1 | //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the code for emitting atomic operations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CGCall.h" |
14 | #include "CGRecordLayout.h" |
15 | #include "CodeGenFunction.h" |
16 | #include "CodeGenModule.h" |
17 | #include "TargetInfo.h" |
18 | #include "clang/AST/ASTContext.h" |
19 | #include "clang/CodeGen/CGFunctionInfo.h" |
20 | #include "clang/Frontend/FrontendDiagnostic.h" |
21 | #include "llvm/ADT/DenseMap.h" |
22 | #include "llvm/IR/DataLayout.h" |
23 | #include "llvm/IR/Intrinsics.h" |
24 | |
25 | using namespace clang; |
26 | using namespace CodeGen; |
27 | |
28 | namespace { |
29 | class AtomicInfo { |
30 | CodeGenFunction &CGF; |
31 | QualType AtomicTy; |
32 | QualType ValueTy; |
33 | uint64_t AtomicSizeInBits; |
34 | uint64_t ValueSizeInBits; |
35 | CharUnits AtomicAlign; |
36 | CharUnits ValueAlign; |
37 | TypeEvaluationKind EvaluationKind; |
38 | bool UseLibcall; |
39 | LValue LVal; |
40 | CGBitFieldInfo BFI; |
41 | public: |
42 | AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) |
43 | : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), |
44 | EvaluationKind(TEK_Scalar), UseLibcall(true) { |
45 | assert(!lvalue.isGlobalReg()); |
46 | ASTContext &C = CGF.getContext(); |
47 | if (lvalue.isSimple()) { |
48 | AtomicTy = lvalue.getType(); |
49 | if (auto *ATy = AtomicTy->getAs<AtomicType>()) |
50 | ValueTy = ATy->getValueType(); |
51 | else |
52 | ValueTy = AtomicTy; |
53 | EvaluationKind = CGF.getEvaluationKind(ValueTy); |
54 | |
55 | uint64_t ValueAlignInBits; |
56 | uint64_t AtomicAlignInBits; |
57 | TypeInfo ValueTI = C.getTypeInfo(ValueTy); |
58 | ValueSizeInBits = ValueTI.Width; |
59 | ValueAlignInBits = ValueTI.Align; |
60 | |
61 | TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); |
62 | AtomicSizeInBits = AtomicTI.Width; |
63 | AtomicAlignInBits = AtomicTI.Align; |
64 | |
65 | assert(ValueSizeInBits <= AtomicSizeInBits); |
66 | assert(ValueAlignInBits <= AtomicAlignInBits); |
67 | |
68 | AtomicAlign = C.toCharUnitsFromBits(BitSize: AtomicAlignInBits); |
69 | ValueAlign = C.toCharUnitsFromBits(BitSize: ValueAlignInBits); |
70 | if (lvalue.getAlignment().isZero()) |
71 | lvalue.setAlignment(AtomicAlign); |
72 | |
73 | LVal = lvalue; |
74 | } else if (lvalue.isBitField()) { |
75 | ValueTy = lvalue.getType(); |
76 | ValueSizeInBits = C.getTypeSize(ValueTy); |
77 | auto &OrigBFI = lvalue.getBitFieldInfo(); |
78 | auto Offset = OrigBFI.Offset % C.toBits(CharSize: lvalue.getAlignment()); |
79 | AtomicSizeInBits = C.toBits( |
80 | CharSize: C.toCharUnitsFromBits(BitSize: Offset + OrigBFI.Size + C.getCharWidth() - 1) |
81 | .alignTo(Align: lvalue.getAlignment())); |
82 | llvm::Value *BitFieldPtr = lvalue.getRawBitFieldPointer(CGF); |
83 | auto OffsetInChars = |
84 | (C.toCharUnitsFromBits(BitSize: OrigBFI.Offset) / lvalue.getAlignment()) * |
85 | lvalue.getAlignment(); |
86 | llvm::Value *StoragePtr = CGF.Builder.CreateConstGEP1_64( |
87 | Ty: CGF.Int8Ty, Ptr: BitFieldPtr, Idx0: OffsetInChars.getQuantity()); |
88 | StoragePtr = CGF.Builder.CreateAddrSpaceCast( |
89 | V: StoragePtr, DestTy: CGF.UnqualPtrTy, Name: "atomic_bitfield_base" ); |
90 | BFI = OrigBFI; |
91 | BFI.Offset = Offset; |
92 | BFI.StorageSize = AtomicSizeInBits; |
93 | BFI.StorageOffset += OffsetInChars; |
94 | llvm::Type *StorageTy = CGF.Builder.getIntNTy(N: AtomicSizeInBits); |
95 | LVal = LValue::MakeBitfield( |
96 | Address(StoragePtr, StorageTy, lvalue.getAlignment()), BFI, |
97 | lvalue.getType(), lvalue.getBaseInfo(), lvalue.getTBAAInfo()); |
98 | AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); |
99 | if (AtomicTy.isNull()) { |
100 | llvm::APInt Size( |
101 | /*numBits=*/32, |
102 | C.toCharUnitsFromBits(BitSize: AtomicSizeInBits).getQuantity()); |
103 | AtomicTy = C.getConstantArrayType(C.CharTy, Size, nullptr, |
104 | ArraySizeModifier::Normal, |
105 | /*IndexTypeQuals=*/0); |
106 | } |
107 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
108 | } else if (lvalue.isVectorElt()) { |
109 | ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType(); |
110 | ValueSizeInBits = C.getTypeSize(ValueTy); |
111 | AtomicTy = lvalue.getType(); |
112 | AtomicSizeInBits = C.getTypeSize(AtomicTy); |
113 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
114 | LVal = lvalue; |
115 | } else { |
116 | assert(lvalue.isExtVectorElt()); |
117 | ValueTy = lvalue.getType(); |
118 | ValueSizeInBits = C.getTypeSize(ValueTy); |
119 | AtomicTy = ValueTy = CGF.getContext().getExtVectorType( |
120 | lvalue.getType(), cast<llvm::FixedVectorType>( |
121 | lvalue.getExtVectorAddress().getElementType()) |
122 | ->getNumElements()); |
123 | AtomicSizeInBits = C.getTypeSize(AtomicTy); |
124 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
125 | LVal = lvalue; |
126 | } |
127 | UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( |
128 | AtomicSizeInBits, AlignmentInBits: C.toBits(CharSize: lvalue.getAlignment())); |
129 | } |
130 | |
131 | QualType getAtomicType() const { return AtomicTy; } |
132 | QualType getValueType() const { return ValueTy; } |
133 | CharUnits getAtomicAlignment() const { return AtomicAlign; } |
134 | uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } |
135 | uint64_t getValueSizeInBits() const { return ValueSizeInBits; } |
136 | TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } |
137 | bool shouldUseLibcall() const { return UseLibcall; } |
138 | const LValue &getAtomicLValue() const { return LVal; } |
139 | llvm::Value *getAtomicPointer() const { |
140 | if (LVal.isSimple()) |
141 | return LVal.emitRawPointer(CGF); |
142 | else if (LVal.isBitField()) |
143 | return LVal.getRawBitFieldPointer(CGF); |
144 | else if (LVal.isVectorElt()) |
145 | return LVal.getRawVectorPointer(CGF); |
146 | assert(LVal.isExtVectorElt()); |
147 | return LVal.getRawExtVectorPointer(CGF); |
148 | } |
149 | Address getAtomicAddress() const { |
150 | llvm::Type *ElTy; |
151 | if (LVal.isSimple()) |
152 | ElTy = LVal.getAddress().getElementType(); |
153 | else if (LVal.isBitField()) |
154 | ElTy = LVal.getBitFieldAddress().getElementType(); |
155 | else if (LVal.isVectorElt()) |
156 | ElTy = LVal.getVectorAddress().getElementType(); |
157 | else |
158 | ElTy = LVal.getExtVectorAddress().getElementType(); |
159 | return Address(getAtomicPointer(), ElTy, getAtomicAlignment()); |
160 | } |
161 | |
162 | Address getAtomicAddressAsAtomicIntPointer() const { |
163 | return castToAtomicIntPointer(Addr: getAtomicAddress()); |
164 | } |
165 | |
166 | /// Is the atomic size larger than the underlying value type? |
167 | /// |
168 | /// Note that the absence of padding does not mean that atomic |
169 | /// objects are completely interchangeable with non-atomic |
170 | /// objects: we might have promoted the alignment of a type |
171 | /// without making it bigger. |
172 | bool hasPadding() const { |
173 | return (ValueSizeInBits != AtomicSizeInBits); |
174 | } |
175 | |
176 | bool emitMemSetZeroIfNecessary() const; |
177 | |
178 | llvm::Value *getAtomicSizeValue() const { |
179 | CharUnits size = CGF.getContext().toCharUnitsFromBits(BitSize: AtomicSizeInBits); |
180 | return CGF.CGM.getSize(numChars: size); |
181 | } |
182 | |
183 | /// Cast the given pointer to an integer pointer suitable for atomic |
184 | /// operations if the source. |
185 | Address castToAtomicIntPointer(Address Addr) const; |
186 | |
187 | /// If Addr is compatible with the iN that will be used for an atomic |
188 | /// operation, bitcast it. Otherwise, create a temporary that is suitable |
189 | /// and copy the value across. |
190 | Address convertToAtomicIntPointer(Address Addr) const; |
191 | |
192 | /// Turn an atomic-layout object into an r-value. |
193 | RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, |
194 | SourceLocation loc, bool AsValue) const; |
195 | |
196 | llvm::Value *getScalarRValValueOrNull(RValue RVal) const; |
197 | |
198 | /// Converts an rvalue to integer value if needed. |
199 | llvm::Value *convertRValueToInt(RValue RVal, bool CmpXchg = false) const; |
200 | |
201 | RValue ConvertToValueOrAtomic(llvm::Value *IntVal, AggValueSlot ResultSlot, |
202 | SourceLocation Loc, bool AsValue, |
203 | bool CmpXchg = false) const; |
204 | |
205 | /// Copy an atomic r-value into atomic-layout memory. |
206 | void emitCopyIntoMemory(RValue rvalue) const; |
207 | |
208 | /// Project an l-value down to the value field. |
209 | LValue projectValue() const { |
210 | assert(LVal.isSimple()); |
211 | Address addr = getAtomicAddress(); |
212 | if (hasPadding()) |
213 | addr = CGF.Builder.CreateStructGEP(Addr: addr, Index: 0); |
214 | |
215 | return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), |
216 | LVal.getBaseInfo(), LVal.getTBAAInfo()); |
217 | } |
218 | |
219 | /// Emits atomic load. |
220 | /// \returns Loaded value. |
221 | RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
222 | bool AsValue, llvm::AtomicOrdering AO, |
223 | bool IsVolatile); |
224 | |
225 | /// Emits atomic compare-and-exchange sequence. |
226 | /// \param Expected Expected value. |
227 | /// \param Desired Desired value. |
228 | /// \param Success Atomic ordering for success operation. |
229 | /// \param Failure Atomic ordering for failed operation. |
230 | /// \param IsWeak true if atomic operation is weak, false otherwise. |
231 | /// \returns Pair of values: previous value from storage (value type) and |
232 | /// boolean flag (i1 type) with true if success and false otherwise. |
233 | std::pair<RValue, llvm::Value *> |
234 | EmitAtomicCompareExchange(RValue Expected, RValue Desired, |
235 | llvm::AtomicOrdering Success = |
236 | llvm::AtomicOrdering::SequentiallyConsistent, |
237 | llvm::AtomicOrdering Failure = |
238 | llvm::AtomicOrdering::SequentiallyConsistent, |
239 | bool IsWeak = false); |
240 | |
241 | /// Emits atomic update. |
242 | /// \param AO Atomic ordering. |
243 | /// \param UpdateOp Update operation for the current lvalue. |
244 | void EmitAtomicUpdate(llvm::AtomicOrdering AO, |
245 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
246 | bool IsVolatile); |
247 | /// Emits atomic update. |
248 | /// \param AO Atomic ordering. |
249 | void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
250 | bool IsVolatile); |
251 | |
252 | /// Materialize an atomic r-value in atomic-layout memory. |
253 | Address materializeRValue(RValue rvalue) const; |
254 | |
255 | /// Creates temp alloca for intermediate operations on atomic value. |
256 | Address CreateTempAlloca() const; |
257 | private: |
258 | bool requiresMemSetZero(llvm::Type *type) const; |
259 | |
260 | |
261 | /// Emits atomic load as a libcall. |
262 | void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
263 | llvm::AtomicOrdering AO, bool IsVolatile); |
264 | /// Emits atomic load as LLVM instruction. |
265 | llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile, |
266 | bool CmpXchg = false); |
267 | /// Emits atomic compare-and-exchange op as a libcall. |
268 | llvm::Value *EmitAtomicCompareExchangeLibcall( |
269 | llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, |
270 | llvm::AtomicOrdering Success = |
271 | llvm::AtomicOrdering::SequentiallyConsistent, |
272 | llvm::AtomicOrdering Failure = |
273 | llvm::AtomicOrdering::SequentiallyConsistent); |
274 | /// Emits atomic compare-and-exchange op as LLVM instruction. |
275 | std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( |
276 | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
277 | llvm::AtomicOrdering Success = |
278 | llvm::AtomicOrdering::SequentiallyConsistent, |
279 | llvm::AtomicOrdering Failure = |
280 | llvm::AtomicOrdering::SequentiallyConsistent, |
281 | bool IsWeak = false); |
282 | /// Emit atomic update as libcalls. |
283 | void |
284 | EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
285 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
286 | bool IsVolatile); |
287 | /// Emit atomic update as LLVM instructions. |
288 | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, |
289 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
290 | bool IsVolatile); |
291 | /// Emit atomic update as libcalls. |
