a null attribute, init will have a value but |
1096 | // the value will be null. If that happens, initRewriter didn't handle the |
1097 | // attribute type. It probably needs to be added to |
1098 | // GlobalInitAttrRewriter. |
1099 | if (!init.value()) { |
1100 | op.emitError() << "unsupported initializer '" << init.value() << "'" ; |
1101 | return mlir::failure(); |
1102 | } |
1103 | } else if (mlir::isa<cir::ConstArrayAttr, cir::ConstVectorAttr, |
1104 | cir::ConstPtrAttr, cir::ConstComplexAttr, |
1105 | cir::ZeroAttr>(init.value())) { |
1106 | // TODO(cir): once LLVM's dialect has proper equivalent attributes this |
1107 | // should be updated. For now, we use a custom op to initialize globals |
1108 | // to the appropriate value. |
1109 | return matchAndRewriteRegionInitializedGlobal(op, init.value(), rewriter); |
1110 | } else { |
1111 | // We will only get here if new initializer types are added and this |
1112 | // code is not updated to handle them. |
1113 | op.emitError() << "unsupported initializer '" << init.value() << "'" ; |
1114 | return mlir::failure(); |
1115 | } |
1116 | } |
1117 | |
1118 | // Rewrite op. |
1119 | rewriter.replaceOpWithNewOp<mlir::LLVM::GlobalOp>( |
1120 | op, llvmType, isConst, linkage, symbol, init.value_or(mlir::Attribute()), |
1121 | alignment, addrSpace, isDsoLocal, isThreadLocal, comdatAttr, attributes); |
1122 | return mlir::success(); |
1123 | } |
1124 | |
1125 | mlir::SymbolRefAttr |
1126 | CIRToLLVMGlobalOpLowering::getComdatAttr(cir::GlobalOp &op, |
1127 | mlir::OpBuilder &builder) const { |
1128 | if (!op.getComdat()) |
1129 | return mlir::SymbolRefAttr{}; |
1130 | |
1131 | mlir::ModuleOp module = op->getParentOfType<mlir::ModuleOp>(); |
1132 | mlir::OpBuilder::InsertionGuard guard(builder); |
1133 | StringRef comdatName("__llvm_comdat_globals" ); |
1134 | if (!comdatOp) { |
1135 | builder.setInsertionPointToStart(module.getBody()); |
1136 | comdatOp = |
1137 | builder.create<mlir::LLVM::ComdatOp>(module.getLoc(), comdatName); |
1138 | } |
1139 | |
1140 | builder.setInsertionPointToStart(&comdatOp.getBody().back()); |
1141 | auto selectorOp = builder.create<mlir::LLVM::ComdatSelectorOp>( |
1142 | comdatOp.getLoc(), op.getSymName(), mlir::LLVM::comdat::Comdat::Any); |
1143 | return mlir::SymbolRefAttr::get( |
1144 | builder.getContext(), comdatName, |
1145 | mlir::FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())); |
1146 | } |
1147 | |
1148 | mlir::LogicalResult CIRToLLVMSwitchFlatOpLowering::matchAndRewrite( |
1149 | cir::SwitchFlatOp op, OpAdaptor adaptor, |
1150 | mlir::ConversionPatternRewriter &rewriter) const { |
1151 | |
1152 | llvm::SmallVector<mlir::APInt, 8> caseValues; |
1153 | for (mlir::Attribute val : op.getCaseValues()) { |
1154 | auto intAttr = cast<cir::IntAttr>(val); |
1155 | caseValues.push_back(intAttr.getValue()); |
1156 | } |
1157 | |
1158 | llvm::SmallVector<mlir::Block *, 8> caseDestinations; |
1159 | llvm::SmallVector<mlir::ValueRange, 8> caseOperands; |
1160 | |
1161 | for (mlir::Block *x : op.getCaseDestinations()) |
1162 | caseDestinations.push_back(x); |
1163 | |
1164 | for (mlir::OperandRange x : op.getCaseOperands()) |
1165 | caseOperands.push_back(x); |
1166 | |
1167 | // Set switch op to branch to the newly created blocks. |
1168 | rewriter.setInsertionPoint(op); |
1169 | rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>( |
1170 | op, adaptor.getCondition(), op.getDefaultDestination(), |
1171 | op.getDefaultOperands(), caseValues, caseDestinations, caseOperands); |
1172 | return mlir::success(); |
1173 | } |
1174 | |
1175 | mlir::LogicalResult CIRToLLVMUnaryOpLowering::matchAndRewrite( |
1176 | cir::UnaryOp op, OpAdaptor adaptor, |
1177 | mlir::ConversionPatternRewriter &rewriter) const { |
1178 | assert(op.getType() == op.getInput().getType() && |
1179 | "Unary operation's operand type and result type are different" ); |
1180 | mlir::Type type = op.getType(); |
1181 | mlir::Type elementType = elementTypeIfVector(type); |
1182 | bool isVector = mlir::isa<cir::VectorType>(type); |
1183 | mlir::Type llvmType = getTypeConverter()->convertType(type); |
1184 | mlir::Location loc = op.getLoc(); |
1185 | |
1186 | // Integer unary operations: + - ~ ++ -- |
1187 | if (mlir::isa<cir::IntType>(elementType)) { |
1188 | mlir::LLVM::IntegerOverflowFlags maybeNSW = |
1189 | op.getNoSignedWrap() ? mlir::LLVM::IntegerOverflowFlags::nsw |
1190 | : mlir::LLVM::IntegerOverflowFlags::none; |
1191 | switch (op.getKind()) { |
1192 | case cir::UnaryOpKind::Inc: { |
1193 | assert(!isVector && "++ not allowed on vector types" ); |
1194 | auto one = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 1); |
1195 | rewriter.replaceOpWithNewOp<mlir::LLVM::AddOp>( |
1196 | op, llvmType, adaptor.getInput(), one, maybeNSW); |
1197 | return mlir::success(); |
1198 | } |
1199 | case cir::UnaryOpKind::Dec: { |
1200 | assert(!isVector && "-- not allowed on vector types" ); |
1201 | auto one = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 1); |
1202 | rewriter.replaceOpWithNewOp<mlir::LLVM::SubOp>(op, adaptor.getInput(), |
1203 | one, maybeNSW); |
1204 | return mlir::success(); |
1205 | } |
1206 | case cir::UnaryOpKind::Plus: |
1207 | rewriter.replaceOp(op, adaptor.getInput()); |
1208 | return mlir::success(); |
1209 | case cir::UnaryOpKind::Minus: { |
1210 | mlir::Value zero; |
1211 | if (isVector) |
1212 | zero = rewriter.create<mlir::LLVM::ZeroOp>(loc, llvmType); |
1213 | else |
1214 | zero = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 0); |
1215 | rewriter.replaceOpWithNewOp<mlir::LLVM::SubOp>( |
1216 | op, zero, adaptor.getInput(), maybeNSW); |
1217 | return mlir::success(); |
1218 | } |
1219 | case cir::UnaryOpKind::Not: { |
1220 | // bit-wise compliment operator, implemented as an XOR with -1. |
1221 | mlir::Value minusOne; |
1222 | if (isVector) { |
1223 | const uint64_t numElements = |
