1 | //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the code for emitting atomic operations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CGCall.h" |
14 | #include "CGRecordLayout.h" |
15 | #include "CodeGenFunction.h" |
16 | #include "CodeGenModule.h" |
17 | #include "TargetInfo.h" |
18 | #include "clang/AST/ASTContext.h" |
19 | #include "clang/CodeGen/CGFunctionInfo.h" |
20 | #include "clang/Frontend/FrontendDiagnostic.h" |
21 | #include "llvm/ADT/DenseMap.h" |
22 | #include "llvm/IR/DataLayout.h" |
23 | #include "llvm/IR/Intrinsics.h" |
24 | #include "llvm/IR/Operator.h" |
25 | |
26 | using namespace clang; |
27 | using namespace CodeGen; |
28 | |
29 | namespace { |
30 | class AtomicInfo { |
31 | CodeGenFunction &CGF; |
32 | QualType AtomicTy; |
33 | QualType ValueTy; |
34 | uint64_t AtomicSizeInBits; |
35 | uint64_t ValueSizeInBits; |
36 | CharUnits AtomicAlign; |
37 | CharUnits ValueAlign; |
38 | TypeEvaluationKind EvaluationKind; |
39 | bool UseLibcall; |
40 | LValue LVal; |
41 | CGBitFieldInfo BFI; |
42 | public: |
43 | AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) |
44 | : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), |
45 | EvaluationKind(TEK_Scalar), UseLibcall(true) { |
46 | assert(!lvalue.isGlobalReg()); |
47 | ASTContext &C = CGF.getContext(); |
48 | if (lvalue.isSimple()) { |
49 | AtomicTy = lvalue.getType(); |
50 | if (auto *ATy = AtomicTy->getAs<AtomicType>()) |
51 | ValueTy = ATy->getValueType(); |
52 | else |
53 | ValueTy = AtomicTy; |
54 | EvaluationKind = CGF.getEvaluationKind(ValueTy); |
55 | |
56 | uint64_t ValueAlignInBits; |
57 | uint64_t AtomicAlignInBits; |
58 | TypeInfo ValueTI = C.getTypeInfo(ValueTy); |
59 | ValueSizeInBits = ValueTI.Width; |
60 | ValueAlignInBits = ValueTI.Align; |
61 | |
62 | TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); |
63 | AtomicSizeInBits = AtomicTI.Width; |
64 | AtomicAlignInBits = AtomicTI.Align; |
65 | |
66 | assert(ValueSizeInBits <= AtomicSizeInBits); |
67 | assert(ValueAlignInBits <= AtomicAlignInBits); |
68 | |
69 | AtomicAlign = C.toCharUnitsFromBits(BitSize: AtomicAlignInBits); |
70 | ValueAlign = C.toCharUnitsFromBits(BitSize: ValueAlignInBits); |
71 | if (lvalue.getAlignment().isZero()) |
72 | lvalue.setAlignment(AtomicAlign); |
73 | |
74 | LVal = lvalue; |
75 | } else if (lvalue.isBitField()) { |
76 | ValueTy = lvalue.getType(); |
77 | ValueSizeInBits = C.getTypeSize(ValueTy); |
78 | auto &OrigBFI = lvalue.getBitFieldInfo(); |
79 | auto Offset = OrigBFI.Offset % C.toBits(CharSize: lvalue.getAlignment()); |
80 | AtomicSizeInBits = C.toBits( |
81 | CharSize: C.toCharUnitsFromBits(BitSize: Offset + OrigBFI.Size + C.getCharWidth() - 1) |
82 | .alignTo(Align: lvalue.getAlignment())); |
83 | llvm::Value *BitFieldPtr = lvalue.getRawBitFieldPointer(CGF); |
84 | auto OffsetInChars = |
85 | (C.toCharUnitsFromBits(BitSize: OrigBFI.Offset) / lvalue.getAlignment()) * |
86 | lvalue.getAlignment(); |
87 | llvm::Value *StoragePtr = CGF.Builder.CreateConstGEP1_64( |
88 | Ty: CGF.Int8Ty, Ptr: BitFieldPtr, Idx0: OffsetInChars.getQuantity()); |
89 | StoragePtr = CGF.Builder.CreateAddrSpaceCast( |
90 | V: StoragePtr, DestTy: CGF.UnqualPtrTy, Name: "atomic_bitfield_base" ); |
91 | BFI = OrigBFI; |
92 | BFI.Offset = Offset; |
93 | BFI.StorageSize = AtomicSizeInBits; |
94 | BFI.StorageOffset += OffsetInChars; |
95 | llvm::Type *StorageTy = CGF.Builder.getIntNTy(N: AtomicSizeInBits); |
96 | LVal = LValue::MakeBitfield( |
97 | Address(StoragePtr, StorageTy, lvalue.getAlignment()), BFI, |
98 | lvalue.getType(), lvalue.getBaseInfo(), lvalue.getTBAAInfo()); |
99 | AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); |
100 | if (AtomicTy.isNull()) { |
101 | llvm::APInt Size( |
102 | /*numBits=*/32, |
103 | C.toCharUnitsFromBits(BitSize: AtomicSizeInBits).getQuantity()); |
104 | AtomicTy = C.getConstantArrayType(C.CharTy, Size, nullptr, |
105 | ArraySizeModifier::Normal, |
106 | /*IndexTypeQuals=*/0); |
107 | } |
108 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
109 | } else if (lvalue.isVectorElt()) { |
110 | ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType(); |
111 | ValueSizeInBits = C.getTypeSize(ValueTy); |
112 | AtomicTy = lvalue.getType(); |
113 | AtomicSizeInBits = C.getTypeSize(AtomicTy); |
114 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
115 | LVal = lvalue; |
116 | } else { |
117 | assert(lvalue.isExtVectorElt()); |
118 | ValueTy = lvalue.getType(); |
119 | ValueSizeInBits = C.getTypeSize(ValueTy); |
120 | AtomicTy = ValueTy = CGF.getContext().getExtVectorType( |
121 | lvalue.getType(), cast<llvm::FixedVectorType>( |
122 | lvalue.getExtVectorAddress().getElementType()) |
123 | ->getNumElements()); |
124 | AtomicSizeInBits = C.getTypeSize(AtomicTy); |
125 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
126 | LVal = lvalue; |
127 | } |
128 | UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( |
129 | AtomicSizeInBits, AlignmentInBits: C.toBits(CharSize: lvalue.getAlignment())); |
130 | } |
131 | |
132 | QualType getAtomicType() const { return AtomicTy; } |
133 | QualType getValueType() const { return ValueTy; } |
134 | CharUnits getAtomicAlignment() const { return AtomicAlign; } |
135 | uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } |
136 | uint64_t getValueSizeInBits() const { return ValueSizeInBits; } |
137 | TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } |
138 | bool shouldUseLibcall() const { return UseLibcall; } |
139 | const LValue &getAtomicLValue() const { return LVal; } |
140 | llvm::Value *getAtomicPointer() const { |
141 | if (LVal.isSimple()) |
142 | return LVal.emitRawPointer(CGF); |
143 | else if (LVal.isBitField()) |
144 | return LVal.getRawBitFieldPointer(CGF); |
145 | else if (LVal.isVectorElt()) |
146 | return LVal.getRawVectorPointer(CGF); |
147 | assert(LVal.isExtVectorElt()); |
148 | return LVal.getRawExtVectorPointer(CGF); |
149 | } |
150 | Address getAtomicAddress() const { |
151 | llvm::Type *ElTy; |
152 | if (LVal.isSimple()) |
153 | ElTy = LVal.getAddress(CGF).getElementType(); |
154 | else if (LVal.isBitField()) |
155 | ElTy = LVal.getBitFieldAddress().getElementType(); |
156 | else if (LVal.isVectorElt()) |
157 | ElTy = LVal.getVectorAddress().getElementType(); |
158 | else |
159 | ElTy = LVal.getExtVectorAddress().getElementType(); |
160 | return Address(getAtomicPointer(), ElTy, getAtomicAlignment()); |
161 | } |
162 | |
163 | Address getAtomicAddressAsAtomicIntPointer() const { |
164 | return castToAtomicIntPointer(Addr: getAtomicAddress()); |
165 | } |
166 | |
167 | /// Is the atomic size larger than the underlying value type? |
168 | /// |
169 | /// Note that the absence of padding does not mean that atomic |
170 | /// objects are completely interchangeable with non-atomic |
171 | /// objects: we might have promoted the alignment of a type |
172 | /// without making it bigger. |
173 | bool hasPadding() const { |
174 | return (ValueSizeInBits != AtomicSizeInBits); |
175 | } |
176 | |
177 | bool emitMemSetZeroIfNecessary() const; |
178 | |
179 | llvm::Value *getAtomicSizeValue() const { |
180 | CharUnits size = CGF.getContext().toCharUnitsFromBits(BitSize: AtomicSizeInBits); |
181 | return CGF.CGM.getSize(numChars: size); |
182 | } |
183 | |
184 | /// Cast the given pointer to an integer pointer suitable for atomic |
185 | /// operations if the source. |
186 | Address castToAtomicIntPointer(Address Addr) const; |
187 | |
188 | /// If Addr is compatible with the iN that will be used for an atomic |
189 | /// operation, bitcast it. Otherwise, create a temporary that is suitable |
190 | /// and copy the value across. |
191 | Address convertToAtomicIntPointer(Address Addr) const; |
192 | |
193 | /// Turn an atomic-layout object into an r-value. |
194 | RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, |
195 | SourceLocation loc, bool AsValue) const; |
196 | |
197 | llvm::Value *getScalarRValValueOrNull(RValue RVal) const; |
198 | |
199 | /// Converts an rvalue to integer value if needed. |
200 | llvm::Value *convertRValueToInt(RValue RVal, bool CmpXchg = false) const; |
201 | |
202 | RValue ConvertToValueOrAtomic(llvm::Value *IntVal, AggValueSlot ResultSlot, |
203 | SourceLocation Loc, bool AsValue, |
204 | bool CmpXchg = false) const; |
205 | |
206 | /// Copy an atomic r-value into atomic-layout memory. |
207 | void emitCopyIntoMemory(RValue rvalue) const; |
208 | |
209 | /// Project an l-value down to the value field. |
210 | LValue projectValue() const { |
211 | assert(LVal.isSimple()); |
212 | Address addr = getAtomicAddress(); |
213 | if (hasPadding()) |
214 | addr = CGF.Builder.CreateStructGEP(Addr: addr, Index: 0); |
215 | |
216 | return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), |
217 | LVal.getBaseInfo(), LVal.getTBAAInfo()); |
218 | } |
219 | |
220 | /// Emits atomic load. |
221 | /// \returns Loaded value. |
222 | RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
223 | bool AsValue, llvm::AtomicOrdering AO, |
224 | bool IsVolatile); |
225 | |
226 | /// Emits atomic compare-and-exchange sequence. |
227 | /// \param Expected Expected value. |
228 | /// \param Desired Desired value. |
229 | /// \param Success Atomic ordering for success operation. |
230 | /// \param Failure Atomic ordering for failed operation. |
231 | /// \param IsWeak true if atomic operation is weak, false otherwise. |
232 | /// \returns Pair of values: previous value from storage (value type) and |
233 | /// boolean flag (i1 type) with true if success and false otherwise. |
234 | std::pair<RValue, llvm::Value *> |
235 | EmitAtomicCompareExchange(RValue Expected, RValue Desired, |
236 | llvm::AtomicOrdering Success = |
237 | llvm::AtomicOrdering::SequentiallyConsistent, |
238 | llvm::AtomicOrdering Failure = |
239 | llvm::AtomicOrdering::SequentiallyConsistent, |
240 | bool IsWeak = false); |
241 | |
242 | /// Emits atomic update. |
243 | /// \param AO Atomic ordering. |
244 | /// \param UpdateOp Update operation for the current lvalue. |
245 | void EmitAtomicUpdate(llvm::AtomicOrdering AO, |
246 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
247 | bool IsVolatile); |
248 | /// Emits atomic update. |
249 | /// \param AO Atomic ordering. |
250 | void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
251 | bool IsVolatile); |
252 | |
253 | /// Materialize an atomic r-value in atomic-layout memory. |
254 | Address materializeRValue(RValue rvalue) const; |
255 | |
256 | /// Creates temp alloca for intermediate operations on atomic value. |
257 | Address CreateTempAlloca() const; |
258 | private: |
259 | bool requiresMemSetZero(llvm::Type *type) const; |
260 | |
261 | |
262 | /// Emits atomic load as a libcall. |
263 | void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
264 | llvm::AtomicOrdering AO, bool IsVolatile); |
265 | /// Emits atomic load as LLVM instruction. |
266 | llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile, |
267 | bool CmpXchg = false); |
268 | /// Emits atomic compare-and-exchange op as a libcall. |
269 | llvm::Value *EmitAtomicCompareExchangeLibcall( |
270 | llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, |
271 | llvm::AtomicOrdering Success = |
272 | llvm::AtomicOrdering::SequentiallyConsistent, |
273 | llvm::AtomicOrdering Failure = |
274 | llvm::AtomicOrdering::SequentiallyConsistent); |
275 | /// Emits atomic compare-and-exchange op as LLVM instruction. |
276 | std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( |
277 | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
278 | llvm::AtomicOrdering Success = |
279 | llvm::AtomicOrdering::SequentiallyConsistent, |
280 | llvm::AtomicOrdering Failure = |
281 | llvm::AtomicOrdering::SequentiallyConsistent, |
282 | bool IsWeak = false); |
283 | /// Emit atomic update as libcalls. |
284 | void |
285 | EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
286 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
