1 | //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is the internal per-function state used for llvm translation. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
14 | #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
15 | |
16 | #include "CGBuilder.h" |
17 | #include "CGLoopInfo.h" |
18 | #include "CGValue.h" |
19 | #include "CodeGenModule.h" |
20 | #include "EHScopeStack.h" |
21 | #include "SanitizerHandler.h" |
22 | #include "VarBypassDetector.h" |
23 | #include "clang/AST/CharUnits.h" |
24 | #include "clang/AST/CurrentSourceLocExprScope.h" |
25 | #include "clang/AST/ExprCXX.h" |
26 | #include "clang/AST/ExprObjC.h" |
27 | #include "clang/AST/ExprOpenMP.h" |
28 | #include "clang/AST/StmtOpenACC.h" |
29 | #include "clang/AST/StmtOpenMP.h" |
30 | #include "clang/AST/StmtSYCL.h" |
31 | #include "clang/AST/Type.h" |
32 | #include "clang/Basic/ABI.h" |
33 | #include "clang/Basic/CapturedStmt.h" |
34 | #include "clang/Basic/CodeGenOptions.h" |
35 | #include "clang/Basic/OpenMPKinds.h" |
36 | #include "clang/Basic/TargetInfo.h" |
37 | #include "llvm/ADT/ArrayRef.h" |
38 | #include "llvm/ADT/DenseMap.h" |
39 | #include "llvm/ADT/MapVector.h" |
40 | #include "llvm/ADT/SmallVector.h" |
41 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
42 | #include "llvm/IR/Instructions.h" |
43 | #include "llvm/IR/ValueHandle.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Transforms/Utils/SanitizerStats.h" |
46 | #include <optional> |
47 | |
48 | namespace llvm { |
49 | class BasicBlock; |
50 | class ConvergenceControlInst; |
51 | class LLVMContext; |
52 | class MDNode; |
53 | class SwitchInst; |
54 | class Twine; |
55 | class Value; |
56 | class CanonicalLoopInfo; |
57 | } // namespace llvm |
58 | |
59 | namespace clang { |
60 | class ASTContext; |
61 | class CXXDestructorDecl; |
62 | class CXXForRangeStmt; |
63 | class CXXTryStmt; |
64 | class Decl; |
65 | class LabelDecl; |
66 | class FunctionDecl; |
67 | class FunctionProtoType; |
68 | class LabelStmt; |
69 | class ObjCContainerDecl; |
70 | class ObjCInterfaceDecl; |
71 | class ObjCIvarDecl; |
72 | class ObjCMethodDecl; |
73 | class ObjCImplementationDecl; |
74 | class ObjCPropertyImplDecl; |
75 | class TargetInfo; |
76 | class VarDecl; |
77 | class ObjCForCollectionStmt; |
78 | class ObjCAtTryStmt; |
79 | class ObjCAtThrowStmt; |
80 | class ObjCAtSynchronizedStmt; |
81 | class ObjCAutoreleasePoolStmt; |
82 | class OMPUseDevicePtrClause; |
83 | class OMPUseDeviceAddrClause; |
84 | class SVETypeFlags; |
85 | class OMPExecutableDirective; |
86 | |
87 | namespace analyze_os_log { |
88 | class OSLogBufferLayout; |
89 | } |
90 | |
91 | namespace CodeGen { |
92 | class CodeGenTypes; |
93 | class CodeGenPGO; |
94 | class CGCallee; |
95 | class CGFunctionInfo; |
96 | class CGBlockInfo; |
97 | class CGCXXABI; |
98 | class BlockByrefHelpers; |
99 | class BlockByrefInfo; |
100 | class BlockFieldFlags; |
101 | class RegionCodeGenTy; |
102 | class TargetCodeGenInfo; |
103 | struct OMPTaskDataTy; |
104 | struct CGCoroData; |
105 | |
106 | // clang-format off |
107 | /// The kind of evaluation to perform on values of a particular |
108 | /// type. Basically, is the code in CGExprScalar, CGExprComplex, or |
109 | /// CGExprAgg? |
110 | /// |
111 | /// TODO: should vectors maybe be split out into their own thing? |
112 | enum TypeEvaluationKind { |
113 | TEK_Scalar, |
114 | TEK_Complex, |
115 | TEK_Aggregate |
116 | }; |
117 | // clang-format on |
118 | |
119 | /// Helper class with most of the code for saving a value for a |
120 | /// conditional expression cleanup. |
121 | struct DominatingLLVMValue { |
122 | typedef llvm::PointerIntPair<llvm::Value *, 1, bool> saved_type; |
123 | |
124 | /// Answer whether the given value needs extra work to be saved. |
125 | static bool needsSaving(llvm::Value *value) { |
126 | if (!value) |
127 | return false; |
128 | |
129 | // If it's not an instruction, we don't need to save. |
130 | if (!isa<llvm::Instruction>(Val: value)) |
131 | return false; |
132 | |
133 | // If it's an instruction in the entry block, we don't need to save. |
134 | llvm::BasicBlock *block = cast<llvm::Instruction>(Val: value)->getParent(); |
135 | return (block != &block->getParent()->getEntryBlock()); |
136 | } |
137 | |
138 | static saved_type save(CodeGenFunction &CGF, llvm::Value *value); |
139 | static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); |
140 | }; |
141 | |
142 | /// A partial specialization of DominatingValue for llvm::Values that |
143 | /// might be llvm::Instructions. |
144 | template <class T> struct DominatingPointer<T, true> : DominatingLLVMValue { |
145 | typedef T *type; |
146 | static type restore(CodeGenFunction &CGF, saved_type value) { |
147 | return static_cast<T *>(DominatingLLVMValue::restore(CGF, value)); |
148 | } |
149 | }; |
150 | |
151 | /// A specialization of DominatingValue for Address. |
152 | template <> struct DominatingValue<Address> { |
153 | typedef Address type; |
154 | |
155 | struct saved_type { |
156 | DominatingLLVMValue::saved_type BasePtr; |
157 | llvm::Type *ElementType; |
158 | CharUnits Alignment; |
159 | DominatingLLVMValue::saved_type Offset; |
160 | llvm::PointerType *EffectiveType; |
161 | }; |
162 | |
163 | static bool needsSaving(type value) { |
164 | if (DominatingLLVMValue::needsSaving(value: value.getBasePointer()) || |
165 | DominatingLLVMValue::needsSaving(value: value.getOffset())) |
166 | return true; |
167 | return false; |
168 | } |
169 | static saved_type save(CodeGenFunction &CGF, type value) { |
170 | return {.BasePtr: DominatingLLVMValue::save(CGF, value: value.getBasePointer()), |
171 | .ElementType: value.getElementType(), .Alignment: value.getAlignment(), |
172 | .Offset: DominatingLLVMValue::save(CGF, value: value.getOffset()), .EffectiveType: value.getType()}; |
173 | } |
174 | static type restore(CodeGenFunction &CGF, saved_type value) { |
175 | return Address(DominatingLLVMValue::restore(CGF, value: value.BasePtr), |
176 | value.ElementType, value.Alignment, CGPointerAuthInfo(), |
177 | DominatingLLVMValue::restore(CGF, value: value.Offset)); |
178 | } |
179 | }; |
180 | |
181 | /// A specialization of DominatingValue for RValue. |
182 | template <> struct DominatingValue<RValue> { |
183 | typedef RValue type; |
184 | class saved_type { |
185 | enum Kind { |
186 | ScalarLiteral, |
187 | ScalarAddress, |
188 | AggregateLiteral, |
189 | AggregateAddress, |
190 | ComplexAddress |
191 | }; |
192 | union { |
193 | struct { |
194 | DominatingLLVMValue::saved_type first, second; |
195 | } Vals; |
196 | DominatingValue<Address>::saved_type AggregateAddr; |
197 | }; |
198 | LLVM_PREFERRED_TYPE(Kind) |
199 | unsigned K : 3; |
200 | |
201 | saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) |
202 | : Vals{.first: Val1, .second: DominatingLLVMValue::saved_type()}, K(K) {} |
203 | |
204 | saved_type(DominatingLLVMValue::saved_type Val1, |
205 | DominatingLLVMValue::saved_type Val2) |
206 | : Vals{.first: Val1, .second: Val2}, K(ComplexAddress) {} |
207 | |
208 | saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) |
209 | : AggregateAddr(AggregateAddr), K(K) {} |
210 | |
211 | public: |
212 | static bool needsSaving(RValue value); |
213 | static saved_type save(CodeGenFunction &CGF, RValue value); |
214 | RValue restore(CodeGenFunction &CGF); |
215 | |
216 | // implementations in CGCleanup.cpp |
217 | }; |
218 | |
219 | static bool needsSaving(type value) { return saved_type::needsSaving(value); } |
220 | static saved_type save(CodeGenFunction &CGF, type value) { |
221 | return saved_type::save(CGF, value); |
222 | } |
223 | static type restore(CodeGenFunction &CGF, saved_type value) { |
224 | return value.restore(CGF); |
225 | } |
226 | }; |
227 | |
228 | /// A scoped helper to set the current source atom group for |
229 | /// CGDebugInfo::addInstToCurrentSourceAtom. A source atom is a source construct |
230 | /// that is "interesting" for debug stepping purposes. We use an atom group |
231 | /// number to track the instruction(s) that implement the functionality for the |
232 | /// atom, plus backup instructions/source locations. |
233 | class ApplyAtomGroup { |
234 | uint64_t OriginalAtom = 0; |
235 | CGDebugInfo *DI = nullptr; |
236 | |
237 | public: |
238 | ApplyAtomGroup(CGDebugInfo *DI); |
239 | ~ApplyAtomGroup(); |
240 | }; |
241 | |
242 | /// CodeGenFunction - This class organizes the per-function state that is used |
243 | /// while generating LLVM code. |
244 | class CodeGenFunction : public CodeGenTypeCache { |
245 | CodeGenFunction(const CodeGenFunction &) = delete; |
246 | void operator=(const CodeGenFunction &) = delete; |
247 | |
248 | friend class CGCXXABI; |
249 | |
250 | public: |
251 | /// A jump destination is an abstract label, branching to which may |
252 | /// require a jump out through normal cleanups. |
253 | struct JumpDest { |
254 | JumpDest() : Block(nullptr), Index(0) {} |
255 | JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, |
256 | unsigned Index) |
257 | : Block(Block), ScopeDepth(Depth), Index(Index) {} |
258 | |
259 | bool isValid() const { return Block != nullptr; } |
260 | llvm::BasicBlock *getBlock() const { return Block; } |
261 | EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } |
262 | unsigned getDestIndex() const { return Index; } |
263 | |
264 | // This should be used cautiously. |
265 | void setScopeDepth(EHScopeStack::stable_iterator depth) { |
266 | ScopeDepth = depth; |
267 | } |
268 | |
269 | private: |
270 | llvm::BasicBlock *Block; |
271 | EHScopeStack::stable_iterator ScopeDepth; |
272 | unsigned Index; |
273 | }; |
274 | |
275 | CodeGenModule &CGM; // Per-module state. |
276 | const TargetInfo &Target; |
277 | |
278 | // For EH/SEH outlined funclets, this field points to parent's CGF |
279 | CodeGenFunction *ParentCGF = nullptr; |
280 | |
281 | typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; |
282 | LoopInfoStack LoopStack; |
283 | CGBuilderTy Builder; |
284 | |
285 | // Stores variables for which we can't generate correct lifetime markers |
286 | // because of jumps. |
287 | VarBypassDetector Bypasses; |
288 | |
289 | /// List of recently emitted OMPCanonicalLoops. |
290 | /// |
291 | /// Since OMPCanonicalLoops are nested inside other statements (in particular |
292 | /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested |
293 | /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its |
294 | /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any |
295 | /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to |
296 | /// this stack when done. Entering a new loop requires clearing this list; it |
297 | /// either means we start parsing a new loop nest (in which case the previous |
298 | /// loop nest goes out of scope) or a second loop in the same level in which |
299 | /// case it would be ambiguous into which of the two (or more) loops the loop |
300 | /// nest would extend. |
301 | SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; |
302 | |
303 | /// Stack to track the Logical Operator recursion nest for MC/DC. |
304 | SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; |
305 | |
306 | /// Stack to track the controlled convergence tokens. |
307 | SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack; |
308 | |
309 | /// Number of nested loop to be consumed by the last surrounding |
310 | /// loop-associated directive. |
311 | int ExpectedOMPLoopDepth = 0; |
312 | |
313 | // CodeGen lambda for loops and support for ordered clause |
314 | typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, |
315 | JumpDest)> |
316 | CodeGenLoopTy; |
317 | typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, |
318 | const unsigned, const bool)> |
319 | CodeGenOrderedTy; |
320 | |
321 | // Codegen lambda for loop bounds in worksharing loop constructs |
322 | typedef llvm::function_ref<std::pair<LValue, LValue>( |
323 | CodeGenFunction &, const OMPExecutableDirective &S)> |
324 | CodeGenLoopBoundsTy; |
325 | |
326 | // Codegen lambda for loop bounds in dispatch-based loop implementation |
327 | typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( |
328 | CodeGenFunction &, const OMPExecutableDirective &S, Address LB, |
329 | Address UB)> |
330 | CodeGenDispatchBoundsTy; |
331 | |
332 | /// CGBuilder insert helper. This function is called after an |
333 | /// instruction is created using Builder. |
334 | void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, |
335 | llvm::BasicBlock::iterator InsertPt) const; |
336 | |
337 | /// CurFuncDecl - Holds the Decl for the current outermost |
338 | /// non-closure context. |
339 | const Decl *CurFuncDecl = nullptr; |
340 | /// CurCodeDecl - This is the inner-most code context, which includes blocks. |
341 | const Decl *CurCodeDecl = nullptr; |
342 | const CGFunctionInfo *CurFnInfo = nullptr; |
343 | QualType FnRetTy; |
344 | llvm::Function *CurFn = nullptr; |
345 | |
346 | /// Save Parameter Decl for coroutine. |
347 | llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; |
348 | |
349 | // Holds coroutine data if the current function is a coroutine. We use a |
350 | // wrapper to manage its lifetime, so that we don't have to define CGCoroData |
351 | // in this header. |
352 | struct CGCoroInfo { |
353 | std::unique_ptr<CGCoroData> Data; |
354 | bool InSuspendBlock = false; |
355 | CGCoroInfo(); |
356 | ~CGCoroInfo(); |
357 | }; |
358 | CGCoroInfo CurCoro; |
359 | |
360 | bool isCoroutine() const { return CurCoro.Data != nullptr; } |
361 | |
362 | bool inSuspendBlock() const { |
363 | return isCoroutine() && CurCoro.InSuspendBlock; |
364 | } |
365 | |
366 | // Holds FramePtr for await_suspend wrapper generation, |
367 | // so that __builtin_coro_frame call can be lowered |
368 | // directly to value of its second argument |
369 | struct AwaitSuspendWrapperInfo { |
370 | llvm::Value *FramePtr = nullptr; |
371 | }; |
372 | AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; |
373 | |
374 | // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. |
375 | // It encapsulates SuspendExpr in a function, to separate it's body |
376 | // from the main coroutine to avoid miscompilations. Intrinisic |
377 | // is lowered to this function call in CoroSplit pass |
378 | // Function signature is: |
379 | // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) |
380 | // where type is one of (void, i1, ptr) |
381 | llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, |
382 | Twine const &SuspendPointName, |
383 | CoroutineSuspendExpr const &S); |
384 | |
385 | /// CurGD - The GlobalDecl for the current function being compiled. |
386 | GlobalDecl CurGD; |
387 | |
388 | /// PrologueCleanupDepth - The cleanup depth enclosing all the |
389 | /// cleanups associated with the parameters. |
390 | EHScopeStack::stable_iterator PrologueCleanupDepth; |
391 | |
392 | /// ReturnBlock - Unified return block. |
393 | JumpDest ReturnBlock; |
394 | |
395 | /// ReturnValue - The temporary alloca to hold the return |
396 | /// value. This is invalid iff the function has no return value. |
397 | Address ReturnValue = Address::invalid(); |
398 | |
399 | /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. |
400 | /// This is invalid if sret is not in use. |
401 | Address ReturnValuePointer = Address::invalid(); |
402 | |
403 | /// If a return statement is being visited, this holds the return statment's |
404 | /// result expression. |
405 | const Expr *RetExpr = nullptr; |
406 | |
407 | /// Return true if a label was seen in the current scope. |
408 | bool hasLabelBeenSeenInCurrentScope() const { |
409 | if (CurLexicalScope) |
410 | return CurLexicalScope->hasLabels(); |
411 | return !LabelMap.empty(); |
412 | } |
413 | |
414 | /// AllocaInsertPoint - This is an instruction in the entry block before which |
415 | /// we prefer to insert allocas. |
416 | llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; |
417 | |
418 | private: |
419 | /// PostAllocaInsertPt - This is a place in the prologue where code can be |
420 | /// inserted that will be dominated by all the static allocas. This helps |
421 | /// achieve two things: |
422 | /// 1. Contiguity of all static allocas (within the prologue) is maintained. |
423 | /// 2. All other prologue code (which are dominated by static allocas) do |
424 | /// appear in the source order immediately after all static allocas. |
425 | /// |
426 | /// PostAllocaInsertPt will be lazily created when it is *really* required. |
427 | llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; |
428 | |
429 | public: |
430 | /// Return PostAllocaInsertPt. If it is not yet created, then insert it |
431 | /// immediately after AllocaInsertPt. |
432 | llvm::Instruction *getPostAllocaInsertPoint() { |
433 | if (!PostAllocaInsertPt) { |
434 | assert(AllocaInsertPt && |
435 | "Expected static alloca insertion point at function prologue" ); |
436 | assert(AllocaInsertPt->getParent()->isEntryBlock() && |
437 | "EBB should be entry block of the current code gen function" ); |
438 | PostAllocaInsertPt = AllocaInsertPt->clone(); |
439 | PostAllocaInsertPt->setName("postallocapt" ); |
440 | PostAllocaInsertPt->insertAfter(InsertPos: AllocaInsertPt->getIterator()); |
441 | } |
442 | |
443 | return PostAllocaInsertPt; |
444 | } |
445 | |
446 | /// API for captured statement code generation. |
447 | class CGCapturedStmtInfo { |
448 | public: |
449 | explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) |
450 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} |
451 | explicit CGCapturedStmtInfo(const CapturedStmt &S, |
452 | CapturedRegionKind K = CR_Default) |
453 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { |
454 | |
455 | RecordDecl::field_iterator Field = |
456 | S.getCapturedRecordDecl()->field_begin(); |
457 | for (CapturedStmt::const_capture_iterator I = S.capture_begin(), |
458 | E = S.capture_end(); |
459 | I != E; ++I, ++Field) { |
460 | if (I->capturesThis()) |
461 | CXXThisFieldDecl = *Field; |
462 | else if (I->capturesVariable()) |
463 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
464 | else if (I->capturesVariableByCopy()) |
465 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
466 | } |
467 | } |
468 | |
469 | virtual ~CGCapturedStmtInfo(); |
470 | |
471 | CapturedRegionKind getKind() const { return Kind; } |
472 | |
473 | virtual void setContextValue(llvm::Value *V) { ThisValue = V; } |
474 | // Retrieve the value of the context parameter. |
475 | virtual llvm::Value *getContextValue() const { return ThisValue; } |
476 | |
477 | /// Lookup the captured field decl for a variable. |
478 | virtual const FieldDecl *lookup(const VarDecl *VD) const { |
479 | return CaptureFields.lookup(Val: VD->getCanonicalDecl()); |
480 | } |
481 | |
482 | bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } |
483 | virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } |
484 | |
485 | static bool classof(const CGCapturedStmtInfo *) { return true; } |
486 | |
487 | /// Emit the captured statement body. |
488 | virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { |
489 | CGF.incrementProfileCounter(S); |
490 | CGF.EmitStmt(S); |
491 | } |
492 | |
493 | /// Get the name of the capture helper. |
494 | virtual StringRef getHelperName() const { return "__captured_stmt" ; } |
495 | |
496 | /// Get the CaptureFields |
497 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { |
498 | return CaptureFields; |
499 | } |
500 | |
501 | private: |
502 | /// The kind of captured statement being generated. |
503 | CapturedRegionKind Kind; |
504 | |
505 | /// Keep the map between VarDecl and FieldDecl. |
506 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; |
507 | |
508 | /// The base address of the captured record, passed in as the first |
509 | /// argument of the parallel region function. |
510 | llvm::Value *ThisValue; |
511 | |
512 | /// Captured 'this' type. |
513 | FieldDecl *CXXThisFieldDecl; |
514 | }; |
515 | CGCapturedStmtInfo *CapturedStmtInfo = nullptr; |
516 | |
517 | /// RAII for correct setting/restoring of CapturedStmtInfo. |
518 | class CGCapturedStmtRAII { |
519 | private: |
520 | CodeGenFunction &CGF; |
521 | CGCapturedStmtInfo *PrevCapturedStmtInfo; |
522 | |
523 | public: |
524 | CGCapturedStmtRAII(CodeGenFunction &CGF, |
525 | CGCapturedStmtInfo *NewCapturedStmtInfo) |
526 | : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { |
527 | CGF.CapturedStmtInfo = NewCapturedStmtInfo; |
528 | } |
529 | ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } |
530 | }; |
531 | |
532 | /// An abstract representation of regular/ObjC call/message targets. |
533 | class AbstractCallee { |
534 | /// The function declaration of the callee. |
535 | const Decl *CalleeDecl; |
536 | |
537 | public: |
538 | AbstractCallee() : CalleeDecl(nullptr) {} |
539 | AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} |
540 | AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} |
541 | bool hasFunctionDecl() const { |
542 | return isa_and_nonnull<FunctionDecl>(Val: CalleeDecl); |
543 | } |
544 | const Decl *getDecl() const { return CalleeDecl; } |
545 | unsigned getNumParams() const { |
546 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
547 | return FD->getNumParams(); |
548 | return cast<ObjCMethodDecl>(Val: CalleeDecl)->param_size(); |
549 | } |
550 | const ParmVarDecl *getParamDecl(unsigned I) const { |
551 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
552 | return FD->getParamDecl(i: I); |
553 | return *(cast<ObjCMethodDecl>(Val: CalleeDecl)->param_begin() + I); |
554 | } |
555 | }; |
556 | |
557 | /// Sanitizers enabled for this function. |
558 | SanitizerSet SanOpts; |
559 | |
560 | /// True if CodeGen currently emits code implementing sanitizer checks. |
561 | bool IsSanitizerScope = false; |
562 | |
563 | /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. |
564 | class SanitizerScope { |
565 | CodeGenFunction *CGF; |
566 | |
567 | public: |
568 | SanitizerScope(CodeGenFunction *CGF); |
569 | ~SanitizerScope(); |
570 | }; |
571 | |
572 | /// In C++, whether we are code generating a thunk. This controls whether we |
573 | /// should emit cleanups. |
574 | bool CurFuncIsThunk = false; |
575 | |
576 | /// In ARC, whether we should autorelease the return value. |
577 | bool AutoreleaseResult = false; |
578 | |
579 | /// Whether we processed a Microsoft-style asm block during CodeGen. These can |
580 | /// potentially set the return value. |
581 | bool SawAsmBlock = false; |
582 | |
583 | GlobalDecl CurSEHParent; |
584 | |
585 | /// True if the current function is an outlined SEH helper. This can be a |
586 | /// finally block or filter expression. |
587 | bool IsOutlinedSEHHelper = false; |
588 | |
589 | /// True if CodeGen currently emits code inside presereved access index |
590 | /// region. |
591 | bool IsInPreservedAIRegion = false; |
592 | |
593 | /// True if the current statement has nomerge attribute. |
594 | bool InNoMergeAttributedStmt = false; |
595 | |
596 | /// True if the current statement has noinline attribute. |
597 | bool InNoInlineAttributedStmt = false; |
598 | |
599 | /// True if the current statement has always_inline attribute. |
600 | bool InAlwaysInlineAttributedStmt = false; |
601 | |
602 | /// True if the current statement has noconvergent attribute. |
603 | bool InNoConvergentAttributedStmt = false; |
604 | |
605 | /// HLSL Branch attribute. |
606 | HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr = |
607 | HLSLControlFlowHintAttr::SpellingNotCalculated; |
608 | |
609 | // The CallExpr within the current statement that the musttail attribute |
610 | // applies to. nullptr if there is no 'musttail' on the current statement. |
611 | const CallExpr *MustTailCall = nullptr; |
612 | |
613 | /// Returns true if a function must make progress, which means the |
614 | /// mustprogress attribute can be added. |
615 | bool checkIfFunctionMustProgress() { |
616 | if (CGM.getCodeGenOpts().getFiniteLoops() == |
617 | CodeGenOptions::FiniteLoopsKind::Never) |
618 | return false; |
619 | |
620 | // C++11 and later guarantees that a thread eventually will do one of the |
621 | // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): |
622 | // - terminate, |
623 | // - make a call to a library I/O function, |
624 | // - perform an access through a volatile glvalue, or |
625 | // - perform a synchronization operation or an atomic operation. |
626 | // |
627 | // Hence each function is 'mustprogress' in C++11 or later. |
628 | return getLangOpts().CPlusPlus11; |
629 | } |
630 | |
631 | /// Returns true if a loop must make progress, which means the mustprogress |
632 | /// attribute can be added. \p HasConstantCond indicates whether the branch |
633 | /// condition is a known constant. |
634 | bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); |
635 | |
636 | const CodeGen::CGBlockInfo *BlockInfo = nullptr; |
637 | llvm::Value *BlockPointer = nullptr; |
638 | |
639 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
640 | FieldDecl *LambdaThisCaptureField = nullptr; |
641 | |
642 | /// A mapping from NRVO variables to the flags used to indicate |
643 | /// when the NRVO has been applied to this variable. |
644 | llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; |
645 | |
646 | EHScopeStack EHStack; |
647 | llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; |
648 | |
649 | // A stack of cleanups which were added to EHStack but have to be deactivated |
650 | // later before being popped or emitted. These are usually deactivated on |
651 | // exiting a `CleanupDeactivationScope` scope. For instance, after a |
652 | // full-expr. |
653 | // |
654 | // These are specially useful for correctly emitting cleanups while |
655 | // encountering branches out of expression (through stmt-expr or coroutine |
656 | // suspensions). |
657 | struct DeferredDeactivateCleanup { |
658 | EHScopeStack::stable_iterator Cleanup; |
659 | llvm::Instruction *DominatingIP; |
660 | }; |
661 | llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; |
662 | |
663 | // Enters a new scope for capturing cleanups which are deferred to be |
664 | // deactivated, all of which will be deactivated once the scope is exited. |
665 | struct CleanupDeactivationScope { |
666 | CodeGenFunction &CGF; |
667 | size_t OldDeactivateCleanupStackSize; |
668 | bool Deactivated; |
669 | CleanupDeactivationScope(CodeGenFunction &CGF) |
670 | : CGF(CGF), OldDeactivateCleanupStackSize( |
671 | CGF.DeferredDeactivationCleanupStack.size()), |
672 | Deactivated(false) {} |
673 | |
674 | void ForceDeactivate() { |
675 | assert(!Deactivated && "Deactivating already deactivated scope" ); |
676 | auto &Stack = CGF.DeferredDeactivationCleanupStack; |
677 | for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { |
678 | CGF.DeactivateCleanupBlock(Cleanup: Stack[I - 1].Cleanup, |
679 | DominatingIP: Stack[I - 1].DominatingIP); |
680 | Stack[I - 1].DominatingIP->eraseFromParent(); |
681 | } |
682 | Stack.resize(N: OldDeactivateCleanupStackSize); |
683 | Deactivated = true; |
684 | } |
685 | |
686 | ~CleanupDeactivationScope() { |
687 | if (Deactivated) |
688 | return; |
689 | ForceDeactivate(); |
690 | } |
691 | }; |
692 | |
693 | llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; |
694 | |
695 | llvm::Instruction *CurrentFuncletPad = nullptr; |
696 | |
697 | class CallLifetimeEnd final : public EHScopeStack::Cleanup { |
698 | bool isRedundantBeforeReturn() override { return true; } |
699 | |
700 | llvm::Value *Addr; |
701 | llvm::Value *Size; |
702 | |
703 | public: |
704 | CallLifetimeEnd(RawAddress addr, llvm::Value *size) |
705 | : Addr(addr.getPointer()), Size(size) {} |
706 | |
707 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
708 | CGF.EmitLifetimeEnd(Size, Addr); |
709 | } |
710 | }; |
711 | |
712 | // We are using objects of this 'cleanup' class to emit fake.use calls |
713 | // for -fextend-variable-liveness. They are placed at the end of a variable's |
714 | // scope analogous to lifetime markers. |
715 | class FakeUse final : public EHScopeStack::Cleanup { |
716 | Address Addr; |
717 | |
718 | public: |
719 | FakeUse(Address addr) : Addr(addr) {} |
720 | |
721 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
722 | CGF.EmitFakeUse(Addr); |
723 | } |
724 | }; |
725 | |
726 | /// Header for data within LifetimeExtendedCleanupStack. |
727 | struct { |
728 | /// The size of the following cleanup object. |
729 | unsigned ; |
730 | /// The kind of cleanup to push. |
731 | LLVM_PREFERRED_TYPE(CleanupKind) |
732 | unsigned : 31; |
733 | /// Whether this is a conditional cleanup. |
734 | LLVM_PREFERRED_TYPE(bool) |
735 | unsigned : 1; |
736 | |
737 | size_t () const { return Size; } |