292 | void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, |
293 | bool IsVolatile); |
294 | /// Emit atomic update as LLVM instructions. |
295 | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, |
296 | bool IsVolatile); |
297 | }; |
298 | } |
299 | |
300 | Address AtomicInfo::CreateTempAlloca() const { |
301 | Address TempAlloca = CGF.CreateMemTemp( |
302 | (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy |
303 | : AtomicTy, |
304 | getAtomicAlignment(), |
305 | "atomic-temp" ); |
306 | // Cast to pointer to value type for bitfields. |
307 | if (LVal.isBitField()) |
308 | return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
309 | Addr: TempAlloca, Ty: getAtomicAddress().getType(), |
310 | ElementTy: getAtomicAddress().getElementType()); |
311 | return TempAlloca; |
312 | } |
313 | |
314 | static RValue emitAtomicLibcall(CodeGenFunction &CGF, |
315 | StringRef fnName, |
316 | QualType resultType, |
317 | CallArgList &args) { |
318 | const CGFunctionInfo &fnInfo = |
319 | CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); |
320 | llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(Info: fnInfo); |
321 | llvm::AttrBuilder fnAttrB(CGF.getLLVMContext()); |
322 | fnAttrB.addAttribute(llvm::Attribute::NoUnwind); |
323 | fnAttrB.addAttribute(llvm::Attribute::WillReturn); |
324 | llvm::AttributeList fnAttrs = llvm::AttributeList::get( |
325 | C&: CGF.getLLVMContext(), Index: llvm::AttributeList::FunctionIndex, B: fnAttrB); |
326 | |
327 | llvm::FunctionCallee fn = |
328 | CGF.CGM.CreateRuntimeFunction(Ty: fnTy, Name: fnName, ExtraAttrs: fnAttrs); |
329 | auto callee = CGCallee::forDirect(functionPtr: fn); |
330 | return CGF.EmitCall(CallInfo: fnInfo, Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
331 | } |
332 | |
333 | /// Does a store of the given IR type modify the full expected width? |
334 | static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, |
335 | uint64_t expectedSize) { |
336 | return (CGM.getDataLayout().getTypeStoreSize(Ty: type) * 8 == expectedSize); |
337 | } |
338 | |
339 | /// Does the atomic type require memsetting to zero before initialization? |
340 | /// |
341 | /// The IR type is provided as a way of making certain queries faster. |
342 | bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { |
343 | // If the atomic type has size padding, we definitely need a memset. |
344 | if (hasPadding()) return true; |
345 | |
346 | // Otherwise, do some simple heuristics to try to avoid it: |
347 | switch (getEvaluationKind()) { |
348 | // For scalars and complexes, check whether the store size of the |
349 | // type uses the full size. |
350 | case TEK_Scalar: |
351 | return !isFullSizeType(CGM&: CGF.CGM, type, expectedSize: AtomicSizeInBits); |
352 | case TEK_Complex: |
353 | return !isFullSizeType(CGM&: CGF.CGM, type: type->getStructElementType(N: 0), |
354 | expectedSize: AtomicSizeInBits / 2); |
355 | |
356 | // Padding in structs has an undefined bit pattern. User beware. |
357 | case TEK_Aggregate: |
358 | return false; |
359 | } |
360 | llvm_unreachable("bad evaluation kind" ); |
361 | } |
362 | |
363 | bool AtomicInfo::emitMemSetZeroIfNecessary() const { |
364 | assert(LVal.isSimple()); |
365 | Address addr = LVal.getAddress(); |
366 | if (!requiresMemSetZero(type: addr.getElementType())) |
367 | return false; |
368 | |
369 | CGF.Builder.CreateMemSet( |
370 | addr.emitRawPointer(CGF), llvm::ConstantInt::get(CGF.Int8Ty, 0), |
371 | CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), |
372 | LVal.getAlignment().getAsAlign()); |
373 | return true; |
374 | } |
375 | |
376 | static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, |
377 | Address Dest, Address Ptr, |
378 | Address Val1, Address Val2, |
379 | uint64_t Size, |
380 | llvm::AtomicOrdering SuccessOrder, |
381 | llvm::AtomicOrdering FailureOrder, |
382 | llvm::SyncScope::ID Scope) { |
383 | // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. |
384 | llvm::Value *Expected = CGF.Builder.CreateLoad(Addr: Val1); |
385 | llvm::Value *Desired = CGF.Builder.CreateLoad(Addr: Val2); |
386 | |
387 | llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( |
388 | Addr: Ptr, Cmp: Expected, New: Desired, SuccessOrdering: SuccessOrder, FailureOrdering: FailureOrder, SSID: Scope); |
389 | Pair->setVolatile(E->isVolatile()); |
390 | Pair->setWeak(IsWeak); |
391 | CGF.getTargetHooks().setTargetAtomicMetadata(CGF, AtomicInst&: *Pair, Expr: E); |
392 | |
393 | // Cmp holds the result of the compare-exchange operation: true on success, |
394 | // false on failure. |
395 | llvm::Value *Old = CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 0); |
396 | llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 1); |
397 | |
398 | // This basic block is used to hold the store instruction if the operation |
399 | // failed. |
400 | llvm::BasicBlock *StoreExpectedBB = |
401 | CGF.createBasicBlock(name: "cmpxchg.store_expected" , parent: CGF.CurFn); |
402 | |
403 | // This basic block is the exit point of the operation, we should end up |
404 | // here regardless of whether or not the operation succeeded. |
405 | llvm::BasicBlock *ContinueBB = |
406 | CGF.createBasicBlock(name: "cmpxchg.continue" , parent: CGF.CurFn); |
407 | |
408 | // Update Expected if Expected isn't equal to Old, otherwise branch to the |
409 | // exit point. |
410 | CGF.Builder.CreateCondBr(Cond: Cmp, True: ContinueBB, False: StoreExpectedBB); |
411 | |
412 | CGF.Builder.SetInsertPoint(StoreExpectedBB); |
413 | // Update the memory at Expected with Old's value. |
414 | CGF.Builder.CreateStore(Val: Old, Addr: Val1); |
415 | // Finally, branch to the exit point. |
416 | CGF.Builder.CreateBr(Dest: ContinueBB); |
417 | |
418 | CGF.Builder.SetInsertPoint(ContinueBB); |
419 | // Update the memory at Dest with Cmp's value. |
420 | CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); |
421 | } |
422 | |
423 | /// Given an ordering required on success, emit all possible cmpxchg |
424 | /// instructions to cope with the provided (but possibly only dynamically known) |
425 | /// FailureOrder. |
426 | static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, |
427 | bool IsWeak, Address Dest, Address Ptr, |
428 | Address Val1, Address Val2, |
429 | llvm::Value *FailureOrderVal, |
430 | uint64_t Size, |
431 | llvm::AtomicOrdering SuccessOrder, |
432 | llvm::SyncScope::ID Scope) { |
433 | llvm::AtomicOrdering FailureOrder; |
434 | if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(Val: FailureOrderVal)) { |
435 | auto FOS = FO->getSExtValue(); |
436 | if (!llvm::isValidAtomicOrderingCABI(I: FOS)) |
437 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
438 | else |
439 | switch ((llvm::AtomicOrderingCABI)FOS) { |
440 | case llvm::AtomicOrderingCABI::relaxed: |
441 | // 31.7.2.18: "The failure argument shall not be memory_order_release |
442 | // nor memory_order_acq_rel". Fallback to monotonic. |
443 | case llvm::AtomicOrderingCABI::release: |
444 | case llvm::AtomicOrderingCABI::acq_rel: |
445 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
446 | break; |
447 | case llvm::AtomicOrderingCABI::consume: |
448 | case llvm::AtomicOrderingCABI::acquire: |
449 | FailureOrder = llvm::AtomicOrdering::Acquire; |
450 | break; |
451 | case llvm::AtomicOrderingCABI::seq_cst: |
452 | FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; |
453 | break; |
454 | } |
455 | // Prior to c++17, "the failure argument shall be no stronger than the |
456 | // success argument". This condition has been lifted and the only |
457 | // precondition is 31.7.2.18. Effectively treat this as a DR and skip |
458 | // language version checks. |
459 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
460 | FailureOrder, Scope); |
461 | return; |
462 | } |
463 | |
464 | // Create all the relevant BB's |
465 | auto *MonotonicBB = CGF.createBasicBlock(name: "monotonic_fail" , parent: CGF.CurFn); |
466 | auto *AcquireBB = CGF.createBasicBlock(name: "acquire_fail" , parent: CGF.CurFn); |
467 | auto *SeqCstBB = CGF.createBasicBlock(name: "seqcst_fail" , parent: CGF.CurFn); |
468 | auto *ContBB = CGF.createBasicBlock(name: "atomic.continue" , parent: CGF.CurFn); |
469 | |
470 | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
471 | // doesn't matter unless someone is crazy enough to use something that |
472 | // doesn't fold to a constant for the ordering. |
473 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(V: FailureOrderVal, Dest: MonotonicBB); |
474 | // Implemented as acquire, since it's the closest in LLVM. |
475 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::consume), |
476 | Dest: AcquireBB); |
477 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acquire), |
478 | Dest: AcquireBB); |
479 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::seq_cst), |
480 | Dest: SeqCstBB); |
481 | |
482 | // Emit all the different atomics |
483 | CGF.Builder.SetInsertPoint(MonotonicBB); |
484 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, |
485 | Size, SuccessOrder, FailureOrder: llvm::AtomicOrdering::Monotonic, Scope); |
486 | CGF.Builder.CreateBr(Dest: ContBB); |
487 | |
488 | CGF.Builder.SetInsertPoint(AcquireBB); |
489 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
490 | FailureOrder: llvm::AtomicOrdering::Acquire, Scope); |
491 | CGF.Builder.CreateBr(Dest: ContBB); |
492 | |
493 | CGF.Builder.SetInsertPoint(SeqCstBB); |
494 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
495 | FailureOrder: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
496 | CGF.Builder.CreateBr(Dest: ContBB); |
497 | |
498 | CGF.Builder.SetInsertPoint(ContBB); |
499 | } |
500 | |
501 | /// Duplicate the atomic min/max operation in conventional IR for the builtin |
502 | /// variants that return the new rather than the original value. |
503 | static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder, |
504 | AtomicExpr::AtomicOp Op, |
505 | bool IsSigned, |
506 | llvm::Value *OldVal, |
507 | llvm::Value *RHS) { |
508 | llvm::CmpInst::Predicate Pred; |
509 | switch (Op) { |
510 | default: |
511 | llvm_unreachable("Unexpected min/max operation" ); |
512 | case AtomicExpr::AO__atomic_max_fetch: |
513 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
514 | Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT; |
515 | break; |
516 | case AtomicExpr::AO__atomic_min_fetch: |
517 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
518 | Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT; |
519 | break; |
520 | } |
521 | llvm::Value *Cmp = Builder.CreateICmp(P: Pred, LHS: OldVal, RHS, Name: "tst" ); |
522 | return Builder.CreateSelect(C: Cmp, True: OldVal, False: RHS, Name: "newval" ); |
523 | } |
524 | |
525 | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, |
526 | Address Ptr, Address Val1, Address Val2, |
527 | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
528 | uint64_t Size, llvm::AtomicOrdering Order, |
529 | llvm::SyncScope::ID Scope) { |
530 | llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; |
531 | bool PostOpMinMax = false; |
532 | unsigned PostOp = 0; |
533 | |
534 | switch (E->getOp()) { |
535 | case AtomicExpr::AO__c11_atomic_init: |
536 | case AtomicExpr::AO__opencl_atomic_init: |
537 | llvm_unreachable("Already handled!" ); |
538 | |
539 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
540 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
541 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
542 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: false, Dest, Ptr, Val1, Val2, |
543 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
544 | return; |
545 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
546 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
547 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
548 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: true, Dest, Ptr, Val1, Val2, |
549 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
550 | return; |
551 | case AtomicExpr::AO__atomic_compare_exchange: |
552 | case AtomicExpr::AO__atomic_compare_exchange_n: |
553 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
554 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: { |