287 | bool IsVolatile); |
288 | /// Emit atomic update as LLVM instructions. |
289 | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, |
290 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
291 | bool IsVolatile); |
292 | /// Emit atomic update as libcalls. |
293 | void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, |
294 | bool IsVolatile); |
295 | /// Emit atomic update as LLVM instructions. |
296 | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, |
297 | bool IsVolatile); |
298 | }; |
299 | } |
300 | |
301 | Address AtomicInfo::CreateTempAlloca() const { |
302 | Address TempAlloca = CGF.CreateMemTemp( |
303 | (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy |
304 | : AtomicTy, |
305 | getAtomicAlignment(), |
306 | "atomic-temp" ); |
307 | // Cast to pointer to value type for bitfields. |
308 | if (LVal.isBitField()) |
309 | return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
310 | Addr: TempAlloca, Ty: getAtomicAddress().getType(), |
311 | ElementTy: getAtomicAddress().getElementType()); |
312 | return TempAlloca; |
313 | } |
314 | |
315 | static RValue emitAtomicLibcall(CodeGenFunction &CGF, |
316 | StringRef fnName, |
317 | QualType resultType, |
318 | CallArgList &args) { |
319 | const CGFunctionInfo &fnInfo = |
320 | CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); |
321 | llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(Info: fnInfo); |
322 | llvm::AttrBuilder fnAttrB(CGF.getLLVMContext()); |
323 | fnAttrB.addAttribute(llvm::Attribute::NoUnwind); |
324 | fnAttrB.addAttribute(llvm::Attribute::WillReturn); |
325 | llvm::AttributeList fnAttrs = llvm::AttributeList::get( |
326 | C&: CGF.getLLVMContext(), Index: llvm::AttributeList::FunctionIndex, B: fnAttrB); |
327 | |
328 | llvm::FunctionCallee fn = |
329 | CGF.CGM.CreateRuntimeFunction(Ty: fnTy, Name: fnName, ExtraAttrs: fnAttrs); |
330 | auto callee = CGCallee::forDirect(functionPtr: fn); |
331 | return CGF.EmitCall(CallInfo: fnInfo, Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
332 | } |
333 | |
334 | /// Does a store of the given IR type modify the full expected width? |
335 | static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, |
336 | uint64_t expectedSize) { |
337 | return (CGM.getDataLayout().getTypeStoreSize(Ty: type) * 8 == expectedSize); |
338 | } |
339 | |
340 | /// Does the atomic type require memsetting to zero before initialization? |
341 | /// |
342 | /// The IR type is provided as a way of making certain queries faster. |
343 | bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { |
344 | // If the atomic type has size padding, we definitely need a memset. |
345 | if (hasPadding()) return true; |
346 | |
347 | // Otherwise, do some simple heuristics to try to avoid it: |
348 | switch (getEvaluationKind()) { |
349 | // For scalars and complexes, check whether the store size of the |
350 | // type uses the full size. |
351 | case TEK_Scalar: |
352 | return !isFullSizeType(CGM&: CGF.CGM, type, expectedSize: AtomicSizeInBits); |
353 | case TEK_Complex: |
354 | return !isFullSizeType(CGM&: CGF.CGM, type: type->getStructElementType(N: 0), |
355 | expectedSize: AtomicSizeInBits / 2); |
356 | |
357 | // Padding in structs has an undefined bit pattern. User beware. |
358 | case TEK_Aggregate: |
359 | return false; |
360 | } |
361 | llvm_unreachable("bad evaluation kind" ); |
362 | } |
363 | |
364 | bool AtomicInfo::emitMemSetZeroIfNecessary() const { |
365 | assert(LVal.isSimple()); |
366 | Address addr = LVal.getAddress(CGF); |
367 | if (!requiresMemSetZero(type: addr.getElementType())) |
368 | return false; |
369 | |
370 | CGF.Builder.CreateMemSet( |
371 | addr.emitRawPointer(CGF), llvm::ConstantInt::get(CGF.Int8Ty, 0), |
372 | CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), |
373 | LVal.getAlignment().getAsAlign()); |
374 | return true; |
375 | } |
376 | |
377 | static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, |
378 | Address Dest, Address Ptr, |
379 | Address Val1, Address Val2, |
380 | uint64_t Size, |
381 | llvm::AtomicOrdering SuccessOrder, |
382 | llvm::AtomicOrdering FailureOrder, |
383 | llvm::SyncScope::ID Scope) { |
384 | // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. |
385 | llvm::Value *Expected = CGF.Builder.CreateLoad(Addr: Val1); |
386 | llvm::Value *Desired = CGF.Builder.CreateLoad(Addr: Val2); |
387 | |
388 | llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( |
389 | Addr: Ptr, Cmp: Expected, New: Desired, SuccessOrdering: SuccessOrder, FailureOrdering: FailureOrder, SSID: Scope); |
390 | Pair->setVolatile(E->isVolatile()); |
391 | Pair->setWeak(IsWeak); |
392 | |
393 | // Cmp holds the result of the compare-exchange operation: true on success, |
394 | // false on failure. |
395 | llvm::Value *Old = CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 0); |
396 | llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 1); |
397 | |
398 | // This basic block is used to hold the store instruction if the operation |
399 | // failed. |
400 | llvm::BasicBlock *StoreExpectedBB = |
401 | CGF.createBasicBlock(name: "cmpxchg.store_expected" , parent: CGF.CurFn); |
402 | |
403 | // This basic block is the exit point of the operation, we should end up |
404 | // here regardless of whether or not the operation succeeded. |
405 | llvm::BasicBlock *ContinueBB = |
406 | CGF.createBasicBlock(name: "cmpxchg.continue" , parent: CGF.CurFn); |
407 | |
408 | // Update Expected if Expected isn't equal to Old, otherwise branch to the |
409 | // exit point. |
410 | CGF.Builder.CreateCondBr(Cond: Cmp, True: ContinueBB, False: StoreExpectedBB); |
411 | |
412 | CGF.Builder.SetInsertPoint(StoreExpectedBB); |
413 | // Update the memory at Expected with Old's value. |
414 | CGF.Builder.CreateStore(Val: Old, Addr: Val1); |
415 | // Finally, branch to the exit point. |
416 | CGF.Builder.CreateBr(Dest: ContinueBB); |
417 | |
418 | CGF.Builder.SetInsertPoint(ContinueBB); |
419 | // Update the memory at Dest with Cmp's value. |
420 | CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); |
421 | } |
422 | |
423 | /// Given an ordering required on success, emit all possible cmpxchg |
424 | /// instructions to cope with the provided (but possibly only dynamically known) |
425 | /// FailureOrder. |
426 | static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, |
427 | bool IsWeak, Address Dest, Address Ptr, |
428 | Address Val1, Address Val2, |
429 | llvm::Value *FailureOrderVal, |
430 | uint64_t Size, |
431 | llvm::AtomicOrdering SuccessOrder, |
432 | llvm::SyncScope::ID Scope) { |
433 | llvm::AtomicOrdering FailureOrder; |
434 | if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(Val: FailureOrderVal)) { |
435 | auto FOS = FO->getSExtValue(); |
436 | if (!llvm::isValidAtomicOrderingCABI(I: FOS)) |
437 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
438 | else |
439 | switch ((llvm::AtomicOrderingCABI)FOS) { |
440 | case llvm::AtomicOrderingCABI::relaxed: |
441 | // 31.7.2.18: "The failure argument shall not be memory_order_release |
442 | // nor memory_order_acq_rel". Fallback to monotonic. |
443 | case llvm::AtomicOrderingCABI::release: |
444 | case llvm::AtomicOrderingCABI::acq_rel: |
445 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
446 | break; |
447 | case llvm::AtomicOrderingCABI::consume: |
448 | case llvm::AtomicOrderingCABI::acquire: |
449 | FailureOrder = llvm::AtomicOrdering::Acquire; |
450 | break; |
451 | case llvm::AtomicOrderingCABI::seq_cst: |
452 | FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; |
453 | break; |
454 | } |
455 | // Prior to c++17, "the failure argument shall be no stronger than the |
456 | // success argument". This condition has been lifted and the only |
457 | // precondition is 31.7.2.18. Effectively treat this as a DR and skip |
458 | // language version checks. |
459 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
460 | FailureOrder, Scope); |
461 | return; |
462 | } |
463 | |
464 | // Create all the relevant BB's |
465 | auto *MonotonicBB = CGF.createBasicBlock(name: "monotonic_fail" , parent: CGF.CurFn); |
466 | auto *AcquireBB = CGF.createBasicBlock(name: "acquire_fail" , parent: CGF.CurFn); |
467 | auto *SeqCstBB = CGF.createBasicBlock(name: "seqcst_fail" , parent: CGF.CurFn); |
468 | auto *ContBB = CGF.createBasicBlock(name: "atomic.continue" , parent: CGF.CurFn); |
469 | |
470 | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
471 | // doesn't matter unless someone is crazy enough to use something that |
472 | // doesn't fold to a constant for the ordering. |
473 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(V: FailureOrderVal, Dest: MonotonicBB); |
474 | // Implemented as acquire, since it's the closest in LLVM. |
475 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::consume), |
476 | Dest: AcquireBB); |
477 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acquire), |
478 | Dest: AcquireBB); |
479 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::seq_cst), |
480 | Dest: SeqCstBB); |
481 | |
482 | // Emit all the different atomics |
483 | CGF.Builder.SetInsertPoint(MonotonicBB); |
484 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, |
485 | Size, SuccessOrder, FailureOrder: llvm::AtomicOrdering::Monotonic, Scope); |
486 | CGF.Builder.CreateBr(Dest: ContBB); |
487 | |
488 | CGF.Builder.SetInsertPoint(AcquireBB); |
489 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
490 | FailureOrder: llvm::AtomicOrdering::Acquire, Scope); |
491 | CGF.Builder.CreateBr(Dest: ContBB); |
492 | |
493 | CGF.Builder.SetInsertPoint(SeqCstBB); |
494 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
495 | FailureOrder: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
496 | CGF.Builder.CreateBr(Dest: ContBB); |
497 | |
498 | CGF.Builder.SetInsertPoint(ContBB); |
499 | } |
500 | |
501 | /// Duplicate the atomic min/max operation in conventional IR for the builtin |
502 | /// variants that return the new rather than the original value. |
503 | static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder, |
504 | AtomicExpr::AtomicOp Op, |
505 | bool IsSigned, |
506 | llvm::Value *OldVal, |
507 | llvm::Value *RHS) { |
508 | llvm::CmpInst::Predicate Pred; |
509 | switch (Op) { |
510 | default: |
511 | llvm_unreachable("Unexpected min/max operation" ); |
512 | case AtomicExpr::AO__atomic_max_fetch: |
513 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
514 | Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT; |
515 | break; |
516 | case AtomicExpr::AO__atomic_min_fetch: |
517 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
518 | Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT; |
519 | break; |
520 | } |
521 | llvm::Value *Cmp = Builder.CreateICmp(P: Pred, LHS: OldVal, RHS, Name: "tst" ); |
522 | return Builder.CreateSelect(C: Cmp, True: OldVal, False: RHS, Name: "newval" ); |
523 | } |
524 | |
525 | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, |
526 | Address Ptr, Address Val1, Address Val2, |
527 | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
528 | uint64_t Size, llvm::AtomicOrdering Order, |
529 | llvm::SyncScope::ID Scope) { |
530 | llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; |
531 | bool PostOpMinMax = false; |
532 | unsigned PostOp = 0; |
533 | |
534 | switch (E->getOp()) { |
535 | case AtomicExpr::AO__c11_atomic_init: |
536 | case AtomicExpr::AO__opencl_atomic_init: |
537 | llvm_unreachable("Already handled!" ); |
538 | |
539 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
540 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
541 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
542 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: false, Dest, Ptr, Val1, Val2, |
543 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
544 | return; |
545 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
546 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