738 | CleanupKind () const { return (CleanupKind)Kind; } |
739 | bool () const { return IsConditional; } |
740 | }; |
741 | |
742 | /// i32s containing the indexes of the cleanup destinations. |
743 | RawAddress NormalCleanupDest = RawAddress::invalid(); |
744 | |
745 | unsigned NextCleanupDestIndex = 1; |
746 | |
747 | /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. |
748 | llvm::BasicBlock *EHResumeBlock = nullptr; |
749 | |
750 | /// The exception slot. All landing pads write the current exception pointer |
751 | /// into this alloca. |
752 | llvm::Value *ExceptionSlot = nullptr; |
753 | |
754 | /// The selector slot. Under the MandatoryCleanup model, all landing pads |
755 | /// write the current selector value into this alloca. |
756 | llvm::AllocaInst *EHSelectorSlot = nullptr; |
757 | |
758 | /// A stack of exception code slots. Entering an __except block pushes a slot |
759 | /// on the stack and leaving pops one. The __exception_code() intrinsic loads |
760 | /// a value from the top of the stack. |
761 | SmallVector<Address, 1> SEHCodeSlotStack; |
762 | |
763 | /// Value returned by __exception_info intrinsic. |
764 | llvm::Value *SEHInfo = nullptr; |
765 | |
766 | /// Emits a landing pad for the current EH stack. |
767 | llvm::BasicBlock *EmitLandingPad(); |
768 | |
769 | llvm::BasicBlock *getInvokeDestImpl(); |
770 | |
771 | /// Parent loop-based directive for scan directive. |
772 | const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; |
773 | llvm::BasicBlock *OMPBeforeScanBlock = nullptr; |
774 | llvm::BasicBlock *OMPAfterScanBlock = nullptr; |
775 | llvm::BasicBlock *OMPScanExitBlock = nullptr; |
776 | llvm::BasicBlock *OMPScanDispatch = nullptr; |
777 | bool OMPFirstScanLoop = false; |
778 | |
779 | /// Manages parent directive for scan directives. |
780 | class ParentLoopDirectiveForScanRegion { |
781 | CodeGenFunction &CGF; |
782 | const OMPExecutableDirective *ParentLoopDirectiveForScan; |
783 | |
784 | public: |
785 | ParentLoopDirectiveForScanRegion( |
786 | CodeGenFunction &CGF, |
787 | const OMPExecutableDirective &ParentLoopDirectiveForScan) |
788 | : CGF(CGF), |
789 | ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { |
790 | CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; |
791 | } |
792 | ~ParentLoopDirectiveForScanRegion() { |
793 | CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; |
794 | } |
795 | }; |
796 | |
797 | template <class T> |
798 | typename DominatingValue<T>::saved_type saveValueInCond(T value) { |
799 | return DominatingValue<T>::save(*this, value); |
800 | } |
801 | |
802 | class CGFPOptionsRAII { |
803 | public: |
804 | CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); |
805 | CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); |
806 | ~CGFPOptionsRAII(); |
807 | |
808 | private: |
809 | void ConstructorHelper(FPOptions FPFeatures); |
810 | CodeGenFunction &CGF; |
811 | FPOptions OldFPFeatures; |
812 | llvm::fp::ExceptionBehavior OldExcept; |
813 | llvm::RoundingMode OldRounding; |
814 | std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; |
815 | }; |
816 | FPOptions CurFPFeatures; |
817 | |
818 | class CGAtomicOptionsRAII { |
819 | public: |
820 | CGAtomicOptionsRAII(CodeGenModule &CGM_, AtomicOptions AO) |
821 | : CGM(CGM_), SavedAtomicOpts(CGM.getAtomicOpts()) { |
822 | CGM.setAtomicOpts(AO); |
823 | } |
824 | CGAtomicOptionsRAII(CodeGenModule &CGM_, const AtomicAttr *AA) |
825 | : CGM(CGM_), SavedAtomicOpts(CGM.getAtomicOpts()) { |
826 | if (!AA) |
827 | return; |
828 | AtomicOptions AO = SavedAtomicOpts; |
829 | for (auto Option : AA->atomicOptions()) { |
830 | switch (Option) { |
831 | case AtomicAttr::remote_memory: |
832 | AO.remote_memory = true; |
833 | break; |
834 | case AtomicAttr::no_remote_memory: |
835 | AO.remote_memory = false; |
836 | break; |
837 | case AtomicAttr::fine_grained_memory: |
838 | AO.fine_grained_memory = true; |
839 | break; |
840 | case AtomicAttr::no_fine_grained_memory: |
841 | AO.fine_grained_memory = false; |
842 | break; |
843 | case AtomicAttr::ignore_denormal_mode: |
844 | AO.ignore_denormal_mode = true; |
845 | break; |
846 | case AtomicAttr::no_ignore_denormal_mode: |
847 | AO.ignore_denormal_mode = false; |
848 | break; |
849 | } |
850 | } |
851 | CGM.setAtomicOpts(AO); |
852 | } |
853 | |
854 | CGAtomicOptionsRAII(const CGAtomicOptionsRAII &) = delete; |
855 | CGAtomicOptionsRAII &operator=(const CGAtomicOptionsRAII &) = delete; |
856 | ~CGAtomicOptionsRAII() { CGM.setAtomicOpts(SavedAtomicOpts); } |
857 | |
858 | private: |
859 | CodeGenModule &CGM; |
860 | AtomicOptions SavedAtomicOpts; |
861 | }; |
862 | |
863 | public: |
864 | /// ObjCEHValueStack - Stack of Objective-C exception values, used for |
865 | /// rethrows. |
866 | SmallVector<llvm::Value *, 8> ObjCEHValueStack; |
867 | |
868 | /// A class controlling the emission of a finally block. |
869 | class FinallyInfo { |
870 | /// Where the catchall's edge through the cleanup should go. |
871 | JumpDest RethrowDest; |
872 | |
873 | /// A function to call to enter the catch. |
874 | llvm::FunctionCallee BeginCatchFn; |
875 | |
876 | /// An i1 variable indicating whether or not the @finally is |
877 | /// running for an exception. |
878 | llvm::AllocaInst *ForEHVar = nullptr; |
879 | |
880 | /// An i8* variable into which the exception pointer to rethrow |
881 | /// has been saved. |
882 | llvm::AllocaInst *SavedExnVar = nullptr; |
883 | |
884 | public: |
885 | void enter(CodeGenFunction &CGF, const Stmt *Finally, |
886 | llvm::FunctionCallee beginCatchFn, |
887 | llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); |
888 | void exit(CodeGenFunction &CGF); |
889 | }; |
890 | |
891 | /// Returns true inside SEH __try blocks. |
892 | bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } |
893 | |
894 | /// Returns true while emitting a cleanuppad. |
895 | bool isCleanupPadScope() const { |
896 | return CurrentFuncletPad && isa<llvm::CleanupPadInst>(Val: CurrentFuncletPad); |
897 | } |
898 | |
899 | /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
900 | /// current full-expression. Safe against the possibility that |
901 | /// we're currently inside a conditionally-evaluated expression. |
902 | template <class T, class... As> |
903 | void pushFullExprCleanup(CleanupKind kind, As... A) { |
904 | // If we're not in a conditional branch, or if none of the |
905 | // arguments requires saving, then use the unconditional cleanup. |
906 | if (!isInConditionalBranch()) |
907 | return EHStack.pushCleanup<T>(kind, A...); |
908 | |
909 | // Stash values in a tuple so we can guarantee the order of saves. |
910 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
911 | SavedTuple Saved{saveValueInCond(A)...}; |
912 | |
913 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
914 | EHStack.pushCleanupTuple<CleanupType>(kind, Saved); |
915 | initFullExprCleanup(); |
916 | } |
917 | |
918 | /// Queue a cleanup to be pushed after finishing the current full-expression, |
919 | /// potentially with an active flag. |
920 | template <class T, class... As> |
921 | void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { |
922 | if (!isInConditionalBranch()) |
923 | return pushCleanupAfterFullExprWithActiveFlag<T>( |
924 | Kind, RawAddress::invalid(), A...); |
925 | |
926 | RawAddress ActiveFlag = createCleanupActiveFlag(); |
927 | assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && |
928 | "cleanup active flag should never need saving" ); |
929 | |
930 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
931 | SavedTuple Saved{saveValueInCond(A)...}; |
932 | |
933 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
934 | pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, |
935 | Saved); |
936 | } |
937 | |
938 | template <class T, class... As> |
939 | void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, |
940 | RawAddress ActiveFlag, As... A) { |
941 | LifetimeExtendedCleanupHeader = {.Size: sizeof(T), .Kind: Kind, |
942 | .IsConditional: ActiveFlag.isValid()}; |
943 | |
944 | size_t OldSize = LifetimeExtendedCleanupStack.size(); |
945 | LifetimeExtendedCleanupStack.resize( |
946 | N: LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + |
947 | (Header.IsConditional ? sizeof(ActiveFlag) : 0)); |
948 | |
949 | static_assert(sizeof(Header) % alignof(T) == 0, |
950 | "Cleanup will be allocated on misaligned address" ); |
951 | char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; |
952 | new (Buffer) LifetimeExtendedCleanupHeader(Header); |
953 | new (Buffer + sizeof(Header)) T(A...); |
954 | if (Header.IsConditional) |
955 | new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); |
956 | } |
957 | |
958 | // Push a cleanup onto EHStack and deactivate it later. It is usually |
959 | // deactivated when exiting a `CleanupDeactivationScope` (for example: after a |
960 | // full expression). |
961 | template <class T, class... As> |
962 | void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { |
963 | // Placeholder dominating IP for this cleanup. |
964 | llvm::Instruction *DominatingIP = |
965 | Builder.CreateFlagLoad(Addr: llvm::Constant::getNullValue(Ty: Int8PtrTy)); |
966 | EHStack.pushCleanup<T>(Kind, A...); |
967 | DeferredDeactivationCleanupStack.push_back( |
968 | Elt: {.Cleanup: EHStack.stable_begin(), .DominatingIP: DominatingIP}); |
969 | } |
970 | |
971 | /// Set up the last cleanup that was pushed as a conditional |
972 | /// full-expression cleanup. |
973 | void initFullExprCleanup() { |
974 | initFullExprCleanupWithFlag(ActiveFlag: createCleanupActiveFlag()); |
975 | } |
976 | |
977 | void initFullExprCleanupWithFlag(RawAddress ActiveFlag); |
978 | RawAddress createCleanupActiveFlag(); |
979 | |
980 | /// PushDestructorCleanup - Push a cleanup to call the |
981 | /// complete-object destructor of an object of the given type at the |
982 | /// given address. Does nothing if T is not a C++ class type with a |
983 | /// non-trivial destructor. |
984 | void PushDestructorCleanup(QualType T, Address Addr); |
985 | |
986 | /// PushDestructorCleanup - Push a cleanup to call the |
987 | /// complete-object variant of the given destructor on the object at |
988 | /// the given address. |
989 | void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, |
990 | Address Addr); |
991 | |
992 | /// PopCleanupBlock - Will pop the cleanup entry on the stack and |
993 | /// process all branch fixups. |
994 | void PopCleanupBlock(bool FallThroughIsBranchThrough = false, |
995 | bool ForDeactivation = false); |
996 | |
997 | /// DeactivateCleanupBlock - Deactivates the given cleanup block. |
998 | /// The block cannot be reactivated. Pops it if it's the top of the |
999 | /// stack. |
1000 | /// |
1001 | /// \param DominatingIP - An instruction which is known to |
1002 | /// dominate the current IP (if set) and which lies along |
1003 | /// all paths of execution between the current IP and the |
1004 | /// the point at which the cleanup comes into scope. |
1005 | void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
1006 | llvm::Instruction *DominatingIP); |
1007 | |
1008 | /// ActivateCleanupBlock - Activates an initially-inactive cleanup. |
1009 | /// Cannot be used to resurrect a deactivated cleanup. |
1010 | /// |
1011 | /// \param DominatingIP - An instruction which is known to |
1012 | /// dominate the current IP (if set) and which lies along |
1013 | /// all paths of execution between the current IP and the |
1014 | /// the point at which the cleanup comes into scope. |
1015 | void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
1016 | llvm::Instruction *DominatingIP); |
1017 | |
1018 | /// Enters a new scope for capturing cleanups, all of which |
1019 | /// will be executed once the scope is exited. |
1020 | class RunCleanupsScope { |
1021 | EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; |
1022 | size_t LifetimeExtendedCleanupStackSize; |
1023 | CleanupDeactivationScope DeactivateCleanups; |
1024 | bool OldDidCallStackSave; |
1025 | |
1026 | protected: |
1027 | bool PerformCleanup; |
1028 | |
1029 | private: |
1030 | RunCleanupsScope(const RunCleanupsScope &) = delete; |
1031 | void operator=(const RunCleanupsScope &) = delete; |
1032 | |
1033 | protected: |
1034 | CodeGenFunction &CGF; |
1035 | |
1036 | public: |
1037 | /// Enter a new cleanup scope. |
1038 | explicit RunCleanupsScope(CodeGenFunction &CGF) |
1039 | : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { |
1040 | CleanupStackDepth = CGF.EHStack.stable_begin(); |
1041 | LifetimeExtendedCleanupStackSize = |
1042 | CGF.LifetimeExtendedCleanupStack.size(); |
1043 | OldDidCallStackSave = CGF.DidCallStackSave; |
1044 | CGF.DidCallStackSave = false; |
1045 | OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; |
1046 | CGF.CurrentCleanupScopeDepth = CleanupStackDepth; |
1047 | } |
1048 | |
1049 | /// Exit this cleanup scope, emitting any accumulated cleanups. |
1050 | ~RunCleanupsScope() { |
1051 | if (PerformCleanup) |
1052 | ForceCleanup(); |
1053 | } |
1054 | |
1055 | /// Determine whether this scope requires any cleanups. |
1056 | bool requiresCleanups() const { |
1057 | return CGF.EHStack.stable_begin() != CleanupStackDepth; |
1058 | } |
1059 | |
1060 | /// Force the emission of cleanups now, instead of waiting |
1061 | /// until this object is destroyed. |
1062 | /// \param ValuesToReload - A list of values that need to be available at |
1063 | /// the insertion point after cleanup emission. If cleanup emission created |
1064 | /// a shared cleanup block, these value pointers will be rewritten. |
1065 | /// Otherwise, they not will be modified. |
1066 | void |
1067 | ForceCleanup(std::initializer_list<llvm::Value **> ValuesToReload = {}) { |
1068 | assert(PerformCleanup && "Already forced cleanup" ); |
1069 | CGF.DidCallStackSave = OldDidCallStackSave; |
1070 | DeactivateCleanups.ForceDeactivate(); |
1071 | CGF.PopCleanupBlocks(OldCleanupStackSize: CleanupStackDepth, OldLifetimeExtendedStackSize: LifetimeExtendedCleanupStackSize, |
1072 | ValuesToReload); |
1073 | PerformCleanup = false; |
1074 | CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; |
1075 | } |
1076 | }; |
1077 | |
1078 | // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. |
1079 | EHScopeStack::stable_iterator CurrentCleanupScopeDepth = |
1080 | EHScopeStack::stable_end(); |
1081 | |
1082 | class LexicalScope : public RunCleanupsScope { |
1083 | SourceRange Range; |
1084 | SmallVector<const LabelDecl *, 4> Labels; |
1085 | LexicalScope *ParentScope; |
1086 | |
1087 | LexicalScope(const LexicalScope &) = delete; |
1088 | void operator=(const LexicalScope &) = delete; |
1089 | |
1090 | public: |
1091 | /// Enter a new cleanup scope. |
1092 | explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range); |
1093 | |
1094 | void addLabel(const LabelDecl *label) { |
1095 | assert(PerformCleanup && "adding label to dead scope?" ); |
1096 | Labels.push_back(Elt: label); |
1097 | } |
1098 | |
1099 | /// Exit this cleanup scope, emitting any accumulated |
1100 | /// cleanups. |
1101 | ~LexicalScope(); |
1102 | |
1103 | /// Force the emission of cleanups now, instead of waiting |
1104 | /// until this object is destroyed. |
1105 | void ForceCleanup() { |
1106 | CGF.CurLexicalScope = ParentScope; |
1107 | RunCleanupsScope::ForceCleanup(); |
1108 | |
1109 | if (!Labels.empty()) |
1110 | rescopeLabels(); |
1111 | } |
1112 | |
1113 | bool hasLabels() const { return !Labels.empty(); } |
1114 | |
1115 | void rescopeLabels(); |
1116 | }; |
1117 | |
1118 | typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; |
1119 | |
1120 | /// The class used to assign some variables some temporarily addresses. |
1121 | class OMPMapVars { |
1122 | DeclMapTy SavedLocals; |
1123 | DeclMapTy SavedTempAddresses; |
1124 | OMPMapVars(const OMPMapVars &) = delete; |
1125 | void operator=(const OMPMapVars &) = delete; |
1126 | |
1127 | public: |
1128 | explicit OMPMapVars() = default; |
1129 | ~OMPMapVars() { |
1130 | assert(SavedLocals.empty() && "Did not restored original addresses." ); |
1131 | }; |
1132 | |
1133 | /// Sets the address of the variable \p LocalVD to be \p TempAddr in |
1134 | /// function \p CGF. |
1135 | /// \return true if at least one variable was set already, false otherwise. |
1136 | bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, |
1137 | Address TempAddr) { |
1138 | LocalVD = LocalVD->getCanonicalDecl(); |
1139 | // Only save it once. |
1140 | if (SavedLocals.count(LocalVD)) |
1141 | return false; |
1142 | |
1143 | // Copy the existing local entry to SavedLocals. |
1144 | auto it = CGF.LocalDeclMap.find(LocalVD); |
1145 | if (it != CGF.LocalDeclMap.end()) |
1146 | SavedLocals.try_emplace(LocalVD, it->second); |
1147 | else |
1148 | SavedLocals.try_emplace(LocalVD, Address::invalid()); |
1149 | |
1150 | // Generate the private entry. |
1151 | QualType VarTy = LocalVD->getType(); |
1152 | if (VarTy->isReferenceType()) { |
1153 | Address Temp = CGF.CreateMemTemp(T: VarTy); |
1154 | CGF.Builder.CreateStore(Val: TempAddr.emitRawPointer(CGF), Addr: Temp); |
1155 | TempAddr = Temp; |
1156 | } |
1157 | SavedTempAddresses.try_emplace(LocalVD, TempAddr); |
1158 | |
1159 | return true; |
1160 | } |
1161 | |
1162 | /// Applies new addresses to the list of the variables. |
1163 | /// \return true if at least one variable is using new address, false |
1164 | /// otherwise. |
1165 | bool apply(CodeGenFunction &CGF) { |
1166 | copyInto(Src: SavedTempAddresses, Dest&: CGF.LocalDeclMap); |
1167 | SavedTempAddresses.clear(); |
1168 | return !SavedLocals.empty(); |
1169 | } |
1170 | |
1171 | /// Restores original addresses of the variables. |
1172 | void restore(CodeGenFunction &CGF) { |
1173 | if (!SavedLocals.empty()) { |
1174 | copyInto(Src: SavedLocals, Dest&: CGF.LocalDeclMap); |
1175 | SavedLocals.clear(); |
1176 | } |
1177 | } |
1178 | |
1179 | private: |
1180 | /// Copy all the entries in the source map over the corresponding |
1181 | /// entries in the destination, which must exist. |
1182 | static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { |
1183 | for (auto &[Decl, Addr] : Src) { |
1184 | if (!Addr.isValid()) |
1185 | Dest.erase(Val: Decl); |
1186 | else |
1187 | Dest.insert_or_assign(Key: Decl, Val: Addr); |
1188 | } |
1189 | } |
1190 | }; |
1191 | |
1192 | /// The scope used to remap some variables as private in the OpenMP loop body |
1193 | /// (or other captured region emitted without outlining), and to restore old |
1194 | /// vars back on exit. |
1195 | class OMPPrivateScope : public RunCleanupsScope { |
1196 | OMPMapVars MappedVars; |
1197 | OMPPrivateScope(const OMPPrivateScope &) = delete; |
1198 | void operator=(const OMPPrivateScope &) = delete; |
1199 | |
1200 | public: |
1201 | /// Enter a new OpenMP private scope. |
1202 | explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} |
1203 | |
1204 | /// Registers \p LocalVD variable as a private with \p Addr as the address |
1205 | /// of the corresponding private variable. \p |
1206 | /// PrivateGen is the address of the generated private variable. |
1207 | /// \return true if the variable is registered as private, false if it has |
1208 | /// been privatized already. |
1209 | bool addPrivate(const VarDecl *LocalVD, Address Addr) { |
1210 | assert(PerformCleanup && "adding private to dead scope" ); |
1211 | return MappedVars.setVarAddr(CGF, LocalVD, TempAddr: Addr); |
1212 | } |
1213 | |
1214 | /// Privatizes local variables previously registered as private. |
1215 | /// Registration is separate from the actual privatization to allow |
1216 | /// initializers use values of the original variables, not the private one. |
1217 | /// This is important, for example, if the private variable is a class |
1218 | /// variable initialized by a constructor that references other private |
1219 | /// variables. But at initialization original variables must be used, not |
1220 | /// private copies. |
1221 | /// \return true if at least one variable was privatized, false otherwise. |
1222 | bool Privatize() { return MappedVars.apply(CGF); } |
1223 | |
1224 | void ForceCleanup() { |
1225 | RunCleanupsScope::ForceCleanup(); |
1226 | restoreMap(); |
1227 | } |
1228 | |
1229 | /// Exit scope - all the mapped variables are restored. |
1230 | ~OMPPrivateScope() { |
1231 | if (PerformCleanup) |
1232 | ForceCleanup(); |
1233 | } |
1234 | |
1235 | /// Checks if the global variable is captured in current function. |
1236 | bool isGlobalVarCaptured(const VarDecl *VD) const { |
1237 | VD = VD->getCanonicalDecl(); |
1238 | return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; |
1239 | } |
1240 | |
1241 | /// Restore all mapped variables w/o clean up. This is usefully when we want |
1242 | /// to reference the original variables but don't want the clean up because |
1243 | /// that could emit lifetime end too early, causing backend issue #56913. |
1244 | void restoreMap() { MappedVars.restore(CGF); } |
1245 | }; |
1246 | |
1247 | /// Save/restore original map of previously emitted local vars in case when we |
1248 | /// need to duplicate emission of the same code several times in the same |
1249 | /// function for OpenMP code. |
1250 | class OMPLocalDeclMapRAII { |
1251 | CodeGenFunction &CGF; |
1252 | DeclMapTy SavedMap; |
1253 | |
1254 | public: |
1255 | OMPLocalDeclMapRAII(CodeGenFunction &CGF) |
1256 | : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} |
1257 | ~OMPLocalDeclMapRAII() { SavedMap.swap(RHS&: CGF.LocalDeclMap); } |
1258 | }; |
1259 | |
1260 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1261 | /// that have been added. |
1262 | void |
1263 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1264 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1265 | |
1266 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1267 | /// that have been added, then adds all lifetime-extended cleanups from |
1268 | /// the given position to the stack. |
1269 | void |
1270 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1271 | size_t OldLifetimeExtendedStackSize, |
1272 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1273 | |
1274 | void ResolveBranchFixups(llvm::BasicBlock *Target); |
1275 | |
1276 | /// The given basic block lies in the current EH scope, but may be a |
1277 | /// target of a potentially scope-crossing jump; get a stable handle |
1278 | /// to which we can perform this jump later. |
1279 | JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { |
1280 | return JumpDest(Target, EHStack.getInnermostNormalCleanup(), |
1281 | NextCleanupDestIndex++); |
1282 | } |
1283 | |
1284 | /// The given basic block lies in the current EH scope, but may be a |
1285 | /// target of a potentially scope-crossing jump; get a stable handle |
1286 | /// to which we can perform this jump later. |
1287 | JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { |
1288 | return getJumpDestInCurrentScope(Target: createBasicBlock(name: Name)); |
1289 | } |
1290 | |
1291 | /// EmitBranchThroughCleanup - Emit a branch from the current insert |
1292 | /// block through the normal cleanup handling code (if any) and then |
1293 | /// on to \arg Dest. |
1294 | void EmitBranchThroughCleanup(JumpDest Dest); |
1295 | |
1296 | /// isObviouslyBranchWithoutCleanups - Return true if a branch to the |
1297 | /// specified destination obviously has no cleanups to run. 'false' is always |
1298 | /// a conservatively correct answer for this method. |
1299 | bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; |
1300 | |
1301 | /// popCatchScope - Pops the catch scope at the top of the EHScope |
1302 | /// stack, emitting any required code (other than the catch handlers |
1303 | /// themselves). |
1304 | void popCatchScope(); |
1305 | |
1306 | llvm::BasicBlock *getEHResumeBlock(bool isCleanup); |
1307 | llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1308 | llvm::BasicBlock * |
1309 | getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1310 | |
1311 | /// An object to manage conditionally-evaluated expressions. |
1312 | class ConditionalEvaluation { |
1313 | llvm::BasicBlock *StartBB; |
1314 | |
1315 | public: |
1316 | ConditionalEvaluation(CodeGenFunction &CGF) |
1317 | : StartBB(CGF.Builder.GetInsertBlock()) {} |
1318 | |
1319 | void begin(CodeGenFunction &CGF) { |
1320 | assert(CGF.OutermostConditional != this); |
1321 | if (!CGF.OutermostConditional) |
1322 | CGF.OutermostConditional = this; |
1323 | } |
1324 | |
1325 | void end(CodeGenFunction &CGF) { |
1326 | assert(CGF.OutermostConditional != nullptr); |
1327 | if (CGF.OutermostConditional == this) |
1328 | CGF.OutermostConditional = nullptr; |
1329 | } |
1330 | |
1331 | /// Returns a block which will be executed prior to each |
1332 | /// evaluation of the conditional code. |
1333 | llvm::BasicBlock *getStartingBlock() const { return StartBB; } |
1334 | }; |
1335 | |
1336 | /// isInConditionalBranch - Return true if we're currently emitting |
1337 | /// one branch or the other of a conditional expression. |
1338 | bool isInConditionalBranch() const { return OutermostConditional != nullptr; } |
1339 | |
1340 | void setBeforeOutermostConditional(llvm::Value *value, Address addr, |
1341 | CodeGenFunction &CGF) { |
1342 | assert(isInConditionalBranch()); |
1343 | llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); |
1344 | auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), |
1345 | block->back().getIterator()); |
1346 | store->setAlignment(addr.getAlignment().getAsAlign()); |
1347 | } |
1348 | |
1349 | /// An RAII object to record that we're evaluating a statement |
1350 | /// expression. |
1351 | class StmtExprEvaluation { |
1352 | CodeGenFunction &CGF; |
1353 | |
1354 | /// We have to save the outermost conditional: cleanups in a |
1355 | /// statement expression aren't conditional just because the |
1356 | /// StmtExpr is. |
1357 | ConditionalEvaluation *SavedOutermostConditional; |
1358 | |
1359 | public: |
1360 | StmtExprEvaluation(CodeGenFunction &CGF) |
1361 | : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { |
1362 | CGF.OutermostConditional = nullptr; |
1363 | } |
1364 | |
1365 | ~StmtExprEvaluation() { |
1366 | CGF.OutermostConditional = SavedOutermostConditional; |
1367 | CGF.EnsureInsertPoint(); |
1368 | } |
1369 | }; |
1370 | |
1371 | /// An object which temporarily prevents a value from being |
1372 | /// destroyed by aggressive peephole optimizations that assume that |
1373 | /// all uses of a value have been realized in the IR. |
1374 | class PeepholeProtection { |
1375 | llvm::Instruction *Inst = nullptr; |
1376 | friend class CodeGenFunction; |
1377 | |
1378 | public: |
1379 | PeepholeProtection() = default; |
1380 | }; |
1381 | |
1382 | /// A non-RAII class containing all the information about a bound |
1383 | /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for |
1384 | /// this which makes individual mappings very simple; using this |
1385 | /// class directly is useful when you have a variable number of |
1386 | /// opaque values or don't want the RAII functionality for some |
1387 | /// reason. |
1388 | class OpaqueValueMappingData { |
1389 | const OpaqueValueExpr *OpaqueValue; |
1390 | bool BoundLValue; |
1391 | CodeGenFunction::PeepholeProtection Protection; |
1392 | |
1393 | OpaqueValueMappingData(const OpaqueValueExpr *ov, bool boundLValue) |
1394 | : OpaqueValue(ov), BoundLValue(boundLValue) {} |
1395 | |
1396 | public: |
1397 | OpaqueValueMappingData() : OpaqueValue(nullptr) {} |
1398 | |
1399 | static bool shouldBindAsLValue(const Expr *expr) { |
1400 | // gl-values should be bound as l-values for obvious reasons. |
1401 | // Records should be bound as l-values because IR generation |
1402 | // always keeps them in memory. Expressions of function type |
1403 | // act exactly like l-values but are formally required to be |
1404 | // r-values in C. |
1405 | return expr->isGLValue() || expr->getType()->isFunctionType() || |
1406 | hasAggregateEvaluationKind(T: expr->getType()); |
1407 | } |
1408 | |
1409 | static OpaqueValueMappingData |
1410 | bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e) { |
1411 | if (shouldBindAsLValue(ov)) |
1412 | return bind(CGF, ov, lv: CGF.EmitLValue(E: e)); |
1413 | return bind(CGF, ov, rv: CGF.EmitAnyExpr(E: e)); |
1414 | } |
1415 | |
1416 | static OpaqueValueMappingData |
1417 | bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv) { |
1418 | assert(shouldBindAsLValue(ov)); |
1419 | CGF.OpaqueLValues.insert(KV: std::make_pair(x&: ov, y: lv)); |
1420 | return OpaqueValueMappingData(ov, true); |
1421 | } |
1422 | |
1423 | static OpaqueValueMappingData |
1424 | bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv) { |