555 | if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(Val: IsWeak)) { |
556 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: IsWeakC->getZExtValue(), Dest, Ptr, |
557 | Val1, Val2, FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
558 | } else { |
559 | // Create all the relevant BB's |
560 | llvm::BasicBlock *StrongBB = |
561 | CGF.createBasicBlock(name: "cmpxchg.strong" , parent: CGF.CurFn); |
562 | llvm::BasicBlock *WeakBB = CGF.createBasicBlock(name: "cmxchg.weak" , parent: CGF.CurFn); |
563 | llvm::BasicBlock *ContBB = |
564 | CGF.createBasicBlock(name: "cmpxchg.continue" , parent: CGF.CurFn); |
565 | |
566 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(V: IsWeak, Dest: WeakBB); |
567 | SI->addCase(OnVal: CGF.Builder.getInt1(V: false), Dest: StrongBB); |
568 | |
569 | CGF.Builder.SetInsertPoint(StrongBB); |
570 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: false, Dest, Ptr, Val1, Val2, |
571 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
572 | CGF.Builder.CreateBr(Dest: ContBB); |
573 | |
574 | CGF.Builder.SetInsertPoint(WeakBB); |
575 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: true, Dest, Ptr, Val1, Val2, |
576 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
577 | CGF.Builder.CreateBr(Dest: ContBB); |
578 | |
579 | CGF.Builder.SetInsertPoint(ContBB); |
580 | } |
581 | return; |
582 | } |
583 | case AtomicExpr::AO__c11_atomic_load: |
584 | case AtomicExpr::AO__opencl_atomic_load: |
585 | case AtomicExpr::AO__hip_atomic_load: |
586 | case AtomicExpr::AO__atomic_load_n: |
587 | case AtomicExpr::AO__atomic_load: |
588 | case AtomicExpr::AO__scoped_atomic_load_n: |
589 | case AtomicExpr::AO__scoped_atomic_load: { |
590 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr: Ptr); |
591 | Load->setAtomic(Ordering: Order, SSID: Scope); |
592 | Load->setVolatile(E->isVolatile()); |
593 | CGF.maybeAttachRangeForLoad(Load, Ty: E->getValueType(), Loc: E->getExprLoc()); |
594 | CGF.Builder.CreateStore(Val: Load, Addr: Dest); |
595 | return; |
596 | } |
597 | |
598 | case AtomicExpr::AO__c11_atomic_store: |
599 | case AtomicExpr::AO__opencl_atomic_store: |
600 | case AtomicExpr::AO__hip_atomic_store: |
601 | case AtomicExpr::AO__atomic_store: |
602 | case AtomicExpr::AO__atomic_store_n: |
603 | case AtomicExpr::AO__scoped_atomic_store: |
604 | case AtomicExpr::AO__scoped_atomic_store_n: { |
605 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Addr: Val1); |
606 | llvm::StoreInst *Store = CGF.Builder.CreateStore(Val: LoadVal1, Addr: Ptr); |
607 | Store->setAtomic(Ordering: Order, SSID: Scope); |
608 | Store->setVolatile(E->isVolatile()); |
609 | return; |
610 | } |
611 | |
612 | case AtomicExpr::AO__c11_atomic_exchange: |
613 | case AtomicExpr::AO__hip_atomic_exchange: |
614 | case AtomicExpr::AO__opencl_atomic_exchange: |
615 | case AtomicExpr::AO__atomic_exchange_n: |
616 | case AtomicExpr::AO__atomic_exchange: |
617 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
618 | case AtomicExpr::AO__scoped_atomic_exchange: |
619 | Op = llvm::AtomicRMWInst::Xchg; |
620 | break; |
621 | |
622 | case AtomicExpr::AO__atomic_add_fetch: |
623 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
624 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd |
625 | : llvm::Instruction::Add; |
626 | [[fallthrough]]; |
627 | case AtomicExpr::AO__c11_atomic_fetch_add: |
628 | case AtomicExpr::AO__hip_atomic_fetch_add: |
629 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
630 | case AtomicExpr::AO__atomic_fetch_add: |
631 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
632 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd |
633 | : llvm::AtomicRMWInst::Add; |
634 | break; |
635 | |
636 | case AtomicExpr::AO__atomic_sub_fetch: |
637 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
638 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FSub |
639 | : llvm::Instruction::Sub; |
640 | [[fallthrough]]; |
641 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
642 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
643 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
644 | case AtomicExpr::AO__atomic_fetch_sub: |
645 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
646 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub |
647 | : llvm::AtomicRMWInst::Sub; |
648 | break; |
649 | |
650 | case AtomicExpr::AO__atomic_min_fetch: |
651 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
652 | PostOpMinMax = true; |
653 | [[fallthrough]]; |
654 | case AtomicExpr::AO__c11_atomic_fetch_min: |
655 | case AtomicExpr::AO__hip_atomic_fetch_min: |
656 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
657 | case AtomicExpr::AO__atomic_fetch_min: |
658 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
659 | Op = E->getValueType()->isFloatingType() |
660 | ? llvm::AtomicRMWInst::FMin |
661 | : (E->getValueType()->isSignedIntegerType() |
662 | ? llvm::AtomicRMWInst::Min |
663 | : llvm::AtomicRMWInst::UMin); |
664 | break; |
665 | |
666 | case AtomicExpr::AO__atomic_max_fetch: |
667 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
668 | PostOpMinMax = true; |
669 | [[fallthrough]]; |
670 | case AtomicExpr::AO__c11_atomic_fetch_max: |
671 | case AtomicExpr::AO__hip_atomic_fetch_max: |
672 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
673 | case AtomicExpr::AO__atomic_fetch_max: |
674 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
675 | Op = E->getValueType()->isFloatingType() |
676 | ? llvm::AtomicRMWInst::FMax |
677 | : (E->getValueType()->isSignedIntegerType() |
678 | ? llvm::AtomicRMWInst::Max |
679 | : llvm::AtomicRMWInst::UMax); |
680 | break; |
681 | |
682 | case AtomicExpr::AO__atomic_and_fetch: |
683 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
684 | PostOp = llvm::Instruction::And; |
685 | [[fallthrough]]; |
686 | case AtomicExpr::AO__c11_atomic_fetch_and: |
687 | case AtomicExpr::AO__hip_atomic_fetch_and: |
688 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
689 | case AtomicExpr::AO__atomic_fetch_and: |
690 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
691 | Op = llvm::AtomicRMWInst::And; |
692 | break; |
693 | |
694 | case AtomicExpr::AO__atomic_or_fetch: |
695 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
696 | PostOp = llvm::Instruction::Or; |
697 | [[fallthrough]]; |
698 | case AtomicExpr::AO__c11_atomic_fetch_or: |
699 | case AtomicExpr::AO__hip_atomic_fetch_or: |
700 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
701 | case AtomicExpr::AO__atomic_fetch_or: |
702 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
703 | Op = llvm::AtomicRMWInst::Or; |
704 | break; |
705 | |
706 | case AtomicExpr::AO__atomic_xor_fetch: |
707 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
708 | PostOp = llvm::Instruction::Xor; |
709 | [[fallthrough]]; |
710 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
711 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
712 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
713 | case AtomicExpr::AO__atomic_fetch_xor: |
714 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
715 | Op = llvm::AtomicRMWInst::Xor; |
716 | break; |
717 | |
718 | case AtomicExpr::AO__atomic_nand_fetch: |
719 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
720 | PostOp = llvm::Instruction::And; // the NOT is special cased below |
721 | [[fallthrough]]; |
722 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
723 | case AtomicExpr::AO__atomic_fetch_nand: |
724 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
725 | Op = llvm::AtomicRMWInst::Nand; |
726 | break; |
727 | |
728 | case AtomicExpr::AO__atomic_test_and_set: { |
729 | llvm::AtomicRMWInst *RMWI = |
730 | CGF.emitAtomicRMWInst(Op: llvm::AtomicRMWInst::Xchg, Addr: Ptr, |
731 | Val: CGF.Builder.getInt8(C: 1), Order, SSID: Scope, AE: E); |
732 | RMWI->setVolatile(E->isVolatile()); |
733 | llvm::Value *Result = CGF.Builder.CreateIsNotNull(Arg: RMWI, Name: "tobool" ); |
734 | CGF.Builder.CreateStore(Val: Result, Addr: Dest); |
735 | return; |
736 | } |
737 | |
738 | case AtomicExpr::AO__atomic_clear: { |
739 | llvm::StoreInst *Store = |
740 | CGF.Builder.CreateStore(Val: CGF.Builder.getInt8(C: 0), Addr: Ptr); |
741 | Store->setAtomic(Ordering: Order, SSID: Scope); |
742 | Store->setVolatile(E->isVolatile()); |
743 | return; |
744 | } |
745 | } |
746 | |
747 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Addr: Val1); |
748 | llvm::AtomicRMWInst *RMWI = |
749 | CGF.emitAtomicRMWInst(Op, Addr: Ptr, Val: LoadVal1, Order, SSID: Scope, AE: E); |
750 | RMWI->setVolatile(E->isVolatile()); |
751 | |
752 | // For __atomic_*_fetch operations, perform the operation again to |
753 | // determine the value which was written. |
754 | llvm::Value *Result = RMWI; |
755 | if (PostOpMinMax) |
756 | Result = EmitPostAtomicMinMax(Builder&: CGF.Builder, Op: E->getOp(), |
757 | IsSigned: E->getValueType()->isSignedIntegerType(), |
758 | OldVal: RMWI, RHS: LoadVal1); |
759 | else if (PostOp) |
760 | Result = CGF.Builder.CreateBinOp(Opc: (llvm::Instruction::BinaryOps)PostOp, LHS: RMWI, |
761 | RHS: LoadVal1); |
762 | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch || |
763 | E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch) |
764 | Result = CGF.Builder.CreateNot(V: Result); |
765 | CGF.Builder.CreateStore(Val: Result, Addr: Dest); |
766 | } |
767 | |
768 | // This function emits any expression (scalar, complex, or aggregate) |
769 | // into a temporary alloca. |
770 | static Address |
771 | EmitValToTemp(CodeGenFunction &CGF, Expr *E) { |
772 | Address DeclPtr = CGF.CreateMemTemp(T: E->getType(), Name: ".atomictmp" ); |
773 | CGF.EmitAnyExprToMem(E, Location: DeclPtr, Quals: E->getType().getQualifiers(), |
774 | /*Init*/ IsInitializer: true); |
775 | return DeclPtr; |
776 | } |
777 | |
778 | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, |
779 | Address Ptr, Address Val1, Address Val2, |
780 | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
781 | uint64_t Size, llvm::AtomicOrdering Order, |
782 | llvm::Value *Scope) { |
783 | auto ScopeModel = Expr->getScopeModel(); |
784 | |
785 | // LLVM atomic instructions always have sync scope. If clang atomic |
786 | // expression has no scope operand, use default LLVM sync scope. |
787 | if (!ScopeModel) { |
788 | llvm::SyncScope::ID SS; |
789 | if (CGF.getLangOpts().OpenCL) |
790 | // OpenCL approach is: "The functions that do not have memory_scope |
791 | // argument have the same semantics as the corresponding functions with |
792 | // the memory_scope argument set to memory_scope_device." See ref.: |
793 | // https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html#atomic-functions |
794 | SS = CGF.getTargetHooks().getLLVMSyncScopeID(LangOpts: CGF.getLangOpts(), |
795 | Scope: SyncScope::OpenCLDevice, |
796 | Ordering: Order, Ctx&: CGF.getLLVMContext()); |
797 | else |
798 | SS = llvm::SyncScope::System; |
799 | EmitAtomicOp(CGF, E: Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
800 | Order, Scope: SS); |
801 | return; |
802 | } |
803 | |
804 | // Handle constant scope. |
805 | if (auto SC = dyn_cast<llvm::ConstantInt>(Val: Scope)) { |
806 | auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( |
807 | LangOpts: CGF.CGM.getLangOpts(), Scope: ScopeModel->map(SC->getZExtValue()), |
808 | Ordering: Order, Ctx&: CGF.CGM.getLLVMContext()); |
809 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
810 | Order, SCID); |
811 | return; |
812 | } |
813 | |
814 | // Handle non-constant scope. |
815 | auto &Builder = CGF.Builder; |
816 | auto Scopes = ScopeModel->getRuntimeValues(); |
817 | llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; |
818 | for (auto S : Scopes) |
819 | BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); |
820 | |
821 | llvm::BasicBlock *ContBB = |
822 | CGF.createBasicBlock(name: "atomic.scope.continue" , parent: CGF.CurFn); |
823 | |
824 | auto *SC = Builder.CreateIntCast(V: Scope, DestTy: Builder.getInt32Ty(), isSigned: false); |
825 | // If unsupported sync scope is encountered at run time, assume a fallback |
826 | // sync scope value. |
827 | auto FallBack = ScopeModel->getFallBackValue(); |