1224 | mlir::dyn_cast<cir::VectorType>(type).getSize(); |
1225 | std::vector<int32_t> values(numElements, -1); |
1226 | mlir::DenseIntElementsAttr denseVec = rewriter.getI32VectorAttr(values); |
1227 | minusOne = |
1228 | rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, denseVec); |
1229 | } else { |
1230 | minusOne = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, -1); |
1231 | } |
1232 | rewriter.replaceOpWithNewOp<mlir::LLVM::XOrOp>(op, adaptor.getInput(), |
1233 | minusOne); |
1234 | return mlir::success(); |
1235 | } |
1236 | } |
1237 | llvm_unreachable("Unexpected unary op for int" ); |
1238 | } |
1239 | |
1240 | // Floating point unary operations: + - ++ -- |
1241 | if (mlir::isa<cir::CIRFPTypeInterface>(elementType)) { |
1242 | switch (op.getKind()) { |
1243 | case cir::UnaryOpKind::Inc: { |
1244 | assert(!isVector && "++ not allowed on vector types" ); |
1245 | mlir::LLVM::ConstantOp one = rewriter.create<mlir::LLVM::ConstantOp>( |
1246 | loc, llvmType, rewriter.getFloatAttr(llvmType, 1.0)); |
1247 | rewriter.replaceOpWithNewOp<mlir::LLVM::FAddOp>(op, llvmType, one, |
1248 | adaptor.getInput()); |
1249 | return mlir::success(); |
1250 | } |
1251 | case cir::UnaryOpKind::Dec: { |
1252 | assert(!isVector && "-- not allowed on vector types" ); |
1253 | mlir::LLVM::ConstantOp minusOne = rewriter.create<mlir::LLVM::ConstantOp>( |
1254 | loc, llvmType, rewriter.getFloatAttr(llvmType, -1.0)); |
1255 | rewriter.replaceOpWithNewOp<mlir::LLVM::FAddOp>(op, llvmType, minusOne, |
1256 | adaptor.getInput()); |
1257 | return mlir::success(); |
1258 | } |
1259 | case cir::UnaryOpKind::Plus: |
1260 | rewriter.replaceOp(op, adaptor.getInput()); |
1261 | return mlir::success(); |
1262 | case cir::UnaryOpKind::Minus: |
1263 | rewriter.replaceOpWithNewOp<mlir::LLVM::FNegOp>(op, llvmType, |
1264 | adaptor.getInput()); |
1265 | return mlir::success(); |
1266 | case cir::UnaryOpKind::Not: |
1267 | return op.emitError() << "Unary not is invalid for floating-point types" ; |
1268 | } |
1269 | llvm_unreachable("Unexpected unary op for float" ); |
1270 | } |
1271 | |
1272 | // Boolean unary operations: ! only. (For all others, the operand has |
1273 | // already been promoted to int.) |
1274 | if (mlir::isa<cir::BoolType>(elementType)) { |
1275 | switch (op.getKind()) { |
1276 | case cir::UnaryOpKind::Inc: |
1277 | case cir::UnaryOpKind::Dec: |
1278 | case cir::UnaryOpKind::Plus: |
1279 | case cir::UnaryOpKind::Minus: |
1280 | // Some of these are allowed in source code, but we shouldn't get here |
1281 | // with a boolean type. |
1282 | return op.emitError() << "Unsupported unary operation on boolean type" ; |
1283 | case cir::UnaryOpKind::Not: { |
1284 | assert(!isVector && "NYI: op! on vector mask" ); |
1285 | auto one = rewriter.create<mlir::LLVM::ConstantOp>(loc, llvmType, 1); |
1286 | rewriter.replaceOpWithNewOp<mlir::LLVM::XOrOp>(op, adaptor.getInput(), |
1287 | one); |
1288 | return mlir::success(); |
1289 | } |
1290 | } |
1291 | llvm_unreachable("Unexpected unary op for bool" ); |
1292 | } |
1293 | |
1294 | // Pointer unary operations: + only. (++ and -- of pointers are implemented |
1295 | // with cir.ptr_stride, not cir.unary.) |
1296 | if (mlir::isa<cir::PointerType>(elementType)) { |
1297 | return op.emitError() |
1298 | << "Unary operation on pointer types is not yet implemented" ; |
1299 | } |
1300 | |
1301 | return op.emitError() << "Unary operation has unsupported type: " |
1302 | << elementType; |
1303 | } |
1304 | |
1305 | mlir::LLVM::IntegerOverflowFlags |
1306 | CIRToLLVMBinOpLowering::getIntOverflowFlag(cir::BinOp op) const { |
1307 | if (op.getNoUnsignedWrap()) |
1308 | return mlir::LLVM::IntegerOverflowFlags::nuw; |
1309 | |
1310 | if (op.getNoSignedWrap()) |
1311 | return mlir::LLVM::IntegerOverflowFlags::nsw; |
1312 | |
1313 | return mlir::LLVM::IntegerOverflowFlags::none; |
1314 | } |
1315 | |
1316 | static bool isIntTypeUnsigned(mlir::Type type) { |
1317 | // TODO: Ideally, we should only need to check cir::IntType here. |
1318 | return mlir::isa<cir::IntType>(type) |
1319 | ? mlir::cast<cir::IntType>(type).isUnsigned() |
1320 | : mlir::cast<mlir::IntegerType>(type).isUnsigned(); |
1321 | } |
1322 | |
1323 | mlir::LogicalResult CIRToLLVMBinOpLowering::matchAndRewrite( |
1324 | cir::BinOp op, OpAdaptor adaptor, |
1325 | mlir::ConversionPatternRewriter &rewriter) const { |
1326 | if (adaptor.getLhs().getType() != adaptor.getRhs().getType()) |
1327 | return op.emitError() << "inconsistent operands' types not supported yet" ; |
1328 | |
1329 | mlir::Type type = op.getRhs().getType(); |
1330 | if (!mlir::isa<cir::IntType, cir::BoolType, cir::CIRFPTypeInterface, |
1331 | mlir::IntegerType, cir::VectorType>(type)) |
1332 | return op.emitError() << "operand type not supported yet" ; |
1333 | |
1334 | const mlir::Type llvmTy = getTypeConverter()->convertType(op.getType()); |
1335 | const mlir::Type llvmEltTy = elementTypeIfVector(type: llvmTy); |
1336 | |
1337 | const mlir::Value rhs = adaptor.getRhs(); |
1338 | const mlir::Value lhs = adaptor.getLhs(); |
1339 | type = elementTypeIfVector(type); |
1340 | |
1341 | switch (op.getKind()) { |
1342 | case cir::BinOpKind::Add: |
1343 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
1344 | if (op.getSaturated()) { |
1345 | if (isIntTypeUnsigned(type)) { |
1346 | rewriter.replaceOpWithNewOp<mlir::LLVM::UAddSat>(op, lhs, rhs); |
1347 | break; |
1348 | } |
1349 | rewriter.replaceOpWithNewOp<mlir::LLVM::SAddSat>(op, lhs, rhs); |
1350 | break; |
1351 | } |
1352 | rewriter.replaceOpWithNewOp<mlir::LLVM::AddOp>(op, llvmTy, lhs, rhs, |
1353 | getIntOverflowFlag(op)); |
1354 | } else { |
1355 | rewriter.replaceOpWithNewOp<mlir::LLVM::FAddOp>(op, lhs, rhs); |
1356 | } |
1357 | break; |
1358 | case cir::BinOpKind::Sub: |
1359 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
1360 | if (op.getSaturated()) { |