1425 | assert(!shouldBindAsLValue(ov)); |
1426 | CGF.OpaqueRValues.insert(KV: std::make_pair(x&: ov, y: rv)); |
1427 | |
1428 | OpaqueValueMappingData data(ov, false); |
1429 | |
1430 | // Work around an extremely aggressive peephole optimization in |
1431 | // EmitScalarConversion which assumes that all other uses of a |
1432 | // value are extant. |
1433 | data.Protection = CGF.protectFromPeepholes(rvalue: rv); |
1434 | |
1435 | return data; |
1436 | } |
1437 | |
1438 | bool isValid() const { return OpaqueValue != nullptr; } |
1439 | void clear() { OpaqueValue = nullptr; } |
1440 | |
1441 | void unbind(CodeGenFunction &CGF) { |
1442 | assert(OpaqueValue && "no data to unbind!" ); |
1443 | |
1444 | if (BoundLValue) { |
1445 | CGF.OpaqueLValues.erase(Val: OpaqueValue); |
1446 | } else { |
1447 | CGF.OpaqueRValues.erase(Val: OpaqueValue); |
1448 | CGF.unprotectFromPeepholes(protection: Protection); |
1449 | } |
1450 | } |
1451 | }; |
1452 | |
1453 | /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. |
1454 | class OpaqueValueMapping { |
1455 | CodeGenFunction &CGF; |
1456 | OpaqueValueMappingData Data; |
1457 | |
1458 | public: |
1459 | static bool shouldBindAsLValue(const Expr *expr) { |
1460 | return OpaqueValueMappingData::shouldBindAsLValue(expr); |
1461 | } |
1462 | |
1463 | /// Build the opaque value mapping for the given conditional |
1464 | /// operator if it's the GNU ?: extension. This is a common |
1465 | /// enough pattern that the convenience operator is really |
1466 | /// helpful. |
1467 | /// |
1468 | OpaqueValueMapping(CodeGenFunction &CGF, |
1469 | const AbstractConditionalOperator *op) |
1470 | : CGF(CGF) { |
1471 | if (isa<ConditionalOperator>(Val: op)) |
1472 | // Leave Data empty. |
1473 | return; |
1474 | |
1475 | const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(Val: op); |
1476 | Data = OpaqueValueMappingData::bind(CGF, ov: e->getOpaqueValue(), |
1477 | e: e->getCommon()); |
1478 | } |
1479 | |
1480 | /// Build the opaque value mapping for an OpaqueValueExpr whose source |
1481 | /// expression is set to the expression the OVE represents. |
1482 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) |
1483 | : CGF(CGF) { |
1484 | if (OV) { |
1485 | assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " |
1486 | "for OVE with no source expression" ); |
1487 | Data = OpaqueValueMappingData::bind(CGF, ov: OV, e: OV->getSourceExpr()); |
1488 | } |
1489 | } |
1490 | |
1491 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, |
1492 | LValue lvalue) |
1493 | : CGF(CGF), |
1494 | Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, lv: lvalue)) {} |
1495 | |
1496 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, |
1497 | RValue rvalue) |
1498 | : CGF(CGF), |
1499 | Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, rv: rvalue)) {} |
1500 | |
1501 | void pop() { |
1502 | Data.unbind(CGF); |
1503 | Data.clear(); |
1504 | } |
1505 | |
1506 | ~OpaqueValueMapping() { |
1507 | if (Data.isValid()) |
1508 | Data.unbind(CGF); |
1509 | } |
1510 | }; |
1511 | |
1512 | private: |
1513 | CGDebugInfo *DebugInfo; |
1514 | /// Used to create unique names for artificial VLA size debug info variables. |
1515 | unsigned VLAExprCounter = 0; |
1516 | bool DisableDebugInfo = false; |
1517 | |
1518 | /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid |
1519 | /// calling llvm.stacksave for multiple VLAs in the same scope. |
1520 | bool DidCallStackSave = false; |
1521 | |
1522 | /// IndirectBranch - The first time an indirect goto is seen we create a block |
1523 | /// with an indirect branch. Every time we see the address of a label taken, |
1524 | /// we add the label to the indirect goto. Every subsequent indirect goto is |
1525 | /// codegen'd as a jump to the IndirectBranch's basic block. |
1526 | llvm::IndirectBrInst *IndirectBranch = nullptr; |
1527 | |
1528 | /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C |
1529 | /// decls. |
1530 | DeclMapTy LocalDeclMap; |
1531 | |
1532 | // Keep track of the cleanups for callee-destructed parameters pushed to the |
1533 | // cleanup stack so that they can be deactivated later. |
1534 | llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> |
1535 | CalleeDestructedParamCleanups; |
1536 | |
1537 | /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this |
1538 | /// will contain a mapping from said ParmVarDecl to its implicit "object_size" |
1539 | /// parameter. |
1540 | llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> |
1541 | SizeArguments; |
1542 | |
1543 | /// Track escaped local variables with auto storage. Used during SEH |
1544 | /// outlining to produce a call to llvm.localescape. |
1545 | llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; |
1546 | |
1547 | /// LabelMap - This keeps track of the LLVM basic block for each C label. |
1548 | llvm::DenseMap<const LabelDecl *, JumpDest> LabelMap; |
1549 | |
1550 | // BreakContinueStack - This keeps track of where break and continue |
1551 | // statements should jump to. |
1552 | struct BreakContinue { |
1553 | BreakContinue(JumpDest Break, JumpDest Continue) |
1554 | : BreakBlock(Break), ContinueBlock(Continue) {} |
1555 | |
1556 | JumpDest BreakBlock; |
1557 | JumpDest ContinueBlock; |
1558 | }; |
1559 | SmallVector<BreakContinue, 8> BreakContinueStack; |
1560 | |
1561 | /// Handles cancellation exit points in OpenMP-related constructs. |
1562 | class OpenMPCancelExitStack { |
1563 | /// Tracks cancellation exit point and join point for cancel-related exit |
1564 | /// and normal exit. |
1565 | struct CancelExit { |
1566 | CancelExit() = default; |
1567 | CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, |
1568 | JumpDest ContBlock) |
1569 | : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} |
1570 | OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; |
1571 | /// true if the exit block has been emitted already by the special |
1572 | /// emitExit() call, false if the default codegen is used. |
1573 | bool HasBeenEmitted = false; |
1574 | JumpDest ExitBlock; |
1575 | JumpDest ContBlock; |
1576 | }; |
1577 | |
1578 | SmallVector<CancelExit, 8> Stack; |
1579 | |
1580 | public: |
1581 | OpenMPCancelExitStack() : Stack(1) {} |
1582 | ~OpenMPCancelExitStack() = default; |
1583 | /// Fetches the exit block for the current OpenMP construct. |
1584 | JumpDest getExitBlock() const { return Stack.back().ExitBlock; } |
1585 | /// Emits exit block with special codegen procedure specific for the related |
1586 | /// OpenMP construct + emits code for normal construct cleanup. |
1587 | void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
1588 | const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { |
1589 | if (Stack.back().Kind == Kind && getExitBlock().isValid()) { |
1590 | assert(CGF.getOMPCancelDestination(Kind).isValid()); |
1591 | assert(CGF.HaveInsertPoint()); |
1592 | assert(!Stack.back().HasBeenEmitted); |
1593 | auto IP = CGF.Builder.saveAndClearIP(); |
1594 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1595 | CodeGen(CGF); |
1596 | CGF.EmitBranch(Block: Stack.back().ContBlock.getBlock()); |
1597 | CGF.Builder.restoreIP(IP); |
1598 | Stack.back().HasBeenEmitted = true; |
1599 | } |
1600 | CodeGen(CGF); |
1601 | } |
1602 | /// Enter the cancel supporting \a Kind construct. |
1603 | /// \param Kind OpenMP directive that supports cancel constructs. |
1604 | /// \param HasCancel true, if the construct has inner cancel directive, |
1605 | /// false otherwise. |
1606 | void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { |
1607 | Stack.push_back(Elt: {Kind, |
1608 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.exit" ) |
1609 | : JumpDest(), |
1610 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.cont" ) |
1611 | : JumpDest()}); |
1612 | } |
1613 | /// Emits default exit point for the cancel construct (if the special one |
1614 | /// has not be used) + join point for cancel/normal exits. |
1615 | void exit(CodeGenFunction &CGF) { |
1616 | if (getExitBlock().isValid()) { |
1617 | assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); |
1618 | bool HaveIP = CGF.HaveInsertPoint(); |
1619 | if (!Stack.back().HasBeenEmitted) { |
1620 | if (HaveIP) |
1621 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1622 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1623 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1624 | } |
1625 | CGF.EmitBlock(BB: Stack.back().ContBlock.getBlock()); |
1626 | if (!HaveIP) { |
1627 | CGF.Builder.CreateUnreachable(); |
1628 | CGF.Builder.ClearInsertionPoint(); |
1629 | } |
1630 | } |
1631 | Stack.pop_back(); |
1632 | } |
1633 | }; |
1634 | OpenMPCancelExitStack OMPCancelStack; |
1635 | |
1636 | /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. |
1637 | llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
1638 | Stmt::Likelihood LH); |
1639 | |
1640 | std::unique_ptr<CodeGenPGO> PGO; |
1641 | |
1642 | /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. |
1643 | Address MCDCCondBitmapAddr = Address::invalid(); |
1644 | |
1645 | /// Calculate branch weights appropriate for PGO data |
1646 | llvm::MDNode *createProfileWeights(uint64_t TrueCount, |
1647 | uint64_t FalseCount) const; |
1648 | llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; |
1649 | llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, |
1650 | uint64_t LoopCount) const; |
1651 | |
1652 | public: |
1653 | std::pair<bool, bool> getIsCounterPair(const Stmt *S) const; |
1654 | void markStmtAsUsed(bool Skipped, const Stmt *S); |
1655 | void markStmtMaybeUsed(const Stmt *S); |
1656 | |
1657 | /// Increment the profiler's counter for the given statement by \p StepV. |
1658 | /// If \p StepV is null, the default increment is 1. |
1659 | void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr); |
1660 | |
1661 | bool isMCDCCoverageEnabled() const { |
1662 | return (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1663 | CGM.getCodeGenOpts().MCDCCoverage && |
1664 | !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); |
1665 | } |
1666 | |
1667 | /// Allocate a temp value on the stack that MCDC can use to track condition |
1668 | /// results. |
1669 | void maybeCreateMCDCCondBitmap(); |
1670 | |
1671 | bool isBinaryLogicalOp(const Expr *E) const { |
1672 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: E->IgnoreParens()); |
1673 | return (BOp && BOp->isLogicalOp()); |
1674 | } |
1675 | |
1676 | /// Zero-init the MCDC temp value. |
1677 | void maybeResetMCDCCondBitmap(const Expr *E); |
1678 | |
1679 | /// Increment the profiler's counter for the given expression by \p StepV. |
1680 | /// If \p StepV is null, the default increment is 1. |
1681 | void maybeUpdateMCDCTestVectorBitmap(const Expr *E); |
1682 | |
1683 | /// Update the MCDC temp value with the condition's evaluated result. |
1684 | void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val); |
1685 | |
1686 | /// Get the profiler's count for the given statement. |
1687 | uint64_t getProfileCount(const Stmt *S); |
1688 | |
1689 | /// Set the profiler's current count. |
1690 | void setCurrentProfileCount(uint64_t Count); |
1691 | |
1692 | /// Get the profiler's current count. This is generally the count for the most |
1693 | /// recently incremented counter. |
1694 | uint64_t getCurrentProfileCount(); |
1695 | |
1696 | /// See CGDebugInfo::addInstToCurrentSourceAtom. |
1697 | void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, |
1698 | llvm::Value *Backup); |
1699 | |
1700 | /// See CGDebugInfo::addInstToSpecificSourceAtom. |
1701 | void addInstToSpecificSourceAtom(llvm::Instruction *KeyInstruction, |
1702 | llvm::Value *Backup, uint64_t Atom); |
1703 | |
1704 | /// Add \p KeyInstruction and an optional \p Backup instruction to a new atom |
1705 | /// group (See ApplyAtomGroup for more info). |
1706 | void addInstToNewSourceAtom(llvm::Instruction *KeyInstruction, |
1707 | llvm::Value *Backup); |
1708 | |
1709 | private: |
1710 | /// SwitchInsn - This is nearest current switch instruction. It is null if |
1711 | /// current context is not in a switch. |
1712 | llvm::SwitchInst *SwitchInsn = nullptr; |
1713 | /// The branch weights of SwitchInsn when doing instrumentation based PGO. |
1714 | SmallVector<uint64_t, 16> *SwitchWeights = nullptr; |
1715 | |
1716 | /// The likelihood attributes of the SwitchCase. |
1717 | SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; |
1718 | |
1719 | /// CaseRangeBlock - This block holds if condition check for last case |
1720 | /// statement range in current switch instruction. |
1721 | llvm::BasicBlock *CaseRangeBlock = nullptr; |
1722 | |
1723 | /// OpaqueLValues - Keeps track of the current set of opaque value |
1724 | /// expressions. |
1725 | llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; |
1726 | llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; |
1727 | |
1728 | // VLASizeMap - This keeps track of the associated size for each VLA type. |
1729 | // We track this by the size expression rather than the type itself because |
1730 | // in certain situations, like a const qualifier applied to an VLA typedef, |
1731 | // multiple VLA types can share the same size expression. |
1732 | // FIXME: Maybe this could be a stack of maps that is pushed/popped as we |
1733 | // enter/leave scopes. |
1734 | llvm::DenseMap<const Expr *, llvm::Value *> VLASizeMap; |
1735 | |
1736 | /// A block containing a single 'unreachable' instruction. Created |
1737 | /// lazily by getUnreachableBlock(). |
1738 | llvm::BasicBlock *UnreachableBlock = nullptr; |
1739 | |
1740 | /// Counts of the number return expressions in the function. |
1741 | unsigned NumReturnExprs = 0; |
1742 | |
1743 | /// Count the number of simple (constant) return expressions in the function. |
1744 | unsigned NumSimpleReturnExprs = 0; |
1745 | |
1746 | /// The last regular (non-return) debug location (breakpoint) in the function. |
1747 | SourceLocation LastStopPoint; |
1748 | |
1749 | public: |
1750 | /// Source location information about the default argument or member |
1751 | /// initializer expression we're evaluating, if any. |
1752 | CurrentSourceLocExprScope CurSourceLocExprScope; |
1753 | using SourceLocExprScopeGuard = |
1754 | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
1755 | |
1756 | /// A scope within which we are constructing the fields of an object which |
1757 | /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use |
1758 | /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. |
1759 | class FieldConstructionScope { |
1760 | public: |
1761 | FieldConstructionScope(CodeGenFunction &CGF, Address This) |
1762 | : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { |
1763 | CGF.CXXDefaultInitExprThis = This; |
1764 | } |
1765 | ~FieldConstructionScope() { |
1766 | CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; |
1767 | } |
1768 | |
1769 | private: |
1770 | CodeGenFunction &CGF; |
1771 | Address OldCXXDefaultInitExprThis; |
1772 | }; |
1773 | |
1774 | /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' |
1775 | /// is overridden to be the object under construction. |
1776 | class CXXDefaultInitExprScope { |
1777 | public: |
1778 | CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) |
1779 | : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), |
1780 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1781 | SourceLocScope(E, CGF.CurSourceLocExprScope) { |
1782 | CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); |
1783 | CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); |
1784 | } |
1785 | ~CXXDefaultInitExprScope() { |
1786 | CGF.CXXThisValue = OldCXXThisValue; |
1787 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1788 | } |
1789 | |
1790 | public: |
1791 | CodeGenFunction &CGF; |
1792 | llvm::Value *OldCXXThisValue; |
1793 | CharUnits OldCXXThisAlignment; |
1794 | SourceLocExprScopeGuard SourceLocScope; |
1795 | }; |
1796 | |
1797 | struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { |
1798 | CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) |
1799 | : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} |
1800 | }; |
1801 | |
1802 | /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the |
1803 | /// current loop index is overridden. |
1804 | class ArrayInitLoopExprScope { |
1805 | public: |
1806 | ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) |
1807 | : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { |
1808 | CGF.ArrayInitIndex = Index; |
1809 | } |
1810 | ~ArrayInitLoopExprScope() { CGF.ArrayInitIndex = OldArrayInitIndex; } |
1811 | |
1812 | private: |
1813 | CodeGenFunction &CGF; |
1814 | llvm::Value *OldArrayInitIndex; |
1815 | }; |
1816 | |
1817 | class InlinedInheritingConstructorScope { |
1818 | public: |
1819 | InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) |
1820 | : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), |
1821 | OldCurCodeDecl(CGF.CurCodeDecl), |
1822 | OldCXXABIThisDecl(CGF.CXXABIThisDecl), |
1823 | OldCXXABIThisValue(CGF.CXXABIThisValue), |
1824 | OldCXXThisValue(CGF.CXXThisValue), |
1825 | OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), |
1826 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1827 | OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), |
1828 | OldCXXInheritedCtorInitExprArgs( |
1829 | std::move(CGF.CXXInheritedCtorInitExprArgs)) { |
1830 | CGF.CurGD = GD; |
1831 | CGF.CurFuncDecl = CGF.CurCodeDecl = |
1832 | cast<CXXConstructorDecl>(Val: GD.getDecl()); |
1833 | CGF.CXXABIThisDecl = nullptr; |
1834 | CGF.CXXABIThisValue = nullptr; |
1835 | CGF.CXXThisValue = nullptr; |
1836 | CGF.CXXABIThisAlignment = CharUnits(); |
1837 | CGF.CXXThisAlignment = CharUnits(); |
1838 | CGF.ReturnValue = Address::invalid(); |
1839 | CGF.FnRetTy = QualType(); |
1840 | CGF.CXXInheritedCtorInitExprArgs.clear(); |
1841 | } |
1842 | ~InlinedInheritingConstructorScope() { |
1843 | CGF.CurGD = OldCurGD; |
1844 | CGF.CurFuncDecl = OldCurFuncDecl; |
1845 | CGF.CurCodeDecl = OldCurCodeDecl; |
1846 | CGF.CXXABIThisDecl = OldCXXABIThisDecl; |
1847 | CGF.CXXABIThisValue = OldCXXABIThisValue; |
1848 | CGF.CXXThisValue = OldCXXThisValue; |
1849 | CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; |
1850 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1851 | CGF.ReturnValue = OldReturnValue; |
1852 | CGF.FnRetTy = OldFnRetTy; |
1853 | CGF.CXXInheritedCtorInitExprArgs = |
1854 | std::move(OldCXXInheritedCtorInitExprArgs); |
1855 | } |
1856 | |
1857 | private: |
1858 | CodeGenFunction &CGF; |
1859 | GlobalDecl OldCurGD; |
1860 | const Decl *OldCurFuncDecl; |
1861 | const Decl *OldCurCodeDecl; |
1862 | ImplicitParamDecl *OldCXXABIThisDecl; |
1863 | llvm::Value *OldCXXABIThisValue; |
1864 | llvm::Value *OldCXXThisValue; |
1865 | CharUnits OldCXXABIThisAlignment; |
1866 | CharUnits OldCXXThisAlignment; |
1867 | Address OldReturnValue; |
1868 | QualType OldFnRetTy; |
1869 | CallArgList OldCXXInheritedCtorInitExprArgs; |
1870 | }; |
1871 | |
1872 | // Helper class for the OpenMP IR Builder. Allows reusability of code used for |
1873 | // region body, and finalization codegen callbacks. This will class will also |
1874 | // contain privatization functions used by the privatization call backs |
1875 | // |
1876 | // TODO: this is temporary class for things that are being moved out of |
1877 | // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or |
1878 | // utility function for use with the OMPBuilder. Once that move to use the |
1879 | // OMPBuilder is done, everything here will either become part of CodeGenFunc. |
1880 | // directly, or a new helper class that will contain functions used by both |
1881 | // this and the OMPBuilder |
1882 | |
1883 | struct OMPBuilderCBHelpers { |
1884 | |
1885 | OMPBuilderCBHelpers() = delete; |
1886 | OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; |
1887 | OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; |
1888 | |
1889 | using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; |
1890 | |
1891 | /// Cleanup action for allocate support. |
1892 | class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { |
1893 | |
1894 | private: |
1895 | llvm::CallInst *RTLFnCI; |
1896 | |
1897 | public: |
1898 | OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { |
1899 | RLFnCI->removeFromParent(); |
1900 | } |
1901 | |
1902 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
1903 | if (!CGF.HaveInsertPoint()) |
1904 | return; |
1905 | CGF.Builder.Insert(I: RTLFnCI); |
1906 | } |
1907 | }; |
1908 | |
1909 | /// Returns address of the threadprivate variable for the current |
1910 | /// thread. This Also create any necessary OMP runtime calls. |
1911 | /// |
1912 | /// \param VD VarDecl for Threadprivate variable. |
1913 | /// \param VDAddr Address of the Vardecl |
1914 | /// \param Loc The location where the barrier directive was encountered |
1915 | static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, |
1916 | const VarDecl *VD, Address VDAddr, |
1917 | SourceLocation Loc); |
1918 | |
1919 | /// Gets the OpenMP-specific address of the local variable /p VD. |
1920 | static Address getAddressOfLocalVariable(CodeGenFunction &CGF, |
1921 | const VarDecl *VD); |
1922 | /// Get the platform-specific name separator. |
1923 | /// \param Parts different parts of the final name that needs separation |
1924 | /// \param FirstSeparator First separator used between the initial two |
1925 | /// parts of the name. |
1926 | /// \param Separator separator used between all of the rest consecutinve |
1927 | /// parts of the name |
1928 | static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, |
1929 | StringRef FirstSeparator = "." , |
1930 | StringRef Separator = "." ); |
1931 | /// Emit the Finalization for an OMP region |
1932 | /// \param CGF The Codegen function this belongs to |
1933 | /// \param IP Insertion point for generating the finalization code. |
1934 | static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { |
1935 | CGBuilderTy::InsertPointGuard IPG(CGF.Builder); |
1936 | assert(IP.getBlock()->end() != IP.getPoint() && |
1937 | "OpenMP IR Builder should cause terminated block!" ); |
1938 | |
1939 | llvm::BasicBlock *IPBB = IP.getBlock(); |
1940 | llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); |
1941 | assert(DestBB && "Finalization block should have one successor!" ); |
1942 | |
1943 | // erase and replace with cleanup branch. |
1944 | IPBB->getTerminator()->eraseFromParent(); |
1945 | CGF.Builder.SetInsertPoint(IPBB); |
1946 | CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(Target: DestBB); |
1947 | CGF.EmitBranchThroughCleanup(Dest); |
1948 | } |
1949 | |
1950 | /// Emit the body of an OMP region |
1951 | /// \param CGF The Codegen function this belongs to |
1952 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1953 | /// generated |
1954 | /// \param AllocaIP Where to insert alloca instructions |
1955 | /// \param CodeGenIP Where to insert the region code |
1956 | /// \param RegionName Name to be used for new blocks |
1957 | static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, |
1958 | const Stmt *RegionBodyStmt, |
1959 | InsertPointTy AllocaIP, |
1960 | InsertPointTy CodeGenIP, |
1961 | Twine RegionName); |
1962 | |
1963 | static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, |
1964 | llvm::BasicBlock &FiniBB, llvm::Function *Fn, |
1965 | ArrayRef<llvm::Value *> Args) { |
1966 | llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); |
1967 | if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) |
1968 | CodeGenIPBBTI->eraseFromParent(); |
1969 | |
1970 | CGF.Builder.SetInsertPoint(CodeGenIPBB); |
1971 | |
1972 | if (Fn->doesNotThrow()) |
1973 | CGF.EmitNounwindRuntimeCall(callee: Fn, args: Args); |
1974 | else |
1975 | CGF.EmitRuntimeCall(callee: Fn, args: Args); |
1976 | |
1977 | if (CGF.Builder.saveIP().isSet()) |
1978 | CGF.Builder.CreateBr(Dest: &FiniBB); |
1979 | } |
1980 | |
1981 | /// Emit the body of an OMP region that will be outlined in |
1982 | /// OpenMPIRBuilder::finalize(). |
1983 | /// \param CGF The Codegen function this belongs to |
1984 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1985 | /// generated |
1986 | /// \param AllocaIP Where to insert alloca instructions |
1987 | /// \param CodeGenIP Where to insert the region code |
1988 | /// \param RegionName Name to be used for new blocks |
1989 | static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, |
1990 | const Stmt *RegionBodyStmt, |
1991 | InsertPointTy AllocaIP, |
1992 | InsertPointTy CodeGenIP, |
1993 | Twine RegionName); |
1994 | |
1995 | /// RAII for preserving necessary info during Outlined region body codegen. |
1996 | class OutlinedRegionBodyRAII { |
1997 | |
1998 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
1999 | CodeGenFunction::JumpDest OldReturnBlock; |
2000 | CodeGenFunction &CGF; |
2001 | |
2002 | public: |
2003 | OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
2004 | llvm::BasicBlock &RetBB) |
2005 | : CGF(cgf) { |
2006 | assert(AllocaIP.isSet() && |
2007 | "Must specify Insertion point for allocas of outlined function" ); |
2008 | OldAllocaIP = CGF.AllocaInsertPt; |
2009 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
2010 | |
2011 | OldReturnBlock = CGF.ReturnBlock; |
2012 | CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(Target: &RetBB); |
2013 | } |
2014 | |
2015 | ~OutlinedRegionBodyRAII() { |
2016 | CGF.AllocaInsertPt = OldAllocaIP; |
2017 | CGF.ReturnBlock = OldReturnBlock; |
2018 | } |
2019 | }; |
2020 | |
2021 | /// RAII for preserving necessary info during inlined region body codegen. |
2022 | class InlinedRegionBodyRAII { |
2023 | |
2024 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
2025 | CodeGenFunction &CGF; |
2026 | |
2027 | public: |
2028 | InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
2029 | llvm::BasicBlock &FiniBB) |
2030 | : CGF(cgf) { |
2031 | // Alloca insertion block should be in the entry block of the containing |
2032 | // function so it expects an empty AllocaIP in which case will reuse the |
2033 | // old alloca insertion point, or a new AllocaIP in the same block as |
2034 | // the old one |
2035 | assert((!AllocaIP.isSet() || |
2036 | CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && |
2037 | "Insertion point should be in the entry block of containing " |
2038 | "function!" ); |
2039 | OldAllocaIP = CGF.AllocaInsertPt; |
2040 | if (AllocaIP.isSet()) |
2041 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
2042 | |
2043 | // TODO: Remove the call, after making sure the counter is not used by |
2044 | // the EHStack. |
2045 | // Since this is an inlined region, it should not modify the |
2046 | // ReturnBlock, and should reuse the one for the enclosing outlined |
2047 | // region. So, the JumpDest being return by the function is discarded |
2048 | (void)CGF.getJumpDestInCurrentScope(Target: &FiniBB); |
2049 | } |
2050 | |
2051 | ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } |
2052 | }; |
2053 | }; |
2054 | |
2055 | private: |
2056 | /// CXXThisDecl - When generating code for a C++ member function, |
2057 | /// this will hold the implicit 'this' declaration. |
2058 | ImplicitParamDecl *CXXABIThisDecl = nullptr; |
2059 | llvm::Value *CXXABIThisValue = nullptr; |
2060 | llvm::Value *CXXThisValue = nullptr; |
2061 | CharUnits CXXABIThisAlignment; |
2062 | CharUnits CXXThisAlignment; |
2063 | |
2064 | /// The value of 'this' to use when evaluating CXXDefaultInitExprs within |
2065 | /// this expression. |
2066 | Address CXXDefaultInitExprThis = Address::invalid(); |
2067 | |
2068 | /// The current array initialization index when evaluating an |
2069 | /// ArrayInitIndexExpr within an ArrayInitLoopExpr. |
2070 | llvm::Value *ArrayInitIndex = nullptr; |
2071 | |
2072 | /// The values of function arguments to use when evaluating |
2073 | /// CXXInheritedCtorInitExprs within this context. |
2074 | CallArgList CXXInheritedCtorInitExprArgs; |
2075 | |
2076 | /// CXXStructorImplicitParamDecl - When generating code for a constructor or |
2077 | /// destructor, this will hold the implicit argument (e.g. VTT). |
2078 | ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; |
2079 | llvm::Value *CXXStructorImplicitParamValue = nullptr; |
2080 | |
2081 | /// OutermostConditional - Points to the outermost active |
2082 | /// conditional control. This is used so that we know if a |
2083 | /// temporary should be destroyed conditionally. |
2084 | ConditionalEvaluation *OutermostConditional = nullptr; |
2085 | |
2086 | /// The current lexical scope. |
2087 | LexicalScope *CurLexicalScope = nullptr; |
2088 | |
2089 | /// The current source location that should be used for exception |
2090 | /// handling code. |