828 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: SC, Dest: BB[FallBack]); |
829 | for (auto S : Scopes) { |
830 | auto *B = BB[S]; |
831 | if (S != FallBack) |
832 | SI->addCase(Builder.getInt32(S), B); |
833 | |
834 | Builder.SetInsertPoint(B); |
835 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
836 | Order, |
837 | CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(), |
838 | ScopeModel->map(S), |
839 | Order, |
840 | CGF.getLLVMContext())); |
841 | Builder.CreateBr(ContBB); |
842 | } |
843 | |
844 | Builder.SetInsertPoint(ContBB); |
845 | } |
846 | |
847 | RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { |
848 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
849 | QualType MemTy = AtomicTy; |
850 | if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) |
851 | MemTy = AT->getValueType(); |
852 | llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; |
853 | |
854 | Address Val1 = Address::invalid(); |
855 | Address Val2 = Address::invalid(); |
856 | Address Dest = Address::invalid(); |
857 | Address Ptr = EmitPointerWithAlignment(Addr: E->getPtr()); |
858 | |
859 | if (E->getOp() == AtomicExpr::AO__c11_atomic_init || |
860 | E->getOp() == AtomicExpr::AO__opencl_atomic_init) { |
861 | LValue lvalue = MakeAddrLValue(Addr: Ptr, T: AtomicTy); |
862 | EmitAtomicInit(E: E->getVal1(), lvalue); |
863 | return RValue::get(V: nullptr); |
864 | } |
865 | |
866 | auto TInfo = getContext().getTypeInfoInChars(T: AtomicTy); |
867 | uint64_t Size = TInfo.Width.getQuantity(); |
868 | unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); |
869 | |
870 | CharUnits MaxInlineWidth = |
871 | getContext().toCharUnitsFromBits(BitSize: MaxInlineWidthInBits); |
872 | DiagnosticsEngine &Diags = CGM.getDiags(); |
873 | bool Misaligned = (Ptr.getAlignment() % TInfo.Width) != 0; |
874 | bool Oversized = getContext().toBits(CharSize: TInfo.Width) > MaxInlineWidthInBits; |
875 | if (Misaligned) { |
876 | Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned) |
877 | << (int)TInfo.Width.getQuantity() |
878 | << (int)Ptr.getAlignment().getQuantity(); |
879 | } |
880 | if (Oversized) { |
881 | Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_oversized) |
882 | << (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity(); |
883 | } |
884 | |
885 | llvm::Value *Order = EmitScalarExpr(E: E->getOrder()); |
886 | llvm::Value *Scope = |
887 | E->getScopeModel() ? EmitScalarExpr(E: E->getScope()) : nullptr; |
888 | bool ShouldCastToIntPtrTy = true; |
889 | |
890 | switch (E->getOp()) { |
891 | case AtomicExpr::AO__c11_atomic_init: |
892 | case AtomicExpr::AO__opencl_atomic_init: |
893 | llvm_unreachable("Already handled above with EmitAtomicInit!" ); |
894 | |
895 | case AtomicExpr::AO__atomic_load_n: |
896 | case AtomicExpr::AO__scoped_atomic_load_n: |
897 | case AtomicExpr::AO__c11_atomic_load: |
898 | case AtomicExpr::AO__opencl_atomic_load: |
899 | case AtomicExpr::AO__hip_atomic_load: |
900 | case AtomicExpr::AO__atomic_test_and_set: |
901 | case AtomicExpr::AO__atomic_clear: |
902 | break; |
903 | |
904 | case AtomicExpr::AO__atomic_load: |
905 | case AtomicExpr::AO__scoped_atomic_load: |
906 | Dest = EmitPointerWithAlignment(Addr: E->getVal1()); |
907 | break; |
908 | |
909 | case AtomicExpr::AO__atomic_store: |
910 | case AtomicExpr::AO__scoped_atomic_store: |
911 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
912 | break; |
913 | |
914 | case AtomicExpr::AO__atomic_exchange: |
915 | case AtomicExpr::AO__scoped_atomic_exchange: |
916 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
917 | Dest = EmitPointerWithAlignment(Addr: E->getVal2()); |
918 | break; |
919 | |
920 | case AtomicExpr::AO__atomic_compare_exchange: |
921 | case AtomicExpr::AO__atomic_compare_exchange_n: |
922 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
923 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
924 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
925 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
926 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
927 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
928 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
929 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
930 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
931 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
932 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
933 | Val2 = EmitPointerWithAlignment(Addr: E->getVal2()); |
934 | else |
935 | Val2 = EmitValToTemp(CGF&: *this, E: E->getVal2()); |
936 | OrderFail = EmitScalarExpr(E: E->getOrderFail()); |
937 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || |
938 | E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
939 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange_n || |
940 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
941 | IsWeak = EmitScalarExpr(E: E->getWeak()); |
942 | break; |
943 | |
944 | case AtomicExpr::AO__c11_atomic_fetch_add: |
945 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
946 | case AtomicExpr::AO__hip_atomic_fetch_add: |
947 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
948 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
949 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
950 | if (MemTy->isPointerType()) { |
951 | // For pointer arithmetic, we're required to do a bit of math: |
952 | // adding 1 to an int* is not the same as adding 1 to a uintptr_t. |
953 | // ... but only for the C11 builtins. The GNU builtins expect the |
954 | // user to multiply by sizeof(T). |
955 | QualType Val1Ty = E->getVal1()->getType(); |
956 | llvm::Value *Val1Scalar = EmitScalarExpr(E: E->getVal1()); |
957 | CharUnits PointeeIncAmt = |
958 | getContext().getTypeSizeInChars(T: MemTy->getPointeeType()); |
959 | Val1Scalar = Builder.CreateMul(LHS: Val1Scalar, RHS: CGM.getSize(numChars: PointeeIncAmt)); |
960 | auto Temp = CreateMemTemp(T: Val1Ty, Name: ".atomictmp" ); |
961 | Val1 = Temp; |
962 | EmitStoreOfScalar(value: Val1Scalar, lvalue: MakeAddrLValue(Addr: Temp, T: Val1Ty)); |
963 | break; |
964 | } |
965 | [[fallthrough]]; |
966 | case AtomicExpr::AO__atomic_fetch_add: |
967 | case AtomicExpr::AO__atomic_fetch_max: |
968 | case AtomicExpr::AO__atomic_fetch_min: |
969 | case AtomicExpr::AO__atomic_fetch_sub: |
970 | case AtomicExpr::AO__atomic_add_fetch: |
971 | case AtomicExpr::AO__atomic_max_fetch: |
972 | case AtomicExpr::AO__atomic_min_fetch: |
973 | case AtomicExpr::AO__atomic_sub_fetch: |
974 | case AtomicExpr::AO__c11_atomic_fetch_max: |
975 | case AtomicExpr::AO__c11_atomic_fetch_min: |
976 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
977 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
978 | case AtomicExpr::AO__hip_atomic_fetch_max: |
979 | case AtomicExpr::AO__hip_atomic_fetch_min: |
980 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
981 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
982 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
983 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
984 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
985 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
986 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
987 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
988 | ShouldCastToIntPtrTy = !MemTy->isFloatingType(); |
989 | [[fallthrough]]; |
990 | |
991 | case AtomicExpr::AO__atomic_fetch_and: |
992 | case AtomicExpr::AO__atomic_fetch_nand: |
993 | case AtomicExpr::AO__atomic_fetch_or: |
994 | case AtomicExpr::AO__atomic_fetch_xor: |
995 | case AtomicExpr::AO__atomic_and_fetch: |
996 | case AtomicExpr::AO__atomic_nand_fetch: |
997 | case AtomicExpr::AO__atomic_or_fetch: |
998 | case AtomicExpr::AO__atomic_xor_fetch: |
999 | case AtomicExpr::AO__atomic_store_n: |
1000 | case AtomicExpr::AO__atomic_exchange_n: |
1001 | case AtomicExpr::AO__c11_atomic_fetch_and: |
1002 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
1003 | case AtomicExpr::AO__c11_atomic_fetch_or: |
1004 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
1005 | case AtomicExpr::AO__c11_atomic_store: |
1006 | case AtomicExpr::AO__c11_atomic_exchange: |
1007 | case AtomicExpr::AO__hip_atomic_fetch_and: |
1008 | case AtomicExpr::AO__hip_atomic_fetch_or: |
1009 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
1010 | case AtomicExpr::AO__hip_atomic_store: |
1011 | case AtomicExpr::AO__hip_atomic_exchange: |
1012 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
1013 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
1014 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
1015 | case AtomicExpr::AO__opencl_atomic_store: |
1016 | case AtomicExpr::AO__opencl_atomic_exchange: |
1017 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
1018 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
1019 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
1020 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
1021 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
1022 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
1023 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
1024 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
1025 | case AtomicExpr::AO__scoped_atomic_store_n: |
1026 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
1027 | Val1 = EmitValToTemp(CGF&: *this, E: E->getVal1()); |
1028 | break; |
1029 | } |
1030 | |
1031 | QualType RValTy = E->getType().getUnqualifiedType(); |
1032 | |
1033 | // The inlined atomics only function on iN types, where N is a power of 2. We |
1034 | // need to make sure (via temporaries if necessary) that all incoming values |
1035 | // are compatible. |
1036 | LValue AtomicVal = MakeAddrLValue(Addr: Ptr, T: AtomicTy); |
1037 | AtomicInfo Atomics(*this, AtomicVal); |
1038 | |
1039 | if (ShouldCastToIntPtrTy) { |
1040 | Ptr = Atomics.castToAtomicIntPointer(Addr: Ptr); |
1041 | if (Val1.isValid()) |
1042 | Val1 = Atomics.convertToAtomicIntPointer(Addr: Val1); |
1043 | if (Val2.isValid()) |
1044 | Val2 = Atomics.convertToAtomicIntPointer(Addr: Val2); |
1045 | } |
1046 | if (Dest.isValid()) { |
1047 | if (ShouldCastToIntPtrTy) |
1048 | Dest = Atomics.castToAtomicIntPointer(Addr: Dest); |
1049 | } else if (E->isCmpXChg()) |
1050 | Dest = CreateMemTemp(T: RValTy, Name: "cmpxchg.bool" ); |
1051 | else if (!RValTy->isVoidType()) { |
1052 | Dest = Atomics.CreateTempAlloca(); |
1053 | if (ShouldCastToIntPtrTy) |
1054 | Dest = Atomics.castToAtomicIntPointer(Addr: Dest); |
1055 | } |
1056 | |
1057 | bool PowerOf2Size = (Size & (Size - 1)) == 0; |
1058 | bool UseLibcall = !PowerOf2Size || (Size > 16); |
1059 | |
1060 | // For atomics larger than 16 bytes, emit a libcall from the frontend. This |
1061 | // avoids the overhead of dealing with excessively-large value types in IR. |
1062 | // Non-power-of-2 values also lower to libcall here, as they are not currently |
1063 | // permitted in IR instructions (although that constraint could be relaxed in |
1064 | // the future). For other cases where a libcall is required on a given |
1065 | // platform, we let the backend handle it (this includes handling for all of |
1066 | // the size-optimized libcall variants, which are only valid up to 16 bytes.) |
1067 | // |
1068 | // See: https://llvm.org/docs/Atomics.html#libcalls-atomic |
1069 | if (UseLibcall) { |
1070 | CallArgList Args; |
1071 | // For non-optimized library calls, the size is the first parameter. |
1072 | Args.add(rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: SizeTy, V: Size)), |
1073 | type: getContext().getSizeType()); |
1074 | |
1075 | // The atomic address is the second parameter. |
1076 | // The OpenCL atomic library functions only accept pointer arguments to |
1077 | // generic address space. |
1078 | auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { |
1079 | if (!E->isOpenCL()) |
1080 | return V; |
1081 | auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace(); |
1082 | if (AS == LangAS::opencl_generic) |
1083 | return V; |
1084 | auto DestAS = getContext().getTargetAddressSpace(AS: LangAS::opencl_generic); |
1085 | auto *DestType = llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: DestAS); |