547 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
548 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: true, Dest, Ptr, Val1, Val2, |
549 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
550 | return; |
551 | case AtomicExpr::AO__atomic_compare_exchange: |
552 | case AtomicExpr::AO__atomic_compare_exchange_n: |
553 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
554 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: { |
555 | if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(Val: IsWeak)) { |
556 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: IsWeakC->getZExtValue(), Dest, Ptr, |
557 | Val1, Val2, FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
558 | } else { |
559 | // Create all the relevant BB's |
560 | llvm::BasicBlock *StrongBB = |
561 | CGF.createBasicBlock(name: "cmpxchg.strong" , parent: CGF.CurFn); |
562 | llvm::BasicBlock *WeakBB = CGF.createBasicBlock(name: "cmxchg.weak" , parent: CGF.CurFn); |
563 | llvm::BasicBlock *ContBB = |
564 | CGF.createBasicBlock(name: "cmpxchg.continue" , parent: CGF.CurFn); |
565 | |
566 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(V: IsWeak, Dest: WeakBB); |
567 | SI->addCase(OnVal: CGF.Builder.getInt1(V: false), Dest: StrongBB); |
568 | |
569 | CGF.Builder.SetInsertPoint(StrongBB); |
570 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: false, Dest, Ptr, Val1, Val2, |
571 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
572 | CGF.Builder.CreateBr(Dest: ContBB); |
573 | |
574 | CGF.Builder.SetInsertPoint(WeakBB); |
575 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: true, Dest, Ptr, Val1, Val2, |
576 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
577 | CGF.Builder.CreateBr(Dest: ContBB); |
578 | |
579 | CGF.Builder.SetInsertPoint(ContBB); |
580 | } |
581 | return; |
582 | } |
583 | case AtomicExpr::AO__c11_atomic_load: |
584 | case AtomicExpr::AO__opencl_atomic_load: |
585 | case AtomicExpr::AO__hip_atomic_load: |
586 | case AtomicExpr::AO__atomic_load_n: |
587 | case AtomicExpr::AO__atomic_load: |
588 | case AtomicExpr::AO__scoped_atomic_load_n: |
589 | case AtomicExpr::AO__scoped_atomic_load: { |
590 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr: Ptr); |
591 | Load->setAtomic(Ordering: Order, SSID: Scope); |
592 | Load->setVolatile(E->isVolatile()); |
593 | CGF.Builder.CreateStore(Val: Load, Addr: Dest); |
594 | return; |
595 | } |
596 | |
597 | case AtomicExpr::AO__c11_atomic_store: |
598 | case AtomicExpr::AO__opencl_atomic_store: |
599 | case AtomicExpr::AO__hip_atomic_store: |
600 | case AtomicExpr::AO__atomic_store: |
601 | case AtomicExpr::AO__atomic_store_n: |
602 | case AtomicExpr::AO__scoped_atomic_store: |
603 | case AtomicExpr::AO__scoped_atomic_store_n: { |
604 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Addr: Val1); |
605 | llvm::StoreInst *Store = CGF.Builder.CreateStore(Val: LoadVal1, Addr: Ptr); |
606 | Store->setAtomic(Ordering: Order, SSID: Scope); |
607 | Store->setVolatile(E->isVolatile()); |
608 | return; |
609 | } |
610 | |
611 | case AtomicExpr::AO__c11_atomic_exchange: |
612 | case AtomicExpr::AO__hip_atomic_exchange: |
613 | case AtomicExpr::AO__opencl_atomic_exchange: |
614 | case AtomicExpr::AO__atomic_exchange_n: |
615 | case AtomicExpr::AO__atomic_exchange: |
616 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
617 | case AtomicExpr::AO__scoped_atomic_exchange: |
618 | Op = llvm::AtomicRMWInst::Xchg; |
619 | break; |
620 | |
621 | case AtomicExpr::AO__atomic_add_fetch: |
622 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
623 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd |
624 | : llvm::Instruction::Add; |
625 | [[fallthrough]]; |
626 | case AtomicExpr::AO__c11_atomic_fetch_add: |
627 | case AtomicExpr::AO__hip_atomic_fetch_add: |
628 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
629 | case AtomicExpr::AO__atomic_fetch_add: |
630 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
631 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd |
632 | : llvm::AtomicRMWInst::Add; |
633 | break; |
634 | |
635 | case AtomicExpr::AO__atomic_sub_fetch: |
636 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
637 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FSub |
638 | : llvm::Instruction::Sub; |
639 | [[fallthrough]]; |
640 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
641 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
642 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
643 | case AtomicExpr::AO__atomic_fetch_sub: |
644 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
645 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub |
646 | : llvm::AtomicRMWInst::Sub; |
647 | break; |
648 | |
649 | case AtomicExpr::AO__atomic_min_fetch: |
650 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
651 | PostOpMinMax = true; |
652 | [[fallthrough]]; |
653 | case AtomicExpr::AO__c11_atomic_fetch_min: |
654 | case AtomicExpr::AO__hip_atomic_fetch_min: |
655 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
656 | case AtomicExpr::AO__atomic_fetch_min: |
657 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
658 | Op = E->getValueType()->isFloatingType() |
659 | ? llvm::AtomicRMWInst::FMin |
660 | : (E->getValueType()->isSignedIntegerType() |
661 | ? llvm::AtomicRMWInst::Min |
662 | : llvm::AtomicRMWInst::UMin); |
663 | break; |
664 | |
665 | case AtomicExpr::AO__atomic_max_fetch: |
666 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
667 | PostOpMinMax = true; |
668 | [[fallthrough]]; |
669 | case AtomicExpr::AO__c11_atomic_fetch_max: |
670 | case AtomicExpr::AO__hip_atomic_fetch_max: |
671 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
672 | case AtomicExpr::AO__atomic_fetch_max: |
673 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
674 | Op = E->getValueType()->isFloatingType() |
675 | ? llvm::AtomicRMWInst::FMax |
676 | : (E->getValueType()->isSignedIntegerType() |
677 | ? llvm::AtomicRMWInst::Max |
678 | : llvm::AtomicRMWInst::UMax); |
679 | break; |
680 | |
681 | case AtomicExpr::AO__atomic_and_fetch: |
682 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
683 | PostOp = llvm::Instruction::And; |
684 | [[fallthrough]]; |
685 | case AtomicExpr::AO__c11_atomic_fetch_and: |
686 | case AtomicExpr::AO__hip_atomic_fetch_and: |
687 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
688 | case AtomicExpr::AO__atomic_fetch_and: |
689 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
690 | Op = llvm::AtomicRMWInst::And; |
691 | break; |
692 | |
693 | case AtomicExpr::AO__atomic_or_fetch: |
694 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
695 | PostOp = llvm::Instruction::Or; |
696 | [[fallthrough]]; |
697 | case AtomicExpr::AO__c11_atomic_fetch_or: |
698 | case AtomicExpr::AO__hip_atomic_fetch_or: |
699 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
700 | case AtomicExpr::AO__atomic_fetch_or: |
701 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
702 | Op = llvm::AtomicRMWInst::Or; |
703 | break; |
704 | |
705 | case AtomicExpr::AO__atomic_xor_fetch: |
706 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
707 | PostOp = llvm::Instruction::Xor; |
708 | [[fallthrough]]; |
709 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
710 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
711 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
712 | case AtomicExpr::AO__atomic_fetch_xor: |
713 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
714 | Op = llvm::AtomicRMWInst::Xor; |
715 | break; |
716 | |
717 | case AtomicExpr::AO__atomic_nand_fetch: |
718 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
719 | PostOp = llvm::Instruction::And; // the NOT is special cased below |
720 | [[fallthrough]]; |
721 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
722 | case AtomicExpr::AO__atomic_fetch_nand: |
723 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
724 | Op = llvm::AtomicRMWInst::Nand; |
725 | break; |
726 | } |
727 | |
728 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Addr: Val1); |
729 | llvm::AtomicRMWInst *RMWI = |
730 | CGF.Builder.CreateAtomicRMW(Op, Addr: Ptr, Val: LoadVal1, Ordering: Order, SSID: Scope); |
731 | RMWI->setVolatile(E->isVolatile()); |
732 | |
733 | // For __atomic_*_fetch operations, perform the operation again to |
734 | // determine the value which was written. |
735 | llvm::Value *Result = RMWI; |
736 | if (PostOpMinMax) |
737 | Result = EmitPostAtomicMinMax(Builder&: CGF.Builder, Op: E->getOp(), |
738 | IsSigned: E->getValueType()->isSignedIntegerType(), |
739 | OldVal: RMWI, RHS: LoadVal1); |
740 | else if (PostOp) |
741 | Result = CGF.Builder.CreateBinOp(Opc: (llvm::Instruction::BinaryOps)PostOp, LHS: RMWI, |
742 | RHS: LoadVal1); |
743 | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch || |
744 | E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch) |
745 | Result = CGF.Builder.CreateNot(V: Result); |
746 | CGF.Builder.CreateStore(Val: Result, Addr: Dest); |
747 | } |
748 | |
749 | // This function emits any expression (scalar, complex, or aggregate) |
750 | // into a temporary alloca. |
751 | static Address |
752 | EmitValToTemp(CodeGenFunction &CGF, Expr *E) { |
753 | Address DeclPtr = CGF.CreateMemTemp(T: E->getType(), Name: ".atomictmp" ); |
754 | CGF.EmitAnyExprToMem(E, Location: DeclPtr, Quals: E->getType().getQualifiers(), |
755 | /*Init*/ IsInitializer: true); |
756 | return DeclPtr; |
757 | } |
758 | |
759 | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, |
760 | Address Ptr, Address Val1, Address Val2, |
761 | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
762 | uint64_t Size, llvm::AtomicOrdering Order, |
763 | llvm::Value *Scope) { |
764 | auto ScopeModel = Expr->getScopeModel(); |
765 | |
766 | // LLVM atomic instructions always have synch scope. If clang atomic |
767 | // expression has no scope operand, use default LLVM synch scope. |
768 | if (!ScopeModel) { |
769 | EmitAtomicOp(CGF, E: Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
770 | Order, Scope: CGF.CGM.getLLVMContext().getOrInsertSyncScopeID(SSN: "" )); |
771 | return; |
772 | } |
773 | |
774 | // Handle constant scope. |
775 | if (auto SC = dyn_cast<llvm::ConstantInt>(Val: Scope)) { |
776 | auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( |
777 | LangOpts: CGF.CGM.getLangOpts(), Scope: ScopeModel->map(SC->getZExtValue()), |
778 | Ordering: Order, Ctx&: CGF.CGM.getLLVMContext()); |
779 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
780 | Order, SCID); |
781 | return; |
782 | } |
783 | |
784 | // Handle non-constant scope. |
785 | auto &Builder = CGF.Builder; |
786 | auto Scopes = ScopeModel->getRuntimeValues(); |
787 | llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; |
788 | for (auto S : Scopes) |
789 | BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); |
790 | |
791 | llvm::BasicBlock *ContBB = |
792 | CGF.createBasicBlock(name: "atomic.scope.continue" , parent: CGF.CurFn); |
793 | |
794 | auto *SC = Builder.CreateIntCast(V: Scope, DestTy: Builder.getInt32Ty(), isSigned: false); |
795 | // If unsupported synch scope is encountered at run time, assume a fallback |
796 | // synch scope value. |
797 | auto FallBack = ScopeModel->getFallBackValue(); |
798 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: SC, Dest: BB[FallBack]); |
799 | for (auto S : Scopes) { |
800 | auto *B = BB[S]; |
801 | if (S != FallBack) |
802 | SI->addCase(Builder.getInt32(S), B); |
803 | |
804 | Builder.SetInsertPoint(B); |
805 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
806 | Order, |
807 | CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(), |
808 | ScopeModel->map(S), |
809 | Order, |
810 | CGF.getLLVMContext())); |
811 | Builder.CreateBr(ContBB); |
812 | } |
813 | |
814 | Builder.SetInsertPoint(ContBB); |
815 | } |
816 | |
817 | RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { |
818 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
819 | QualType MemTy = AtomicTy; |
820 | if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) |
821 | MemTy = AT->getValueType(); |
822 | llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; |
823 | |
824 | Address Val1 = Address::invalid(); |
825 | Address Val2 = Address::invalid(); |
826 | Address Dest = Address::invalid(); |
827 | Address Ptr = EmitPointerWithAlignment(Addr: E->getPtr()); |
828 | |
829 | if (E->getOp() == AtomicExpr::AO__c11_atomic_init || |
830 | E->getOp() == AtomicExpr::AO__opencl_atomic_init) { |
831 | LValue lvalue = MakeAddrLValue(Addr: Ptr, T: AtomicTy); |
832 | EmitAtomicInit(E: E->getVal1(), lvalue); |
833 | return RValue::get(V: nullptr); |
834 | } |
835 | |
836 | auto TInfo = getContext().getTypeInfoInChars(T: AtomicTy); |
837 | uint64_t Size = TInfo.Width.getQuantity(); |
838 | unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); |
839 | |
840 | CharUnits MaxInlineWidth = |
841 | getContext().toCharUnitsFromBits(BitSize: MaxInlineWidthInBits); |
842 | DiagnosticsEngine &Diags = CGM.getDiags(); |
843 | bool Misaligned = (Ptr.getAlignment() % TInfo.Width) != 0; |
844 | bool Oversized = getContext().toBits(CharSize: TInfo.Width) > MaxInlineWidthInBits; |
845 | if (Misaligned) { |
846 | Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned) |
847 | << (int)TInfo.Width.getQuantity() |
848 | << (int)Ptr.getAlignment().getQuantity(); |
849 | } |
850 | if (Oversized) { |
851 | Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_oversized) |
852 | << (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity(); |
853 | } |
854 | |
855 | llvm::Value *Order = EmitScalarExpr(E: E->getOrder()); |
856 | llvm::Value *Scope = |
857 | E->getScopeModel() ? EmitScalarExpr(E: E->getScope()) : nullptr; |
858 | bool ShouldCastToIntPtrTy = true; |
859 | |
860 | switch (E->getOp()) { |
861 | case AtomicExpr::AO__c11_atomic_init: |
862 | case AtomicExpr::AO__opencl_atomic_init: |
863 | llvm_unreachable("Already handled above with EmitAtomicInit!" ); |
864 | |
865 | case AtomicExpr::AO__atomic_load_n: |
866 | case AtomicExpr::AO__scoped_atomic_load_n: |
867 | case AtomicExpr::AO__c11_atomic_load: |
868 | case AtomicExpr::AO__opencl_atomic_load: |
869 | case AtomicExpr::AO__hip_atomic_load: |
870 | break; |
871 | |
872 | case AtomicExpr::AO__atomic_load: |
873 | case AtomicExpr::AO__scoped_atomic_load: |
874 | Dest = EmitPointerWithAlignment(Addr: E->getVal1()); |
875 | break; |
876 | |
877 | case AtomicExpr::AO__atomic_store: |
878 | case AtomicExpr::AO__scoped_atomic_store: |
879 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
880 | break; |
881 | |
882 | case AtomicExpr::AO__atomic_exchange: |
883 | case AtomicExpr::AO__scoped_atomic_exchange: |
884 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
885 | Dest = EmitPointerWithAlignment(Addr: E->getVal2()); |
886 | break; |
887 | |
888 | case AtomicExpr::AO__atomic_compare_exchange: |
889 | case AtomicExpr::AO__atomic_compare_exchange_n: |
890 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
891 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
892 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
893 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
894 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
895 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
896 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
897 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
898 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
899 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
900 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
901 | Val2 = EmitPointerWithAlignment(Addr: E->getVal2()); |
902 | else |
903 | Val2 = EmitValToTemp(CGF&: *this, E: E->getVal2()); |
904 | OrderFail = EmitScalarExpr(E: E->getOrderFail()); |
905 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || |
906 | E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
907 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange_n || |
908 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
909 | IsWeak = EmitScalarExpr(E: E->getWeak()); |
910 | break; |
911 | |
912 | case AtomicExpr::AO__c11_atomic_fetch_add: |
913 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
914 | case AtomicExpr::AO__hip_atomic_fetch_add: |
915 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
916 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
917 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
918 | if (MemTy->isPointerType()) { |
919 | // For pointer arithmetic, we're required to do a bit of math: |
920 | // adding 1 to an int* is not the same as adding 1 to a uintptr_t. |
921 | // ... but only for the C11 builtins. The GNU builtins expect the |
922 | // user to multiply by sizeof(T). |
923 | QualType Val1Ty = E->getVal1()->getType(); |
924 | llvm::Value *Val1Scalar = EmitScalarExpr(E: E->getVal1()); |
925 | CharUnits PointeeIncAmt = |
926 | getContext().getTypeSizeInChars(T: MemTy->getPointeeType()); |
927 | Val1Scalar = Builder.CreateMul(LHS: Val1Scalar, RHS: CGM.getSize(numChars: PointeeIncAmt)); |
928 | auto Temp = CreateMemTemp(T: Val1Ty, Name: ".atomictmp" ); |
929 | Val1 = Temp; |
930 | EmitStoreOfScalar(value: Val1Scalar, lvalue: MakeAddrLValue(Addr: Temp, T: Val1Ty)); |
931 | break; |
932 | } |
933 | [[fallthrough]]; |
934 | case AtomicExpr::AO__atomic_fetch_add: |
935 | case AtomicExpr::AO__atomic_fetch_max: |
936 | case AtomicExpr::AO__atomic_fetch_min: |
937 | case AtomicExpr::AO__atomic_fetch_sub: |
938 | case AtomicExpr::AO__atomic_add_fetch: |
939 | case AtomicExpr::AO__atomic_max_fetch: |
940 | case AtomicExpr::AO__atomic_min_fetch: |
941 | case AtomicExpr::AO__atomic_sub_fetch: |
942 | case AtomicExpr::AO__c11_atomic_fetch_max: |
943 | case AtomicExpr::AO__c11_atomic_fetch_min: |
944 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
945 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
946 | case AtomicExpr::AO__hip_atomic_fetch_max: |
947 | case AtomicExpr::AO__hip_atomic_fetch_min: |
948 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
949 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
950 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
951 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
952 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
953 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
954 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
955 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
956 | ShouldCastToIntPtrTy = !MemTy->isFloatingType(); |
957 | [[fallthrough]]; |
958 | |
959 | case AtomicExpr::AO__atomic_fetch_and: |
960 | case AtomicExpr::AO__atomic_fetch_nand: |
961 | case AtomicExpr::AO__atomic_fetch_or: |
962 | case AtomicExpr::AO__atomic_fetch_xor: |
963 | case AtomicExpr::AO__atomic_and_fetch: |
964 | case AtomicExpr::AO__atomic_nand_fetch: |
965 | case AtomicExpr::AO__atomic_or_fetch: |
966 | case AtomicExpr::AO__atomic_xor_fetch: |
967 | case AtomicExpr::AO__atomic_store_n: |
968 | case AtomicExpr::AO__atomic_exchange_n: |
969 | case AtomicExpr::AO__c11_atomic_fetch_and: |
970 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
971 | case AtomicExpr::AO__c11_atomic_fetch_or: |
972 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
973 | case AtomicExpr::AO__c11_atomic_store: |
974 | case AtomicExpr::AO__c11_atomic_exchange: |
975 | case AtomicExpr::AO__hip_atomic_fetch_and: |
976 | case AtomicExpr::AO__hip_atomic_fetch_or: |
977 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
978 | case AtomicExpr::AO__hip_atomic_store: |
979 | case AtomicExpr::AO__hip_atomic_exchange: |
980 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
981 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
982 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
983 | case AtomicExpr::AO__opencl_atomic_store: |
984 | case AtomicExpr::AO__opencl_atomic_exchange: |
985 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
986 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
987 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
988 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
989 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
990 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
991 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
992 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
993 | case AtomicExpr::AO__scoped_atomic_store_n: |
994 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
995 | Val1 = EmitValToTemp(CGF&: *this, E: E->getVal1()); |
996 | break; |
997 | } |
998 | |
999 | QualType RValTy = E->getType().getUnqualifiedType(); |
1000 | |
1001 | // The inlined atomics only function on iN types, where N is a power of 2. We |
1002 | // need to make sure (via temporaries if necessary) that all incoming values |
1003 | // are compatible. |
1004 | LValue AtomicVal = MakeAddrLValue(Addr: Ptr, T: AtomicTy); |
1005 | AtomicInfo Atomics(*this, AtomicVal); |
1006 | |
1007 | if (ShouldCastToIntPtrTy) { |
1008 | Ptr = Atomics.castToAtomicIntPointer(Addr: Ptr); |
1009 | if (Val1.isValid()) |
1010 | Val1 = Atomics.convertToAtomicIntPointer(Addr: Val1); |
1011 | if (Val2.isValid()) |
1012 | Val2 = Atomics.convertToAtomicIntPointer(Addr: Val2); |
1013 | } |
1014 | if (Dest.isValid()) { |
1015 | if (ShouldCastToIntPtrTy) |
1016 | Dest = Atomics.castToAtomicIntPointer(Addr: Dest); |
1017 | } else if (E->isCmpXChg()) |
1018 | Dest = CreateMemTemp(T: RValTy, Name: "cmpxchg.bool" ); |
1019 | else if (!RValTy->isVoidType()) { |
1020 | Dest = Atomics.CreateTempAlloca(); |
1021 | if (ShouldCastToIntPtrTy) |
1022 | Dest = Atomics.castToAtomicIntPointer(Addr: Dest); |
1023 | } |
1024 | |
1025 | bool PowerOf2Size = (Size & (Size - 1)) == 0; |
1026 | bool UseLibcall = !PowerOf2Size || (Size > 16); |
1027 | |
1028 | // For atomics larger than 16 bytes, emit a libcall from the frontend. This |
1029 | // avoids the overhead of dealing with excessively-large value types in IR. |
1030 | // Non-power-of-2 values also lower to libcall here, as they are not currently |
1031 | // permitted in IR instructions (although that constraint could be relaxed in |
1032 | // the future). For other cases where a libcall is required on a given |
1033 | // platform, we let the backend handle it (this includes handling for all of |
1034 | // the size-optimized libcall variants, which are only valid up to 16 bytes.) |
1035 | // |
1036 | // See: https://llvm.org/docs/Atomics.html#libcalls-atomic |
1037 | if (UseLibcall) { |
1038 | CallArgList Args; |
1039 | // For non-optimized library calls, the size is the first parameter. |
1040 | Args.add(rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: SizeTy, V: Size)), |
1041 | type: getContext().getSizeType()); |
1042 | |
1043 | // The atomic address is the second parameter. |
1044 | // The OpenCL atomic library functions only accept pointer arguments to |
1045 | // generic address space. |
1046 | auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { |
1047 | if (!E->isOpenCL()) |
1048 | return V; |
1049 | auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace(); |
1050 | if (AS == LangAS::opencl_generic) |
1051 | return V; |
1052 | auto DestAS = getContext().getTargetAddressSpace(AS: LangAS::opencl_generic); |
1053 | auto *DestType = llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: DestAS); |
1054 | |
1055 | return getTargetHooks().performAddrSpaceCast( |
1056 | CGF&: *this, V, SrcAddr: AS, DestAddr: LangAS::opencl_generic, DestTy: DestType, IsNonNull: false); |
1057 | }; |
1058 | |
1059 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Ptr.emitRawPointer(CGF&: *this), |
1060 | E->getPtr()->getType())), |
1061 | type: getContext().VoidPtrTy); |
1062 | |
1063 | // The next 1-3 parameters are op-dependent. |
1064 | std::string LibCallName; |
1065 | QualType RetTy; |