2091 | SourceLocation CurEHLocation; |
2092 | |
2093 | /// BlockByrefInfos - For each __block variable, contains |
2094 | /// information about the layout of the variable. |
2095 | llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; |
2096 | |
2097 | /// Used by -fsanitize=nullability-return to determine whether the return |
2098 | /// value can be checked. |
2099 | llvm::Value *RetValNullabilityPrecondition = nullptr; |
2100 | |
2101 | /// Check if -fsanitize=nullability-return instrumentation is required for |
2102 | /// this function. |
2103 | bool requiresReturnValueNullabilityCheck() const { |
2104 | return RetValNullabilityPrecondition; |
2105 | } |
2106 | |
2107 | /// Used to store precise source locations for return statements by the |
2108 | /// runtime return value checks. |
2109 | Address ReturnLocation = Address::invalid(); |
2110 | |
2111 | /// Check if the return value of this function requires sanitization. |
2112 | bool requiresReturnValueCheck() const; |
2113 | |
2114 | bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); |
2115 | bool hasInAllocaArg(const CXXMethodDecl *MD); |
2116 | |
2117 | llvm::BasicBlock *TerminateLandingPad = nullptr; |
2118 | llvm::BasicBlock *TerminateHandler = nullptr; |
2119 | llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; |
2120 | |
2121 | /// Terminate funclets keyed by parent funclet pad. |
2122 | llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; |
2123 | |
2124 | /// Largest vector width used in ths function. Will be used to create a |
2125 | /// function attribute. |
2126 | unsigned LargestVectorWidth = 0; |
2127 | |
2128 | /// True if we need emit the life-time markers. This is initially set in |
2129 | /// the constructor, but could be overwritten to true if this is a coroutine. |
2130 | bool ShouldEmitLifetimeMarkers; |
2131 | |
2132 | /// Add OpenCL kernel arg metadata and the kernel attribute metadata to |
2133 | /// the function metadata. |
2134 | void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); |
2135 | |
2136 | public: |
2137 | CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext = false); |
2138 | ~CodeGenFunction(); |
2139 | |
2140 | CodeGenTypes &getTypes() const { return CGM.getTypes(); } |
2141 | ASTContext &getContext() const { return CGM.getContext(); } |
2142 | CGDebugInfo *getDebugInfo() { |
2143 | if (DisableDebugInfo) |
2144 | return nullptr; |
2145 | return DebugInfo; |
2146 | } |
2147 | void disableDebugInfo() { DisableDebugInfo = true; } |
2148 | void enableDebugInfo() { DisableDebugInfo = false; } |
2149 | |
2150 | bool shouldUseFusedARCCalls() { |
2151 | return CGM.getCodeGenOpts().OptimizationLevel == 0; |
2152 | } |
2153 | |
2154 | const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } |
2155 | |
2156 | /// Returns a pointer to the function's exception object and selector slot, |
2157 | /// which is assigned in every landing pad. |
2158 | Address getExceptionSlot(); |
2159 | Address getEHSelectorSlot(); |
2160 | |
2161 | /// Returns the contents of the function's exception object and selector |
2162 | /// slots. |
2163 | llvm::Value *getExceptionFromSlot(); |
2164 | llvm::Value *getSelectorFromSlot(); |
2165 | |
2166 | RawAddress getNormalCleanupDestSlot(); |
2167 | |
2168 | llvm::BasicBlock *getUnreachableBlock() { |
2169 | if (!UnreachableBlock) { |
2170 | UnreachableBlock = createBasicBlock(name: "unreachable" ); |
2171 | new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); |
2172 | } |
2173 | return UnreachableBlock; |
2174 | } |
2175 | |
2176 | llvm::BasicBlock *getInvokeDest() { |
2177 | if (!EHStack.requiresLandingPad()) |
2178 | return nullptr; |
2179 | return getInvokeDestImpl(); |
2180 | } |
2181 | |
2182 | bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } |
2183 | |
2184 | const TargetInfo &getTarget() const { return Target; } |
2185 | llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } |
2186 | const TargetCodeGenInfo &getTargetHooks() const { |
2187 | return CGM.getTargetCodeGenInfo(); |
2188 | } |
2189 | |
2190 | //===--------------------------------------------------------------------===// |
2191 | // Cleanups |
2192 | //===--------------------------------------------------------------------===// |
2193 | |
2194 | typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); |
2195 | |
2196 | void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, |
2197 | Address arrayEndPointer, |
2198 | QualType elementType, |
2199 | CharUnits elementAlignment, |
2200 | Destroyer *destroyer); |
2201 | void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, |
2202 | llvm::Value *arrayEnd, |
2203 | QualType elementType, |
2204 | CharUnits elementAlignment, |
2205 | Destroyer *destroyer); |
2206 | |
2207 | void pushDestroy(QualType::DestructionKind dtorKind, Address addr, |
2208 | QualType type); |
2209 | void pushEHDestroy(QualType::DestructionKind dtorKind, Address addr, |
2210 | QualType type); |
2211 | void pushDestroy(CleanupKind kind, Address addr, QualType type, |
2212 | Destroyer *destroyer, bool useEHCleanupForArray); |
2213 | void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, |
2214 | Address addr, QualType type); |
2215 | void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, |
2216 | QualType type, Destroyer *destroyer, |
2217 | bool useEHCleanupForArray); |
2218 | void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, |
2219 | QualType type, Destroyer *destroyer, |
2220 | bool useEHCleanupForArray); |
2221 | void pushLifetimeExtendedDestroy(QualType::DestructionKind dtorKind, |
2222 | Address addr, QualType type); |
2223 | void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, |
2224 | llvm::Value *CompletePtr, |
2225 | QualType ElementType); |
2226 | void pushStackRestore(CleanupKind kind, Address SPMem); |
2227 | void pushKmpcAllocFree(CleanupKind Kind, |
2228 | std::pair<llvm::Value *, llvm::Value *> AddrSizePair); |
2229 | void emitDestroy(Address addr, QualType type, Destroyer *destroyer, |
2230 | bool useEHCleanupForArray); |
2231 | llvm::Function *generateDestroyHelper(Address addr, QualType type, |
2232 | Destroyer *destroyer, |
2233 | bool useEHCleanupForArray, |
2234 | const VarDecl *VD); |
2235 | void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, |
2236 | QualType elementType, CharUnits elementAlign, |
2237 | Destroyer *destroyer, bool checkZeroLength, |
2238 | bool useEHCleanup); |
2239 | |
2240 | Destroyer *getDestroyer(QualType::DestructionKind destructionKind); |
2241 | |
2242 | /// Determines whether an EH cleanup is required to destroy a type |
2243 | /// with the given destruction kind. |
2244 | bool needsEHCleanup(QualType::DestructionKind kind) { |
2245 | switch (kind) { |
2246 | case QualType::DK_none: |
2247 | return false; |
2248 | case QualType::DK_cxx_destructor: |
2249 | case QualType::DK_objc_weak_lifetime: |
2250 | case QualType::DK_nontrivial_c_struct: |
2251 | return getLangOpts().Exceptions; |
2252 | case QualType::DK_objc_strong_lifetime: |
2253 | return getLangOpts().Exceptions && |
2254 | CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; |
2255 | } |
2256 | llvm_unreachable("bad destruction kind" ); |
2257 | } |
2258 | |
2259 | CleanupKind getCleanupKind(QualType::DestructionKind kind) { |
2260 | return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); |
2261 | } |
2262 | |
2263 | //===--------------------------------------------------------------------===// |
2264 | // Objective-C |
2265 | //===--------------------------------------------------------------------===// |
2266 | |
2267 | void GenerateObjCMethod(const ObjCMethodDecl *OMD); |
2268 | |
2269 | void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); |
2270 | |
2271 | /// GenerateObjCGetter - Synthesize an Objective-C property getter function. |
2272 | void GenerateObjCGetter(ObjCImplementationDecl *IMP, |
2273 | const ObjCPropertyImplDecl *PID); |
2274 | void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
2275 | const ObjCPropertyImplDecl *propImpl, |
2276 | const ObjCMethodDecl *GetterMothodDecl, |
2277 | llvm::Constant *AtomicHelperFn); |
2278 | |
2279 | void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
2280 | ObjCMethodDecl *MD, bool ctor); |
2281 | |
2282 | /// GenerateObjCSetter - Synthesize an Objective-C property setter function |
2283 | /// for the given property. |
2284 | void GenerateObjCSetter(ObjCImplementationDecl *IMP, |
2285 | const ObjCPropertyImplDecl *PID); |
2286 | void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
2287 | const ObjCPropertyImplDecl *propImpl, |
2288 | llvm::Constant *AtomicHelperFn); |
2289 | |
2290 | //===--------------------------------------------------------------------===// |
2291 | // Block Bits |
2292 | //===--------------------------------------------------------------------===// |
2293 | |
2294 | /// Emit block literal. |
2295 | /// \return an LLVM value which is a pointer to a struct which contains |
2296 | /// information about the block, including the block invoke function, the |
2297 | /// captured variables, etc. |
2298 | llvm::Value *EmitBlockLiteral(const BlockExpr *); |
2299 | |
2300 | llvm::Function *GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &Info, |
2301 | const DeclMapTy &ldm, |
2302 | bool IsLambdaConversionToBlock, |
2303 | bool BuildGlobalBlock); |
2304 | |
2305 | /// Check if \p T is a C++ class that has a destructor that can throw. |
2306 | static bool cxxDestructorCanThrow(QualType T); |
2307 | |
2308 | llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); |
2309 | llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); |
2310 | llvm::Constant * |
2311 | GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl *PID); |
2312 | llvm::Constant * |
2313 | GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl *PID); |
2314 | llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); |
2315 | |
2316 | void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, |
2317 | bool CanThrow); |
2318 | |
2319 | class AutoVarEmission; |
2320 | |
2321 | void emitByrefStructureInit(const AutoVarEmission &emission); |
2322 | |
2323 | /// Enter a cleanup to destroy a __block variable. Note that this |
2324 | /// cleanup should be a no-op if the variable hasn't left the stack |
2325 | /// yet; if a cleanup is required for the variable itself, that needs |
2326 | /// to be done externally. |
2327 | /// |
2328 | /// \param Kind Cleanup kind. |
2329 | /// |
2330 | /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block |
2331 | /// structure that will be passed to _Block_object_dispose. When |
2332 | /// \p LoadBlockVarAddr is true, the address of the field of the block |
2333 | /// structure that holds the address of the __block structure. |
2334 | /// |
2335 | /// \param Flags The flag that will be passed to _Block_object_dispose. |
2336 | /// |
2337 | /// \param LoadBlockVarAddr Indicates whether we need to emit a load from |
2338 | /// \p Addr to get the address of the __block structure. |
2339 | void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, |
2340 | bool LoadBlockVarAddr, bool CanThrow); |
2341 | |
2342 | void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, |
2343 | llvm::Value *ptr); |
2344 | |
2345 | Address LoadBlockStruct(); |
2346 | Address GetAddrOfBlockDecl(const VarDecl *var); |
2347 | |
2348 | /// BuildBlockByrefAddress - Computes the location of the |
2349 | /// data in a variable which is declared as __block. |
2350 | Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, |
2351 | bool followForward = true); |
2352 | Address emitBlockByrefAddress(Address baseAddr, const BlockByrefInfo &info, |
2353 | bool followForward, const llvm::Twine &name); |
2354 | |
2355 | const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); |
2356 | |
2357 | QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); |
2358 | |
2359 | void GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
2360 | const CGFunctionInfo &FnInfo); |
2361 | |
2362 | /// Annotate the function with an attribute that disables TSan checking at |
2363 | /// runtime. |
2364 | void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); |
2365 | |
2366 | /// Emit code for the start of a function. |
2367 | /// \param Loc The location to be associated with the function. |
2368 | /// \param StartLoc The location of the function body. |
2369 | void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, |
2370 | const CGFunctionInfo &FnInfo, const FunctionArgList &Args, |
2371 | SourceLocation Loc = SourceLocation(), |
2372 | SourceLocation StartLoc = SourceLocation()); |
2373 | |
2374 | static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); |
2375 | |
2376 | void EmitConstructorBody(FunctionArgList &Args); |
2377 | void EmitDestructorBody(FunctionArgList &Args); |
2378 | void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); |
2379 | void EmitFunctionBody(const Stmt *Body); |
2380 | void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); |
2381 | |
2382 | void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, |
2383 | CallArgList &CallArgs, |
2384 | const CGFunctionInfo *CallOpFnInfo = nullptr, |
2385 | llvm::Constant *CallOpFn = nullptr); |
2386 | void EmitLambdaBlockInvokeBody(); |
2387 | void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); |
2388 | void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, |
2389 | CallArgList &CallArgs); |
2390 | void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, |
2391 | const CGFunctionInfo **ImplFnInfo, |
2392 | llvm::Function **ImplFn); |
2393 | void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); |
2394 | void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { |
2395 | EmitStoreThroughLValue(Src: RValue::get(V: VLASizeMap[VAT->getSizeExpr()]), Dst: LV); |
2396 | } |
2397 | void EmitAsanPrologueOrEpilogue(bool Prologue); |
2398 | |
2399 | /// Emit the unified return block, trying to avoid its emission when |
2400 | /// possible. |
2401 | /// \return The debug location of the user written return statement if the |
2402 | /// return block is avoided. |
2403 | llvm::DebugLoc EmitReturnBlock(); |
2404 | |
2405 | /// FinishFunction - Complete IR generation of the current function. It is |
2406 | /// legal to call this function even if there is no current insertion point. |
2407 | void FinishFunction(SourceLocation EndLoc = SourceLocation()); |
2408 | |
2409 | void StartThunk(llvm::Function *Fn, GlobalDecl GD, |
2410 | const CGFunctionInfo &FnInfo, bool IsUnprototyped); |
2411 | |
2412 | void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, |
2413 | const ThunkInfo *Thunk, bool IsUnprototyped); |
2414 | |
2415 | void FinishThunk(); |
2416 | |
2417 | /// Emit a musttail call for a thunk with a potentially adjusted this pointer. |
2418 | void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, |
2419 | llvm::FunctionCallee Callee); |
2420 | |
2421 | /// Generate a thunk for the given method. |
2422 | void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
2423 | GlobalDecl GD, const ThunkInfo &Thunk, |
2424 | bool IsUnprototyped); |
2425 | |
2426 | llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, |
2427 | const CGFunctionInfo &FnInfo, |
2428 | GlobalDecl GD, const ThunkInfo &Thunk); |
2429 | |
2430 | void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, |
2431 | FunctionArgList &Args); |
2432 | |
2433 | void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); |
2434 | |
2435 | /// Struct with all information about dynamic [sub]class needed to set vptr. |
2436 | struct VPtr { |
2437 | BaseSubobject Base; |
2438 | const CXXRecordDecl *NearestVBase; |
2439 | CharUnits OffsetFromNearestVBase; |
2440 | const CXXRecordDecl *VTableClass; |
2441 | }; |
2442 | |
2443 | /// Initialize the vtable pointer of the given subobject. |
2444 | void InitializeVTablePointer(const VPtr &vptr); |
2445 | |
2446 | typedef llvm::SmallVector<VPtr, 4> VPtrsVector; |
2447 | |
2448 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
2449 | VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); |
2450 | |
2451 | void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, |
2452 | CharUnits OffsetFromNearestVBase, |
2453 | bool BaseIsNonVirtualPrimaryBase, |
2454 | const CXXRecordDecl *VTableClass, |
2455 | VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); |
2456 | |
2457 | void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); |
2458 | |
2459 | // VTableTrapMode - whether we guarantee that loading the |
2460 | // vtable is guaranteed to trap on authentication failure, |
2461 | // even if the resulting vtable pointer is unused. |
2462 | enum class VTableAuthMode { |
2463 | Authenticate, |
2464 | MustTrap, |
2465 | UnsafeUbsanStrip // Should only be used for Vptr UBSan check |
2466 | }; |
2467 | /// GetVTablePtr - Return the Value of the vtable pointer member pointed |
2468 | /// to by This. |
2469 | llvm::Value * |
2470 | GetVTablePtr(Address This, llvm::Type *VTableTy, |
2471 | const CXXRecordDecl *VTableClass, |
2472 | VTableAuthMode AuthMode = VTableAuthMode::Authenticate); |
2473 | |
2474 | enum CFITypeCheckKind { |
2475 | CFITCK_VCall, |
2476 | CFITCK_NVCall, |
2477 | CFITCK_DerivedCast, |
2478 | CFITCK_UnrelatedCast, |
2479 | CFITCK_ICall, |
2480 | CFITCK_NVMFCall, |
2481 | CFITCK_VMFCall, |
2482 | }; |
2483 | |
2484 | /// Derived is the presumed address of an object of type T after a |
2485 | /// cast. If T is a polymorphic class type, emit a check that the virtual |
2486 | /// table for Derived belongs to a class derived from T. |
2487 | void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, |
2488 | CFITypeCheckKind TCK, SourceLocation Loc); |
2489 | |
2490 | /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. |
2491 | /// If vptr CFI is enabled, emit a check that VTable is valid. |
2492 | void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, |
2493 | CFITypeCheckKind TCK, SourceLocation Loc); |
2494 | |
2495 | /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for |
2496 | /// RD using llvm.type.test. |
2497 | void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, |
2498 | CFITypeCheckKind TCK, SourceLocation Loc); |
2499 | |
2500 | /// If whole-program virtual table optimization is enabled, emit an assumption |
2501 | /// that VTable is a member of RD's type identifier. Or, if vptr CFI is |
2502 | /// enabled, emit a check that VTable is a member of RD's type identifier. |
2503 | void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, |
2504 | llvm::Value *VTable, SourceLocation Loc); |
2505 | |
2506 | /// Returns whether we should perform a type checked load when loading a |
2507 | /// virtual function for virtual calls to members of RD. This is generally |
2508 | /// true when both vcall CFI and whole-program-vtables are enabled. |
2509 | bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); |
2510 | |
2511 | /// Emit a type checked load from the given vtable. |
2512 | llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, |
2513 | llvm::Value *VTable, |
2514 | llvm::Type *VTableTy, |
2515 | uint64_t VTableByteOffset); |
2516 | |
2517 | /// EnterDtorCleanups - Enter the cleanups necessary to complete the |
2518 | /// given phase of destruction for a destructor. The end result |
2519 | /// should call destructors on members and base classes in reverse |
2520 | /// order of their construction. |
2521 | void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); |
2522 | |
2523 | /// ShouldInstrumentFunction - Return true if the current function should be |
2524 | /// instrumented with __cyg_profile_func_* calls |
2525 | bool ShouldInstrumentFunction(); |
2526 | |
2527 | /// ShouldSkipSanitizerInstrumentation - Return true if the current function |
2528 | /// should not be instrumented with sanitizers. |
2529 | bool ShouldSkipSanitizerInstrumentation(); |
2530 | |
2531 | /// ShouldXRayInstrument - Return true if the current function should be |
2532 | /// instrumented with XRay nop sleds. |
2533 | bool ShouldXRayInstrumentFunction() const; |
2534 | |
2535 | /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit |
2536 | /// XRay custom event handling calls. |
2537 | bool AlwaysEmitXRayCustomEvents() const; |
2538 | |
2539 | /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit |
2540 | /// XRay typed event handling calls. |
2541 | bool AlwaysEmitXRayTypedEvents() const; |
2542 | |
2543 | /// Return a type hash constant for a function instrumented by |
2544 | /// -fsanitize=function. |
2545 | llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; |
2546 | |
2547 | /// EmitFunctionProlog - Emit the target specific LLVM code to load the |
2548 | /// arguments for the given function. This is also responsible for naming the |
2549 | /// LLVM function arguments. |
2550 | void EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, |
2551 | const FunctionArgList &Args); |
2552 | |
2553 | /// EmitFunctionEpilog - Emit the target specific LLVM code to return the |
2554 | /// given temporary. Specify the source location atom group (Key Instructions |
2555 | /// debug info feature) for the `ret` using \p RetKeyInstructionsSourceAtom. |
2556 | /// If it's 0, the `ret` will get added to a new source atom group. |
2557 | void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, |
2558 | SourceLocation EndLoc, |
2559 | uint64_t RetKeyInstructionsSourceAtom); |
2560 | |
2561 | /// Emit a test that checks if the return value \p RV is nonnull. |
2562 | void EmitReturnValueCheck(llvm::Value *RV); |
2563 | |
2564 | /// EmitStartEHSpec - Emit the start of the exception spec. |
2565 | void EmitStartEHSpec(const Decl *D); |
2566 | |
2567 | /// EmitEndEHSpec - Emit the end of the exception spec. |
2568 | void EmitEndEHSpec(const Decl *D); |
2569 | |
2570 | /// getTerminateLandingPad - Return a landing pad that just calls terminate. |
2571 | llvm::BasicBlock *getTerminateLandingPad(); |
2572 | |
2573 | /// getTerminateLandingPad - Return a cleanup funclet that just calls |
2574 | /// terminate. |
2575 | llvm::BasicBlock *getTerminateFunclet(); |
2576 | |
2577 | /// getTerminateHandler - Return a handler (not a landing pad, just |
2578 | /// a catch handler) that just calls terminate. This is used when |
2579 | /// a terminate scope encloses a try. |
2580 | llvm::BasicBlock *getTerminateHandler(); |
2581 | |
2582 | llvm::Type *ConvertTypeForMem(QualType T); |
2583 | llvm::Type *ConvertType(QualType T); |
2584 | llvm::Type *convertTypeForLoadStore(QualType ASTTy, |
2585 | llvm::Type *LLVMTy = nullptr); |
2586 | llvm::Type *ConvertType(const TypeDecl *T) { |
2587 | return ConvertType(T: getContext().getTypeDeclType(Decl: T)); |
2588 | } |
2589 | |
2590 | /// LoadObjCSelf - Load the value of self. This function is only valid while |
2591 | /// generating code for an Objective-C method. |
2592 | llvm::Value *LoadObjCSelf(); |
2593 | |
2594 | /// TypeOfSelfObject - Return type of object that this self represents. |
2595 | QualType TypeOfSelfObject(); |
2596 | |
2597 | /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. |
2598 | static TypeEvaluationKind getEvaluationKind(QualType T); |
2599 | |
2600 | static bool hasScalarEvaluationKind(QualType T) { |
2601 | return getEvaluationKind(T) == TEK_Scalar; |
2602 | } |
2603 | |
2604 | static bool hasAggregateEvaluationKind(QualType T) { |
2605 | return getEvaluationKind(T) == TEK_Aggregate; |
2606 | } |
2607 | |
2608 | /// createBasicBlock - Create an LLVM basic block. |
2609 | llvm::BasicBlock *createBasicBlock(const Twine &name = "" , |
2610 | llvm::Function *parent = nullptr, |
2611 | llvm::BasicBlock *before = nullptr) { |
2612 | return llvm::BasicBlock::Create(Context&: getLLVMContext(), Name: name, Parent: parent, InsertBefore: before); |
2613 | } |
2614 | |
2615 | /// getBasicBlockForLabel - Return the LLVM basicblock that the specified |
2616 | /// label maps to. |
2617 | JumpDest getJumpDestForLabel(const LabelDecl *S); |
2618 | |
2619 | /// SimplifyForwardingBlocks - If the given basic block is only a branch to |
2620 | /// another basic block, simplify it. This assumes that no other code could |
2621 | /// potentially reference the basic block. |
2622 | void SimplifyForwardingBlocks(llvm::BasicBlock *BB); |
2623 | |
2624 | /// EmitBlock - Emit the given block \arg BB and set it as the insert point, |
2625 | /// adding a fall-through branch from the current insert block if |
2626 | /// necessary. It is legal to call this function even if there is no current |
2627 | /// insertion point. |
2628 | /// |
2629 | /// IsFinished - If true, indicates that the caller has finished emitting |
2630 | /// branches to the given block and does not expect to emit code into it. This |
2631 | /// means the block can be ignored if it is unreachable. |
2632 | void EmitBlock(llvm::BasicBlock *BB, bool IsFinished = false); |
2633 | |
2634 | /// EmitBlockAfterUses - Emit the given block somewhere hopefully |
2635 | /// near its uses, and leave the insertion point in it. |
2636 | void EmitBlockAfterUses(llvm::BasicBlock *BB); |
2637 | |
2638 | /// EmitBranch - Emit a branch to the specified basic block from the current |
2639 | /// insert block, taking care to avoid creation of branches from dummy |
2640 | /// blocks. It is legal to call this function even if there is no current |
2641 | /// insertion point. |
2642 | /// |
2643 | /// This function clears the current insertion point. The caller should follow |
2644 | /// calls to this function with calls to Emit*Block prior to generation new |
2645 | /// code. |
2646 | void EmitBranch(llvm::BasicBlock *Block); |
2647 | |
2648 | /// HaveInsertPoint - True if an insertion point is defined. If not, this |
2649 | /// indicates that the current code being emitted is unreachable. |
2650 | bool HaveInsertPoint() const { return Builder.GetInsertBlock() != nullptr; } |
2651 | |
2652 | /// EnsureInsertPoint - Ensure that an insertion point is defined so that |
2653 | /// emitted IR has a place to go. Note that by definition, if this function |
2654 | /// creates a block then that block is unreachable; callers may do better to |
2655 | /// detect when no insertion point is defined and simply skip IR generation. |
2656 | void EnsureInsertPoint() { |
2657 | if (!HaveInsertPoint()) |
2658 | EmitBlock(BB: createBasicBlock()); |
2659 | } |
2660 | |
2661 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2662 | /// specified stmt yet. |
2663 | void ErrorUnsupported(const Stmt *S, const char *Type); |
2664 | |
2665 | //===--------------------------------------------------------------------===// |
2666 | // Helpers |
2667 | //===--------------------------------------------------------------------===// |
2668 | |
2669 | Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, |
2670 | llvm::BasicBlock *LHSBlock, |
2671 | llvm::BasicBlock *RHSBlock, |
2672 | llvm::BasicBlock *MergeBlock, |
2673 | QualType MergedType) { |
2674 | Builder.SetInsertPoint(MergeBlock); |
2675 | llvm::PHINode *PtrPhi = Builder.CreatePHI(Ty: LHS.getType(), NumReservedValues: 2, Name: "cond" ); |
2676 | PtrPhi->addIncoming(V: LHS.getBasePointer(), BB: LHSBlock); |
2677 | PtrPhi->addIncoming(V: RHS.getBasePointer(), BB: RHSBlock); |
2678 | LHS.replaceBasePointer(P: PtrPhi); |
2679 | LHS.setAlignment(std::min(a: LHS.getAlignment(), b: RHS.getAlignment())); |
2680 | return LHS; |
2681 | } |
2682 | |
2683 | /// Construct an address with the natural alignment of T. If a pointer to T |
2684 | /// is expected to be signed, the pointer passed to this function must have |
2685 | /// been signed, and the returned Address will have the pointer authentication |
2686 | /// information needed to authenticate the signed pointer. |
2687 | Address makeNaturalAddressForPointer( |
2688 | llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), |
2689 | bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, |
2690 | TBAAAccessInfo *TBAAInfo = nullptr, |
2691 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { |
2692 | if (Alignment.isZero()) |
2693 | Alignment = |
2694 | CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, forPointeeType: ForPointeeType); |
2695 | return Address(Ptr, ConvertTypeForMem(T), Alignment, |
2696 | CGM.getPointerAuthInfoForPointeeType(type: T), /*Offset=*/nullptr, |
2697 | IsKnownNonNull); |
2698 | } |
2699 | |
2700 | LValue MakeAddrLValue(Address Addr, QualType T, |
2701 | AlignmentSource Source = AlignmentSource::Type) { |
2702 | return MakeAddrLValue(Addr, T, BaseInfo: LValueBaseInfo(Source), |
2703 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2704 | } |
2705 | |
2706 | LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, |
2707 | TBAAAccessInfo TBAAInfo) { |