1086 | |
1087 | return getTargetHooks().performAddrSpaceCast(CGF&: *this, V, SrcAddr: AS, DestTy: DestType, |
1088 | IsNonNull: false); |
1089 | }; |
1090 | |
1091 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Ptr.emitRawPointer(CGF&: *this), |
1092 | E->getPtr()->getType())), |
1093 | type: getContext().VoidPtrTy); |
1094 | |
1095 | // The next 1-3 parameters are op-dependent. |
1096 | std::string LibCallName; |
1097 | QualType RetTy; |
1098 | bool HaveRetTy = false; |
1099 | switch (E->getOp()) { |
1100 | case AtomicExpr::AO__c11_atomic_init: |
1101 | case AtomicExpr::AO__opencl_atomic_init: |
1102 | llvm_unreachable("Already handled!" ); |
1103 | |
1104 | // There is only one libcall for compare an exchange, because there is no |
1105 | // optimisation benefit possible from a libcall version of a weak compare |
1106 | // and exchange. |
1107 | // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, |
1108 | // void *desired, int success, int failure) |
1109 | case AtomicExpr::AO__atomic_compare_exchange: |
1110 | case AtomicExpr::AO__atomic_compare_exchange_n: |
1111 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
1112 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
1113 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
1114 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
1115 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
1116 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
1117 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
1118 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
1119 | LibCallName = "__atomic_compare_exchange" ; |
1120 | RetTy = getContext().BoolTy; |
1121 | HaveRetTy = true; |
1122 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
1123 | E->getVal1()->getType())), |
1124 | type: getContext().VoidPtrTy); |
1125 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val2.emitRawPointer(CGF&: *this), |
1126 | E->getVal2()->getType())), |
1127 | type: getContext().VoidPtrTy); |
1128 | Args.add(rvalue: RValue::get(V: Order), type: getContext().IntTy); |
1129 | Order = OrderFail; |
1130 | break; |
1131 | // void __atomic_exchange(size_t size, void *mem, void *val, void *return, |
1132 | // int order) |
1133 | case AtomicExpr::AO__atomic_exchange: |
1134 | case AtomicExpr::AO__atomic_exchange_n: |
1135 | case AtomicExpr::AO__c11_atomic_exchange: |
1136 | case AtomicExpr::AO__hip_atomic_exchange: |
1137 | case AtomicExpr::AO__opencl_atomic_exchange: |
1138 | case AtomicExpr::AO__scoped_atomic_exchange: |
1139 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
1140 | LibCallName = "__atomic_exchange" ; |
1141 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
1142 | E->getVal1()->getType())), |
1143 | type: getContext().VoidPtrTy); |
1144 | break; |
1145 | // void __atomic_store(size_t size, void *mem, void *val, int order) |
1146 | case AtomicExpr::AO__atomic_store: |
1147 | case AtomicExpr::AO__atomic_store_n: |
1148 | case AtomicExpr::AO__c11_atomic_store: |
1149 | case AtomicExpr::AO__hip_atomic_store: |
1150 | case AtomicExpr::AO__opencl_atomic_store: |
1151 | case AtomicExpr::AO__scoped_atomic_store: |
1152 | case AtomicExpr::AO__scoped_atomic_store_n: |
1153 | LibCallName = "__atomic_store" ; |
1154 | RetTy = getContext().VoidTy; |
1155 | HaveRetTy = true; |
1156 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
1157 | E->getVal1()->getType())), |
1158 | type: getContext().VoidPtrTy); |
1159 | break; |
1160 | // void __atomic_load(size_t size, void *mem, void *return, int order) |
1161 | case AtomicExpr::AO__atomic_load: |
1162 | case AtomicExpr::AO__atomic_load_n: |
1163 | case AtomicExpr::AO__c11_atomic_load: |
1164 | case AtomicExpr::AO__hip_atomic_load: |
1165 | case AtomicExpr::AO__opencl_atomic_load: |
1166 | case AtomicExpr::AO__scoped_atomic_load: |
1167 | case AtomicExpr::AO__scoped_atomic_load_n: |
1168 | LibCallName = "__atomic_load" ; |
1169 | break; |
1170 | case AtomicExpr::AO__atomic_add_fetch: |
1171 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
1172 | case AtomicExpr::AO__atomic_fetch_add: |
1173 | case AtomicExpr::AO__c11_atomic_fetch_add: |
1174 | case AtomicExpr::AO__hip_atomic_fetch_add: |
1175 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
1176 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
1177 | case AtomicExpr::AO__atomic_and_fetch: |
1178 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
1179 | case AtomicExpr::AO__atomic_fetch_and: |
1180 | case AtomicExpr::AO__c11_atomic_fetch_and: |
1181 | case AtomicExpr::AO__hip_atomic_fetch_and: |
1182 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
1183 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
1184 | case AtomicExpr::AO__atomic_or_fetch: |
1185 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
1186 | case AtomicExpr::AO__atomic_fetch_or: |
1187 | case AtomicExpr::AO__c11_atomic_fetch_or: |
1188 | case AtomicExpr::AO__hip_atomic_fetch_or: |
1189 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
1190 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
1191 | case AtomicExpr::AO__atomic_sub_fetch: |
1192 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
1193 | case AtomicExpr::AO__atomic_fetch_sub: |
1194 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
1195 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
1196 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
1197 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
1198 | case AtomicExpr::AO__atomic_xor_fetch: |
1199 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
1200 | case AtomicExpr::AO__atomic_fetch_xor: |
1201 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
1202 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
1203 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
1204 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
1205 | case AtomicExpr::AO__atomic_nand_fetch: |
1206 | case AtomicExpr::AO__atomic_fetch_nand: |
1207 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
1208 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
1209 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
1210 | case AtomicExpr::AO__atomic_min_fetch: |
1211 | case AtomicExpr::AO__atomic_fetch_min: |
1212 | case AtomicExpr::AO__c11_atomic_fetch_min: |
1213 | case AtomicExpr::AO__hip_atomic_fetch_min: |
1214 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
1215 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
1216 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
1217 | case AtomicExpr::AO__atomic_max_fetch: |
1218 | case AtomicExpr::AO__atomic_fetch_max: |
1219 | case AtomicExpr::AO__c11_atomic_fetch_max: |
1220 | case AtomicExpr::AO__hip_atomic_fetch_max: |
1221 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
1222 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
1223 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
1224 | case AtomicExpr::AO__atomic_test_and_set: |
1225 | case AtomicExpr::AO__atomic_clear: |
1226 | llvm_unreachable("Integral atomic operations always become atomicrmw!" ); |
1227 | } |
1228 | |
1229 | if (E->isOpenCL()) { |
1230 | LibCallName = |
1231 | std::string("__opencl" ) + StringRef(LibCallName).drop_front(N: 1).str(); |
1232 | } |
1233 | // By default, assume we return a value of the atomic type. |
1234 | if (!HaveRetTy) { |
1235 | // Value is returned through parameter before the order. |
1236 | RetTy = getContext().VoidTy; |
1237 | Args.add(rvalue: RValue::get( |
1238 | V: CastToGenericAddrSpace(Dest.emitRawPointer(CGF&: *this), RetTy)), |
1239 | type: getContext().VoidPtrTy); |
1240 | } |
1241 | // Order is always the last parameter. |
1242 | Args.add(rvalue: RValue::get(V: Order), |
1243 | type: getContext().IntTy); |
1244 | if (E->isOpenCL()) |
1245 | Args.add(rvalue: RValue::get(V: Scope), type: getContext().IntTy); |
1246 | |
1247 | RValue Res = emitAtomicLibcall(CGF&: *this, fnName: LibCallName, resultType: RetTy, args&: Args); |
1248 | // The value is returned directly from the libcall. |
1249 | if (E->isCmpXChg()) |
1250 | return Res; |
1251 | |
1252 | if (RValTy->isVoidType()) |
1253 | return RValue::get(V: nullptr); |
1254 | |
1255 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
1256 | type: RValTy, Loc: E->getExprLoc()); |
1257 | } |
1258 | |
1259 | bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || |
1260 | E->getOp() == AtomicExpr::AO__opencl_atomic_store || |
1261 | E->getOp() == AtomicExpr::AO__hip_atomic_store || |
1262 | E->getOp() == AtomicExpr::AO__atomic_store || |
1263 | E->getOp() == AtomicExpr::AO__atomic_store_n || |
1264 | E->getOp() == AtomicExpr::AO__scoped_atomic_store || |
1265 | E->getOp() == AtomicExpr::AO__scoped_atomic_store_n || |
1266 | E->getOp() == AtomicExpr::AO__atomic_clear; |
1267 | bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || |
1268 | E->getOp() == AtomicExpr::AO__opencl_atomic_load || |
1269 | E->getOp() == AtomicExpr::AO__hip_atomic_load || |
1270 | E->getOp() == AtomicExpr::AO__atomic_load || |
1271 | E->getOp() == AtomicExpr::AO__atomic_load_n || |
1272 | E->getOp() == AtomicExpr::AO__scoped_atomic_load || |
1273 | E->getOp() == AtomicExpr::AO__scoped_atomic_load_n; |
1274 | |
1275 | if (isa<llvm::ConstantInt>(Val: Order)) { |
1276 | auto ord = cast<llvm::ConstantInt>(Val: Order)->getZExtValue(); |
1277 | // We should not ever get to a case where the ordering isn't a valid C ABI |
1278 | // value, but it's hard to enforce that in general. |
1279 | if (llvm::isValidAtomicOrderingCABI(I: ord)) |
1280 | switch ((llvm::AtomicOrderingCABI)ord) { |
1281 | case llvm::AtomicOrderingCABI::relaxed: |
1282 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1283 | Order: llvm::AtomicOrdering::Monotonic, Scope); |
1284 | break; |
1285 | case llvm::AtomicOrderingCABI::consume: |
1286 | case llvm::AtomicOrderingCABI::acquire: |
1287 | if (IsStore) |
1288 | break; // Avoid crashing on code with undefined behavior |
1289 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1290 | Order: llvm::AtomicOrdering::Acquire, Scope); |
1291 | break; |
1292 | case llvm::AtomicOrderingCABI::release: |
1293 | if (IsLoad) |
1294 | break; // Avoid crashing on code with undefined behavior |
1295 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1296 | Order: llvm::AtomicOrdering::Release, Scope); |
1297 | break; |
1298 | case llvm::AtomicOrderingCABI::acq_rel: |
1299 | if (IsLoad || IsStore) |
1300 | break; // Avoid crashing on code with undefined behavior |
1301 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1302 | Order: llvm::AtomicOrdering::AcquireRelease, Scope); |
1303 | break; |
1304 | case llvm::AtomicOrderingCABI::seq_cst: |
1305 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1306 | Order: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
1307 | break; |
1308 | } |
1309 | if (RValTy->isVoidType()) |
1310 | return RValue::get(V: nullptr); |
1311 | |
1312 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
1313 | type: RValTy, Loc: E->getExprLoc()); |
1314 | } |
1315 | |
1316 | // Long case, when Order isn't obviously constant. |
1317 | |
1318 | // Create all the relevant BB's |
1319 | llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, |
1320 | *ReleaseBB = nullptr, *AcqRelBB = nullptr, |
1321 | *SeqCstBB = nullptr; |
1322 | MonotonicBB = createBasicBlock(name: "monotonic" , parent: CurFn); |
1323 | if (!IsStore) |
1324 | AcquireBB = createBasicBlock(name: "acquire" , parent: CurFn); |
1325 | if (!IsLoad) |
1326 | ReleaseBB = createBasicBlock(name: "release" , parent: CurFn); |
1327 | if (!IsLoad && !IsStore) |
1328 | AcqRelBB = createBasicBlock(name: "acqrel" , parent: CurFn); |
1329 | SeqCstBB = createBasicBlock(name: "seqcst" , parent: CurFn); |
1330 | llvm::BasicBlock *ContBB = createBasicBlock(name: "atomic.continue" , parent: CurFn); |
1331 | |
1332 | // Create the switch for the split |
1333 | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
1334 | // doesn't matter unless someone is crazy enough to use something that |
1335 | // doesn't fold to a constant for the ordering. |
1336 | Order = Builder.CreateIntCast(V: Order, DestTy: Builder.getInt32Ty(), isSigned: false); |