1361 | if (isIntTypeUnsigned(type)) { |
1362 | rewriter.replaceOpWithNewOp<mlir::LLVM::USubSat>(op, lhs, rhs); |
1363 | break; |
1364 | } |
1365 | rewriter.replaceOpWithNewOp<mlir::LLVM::SSubSat>(op, lhs, rhs); |
1366 | break; |
1367 | } |
1368 | rewriter.replaceOpWithNewOp<mlir::LLVM::SubOp>(op, llvmTy, lhs, rhs, |
1369 | getIntOverflowFlag(op)); |
1370 | } else { |
1371 | rewriter.replaceOpWithNewOp<mlir::LLVM::FSubOp>(op, lhs, rhs); |
1372 | } |
1373 | break; |
1374 | case cir::BinOpKind::Mul: |
1375 | if (mlir::isa<mlir::IntegerType>(llvmEltTy)) |
1376 | rewriter.replaceOpWithNewOp<mlir::LLVM::MulOp>(op, llvmTy, lhs, rhs, |
1377 | getIntOverflowFlag(op)); |
1378 | else |
1379 | rewriter.replaceOpWithNewOp<mlir::LLVM::FMulOp>(op, lhs, rhs); |
1380 | break; |
1381 | case cir::BinOpKind::Div: |
1382 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
1383 | auto isUnsigned = isIntTypeUnsigned(type); |
1384 | if (isUnsigned) |
1385 | rewriter.replaceOpWithNewOp<mlir::LLVM::UDivOp>(op, lhs, rhs); |
1386 | else |
1387 | rewriter.replaceOpWithNewOp<mlir::LLVM::SDivOp>(op, lhs, rhs); |
1388 | } else { |
1389 | rewriter.replaceOpWithNewOp<mlir::LLVM::FDivOp>(op, lhs, rhs); |
1390 | } |
1391 | break; |
1392 | case cir::BinOpKind::Rem: |
1393 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
1394 | auto isUnsigned = isIntTypeUnsigned(type); |
1395 | if (isUnsigned) |
1396 | rewriter.replaceOpWithNewOp<mlir::LLVM::URemOp>(op, lhs, rhs); |
1397 | else |
1398 | rewriter.replaceOpWithNewOp<mlir::LLVM::SRemOp>(op, lhs, rhs); |
1399 | } else { |
1400 | rewriter.replaceOpWithNewOp<mlir::LLVM::FRemOp>(op, lhs, rhs); |
1401 | } |
1402 | break; |
1403 | case cir::BinOpKind::And: |
1404 | rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(op, lhs, rhs); |
1405 | break; |
1406 | case cir::BinOpKind::Or: |
1407 | rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(op, lhs, rhs); |
1408 | break; |
1409 | case cir::BinOpKind::Xor: |
1410 | rewriter.replaceOpWithNewOp<mlir::LLVM::XOrOp>(op, lhs, rhs); |
1411 | break; |
1412 | case cir::BinOpKind::Max: |
1413 | if (mlir::isa<mlir::IntegerType>(Val: llvmEltTy)) { |
1414 | auto isUnsigned = isIntTypeUnsigned(type); |
1415 | if (isUnsigned) |
1416 | rewriter.replaceOpWithNewOp<mlir::LLVM::UMaxOp>(op, llvmTy, lhs, rhs); |
1417 | else |
1418 | rewriter.replaceOpWithNewOp<mlir::LLVM::SMaxOp>(op, llvmTy, lhs, rhs); |
1419 | } |
1420 | break; |
1421 | } |
1422 | return mlir::LogicalResult::success(); |
1423 | } |
1424 | |
1425 | /// Convert from a CIR comparison kind to an LLVM IR integral comparison kind. |
1426 | static mlir::LLVM::ICmpPredicate |
1427 | convertCmpKindToICmpPredicate(cir::CmpOpKind kind, bool isSigned) { |
1428 | using CIR = cir::CmpOpKind; |
1429 | using LLVMICmp = mlir::LLVM::ICmpPredicate; |
1430 | switch (kind) { |
1431 | case CIR::eq: |
1432 | return LLVMICmp::eq; |
1433 | case CIR::ne: |
1434 | return LLVMICmp::ne; |
1435 | case CIR::lt: |
1436 | return (isSigned ? LLVMICmp::slt : LLVMICmp::ult); |
1437 | case CIR::le: |
1438 | return (isSigned ? LLVMICmp::sle : LLVMICmp::ule); |
1439 | case CIR::gt: |
1440 | return (isSigned ? LLVMICmp::sgt : LLVMICmp::ugt); |
1441 | case CIR::ge: |
1442 | return (isSigned ? LLVMICmp::sge : LLVMICmp::uge); |
1443 | } |
1444 | llvm_unreachable("Unknown CmpOpKind" ); |
1445 | } |
1446 | |
1447 | /// Convert from a CIR comparison kind to an LLVM IR floating-point comparison |
1448 | /// kind. |
1449 | static mlir::LLVM::FCmpPredicate |
1450 | convertCmpKindToFCmpPredicate(cir::CmpOpKind kind) { |
1451 | using CIR = cir::CmpOpKind; |
1452 | using LLVMFCmp = mlir::LLVM::FCmpPredicate; |
1453 | switch (kind) { |
1454 | case CIR::eq: |
1455 | return LLVMFCmp::oeq; |
1456 | case CIR::ne: |
1457 | return LLVMFCmp::une; |
1458 | case CIR::lt: |
1459 | return LLVMFCmp::olt; |
1460 | case CIR::le: |
1461 | return LLVMFCmp::ole; |
1462 | case CIR::gt: |
1463 | return LLVMFCmp::ogt; |
1464 | case CIR::ge: |
1465 | return LLVMFCmp::oge; |
1466 | } |
1467 | llvm_unreachable("Unknown CmpOpKind" ); |
1468 | } |
1469 | |
1470 | mlir::LogicalResult CIRToLLVMCmpOpLowering::matchAndRewrite( |
1471 | cir::CmpOp cmpOp, OpAdaptor adaptor, |
1472 | mlir::ConversionPatternRewriter &rewriter) const { |
1473 | mlir::Type type = cmpOp.getLhs().getType(); |
1474 | |
1475 | assert(!cir::MissingFeatures::dataMemberType()); |
1476 | assert(!cir::MissingFeatures::methodType()); |
1477 | |
1478 | // Lower to LLVM comparison op. |
1479 | if (mlir::isa<cir::IntType, mlir::IntegerType>(type)) { |
1480 | bool isSigned = mlir::isa<cir::IntType>(type) |
1481 | ? mlir::cast<cir::IntType>(type).isSigned() |
1482 | : mlir::cast<mlir::IntegerType>(type).isSigned(); |
1483 | mlir::LLVM::ICmpPredicate kind = |
1484 | convertCmpKindToICmpPredicate(cmpOp.getKind(), isSigned); |
1485 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
1486 | cmpOp, kind, adaptor.getLhs(), adaptor.getRhs()); |
1487 | } else if (auto ptrTy = mlir::dyn_cast<cir::PointerType>(type)) { |
1488 | mlir::LLVM::ICmpPredicate kind = |
1489 | convertCmpKindToICmpPredicate(cmpOp.getKind(), |
1490 | /* isSigned=*/false); |
1491 | rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
1492 | cmpOp, kind, adaptor.getLhs(), adaptor.getRhs()); |
1493 | } else if (mlir::isa<cir::CIRFPTypeInterface>(type)) { |
1494 | mlir::LLVM::FCmpPredicate kind = |
1495 | convertCmpKindToFCmpPredicate(cmpOp.getKind()); |
1496 | rewriter.replaceOpWithNewOp<mlir::LLVM::FCmpOp>( |
1497 | cmpOp, kind, adaptor.getLhs(), adaptor.getRhs()); |
1498 | } else { |
1499 | return cmpOp.emitError() << "unsupported type for CmpOp: " << type; |
1500 | } |
1501 | |
1502 | return mlir::success(); |
1503 | } |
1504 | |
1505 | mlir::LogicalResult CIRToLLVMShiftOpLowering::matchAndRewrite( |
1506 | cir::ShiftOp op, OpAdaptor adaptor, |
1507 | mlir::ConversionPatternRewriter &rewriter) const { |