2708 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo, TBAAInfo); |
2709 | } |
2710 | |
2711 | LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2712 | AlignmentSource Source = AlignmentSource::Type) { |
2713 | return MakeAddrLValue(Addr: makeNaturalAddressForPointer(Ptr: V, T, Alignment), T, |
2714 | BaseInfo: LValueBaseInfo(Source), TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2715 | } |
2716 | |
2717 | /// Same as MakeAddrLValue above except that the pointer is known to be |
2718 | /// unsigned. |
2719 | LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2720 | AlignmentSource Source = AlignmentSource::Type) { |
2721 | Address Addr(V, ConvertTypeForMem(T), Alignment); |
2722 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2723 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2724 | } |
2725 | |
2726 | LValue |
2727 | MakeAddrLValueWithoutTBAA(Address Addr, QualType T, |
2728 | AlignmentSource Source = AlignmentSource::Type) { |
2729 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2730 | TBAAInfo: TBAAAccessInfo()); |
2731 | } |
2732 | |
2733 | /// Given a value of type T* that may not be to a complete object, construct |
2734 | /// an l-value with the natural pointee alignment of T. |
2735 | LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); |
2736 | |
2737 | LValue |
2738 | MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, |
2739 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
2740 | |
2741 | /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known |
2742 | /// to be unsigned. |
2743 | LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); |
2744 | |
2745 | LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); |
2746 | |
2747 | Address EmitLoadOfReference(LValue RefLVal, |
2748 | LValueBaseInfo *PointeeBaseInfo = nullptr, |
2749 | TBAAAccessInfo *PointeeTBAAInfo = nullptr); |
2750 | LValue EmitLoadOfReferenceLValue(LValue RefLVal); |
2751 | LValue |
2752 | EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, |
2753 | AlignmentSource Source = AlignmentSource::Type) { |
2754 | LValue RefLVal = MakeAddrLValue(Addr: RefAddr, T: RefTy, BaseInfo: LValueBaseInfo(Source), |
2755 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: RefTy)); |
2756 | return EmitLoadOfReferenceLValue(RefLVal); |
2757 | } |
2758 | |
2759 | /// Load a pointer with type \p PtrTy stored at address \p Ptr. |
2760 | /// Note that \p PtrTy is the type of the loaded pointer, not the addresses |
2761 | /// it is loaded from. |
2762 | Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, |
2763 | LValueBaseInfo *BaseInfo = nullptr, |
2764 | TBAAAccessInfo *TBAAInfo = nullptr); |
2765 | LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); |
2766 | |
2767 | private: |
2768 | struct AllocaTracker { |
2769 | void Add(llvm::AllocaInst *I) { Allocas.push_back(Elt: I); } |
2770 | llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } |
2771 | |
2772 | private: |
2773 | llvm::SmallVector<llvm::AllocaInst *> Allocas; |
2774 | }; |
2775 | AllocaTracker *Allocas = nullptr; |
2776 | |
2777 | /// CGDecl helper. |
2778 | void emitStoresForConstant(const VarDecl &D, Address Loc, bool isVolatile, |
2779 | llvm::Constant *constant, bool IsAutoInit); |
2780 | /// CGDecl helper. |
2781 | void emitStoresForZeroInit(const VarDecl &D, Address Loc, bool isVolatile); |
2782 | /// CGDecl helper. |
2783 | void emitStoresForPatternInit(const VarDecl &D, Address Loc, bool isVolatile); |
2784 | /// CGDecl helper. |
2785 | void emitStoresForInitAfterBZero(llvm::Constant *Init, Address Loc, |
2786 | bool isVolatile, bool IsAutoInit); |
2787 | |
2788 | public: |
2789 | // Captures all the allocas created during the scope of its RAII object. |
2790 | struct AllocaTrackerRAII { |
2791 | AllocaTrackerRAII(CodeGenFunction &CGF) |
2792 | : CGF(CGF), OldTracker(CGF.Allocas) { |
2793 | CGF.Allocas = &Tracker; |
2794 | } |
2795 | ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } |
2796 | |
2797 | llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } |
2798 | |
2799 | private: |
2800 | CodeGenFunction &CGF; |
2801 | AllocaTracker *OldTracker; |
2802 | AllocaTracker Tracker; |
2803 | }; |
2804 | |
2805 | /// CreateTempAlloca - This creates an alloca and inserts it into the entry |
2806 | /// block if \p ArraySize is nullptr, otherwise inserts it at the current |
2807 | /// insertion point of the builder. The caller is responsible for setting an |
2808 | /// appropriate alignment on |
2809 | /// the alloca. |
2810 | /// |
2811 | /// \p ArraySize is the number of array elements to be allocated if it |
2812 | /// is not nullptr. |
2813 | /// |
2814 | /// LangAS::Default is the address space of pointers to local variables and |
2815 | /// temporaries, as exposed in the source language. In certain |
2816 | /// configurations, this is not the same as the alloca address space, and a |
2817 | /// cast is needed to lift the pointer from the alloca AS into |
2818 | /// LangAS::Default. This can happen when the target uses a restricted |
2819 | /// address space for the stack but the source language requires |
2820 | /// LangAS::Default to be a generic address space. The latter condition is |
2821 | /// common for most programming languages; OpenCL is an exception in that |
2822 | /// LangAS::Default is the private address space, which naturally maps |
2823 | /// to the stack. |
2824 | /// |
2825 | /// Because the address of a temporary is often exposed to the program in |
2826 | /// various ways, this function will perform the cast. The original alloca |
2827 | /// instruction is returned through \p Alloca if it is not nullptr. |
2828 | /// |
2829 | /// The cast is not performaed in CreateTempAllocaWithoutCast. This is |
2830 | /// more efficient if the caller knows that the address will not be exposed. |
2831 | llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp" , |
2832 | llvm::Value *ArraySize = nullptr); |
2833 | |
2834 | /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
2835 | /// block. The alloca is casted to the address space of \p UseAddrSpace if |
2836 | /// necessary. |
2837 | RawAddress CreateTempAlloca(llvm::Type *Ty, LangAS UseAddrSpace, |
2838 | CharUnits align, const Twine &Name = "tmp" , |
2839 | llvm::Value *ArraySize = nullptr, |
2840 | RawAddress *Alloca = nullptr); |
2841 | |
2842 | /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
2843 | /// block. The alloca is casted to default address space if necessary. |
2844 | /// |
2845 | /// FIXME: This version should be removed, and context should provide the |
2846 | /// context use address space used instead of default. |
2847 | RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, |
2848 | const Twine &Name = "tmp" , |
2849 | llvm::Value *ArraySize = nullptr, |
2850 | RawAddress *Alloca = nullptr) { |
2851 | return CreateTempAlloca(Ty, UseAddrSpace: LangAS::Default, align, Name, ArraySize, |
2852 | Alloca); |
2853 | } |
2854 | |
2855 | RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, |
2856 | const Twine &Name = "tmp" , |
2857 | llvm::Value *ArraySize = nullptr); |
2858 | |
2859 | /// CreateDefaultAlignedTempAlloca - This creates an alloca with the |
2860 | /// default ABI alignment of the given LLVM type. |
2861 | /// |
2862 | /// IMPORTANT NOTE: This is *not* generally the right alignment for |
2863 | /// any given AST type that happens to have been lowered to the |
2864 | /// given IR type. This should only ever be used for function-local, |
2865 | /// IR-driven manipulations like saving and restoring a value. Do |
2866 | /// not hand this address off to arbitrary IRGen routines, and especially |
2867 | /// do not pass it as an argument to a function that might expect a |
2868 | /// properly ABI-aligned value. |
2869 | RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, |
2870 | const Twine &Name = "tmp" ); |
2871 | |
2872 | /// CreateIRTemp - Create a temporary IR object of the given type, with |
2873 | /// appropriate alignment. This routine should only be used when an temporary |
2874 | /// value needs to be stored into an alloca (for example, to avoid explicit |
2875 | /// PHI construction), but the type is the IR type, not the type appropriate |
2876 | /// for storing in memory. |
2877 | /// |
2878 | /// That is, this is exactly equivalent to CreateMemTemp, but calling |
2879 | /// ConvertType instead of ConvertTypeForMem. |
2880 | RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp" ); |
2881 | |
2882 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2883 | /// appropriate alignmen and cast it to the default address space. Returns |
2884 | /// the original alloca instruction by \p Alloca if it is not nullptr. |
2885 | RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp" , |
2886 | RawAddress *Alloca = nullptr); |
2887 | RawAddress CreateMemTemp(QualType T, CharUnits Align, |
2888 | const Twine &Name = "tmp" , |
2889 | RawAddress *Alloca = nullptr); |
2890 | |
2891 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2892 | /// appropriate alignmen without casting it to the default address space. |
2893 | RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp" ); |
2894 | RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, |
2895 | const Twine &Name = "tmp" ); |
2896 | |
2897 | /// CreateAggTemp - Create a temporary memory object for the given |
2898 | /// aggregate type. |
2899 | AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp" , |
2900 | RawAddress *Alloca = nullptr) { |
2901 | return AggValueSlot::forAddr( |
2902 | addr: CreateMemTemp(T, Name, Alloca), quals: T.getQualifiers(), |
2903 | isDestructed: AggValueSlot::IsNotDestructed, needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
2904 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap); |
2905 | } |
2906 | |
2907 | /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
2908 | /// expression and compare the result against zero, returning an Int1Ty value. |
2909 | llvm::Value *EvaluateExprAsBool(const Expr *E); |
2910 | |
2911 | /// Retrieve the implicit cast expression of the rhs in a binary operator |
2912 | /// expression by passing pointers to Value and QualType |
2913 | /// This is used for implicit bitfield conversion checks, which |
2914 | /// must compare with the value before potential truncation. |
2915 | llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, |
2916 | llvm::Value **Previous, |
2917 | QualType *SrcType); |
2918 | |
2919 | /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, |
2920 | /// so we use the value after conversion. |
2921 | void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, |
2922 | llvm::Value *Dst, QualType DstType, |
2923 | const CGBitFieldInfo &Info, |
2924 | SourceLocation Loc); |
2925 | |
2926 | /// EmitIgnoredExpr - Emit an expression in a context which ignores the |
2927 | /// result. |
2928 | void EmitIgnoredExpr(const Expr *E); |
2929 | |
2930 | /// EmitAnyExpr - Emit code to compute the specified expression which can have |
2931 | /// any type. The result is returned as an RValue struct. If this is an |
2932 | /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
2933 | /// the result should be returned. |
2934 | /// |
2935 | /// \param ignoreResult True if the resulting value isn't used. |
2936 | RValue EmitAnyExpr(const Expr *E, |
2937 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
2938 | bool ignoreResult = false); |
2939 | |
2940 | // EmitVAListRef - Emit a "reference" to a va_list; this is either the address |
2941 | // or the value of the expression, depending on how va_list is defined. |
2942 | Address EmitVAListRef(const Expr *E); |
2943 | |
2944 | /// Emit a "reference" to a __builtin_ms_va_list; this is |
2945 | /// always the value of the expression, because a __builtin_ms_va_list is a |
2946 | /// pointer to a char. |
2947 | Address EmitMSVAListRef(const Expr *E); |
2948 | |
2949 | /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will |
2950 | /// always be accessible even if no aggregate location is provided. |
2951 | RValue EmitAnyExprToTemp(const Expr *E); |
2952 | |
2953 | /// EmitAnyExprToMem - Emits the code necessary to evaluate an |
2954 | /// arbitrary expression into the given memory location. |
2955 | void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, |
2956 | bool IsInitializer); |
2957 | |
2958 | void EmitAnyExprToExn(const Expr *E, Address Addr); |
2959 | |
2960 | /// EmitInitializationToLValue - Emit an initializer to an LValue. |
2961 | void EmitInitializationToLValue( |
2962 | const Expr *E, LValue LV, |
2963 | AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed); |
2964 | |
2965 | /// EmitExprAsInit - Emits the code necessary to initialize a |
2966 | /// location in memory with the given initializer. |
2967 | void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
2968 | bool capturedByInit); |
2969 | |
2970 | /// hasVolatileMember - returns true if aggregate type has a volatile |
2971 | /// member. |
2972 | bool hasVolatileMember(QualType T) { |
2973 | if (const RecordType *RT = T->getAs<RecordType>()) { |
2974 | const RecordDecl *RD = cast<RecordDecl>(Val: RT->getDecl()); |
2975 | return RD->hasVolatileMember(); |
2976 | } |
2977 | return false; |
2978 | } |
2979 | |
2980 | /// Determine whether a return value slot may overlap some other object. |
2981 | AggValueSlot::Overlap_t getOverlapForReturnValue() { |
2982 | // FIXME: Assuming no overlap here breaks guaranteed copy elision for base |
2983 | // class subobjects. These cases may need to be revisited depending on the |
2984 | // resolution of the relevant core issue. |
2985 | return AggValueSlot::DoesNotOverlap; |
2986 | } |
2987 | |
2988 | /// Determine whether a field initialization may overlap some other object. |
2989 | AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); |
2990 | |
2991 | /// Determine whether a base class initialization may overlap some other |
2992 | /// object. |
2993 | AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, |
2994 | const CXXRecordDecl *BaseRD, |
2995 | bool IsVirtual); |
2996 | |
2997 | /// Emit an aggregate assignment. |
2998 | void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { |
2999 | ApplyAtomGroup Grp(getDebugInfo()); |
3000 | bool IsVolatile = hasVolatileMember(T: EltTy); |
3001 | EmitAggregateCopy(Dest, Src, EltTy, MayOverlap: AggValueSlot::MayOverlap, isVolatile: IsVolatile); |
3002 | } |
3003 | |
3004 | void EmitAggregateCopyCtor(LValue Dest, LValue Src, |
3005 | AggValueSlot::Overlap_t MayOverlap) { |
3006 | EmitAggregateCopy(Dest, Src, EltTy: Src.getType(), MayOverlap); |
3007 | } |
3008 | |
3009 | /// EmitAggregateCopy - Emit an aggregate copy. |
3010 | /// |
3011 | /// \param isVolatile \c true iff either the source or the destination is |
3012 | /// volatile. |
3013 | /// \param MayOverlap Whether the tail padding of the destination might be |
3014 | /// occupied by some other object. More efficient code can often be |
3015 | /// generated if not. |
3016 | void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, |
3017 | AggValueSlot::Overlap_t MayOverlap, |
3018 | bool isVolatile = false); |
3019 | |
3020 | /// GetAddrOfLocalVar - Return the address of a local variable. |
3021 | Address GetAddrOfLocalVar(const VarDecl *VD) { |
3022 | auto it = LocalDeclMap.find(VD); |
3023 | assert(it != LocalDeclMap.end() && |
3024 | "Invalid argument to GetAddrOfLocalVar(), no decl!" ); |
3025 | return it->second; |
3026 | } |
3027 | |
3028 | /// Given an opaque value expression, return its LValue mapping if it exists, |
3029 | /// otherwise create one. |
3030 | LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); |
3031 | |
3032 | /// Given an opaque value expression, return its RValue mapping if it exists, |
3033 | /// otherwise create one. |
3034 | RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); |
3035 | |
3036 | /// isOpaqueValueEmitted - Return true if the opaque value expression has |
3037 | /// already been emitted. |
3038 | bool isOpaqueValueEmitted(const OpaqueValueExpr *E); |
3039 | |
3040 | /// Get the index of the current ArrayInitLoopExpr, if any. |
3041 | llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } |
3042 | |
3043 | /// getAccessedFieldNo - Given an encoded value and a result number, return |
3044 | /// the input field number being accessed. |
3045 | static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); |
3046 | |
3047 | llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); |
3048 | llvm::BasicBlock *GetIndirectGotoBlock(); |
3049 | |
3050 | /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. |
3051 | static bool IsWrappedCXXThis(const Expr *E); |
3052 | |
3053 | /// EmitNullInitialization - Generate code to set a value of the given type to |
3054 | /// null, If the type contains data member pointers, they will be initialized |
3055 | /// to -1 in accordance with the Itanium C++ ABI. |
3056 | void EmitNullInitialization(Address DestPtr, QualType Ty); |
3057 | |
3058 | /// Emits a call to an LLVM variable-argument intrinsic, either |
3059 | /// \c llvm.va_start or \c llvm.va_end. |
3060 | /// \param ArgValue A reference to the \c va_list as emitted by either |
3061 | /// \c EmitVAListRef or \c EmitMSVAListRef. |
3062 | /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, |
3063 | /// calls \c llvm.va_end. |
3064 | llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); |
3065 | |
3066 | /// Generate code to get an argument from the passed in pointer |
3067 | /// and update it accordingly. |
3068 | /// \param VE The \c VAArgExpr for which to generate code. |
3069 | /// \param VAListAddr Receives a reference to the \c va_list as emitted by |
3070 | /// either \c EmitVAListRef or \c EmitMSVAListRef. |
3071 | /// \returns A pointer to the argument. |
3072 | // FIXME: We should be able to get rid of this method and use the va_arg |
3073 | // instruction in LLVM instead once it works well enough. |
3074 | RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, |
3075 | AggValueSlot Slot = AggValueSlot::ignored()); |
3076 | |
3077 | /// emitArrayLength - Compute the length of an array, even if it's a |
3078 | /// VLA, and drill down to the base element type. |
3079 | llvm::Value *emitArrayLength(const ArrayType *arrayType, QualType &baseType, |
3080 | Address &addr); |
3081 | |
3082 | /// EmitVLASize - Capture all the sizes for the VLA expressions in |
3083 | /// the given variably-modified type and store them in the VLASizeMap. |
3084 | /// |
3085 | /// This function can be called with a null (unreachable) insert point. |
3086 | void EmitVariablyModifiedType(QualType Ty); |
3087 | |
3088 | struct VlaSizePair { |
3089 | llvm::Value *NumElts; |
3090 | QualType Type; |
3091 | |
3092 | VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} |
3093 | }; |
3094 | |
3095 | /// Return the number of elements for a single dimension |
3096 | /// for the given array type. |
3097 | VlaSizePair getVLAElements1D(const VariableArrayType *vla); |
3098 | VlaSizePair getVLAElements1D(QualType vla); |
3099 | |
3100 | /// Returns an LLVM value that corresponds to the size, |
3101 | /// in non-variably-sized elements, of a variable length array type, |
3102 | /// plus that largest non-variably-sized element type. Assumes that |
3103 | /// the type has already been emitted with EmitVariablyModifiedType. |
3104 | VlaSizePair getVLASize(const VariableArrayType *vla); |
3105 | VlaSizePair getVLASize(QualType vla); |
3106 | |
3107 | /// LoadCXXThis - Load the value of 'this'. This function is only valid while |
3108 | /// generating code for an C++ member function. |
3109 | llvm::Value *LoadCXXThis() { |
3110 | assert(CXXThisValue && "no 'this' value for this function" ); |
3111 | return CXXThisValue; |
3112 | } |
3113 | Address LoadCXXThisAddress(); |
3114 | |
3115 | /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have |
3116 | /// virtual bases. |
3117 | // FIXME: Every place that calls LoadCXXVTT is something |
3118 | // that needs to be abstracted properly. |
3119 | llvm::Value *LoadCXXVTT() { |
3120 | assert(CXXStructorImplicitParamValue && "no VTT value for this function" ); |
3121 | return CXXStructorImplicitParamValue; |
3122 | } |
3123 | |
3124 | /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a |
3125 | /// complete class to the given direct base. |
3126 | Address GetAddressOfDirectBaseInCompleteClass(Address Value, |
3127 | const CXXRecordDecl *Derived, |
3128 | const CXXRecordDecl *Base, |
3129 | bool BaseIsVirtual); |
3130 | |
3131 | static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); |
3132 | |
3133 | /// GetAddressOfBaseClass - This function will add the necessary delta to the |
3134 | /// load of 'this' and returns address of the base class. |
3135 | Address GetAddressOfBaseClass(Address Value, const CXXRecordDecl *Derived, |
3136 | CastExpr::path_const_iterator PathBegin, |
3137 | CastExpr::path_const_iterator PathEnd, |
3138 | bool NullCheckValue, SourceLocation Loc); |
3139 | |
3140 | Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, |
3141 | CastExpr::path_const_iterator PathBegin, |
3142 | CastExpr::path_const_iterator PathEnd, |
3143 | bool NullCheckValue); |
3144 | |
3145 | /// GetVTTParameter - Return the VTT parameter that should be passed to a |
3146 | /// base constructor/destructor with virtual bases. |
3147 | /// FIXME: VTTs are Itanium ABI-specific, so the definition should move |
3148 | /// to ItaniumCXXABI.cpp together with all the references to VTT. |
3149 | llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, |
3150 | bool Delegating); |
3151 | |
3152 | void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3153 | CXXCtorType CtorType, |
3154 | const FunctionArgList &Args, |
3155 | SourceLocation Loc); |
3156 | // It's important not to confuse this and the previous function. Delegating |
3157 | // constructors are the C++0x feature. The constructor delegate optimization |
3158 | // is used to reduce duplication in the base and complete consturctors where |
3159 | // they are substantially the same. |
3160 | void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3161 | const FunctionArgList &Args); |
3162 | |
3163 | /// Emit a call to an inheriting constructor (that is, one that invokes a |
3164 | /// constructor inherited from a base class) by inlining its definition. This |
3165 | /// is necessary if the ABI does not support forwarding the arguments to the |
3166 | /// base class constructor (because they're variadic or similar). |
3167 | void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3168 | CXXCtorType CtorType, |
3169 | bool ForVirtualBase, |
3170 | bool Delegating, |
3171 | CallArgList &Args); |
3172 | |
3173 | /// Emit a call to a constructor inherited from a base class, passing the |
3174 | /// current constructor's arguments along unmodified (without even making |
3175 | /// a copy). |
3176 | void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, |
3177 | bool ForVirtualBase, Address This, |
3178 | bool InheritedFromVBase, |
3179 | const CXXInheritedCtorInitExpr *E); |
3180 | |
3181 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3182 | bool ForVirtualBase, bool Delegating, |
3183 | AggValueSlot ThisAVS, const CXXConstructExpr *E); |
3184 | |
3185 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3186 | bool ForVirtualBase, bool Delegating, |
3187 | Address This, CallArgList &Args, |
3188 | AggValueSlot::Overlap_t Overlap, |
3189 | SourceLocation Loc, bool NewPointerIsChecked, |
3190 | llvm::CallBase **CallOrInvoke = nullptr); |
3191 | |
3192 | /// Emit assumption load for all bases. Requires to be called only on |
3193 | /// most-derived class and not under construction of the object. |
3194 | void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); |
3195 | |
3196 | /// Emit assumption that vptr load == global vtable. |
3197 | void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); |
3198 | |
3199 | void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, Address This, |
3200 | Address Src, const CXXConstructExpr *E); |
3201 | |
3202 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3203 | const ArrayType *ArrayTy, Address ArrayPtr, |
3204 | const CXXConstructExpr *E, |
3205 | bool NewPointerIsChecked, |
3206 | bool ZeroInitialization = false); |
3207 | |
3208 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3209 | llvm::Value *NumElements, Address ArrayPtr, |
3210 | const CXXConstructExpr *E, |
3211 | bool NewPointerIsChecked, |
3212 | bool ZeroInitialization = false); |
3213 | |
3214 | static Destroyer destroyCXXObject; |
3215 | |
3216 | void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, |
3217 | bool ForVirtualBase, bool Delegating, Address This, |
3218 | QualType ThisTy); |
3219 | |
3220 | void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, |
3221 | llvm::Type *ElementTy, Address NewPtr, |
3222 | llvm::Value *NumElements, |
3223 | llvm::Value *AllocSizeWithoutCookie); |
3224 | |
3225 | void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, |
3226 | Address Ptr); |
3227 | |
3228 | void EmitSehCppScopeBegin(); |
3229 | void EmitSehCppScopeEnd(); |
3230 | void EmitSehTryScopeBegin(); |
3231 | void EmitSehTryScopeEnd(); |
3232 | |
3233 | llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); |
3234 | void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); |
3235 | |
3236 | llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); |
3237 | void EmitCXXDeleteExpr(const CXXDeleteExpr *E); |
3238 | |
3239 | void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, |
3240 | QualType DeleteTy, llvm::Value *NumElements = nullptr, |
3241 | CharUnits CookieSize = CharUnits()); |
3242 | |
3243 | RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, |
3244 | const CallExpr *TheCallExpr, bool IsDelete); |
3245 | |
3246 | llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); |
3247 | llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); |
3248 | Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); |
3249 | |
3250 | /// Situations in which we might emit a check for the suitability of a |
3251 | /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in |
3252 | /// compiler-rt. |
3253 | enum TypeCheckKind { |
3254 | /// Checking the operand of a load. Must be suitably sized and aligned. |
3255 | TCK_Load, |
3256 | /// Checking the destination of a store. Must be suitably sized and aligned. |
3257 | TCK_Store, |
3258 | /// Checking the bound value in a reference binding. Must be suitably sized |
3259 | /// and aligned, but is not required to refer to an object (until the |
3260 | /// reference is used), per core issue 453. |
3261 | TCK_ReferenceBinding, |
3262 | /// Checking the object expression in a non-static data member access. Must |
3263 | /// be an object within its lifetime. |
3264 | TCK_MemberAccess, |
3265 | /// Checking the 'this' pointer for a call to a non-static member function. |
3266 | /// Must be an object within its lifetime. |
3267 | TCK_MemberCall, |
3268 | /// Checking the 'this' pointer for a constructor call. |
3269 | TCK_ConstructorCall, |
3270 | /// Checking the operand of a static_cast to a derived pointer type. Must be |
3271 | /// null or an object within its lifetime. |
3272 | TCK_DowncastPointer, |
3273 | /// Checking the operand of a static_cast to a derived reference type. Must |
3274 | /// be an object within its lifetime. |
3275 | TCK_DowncastReference, |
3276 | /// Checking the operand of a cast to a base object. Must be suitably sized |
3277 | /// and aligned. |
3278 | TCK_Upcast, |
3279 | /// Checking the operand of a cast to a virtual base object. Must be an |
3280 | /// object within its lifetime. |
3281 | TCK_UpcastToVirtualBase, |
3282 | /// Checking the value assigned to a _Nonnull pointer. Must not be null. |
3283 | TCK_NonnullAssign, |
3284 | /// Checking the operand of a dynamic_cast or a typeid expression. Must be |
3285 | /// null or an object within its lifetime. |
3286 | TCK_DynamicOperation |
3287 | }; |
3288 | |
3289 | /// Determine whether the pointer type check \p TCK permits null pointers. |
3290 | static bool isNullPointerAllowed(TypeCheckKind TCK); |
3291 | |
3292 | /// Determine whether the pointer type check \p TCK requires a vptr check. |
3293 | static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); |
3294 | |
3295 | /// Whether any type-checking sanitizers are enabled. If \c false, |
3296 | /// calls to EmitTypeCheck can be skipped. |
3297 | bool sanitizePerformTypeCheck() const; |
3298 | |
3299 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, |
3300 | QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), |
3301 | llvm::Value *ArraySize = nullptr) { |
3302 | if (!sanitizePerformTypeCheck()) |