1337 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: Order, Dest: MonotonicBB); |
1338 | |
1339 | // Emit all the different atomics |
1340 | Builder.SetInsertPoint(MonotonicBB); |
1341 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1342 | Order: llvm::AtomicOrdering::Monotonic, Scope); |
1343 | Builder.CreateBr(Dest: ContBB); |
1344 | if (!IsStore) { |
1345 | Builder.SetInsertPoint(AcquireBB); |
1346 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1347 | Order: llvm::AtomicOrdering::Acquire, Scope); |
1348 | Builder.CreateBr(Dest: ContBB); |
1349 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::consume), |
1350 | Dest: AcquireBB); |
1351 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acquire), |
1352 | Dest: AcquireBB); |
1353 | } |
1354 | if (!IsLoad) { |
1355 | Builder.SetInsertPoint(ReleaseBB); |
1356 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1357 | Order: llvm::AtomicOrdering::Release, Scope); |
1358 | Builder.CreateBr(Dest: ContBB); |
1359 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::release), |
1360 | Dest: ReleaseBB); |
1361 | } |
1362 | if (!IsLoad && !IsStore) { |
1363 | Builder.SetInsertPoint(AcqRelBB); |
1364 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1365 | Order: llvm::AtomicOrdering::AcquireRelease, Scope); |
1366 | Builder.CreateBr(Dest: ContBB); |
1367 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acq_rel), |
1368 | Dest: AcqRelBB); |
1369 | } |
1370 | Builder.SetInsertPoint(SeqCstBB); |
1371 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1372 | Order: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
1373 | Builder.CreateBr(Dest: ContBB); |
1374 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::seq_cst), |
1375 | Dest: SeqCstBB); |
1376 | |
1377 | // Cleanup and return |
1378 | Builder.SetInsertPoint(ContBB); |
1379 | if (RValTy->isVoidType()) |
1380 | return RValue::get(V: nullptr); |
1381 | |
1382 | assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); |
1383 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
1384 | type: RValTy, Loc: E->getExprLoc()); |
1385 | } |
1386 | |
1387 | Address AtomicInfo::castToAtomicIntPointer(Address addr) const { |
1388 | llvm::IntegerType *ty = |
1389 | llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: AtomicSizeInBits); |
1390 | return addr.withElementType(ElemTy: ty); |
1391 | } |
1392 | |
1393 | Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { |
1394 | llvm::Type *Ty = Addr.getElementType(); |
1395 | uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); |
1396 | if (SourceSizeInBits != AtomicSizeInBits) { |
1397 | Address Tmp = CreateTempAlloca(); |
1398 | CGF.Builder.CreateMemCpy(Dest: Tmp, Src: Addr, |
1399 | Size: std::min(a: AtomicSizeInBits, b: SourceSizeInBits) / 8); |
1400 | Addr = Tmp; |
1401 | } |
1402 | |
1403 | return castToAtomicIntPointer(addr: Addr); |
1404 | } |
1405 | |
1406 | RValue AtomicInfo::convertAtomicTempToRValue(Address addr, |
1407 | AggValueSlot resultSlot, |
1408 | SourceLocation loc, |
1409 | bool asValue) const { |
1410 | if (LVal.isSimple()) { |
1411 | if (EvaluationKind == TEK_Aggregate) |
1412 | return resultSlot.asRValue(); |
1413 | |
1414 | // Drill into the padding structure if we have one. |
1415 | if (hasPadding()) |
1416 | addr = CGF.Builder.CreateStructGEP(Addr: addr, Index: 0); |
1417 | |
1418 | // Otherwise, just convert the temporary to an r-value using the |
1419 | // normal conversion routine. |
1420 | return CGF.convertTempToRValue(addr, type: getValueType(), Loc: loc); |
1421 | } |
1422 | if (!asValue) |
1423 | // Get RValue from temp memory as atomic for non-simple lvalues |
1424 | return RValue::get(V: CGF.Builder.CreateLoad(Addr: addr)); |
1425 | if (LVal.isBitField()) |
1426 | return CGF.EmitLoadOfBitfieldLValue( |
1427 | LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), |
1428 | LVal.getBaseInfo(), TBAAAccessInfo()), loc); |
1429 | if (LVal.isVectorElt()) |
1430 | return CGF.EmitLoadOfLValue( |
1431 | LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), |
1432 | LVal.getBaseInfo(), TBAAAccessInfo()), loc); |
1433 | assert(LVal.isExtVectorElt()); |
1434 | return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( |
1435 | addr, LVal.getExtVectorElts(), LVal.getType(), |
1436 | LVal.getBaseInfo(), TBAAAccessInfo())); |
1437 | } |
1438 | |
1439 | /// Return true if \param ValTy is a type that should be casted to integer |
1440 | /// around the atomic memory operation. If \param CmpXchg is true, then the |
1441 | /// cast of a floating point type is made as that instruction can not have |
1442 | /// floating point operands. TODO: Allow compare-and-exchange and FP - see |
1443 | /// comment in AtomicExpandPass.cpp. |
1444 | static bool shouldCastToInt(llvm::Type *ValTy, bool CmpXchg) { |
1445 | if (ValTy->isFloatingPointTy()) |
1446 | return ValTy->isX86_FP80Ty() || CmpXchg; |
1447 | return !ValTy->isIntegerTy() && !ValTy->isPointerTy(); |
1448 | } |
1449 | |
1450 | RValue AtomicInfo::ConvertToValueOrAtomic(llvm::Value *Val, |
1451 | AggValueSlot ResultSlot, |
1452 | SourceLocation Loc, bool AsValue, |
1453 | bool CmpXchg) const { |
1454 | // Try not to in some easy cases. |
1455 | assert((Val->getType()->isIntegerTy() || Val->getType()->isPointerTy() || |
1456 | Val->getType()->isIEEELikeFPTy()) && |
1457 | "Expected integer, pointer or floating point value when converting " |
1458 | "result." ); |
1459 | if (getEvaluationKind() == TEK_Scalar && |
1460 | (((!LVal.isBitField() || |
1461 | LVal.getBitFieldInfo().Size == ValueSizeInBits) && |
1462 | !hasPadding()) || |
1463 | !AsValue)) { |
1464 | auto *ValTy = AsValue |
1465 | ? CGF.ConvertTypeForMem(ValueTy) |
1466 | : getAtomicAddress().getElementType(); |
1467 | if (!shouldCastToInt(ValTy, CmpXchg)) { |
1468 | assert((!ValTy->isIntegerTy() || Val->getType() == ValTy) && |
1469 | "Different integer types." ); |
1470 | return RValue::get(CGF.EmitFromMemory(Val, ValueTy)); |
1471 | } |
1472 | if (llvm::CastInst::isBitCastable(SrcTy: Val->getType(), DestTy: ValTy)) |
1473 | return RValue::get(CGF.Builder.CreateBitCast(V: Val, DestTy: ValTy)); |
1474 | } |
1475 | |
1476 | // Create a temporary. This needs to be big enough to hold the |
1477 | // atomic integer. |
1478 | Address Temp = Address::invalid(); |
1479 | bool TempIsVolatile = false; |
1480 | if (AsValue && getEvaluationKind() == TEK_Aggregate) { |
1481 | assert(!ResultSlot.isIgnored()); |
1482 | Temp = ResultSlot.getAddress(); |
1483 | TempIsVolatile = ResultSlot.isVolatile(); |
1484 | } else { |
1485 | Temp = CreateTempAlloca(); |
1486 | } |
1487 | |
1488 | // Slam the integer into the temporary. |
1489 | Address CastTemp = castToAtomicIntPointer(addr: Temp); |
1490 | CGF.Builder.CreateStore(Val, Addr: CastTemp)->setVolatile(TempIsVolatile); |
1491 | |
1492 | return convertAtomicTempToRValue(addr: Temp, resultSlot: ResultSlot, loc: Loc, asValue: AsValue); |
1493 | } |
1494 | |
1495 | void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
1496 | llvm::AtomicOrdering AO, bool) { |
1497 | // void __atomic_load(size_t size, void *mem, void *return, int order); |
1498 | CallArgList Args; |
1499 | Args.add(rvalue: RValue::get(V: getAtomicSizeValue()), type: CGF.getContext().getSizeType()); |
1500 | Args.add(rvalue: RValue::get(V: getAtomicPointer()), type: CGF.getContext().VoidPtrTy); |
1501 | Args.add(rvalue: RValue::get(V: AddForLoaded), type: CGF.getContext().VoidPtrTy); |
1502 | Args.add( |
1503 | rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO))), |
1504 | type: CGF.getContext().IntTy); |
1505 | emitAtomicLibcall(CGF, "__atomic_load" , CGF.getContext().VoidTy, Args); |
1506 | } |
1507 | |
1508 | llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, |
1509 | bool IsVolatile, bool CmpXchg) { |
1510 | // Okay, we're doing this natively. |
1511 | Address Addr = getAtomicAddress(); |
1512 | if (shouldCastToInt(ValTy: Addr.getElementType(), CmpXchg)) |
1513 | Addr = castToAtomicIntPointer(addr: Addr); |
1514 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, Name: "atomic-load" ); |
1515 | Load->setAtomic(Ordering: AO); |
1516 | |
1517 | // Other decoration. |
1518 | if (IsVolatile) |
1519 | Load->setVolatile(true); |
1520 | CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); |
1521 | return Load; |
1522 | } |
1523 | |
1524 | /// An LValue is a candidate for having its loads and stores be made atomic if |
1525 | /// we are operating under /volatile:ms *and* the LValue itself is volatile and |
1526 | /// performing such an operation can be performed without a libcall. |
1527 | bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { |
1528 | if (!CGM.getLangOpts().MSVolatile) return false; |
1529 | AtomicInfo AI(*this, LV); |
1530 | bool IsVolatile = LV.isVolatile() || hasVolatileMember(T: LV.getType()); |
1531 | // An atomic is inline if we don't need to use a libcall. |
1532 | bool AtomicIsInline = !AI.shouldUseLibcall(); |
1533 | // MSVC doesn't seem to do this for types wider than a pointer. |
1534 | if (getContext().getTypeSize(T: LV.getType()) > |
1535 | getContext().getTypeSize(T: getContext().getIntPtrType())) |
1536 | return false; |
1537 | return IsVolatile && AtomicIsInline; |
1538 | } |
1539 | |
1540 | RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, |
1541 | AggValueSlot Slot) { |
1542 | llvm::AtomicOrdering AO; |
1543 | bool IsVolatile = LV.isVolatileQualified(); |
1544 | if (LV.getType()->isAtomicType()) { |
1545 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
1546 | } else { |
1547 | AO = llvm::AtomicOrdering::Acquire; |
1548 | IsVolatile = true; |
1549 | } |
1550 | return EmitAtomicLoad(lvalue: LV, loc: SL, AO, IsVolatile, slot: Slot); |
1551 | } |
1552 | |
1553 | RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
1554 | bool AsValue, llvm::AtomicOrdering AO, |
1555 | bool IsVolatile) { |
1556 | // Check whether we should use a library call. |
1557 | if (shouldUseLibcall()) { |
1558 | Address TempAddr = Address::invalid(); |
1559 | if (LVal.isSimple() && !ResultSlot.isIgnored()) { |
1560 | assert(getEvaluationKind() == TEK_Aggregate); |
1561 | TempAddr = ResultSlot.getAddress(); |
1562 | } else |
1563 | TempAddr = CreateTempAlloca(); |
1564 | |
1565 | EmitAtomicLoadLibcall(AddForLoaded: TempAddr.emitRawPointer(CGF), AO, IsVolatile); |
1566 | |
1567 | // Okay, turn that back into the original value or whole atomic (for |
1568 | // non-simple lvalues) type. |
1569 | return convertAtomicTempToRValue(addr: TempAddr, resultSlot: ResultSlot, loc: Loc, asValue: AsValue); |
1570 | } |
1571 | |
1572 | // Okay, we're doing this natively. |
1573 | auto *Load = EmitAtomicLoadOp(AO, IsVolatile); |
1574 | |
1575 | // If we're ignoring an aggregate return, don't do anything. |
1576 | if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) |
1577 | return RValue::getAggregate(addr: Address::invalid(), isVolatile: false); |
1578 | |
1579 | // Okay, turn that back into the original value or atomic (for non-simple |
1580 | // lvalues) type. |
1581 | return ConvertToValueOrAtomic(Val: Load, ResultSlot, Loc, AsValue); |
1582 | } |
1583 | |
1584 | /// Emit a load from an l-value of atomic type. Note that the r-value |
1585 | /// we produce is an r-value of the atomic *value* type. |
1586 | RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, |
1587 | llvm::AtomicOrdering AO, bool IsVolatile, |
1588 | AggValueSlot resultSlot) { |
1589 | AtomicInfo Atomics(*this, src); |
1590 | return Atomics.EmitAtomicLoad(ResultSlot: resultSlot, Loc: loc, /*AsValue=*/true, AO, |
1591 | IsVolatile); |
1592 | } |
1593 | |
1594 | /// Copy an r-value into memory as part of storing to an atomic type. |
1595 | /// This needs to create a bit-pattern suitable for atomic operations. |
1596 | void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { |
1597 | assert(LVal.isSimple()); |
1598 | // If we have an r-value, the rvalue should be of the atomic type, |
1599 | // which means that the caller is responsible for having zeroed |
1600 | // any padding. Just do an aggregate copy of that type. |
1601 | if (rvalue.isAggregate()) { |
1602 | LValue Dest = CGF.MakeAddrLValue(Addr: getAtomicAddress(), T: getAtomicType()); |