1066 | bool HaveRetTy = false; |
1067 | switch (E->getOp()) { |
1068 | case AtomicExpr::AO__c11_atomic_init: |
1069 | case AtomicExpr::AO__opencl_atomic_init: |
1070 | llvm_unreachable("Already handled!" ); |
1071 | |
1072 | // There is only one libcall for compare an exchange, because there is no |
1073 | // optimisation benefit possible from a libcall version of a weak compare |
1074 | // and exchange. |
1075 | // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, |
1076 | // void *desired, int success, int failure) |
1077 | case AtomicExpr::AO__atomic_compare_exchange: |
1078 | case AtomicExpr::AO__atomic_compare_exchange_n: |
1079 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
1080 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
1081 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
1082 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
1083 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
1084 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
1085 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
1086 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
1087 | LibCallName = "__atomic_compare_exchange" ; |
1088 | RetTy = getContext().BoolTy; |
1089 | HaveRetTy = true; |
1090 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
1091 | E->getVal1()->getType())), |
1092 | type: getContext().VoidPtrTy); |
1093 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val2.emitRawPointer(CGF&: *this), |
1094 | E->getVal2()->getType())), |
1095 | type: getContext().VoidPtrTy); |
1096 | Args.add(rvalue: RValue::get(V: Order), type: getContext().IntTy); |
1097 | Order = OrderFail; |
1098 | break; |
1099 | // void __atomic_exchange(size_t size, void *mem, void *val, void *return, |
1100 | // int order) |
1101 | case AtomicExpr::AO__atomic_exchange: |
1102 | case AtomicExpr::AO__atomic_exchange_n: |
1103 | case AtomicExpr::AO__c11_atomic_exchange: |
1104 | case AtomicExpr::AO__hip_atomic_exchange: |
1105 | case AtomicExpr::AO__opencl_atomic_exchange: |
1106 | case AtomicExpr::AO__scoped_atomic_exchange: |
1107 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
1108 | LibCallName = "__atomic_exchange" ; |
1109 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
1110 | E->getVal1()->getType())), |
1111 | type: getContext().VoidPtrTy); |
1112 | break; |
1113 | // void __atomic_store(size_t size, void *mem, void *val, int order) |
1114 | case AtomicExpr::AO__atomic_store: |
1115 | case AtomicExpr::AO__atomic_store_n: |
1116 | case AtomicExpr::AO__c11_atomic_store: |
1117 | case AtomicExpr::AO__hip_atomic_store: |
1118 | case AtomicExpr::AO__opencl_atomic_store: |
1119 | case AtomicExpr::AO__scoped_atomic_store: |
1120 | case AtomicExpr::AO__scoped_atomic_store_n: |
1121 | LibCallName = "__atomic_store" ; |
1122 | RetTy = getContext().VoidTy; |
1123 | HaveRetTy = true; |
1124 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
1125 | E->getVal1()->getType())), |
1126 | type: getContext().VoidPtrTy); |
1127 | break; |
1128 | // void __atomic_load(size_t size, void *mem, void *return, int order) |
1129 | case AtomicExpr::AO__atomic_load: |
1130 | case AtomicExpr::AO__atomic_load_n: |
1131 | case AtomicExpr::AO__c11_atomic_load: |
1132 | case AtomicExpr::AO__hip_atomic_load: |
1133 | case AtomicExpr::AO__opencl_atomic_load: |
1134 | case AtomicExpr::AO__scoped_atomic_load: |
1135 | case AtomicExpr::AO__scoped_atomic_load_n: |
1136 | LibCallName = "__atomic_load" ; |
1137 | break; |
1138 | case AtomicExpr::AO__atomic_add_fetch: |
1139 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
1140 | case AtomicExpr::AO__atomic_fetch_add: |
1141 | case AtomicExpr::AO__c11_atomic_fetch_add: |
1142 | case AtomicExpr::AO__hip_atomic_fetch_add: |
1143 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
1144 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
1145 | case AtomicExpr::AO__atomic_and_fetch: |
1146 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
1147 | case AtomicExpr::AO__atomic_fetch_and: |
1148 | case AtomicExpr::AO__c11_atomic_fetch_and: |
1149 | case AtomicExpr::AO__hip_atomic_fetch_and: |
1150 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
1151 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
1152 | case AtomicExpr::AO__atomic_or_fetch: |
1153 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
1154 | case AtomicExpr::AO__atomic_fetch_or: |
1155 | case AtomicExpr::AO__c11_atomic_fetch_or: |
1156 | case AtomicExpr::AO__hip_atomic_fetch_or: |
1157 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
1158 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
1159 | case AtomicExpr::AO__atomic_sub_fetch: |
1160 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
1161 | case AtomicExpr::AO__atomic_fetch_sub: |
1162 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
1163 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
1164 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
1165 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
1166 | case AtomicExpr::AO__atomic_xor_fetch: |
1167 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
1168 | case AtomicExpr::AO__atomic_fetch_xor: |
1169 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
1170 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
1171 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
1172 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
1173 | case AtomicExpr::AO__atomic_nand_fetch: |
1174 | case AtomicExpr::AO__atomic_fetch_nand: |
1175 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
1176 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
1177 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
1178 | case AtomicExpr::AO__atomic_min_fetch: |
1179 | case AtomicExpr::AO__atomic_fetch_min: |
1180 | case AtomicExpr::AO__c11_atomic_fetch_min: |
1181 | case AtomicExpr::AO__hip_atomic_fetch_min: |
1182 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
1183 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
1184 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
1185 | case AtomicExpr::AO__atomic_max_fetch: |
1186 | case AtomicExpr::AO__atomic_fetch_max: |
1187 | case AtomicExpr::AO__c11_atomic_fetch_max: |
1188 | case AtomicExpr::AO__hip_atomic_fetch_max: |
1189 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
1190 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
1191 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
1192 | llvm_unreachable("Integral atomic operations always become atomicrmw!" ); |
1193 | } |
1194 | |
1195 | if (E->isOpenCL()) { |
1196 | LibCallName = |
1197 | std::string("__opencl" ) + StringRef(LibCallName).drop_front(N: 1).str(); |
1198 | } |
1199 | // By default, assume we return a value of the atomic type. |
1200 | if (!HaveRetTy) { |
1201 | // Value is returned through parameter before the order. |
1202 | RetTy = getContext().VoidTy; |
1203 | Args.add(rvalue: RValue::get( |
1204 | V: CastToGenericAddrSpace(Dest.emitRawPointer(CGF&: *this), RetTy)), |
1205 | type: getContext().VoidPtrTy); |
1206 | } |
1207 | // Order is always the last parameter. |
1208 | Args.add(rvalue: RValue::get(V: Order), |
1209 | type: getContext().IntTy); |
1210 | if (E->isOpenCL()) |
1211 | Args.add(rvalue: RValue::get(V: Scope), type: getContext().IntTy); |
1212 | |
1213 | RValue Res = emitAtomicLibcall(CGF&: *this, fnName: LibCallName, resultType: RetTy, args&: Args); |
1214 | // The value is returned directly from the libcall. |
1215 | if (E->isCmpXChg()) |
1216 | return Res; |
1217 | |
1218 | if (RValTy->isVoidType()) |
1219 | return RValue::get(V: nullptr); |
1220 | |
1221 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
1222 | type: RValTy, Loc: E->getExprLoc()); |
1223 | } |
1224 | |
1225 | bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || |
1226 | E->getOp() == AtomicExpr::AO__opencl_atomic_store || |
1227 | E->getOp() == AtomicExpr::AO__hip_atomic_store || |
1228 | E->getOp() == AtomicExpr::AO__atomic_store || |
1229 | E->getOp() == AtomicExpr::AO__atomic_store_n || |
1230 | E->getOp() == AtomicExpr::AO__scoped_atomic_store || |
1231 | E->getOp() == AtomicExpr::AO__scoped_atomic_store_n; |
1232 | bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || |
1233 | E->getOp() == AtomicExpr::AO__opencl_atomic_load || |
1234 | E->getOp() == AtomicExpr::AO__hip_atomic_load || |
1235 | E->getOp() == AtomicExpr::AO__atomic_load || |
1236 | E->getOp() == AtomicExpr::AO__atomic_load_n || |
1237 | E->getOp() == AtomicExpr::AO__scoped_atomic_load || |
1238 | E->getOp() == AtomicExpr::AO__scoped_atomic_load_n; |
1239 | |
1240 | if (isa<llvm::ConstantInt>(Val: Order)) { |
1241 | auto ord = cast<llvm::ConstantInt>(Val: Order)->getZExtValue(); |
1242 | // We should not ever get to a case where the ordering isn't a valid C ABI |
1243 | // value, but it's hard to enforce that in general. |
1244 | if (llvm::isValidAtomicOrderingCABI(I: ord)) |
1245 | switch ((llvm::AtomicOrderingCABI)ord) { |
1246 | case llvm::AtomicOrderingCABI::relaxed: |
1247 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1248 | Order: llvm::AtomicOrdering::Monotonic, Scope); |
1249 | break; |
1250 | case llvm::AtomicOrderingCABI::consume: |
1251 | case llvm::AtomicOrderingCABI::acquire: |
1252 | if (IsStore) |
1253 | break; // Avoid crashing on code with undefined behavior |
1254 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1255 | Order: llvm::AtomicOrdering::Acquire, Scope); |
1256 | break; |
1257 | case llvm::AtomicOrderingCABI::release: |
1258 | if (IsLoad) |
1259 | break; // Avoid crashing on code with undefined behavior |
1260 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1261 | Order: llvm::AtomicOrdering::Release, Scope); |
1262 | break; |
1263 | case llvm::AtomicOrderingCABI::acq_rel: |
1264 | if (IsLoad || IsStore) |
1265 | break; // Avoid crashing on code with undefined behavior |
1266 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1267 | Order: llvm::AtomicOrdering::AcquireRelease, Scope); |
1268 | break; |
1269 | case llvm::AtomicOrderingCABI::seq_cst: |
1270 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1271 | Order: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
1272 | break; |
1273 | } |
1274 | if (RValTy->isVoidType()) |
1275 | return RValue::get(V: nullptr); |
1276 | |
1277 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
1278 | type: RValTy, Loc: E->getExprLoc()); |
1279 | } |
1280 | |
1281 | // Long case, when Order isn't obviously constant. |
1282 | |
1283 | // Create all the relevant BB's |
1284 | llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, |
1285 | *ReleaseBB = nullptr, *AcqRelBB = nullptr, |
1286 | *SeqCstBB = nullptr; |
1287 | MonotonicBB = createBasicBlock(name: "monotonic" , parent: CurFn); |
1288 | if (!IsStore) |
1289 | AcquireBB = createBasicBlock(name: "acquire" , parent: CurFn); |
1290 | if (!IsLoad) |
1291 | ReleaseBB = createBasicBlock(name: "release" , parent: CurFn); |
1292 | if (!IsLoad && !IsStore) |
1293 | AcqRelBB = createBasicBlock(name: "acqrel" , parent: CurFn); |
1294 | SeqCstBB = createBasicBlock(name: "seqcst" , parent: CurFn); |
1295 | llvm::BasicBlock *ContBB = createBasicBlock(name: "atomic.continue" , parent: CurFn); |
1296 | |
1297 | // Create the switch for the split |
1298 | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
1299 | // doesn't matter unless someone is crazy enough to use something that |
1300 | // doesn't fold to a constant for the ordering. |
1301 | Order = Builder.CreateIntCast(V: Order, DestTy: Builder.getInt32Ty(), isSigned: false); |
1302 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: Order, Dest: MonotonicBB); |
1303 | |
1304 | // Emit all the different atomics |
1305 | Builder.SetInsertPoint(MonotonicBB); |
1306 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1307 | Order: llvm::AtomicOrdering::Monotonic, Scope); |
1308 | Builder.CreateBr(Dest: ContBB); |
1309 | if (!IsStore) { |