3303 | return; |
3304 | EmitTypeCheck(TCK, Loc, V: LV.emitRawPointer(CGF&: *this), Type, Alignment: LV.getAlignment(), |
3305 | SkippedChecks, ArraySize); |
3306 | } |
3307 | |
3308 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, |
3309 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3310 | SanitizerSet SkippedChecks = SanitizerSet(), |
3311 | llvm::Value *ArraySize = nullptr) { |
3312 | if (!sanitizePerformTypeCheck()) |
3313 | return; |
3314 | EmitTypeCheck(TCK, Loc, V: Addr.emitRawPointer(CGF&: *this), Type, Alignment, |
3315 | SkippedChecks, ArraySize); |
3316 | } |
3317 | |
3318 | /// Emit a check that \p V is the address of storage of the |
3319 | /// appropriate size and alignment for an object of type \p Type |
3320 | /// (or if ArraySize is provided, for an array of that bound). |
3321 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, |
3322 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3323 | SanitizerSet SkippedChecks = SanitizerSet(), |
3324 | llvm::Value *ArraySize = nullptr); |
3325 | |
3326 | /// Emit a check that \p Base points into an array object, which |
3327 | /// we can access at index \p Index. \p Accessed should be \c false if we |
3328 | /// this expression is used as an lvalue, for instance in "&Arr[Idx]". |
3329 | void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, |
3330 | QualType IndexType, bool Accessed); |
3331 | void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, |
3332 | llvm::Value *Index, QualType IndexType, |
3333 | QualType IndexedType, bool Accessed); |
3334 | |
3335 | /// Returns debug info, with additional annotation if |
3336 | /// CGM.getCodeGenOpts().SanitizeAnnotateDebugInfo[Ordinal] is enabled for |
3337 | /// any of the ordinals. |
3338 | llvm::DILocation * |
3339 | SanitizerAnnotateDebugInfo(ArrayRef<SanitizerKind::SanitizerOrdinal> Ordinals, |
3340 | SanitizerHandler Handler); |
3341 | |
3342 | llvm::Value *GetCountedByFieldExprGEP(const Expr *Base, const FieldDecl *FD, |
3343 | const FieldDecl *CountDecl); |
3344 | |
3345 | /// Build an expression accessing the "counted_by" field. |
3346 | llvm::Value *EmitLoadOfCountedByField(const Expr *Base, const FieldDecl *FD, |
3347 | const FieldDecl *CountDecl); |
3348 | |
3349 | // Emit bounds checking for flexible array and pointer members with the |
3350 | // counted_by attribute. |
3351 | void EmitCountedByBoundsChecking(const Expr *E, llvm::Value *Idx, |
3352 | Address Addr, QualType IdxTy, |
3353 | QualType ArrayTy, bool Accessed, |
3354 | bool FlexibleArray); |
3355 | |
3356 | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
3357 | bool isInc, bool isPre); |
3358 | ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
3359 | bool isInc, bool isPre); |
3360 | |
3361 | /// Converts Location to a DebugLoc, if debug information is enabled. |
3362 | llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); |
3363 | |
3364 | /// Get the record field index as represented in debug info. |
3365 | unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); |
3366 | |
3367 | //===--------------------------------------------------------------------===// |
3368 | // Declaration Emission |
3369 | //===--------------------------------------------------------------------===// |
3370 | |
3371 | /// EmitDecl - Emit a declaration. |
3372 | /// |
3373 | /// This function can be called with a null (unreachable) insert point. |
3374 | void EmitDecl(const Decl &D, bool EvaluateConditionDecl = false); |
3375 | |
3376 | /// EmitVarDecl - Emit a local variable declaration. |
3377 | /// |
3378 | /// This function can be called with a null (unreachable) insert point. |
3379 | void EmitVarDecl(const VarDecl &D); |
3380 | |
3381 | void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
3382 | bool capturedByInit); |
3383 | |
3384 | typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, |
3385 | llvm::Value *Address); |
3386 | |
3387 | /// Determine whether the given initializer is trivial in the sense |
3388 | /// that it requires no code to be generated. |
3389 | bool isTrivialInitializer(const Expr *Init); |
3390 | |
3391 | /// EmitAutoVarDecl - Emit an auto variable declaration. |
3392 | /// |
3393 | /// This function can be called with a null (unreachable) insert point. |
3394 | void EmitAutoVarDecl(const VarDecl &D); |
3395 | |
3396 | class AutoVarEmission { |
3397 | friend class CodeGenFunction; |
3398 | |
3399 | const VarDecl *Variable; |
3400 | |
3401 | /// The address of the alloca for languages with explicit address space |
3402 | /// (e.g. OpenCL) or alloca casted to generic pointer for address space |
3403 | /// agnostic languages (e.g. C++). Invalid if the variable was emitted |
3404 | /// as a global constant. |
3405 | Address Addr; |
3406 | |
3407 | llvm::Value *NRVOFlag; |
3408 | |
3409 | /// True if the variable is a __block variable that is captured by an |
3410 | /// escaping block. |
3411 | bool IsEscapingByRef; |
3412 | |
3413 | /// True if the variable is of aggregate type and has a constant |
3414 | /// initializer. |
3415 | bool IsConstantAggregate; |
3416 | |
3417 | /// Non-null if we should use lifetime annotations. |
3418 | llvm::Value *SizeForLifetimeMarkers; |
3419 | |
3420 | /// Address with original alloca instruction. Invalid if the variable was |
3421 | /// emitted as a global constant. |
3422 | RawAddress AllocaAddr; |
3423 | |
3424 | struct Invalid {}; |
3425 | AutoVarEmission(Invalid) |
3426 | : Variable(nullptr), Addr(Address::invalid()), |
3427 | AllocaAddr(RawAddress::invalid()) {} |
3428 | |
3429 | AutoVarEmission(const VarDecl &variable) |
3430 | : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), |
3431 | IsEscapingByRef(false), IsConstantAggregate(false), |
3432 | SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} |
3433 | |
3434 | bool wasEmittedAsGlobal() const { return !Addr.isValid(); } |
3435 | |
3436 | public: |
3437 | static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } |
3438 | |
3439 | bool useLifetimeMarkers() const { |
3440 | return SizeForLifetimeMarkers != nullptr; |
3441 | } |
3442 | llvm::Value *getSizeForLifetimeMarkers() const { |
3443 | assert(useLifetimeMarkers()); |
3444 | return SizeForLifetimeMarkers; |
3445 | } |
3446 | |
3447 | /// Returns the raw, allocated address, which is not necessarily |
3448 | /// the address of the object itself. It is casted to default |
3449 | /// address space for address space agnostic languages. |
3450 | Address getAllocatedAddress() const { return Addr; } |
3451 | |
3452 | /// Returns the address for the original alloca instruction. |
3453 | RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } |
3454 | |
3455 | /// Returns the address of the object within this declaration. |
3456 | /// Note that this does not chase the forwarding pointer for |
3457 | /// __block decls. |
3458 | Address getObjectAddress(CodeGenFunction &CGF) const { |
3459 | if (!IsEscapingByRef) |
3460 | return Addr; |
3461 | |
3462 | return CGF.emitBlockByrefAddress(baseAddr: Addr, V: Variable, /*forward*/ followForward: false); |
3463 | } |
3464 | }; |
3465 | AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); |
3466 | void EmitAutoVarInit(const AutoVarEmission &emission); |
3467 | void EmitAutoVarCleanups(const AutoVarEmission &emission); |
3468 | void emitAutoVarTypeCleanup(const AutoVarEmission &emission, |
3469 | QualType::DestructionKind dtorKind); |
3470 | |
3471 | void MaybeEmitDeferredVarDeclInit(const VarDecl *var); |
3472 | |
3473 | /// Emits the alloca and debug information for the size expressions for each |
3474 | /// dimension of an array. It registers the association of its (1-dimensional) |
3475 | /// QualTypes and size expression's debug node, so that CGDebugInfo can |
3476 | /// reference this node when creating the DISubrange object to describe the |
3477 | /// array types. |
3478 | void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, const VarDecl &D, |
3479 | bool EmitDebugInfo); |
3480 | |
3481 | void EmitStaticVarDecl(const VarDecl &D, |
3482 | llvm::GlobalValue::LinkageTypes Linkage); |
3483 | |
3484 | class ParamValue { |
3485 | union { |
3486 | Address Addr; |
3487 | llvm::Value *Value; |
3488 | }; |
3489 | |
3490 | bool IsIndirect; |
3491 | |
3492 | ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} |
3493 | ParamValue(Address A) : Addr(A), IsIndirect(true) {} |
3494 | |
3495 | public: |
3496 | static ParamValue forDirect(llvm::Value *value) { |
3497 | return ParamValue(value); |
3498 | } |
3499 | static ParamValue forIndirect(Address addr) { |
3500 | assert(!addr.getAlignment().isZero()); |
3501 | return ParamValue(addr); |
3502 | } |
3503 | |
3504 | bool isIndirect() const { return IsIndirect; } |
3505 | llvm::Value *getAnyValue() const { |
3506 | if (!isIndirect()) |
3507 | return Value; |
3508 | assert(!Addr.hasOffset() && "unexpected offset" ); |
3509 | return Addr.getBasePointer(); |
3510 | } |
3511 | |
3512 | llvm::Value *getDirectValue() const { |
3513 | assert(!isIndirect()); |
3514 | return Value; |
3515 | } |
3516 | |
3517 | Address getIndirectAddress() const { |
3518 | assert(isIndirect()); |
3519 | return Addr; |
3520 | } |
3521 | }; |
3522 | |
3523 | /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. |
3524 | void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); |
3525 | |
3526 | /// protectFromPeepholes - Protect a value that we're intending to |
3527 | /// store to the side, but which will probably be used later, from |
3528 | /// aggressive peepholing optimizations that might delete it. |
3529 | /// |
3530 | /// Pass the result to unprotectFromPeepholes to declare that |
3531 | /// protection is no longer required. |
3532 | /// |
3533 | /// There's no particular reason why this shouldn't apply to |
3534 | /// l-values, it's just that no existing peepholes work on pointers. |
3535 | PeepholeProtection protectFromPeepholes(RValue rvalue); |
3536 | void unprotectFromPeepholes(PeepholeProtection protection); |
3537 | |
3538 | void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, |
3539 | SourceLocation Loc, |
3540 | SourceLocation AssumptionLoc, |
3541 | llvm::Value *Alignment, |
3542 | llvm::Value *OffsetValue, |
3543 | llvm::Value *TheCheck, |
3544 | llvm::Instruction *Assumption); |
3545 | |
3546 | void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, |
3547 | SourceLocation Loc, SourceLocation AssumptionLoc, |
3548 | llvm::Value *Alignment, |
3549 | llvm::Value *OffsetValue = nullptr); |
3550 | |
3551 | void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, |
3552 | SourceLocation AssumptionLoc, |
3553 | llvm::Value *Alignment, |
3554 | llvm::Value *OffsetValue = nullptr); |
3555 | |
3556 | //===--------------------------------------------------------------------===// |
3557 | // Statement Emission |
3558 | //===--------------------------------------------------------------------===// |
3559 | |
3560 | /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. |
3561 | void EmitStopPoint(const Stmt *S); |
3562 | |
3563 | /// EmitStmt - Emit the code for the statement \arg S. It is legal to call |
3564 | /// this function even if there is no current insertion point. |
3565 | /// |
3566 | /// This function may clear the current insertion point; callers should use |
3567 | /// EnsureInsertPoint if they wish to subsequently generate code without first |
3568 | /// calling EmitBlock, EmitBranch, or EmitStmt. |
3569 | void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {}); |
3570 | |
3571 | /// EmitSimpleStmt - Try to emit a "simple" statement which does not |
3572 | /// necessarily require an insertion point or debug information; typically |
3573 | /// because the statement amounts to a jump or a container of other |
3574 | /// statements. |
3575 | /// |
3576 | /// \return True if the statement was handled. |
3577 | bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); |
3578 | |
3579 | Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, |
3580 | AggValueSlot AVS = AggValueSlot::ignored()); |
3581 | Address |
3582 | EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast = false, |
3583 | AggValueSlot AVS = AggValueSlot::ignored()); |
3584 | |
3585 | /// EmitLabel - Emit the block for the given label. It is legal to call this |
3586 | /// function even if there is no current insertion point. |
3587 | void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. |
3588 | |
3589 | void EmitLabelStmt(const LabelStmt &S); |
3590 | void EmitAttributedStmt(const AttributedStmt &S); |
3591 | void EmitGotoStmt(const GotoStmt &S); |
3592 | void EmitIndirectGotoStmt(const IndirectGotoStmt &S); |
3593 | void EmitIfStmt(const IfStmt &S); |
3594 | |
3595 | void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {}); |
3596 | void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {}); |
3597 | void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {}); |
3598 | void EmitReturnStmt(const ReturnStmt &S); |
3599 | void EmitDeclStmt(const DeclStmt &S); |
3600 | void EmitBreakStmt(const BreakStmt &S); |
3601 | void EmitContinueStmt(const ContinueStmt &S); |
3602 | void EmitSwitchStmt(const SwitchStmt &S); |
3603 | void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); |
3604 | void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3605 | void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3606 | void EmitAsmStmt(const AsmStmt &S); |
3607 | |
3608 | void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); |
3609 | void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); |
3610 | void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); |
3611 | void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); |
3612 | void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); |
3613 | |
3614 | void EmitCoroutineBody(const CoroutineBodyStmt &S); |
3615 | void EmitCoreturnStmt(const CoreturnStmt &S); |
3616 | RValue EmitCoawaitExpr(const CoawaitExpr &E, |
3617 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3618 | bool ignoreResult = false); |
3619 | LValue EmitCoawaitLValue(const CoawaitExpr *E); |
3620 | RValue EmitCoyieldExpr(const CoyieldExpr &E, |
3621 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3622 | bool ignoreResult = false); |
3623 | LValue EmitCoyieldLValue(const CoyieldExpr *E); |
3624 | RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); |
3625 | |
3626 | void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3627 | void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3628 | |
3629 | void EmitCXXTryStmt(const CXXTryStmt &S); |
3630 | void EmitSEHTryStmt(const SEHTryStmt &S); |
3631 | void EmitSEHLeaveStmt(const SEHLeaveStmt &S); |
3632 | void EnterSEHTryStmt(const SEHTryStmt &S); |
3633 | void ExitSEHTryStmt(const SEHTryStmt &S); |
3634 | void VolatilizeTryBlocks(llvm::BasicBlock *BB, |
3635 | llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); |
3636 | |
3637 | void pushSEHCleanup(CleanupKind kind, llvm::Function *FinallyFunc); |
3638 | void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, |
3639 | const Stmt *OutlinedStmt); |
3640 | |
3641 | llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, |
3642 | const SEHExceptStmt &Except); |
3643 | |
3644 | llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, |
3645 | const SEHFinallyStmt &Finally); |
3646 | |
3647 | void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, |
3648 | llvm::Value *ParentFP, llvm::Value *EntryEBP); |
3649 | llvm::Value *EmitSEHExceptionCode(); |
3650 | llvm::Value *EmitSEHExceptionInfo(); |
3651 | llvm::Value *EmitSEHAbnormalTermination(); |
3652 | |
3653 | /// Emit simple code for OpenMP directives in Simd-only mode. |
3654 | void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); |
3655 | |
3656 | /// Scan the outlined statement for captures from the parent function. For |
3657 | /// each capture, mark the capture as escaped and emit a call to |
3658 | /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. |
3659 | void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, |
3660 | bool IsFilter); |
3661 | |
3662 | /// Recovers the address of a local in a parent function. ParentVar is the |
3663 | /// address of the variable used in the immediate parent function. It can |
3664 | /// either be an alloca or a call to llvm.localrecover if there are nested |
3665 | /// outlined functions. ParentFP is the frame pointer of the outermost parent |
3666 | /// frame. |
3667 | Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, |
3668 | Address ParentVar, llvm::Value *ParentFP); |
3669 | |
3670 | void EmitCXXForRangeStmt(const CXXForRangeStmt &S, |
3671 | ArrayRef<const Attr *> Attrs = {}); |
3672 | |
3673 | /// Controls insertion of cancellation exit blocks in worksharing constructs. |
3674 | class OMPCancelStackRAII { |
3675 | CodeGenFunction &CGF; |
3676 | |
3677 | public: |
3678 | OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
3679 | bool HasCancel) |
3680 | : CGF(CGF) { |
3681 | CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); |
3682 | } |
3683 | ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } |
3684 | }; |
3685 | |
3686 | /// Returns calculated size of the specified type. |
3687 | llvm::Value *getTypeSize(QualType Ty); |
3688 | LValue InitCapturedStruct(const CapturedStmt &S); |
3689 | llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); |
3690 | llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); |
3691 | Address GenerateCapturedStmtArgument(const CapturedStmt &S); |
3692 | llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, |
3693 | SourceLocation Loc); |
3694 | void GenerateOpenMPCapturedVars(const CapturedStmt &S, |
3695 | SmallVectorImpl<llvm::Value *> &CapturedVars); |
3696 | void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, |
3697 | SourceLocation Loc); |
3698 | /// Perform element by element copying of arrays with type \a |
3699 | /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure |
3700 | /// generated by \a CopyGen. |
3701 | /// |
3702 | /// \param DestAddr Address of the destination array. |
3703 | /// \param SrcAddr Address of the source array. |
3704 | /// \param OriginalType Type of destination and source arrays. |
3705 | /// \param CopyGen Copying procedure that copies value of single array element |
3706 | /// to another single array element. |
3707 | void EmitOMPAggregateAssign( |
3708 | Address DestAddr, Address SrcAddr, QualType OriginalType, |
3709 | const llvm::function_ref<void(Address, Address)> CopyGen); |
3710 | /// Emit proper copying of data from one variable to another. |
3711 | /// |
3712 | /// \param OriginalType Original type of the copied variables. |
3713 | /// \param DestAddr Destination address. |
3714 | /// \param SrcAddr Source address. |
3715 | /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has |
3716 | /// type of the base array element). |
3717 | /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of |
3718 | /// the base array element). |
3719 | /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a |
3720 | /// DestVD. |
3721 | void EmitOMPCopy(QualType OriginalType, Address DestAddr, Address SrcAddr, |
3722 | const VarDecl *DestVD, const VarDecl *SrcVD, |
3723 | const Expr *Copy); |
3724 | /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or |
3725 | /// \a X = \a E \a BO \a E. |
3726 | /// |
3727 | /// \param X Value to be updated. |
3728 | /// \param E Update value. |
3729 | /// \param BO Binary operation for update operation. |
3730 | /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update |
3731 | /// expression, false otherwise. |
3732 | /// \param AO Atomic ordering of the generated atomic instructions. |
3733 | /// \param CommonGen Code generator for complex expressions that cannot be |
3734 | /// expressed through atomicrmw instruction. |
3735 | /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was |
3736 | /// generated, <false, RValue::get(nullptr)> otherwise. |
3737 | std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( |
3738 | LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, |
3739 | llvm::AtomicOrdering AO, SourceLocation Loc, |
3740 | const llvm::function_ref<RValue(RValue)> CommonGen); |
3741 | bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, |
3742 | OMPPrivateScope &PrivateScope); |
3743 | void EmitOMPPrivateClause(const OMPExecutableDirective &D, |
3744 | OMPPrivateScope &PrivateScope); |
3745 | void EmitOMPUseDevicePtrClause( |
3746 | const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, |
3747 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3748 | CaptureDeviceAddrMap); |
3749 | void EmitOMPUseDeviceAddrClause( |
3750 | const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, |
3751 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3752 | CaptureDeviceAddrMap); |
3753 | /// Emit code for copyin clause in \a D directive. The next code is |
3754 | /// generated at the start of outlined functions for directives: |
3755 | /// \code |
3756 | /// threadprivate_var1 = master_threadprivate_var1; |
3757 | /// operator=(threadprivate_var2, master_threadprivate_var2); |
3758 | /// ... |
3759 | /// __kmpc_barrier(&loc, global_tid); |
3760 | /// \endcode |
3761 | /// |
3762 | /// \param D OpenMP directive possibly with 'copyin' clause(s). |
3763 | /// \returns true if at least one copyin variable is found, false otherwise. |
3764 | bool EmitOMPCopyinClause(const OMPExecutableDirective &D); |
3765 | /// Emit initial code for lastprivate variables. If some variable is |
3766 | /// not also firstprivate, then the default initialization is used. Otherwise |
3767 | /// initialization of this variable is performed by EmitOMPFirstprivateClause |
3768 | /// method. |
3769 | /// |
3770 | /// \param D Directive that may have 'lastprivate' directives. |
3771 | /// \param PrivateScope Private scope for capturing lastprivate variables for |
3772 | /// proper codegen in internal captured statement. |
3773 | /// |
3774 | /// \returns true if there is at least one lastprivate variable, false |
3775 | /// otherwise. |
3776 | bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, |
3777 | OMPPrivateScope &PrivateScope); |
3778 | /// Emit final copying of lastprivate values to original variables at |
3779 | /// the end of the worksharing or simd directive. |
3780 | /// |
3781 | /// \param D Directive that has at least one 'lastprivate' directives. |
3782 | /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if |
3783 | /// it is the last iteration of the loop code in associated directive, or to |
3784 | /// 'i1 false' otherwise. If this item is nullptr, no final check is required. |
3785 | void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, |
3786 | bool NoFinals, |
3787 | llvm::Value *IsLastIterCond = nullptr); |
3788 | /// Emit initial code for linear clauses. |
3789 | void EmitOMPLinearClause(const OMPLoopDirective &D, |
3790 | CodeGenFunction::OMPPrivateScope &PrivateScope); |
3791 | /// Emit final code for linear clauses. |
3792 | /// \param CondGen Optional conditional code for final part of codegen for |
3793 | /// linear clause. |
3794 | void EmitOMPLinearClauseFinal( |
3795 | const OMPLoopDirective &D, |
3796 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
3797 | /// Emit initial code for reduction variables. Creates reduction copies |
3798 | /// and initializes them with the values according to OpenMP standard. |
3799 | /// |
3800 | /// \param D Directive (possibly) with the 'reduction' clause. |
3801 | /// \param PrivateScope Private scope for capturing reduction variables for |
3802 | /// proper codegen in internal captured statement. |
3803 | /// |
3804 | void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, |
3805 | OMPPrivateScope &PrivateScope, |
3806 | bool ForInscan = false); |
3807 | /// Emit final update of reduction values to original variables at |
3808 | /// the end of the directive. |
3809 | /// |
3810 | /// \param D Directive that has at least one 'reduction' directives. |
3811 | /// \param ReductionKind The kind of reduction to perform. |
3812 | void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, |
3813 | const OpenMPDirectiveKind ReductionKind); |
3814 | /// Emit initial code for linear variables. Creates private copies |
3815 | /// and initializes them with the values according to OpenMP standard. |
3816 | /// |
3817 | /// \param D Directive (possibly) with the 'linear' clause. |
3818 | /// \return true if at least one linear variable is found that should be |
3819 | /// initialized with the value of the original variable, false otherwise. |
3820 | bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); |
3821 | |
3822 | typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, |
3823 | llvm::Function * /*OutlinedFn*/, |
3824 | const OMPTaskDataTy & /*Data*/)> |
3825 | TaskGenTy; |
3826 | void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, |
3827 | const OpenMPDirectiveKind CapturedRegion, |
3828 | const RegionCodeGenTy &BodyGen, |
3829 | const TaskGenTy &TaskGen, OMPTaskDataTy &Data); |
3830 | struct OMPTargetDataInfo { |
3831 | Address BasePointersArray = Address::invalid(); |
3832 | Address PointersArray = Address::invalid(); |
3833 | Address SizesArray = Address::invalid(); |
3834 | Address MappersArray = Address::invalid(); |
3835 | unsigned NumberOfTargetItems = 0; |
3836 | explicit OMPTargetDataInfo() = default; |
3837 | OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, |
3838 | Address SizesArray, Address MappersArray, |
3839 | unsigned NumberOfTargetItems) |
3840 | : BasePointersArray(BasePointersArray), PointersArray(PointersArray), |
3841 | SizesArray(SizesArray), MappersArray(MappersArray), |
3842 | NumberOfTargetItems(NumberOfTargetItems) {} |
3843 | }; |
3844 | void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, |
3845 | const RegionCodeGenTy &BodyGen, |
3846 | OMPTargetDataInfo &InputInfo); |
3847 | void processInReduction(const OMPExecutableDirective &S, OMPTaskDataTy &Data, |
3848 | CodeGenFunction &CGF, const CapturedStmt *CS, |
3849 | OMPPrivateScope &Scope); |
3850 | void EmitOMPMetaDirective(const OMPMetaDirective &S); |
3851 | void EmitOMPParallelDirective(const OMPParallelDirective &S); |
3852 | void EmitOMPSimdDirective(const OMPSimdDirective &S); |
3853 | void EmitOMPTileDirective(const OMPTileDirective &S); |
3854 | void EmitOMPStripeDirective(const OMPStripeDirective &S); |
3855 | void EmitOMPUnrollDirective(const OMPUnrollDirective &S); |
3856 | void EmitOMPReverseDirective(const OMPReverseDirective &S); |
3857 | void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); |
3858 | void EmitOMPForDirective(const OMPForDirective &S); |
3859 | void EmitOMPForSimdDirective(const OMPForSimdDirective &S); |
3860 | void EmitOMPScopeDirective(const OMPScopeDirective &S); |
3861 | void EmitOMPSectionsDirective(const OMPSectionsDirective &S); |
3862 | void EmitOMPSectionDirective(const OMPSectionDirective &S); |
3863 | void EmitOMPSingleDirective(const OMPSingleDirective &S); |
3864 | void EmitOMPMasterDirective(const OMPMasterDirective &S); |
3865 | void EmitOMPMaskedDirective(const OMPMaskedDirective &S); |
3866 | void EmitOMPCriticalDirective(const OMPCriticalDirective &S); |
3867 | void EmitOMPParallelForDirective(const OMPParallelForDirective &S); |
3868 | void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); |
3869 | void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); |
3870 | void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); |
3871 | void EmitOMPTaskDirective(const OMPTaskDirective &S); |
3872 | void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); |
3873 | void EmitOMPErrorDirective(const OMPErrorDirective &S); |
3874 | void EmitOMPBarrierDirective(const OMPBarrierDirective &S); |
3875 | void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); |
3876 | void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); |
3877 | void EmitOMPFlushDirective(const OMPFlushDirective &S); |
3878 | void EmitOMPDepobjDirective(const OMPDepobjDirective &S); |
3879 | void EmitOMPScanDirective(const OMPScanDirective &S); |
3880 | void EmitOMPOrderedDirective(const OMPOrderedDirective &S); |
3881 | void EmitOMPAtomicDirective(const OMPAtomicDirective &S); |
3882 | void EmitOMPTargetDirective(const OMPTargetDirective &S); |
3883 | void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); |
3884 | void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); |
3885 | void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); |
3886 | void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); |
3887 | void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); |
3888 | void |
3889 | EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); |