1508 | assert((op.getValue().getType() == op.getType()) && |
1509 | "inconsistent operands' types NYI" ); |
1510 | |
1511 | const mlir::Type llvmTy = getTypeConverter()->convertType(op.getType()); |
1512 | mlir::Value amt = adaptor.getAmount(); |
1513 | mlir::Value val = adaptor.getValue(); |
1514 | |
1515 | auto cirAmtTy = mlir::dyn_cast<cir::IntType>(op.getAmount().getType()); |
1516 | bool isUnsigned; |
1517 | if (cirAmtTy) { |
1518 | auto cirValTy = mlir::cast<cir::IntType>(op.getValue().getType()); |
1519 | isUnsigned = cirValTy.isUnsigned(); |
1520 | |
1521 | // Ensure shift amount is the same type as the value. Some undefined |
1522 | // behavior might occur in the casts below as per [C99 6.5.7.3]. |
1523 | // Vector type shift amount needs no cast as type consistency is expected to |
1524 | // be already be enforced at CIRGen. |
1525 | if (cirAmtTy) |
1526 | amt = getLLVMIntCast(rewriter, amt, llvmTy, true, cirAmtTy.getWidth(), |
1527 | cirValTy.getWidth()); |
1528 | } else { |
1529 | auto cirValVTy = mlir::cast<cir::VectorType>(op.getValue().getType()); |
1530 | isUnsigned = |
1531 | mlir::cast<cir::IntType>(cirValVTy.getElementType()).isUnsigned(); |
1532 | } |
1533 | |
1534 | // Lower to the proper LLVM shift operation. |
1535 | if (op.getIsShiftleft()) { |
1536 | rewriter.replaceOpWithNewOp<mlir::LLVM::ShlOp>(op, llvmTy, val, amt); |
1537 | return mlir::success(); |
1538 | } |
1539 | |
1540 | if (isUnsigned) |
1541 | rewriter.replaceOpWithNewOp<mlir::LLVM::LShrOp>(op, llvmTy, val, amt); |
1542 | else |
1543 | rewriter.replaceOpWithNewOp<mlir::LLVM::AShrOp>(op, llvmTy, val, amt); |
1544 | return mlir::success(); |
1545 | } |
1546 | |
1547 | mlir::LogicalResult CIRToLLVMSelectOpLowering::matchAndRewrite( |
1548 | cir::SelectOp op, OpAdaptor adaptor, |
1549 | mlir::ConversionPatternRewriter &rewriter) const { |
1550 | auto getConstantBool = [](mlir::Value value) -> cir::BoolAttr { |
1551 | auto definingOp = |
1552 | mlir::dyn_cast_if_present<cir::ConstantOp>(value.getDefiningOp()); |
1553 | if (!definingOp) |
1554 | return {}; |
1555 | |
1556 | auto constValue = mlir::dyn_cast<cir::BoolAttr>(definingOp.getValue()); |
1557 | if (!constValue) |
1558 | return {}; |
1559 | |
1560 | return constValue; |
1561 | }; |
1562 | |
1563 | // Two special cases in the LLVMIR codegen of select op: |
1564 | // - select %0, %1, false => and %0, %1 |
1565 | // - select %0, true, %1 => or %0, %1 |
1566 | if (mlir::isa<cir::BoolType>(op.getTrueValue().getType())) { |
1567 | cir::BoolAttr trueValue = getConstantBool(op.getTrueValue()); |
1568 | cir::BoolAttr falseValue = getConstantBool(op.getFalseValue()); |
1569 | if (falseValue && !falseValue.getValue()) { |
1570 | // select %0, %1, false => and %0, %1 |
1571 | rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(op, adaptor.getCondition(), |
1572 | adaptor.getTrueValue()); |
1573 | return mlir::success(); |
1574 | } |
1575 | if (trueValue && trueValue.getValue()) { |
1576 | // select %0, true, %1 => or %0, %1 |
1577 | rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(op, adaptor.getCondition(), |
1578 | adaptor.getFalseValue()); |
1579 | return mlir::success(); |
1580 | } |
1581 | } |
1582 | |
1583 | mlir::Value llvmCondition = adaptor.getCondition(); |
1584 | rewriter.replaceOpWithNewOp<mlir::LLVM::SelectOp>( |
1585 | op, llvmCondition, adaptor.getTrueValue(), adaptor.getFalseValue()); |
1586 | |
1587 | return mlir::success(); |
1588 | } |
1589 | |
1590 | static void prepareTypeConverter(mlir::LLVMTypeConverter &converter, |
1591 | mlir::DataLayout &dataLayout) { |
1592 | converter.addConversion(callback: [&](cir::PointerType type) -> mlir::Type { |
1593 | // Drop pointee type since LLVM dialect only allows opaque pointers. |
1594 | assert(!cir::MissingFeatures::addressSpace()); |
1595 | unsigned targetAS = 0; |
1596 | |
1597 | return mlir::LLVM::LLVMPointerType::get(type.getContext(), targetAS); |
1598 | }); |
1599 | converter.addConversion(callback: [&](cir::ArrayType type) -> mlir::Type { |
1600 | mlir::Type ty = |
1601 | convertTypeForMemory(converter, dataLayout, type.getElementType()); |
1602 | return mlir::LLVM::LLVMArrayType::get(ty, type.getSize()); |
1603 | }); |
1604 | converter.addConversion(callback: [&](cir::VectorType type) -> mlir::Type { |
1605 | const mlir::Type ty = converter.convertType(type.getElementType()); |
1606 | return mlir::VectorType::get(type.getSize(), ty); |
1607 | }); |
1608 | converter.addConversion(callback: [&](cir::BoolType type) -> mlir::Type { |
1609 | return mlir::IntegerType::get(type.getContext(), 1, |
1610 | mlir::IntegerType::Signless); |
1611 | }); |
1612 | converter.addConversion(callback: [&](cir::IntType type) -> mlir::Type { |
1613 | // LLVM doesn't work with signed types, so we drop the CIR signs here. |
1614 | return mlir::IntegerType::get(type.getContext(), type.getWidth()); |
1615 | }); |
1616 | converter.addConversion(callback: [&](cir::SingleType type) -> mlir::Type { |
1617 | return mlir::Float32Type::get(type.getContext()); |
1618 | }); |
1619 | converter.addConversion(callback: [&](cir::DoubleType type) -> mlir::Type { |
1620 | return mlir::Float64Type::get(type.getContext()); |
1621 | }); |
1622 | converter.addConversion(callback: [&](cir::FP80Type type) -> mlir::Type { |
1623 | return mlir::Float80Type::get(type.getContext()); |
1624 | }); |
1625 | converter.addConversion(callback: [&](cir::FP128Type type) -> mlir::Type { |
1626 | return mlir::Float128Type::get(type.getContext()); |
1627 | }); |
1628 | converter.addConversion(callback: [&](cir::LongDoubleType type) -> mlir::Type { |
1629 | return converter.convertType(type.getUnderlying()); |
1630 | }); |
1631 | converter.addConversion(callback: [&](cir::FP16Type type) -> mlir::Type { |
1632 | return mlir::Float16Type::get(type.getContext()); |
1633 | }); |