1310 | Builder.SetInsertPoint(AcquireBB); |
1311 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1312 | Order: llvm::AtomicOrdering::Acquire, Scope); |
1313 | Builder.CreateBr(Dest: ContBB); |
1314 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::consume), |
1315 | Dest: AcquireBB); |
1316 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acquire), |
1317 | Dest: AcquireBB); |
1318 | } |
1319 | if (!IsLoad) { |
1320 | Builder.SetInsertPoint(ReleaseBB); |
1321 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1322 | Order: llvm::AtomicOrdering::Release, Scope); |
1323 | Builder.CreateBr(Dest: ContBB); |
1324 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::release), |
1325 | Dest: ReleaseBB); |
1326 | } |
1327 | if (!IsLoad && !IsStore) { |
1328 | Builder.SetInsertPoint(AcqRelBB); |
1329 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1330 | Order: llvm::AtomicOrdering::AcquireRelease, Scope); |
1331 | Builder.CreateBr(Dest: ContBB); |
1332 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acq_rel), |
1333 | Dest: AcqRelBB); |
1334 | } |
1335 | Builder.SetInsertPoint(SeqCstBB); |
1336 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
1337 | Order: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
1338 | Builder.CreateBr(Dest: ContBB); |
1339 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::seq_cst), |
1340 | Dest: SeqCstBB); |
1341 | |
1342 | // Cleanup and return |
1343 | Builder.SetInsertPoint(ContBB); |
1344 | if (RValTy->isVoidType()) |
1345 | return RValue::get(V: nullptr); |
1346 | |
1347 | assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); |
1348 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
1349 | type: RValTy, Loc: E->getExprLoc()); |
1350 | } |
1351 | |
1352 | Address AtomicInfo::castToAtomicIntPointer(Address addr) const { |
1353 | llvm::IntegerType *ty = |
1354 | llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: AtomicSizeInBits); |
1355 | return addr.withElementType(ElemTy: ty); |
1356 | } |
1357 | |
1358 | Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { |
1359 | llvm::Type *Ty = Addr.getElementType(); |
1360 | uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); |
1361 | if (SourceSizeInBits != AtomicSizeInBits) { |
1362 | Address Tmp = CreateTempAlloca(); |
1363 | CGF.Builder.CreateMemCpy(Dest: Tmp, Src: Addr, |
1364 | Size: std::min(a: AtomicSizeInBits, b: SourceSizeInBits) / 8); |
1365 | Addr = Tmp; |
1366 | } |
1367 | |
1368 | return castToAtomicIntPointer(addr: Addr); |
1369 | } |
1370 | |
1371 | RValue AtomicInfo::convertAtomicTempToRValue(Address addr, |
1372 | AggValueSlot resultSlot, |
1373 | SourceLocation loc, |
1374 | bool asValue) const { |
1375 | if (LVal.isSimple()) { |
1376 | if (EvaluationKind == TEK_Aggregate) |
1377 | return resultSlot.asRValue(); |
1378 | |
1379 | // Drill into the padding structure if we have one. |
1380 | if (hasPadding()) |
1381 | addr = CGF.Builder.CreateStructGEP(Addr: addr, Index: 0); |
1382 | |
1383 | // Otherwise, just convert the temporary to an r-value using the |
1384 | // normal conversion routine. |
1385 | return CGF.convertTempToRValue(addr, type: getValueType(), Loc: loc); |
1386 | } |
1387 | if (!asValue) |
1388 | // Get RValue from temp memory as atomic for non-simple lvalues |
1389 | return RValue::get(V: CGF.Builder.CreateLoad(Addr: addr)); |
1390 | if (LVal.isBitField()) |
1391 | return CGF.EmitLoadOfBitfieldLValue( |
1392 | LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), |
1393 | LVal.getBaseInfo(), TBAAAccessInfo()), loc); |
1394 | if (LVal.isVectorElt()) |
1395 | return CGF.EmitLoadOfLValue( |
1396 | LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), |
1397 | LVal.getBaseInfo(), TBAAAccessInfo()), loc); |
1398 | assert(LVal.isExtVectorElt()); |
1399 | return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( |
1400 | addr, LVal.getExtVectorElts(), LVal.getType(), |
1401 | LVal.getBaseInfo(), TBAAAccessInfo())); |
1402 | } |
1403 | |
1404 | /// Return true if \param ValTy is a type that should be casted to integer |
1405 | /// around the atomic memory operation. If \param CmpXchg is true, then the |
1406 | /// cast of a floating point type is made as that instruction can not have |
1407 | /// floating point operands. TODO: Allow compare-and-exchange and FP - see |
1408 | /// comment in AtomicExpandPass.cpp. |
1409 | static bool shouldCastToInt(llvm::Type *ValTy, bool CmpXchg) { |
1410 | if (ValTy->isFloatingPointTy()) |
1411 | return ValTy->isX86_FP80Ty() || CmpXchg; |
1412 | return !ValTy->isIntegerTy() && !ValTy->isPointerTy(); |
1413 | } |
1414 | |
1415 | RValue AtomicInfo::ConvertToValueOrAtomic(llvm::Value *Val, |
1416 | AggValueSlot ResultSlot, |
1417 | SourceLocation Loc, bool AsValue, |
1418 | bool CmpXchg) const { |
1419 | // Try not to in some easy cases. |
1420 | assert((Val->getType()->isIntegerTy() || Val->getType()->isPointerTy() || |
1421 | Val->getType()->isIEEELikeFPTy()) && |
1422 | "Expected integer, pointer or floating point value when converting " |
1423 | "result." ); |
1424 | if (getEvaluationKind() == TEK_Scalar && |
1425 | (((!LVal.isBitField() || |
1426 | LVal.getBitFieldInfo().Size == ValueSizeInBits) && |
1427 | !hasPadding()) || |
1428 | !AsValue)) { |
1429 | auto *ValTy = AsValue |
1430 | ? CGF.ConvertTypeForMem(ValueTy) |
1431 | : getAtomicAddress().getElementType(); |
1432 | if (!shouldCastToInt(ValTy, CmpXchg)) { |
1433 | assert((!ValTy->isIntegerTy() || Val->getType() == ValTy) && |
1434 | "Different integer types." ); |
1435 | return RValue::get(CGF.EmitFromMemory(Val, ValueTy)); |
1436 | } |
1437 | if (llvm::CastInst::isBitCastable(SrcTy: Val->getType(), DestTy: ValTy)) |
1438 | return RValue::get(CGF.Builder.CreateBitCast(V: Val, DestTy: ValTy)); |
1439 | } |
1440 | |
1441 | // Create a temporary. This needs to be big enough to hold the |
1442 | // atomic integer. |
1443 | Address Temp = Address::invalid(); |
1444 | bool TempIsVolatile = false; |
1445 | if (AsValue && getEvaluationKind() == TEK_Aggregate) { |
1446 | assert(!ResultSlot.isIgnored()); |
1447 | Temp = ResultSlot.getAddress(); |
1448 | TempIsVolatile = ResultSlot.isVolatile(); |
1449 | } else { |
1450 | Temp = CreateTempAlloca(); |
1451 | } |
1452 | |
1453 | // Slam the integer into the temporary. |
1454 | Address CastTemp = castToAtomicIntPointer(addr: Temp); |
1455 | CGF.Builder.CreateStore(Val, Addr: CastTemp)->setVolatile(TempIsVolatile); |
1456 | |
1457 | return convertAtomicTempToRValue(addr: Temp, resultSlot: ResultSlot, loc: Loc, asValue: AsValue); |
1458 | } |
1459 | |
1460 | void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
1461 | llvm::AtomicOrdering AO, bool) { |
1462 | // void __atomic_load(size_t size, void *mem, void *return, int order); |
1463 | CallArgList Args; |
1464 | Args.add(rvalue: RValue::get(V: getAtomicSizeValue()), type: CGF.getContext().getSizeType()); |
1465 | Args.add(rvalue: RValue::get(V: getAtomicPointer()), type: CGF.getContext().VoidPtrTy); |
1466 | Args.add(rvalue: RValue::get(V: AddForLoaded), type: CGF.getContext().VoidPtrTy); |
1467 | Args.add( |
1468 | rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO))), |
1469 | type: CGF.getContext().IntTy); |
1470 | emitAtomicLibcall(CGF, "__atomic_load" , CGF.getContext().VoidTy, Args); |
1471 | } |
1472 | |
1473 | llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, |
1474 | bool IsVolatile, bool CmpXchg) { |
1475 | // Okay, we're doing this natively. |
1476 | Address Addr = getAtomicAddress(); |
1477 | if (shouldCastToInt(ValTy: Addr.getElementType(), CmpXchg)) |
1478 | Addr = castToAtomicIntPointer(addr: Addr); |
1479 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, Name: "atomic-load" ); |
1480 | Load->setAtomic(Ordering: AO); |
1481 | |
1482 | // Other decoration. |
1483 | if (IsVolatile) |
1484 | Load->setVolatile(true); |
1485 | CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); |
1486 | return Load; |
1487 | } |
1488 | |
1489 | /// An LValue is a candidate for having its loads and stores be made atomic if |
1490 | /// we are operating under /volatile:ms *and* the LValue itself is volatile and |
1491 | /// performing such an operation can be performed without a libcall. |
1492 | bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { |
1493 | if (!CGM.getLangOpts().MSVolatile) return false; |
1494 | AtomicInfo AI(*this, LV); |
1495 | bool IsVolatile = LV.isVolatile() || hasVolatileMember(T: LV.getType()); |
1496 | // An atomic is inline if we don't need to use a libcall. |
1497 | bool AtomicIsInline = !AI.shouldUseLibcall(); |
1498 | // MSVC doesn't seem to do this for types wider than a pointer. |
1499 | if (getContext().getTypeSize(T: LV.getType()) > |
1500 | getContext().getTypeSize(T: getContext().getIntPtrType())) |
1501 | return false; |
1502 | return IsVolatile && AtomicIsInline; |
1503 | } |
1504 | |
1505 | RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, |
1506 | AggValueSlot Slot) { |
1507 | llvm::AtomicOrdering AO; |
1508 | bool IsVolatile = LV.isVolatileQualified(); |
1509 | if (LV.getType()->isAtomicType()) { |
1510 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
1511 | } else { |
1512 | AO = llvm::AtomicOrdering::Acquire; |
1513 | IsVolatile = true; |
1514 | } |
1515 | return EmitAtomicLoad(lvalue: LV, loc: SL, AO, IsVolatile, slot: Slot); |
1516 | } |
1517 | |
1518 | RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
1519 | bool AsValue, llvm::AtomicOrdering AO, |
1520 | bool IsVolatile) { |
1521 | // Check whether we should use a library call. |
1522 | if (shouldUseLibcall()) { |
1523 | Address TempAddr = Address::invalid(); |
1524 | if (LVal.isSimple() && !ResultSlot.isIgnored()) { |
1525 | assert(getEvaluationKind() == TEK_Aggregate); |
1526 | TempAddr = ResultSlot.getAddress(); |
1527 | } else |
1528 | TempAddr = CreateTempAlloca(); |
1529 | |
1530 | EmitAtomicLoadLibcall(AddForLoaded: TempAddr.emitRawPointer(CGF), AO, IsVolatile); |
1531 | |
1532 | // Okay, turn that back into the original value or whole atomic (for |
1533 | // non-simple lvalues) type. |
1534 | return convertAtomicTempToRValue(addr: TempAddr, resultSlot: ResultSlot, loc: Loc, asValue: AsValue); |
1535 | } |
1536 | |
1537 | // Okay, we're doing this natively. |
1538 | auto *Load = EmitAtomicLoadOp(AO, IsVolatile); |
1539 | |
1540 | // If we're ignoring an aggregate return, don't do anything. |
1541 | if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) |
1542 | return RValue::getAggregate(addr: Address::invalid(), isVolatile: false); |
1543 | |
1544 | // Okay, turn that back into the original value or atomic (for non-simple |
1545 | // lvalues) type. |
1546 | return ConvertToValueOrAtomic(Val: Load, ResultSlot, Loc, AsValue); |
1547 | } |
1548 | |
1549 | /// Emit a load from an l-value of atomic type. Note that the r-value |
1550 | /// we produce is an r-value of the atomic *value* type. |
1551 | RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, |
1552 | llvm::AtomicOrdering AO, bool IsVolatile, |
1553 | AggValueSlot resultSlot) { |
1554 | AtomicInfo Atomics(*this, src); |
1555 | return Atomics.EmitAtomicLoad(ResultSlot: resultSlot, Loc: loc, /*AsValue=*/true, AO, |
1556 | IsVolatile); |
1557 | } |
1558 | |
1559 | /// Copy an r-value into memory as part of storing to an atomic type. |
1560 | /// This needs to create a bit-pattern suitable for atomic operations. |
1561 | void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { |
1562 | assert(LVal.isSimple()); |
1563 | // If we have an r-value, the rvalue should be of the atomic type, |
1564 | // which means that the caller is responsible for having zeroed |
1565 | // any padding. Just do an aggregate copy of that type. |
1566 | if (rvalue.isAggregate()) { |
1567 | LValue Dest = CGF.MakeAddrLValue(Addr: getAtomicAddress(), T: getAtomicType()); |
1568 | LValue Src = CGF.MakeAddrLValue(Addr: rvalue.getAggregateAddress(), |