3890 | void EmitOMPTeamsDirective(const OMPTeamsDirective &S); |
3891 | void |
3892 | EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); |
3893 | void EmitOMPCancelDirective(const OMPCancelDirective &S); |
3894 | void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); |
3895 | void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); |
3896 | void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); |
3897 | void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); |
3898 | void EmitOMPMaskedTaskLoopDirective(const OMPMaskedTaskLoopDirective &S); |
3899 | void |
3900 | EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); |
3901 | void |
3902 | EmitOMPMaskedTaskLoopSimdDirective(const OMPMaskedTaskLoopSimdDirective &S); |
3903 | void EmitOMPParallelMasterTaskLoopDirective( |
3904 | const OMPParallelMasterTaskLoopDirective &S); |
3905 | void EmitOMPParallelMaskedTaskLoopDirective( |
3906 | const OMPParallelMaskedTaskLoopDirective &S); |
3907 | void EmitOMPParallelMasterTaskLoopSimdDirective( |
3908 | const OMPParallelMasterTaskLoopSimdDirective &S); |
3909 | void EmitOMPParallelMaskedTaskLoopSimdDirective( |
3910 | const OMPParallelMaskedTaskLoopSimdDirective &S); |
3911 | void EmitOMPDistributeDirective(const OMPDistributeDirective &S); |
3912 | void EmitOMPDistributeParallelForDirective( |
3913 | const OMPDistributeParallelForDirective &S); |
3914 | void EmitOMPDistributeParallelForSimdDirective( |
3915 | const OMPDistributeParallelForSimdDirective &S); |
3916 | void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); |
3917 | void EmitOMPTargetParallelForSimdDirective( |
3918 | const OMPTargetParallelForSimdDirective &S); |
3919 | void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); |
3920 | void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); |
3921 | void |
3922 | EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); |
3923 | void EmitOMPTeamsDistributeParallelForSimdDirective( |
3924 | const OMPTeamsDistributeParallelForSimdDirective &S); |
3925 | void EmitOMPTeamsDistributeParallelForDirective( |
3926 | const OMPTeamsDistributeParallelForDirective &S); |
3927 | void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); |
3928 | void EmitOMPTargetTeamsDistributeDirective( |
3929 | const OMPTargetTeamsDistributeDirective &S); |
3930 | void EmitOMPTargetTeamsDistributeParallelForDirective( |
3931 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3932 | void EmitOMPTargetTeamsDistributeParallelForSimdDirective( |
3933 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3934 | void EmitOMPTargetTeamsDistributeSimdDirective( |
3935 | const OMPTargetTeamsDistributeSimdDirective &S); |
3936 | void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); |
3937 | void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); |
3938 | void EmitOMPTargetParallelGenericLoopDirective( |
3939 | const OMPTargetParallelGenericLoopDirective &S); |
3940 | void EmitOMPTargetTeamsGenericLoopDirective( |
3941 | const OMPTargetTeamsGenericLoopDirective &S); |
3942 | void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); |
3943 | void EmitOMPInteropDirective(const OMPInteropDirective &S); |
3944 | void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); |
3945 | void EmitOMPAssumeDirective(const OMPAssumeDirective &S); |
3946 | |
3947 | /// Emit device code for the target directive. |
3948 | static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, |
3949 | StringRef ParentName, |
3950 | const OMPTargetDirective &S); |
3951 | static void |
3952 | EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3953 | const OMPTargetParallelDirective &S); |
3954 | /// Emit device code for the target parallel for directive. |
3955 | static void EmitOMPTargetParallelForDeviceFunction( |
3956 | CodeGenModule &CGM, StringRef ParentName, |
3957 | const OMPTargetParallelForDirective &S); |
3958 | /// Emit device code for the target parallel for simd directive. |
3959 | static void EmitOMPTargetParallelForSimdDeviceFunction( |
3960 | CodeGenModule &CGM, StringRef ParentName, |
3961 | const OMPTargetParallelForSimdDirective &S); |
3962 | /// Emit device code for the target teams directive. |
3963 | static void |
3964 | EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3965 | const OMPTargetTeamsDirective &S); |
3966 | /// Emit device code for the target teams distribute directive. |
3967 | static void EmitOMPTargetTeamsDistributeDeviceFunction( |
3968 | CodeGenModule &CGM, StringRef ParentName, |
3969 | const OMPTargetTeamsDistributeDirective &S); |
3970 | /// Emit device code for the target teams distribute simd directive. |
3971 | static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( |
3972 | CodeGenModule &CGM, StringRef ParentName, |
3973 | const OMPTargetTeamsDistributeSimdDirective &S); |
3974 | /// Emit device code for the target simd directive. |
3975 | static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, |
3976 | StringRef ParentName, |
3977 | const OMPTargetSimdDirective &S); |
3978 | /// Emit device code for the target teams distribute parallel for simd |
3979 | /// directive. |
3980 | static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( |
3981 | CodeGenModule &CGM, StringRef ParentName, |
3982 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3983 | |
3984 | /// Emit device code for the target teams loop directive. |
3985 | static void EmitOMPTargetTeamsGenericLoopDeviceFunction( |
3986 | CodeGenModule &CGM, StringRef ParentName, |
3987 | const OMPTargetTeamsGenericLoopDirective &S); |
3988 | |
3989 | /// Emit device code for the target parallel loop directive. |
3990 | static void EmitOMPTargetParallelGenericLoopDeviceFunction( |
3991 | CodeGenModule &CGM, StringRef ParentName, |
3992 | const OMPTargetParallelGenericLoopDirective &S); |
3993 | |
3994 | static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( |
3995 | CodeGenModule &CGM, StringRef ParentName, |
3996 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3997 | |
3998 | /// Emit the Stmt \p S and return its topmost canonical loop, if any. |
3999 | /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the |
4000 | /// future it is meant to be the number of loops expected in the loop nests |
4001 | /// (usually specified by the "collapse" clause) that are collapsed to a |
4002 | /// single loop by this function. |
4003 | llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, |
4004 | int Depth); |
4005 | |
4006 | /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. |
4007 | void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); |
4008 | |
4009 | /// Emit inner loop of the worksharing/simd construct. |
4010 | /// |
4011 | /// \param S Directive, for which the inner loop must be emitted. |
4012 | /// \param RequiresCleanup true, if directive has some associated private |
4013 | /// variables. |
4014 | /// \param LoopCond Bollean condition for loop continuation. |
4015 | /// \param IncExpr Increment expression for loop control variable. |
4016 | /// \param BodyGen Generator for the inner body of the inner loop. |
4017 | /// \param PostIncGen Genrator for post-increment code (required for ordered |
4018 | /// loop directvies). |
4019 | void EmitOMPInnerLoop( |
4020 | const OMPExecutableDirective &S, bool RequiresCleanup, |
4021 | const Expr *LoopCond, const Expr *IncExpr, |
4022 | const llvm::function_ref<void(CodeGenFunction &)> BodyGen, |
4023 | const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); |
4024 | |
4025 | JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); |
4026 | /// Emit initial code for loop counters of loop-based directives. |
4027 | void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, |
4028 | OMPPrivateScope &LoopScope); |
4029 | |
4030 | /// Helper for the OpenMP loop directives. |
4031 | void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); |
4032 | |
4033 | /// Emit code for the worksharing loop-based directive. |
4034 | /// \return true, if this construct has any lastprivate clause, false - |
4035 | /// otherwise. |
4036 | bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, |
4037 | const CodeGenLoopBoundsTy &CodeGenLoopBounds, |
4038 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
4039 | |
4040 | /// Emit code for the distribute loop-based directive. |
4041 | void EmitOMPDistributeLoop(const OMPLoopDirective &S, |
4042 | const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); |
4043 | |
4044 | /// Helpers for the OpenMP loop directives. |
4045 | void EmitOMPSimdInit(const OMPLoopDirective &D); |
4046 | void EmitOMPSimdFinal( |
4047 | const OMPLoopDirective &D, |
4048 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
4049 | |
4050 | /// Emits the lvalue for the expression with possibly captured variable. |
4051 | LValue EmitOMPSharedLValue(const Expr *E); |
4052 | |
4053 | private: |
4054 | /// Helpers for blocks. |
4055 | llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); |
4056 | |
4057 | /// struct with the values to be passed to the OpenMP loop-related functions |
4058 | struct OMPLoopArguments { |
4059 | /// loop lower bound |
4060 | Address LB = Address::invalid(); |
4061 | /// loop upper bound |
4062 | Address UB = Address::invalid(); |
4063 | /// loop stride |
4064 | Address ST = Address::invalid(); |
4065 | /// isLastIteration argument for runtime functions |
4066 | Address IL = Address::invalid(); |
4067 | /// Chunk value generated by sema |
4068 | llvm::Value *Chunk = nullptr; |
4069 | /// EnsureUpperBound |
4070 | Expr *EUB = nullptr; |
4071 | /// IncrementExpression |
4072 | Expr *IncExpr = nullptr; |
4073 | /// Loop initialization |
4074 | Expr *Init = nullptr; |
4075 | /// Loop exit condition |
4076 | Expr *Cond = nullptr; |
4077 | /// Update of LB after a whole chunk has been executed |
4078 | Expr *NextLB = nullptr; |
4079 | /// Update of UB after a whole chunk has been executed |
4080 | Expr *NextUB = nullptr; |
4081 | /// Distinguish between the for distribute and sections |
4082 | OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; |
4083 | OMPLoopArguments() = default; |
4084 | OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, |
4085 | llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, |
4086 | Expr *IncExpr = nullptr, Expr *Init = nullptr, |
4087 | Expr *Cond = nullptr, Expr *NextLB = nullptr, |
4088 | Expr *NextUB = nullptr) |
4089 | : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), |
4090 | IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), |
4091 | NextUB(NextUB) {} |
4092 | }; |
4093 | void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, |
4094 | const OMPLoopDirective &S, OMPPrivateScope &LoopScope, |
4095 | const OMPLoopArguments &LoopArgs, |
4096 | const CodeGenLoopTy &CodeGenLoop, |
4097 | const CodeGenOrderedTy &CodeGenOrdered); |
4098 | void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, |
4099 | bool IsMonotonic, const OMPLoopDirective &S, |
4100 | OMPPrivateScope &LoopScope, bool Ordered, |
4101 | const OMPLoopArguments &LoopArgs, |
4102 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
4103 | void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, |
4104 | const OMPLoopDirective &S, |
4105 | OMPPrivateScope &LoopScope, |
4106 | const OMPLoopArguments &LoopArgs, |
4107 | const CodeGenLoopTy &CodeGenLoopContent); |
4108 | /// Emit code for sections directive. |
4109 | void EmitSections(const OMPExecutableDirective &S); |
4110 | |
4111 | public: |
4112 | //===--------------------------------------------------------------------===// |
4113 | // OpenACC Emission |
4114 | //===--------------------------------------------------------------------===// |
4115 | void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { |
4116 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4117 | // simply emitting its structured block, but in the future we will implement |
4118 | // some sort of IR. |
4119 | EmitStmt(S: S.getStructuredBlock()); |
4120 | } |
4121 | |
4122 | void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { |
4123 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4124 | // simply emitting its loop, but in the future we will implement |
4125 | // some sort of IR. |
4126 | EmitStmt(S: S.getLoop()); |
4127 | } |
4128 | |
4129 | void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) { |
4130 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4131 | // simply emitting its loop, but in the future we will implement |
4132 | // some sort of IR. |
4133 | EmitStmt(S: S.getLoop()); |
4134 | } |
4135 | |
4136 | void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) { |
4137 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4138 | // simply emitting its structured block, but in the future we will implement |
4139 | // some sort of IR. |
4140 | EmitStmt(S: S.getStructuredBlock()); |
4141 | } |
4142 | |
4143 | void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) { |
4144 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4145 | // but in the future we will implement some sort of IR. |
4146 | } |
4147 | |
4148 | void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) { |
4149 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4150 | // but in the future we will implement some sort of IR. |
4151 | } |
4152 | |
4153 | void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) { |
4154 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4155 | // simply emitting its structured block, but in the future we will implement |
4156 | // some sort of IR. |
4157 | EmitStmt(S: S.getStructuredBlock()); |
4158 | } |
4159 | |
4160 | void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) { |
4161 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4162 | // but in the future we will implement some sort of IR. |
4163 | } |
4164 | |
4165 | void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) { |
4166 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4167 | // but in the future we will implement some sort of IR. |
4168 | } |
4169 | |
4170 | void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) { |
4171 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4172 | // but in the future we will implement some sort of IR. |
4173 | } |
4174 | |
4175 | void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) { |
4176 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4177 | // but in the future we will implement some sort of IR. |
4178 | } |
4179 | |
4180 | void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) { |
4181 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4182 | // but in the future we will implement some sort of IR. |
4183 | } |
4184 | |
4185 | void EmitOpenACCAtomicConstruct(const OpenACCAtomicConstruct &S) { |
4186 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4187 | // simply emitting its associated stmt, but in the future we will implement |
4188 | // some sort of IR. |
4189 | EmitStmt(S: S.getAssociatedStmt()); |
4190 | } |
4191 | void EmitOpenACCCacheConstruct(const OpenACCCacheConstruct &S) { |
4192 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4193 | // but in the future we will implement some sort of IR. |
4194 | } |
4195 | |
4196 | //===--------------------------------------------------------------------===// |
4197 | // LValue Expression Emission |
4198 | //===--------------------------------------------------------------------===// |
4199 | |
4200 | /// Create a check that a scalar RValue is non-null. |
4201 | llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); |
4202 | |
4203 | /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. |
4204 | RValue GetUndefRValue(QualType Ty); |
4205 | |
4206 | /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E |
4207 | /// and issue an ErrorUnsupported style diagnostic (using the |
4208 | /// provided Name). |
4209 | RValue EmitUnsupportedRValue(const Expr *E, const char *Name); |
4210 | |
4211 | /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue |
4212 | /// an ErrorUnsupported style diagnostic (using the provided Name). |
4213 | LValue EmitUnsupportedLValue(const Expr *E, const char *Name); |
4214 | |
4215 | /// EmitLValue - Emit code to compute a designator that specifies the location |
4216 | /// of the expression. |
4217 | /// |
4218 | /// This can return one of two things: a simple address or a bitfield |
4219 | /// reference. In either case, the LLVM Value* in the LValue structure is |
4220 | /// guaranteed to be an LLVM pointer type. |
4221 | /// |
4222 | /// If this returns a bitfield reference, nothing about the pointee type of |
4223 | /// the LLVM value is known: For example, it may not be a pointer to an |
4224 | /// integer. |
4225 | /// |
4226 | /// If this returns a normal address, and if the lvalue's C type is fixed |
4227 | /// size, this method guarantees that the returned pointer type will point to |
4228 | /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
4229 | /// variable length type, this is not possible. |
4230 | /// |
4231 | LValue EmitLValue(const Expr *E, |
4232 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
4233 | |
4234 | private: |
4235 | LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); |
4236 | |
4237 | public: |
4238 | /// Same as EmitLValue but additionally we generate checking code to |
4239 | /// guard against undefined behavior. This is only suitable when we know |
4240 | /// that the address will be used to access the object. |
4241 | LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); |
4242 | |
4243 | RValue convertTempToRValue(Address addr, QualType type, SourceLocation Loc); |
4244 | |
4245 | void EmitAtomicInit(Expr *E, LValue lvalue); |
4246 | |
4247 | bool LValueIsSuitableForInlineAtomic(LValue Src); |
4248 | |
4249 | RValue EmitAtomicLoad(LValue LV, SourceLocation SL, |
4250 | AggValueSlot Slot = AggValueSlot::ignored()); |
4251 | |
4252 | RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, |
4253 | llvm::AtomicOrdering AO, bool IsVolatile = false, |
4254 | AggValueSlot slot = AggValueSlot::ignored()); |
4255 | |
4256 | void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); |
4257 | |
4258 | void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, |
4259 | bool IsVolatile, bool isInit); |
4260 | |
4261 | std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( |
4262 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
4263 | llvm::AtomicOrdering Success = |
4264 | llvm::AtomicOrdering::SequentiallyConsistent, |
4265 | llvm::AtomicOrdering Failure = |
4266 | llvm::AtomicOrdering::SequentiallyConsistent, |
4267 | bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); |
4268 | |
4269 | /// Emit an atomicrmw instruction, and applying relevant metadata when |
4270 | /// applicable. |
4271 | llvm::AtomicRMWInst *emitAtomicRMWInst( |
4272 | llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, |
4273 | llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent, |
4274 | llvm::SyncScope::ID SSID = llvm::SyncScope::System, |
4275 | const AtomicExpr *AE = nullptr); |
4276 | |
4277 | void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, |
4278 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
4279 | bool IsVolatile); |
4280 | |
4281 | /// EmitToMemory - Change a scalar value from its value |
4282 | /// representation to its in-memory representation. |
4283 | llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); |
4284 | |
4285 | /// EmitFromMemory - Change a scalar value from its memory |
4286 | /// representation to its value representation. |
4287 | llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); |
4288 | |
4289 | /// Check if the scalar \p Value is within the valid range for the given |
4290 | /// type \p Ty. |
4291 | /// |
4292 | /// Returns true if a check is needed (even if the range is unknown). |
4293 | bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, |
4294 | SourceLocation Loc); |
4295 | |
4296 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4297 | /// care to appropriately convert from the memory representation to |
4298 | /// the LLVM value representation. |
4299 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4300 | SourceLocation Loc, |
4301 | AlignmentSource Source = AlignmentSource::Type, |
4302 | bool isNontemporal = false) { |
4303 | return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, BaseInfo: LValueBaseInfo(Source), |
4304 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isNontemporal); |
4305 | } |
4306 | |
4307 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4308 | SourceLocation Loc, LValueBaseInfo BaseInfo, |
4309 | TBAAAccessInfo TBAAInfo, |
4310 | bool isNontemporal = false); |
4311 | |
4312 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4313 | /// care to appropriately convert from the memory representation to |
4314 | /// the LLVM value representation. The l-value must be a simple |
4315 | /// l-value. |
4316 | llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); |
4317 | |
4318 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4319 | /// care to appropriately convert from the memory representation to |
4320 | /// the LLVM value representation. |
4321 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, |
4322 | QualType Ty, |
4323 | AlignmentSource Source = AlignmentSource::Type, |
4324 | bool isInit = false, bool isNontemporal = false) { |
4325 | EmitStoreOfScalar(Value, Addr, Volatile, Ty, BaseInfo: LValueBaseInfo(Source), |
4326 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isInit, isNontemporal); |
4327 | } |
4328 | |
4329 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, |
4330 | QualType Ty, LValueBaseInfo BaseInfo, |
4331 | TBAAAccessInfo TBAAInfo, bool isInit = false, |
4332 | bool isNontemporal = false); |
4333 | |
4334 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4335 | /// care to appropriately convert from the memory representation to |
4336 | /// the LLVM value representation. The l-value must be a simple |
4337 | /// l-value. The isInit flag indicates whether this is an initialization. |
4338 | /// If so, atomic qualifiers are ignored and the store is always non-atomic. |
4339 | void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, |
4340 | bool isInit = false); |
4341 | |
4342 | /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
4343 | /// this method emits the address of the lvalue, then loads the result as an |
4344 | /// rvalue, returning the rvalue. |
4345 | RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); |
4346 | RValue EmitLoadOfExtVectorElementLValue(LValue V); |
4347 | RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); |
4348 | RValue EmitLoadOfGlobalRegLValue(LValue LV); |
4349 | |
4350 | /// Like EmitLoadOfLValue but also handles complex and aggregate types. |
4351 | RValue EmitLoadOfAnyValue(LValue V, |
4352 | AggValueSlot Slot = AggValueSlot::ignored(), |
4353 | SourceLocation Loc = {}); |
4354 | |
4355 | /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
4356 | /// lvalue, where both are guaranteed to the have the same type, and that type |
4357 | /// is 'Ty'. |
4358 | void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); |
4359 | void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); |
4360 | void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); |
4361 | |
4362 | /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints |
4363 | /// as EmitStoreThroughLValue. |
4364 | /// |
4365 | /// \param Result [out] - If non-null, this will be set to a Value* for the |
4366 | /// bit-field contents after the store, appropriate for use as the result of |
4367 | /// an assignment to the bit-field. |
4368 | void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
4369 | llvm::Value **Result = nullptr); |
4370 | |
4371 | /// Emit an l-value for an assignment (simple or compound) of complex type. |
4372 | LValue EmitComplexAssignmentLValue(const BinaryOperator *E); |
4373 | LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4374 | LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
4375 | llvm::Value *&Result); |
4376 | |
4377 | // Note: only available for agg return types |
4378 | LValue EmitBinaryOperatorLValue(const BinaryOperator *E); |
4379 | LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4380 | // Note: only available for agg return types |
4381 | LValue EmitCallExprLValue(const CallExpr *E, |
4382 | llvm::CallBase **CallOrInvoke = nullptr); |
4383 | // Note: only available for agg return types |
4384 | LValue EmitVAArgExprLValue(const VAArgExpr *E); |
4385 | LValue EmitDeclRefLValue(const DeclRefExpr *E); |
4386 | LValue EmitStringLiteralLValue(const StringLiteral *E); |
4387 | LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); |
4388 | LValue EmitPredefinedLValue(const PredefinedExpr *E); |
4389 | LValue EmitUnaryOpLValue(const UnaryOperator *E); |
4390 | LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
4391 | bool Accessed = false); |
4392 | llvm::Value *EmitMatrixIndexExpr(const Expr *E); |
4393 | LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); |
4394 | LValue EmitArraySectionExpr(const ArraySectionExpr *E, |
4395 | bool IsLowerBound = true); |
4396 | LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); |
4397 | LValue EmitMemberExpr(const MemberExpr *E); |
4398 | LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); |
4399 | LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); |
4400 | LValue EmitInitListLValue(const InitListExpr *E); |
4401 | void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); |
4402 | LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); |
4403 | LValue EmitCastLValue(const CastExpr *E); |
4404 | LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
4405 | LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); |
4406 | LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E); |
4407 | |
4408 | std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, |
4409 | QualType Ty); |
4410 | LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, |
4411 | QualType Ty); |
4412 | |
4413 | Address EmitExtVectorElementLValue(LValue V); |
4414 | |
4415 | RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); |
4416 | |
4417 | Address EmitArrayToPointerDecay(const Expr *Array, |
4418 | LValueBaseInfo *BaseInfo = nullptr, |
4419 | TBAAAccessInfo *TBAAInfo = nullptr); |
4420 | |
4421 | class ConstantEmission { |
4422 | llvm::PointerIntPair<llvm::Constant *, 1, bool> ValueAndIsReference; |
4423 | ConstantEmission(llvm::Constant *C, bool isReference) |
4424 | : ValueAndIsReference(C, isReference) {} |
4425 | |
4426 | public: |
4427 | ConstantEmission() {} |
4428 | static ConstantEmission forReference(llvm::Constant *C) { |
4429 | return ConstantEmission(C, true); |
4430 | } |
4431 | static ConstantEmission forValue(llvm::Constant *C) { |
4432 | return ConstantEmission(C, false); |
4433 | } |
4434 | |
4435 | explicit operator bool() const { |
4436 | return ValueAndIsReference.getOpaqueValue() != nullptr; |
4437 | } |
4438 | |
4439 | bool isReference() const { return ValueAndIsReference.getInt(); } |
4440 | LValue getReferenceLValue(CodeGenFunction &CGF, const Expr *RefExpr) const { |
4441 | assert(isReference()); |
4442 | return CGF.MakeNaturalAlignAddrLValue(V: ValueAndIsReference.getPointer(), |
4443 | T: RefExpr->getType()); |
4444 | } |
4445 | |
4446 | llvm::Constant *getValue() const { |
4447 | assert(!isReference()); |
4448 | return ValueAndIsReference.getPointer(); |
4449 | } |
4450 | }; |
4451 | |
4452 | ConstantEmission tryEmitAsConstant(const DeclRefExpr *RefExpr); |
4453 | ConstantEmission tryEmitAsConstant(const MemberExpr *ME); |
4454 | llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); |
4455 | |
4456 | RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, |
4457 | AggValueSlot slot = AggValueSlot::ignored()); |
4458 | LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); |
4459 | |
4460 | void FlattenAccessAndType( |
4461 | Address Addr, QualType AddrTy, |
4462 | SmallVectorImpl<std::pair<Address, llvm::Value *>> &AccessList, |
4463 | SmallVectorImpl<QualType> &FlatTypes); |
4464 | |
4465 | llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
4466 | const ObjCIvarDecl *Ivar); |
4467 | llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, |
4468 | const ObjCIvarDecl *Ivar); |
4469 | LValue EmitLValueForField(LValue Base, const FieldDecl *Field, |
4470 | bool IsInBounds = true); |
4471 | LValue EmitLValueForLambdaField(const FieldDecl *Field); |
4472 | LValue EmitLValueForLambdaField(const FieldDecl *Field, |
4473 | llvm::Value *ThisValue); |
4474 | |
4475 | /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that |