1634 | converter.addConversion(callback: [&](cir::BF16Type type) -> mlir::Type { |
1635 | return mlir::BFloat16Type::get(type.getContext()); |
1636 | }); |
1637 | converter.addConversion(callback: [&](cir::ComplexType type) -> mlir::Type { |
1638 | // A complex type is lowered to an LLVM struct that contains the real and |
1639 | // imaginary part as data fields. |
1640 | mlir::Type elementTy = converter.convertType(type.getElementType()); |
1641 | mlir::Type structFields[2] = {elementTy, elementTy}; |
1642 | return mlir::LLVM::LLVMStructType::getLiteral(type.getContext(), |
1643 | structFields); |
1644 | }); |
1645 | converter.addConversion(callback: [&](cir::FuncType type) -> std::optional<mlir::Type> { |
1646 | auto result = converter.convertType(type.getReturnType()); |
1647 | llvm::SmallVector<mlir::Type> arguments; |
1648 | arguments.reserve(N: type.getNumInputs()); |
1649 | if (converter.convertTypes(types: type.getInputs(), results&: arguments).failed()) |
1650 | return std::nullopt; |
1651 | auto varArg = type.isVarArg(); |
1652 | return mlir::LLVM::LLVMFunctionType::get(result, arguments, varArg); |
1653 | }); |
1654 | converter.addConversion(callback: [&](cir::RecordType type) -> mlir::Type { |
1655 | // Convert struct members. |
1656 | llvm::SmallVector<mlir::Type> llvmMembers; |
1657 | switch (type.getKind()) { |
1658 | case cir::RecordType::Class: |
1659 | case cir::RecordType::Struct: |
1660 | for (mlir::Type ty : type.getMembers()) |
1661 | llvmMembers.push_back(convertTypeForMemory(converter, dataLayout, ty)); |
1662 | break; |
1663 | // Unions are lowered as only the largest member. |
1664 | case cir::RecordType::Union: |
1665 | if (auto largestMember = type.getLargestMember(dataLayout)) |
1666 | llvmMembers.push_back( |
1667 | Elt: convertTypeForMemory(converter, dataLayout, largestMember)); |
1668 | if (type.getPadded()) { |
1669 | auto last = *type.getMembers().rbegin(); |
1670 | llvmMembers.push_back( |
1671 | Elt: convertTypeForMemory(converter, dataLayout, last)); |
1672 | } |
1673 | break; |
1674 | } |
1675 | |
1676 | // Record has a name: lower as an identified record. |
1677 | mlir::LLVM::LLVMStructType llvmStruct; |
1678 | if (type.getName()) { |
1679 | llvmStruct = mlir::LLVM::LLVMStructType::getIdentified( |
1680 | type.getContext(), type.getPrefixedName()); |
1681 | if (llvmStruct.setBody(llvmMembers, type.getPacked()).failed()) |
1682 | llvm_unreachable("Failed to set body of record" ); |
1683 | } else { // Record has no name: lower as literal record. |
1684 | llvmStruct = mlir::LLVM::LLVMStructType::getLiteral( |
1685 | type.getContext(), llvmMembers, type.getPacked()); |
1686 | } |
1687 | |
1688 | return llvmStruct; |
1689 | }); |
1690 | } |
1691 | |
1692 | // The applyPartialConversion function traverses blocks in the dominance order, |
1693 | // so it does not lower and operations that are not reachachable from the |
1694 | // operations passed in as arguments. Since we do need to lower such code in |
1695 | // order to avoid verification errors occur, we cannot just pass the module op |
1696 | // to applyPartialConversion. We must build a set of unreachable ops and |
1697 | // explicitly add them, along with the module, to the vector we pass to |
1698 | // applyPartialConversion. |
1699 | // |
1700 | // For instance, this CIR code: |
1701 | // |
1702 | // cir.func @foo(%arg0: !s32i) -> !s32i { |
1703 | // %4 = cir.cast(int_to_bool, %arg0 : !s32i), !cir.bool |
1704 | // cir.if %4 { |
1705 | // %5 = cir.const #cir.int<1> : !s32i |
1706 | // cir.return %5 : !s32i |
1707 | // } else { |
1708 | // %5 = cir.const #cir.int<0> : !s32i |
1709 | // cir.return %5 : !s32i |
1710 | // } |
1711 | // cir.return %arg0 : !s32i |
1712 | // } |
1713 | // |
1714 | // contains an unreachable return operation (the last one). After the flattening |
1715 | // pass it will be placed into the unreachable block. The possible error |
1716 | // after the lowering pass is: error: 'cir.return' op expects parent op to be |
1717 | // one of 'cir.func, cir.scope, cir.if ... The reason that this operation was |
1718 | // not lowered and the new parent is llvm.func. |
1719 | // |
1720 | // In the future we may want to get rid of this function and use a DCE pass or |
1721 | // something similar. But for now we need to guarantee the absence of the |
1722 | // dialect verification errors. |
1723 | static void collectUnreachable(mlir::Operation *parent, |
1724 | llvm::SmallVector<mlir::Operation *> &ops) { |
1725 | |
1726 | llvm::SmallVector<mlir::Block *> unreachableBlocks; |
1727 | parent->walk(callback: [&](mlir::Block *blk) { // check |
1728 | if (blk->hasNoPredecessors() && !blk->isEntryBlock()) |
1729 | unreachableBlocks.push_back(Elt: blk); |
1730 | }); |
1731 | |
1732 | std::set<mlir::Block *> visited; |
1733 | for (mlir::Block *root : unreachableBlocks) { |
1734 | // We create a work list for each unreachable block. |
1735 | // Thus we traverse operations in some order. |
1736 | std::deque<mlir::Block *> workList; |
1737 | workList.push_back(x: root); |
1738 | |
1739 | while (!workList.empty()) { |
1740 | mlir::Block *blk = workList.back(); |
1741 | workList.pop_back(); |
1742 | if (visited.count(x: blk)) |
1743 | continue; |
1744 | visited.emplace(args&: blk); |
1745 | |
1746 | for (mlir::Operation &op : *blk) |
1747 | ops.push_back(Elt: &op); |
1748 | |
1749 | for (mlir::Block *succ : blk->getSuccessors()) |
1750 | workList.push_back(x: succ); |
1751 | } |
1752 | } |
1753 | } |
1754 | |
1755 | void ConvertCIRToLLVMPass::processCIRAttrs(mlir::ModuleOp module) { |
1756 | // Lower the module attributes to LLVM equivalents. |
1757 | if (mlir::Attribute tripleAttr = |
1758 | module->getAttr(cir::CIRDialect::getTripleAttrName())) |
1759 | module->setAttr(mlir::LLVM::LLVMDialect::getTargetTripleAttrName(), |
1760 | tripleAttr); |
1761 | } |
1762 | |
1763 | void ConvertCIRToLLVMPass::runOnOperation() { |