1569 | T: getAtomicType()); |
1570 | bool IsVolatile = rvalue.isVolatileQualified() || |
1571 | LVal.isVolatileQualified(); |
1572 | CGF.EmitAggregateCopy(Dest, Src, EltTy: getAtomicType(), |
1573 | MayOverlap: AggValueSlot::DoesNotOverlap, isVolatile: IsVolatile); |
1574 | return; |
1575 | } |
1576 | |
1577 | // Okay, otherwise we're copying stuff. |
1578 | |
1579 | // Zero out the buffer if necessary. |
1580 | emitMemSetZeroIfNecessary(); |
1581 | |
1582 | // Drill past the padding if present. |
1583 | LValue TempLVal = projectValue(); |
1584 | |
1585 | // Okay, store the rvalue in. |
1586 | if (rvalue.isScalar()) { |
1587 | CGF.EmitStoreOfScalar(value: rvalue.getScalarVal(), lvalue: TempLVal, /*init*/ isInit: true); |
1588 | } else { |
1589 | CGF.EmitStoreOfComplex(V: rvalue.getComplexVal(), dest: TempLVal, /*init*/ isInit: true); |
1590 | } |
1591 | } |
1592 | |
1593 | |
1594 | /// Materialize an r-value into memory for the purposes of storing it |
1595 | /// to an atomic type. |
1596 | Address AtomicInfo::materializeRValue(RValue rvalue) const { |
1597 | // Aggregate r-values are already in memory, and EmitAtomicStore |
1598 | // requires them to be values of the atomic type. |
1599 | if (rvalue.isAggregate()) |
1600 | return rvalue.getAggregateAddress(); |
1601 | |
1602 | // Otherwise, make a temporary and materialize into it. |
1603 | LValue TempLV = CGF.MakeAddrLValue(Addr: CreateTempAlloca(), T: getAtomicType()); |
1604 | AtomicInfo Atomics(CGF, TempLV); |
1605 | Atomics.emitCopyIntoMemory(rvalue); |
1606 | return TempLV.getAddress(CGF); |
1607 | } |
1608 | |
1609 | llvm::Value *AtomicInfo::getScalarRValValueOrNull(RValue RVal) const { |
1610 | if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) |
1611 | return RVal.getScalarVal(); |
1612 | return nullptr; |
1613 | } |
1614 | |
1615 | llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal, bool CmpXchg) const { |
1616 | // If we've got a scalar value of the right size, try to avoid going |
1617 | // through memory. Floats get casted if needed by AtomicExpandPass. |
1618 | if (llvm::Value *Value = getScalarRValValueOrNull(RVal)) { |
1619 | if (!shouldCastToInt(ValTy: Value->getType(), CmpXchg)) |
1620 | return CGF.EmitToMemory(Value, ValueTy); |
1621 | else { |
1622 | llvm::IntegerType *InputIntTy = llvm::IntegerType::get( |
1623 | CGF.getLLVMContext(), |
1624 | LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); |
1625 | if (llvm::BitCastInst::isBitCastable(SrcTy: Value->getType(), DestTy: InputIntTy)) |
1626 | return CGF.Builder.CreateBitCast(V: Value, DestTy: InputIntTy); |
1627 | } |
1628 | } |
1629 | // Otherwise, we need to go through memory. |
1630 | // Put the r-value in memory. |
1631 | Address Addr = materializeRValue(rvalue: RVal); |
1632 | |
1633 | // Cast the temporary to the atomic int type and pull a value out. |
1634 | Addr = castToAtomicIntPointer(addr: Addr); |
1635 | return CGF.Builder.CreateLoad(Addr); |
1636 | } |
1637 | |
1638 | std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( |
1639 | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
1640 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { |
1641 | // Do the atomic store. |
1642 | Address Addr = getAtomicAddressAsAtomicIntPointer(); |
1643 | auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, Cmp: ExpectedVal, New: DesiredVal, |
1644 | SuccessOrdering: Success, FailureOrdering: Failure); |
1645 | // Other decoration. |
1646 | Inst->setVolatile(LVal.isVolatileQualified()); |
1647 | Inst->setWeak(IsWeak); |
1648 | |
1649 | // Okay, turn that back into the original value type. |
1650 | auto *PreviousVal = CGF.Builder.CreateExtractValue(Agg: Inst, /*Idxs=*/0); |
1651 | auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Agg: Inst, /*Idxs=*/1); |
1652 | return std::make_pair(x&: PreviousVal, y&: SuccessFailureVal); |
1653 | } |
1654 | |
1655 | llvm::Value * |
1656 | AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, |
1657 | llvm::Value *DesiredAddr, |
1658 | llvm::AtomicOrdering Success, |
1659 | llvm::AtomicOrdering Failure) { |
1660 | // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, |
1661 | // void *desired, int success, int failure); |
1662 | CallArgList Args; |
1663 | Args.add(rvalue: RValue::get(V: getAtomicSizeValue()), type: CGF.getContext().getSizeType()); |
1664 | Args.add(rvalue: RValue::get(V: getAtomicPointer()), type: CGF.getContext().VoidPtrTy); |
1665 | Args.add(rvalue: RValue::get(V: ExpectedAddr), type: CGF.getContext().VoidPtrTy); |
1666 | Args.add(rvalue: RValue::get(V: DesiredAddr), type: CGF.getContext().VoidPtrTy); |
1667 | Args.add(rvalue: RValue::get( |
1668 | V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO: Success))), |
1669 | type: CGF.getContext().IntTy); |
1670 | Args.add(rvalue: RValue::get( |
1671 | V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO: Failure))), |
1672 | type: CGF.getContext().IntTy); |
1673 | auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange" , |
1674 | CGF.getContext().BoolTy, Args); |
1675 | |
1676 | return SuccessFailureRVal.getScalarVal(); |
1677 | } |
1678 | |
1679 | std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( |
1680 | RValue Expected, RValue Desired, llvm::AtomicOrdering Success, |
1681 | llvm::AtomicOrdering Failure, bool IsWeak) { |
1682 | // Check whether we should use a library call. |
1683 | if (shouldUseLibcall()) { |
1684 | // Produce a source address. |
1685 | Address ExpectedAddr = materializeRValue(rvalue: Expected); |
1686 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
1687 | llvm::Value *DesiredPtr = materializeRValue(rvalue: Desired).emitRawPointer(CGF); |
1688 | auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, |
1689 | Success, Failure); |
1690 | return std::make_pair( |
1691 | x: convertAtomicTempToRValue(addr: ExpectedAddr, resultSlot: AggValueSlot::ignored(), |
1692 | loc: SourceLocation(), /*AsValue=*/asValue: false), |
1693 | y&: Res); |
1694 | } |
1695 | |
1696 | // If we've got a scalar value of the right size, try to avoid going |
1697 | // through memory. |
1698 | auto *ExpectedVal = convertRValueToInt(RVal: Expected, /*CmpXchg=*/true); |
1699 | auto *DesiredVal = convertRValueToInt(RVal: Desired, /*CmpXchg=*/true); |
1700 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, |
1701 | Failure, IsWeak); |
1702 | return std::make_pair( |
1703 | x: ConvertToValueOrAtomic(Val: Res.first, ResultSlot: AggValueSlot::ignored(), |
1704 | Loc: SourceLocation(), /*AsValue=*/false, |
1705 | /*CmpXchg=*/true), |
1706 | y&: Res.second); |
1707 | } |
1708 | |
1709 | static void |
1710 | EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, |
1711 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1712 | Address DesiredAddr) { |
1713 | RValue UpRVal; |
1714 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
1715 | LValue DesiredLVal; |
1716 | if (AtomicLVal.isSimple()) { |
1717 | UpRVal = OldRVal; |
1718 | DesiredLVal = CGF.MakeAddrLValue(Addr: DesiredAddr, T: AtomicLVal.getType()); |
1719 | } else { |
1720 | // Build new lvalue for temp address. |
1721 | Address Ptr = Atomics.materializeRValue(rvalue: OldRVal); |
1722 | LValue UpdateLVal; |
1723 | if (AtomicLVal.isBitField()) { |
1724 | UpdateLVal = |
1725 | LValue::MakeBitfield(Addr: Ptr, Info: AtomicLVal.getBitFieldInfo(), |
1726 | type: AtomicLVal.getType(), |
1727 | BaseInfo: AtomicLVal.getBaseInfo(), |
1728 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1729 | DesiredLVal = |
1730 | LValue::MakeBitfield(Addr: DesiredAddr, Info: AtomicLVal.getBitFieldInfo(), |
1731 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
1732 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1733 | } else if (AtomicLVal.isVectorElt()) { |
1734 | UpdateLVal = LValue::MakeVectorElt(vecAddress: Ptr, Idx: AtomicLVal.getVectorIdx(), |
1735 | type: AtomicLVal.getType(), |
1736 | BaseInfo: AtomicLVal.getBaseInfo(), |
1737 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1738 | DesiredLVal = LValue::MakeVectorElt( |
1739 | vecAddress: DesiredAddr, Idx: AtomicLVal.getVectorIdx(), type: AtomicLVal.getType(), |
1740 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
1741 | } else { |
1742 | assert(AtomicLVal.isExtVectorElt()); |
1743 | UpdateLVal = LValue::MakeExtVectorElt(Addr: Ptr, Elts: AtomicLVal.getExtVectorElts(), |
1744 | type: AtomicLVal.getType(), |
1745 | BaseInfo: AtomicLVal.getBaseInfo(), |
1746 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1747 | DesiredLVal = LValue::MakeExtVectorElt( |
1748 | Addr: DesiredAddr, Elts: AtomicLVal.getExtVectorElts(), type: AtomicLVal.getType(), |
1749 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
1750 | } |
1751 | UpRVal = CGF.EmitLoadOfLValue(V: UpdateLVal, Loc: SourceLocation()); |
1752 | } |
1753 | // Store new value in the corresponding memory area. |
1754 | RValue NewRVal = UpdateOp(UpRVal); |
1755 | if (NewRVal.isScalar()) { |
1756 | CGF.EmitStoreThroughLValue(Src: NewRVal, Dst: DesiredLVal); |
1757 | } else { |
1758 | assert(NewRVal.isComplex()); |
1759 | CGF.EmitStoreOfComplex(V: NewRVal.getComplexVal(), dest: DesiredLVal, |
1760 | /*isInit=*/false); |
1761 | } |
1762 | } |
1763 | |
1764 | void AtomicInfo::EmitAtomicUpdateLibcall( |
1765 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1766 | bool IsVolatile) { |
1767 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1768 | |
1769 | Address ExpectedAddr = CreateTempAlloca(); |
1770 | |
1771 | EmitAtomicLoadLibcall(AddForLoaded: ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile); |
1772 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1773 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1774 | CGF.EmitBlock(BB: ContBB); |
1775 | Address DesiredAddr = CreateTempAlloca(); |
1776 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1777 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1778 | auto *OldVal = CGF.Builder.CreateLoad(Addr: ExpectedAddr); |
1779 | CGF.Builder.CreateStore(Val: OldVal, Addr: DesiredAddr); |
1780 | } |
1781 | auto OldRVal = convertAtomicTempToRValue(addr: ExpectedAddr, |
1782 | resultSlot: AggValueSlot::ignored(), |
1783 | loc: SourceLocation(), /*AsValue=*/asValue: false); |
1784 | EmitAtomicUpdateValue(CGF, Atomics&: *this, OldRVal, UpdateOp, DesiredAddr); |
1785 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
1786 | llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF); |
1787 | auto *Res = |
1788 | EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, Success: AO, Failure); |
1789 | CGF.Builder.CreateCondBr(Cond: Res, True: ExitBB, False: ContBB); |
1790 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1791 | } |
1792 | |
1793 | void AtomicInfo::EmitAtomicUpdateOp( |
1794 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1795 | bool IsVolatile) { |
1796 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1797 | |
1798 | // Do the atomic load. |
1799 | auto *OldVal = EmitAtomicLoadOp(AO: Failure, IsVolatile, /*CmpXchg=*/true); |
1800 | // For non-simple lvalues perform compare-and-swap procedure. |
1801 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1802 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1803 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
1804 | CGF.EmitBlock(BB: ContBB); |
1805 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: OldVal->getType(), |
1806 | /*NumReservedValues=*/2); |
1807 | PHI->addIncoming(V: OldVal, BB: CurBB); |
1808 | Address NewAtomicAddr = CreateTempAlloca(); |
1809 | Address NewAtomicIntAddr = |
1810 | shouldCastToInt(ValTy: NewAtomicAddr.getElementType(), /*CmpXchg=*/true) |
1811 | ? castToAtomicIntPointer(addr: NewAtomicAddr) |
1812 | : NewAtomicAddr; |
1813 | |
1814 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1815 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1816 | CGF.Builder.CreateStore(Val: PHI, Addr: NewAtomicIntAddr); |
1817 | } |