1603 | LValue Src = CGF.MakeAddrLValue(Addr: rvalue.getAggregateAddress(), |
1604 | T: getAtomicType()); |
1605 | bool IsVolatile = rvalue.isVolatileQualified() || |
1606 | LVal.isVolatileQualified(); |
1607 | CGF.EmitAggregateCopy(Dest, Src, EltTy: getAtomicType(), |
1608 | MayOverlap: AggValueSlot::DoesNotOverlap, isVolatile: IsVolatile); |
1609 | return; |
1610 | } |
1611 | |
1612 | // Okay, otherwise we're copying stuff. |
1613 | |
1614 | // Zero out the buffer if necessary. |
1615 | emitMemSetZeroIfNecessary(); |
1616 | |
1617 | // Drill past the padding if present. |
1618 | LValue TempLVal = projectValue(); |
1619 | |
1620 | // Okay, store the rvalue in. |
1621 | if (rvalue.isScalar()) { |
1622 | CGF.EmitStoreOfScalar(value: rvalue.getScalarVal(), lvalue: TempLVal, /*init*/ isInit: true); |
1623 | } else { |
1624 | CGF.EmitStoreOfComplex(V: rvalue.getComplexVal(), dest: TempLVal, /*init*/ isInit: true); |
1625 | } |
1626 | } |
1627 | |
1628 | |
1629 | /// Materialize an r-value into memory for the purposes of storing it |
1630 | /// to an atomic type. |
1631 | Address AtomicInfo::materializeRValue(RValue rvalue) const { |
1632 | // Aggregate r-values are already in memory, and EmitAtomicStore |
1633 | // requires them to be values of the atomic type. |
1634 | if (rvalue.isAggregate()) |
1635 | return rvalue.getAggregateAddress(); |
1636 | |
1637 | // Otherwise, make a temporary and materialize into it. |
1638 | LValue TempLV = CGF.MakeAddrLValue(Addr: CreateTempAlloca(), T: getAtomicType()); |
1639 | AtomicInfo Atomics(CGF, TempLV); |
1640 | Atomics.emitCopyIntoMemory(rvalue); |
1641 | return TempLV.getAddress(); |
1642 | } |
1643 | |
1644 | llvm::Value *AtomicInfo::getScalarRValValueOrNull(RValue RVal) const { |
1645 | if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) |
1646 | return RVal.getScalarVal(); |
1647 | return nullptr; |
1648 | } |
1649 | |
1650 | llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal, bool CmpXchg) const { |
1651 | // If we've got a scalar value of the right size, try to avoid going |
1652 | // through memory. Floats get casted if needed by AtomicExpandPass. |
1653 | if (llvm::Value *Value = getScalarRValValueOrNull(RVal)) { |
1654 | if (!shouldCastToInt(ValTy: Value->getType(), CmpXchg)) |
1655 | return CGF.EmitToMemory(Value, ValueTy); |
1656 | else { |
1657 | llvm::IntegerType *InputIntTy = llvm::IntegerType::get( |
1658 | CGF.getLLVMContext(), |
1659 | LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); |
1660 | if (llvm::BitCastInst::isBitCastable(SrcTy: Value->getType(), DestTy: InputIntTy)) |
1661 | return CGF.Builder.CreateBitCast(V: Value, DestTy: InputIntTy); |
1662 | } |
1663 | } |
1664 | // Otherwise, we need to go through memory. |
1665 | // Put the r-value in memory. |
1666 | Address Addr = materializeRValue(rvalue: RVal); |
1667 | |
1668 | // Cast the temporary to the atomic int type and pull a value out. |
1669 | Addr = castToAtomicIntPointer(addr: Addr); |
1670 | return CGF.Builder.CreateLoad(Addr); |
1671 | } |
1672 | |
1673 | std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( |
1674 | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
1675 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { |
1676 | // Do the atomic store. |
1677 | Address Addr = getAtomicAddressAsAtomicIntPointer(); |
1678 | auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, Cmp: ExpectedVal, New: DesiredVal, |
1679 | SuccessOrdering: Success, FailureOrdering: Failure); |
1680 | // Other decoration. |
1681 | Inst->setVolatile(LVal.isVolatileQualified()); |
1682 | Inst->setWeak(IsWeak); |
1683 | |
1684 | // Okay, turn that back into the original value type. |
1685 | auto *PreviousVal = CGF.Builder.CreateExtractValue(Agg: Inst, /*Idxs=*/0); |
1686 | auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Agg: Inst, /*Idxs=*/1); |
1687 | return std::make_pair(x&: PreviousVal, y&: SuccessFailureVal); |
1688 | } |
1689 | |
1690 | llvm::Value * |
1691 | AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, |
1692 | llvm::Value *DesiredAddr, |
1693 | llvm::AtomicOrdering Success, |
1694 | llvm::AtomicOrdering Failure) { |
1695 | // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, |
1696 | // void *desired, int success, int failure); |
1697 | CallArgList Args; |
1698 | Args.add(rvalue: RValue::get(V: getAtomicSizeValue()), type: CGF.getContext().getSizeType()); |
1699 | Args.add(rvalue: RValue::get(V: getAtomicPointer()), type: CGF.getContext().VoidPtrTy); |
1700 | Args.add(rvalue: RValue::get(V: ExpectedAddr), type: CGF.getContext().VoidPtrTy); |
1701 | Args.add(rvalue: RValue::get(V: DesiredAddr), type: CGF.getContext().VoidPtrTy); |
1702 | Args.add(rvalue: RValue::get( |
1703 | V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO: Success))), |
1704 | type: CGF.getContext().IntTy); |
1705 | Args.add(rvalue: RValue::get( |
1706 | V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO: Failure))), |
1707 | type: CGF.getContext().IntTy); |
1708 | auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange" , |
1709 | CGF.getContext().BoolTy, Args); |
1710 | |
1711 | return SuccessFailureRVal.getScalarVal(); |
1712 | } |
1713 | |
1714 | std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( |
1715 | RValue Expected, RValue Desired, llvm::AtomicOrdering Success, |
1716 | llvm::AtomicOrdering Failure, bool IsWeak) { |
1717 | // Check whether we should use a library call. |
1718 | if (shouldUseLibcall()) { |
1719 | // Produce a source address. |
1720 | Address ExpectedAddr = materializeRValue(rvalue: Expected); |
1721 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
1722 | llvm::Value *DesiredPtr = materializeRValue(rvalue: Desired).emitRawPointer(CGF); |
1723 | auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, |
1724 | Success, Failure); |
1725 | return std::make_pair( |
1726 | x: convertAtomicTempToRValue(addr: ExpectedAddr, resultSlot: AggValueSlot::ignored(), |
1727 | loc: SourceLocation(), /*AsValue=*/asValue: false), |
1728 | y&: Res); |
1729 | } |
1730 | |
1731 | // If we've got a scalar value of the right size, try to avoid going |
1732 | // through memory. |
1733 | auto *ExpectedVal = convertRValueToInt(RVal: Expected, /*CmpXchg=*/true); |
1734 | auto *DesiredVal = convertRValueToInt(RVal: Desired, /*CmpXchg=*/true); |
1735 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, |
1736 | Failure, IsWeak); |
1737 | return std::make_pair( |
1738 | x: ConvertToValueOrAtomic(Val: Res.first, ResultSlot: AggValueSlot::ignored(), |
1739 | Loc: SourceLocation(), /*AsValue=*/false, |
1740 | /*CmpXchg=*/true), |
1741 | y&: Res.second); |
1742 | } |
1743 | |
1744 | static void |
1745 | EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, |
1746 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1747 | Address DesiredAddr) { |
1748 | RValue UpRVal; |
1749 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
1750 | LValue DesiredLVal; |
1751 | if (AtomicLVal.isSimple()) { |
1752 | UpRVal = OldRVal; |
1753 | DesiredLVal = CGF.MakeAddrLValue(Addr: DesiredAddr, T: AtomicLVal.getType()); |
1754 | } else { |
1755 | // Build new lvalue for temp address. |
1756 | Address Ptr = Atomics.materializeRValue(rvalue: OldRVal); |
1757 | LValue UpdateLVal; |
1758 | if (AtomicLVal.isBitField()) { |
1759 | UpdateLVal = |
1760 | LValue::MakeBitfield(Addr: Ptr, Info: AtomicLVal.getBitFieldInfo(), |
1761 | type: AtomicLVal.getType(), |
1762 | BaseInfo: AtomicLVal.getBaseInfo(), |
1763 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1764 | DesiredLVal = |
1765 | LValue::MakeBitfield(Addr: DesiredAddr, Info: AtomicLVal.getBitFieldInfo(), |
1766 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
1767 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1768 | } else if (AtomicLVal.isVectorElt()) { |
1769 | UpdateLVal = LValue::MakeVectorElt(vecAddress: Ptr, Idx: AtomicLVal.getVectorIdx(), |
1770 | type: AtomicLVal.getType(), |
1771 | BaseInfo: AtomicLVal.getBaseInfo(), |
1772 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1773 | DesiredLVal = LValue::MakeVectorElt( |
1774 | vecAddress: DesiredAddr, Idx: AtomicLVal.getVectorIdx(), type: AtomicLVal.getType(), |
1775 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
1776 | } else { |
1777 | assert(AtomicLVal.isExtVectorElt()); |
1778 | UpdateLVal = LValue::MakeExtVectorElt(Addr: Ptr, Elts: AtomicLVal.getExtVectorElts(), |
1779 | type: AtomicLVal.getType(), |
1780 | BaseInfo: AtomicLVal.getBaseInfo(), |
1781 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1782 | DesiredLVal = LValue::MakeExtVectorElt( |
1783 | Addr: DesiredAddr, Elts: AtomicLVal.getExtVectorElts(), type: AtomicLVal.getType(), |
1784 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
1785 | } |
1786 | UpRVal = CGF.EmitLoadOfLValue(V: UpdateLVal, Loc: SourceLocation()); |
1787 | } |
1788 | // Store new value in the corresponding memory area. |
1789 | RValue NewRVal = UpdateOp(UpRVal); |
1790 | if (NewRVal.isScalar()) { |
1791 | CGF.EmitStoreThroughLValue(Src: NewRVal, Dst: DesiredLVal); |
1792 | } else { |
1793 | assert(NewRVal.isComplex()); |
1794 | CGF.EmitStoreOfComplex(V: NewRVal.getComplexVal(), dest: DesiredLVal, |
1795 | /*isInit=*/false); |
1796 | } |
1797 | } |
1798 | |
1799 | void AtomicInfo::EmitAtomicUpdateLibcall( |
1800 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1801 | bool IsVolatile) { |
1802 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1803 | |
1804 | Address ExpectedAddr = CreateTempAlloca(); |
1805 | |
1806 | EmitAtomicLoadLibcall(AddForLoaded: ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile); |
1807 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1808 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1809 | CGF.EmitBlock(BB: ContBB); |
1810 | Address DesiredAddr = CreateTempAlloca(); |
1811 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1812 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1813 | auto *OldVal = CGF.Builder.CreateLoad(Addr: ExpectedAddr); |
1814 | CGF.Builder.CreateStore(Val: OldVal, Addr: DesiredAddr); |
1815 | } |
1816 | auto OldRVal = convertAtomicTempToRValue(addr: ExpectedAddr, |
1817 | resultSlot: AggValueSlot::ignored(), |
1818 | loc: SourceLocation(), /*AsValue=*/asValue: false); |
1819 | EmitAtomicUpdateValue(CGF, Atomics&: *this, OldRVal, UpdateOp, DesiredAddr); |
1820 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
1821 | llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF); |
1822 | auto *Res = |
1823 | EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, Success: AO, Failure); |
1824 | CGF.Builder.CreateCondBr(Cond: Res, True: ExitBB, False: ContBB); |
1825 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1826 | } |
1827 | |
1828 | void AtomicInfo::EmitAtomicUpdateOp( |
1829 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1830 | bool IsVolatile) { |
1831 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1832 | |
1833 | // Do the atomic load. |
1834 | auto *OldVal = EmitAtomicLoadOp(AO: Failure, IsVolatile, /*CmpXchg=*/true); |
1835 | // For non-simple lvalues perform compare-and-swap procedure. |
1836 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1837 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1838 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
1839 | CGF.EmitBlock(BB: ContBB); |
1840 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: OldVal->getType(), |
1841 | /*NumReservedValues=*/2); |
1842 | PHI->addIncoming(V: OldVal, BB: CurBB); |
1843 | Address NewAtomicAddr = CreateTempAlloca(); |
1844 | Address NewAtomicIntAddr = |
1845 | shouldCastToInt(ValTy: NewAtomicAddr.getElementType(), /*CmpXchg=*/true) |
1846 | ? castToAtomicIntPointer(addr: NewAtomicAddr) |
1847 | : NewAtomicAddr; |
1848 | |
1849 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1850 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1851 | CGF.Builder.CreateStore(Val: PHI, Addr: NewAtomicIntAddr); |
1852 | } |
1853 | auto OldRVal = ConvertToValueOrAtomic(Val: PHI, ResultSlot: AggValueSlot::ignored(), |
1854 | Loc: SourceLocation(), /*AsValue=*/false, |
1855 | /*CmpXchg=*/true); |
1856 | EmitAtomicUpdateValue(CGF, Atomics&: *this, OldRVal, UpdateOp, DesiredAddr: NewAtomicAddr); |