1764 | llvm::TimeTraceScope scope("Convert CIR to LLVM Pass" ); |
1765 | |
1766 | mlir::ModuleOp module = getOperation(); |
1767 | mlir::DataLayout dl(module); |
1768 | mlir::LLVMTypeConverter converter(&getContext()); |
1769 | prepareTypeConverter(converter, dataLayout&: dl); |
1770 | |
1771 | mlir::RewritePatternSet patterns(&getContext()); |
1772 | |
1773 | patterns.add<CIRToLLVMReturnOpLowering>(arg: patterns.getContext()); |
1774 | // This could currently be merged with the group below, but it will get more |
1775 | // arguments later, so we'll keep it separate for now. |
1776 | patterns.add<CIRToLLVMAllocaOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
1777 | patterns.add<CIRToLLVMLoadOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
1778 | patterns.add<CIRToLLVMStoreOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
1779 | patterns.add<CIRToLLVMGlobalOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
1780 | patterns.add<CIRToLLVMCastOpLowering>(arg&: converter, args: patterns.getContext(), args&: dl); |
1781 | patterns.add<CIRToLLVMPtrStrideOpLowering>(arg&: converter, args: patterns.getContext(), |
1782 | args&: dl); |
1783 | patterns.add< |
1784 | // clang-format off |
1785 | CIRToLLVMBaseClassAddrOpLowering, |
1786 | CIRToLLVMBinOpLowering, |
1787 | CIRToLLVMBrCondOpLowering, |
1788 | CIRToLLVMBrOpLowering, |
1789 | CIRToLLVMCallOpLowering, |
1790 | CIRToLLVMCmpOpLowering, |
1791 | CIRToLLVMConstantOpLowering, |
1792 | CIRToLLVMFuncOpLowering, |
1793 | CIRToLLVMGetGlobalOpLowering, |
1794 | CIRToLLVMGetMemberOpLowering, |
1795 | CIRToLLVMSelectOpLowering, |
1796 | CIRToLLVMSwitchFlatOpLowering, |
1797 | CIRToLLVMShiftOpLowering, |
1798 | CIRToLLVMStackSaveOpLowering, |
1799 | CIRToLLVMStackRestoreOpLowering, |
1800 | CIRToLLVMTrapOpLowering, |
1801 | CIRToLLVMUnaryOpLowering, |
1802 | CIRToLLVMVecCreateOpLowering, |
1803 | CIRToLLVMVecExtractOpLowering, |
1804 | CIRToLLVMVecInsertOpLowering, |
1805 | CIRToLLVMVecCmpOpLowering, |
1806 | CIRToLLVMVecSplatOpLowering, |
1807 | CIRToLLVMVecShuffleOpLowering, |
1808 | CIRToLLVMVecShuffleDynamicOpLowering, |
1809 | CIRToLLVMVecTernaryOpLowering |
1810 | // clang-format on |
1811 | >(arg&: converter, args: patterns.getContext()); |
1812 | |
1813 | processCIRAttrs(module: module); |
1814 | |
1815 | mlir::ConversionTarget target(getContext()); |
1816 | target.addLegalOp<mlir::ModuleOp>(); |
1817 | target.addLegalDialect<mlir::LLVM::LLVMDialect>(); |
1818 | target.addIllegalDialect<mlir::BuiltinDialect, cir::CIRDialect, |
1819 | mlir::func::FuncDialect>(); |
1820 | |
1821 | llvm::SmallVector<mlir::Operation *> ops; |
1822 | ops.push_back(Elt: module); |
1823 | collectUnreachable(module, ops); |
1824 | |
1825 | if (failed(applyPartialConversion(ops, target, std::move(patterns)))) |
1826 | signalPassFailure(); |
1827 | } |
1828 | |
1829 | mlir::LogicalResult CIRToLLVMBrOpLowering::matchAndRewrite( |
1830 | cir::BrOp op, OpAdaptor adaptor, |
1831 | mlir::ConversionPatternRewriter &rewriter) const { |
1832 | rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(op, adaptor.getOperands(), |
1833 | op.getDest()); |
1834 | return mlir::LogicalResult::success(); |
1835 | } |
1836 | |
1837 | mlir::LogicalResult CIRToLLVMGetMemberOpLowering::matchAndRewrite( |
1838 | cir::GetMemberOp op, OpAdaptor adaptor, |
1839 | mlir::ConversionPatternRewriter &rewriter) const { |
1840 | mlir::Type llResTy = getTypeConverter()->convertType(op.getType()); |
1841 | const auto recordTy = |
1842 | mlir::cast<cir::RecordType>(op.getAddrTy().getPointee()); |
1843 | assert(recordTy && "expected record type" ); |
1844 | |
1845 | switch (recordTy.getKind()) { |
1846 | case cir::RecordType::Class: |
1847 | case cir::RecordType::Struct: { |
1848 | // Since the base address is a pointer to an aggregate, the first offset |
1849 | // is always zero. The second offset tell us which member it will access. |
1850 | llvm::SmallVector<mlir::LLVM::GEPArg, 2> offset{0, op.getIndex()}; |
1851 | const mlir::Type elementTy = getTypeConverter()->convertType(recordTy); |
1852 | rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(op, llResTy, elementTy, |
1853 | adaptor.getAddr(), offset); |
1854 | return mlir::success(); |
1855 | } |
1856 | case cir::RecordType::Union: |
1857 | // Union members share the address space, so we just need a bitcast to |
1858 | // conform to type-checking. |
1859 | rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(op, llResTy, |
1860 | adaptor.getAddr()); |
1861 | return mlir::success(); |
1862 | } |
1863 | } |
1864 | |
1865 | mlir::LogicalResult CIRToLLVMTrapOpLowering::matchAndRewrite( |
1866 | cir::TrapOp op, OpAdaptor adaptor, |
1867 | mlir::ConversionPatternRewriter &rewriter) const { |
1868 | mlir::Location loc = op->getLoc(); |
1869 | rewriter.eraseOp(op: op); |
1870 | |
1871 | rewriter.create<mlir::LLVM::Trap>(loc); |
1872 | |
1873 | // Note that the call to llvm.trap is not a terminator in LLVM dialect. |
1874 | // So we must emit an additional llvm.unreachable to terminate the current |
1875 | // block. |
1876 | rewriter.create<mlir::LLVM::UnreachableOp>(loc); |
1877 | |
1878 | return mlir::success(); |
1879 | } |
1880 | |
1881 | mlir::LogicalResult CIRToLLVMStackSaveOpLowering::matchAndRewrite( |
1882 | cir::StackSaveOp op, OpAdaptor adaptor, |
1883 | mlir::ConversionPatternRewriter &rewriter) const { |
1884 | const mlir::Type ptrTy = getTypeConverter()->convertType(op.getType()); |
1885 | rewriter.replaceOpWithNewOp<mlir::LLVM::StackSaveOp>(op, ptrTy); |
1886 | return mlir::success(); |
1887 | } |
1888 | |
1889 | mlir::LogicalResult CIRToLLVMStackRestoreOpLowering::matchAndRewrite( |
1890 | cir::StackRestoreOp op, OpAdaptor adaptor, |
1891 | mlir::ConversionPatternRewriter &rewriter) const { |
1892 | rewriter.replaceOpWithNewOp<mlir::LLVM::StackRestoreOp>(op, adaptor.getPtr()); |