1818 | auto OldRVal = ConvertToValueOrAtomic(Val: PHI, ResultSlot: AggValueSlot::ignored(), |
1819 | Loc: SourceLocation(), /*AsValue=*/false, |
1820 | /*CmpXchg=*/true); |
1821 | EmitAtomicUpdateValue(CGF, Atomics&: *this, OldRVal, UpdateOp, DesiredAddr: NewAtomicAddr); |
1822 | auto *DesiredVal = CGF.Builder.CreateLoad(Addr: NewAtomicIntAddr); |
1823 | // Try to write new value using cmpxchg operation. |
1824 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal: PHI, DesiredVal, Success: AO, Failure); |
1825 | PHI->addIncoming(V: Res.first, BB: CGF.Builder.GetInsertBlock()); |
1826 | CGF.Builder.CreateCondBr(Cond: Res.second, True: ExitBB, False: ContBB); |
1827 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1828 | } |
1829 | |
1830 | static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, |
1831 | RValue UpdateRVal, Address DesiredAddr) { |
1832 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
1833 | LValue DesiredLVal; |
1834 | // Build new lvalue for temp address. |
1835 | if (AtomicLVal.isBitField()) { |
1836 | DesiredLVal = |
1837 | LValue::MakeBitfield(Addr: DesiredAddr, Info: AtomicLVal.getBitFieldInfo(), |
1838 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
1839 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1840 | } else if (AtomicLVal.isVectorElt()) { |
1841 | DesiredLVal = |
1842 | LValue::MakeVectorElt(vecAddress: DesiredAddr, Idx: AtomicLVal.getVectorIdx(), |
1843 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
1844 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
1845 | } else { |
1846 | assert(AtomicLVal.isExtVectorElt()); |
1847 | DesiredLVal = LValue::MakeExtVectorElt( |
1848 | Addr: DesiredAddr, Elts: AtomicLVal.getExtVectorElts(), type: AtomicLVal.getType(), |
1849 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
1850 | } |
1851 | // Store new value in the corresponding memory area. |
1852 | assert(UpdateRVal.isScalar()); |
1853 | CGF.EmitStoreThroughLValue(Src: UpdateRVal, Dst: DesiredLVal); |
1854 | } |
1855 | |
1856 | void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
1857 | RValue UpdateRVal, bool IsVolatile) { |
1858 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1859 | |
1860 | Address ExpectedAddr = CreateTempAlloca(); |
1861 | |
1862 | EmitAtomicLoadLibcall(AddForLoaded: ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile); |
1863 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1864 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1865 | CGF.EmitBlock(BB: ContBB); |
1866 | Address DesiredAddr = CreateTempAlloca(); |
1867 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1868 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1869 | auto *OldVal = CGF.Builder.CreateLoad(Addr: ExpectedAddr); |
1870 | CGF.Builder.CreateStore(Val: OldVal, Addr: DesiredAddr); |
1871 | } |
1872 | EmitAtomicUpdateValue(CGF, Atomics&: *this, UpdateRVal, DesiredAddr); |
1873 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
1874 | llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF); |
1875 | auto *Res = |
1876 | EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, Success: AO, Failure); |
1877 | CGF.Builder.CreateCondBr(Cond: Res, True: ExitBB, False: ContBB); |
1878 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1879 | } |
1880 | |
1881 | void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, |
1882 | bool IsVolatile) { |
1883 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
1884 | |
1885 | // Do the atomic load. |
1886 | auto *OldVal = EmitAtomicLoadOp(AO: Failure, IsVolatile, /*CmpXchg=*/true); |
1887 | // For non-simple lvalues perform compare-and-swap procedure. |
1888 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
1889 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
1890 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
1891 | CGF.EmitBlock(BB: ContBB); |
1892 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: OldVal->getType(), |
1893 | /*NumReservedValues=*/2); |
1894 | PHI->addIncoming(V: OldVal, BB: CurBB); |
1895 | Address NewAtomicAddr = CreateTempAlloca(); |
1896 | Address NewAtomicIntAddr = castToAtomicIntPointer(addr: NewAtomicAddr); |
1897 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1898 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1899 | CGF.Builder.CreateStore(Val: PHI, Addr: NewAtomicIntAddr); |
1900 | } |
1901 | EmitAtomicUpdateValue(CGF, Atomics&: *this, UpdateRVal, DesiredAddr: NewAtomicAddr); |
1902 | auto *DesiredVal = CGF.Builder.CreateLoad(Addr: NewAtomicIntAddr); |
1903 | // Try to write new value using cmpxchg operation. |
1904 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal: PHI, DesiredVal, Success: AO, Failure); |
1905 | PHI->addIncoming(V: Res.first, BB: CGF.Builder.GetInsertBlock()); |
1906 | CGF.Builder.CreateCondBr(Cond: Res.second, True: ExitBB, False: ContBB); |
1907 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1908 | } |
1909 | |
1910 | void AtomicInfo::EmitAtomicUpdate( |
1911 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1912 | bool IsVolatile) { |
1913 | if (shouldUseLibcall()) { |
1914 | EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); |
1915 | } else { |
1916 | EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); |
1917 | } |
1918 | } |
1919 | |
1920 | void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
1921 | bool IsVolatile) { |
1922 | if (shouldUseLibcall()) { |
1923 | EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); |
1924 | } else { |
1925 | EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); |
1926 | } |
1927 | } |
1928 | |
1929 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, |
1930 | bool isInit) { |
1931 | bool IsVolatile = lvalue.isVolatileQualified(); |
1932 | llvm::AtomicOrdering AO; |
1933 | if (lvalue.getType()->isAtomicType()) { |
1934 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
1935 | } else { |
1936 | AO = llvm::AtomicOrdering::Release; |
1937 | IsVolatile = true; |
1938 | } |
1939 | return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); |
1940 | } |
1941 | |
1942 | /// Emit a store to an l-value of atomic type. |
1943 | /// |
1944 | /// Note that the r-value is expected to be an r-value *of the atomic |
1945 | /// type*; this means that for aggregate r-values, it should include |
1946 | /// storage for any padding that was necessary. |
1947 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, |
1948 | llvm::AtomicOrdering AO, bool IsVolatile, |
1949 | bool isInit) { |
1950 | // If this is an aggregate r-value, it should agree in type except |
1951 | // maybe for address-space qualification. |
1952 | assert(!rvalue.isAggregate() || |
1953 | rvalue.getAggregateAddress().getElementType() == |
1954 | dest.getAddress(*this).getElementType()); |
1955 | |
1956 | AtomicInfo atomics(*this, dest); |
1957 | LValue LVal = atomics.getAtomicLValue(); |
1958 | |
1959 | // If this is an initialization, just put the value there normally. |
1960 | if (LVal.isSimple()) { |
1961 | if (isInit) { |
1962 | atomics.emitCopyIntoMemory(rvalue); |
1963 | return; |
1964 | } |
1965 | |
1966 | // Check whether we should use a library call. |
1967 | if (atomics.shouldUseLibcall()) { |
1968 | // Produce a source address. |
1969 | Address srcAddr = atomics.materializeRValue(rvalue); |
1970 | |
1971 | // void __atomic_store(size_t size, void *mem, void *val, int order) |
1972 | CallArgList args; |
1973 | args.add(rvalue: RValue::get(V: atomics.getAtomicSizeValue()), |
1974 | type: getContext().getSizeType()); |
1975 | args.add(rvalue: RValue::get(V: atomics.getAtomicPointer()), type: getContext().VoidPtrTy); |
1976 | args.add(rvalue: RValue::get(V: srcAddr.emitRawPointer(CGF&: *this)), |
1977 | type: getContext().VoidPtrTy); |
1978 | args.add( |
1979 | rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: IntTy, V: (int)llvm::toCABI(AO))), |
1980 | type: getContext().IntTy); |
1981 | emitAtomicLibcall(*this, "__atomic_store" , getContext().VoidTy, args); |
1982 | return; |
1983 | } |
1984 | |
1985 | // Okay, we're doing this natively. |
1986 | llvm::Value *ValToStore = atomics.convertRValueToInt(RVal: rvalue); |
1987 | |
1988 | // Do the atomic store. |
1989 | Address Addr = atomics.getAtomicAddress(); |
1990 | if (llvm::Value *Value = atomics.getScalarRValValueOrNull(RVal: rvalue)) |
1991 | if (shouldCastToInt(ValTy: Value->getType(), /*CmpXchg=*/false)) { |
1992 | Addr = atomics.castToAtomicIntPointer(addr: Addr); |
1993 | ValToStore = Builder.CreateIntCast(V: ValToStore, DestTy: Addr.getElementType(), |
1994 | /*isSigned=*/false); |
1995 | } |
1996 | llvm::StoreInst *store = Builder.CreateStore(Val: ValToStore, Addr); |
1997 | |
1998 | if (AO == llvm::AtomicOrdering::Acquire) |
1999 | AO = llvm::AtomicOrdering::Monotonic; |
2000 | else if (AO == llvm::AtomicOrdering::AcquireRelease) |
2001 | AO = llvm::AtomicOrdering::Release; |
2002 | // Initializations don't need to be atomic. |
2003 | if (!isInit) |
2004 | store->setAtomic(Ordering: AO); |
2005 | |
2006 | // Other decoration. |
2007 | if (IsVolatile) |
2008 | store->setVolatile(true); |
2009 | CGM.DecorateInstructionWithTBAA(Inst: store, TBAAInfo: dest.getTBAAInfo()); |
2010 | return; |
2011 | } |
2012 | |
2013 | // Emit simple atomic update operation. |
2014 | atomics.EmitAtomicUpdate(AO, UpdateRVal: rvalue, IsVolatile); |
2015 | } |
2016 | |
2017 | /// Emit a compare-and-exchange op for atomic type. |
2018 | /// |
2019 | std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( |
2020 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
2021 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, |
2022 | AggValueSlot Slot) { |
2023 | // If this is an aggregate r-value, it should agree in type except |
2024 | // maybe for address-space qualification. |
2025 | assert(!Expected.isAggregate() || |
2026 | Expected.getAggregateAddress().getElementType() == |
2027 | Obj.getAddress(*this).getElementType()); |
2028 | assert(!Desired.isAggregate() || |
2029 | Desired.getAggregateAddress().getElementType() == |
2030 | Obj.getAddress(*this).getElementType()); |
2031 | AtomicInfo Atomics(*this, Obj); |
2032 | |
2033 | return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, |
2034 | IsWeak); |
2035 | } |
2036 | |
2037 | void CodeGenFunction::EmitAtomicUpdate( |
2038 | LValue LVal, llvm::AtomicOrdering AO, |
2039 | const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { |
2040 | AtomicInfo Atomics(*this, LVal); |
2041 | Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); |
2042 | } |
2043 | |
2044 | void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { |
2045 | AtomicInfo atomics(*this, dest); |
2046 | |
2047 | switch (atomics.getEvaluationKind()) { |
2048 | case TEK_Scalar: { |
2049 | llvm::Value *value = EmitScalarExpr(E: init); |
2050 | atomics.emitCopyIntoMemory(rvalue: RValue::get(V: value)); |
2051 | return; |
2052 | } |
2053 | |
2054 | case TEK_Complex: { |
2055 | ComplexPairTy value = EmitComplexExpr(E: init); |
2056 | atomics.emitCopyIntoMemory(rvalue: RValue::getComplex(C: value)); |
2057 | return; |
2058 | } |
2059 | |
2060 | case TEK_Aggregate: { |
2061 | // Fix up the destination if the initializer isn't an expression |
2062 | // of atomic type. |
2063 | bool Zeroed = false; |
2064 | if (!init->getType()->isAtomicType()) { |
2065 | Zeroed = atomics.emitMemSetZeroIfNecessary(); |
2066 | dest = atomics.projectValue(); |
2067 | } |
2068 | |
2069 | // Evaluate the expression directly into the destination. |
2070 | AggValueSlot slot = AggValueSlot::forLValue( |
2071 | LV: dest, CGF&: *this, isDestructed: AggValueSlot::IsNotDestructed, |
2072 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased, |
2073 | mayOverlap: AggValueSlot::DoesNotOverlap, |
2074 | isZeroed: Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed); |
2075 | |
2076 | EmitAggExpr(E: init, AS: slot); |
2077 | return; |
2078 | } |
2079 | } |
2080 | llvm_unreachable("bad evaluation kind" ); |
2081 | } |
2082 | |