1857 | auto *DesiredVal = CGF.Builder.CreateLoad(Addr: NewAtomicIntAddr); |
1858 | // Try to write new value using cmpxchg operation. |
1859 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal: PHI, DesiredVal, Success: AO, Failure); |
1860 | PHI->addIncoming(V: Res.first, BB: CGF.Builder.GetInsertBlock()); |
1861 | CGF.Builder.CreateCondBr(Cond: Res.second, True: ExitBB, False: ContBB); |
1862 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1863 | } |
1864 | |
1865 | static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, |
1866 | RValue UpdateRVal, Address DesiredAddr) { |
1867 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
1868 | LValue DesiredLVal; |
1869 | // Build new lvalue for temp address. |
1870 | if (AtomicLVal.isBitField()) { |
1871 | DesiredLVal = |
1872 | LValue::MakeBitfield(Addr: DesiredAddr, Info: AtomicLVal.getBitFieldInfo(), |
1873 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
1874 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1875 | } else if (AtomicLVal.isVectorElt()) { |
1876 | DesiredLVal = |
1877 | LValue::MakeVectorElt(vecAddress: DesiredAddr, Idx: AtomicLVal.getVectorIdx(), |
1878 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
1879 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1880 | } else { |
1881 | assert(AtomicLVal.isExtVectorElt()); |
1882 | DesiredLVal = LValue::MakeExtVectorElt( |
1883 | Addr: DesiredAddr, Elts: AtomicLVal.getExtVectorElts(), type: AtomicLVal.getType(), |
1884 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
1885 | } |
1886 | // Store new value in the corresponding memory area. |
1887 | assert(UpdateRVal.isScalar()); |
1888 | CGF.EmitStoreThroughLValue(Src: UpdateRVal, Dst: DesiredLVal); |
1889 | } |
1890 | |
1891 | void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
1892 | RValue UpdateRVal, bool IsVolatile) { |
1893 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1894 | |
1895 | Address ExpectedAddr = CreateTempAlloca(); |
1896 | |
1897 | EmitAtomicLoadLibcall(AddForLoaded: ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile); |
1898 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1899 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1900 | CGF.EmitBlock(BB: ContBB); |
1901 | Address DesiredAddr = CreateTempAlloca(); |
1902 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1903 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1904 | auto *OldVal = CGF.Builder.CreateLoad(Addr: ExpectedAddr); |
1905 | CGF.Builder.CreateStore(Val: OldVal, Addr: DesiredAddr); |
1906 | } |
1907 | EmitAtomicUpdateValue(CGF, Atomics&: *this, UpdateRVal, DesiredAddr); |
1908 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
1909 | llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF); |
1910 | auto *Res = |
1911 | EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, Success: AO, Failure); |
1912 | CGF.Builder.CreateCondBr(Cond: Res, True: ExitBB, False: ContBB); |
1913 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1914 | } |
1915 | |
1916 | void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, |
1917 | bool IsVolatile) { |
1918 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1919 | |
1920 | // Do the atomic load. |
1921 | auto *OldVal = EmitAtomicLoadOp(AO: Failure, IsVolatile, /*CmpXchg=*/true); |
1922 | // For non-simple lvalues perform compare-and-swap procedure. |
1923 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1924 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1925 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
1926 | CGF.EmitBlock(BB: ContBB); |
1927 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: OldVal->getType(), |
1928 | /*NumReservedValues=*/2); |
1929 | PHI->addIncoming(V: OldVal, BB: CurBB); |
1930 | Address NewAtomicAddr = CreateTempAlloca(); |
1931 | Address NewAtomicIntAddr = castToAtomicIntPointer(addr: NewAtomicAddr); |
1932 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1933 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1934 | CGF.Builder.CreateStore(Val: PHI, Addr: NewAtomicIntAddr); |
1935 | } |
1936 | EmitAtomicUpdateValue(CGF, Atomics&: *this, UpdateRVal, DesiredAddr: NewAtomicAddr); |
1937 | auto *DesiredVal = CGF.Builder.CreateLoad(Addr: NewAtomicIntAddr); |
1938 | // Try to write new value using cmpxchg operation. |
1939 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal: PHI, DesiredVal, Success: AO, Failure); |
1940 | PHI->addIncoming(V: Res.first, BB: CGF.Builder.GetInsertBlock()); |
1941 | CGF.Builder.CreateCondBr(Cond: Res.second, True: ExitBB, False: ContBB); |
1942 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1943 | } |
1944 | |
1945 | void AtomicInfo::EmitAtomicUpdate( |
1946 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1947 | bool IsVolatile) { |
1948 | if (shouldUseLibcall()) { |
1949 | EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); |
1950 | } else { |
1951 | EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); |
1952 | } |
1953 | } |
1954 | |
1955 | void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
1956 | bool IsVolatile) { |
1957 | if (shouldUseLibcall()) { |
1958 | EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); |
1959 | } else { |
1960 | EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); |
1961 | } |
1962 | } |
1963 | |
1964 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, |
1965 | bool isInit) { |
1966 | bool IsVolatile = lvalue.isVolatileQualified(); |
1967 | llvm::AtomicOrdering AO; |
1968 | if (lvalue.getType()->isAtomicType()) { |
1969 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
1970 | } else { |
1971 | AO = llvm::AtomicOrdering::Release; |
1972 | IsVolatile = true; |
1973 | } |
1974 | return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); |
1975 | } |
1976 | |
1977 | /// Emit a store to an l-value of atomic type. |
1978 | /// |
1979 | /// Note that the r-value is expected to be an r-value *of the atomic |
1980 | /// type*; this means that for aggregate r-values, it should include |
1981 | /// storage for any padding that was necessary. |
1982 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, |
1983 | llvm::AtomicOrdering AO, bool IsVolatile, |
1984 | bool isInit) { |
1985 | // If this is an aggregate r-value, it should agree in type except |
1986 | // maybe for address-space qualification. |
1987 | assert(!rvalue.isAggregate() || |
1988 | rvalue.getAggregateAddress().getElementType() == |
1989 | dest.getAddress().getElementType()); |
1990 | |
1991 | AtomicInfo atomics(*this, dest); |
1992 | LValue LVal = atomics.getAtomicLValue(); |
1993 | |
1994 | // If this is an initialization, just put the value there normally. |
1995 | if (LVal.isSimple()) { |
1996 | if (isInit) { |
1997 | atomics.emitCopyIntoMemory(rvalue); |
1998 | return; |
1999 | } |
2000 | |
2001 | // Check whether we should use a library call. |
2002 | if (atomics.shouldUseLibcall()) { |
2003 | // Produce a source address. |
2004 | Address srcAddr = atomics.materializeRValue(rvalue); |
2005 | |
2006 | // void __atomic_store(size_t size, void *mem, void *val, int order) |
2007 | CallArgList args; |
2008 | args.add(rvalue: RValue::get(V: atomics.getAtomicSizeValue()), |
2009 | type: getContext().getSizeType()); |
2010 | args.add(rvalue: RValue::get(V: atomics.getAtomicPointer()), type: getContext().VoidPtrTy); |
2011 | args.add(rvalue: RValue::get(V: srcAddr.emitRawPointer(CGF&: *this)), |
2012 | type: getContext().VoidPtrTy); |
2013 | args.add( |
2014 | rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: IntTy, V: (int)llvm::toCABI(AO))), |
2015 | type: getContext().IntTy); |
2016 | emitAtomicLibcall(*this, "__atomic_store" , getContext().VoidTy, args); |
2017 | return; |
2018 | } |
2019 | |
2020 | // Okay, we're doing this natively. |
2021 | llvm::Value *ValToStore = atomics.convertRValueToInt(RVal: rvalue); |
2022 | |
2023 | // Do the atomic store. |
2024 | Address Addr = atomics.getAtomicAddress(); |
2025 | if (llvm::Value *Value = atomics.getScalarRValValueOrNull(RVal: rvalue)) |
2026 | if (shouldCastToInt(ValTy: Value->getType(), /*CmpXchg=*/false)) { |
2027 | Addr = atomics.castToAtomicIntPointer(addr: Addr); |
2028 | ValToStore = Builder.CreateIntCast(V: ValToStore, DestTy: Addr.getElementType(), |
2029 | /*isSigned=*/false); |
2030 | } |
2031 | llvm::StoreInst *store = Builder.CreateStore(Val: ValToStore, Addr); |
2032 | |
2033 | if (AO == llvm::AtomicOrdering::Acquire) |
2034 | AO = llvm::AtomicOrdering::Monotonic; |
2035 | else if (AO == llvm::AtomicOrdering::AcquireRelease) |
2036 | AO = llvm::AtomicOrdering::Release; |
2037 | // Initializations don't need to be atomic. |
2038 | if (!isInit) |
2039 | store->setAtomic(Ordering: AO); |
2040 | |
2041 | // Other decoration. |
2042 | if (IsVolatile) |
2043 | store->setVolatile(true); |
2044 | CGM.DecorateInstructionWithTBAA(Inst: store, TBAAInfo: dest.getTBAAInfo()); |
2045 | return; |
2046 | } |
2047 | |
2048 | // Emit simple atomic update operation. |
2049 | atomics.EmitAtomicUpdate(AO, UpdateRVal: rvalue, IsVolatile); |
2050 | } |
2051 | |
2052 | /// Emit a compare-and-exchange op for atomic type. |
2053 | /// |
2054 | std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( |
2055 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
2056 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, |
2057 | AggValueSlot Slot) { |
2058 | // If this is an aggregate r-value, it should agree in type except |
2059 | // maybe for address-space qualification. |
2060 | assert(!Expected.isAggregate() || |
2061 | Expected.getAggregateAddress().getElementType() == |
2062 | Obj.getAddress().getElementType()); |
2063 | assert(!Desired.isAggregate() || |
2064 | Desired.getAggregateAddress().getElementType() == |
2065 | Obj.getAddress().getElementType()); |
2066 | AtomicInfo Atomics(*this, Obj); |
2067 | |
2068 | return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, |
2069 | IsWeak); |
2070 | } |
2071 | |
2072 | llvm::AtomicRMWInst * |
2073 | CodeGenFunction::emitAtomicRMWInst(llvm::AtomicRMWInst::BinOp Op, Address Addr, |
2074 | llvm::Value *Val, llvm::AtomicOrdering Order, |
2075 | llvm::SyncScope::ID SSID, |
2076 | const AtomicExpr *AE) { |
2077 | llvm::AtomicRMWInst *RMW = |
2078 | Builder.CreateAtomicRMW(Op, Addr, Val, Ordering: Order, SSID); |
2079 | getTargetHooks().setTargetAtomicMetadata(CGF&: *this, AtomicInst&: *RMW, Expr: AE); |
2080 | return RMW; |
2081 | } |
2082 | |
2083 | void CodeGenFunction::EmitAtomicUpdate( |
2084 | LValue LVal, llvm::AtomicOrdering AO, |
2085 | const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { |
2086 | AtomicInfo Atomics(*this, LVal); |
2087 | Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); |
2088 | } |
2089 | |
2090 | void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { |
2091 | AtomicInfo atomics(*this, dest); |
2092 | |
2093 | switch (atomics.getEvaluationKind()) { |
2094 | case TEK_Scalar: { |
2095 | llvm::Value *value = EmitScalarExpr(E: init); |
2096 | atomics.emitCopyIntoMemory(rvalue: RValue::get(V: value)); |
2097 | return; |
2098 | } |
2099 | |
2100 | case TEK_Complex: { |
2101 | ComplexPairTy value = EmitComplexExpr(E: init); |
2102 | atomics.emitCopyIntoMemory(rvalue: RValue::getComplex(C: value)); |
2103 | return; |
2104 | } |
2105 | |
2106 | case TEK_Aggregate: { |
2107 | // Fix up the destination if the initializer isn't an expression |
2108 | // of atomic type. |
2109 | bool Zeroed = false; |
2110 | if (!init->getType()->isAtomicType()) { |
2111 | Zeroed = atomics.emitMemSetZeroIfNecessary(); |
2112 | dest = atomics.projectValue(); |
2113 | } |
2114 | |
2115 | // Evaluate the expression directly into the destination. |
2116 | AggValueSlot slot = AggValueSlot::forLValue( |
2117 | LV: dest, isDestructed: AggValueSlot::IsNotDestructed, |
2118 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased, |
2119 | mayOverlap: AggValueSlot::DoesNotOverlap, |
2120 | isZeroed: Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed); |
2121 | |
2122 | EmitAggExpr(E: init, AS: slot); |
2123 | return; |
2124 | } |
2125 | } |
2126 | llvm_unreachable("bad evaluation kind" ); |
2127 | } |
2128 | |