1893 | return mlir::success(); |
1894 | } |
1895 | |
1896 | mlir::LogicalResult CIRToLLVMVecCreateOpLowering::matchAndRewrite( |
1897 | cir::VecCreateOp op, OpAdaptor adaptor, |
1898 | mlir::ConversionPatternRewriter &rewriter) const { |
1899 | // Start with an 'undef' value for the vector. Then 'insertelement' for |
1900 | // each of the vector elements. |
1901 | const auto vecTy = mlir::cast<cir::VectorType>(op.getType()); |
1902 | const mlir::Type llvmTy = typeConverter->convertType(vecTy); |
1903 | const mlir::Location loc = op.getLoc(); |
1904 | mlir::Value result = rewriter.create<mlir::LLVM::PoisonOp>(loc, llvmTy); |
1905 | assert(vecTy.getSize() == op.getElements().size() && |
1906 | "cir.vec.create op count doesn't match vector type elements count" ); |
1907 | |
1908 | for (uint64_t i = 0; i < vecTy.getSize(); ++i) { |
1909 | const mlir::Value indexValue = |
1910 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), i); |
1911 | result = rewriter.create<mlir::LLVM::InsertElementOp>( |
1912 | loc, result, adaptor.getElements()[i], indexValue); |
1913 | } |
1914 | |
1915 | rewriter.replaceOp(op, result); |
1916 | return mlir::success(); |
1917 | } |
1918 | |
1919 | mlir::LogicalResult CIRToLLVMVecExtractOpLowering::matchAndRewrite( |
1920 | cir::VecExtractOp op, OpAdaptor adaptor, |
1921 | mlir::ConversionPatternRewriter &rewriter) const { |
1922 | rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractElementOp>( |
1923 | op, adaptor.getVec(), adaptor.getIndex()); |
1924 | return mlir::success(); |
1925 | } |
1926 | |
1927 | mlir::LogicalResult CIRToLLVMVecInsertOpLowering::matchAndRewrite( |
1928 | cir::VecInsertOp op, OpAdaptor adaptor, |
1929 | mlir::ConversionPatternRewriter &rewriter) const { |
1930 | rewriter.replaceOpWithNewOp<mlir::LLVM::InsertElementOp>( |
1931 | op, adaptor.getVec(), adaptor.getValue(), adaptor.getIndex()); |
1932 | return mlir::success(); |
1933 | } |
1934 | |
1935 | mlir::LogicalResult CIRToLLVMVecCmpOpLowering::matchAndRewrite( |
1936 | cir::VecCmpOp op, OpAdaptor adaptor, |
1937 | mlir::ConversionPatternRewriter &rewriter) const { |
1938 | mlir::Type elementType = elementTypeIfVector(op.getLhs().getType()); |
1939 | mlir::Value bitResult; |
1940 | if (auto intType = mlir::dyn_cast<cir::IntType>(elementType)) { |
1941 | bitResult = rewriter.create<mlir::LLVM::ICmpOp>( |
1942 | op.getLoc(), |
1943 | convertCmpKindToICmpPredicate(op.getKind(), intType.isSigned()), |
1944 | adaptor.getLhs(), adaptor.getRhs()); |
1945 | } else if (mlir::isa<cir::CIRFPTypeInterface>(elementType)) { |
1946 | bitResult = rewriter.create<mlir::LLVM::FCmpOp>( |
1947 | op.getLoc(), convertCmpKindToFCmpPredicate(op.getKind()), |
1948 | adaptor.getLhs(), adaptor.getRhs()); |
1949 | } else { |
1950 | return op.emitError() << "unsupported type for VecCmpOp: " << elementType; |
1951 | } |
1952 | |
1953 | // LLVM IR vector comparison returns a vector of i1. This one-bit vector |
1954 | // must be sign-extended to the correct result type. |
1955 | rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>( |
1956 | op, typeConverter->convertType(op.getType()), bitResult); |
1957 | return mlir::success(); |
1958 | } |
1959 | |
1960 | mlir::LogicalResult CIRToLLVMVecSplatOpLowering::matchAndRewrite( |
1961 | cir::VecSplatOp op, OpAdaptor adaptor, |
1962 | mlir::ConversionPatternRewriter &rewriter) const { |
1963 | // Vector splat can be implemented with an `insertelement` and a |
1964 | // `shufflevector`, which is better than an `insertelement` for each |
1965 | // element in the vector. Start with an undef vector. Insert the value into |
1966 | // the first element. Then use a `shufflevector` with a mask of all 0 to |
1967 | // fill out the entire vector with that value. |
1968 | cir::VectorType vecTy = op.getType(); |
1969 | mlir::Type llvmTy = typeConverter->convertType(vecTy); |
1970 | mlir::Location loc = op.getLoc(); |
1971 | mlir::Value poison = rewriter.create<mlir::LLVM::PoisonOp>(loc, llvmTy); |
1972 | |
1973 | mlir::Value elementValue = adaptor.getValue(); |
1974 | if (mlir::isa<mlir::LLVM::PoisonOp>(elementValue.getDefiningOp())) { |
1975 | // If the splat value is poison, then we can just use poison value |
1976 | // for the entire vector. |
1977 | rewriter.replaceOp(op, poison); |
1978 | return mlir::success(); |
1979 | } |
1980 | |
1981 | if (auto constValue = |
1982 | dyn_cast<mlir::LLVM::ConstantOp>(elementValue.getDefiningOp())) { |
1983 | if (auto intAttr = dyn_cast<mlir::IntegerAttr>(constValue.getValue())) { |
1984 | mlir::DenseIntElementsAttr denseVec = mlir::DenseIntElementsAttr::get( |
1985 | mlir::cast<mlir::ShapedType>(llvmTy), intAttr.getValue()); |
1986 | rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
1987 | op, denseVec.getType(), denseVec); |
1988 | return mlir::success(); |
1989 | } |
1990 | |
1991 | if (auto fpAttr = dyn_cast<mlir::FloatAttr>(constValue.getValue())) { |
1992 | mlir::DenseFPElementsAttr denseVec = mlir::DenseFPElementsAttr::get( |
1993 | mlir::cast<mlir::ShapedType>(llvmTy), fpAttr.getValue()); |
1994 | rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
1995 | op, denseVec.getType(), denseVec); |
1996 | return mlir::success(); |
1997 | } |
1998 | } |
1999 | |
2000 | mlir::Value indexValue = |
2001 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), 0); |
2002 | mlir::Value oneElement = rewriter.create<mlir::LLVM::InsertElementOp>( |
2003 | loc, poison, elementValue, indexValue); |
2004 | SmallVector<int32_t> zeroValues(vecTy.getSize(), 0); |
2005 | rewriter.replaceOpWithNewOp<mlir::LLVM::ShuffleVectorOp>(op, oneElement, |
2006 | poison, zeroValues); |
2007 | return mlir::success(); |
2008 | } |
2009 | |
2010 | mlir::LogicalResult CIRToLLVMVecShuffleOpLowering::matchAndRewrite( |
2011 | cir::VecShuffleOp op, OpAdaptor adaptor, |
2012 | mlir::ConversionPatternRewriter &rewriter) const { |
2013 | // LLVM::ShuffleVectorOp takes an ArrayRef of int for the list of indices. |
2014 | // Convert the ClangIR ArrayAttr of IntAttr constants into a |
2015 | // SmallVector<int>. |
2016 | SmallVector<int, 8> indices; |
2017 | std::transform( |
2018 | op.getIndices().begin(), op.getIndices().end(), |
2019 | std::back_inserter(x&: indices), [](mlir::Attribute intAttr) { |
2020 | return mlir::cast<cir::IntAttr>(intAttr).getValue().getSExtValue(); |
2021 | }); |
2022 | rewriter.replaceOpWithNewOp<mlir::LLVM::ShuffleVectorOp>( |
2023 | op, adaptor.getVec1(), adaptor.getVec2(), indices); |
2024 | return mlir::success(); |
2025 | } |
2026 | |
2027 | mlir::LogicalResult CIRToLLVMVecShuffleDynamicOpLowering::matchAndRewrite( |
2028 | cir::VecShuffleDynamicOp op, OpAdaptor adaptor, |
2029 | mlir::ConversionPatternRewriter &rewriter) const { |
2030 | // LLVM IR does not have an operation that corresponds to this form of |
2031 | // the built-in. |
2032 | // __builtin_shufflevector(V, I) |
2033 | // is implemented as this pseudocode, where the for loop is unrolled |
2034 | // and N is the number of elements: |
2035 | // |
2036 | // result = undef |
2037 | // maskbits = NextPowerOf2(N - 1) |
2038 | // masked = I & maskbits |
2039 | // for (i in 0 <= i < N) |
2040 | // result[i] = V[masked[i]] |
2041 | mlir::Location loc = op.getLoc(); |
2042 | mlir::Value input = adaptor.getVec(); |
2043 | mlir::Type llvmIndexVecType = |
2044 | getTypeConverter()->convertType(op.getIndices().getType()); |
2045 | mlir::Type llvmIndexType = getTypeConverter()->convertType( |
2046 | elementTypeIfVector(op.getIndices().getType())); |
2047 | uint64_t numElements = |
2048 | mlir::cast<cir::VectorType>(op.getVec().getType()).getSize(); |
2049 | |
2050 | uint64_t maskBits = llvm::NextPowerOf2(A: numElements - 1) - 1; |
2051 | mlir::Value maskValue = rewriter.create<mlir::LLVM::ConstantOp>( |
2052 | loc, llvmIndexType, rewriter.getIntegerAttr(llvmIndexType, maskBits)); |
2053 | mlir::Value maskVector = |
2054 | rewriter.create<mlir::LLVM::UndefOp>(loc, llvmIndexVecType); |
2055 | |
2056 | for (uint64_t i = 0; i < numElements; ++i) { |
2057 | mlir::Value idxValue = |
2058 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), i); |
2059 | maskVector = rewriter.create<mlir::LLVM::InsertElementOp>( |
2060 | loc, maskVector, maskValue, idxValue); |
2061 | } |
2062 | |
2063 | mlir::Value maskedIndices = rewriter.create<mlir::LLVM::AndOp>( |
2064 | loc, llvmIndexVecType, adaptor.getIndices(), maskVector); |
2065 | mlir::Value result = rewriter.create<mlir::LLVM::UndefOp>( |
2066 | loc, getTypeConverter()->convertType(op.getVec().getType())); |
2067 | for (uint64_t i = 0; i < numElements; ++i) { |
2068 | mlir::Value iValue = |
2069 | rewriter.create<mlir::LLVM::ConstantOp>(loc, rewriter.getI64Type(), i); |
2070 | mlir::Value indexValue = rewriter.create<mlir::LLVM::ExtractElementOp>( |
2071 | loc, maskedIndices, iValue); |
2072 | mlir::Value valueAtIndex = |
2073 | rewriter.create<mlir::LLVM::ExtractElementOp>(loc, input, indexValue); |
2074 | result = rewriter.create<mlir::LLVM::InsertElementOp>(loc, result, |
2075 | valueAtIndex, iValue); |
2076 | } |
2077 | rewriter.replaceOp(op, result); |
2078 | return mlir::success(); |
2079 | } |
2080 | |
2081 | mlir::LogicalResult CIRToLLVMVecTernaryOpLowering::matchAndRewrite( |
2082 | cir::VecTernaryOp op, OpAdaptor adaptor, |
2083 | mlir::ConversionPatternRewriter &rewriter) const { |
2084 | // Convert `cond` into a vector of i1, then use that in a `select` op. |
2085 | mlir::Value bitVec = rewriter.create<mlir::LLVM::ICmpOp>( |
2086 | op.getLoc(), mlir::LLVM::ICmpPredicate::ne, adaptor.getCond(), |
2087 | rewriter.create<mlir::LLVM::ZeroOp>( |
2088 | op.getCond().getLoc(), |
2089 | typeConverter->convertType(op.getCond().getType()))); |
2090 | rewriter.replaceOpWithNewOp<mlir::LLVM::SelectOp>( |
2091 | op, bitVec, adaptor.getLhs(), adaptor.getRhs()); |
2092 | return mlir::success(); |
2093 | } |
2094 | |
2095 | std::unique_ptr<mlir::Pass> createConvertCIRToLLVMPass() { |
2096 | return std::make_unique<ConvertCIRToLLVMPass>(); |
2097 | } |
2098 | |
2099 | void populateCIRToLLVMPasses(mlir::OpPassManager &pm) { |
2100 | mlir::populateCIRPreLoweringPasses(pm); |
2101 | pm.addPass(pass: createConvertCIRToLLVMPass()); |
2102 | } |
2103 | |
2104 | std::unique_ptr<llvm::Module> |
2105 | lowerDirectlyFromCIRToLLVMIR(mlir::ModuleOp mlirModule, LLVMContext &llvmCtx) { |
2106 | llvm::TimeTraceScope scope("lower from CIR to LLVM directly" ); |
2107 | |
2108 | mlir::MLIRContext *mlirCtx = mlirModule.getContext(); |
2109 | |
2110 | mlir::PassManager pm(mlirCtx); |
2111 | populateCIRToLLVMPasses(pm); |
2112 | |
2113 | (void)mlir::applyPassManagerCLOptions(pm); |
2114 | |
2115 | if (mlir::failed(Result: pm.run(op: mlirModule))) { |
2116 | // FIXME: Handle any errors where they occurs and return a nullptr here. |
2117 | report_fatal_error( |
2118 | reason: "The pass manager failed to lower CIR to LLVMIR dialect!" ); |
2119 | } |
2120 | |
2121 | mlir::registerBuiltinDialectTranslation(context&: *mlirCtx); |
2122 | mlir::registerLLVMDialectTranslation(context&: *mlirCtx); |
2123 | mlir::registerCIRDialectTranslation(*mlirCtx); |
2124 | |
2125 | llvm::TimeTraceScope translateScope("translateModuleToLLVMIR" ); |
2126 | |
2127 | StringRef moduleName = mlirModule.getName().value_or("CIRToLLVMModule" ); |
2128 | std::unique_ptr<llvm::Module> llvmModule = |
2129 | mlir::translateModuleToLLVMIR(module: mlirModule, llvmContext&: llvmCtx, name: moduleName); |
2130 | |
2131 | if (!llvmModule) { |
2132 | // FIXME: Handle any errors where they occurs and return a nullptr here. |
2133 | report_fatal_error(reason: "Lowering from LLVMIR dialect to llvm IR failed!" ); |
2134 | } |
2135 | |
2136 | return llvmModule; |
2137 | } |
2138 | } // namespace direct |
2139 | } // namespace cir |
2140 | |