4476 | /// if the Field is a reference, this will return the address of the reference |
4477 | /// and not the address of the value stored in the reference. |
4478 | LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field); |
4479 | |
4480 | LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value *Base, |
4481 | const ObjCIvarDecl *Ivar, unsigned CVRQualifiers); |
4482 | |
4483 | LValue EmitCXXConstructLValue(const CXXConstructExpr *E); |
4484 | LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); |
4485 | LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); |
4486 | LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); |
4487 | |
4488 | LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); |
4489 | LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); |
4490 | LValue EmitStmtExprLValue(const StmtExpr *E); |
4491 | LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); |
4492 | LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); |
4493 | void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); |
4494 | |
4495 | //===--------------------------------------------------------------------===// |
4496 | // Scalar Expression Emission |
4497 | //===--------------------------------------------------------------------===// |
4498 | |
4499 | /// EmitCall - Generate a call of the given function, expecting the given |
4500 | /// result type, and using the given argument list which specifies both the |
4501 | /// LLVM arguments and the types they were derived from. |
4502 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4503 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4504 | llvm::CallBase **CallOrInvoke, bool IsMustTail, |
4505 | SourceLocation Loc, |
4506 | bool IsVirtualFunctionPointerThunk = false); |
4507 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4508 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4509 | llvm::CallBase **CallOrInvoke = nullptr, |
4510 | bool IsMustTail = false) { |
4511 | return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke, |
4512 | IsMustTail, Loc: SourceLocation()); |
4513 | } |
4514 | RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, |
4515 | ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr, |
4516 | llvm::CallBase **CallOrInvoke = nullptr, |
4517 | CGFunctionInfo const **ResolvedFnInfo = nullptr); |
4518 | |
4519 | // If a Call or Invoke instruction was emitted for this CallExpr, this method |
4520 | // writes the pointer to `CallOrInvoke` if it's not null. |
4521 | RValue EmitCallExpr(const CallExpr *E, |
4522 | ReturnValueSlot ReturnValue = ReturnValueSlot(), |
4523 | llvm::CallBase **CallOrInvoke = nullptr); |
4524 | RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, |
4525 | llvm::CallBase **CallOrInvoke = nullptr); |
4526 | CGCallee EmitCallee(const Expr *E); |
4527 | |
4528 | void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); |
4529 | void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); |
4530 | |
4531 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4532 | const Twine &name = "" ); |
4533 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4534 | ArrayRef<llvm::Value *> args, |
4535 | const Twine &name = "" ); |
4536 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4537 | const Twine &name = "" ); |
4538 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4539 | ArrayRef<Address> args, |
4540 | const Twine &name = "" ); |
4541 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4542 | ArrayRef<llvm::Value *> args, |
4543 | const Twine &name = "" ); |
4544 | |
4545 | SmallVector<llvm::OperandBundleDef, 1> |
4546 | getBundlesForFunclet(llvm::Value *Callee); |
4547 | |
4548 | llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, |
4549 | ArrayRef<llvm::Value *> Args, |
4550 | const Twine &Name = "" ); |
4551 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4552 | ArrayRef<llvm::Value *> args, |
4553 | const Twine &name = "" ); |
4554 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4555 | const Twine &name = "" ); |
4556 | void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4557 | ArrayRef<llvm::Value *> args); |
4558 | |
4559 | CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, |
4560 | NestedNameSpecifier *Qual, llvm::Type *Ty); |
4561 | |
4562 | CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, |
4563 | CXXDtorType Type, |
4564 | const CXXRecordDecl *RD); |
4565 | |
4566 | bool isPointerKnownNonNull(const Expr *E); |
4567 | /// Check whether the underlying base pointer is a constant null. |
4568 | bool isUnderlyingBasePointerConstantNull(const Expr *E); |
4569 | |
4570 | /// Create the discriminator from the storage address and the entity hash. |
4571 | llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, |
4572 | llvm::Value *Discriminator); |
4573 | CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, |
4574 | llvm::Value *StorageAddress, |
4575 | GlobalDecl SchemaDecl, |
4576 | QualType SchemaType); |
4577 | |
4578 | llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, |
4579 | llvm::Value *Pointer); |
4580 | |
4581 | llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, |
4582 | llvm::Value *Pointer); |
4583 | |
4584 | llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, |
4585 | const CGPointerAuthInfo &CurAuthInfo, |
4586 | const CGPointerAuthInfo &NewAuthInfo, |
4587 | bool IsKnownNonNull); |
4588 | llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, |
4589 | const CGPointerAuthInfo &CurInfo, |
4590 | const CGPointerAuthInfo &NewInfo); |
4591 | |
4592 | void EmitPointerAuthOperandBundle( |
4593 | const CGPointerAuthInfo &Info, |
4594 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
4595 | |
4596 | CGPointerAuthInfo EmitPointerAuthInfo(PointerAuthQualifier Qualifier, |
4597 | Address StorageAddress); |
4598 | llvm::Value *EmitPointerAuthQualify(PointerAuthQualifier Qualifier, |
4599 | llvm::Value *Pointer, QualType ValueType, |
4600 | Address StorageAddress, |
4601 | bool IsKnownNonNull); |
4602 | llvm::Value *EmitPointerAuthQualify(PointerAuthQualifier Qualifier, |
4603 | const Expr *PointerExpr, |
4604 | Address StorageAddress); |
4605 | llvm::Value *EmitPointerAuthUnqualify(PointerAuthQualifier Qualifier, |
4606 | llvm::Value *Pointer, |
4607 | QualType PointerType, |
4608 | Address StorageAddress, |
4609 | bool IsKnownNonNull); |
4610 | void EmitPointerAuthCopy(PointerAuthQualifier Qualifier, QualType Type, |
4611 | Address DestField, Address SrcField); |
4612 | |
4613 | std::pair<llvm::Value *, CGPointerAuthInfo> |
4614 | EmitOrigPointerRValue(const Expr *E); |
4615 | |
4616 | llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, |
4617 | QualType SourceType, QualType DestType); |
4618 | Address authPointerToPointerCast(Address Ptr, QualType SourceType, |
4619 | QualType DestType); |
4620 | |
4621 | Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); |
4622 | |
4623 | llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { |
4624 | return getAsNaturalAddressOf(Addr, PointeeTy: PointeeType).getBasePointer(); |
4625 | } |
4626 | |
4627 | // Return the copy constructor name with the prefix "__copy_constructor_" |
4628 | // removed. |
4629 | static std::string getNonTrivialCopyConstructorStr(QualType QT, |
4630 | CharUnits Alignment, |
4631 | bool IsVolatile, |
4632 | ASTContext &Ctx); |
4633 | |
4634 | // Return the destructor name with the prefix "__destructor_" removed. |
4635 | static std::string getNonTrivialDestructorStr(QualType QT, |
4636 | CharUnits Alignment, |
4637 | bool IsVolatile, |
4638 | ASTContext &Ctx); |
4639 | |
4640 | // These functions emit calls to the special functions of non-trivial C |
4641 | // structs. |
4642 | void defaultInitNonTrivialCStructVar(LValue Dst); |
4643 | void callCStructDefaultConstructor(LValue Dst); |
4644 | void callCStructDestructor(LValue Dst); |
4645 | void callCStructCopyConstructor(LValue Dst, LValue Src); |
4646 | void callCStructMoveConstructor(LValue Dst, LValue Src); |
4647 | void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); |
4648 | void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); |
4649 | |
4650 | RValue EmitCXXMemberOrOperatorCall( |
4651 | const CXXMethodDecl *Method, const CGCallee &Callee, |
4652 | ReturnValueSlot ReturnValue, llvm::Value *This, |
4653 | llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, |
4654 | CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke); |
4655 | RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, |
4656 | llvm::Value *This, QualType ThisTy, |
4657 | llvm::Value *ImplicitParam, |
4658 | QualType ImplicitParamTy, const CallExpr *E, |
4659 | llvm::CallBase **CallOrInvoke = nullptr); |
4660 | RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, |
4661 | ReturnValueSlot ReturnValue, |
4662 | llvm::CallBase **CallOrInvoke = nullptr); |
4663 | RValue EmitCXXMemberOrOperatorMemberCallExpr( |
4664 | const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, |
4665 | bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, |
4666 | const Expr *Base, llvm::CallBase **CallOrInvoke); |
4667 | // Compute the object pointer. |
4668 | Address EmitCXXMemberDataPointerAddress( |
4669 | const Expr *E, Address base, llvm::Value *memberPtr, |
4670 | const MemberPointerType *memberPtrType, bool IsInBounds, |
4671 | LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); |
4672 | RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, |
4673 | ReturnValueSlot ReturnValue, |
4674 | llvm::CallBase **CallOrInvoke); |
4675 | |
4676 | RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, |
4677 | const CXXMethodDecl *MD, |
4678 | ReturnValueSlot ReturnValue, |
4679 | llvm::CallBase **CallOrInvoke); |
4680 | RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); |
4681 | |
4682 | RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, |
4683 | ReturnValueSlot ReturnValue, |
4684 | llvm::CallBase **CallOrInvoke); |
4685 | |
4686 | RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); |
4687 | RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); |
4688 | |
4689 | RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
4690 | const CallExpr *E, ReturnValueSlot ReturnValue); |
4691 | |
4692 | RValue emitRotate(const CallExpr *E, bool IsRotateRight); |
4693 | |
4694 | /// Emit IR for __builtin_os_log_format. |
4695 | RValue emitBuiltinOSLogFormat(const CallExpr &E); |
4696 | |
4697 | /// Emit IR for __builtin_is_aligned. |
4698 | RValue EmitBuiltinIsAligned(const CallExpr *E); |
4699 | /// Emit IR for __builtin_align_up/__builtin_align_down. |
4700 | RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); |
4701 | |
4702 | llvm::Function *generateBuiltinOSLogHelperFunction( |
4703 | const analyze_os_log::OSLogBufferLayout &Layout, |
4704 | CharUnits BufferAlignment); |
4705 | |
4706 | RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, |
4707 | llvm::CallBase **CallOrInvoke); |
4708 | |
4709 | /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call |
4710 | /// is unhandled by the current target. |
4711 | llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4712 | ReturnValueSlot ReturnValue); |
4713 | |
4714 | llvm::Value * |
4715 | EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, |
4716 | const llvm::CmpInst::Predicate Pred, |
4717 | const llvm::Twine &Name = "" ); |
4718 | llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4719 | ReturnValueSlot ReturnValue, |
4720 | llvm::Triple::ArchType Arch); |
4721 | llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4722 | ReturnValueSlot ReturnValue, |
4723 | llvm::Triple::ArchType Arch); |
4724 | llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4725 | ReturnValueSlot ReturnValue, |
4726 | llvm::Triple::ArchType Arch); |
4727 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, |
4728 | QualType RTy); |
4729 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, |
4730 | QualType RTy); |
4731 | |
4732 | llvm::Value * |
4733 | EmitCommonNeonBuiltinExpr(unsigned BuiltinID, unsigned LLVMIntrinsic, |
4734 | unsigned AltLLVMIntrinsic, const char *NameHint, |
4735 | unsigned Modifier, const CallExpr *E, |
4736 | SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, |
4737 | Address PtrOp1, llvm::Triple::ArchType Arch); |
4738 | |
4739 | llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
4740 | unsigned Modifier, llvm::Type *ArgTy, |
4741 | const CallExpr *E); |
4742 | llvm::Value *EmitNeonCall(llvm::Function *F, |
4743 | SmallVectorImpl<llvm::Value *> &O, const char *name, |
4744 | unsigned shift = 0, bool rightshift = false); |
4745 | llvm::Value *EmitFP8NeonCall(unsigned IID, ArrayRef<llvm::Type *> Tys, |
4746 | SmallVectorImpl<llvm::Value *> &O, |
4747 | const CallExpr *E, const char *name); |
4748 | llvm::Value *EmitFP8NeonCvtCall(unsigned IID, llvm::Type *Ty0, |
4749 | llvm::Type *Ty1, bool , |
4750 | SmallVectorImpl<llvm::Value *> &Ops, |
4751 | const CallExpr *E, const char *name); |
4752 | llvm::Value *EmitFP8NeonFDOTCall(unsigned IID, bool ExtendLaneArg, |
4753 | llvm::Type *RetTy, |
4754 | SmallVectorImpl<llvm::Value *> &Ops, |
4755 | const CallExpr *E, const char *name); |
4756 | llvm::Value *EmitFP8NeonFMLACall(unsigned IID, bool ExtendLaneArg, |
4757 | llvm::Type *RetTy, |
4758 | SmallVectorImpl<llvm::Value *> &Ops, |
4759 | const CallExpr *E, const char *name); |
4760 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, |
4761 | const llvm::ElementCount &Count); |
4762 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); |
4763 | llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, |
4764 | bool negateForRightShift); |
4765 | llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, |
4766 | llvm::Type *Ty, bool usgn, const char *name); |
4767 | llvm::Value *vectorWrapScalar16(llvm::Value *Op); |
4768 | /// SVEBuiltinMemEltTy - Returns the memory element type for this memory |
4769 | /// access builtin. Only required if it can't be inferred from the base |
4770 | /// pointer operand. |
4771 | llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); |
4772 | |
4773 | SmallVector<llvm::Type *, 2> |
4774 | getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, |
4775 | ArrayRef<llvm::Value *> Ops); |
4776 | llvm::Type *getEltType(const SVETypeFlags &TypeFlags); |
4777 | llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); |
4778 | llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); |
4779 | llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, |
4780 | ArrayRef<llvm::Value *> Ops); |
4781 | llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, |
4782 | llvm::Type *ReturnType, |
4783 | ArrayRef<llvm::Value *> Ops); |
4784 | llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); |
4785 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar); |
4786 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); |
4787 | llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); |
4788 | llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, |
4789 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4790 | unsigned BuiltinID); |
4791 | llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, |
4792 | llvm::ArrayRef<llvm::Value *> Ops, |
4793 | unsigned BuiltinID); |
4794 | llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, |
4795 | llvm::ScalableVectorType *VTy); |
4796 | llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple, |
4797 | llvm::StructType *Ty); |
4798 | llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, |
4799 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4800 | unsigned IntID); |
4801 | llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, |
4802 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4803 | unsigned IntID); |
4804 | llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, |
4805 | SmallVectorImpl<llvm::Value *> &Ops, |
4806 | unsigned BuiltinID, bool IsZExtReturn); |
4807 | llvm::Value *EmitSVEMaskedStore(const CallExpr *, |
4808 | SmallVectorImpl<llvm::Value *> &Ops, |
4809 | unsigned BuiltinID); |
4810 | llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, |
4811 | SmallVectorImpl<llvm::Value *> &Ops, |
4812 | unsigned BuiltinID); |
4813 | llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, |
4814 | SmallVectorImpl<llvm::Value *> &Ops, |
4815 | unsigned IntID); |
4816 | llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, |
4817 | SmallVectorImpl<llvm::Value *> &Ops, |
4818 | unsigned IntID); |
4819 | llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, |
4820 | SmallVectorImpl<llvm::Value *> &Ops, |
4821 | unsigned IntID); |
4822 | llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4823 | |
4824 | llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, |
4825 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4826 | unsigned IntID); |
4827 | llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, |
4828 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4829 | unsigned IntID); |
4830 | llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, |
4831 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4832 | unsigned IntID); |
4833 | llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, |
4834 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4835 | unsigned IntID); |
4836 | |
4837 | void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, |
4838 | SmallVectorImpl<llvm::Value *> &Ops, |
4839 | SVETypeFlags TypeFlags); |
4840 | |
4841 | llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4842 | |
4843 | llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4844 | llvm::Triple::ArchType Arch); |
4845 | llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4846 | |
4847 | llvm::Value *BuildVector(ArrayRef<llvm::Value *> Ops); |
4848 | llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4849 | llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4850 | llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4851 | llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4852 | ReturnValueSlot ReturnValue); |
4853 | llvm::Value *EmitDirectXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4854 | llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4855 | llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, |
4856 | const CallExpr *E); |
4857 | llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4858 | llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4859 | llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
4860 | const CallExpr *E); |
4861 | llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4862 | llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4863 | ReturnValueSlot ReturnValue); |
4864 | |
4865 | llvm::Value *EmitRISCVCpuSupports(const CallExpr *E); |
4866 | llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs); |
4867 | llvm::Value *EmitRISCVCpuInit(); |
4868 | llvm::Value *EmitRISCVCpuIs(const CallExpr *E); |
4869 | llvm::Value *EmitRISCVCpuIs(StringRef CPUStr); |
4870 | |
4871 | void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, |
4872 | const CallExpr *E); |
4873 | void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, |
4874 | llvm::AtomicOrdering &AO, |
4875 | llvm::SyncScope::ID &SSID); |
4876 | |
4877 | enum class MSVCIntrin; |
4878 | llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); |
4879 | |
4880 | llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); |
4881 | |
4882 | llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); |
4883 | llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); |
4884 | llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); |
4885 | llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); |
4886 | llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); |
4887 | llvm::Value * |
4888 | EmitObjCCollectionLiteral(const Expr *E, |
4889 | const ObjCMethodDecl *MethodWithObjects); |
4890 | llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); |
4891 | RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, |
4892 | ReturnValueSlot Return = ReturnValueSlot()); |
4893 | |
4894 | /// Retrieves the default cleanup kind for an ARC cleanup. |
4895 | /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. |
4896 | CleanupKind getARCCleanupKind() { |
4897 | return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions ? NormalAndEHCleanup |
4898 | : NormalCleanup; |
4899 | } |
4900 | |
4901 | // ARC primitives. |
4902 | void EmitARCInitWeak(Address addr, llvm::Value *value); |
4903 | void EmitARCDestroyWeak(Address addr); |
4904 | llvm::Value *EmitARCLoadWeak(Address addr); |
4905 | llvm::Value *EmitARCLoadWeakRetained(Address addr); |
4906 | llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); |
4907 | void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4908 | void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4909 | void EmitARCCopyWeak(Address dst, Address src); |
4910 | void EmitARCMoveWeak(Address dst, Address src); |
4911 | llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); |
4912 | llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); |
4913 | llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, |
4914 | bool resultIgnored); |
4915 | llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, |
4916 | bool resultIgnored); |
4917 | llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); |
4918 | llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); |
4919 | llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); |
4920 | void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); |
4921 | void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4922 | llvm::Value *EmitARCAutorelease(llvm::Value *value); |
4923 | llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); |
4924 | llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); |
4925 | llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); |
4926 | llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); |
4927 | |
4928 | llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); |
4929 | llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, |
4930 | llvm::Type *returnType); |
4931 | void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4932 | |
4933 | std::pair<LValue, llvm::Value *> |
4934 | EmitARCStoreAutoreleasing(const BinaryOperator *e); |
4935 | std::pair<LValue, llvm::Value *> EmitARCStoreStrong(const BinaryOperator *e, |
4936 | bool ignored); |
4937 | std::pair<LValue, llvm::Value *> |
4938 | EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); |
4939 | |
4940 | llvm::Value *EmitObjCAlloc(llvm::Value *value, llvm::Type *returnType); |
4941 | llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, |
4942 | llvm::Type *returnType); |
4943 | llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); |
4944 | |
4945 | llvm::Value *EmitObjCThrowOperand(const Expr *expr); |
4946 | llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); |
4947 | llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); |
4948 | |
4949 | llvm::Value *EmitARCExtendBlockObject(const Expr *expr); |
4950 | llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, |
4951 | bool allowUnsafeClaim); |
4952 | llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); |
4953 | llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); |
4954 | llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); |
4955 | |
4956 | void EmitARCIntrinsicUse(ArrayRef<llvm::Value *> values); |
4957 | |
4958 | void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); |
4959 | |
4960 | static Destroyer destroyARCStrongImprecise; |
4961 | static Destroyer destroyARCStrongPrecise; |
4962 | static Destroyer destroyARCWeak; |
4963 | static Destroyer emitARCIntrinsicUse; |
4964 | static Destroyer destroyNonTrivialCStruct; |
4965 | |
4966 | void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); |
4967 | llvm::Value *EmitObjCAutoreleasePoolPush(); |
4968 | llvm::Value *EmitObjCMRRAutoreleasePoolPush(); |
4969 | void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); |
4970 | void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); |
4971 | |
4972 | /// Emits a reference binding to the passed in expression. |
4973 | RValue EmitReferenceBindingToExpr(const Expr *E); |
4974 | |
4975 | //===--------------------------------------------------------------------===// |
4976 | // Expression Emission |
4977 | //===--------------------------------------------------------------------===// |
4978 | |
4979 | // Expressions are broken into three classes: scalar, complex, aggregate. |
4980 | |
4981 | /// EmitScalarExpr - Emit the computation of the specified expression of LLVM |
4982 | /// scalar type, returning the result. |
4983 | llvm::Value *EmitScalarExpr(const Expr *E, bool IgnoreResultAssign = false); |
4984 | |
4985 | /// Emit a conversion from the specified type to the specified destination |
4986 | /// type, both of which are LLVM scalar types. |
4987 | llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, |
4988 | QualType DstTy, SourceLocation Loc); |
4989 | |
4990 | /// Emit a conversion from the specified complex type to the specified |
4991 | /// destination type, where the destination type is an LLVM scalar type. |
4992 | llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, |
4993 | QualType DstTy, |
4994 | SourceLocation Loc); |
4995 | |
4996 | /// EmitAggExpr - Emit the computation of the specified expression |
4997 | /// of aggregate type. The result is computed into the given slot, |
4998 | /// which may be null to indicate that the value is not needed. |
4999 | void EmitAggExpr(const Expr *E, AggValueSlot AS); |
5000 | |
5001 | /// EmitAggExprToLValue - Emit the computation of the specified expression of |
5002 | /// aggregate type into a temporary LValue. |
5003 | LValue EmitAggExprToLValue(const Expr *E); |
5004 | |
5005 | enum ExprValueKind { EVK_RValue, EVK_NonRValue }; |
5006 | |
5007 | /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into |
5008 | /// destination address. |
5009 | void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, |
5010 | ExprValueKind SrcKind); |
5011 | |
5012 | /// Create a store to \arg DstPtr from \arg Src, truncating the stored value |
5013 | /// to at most \arg DstSize bytes. |
5014 | void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, |
5015 | bool DstIsVolatile); |
5016 | |
5017 | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
5018 | /// make sure it survives garbage collection until this point. |
5019 | void EmitExtendGCLifetime(llvm::Value *object); |
5020 | |
5021 | /// EmitComplexExpr - Emit the computation of the specified expression of |
5022 | /// complex type, returning the result. |
5023 | ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal = false, |
5024 | bool IgnoreImag = false); |
5025 | |
5026 | /// EmitComplexExprIntoLValue - Emit the given expression of complex |
5027 | /// type and place its result into the specified l-value. |
5028 | void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); |
5029 | |
5030 | /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
5031 | void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); |
5032 | |
5033 | /// EmitLoadOfComplex - Load a complex number from the specified l-value. |
5034 | ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); |
5035 | |
5036 | ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); |
5037 | llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); |
5038 | ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); |
5039 | ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, |
5040 | QualType PromotionType); |
5041 | |
5042 | Address emitAddrOfRealComponent(Address complex, QualType complexType); |
5043 | Address emitAddrOfImagComponent(Address complex, QualType complexType); |
5044 | |
5045 | /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the |
5046 | /// global variable that has already been created for it. If the initializer |
5047 | /// has a different type than GV does, this may free GV and return a different |
5048 | /// one. Otherwise it just returns GV. |
5049 | llvm::GlobalVariable *AddInitializerToStaticVarDecl(const VarDecl &D, |
5050 | llvm::GlobalVariable *GV); |
5051 | |
5052 | // Emit an @llvm.invariant.start call for the given memory region. |
5053 | void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); |
5054 | |
5055 | /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ |
5056 | /// variable with global storage. |
5057 | void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, |
5058 | bool PerformInit); |
5059 | |
5060 | llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, |
5061 | llvm::Constant *Addr); |
5062 | |
5063 | llvm::Function *createTLSAtExitStub(const VarDecl &VD, |
5064 | llvm::FunctionCallee Dtor, |
5065 | llvm::Constant *Addr, |
5066 | llvm::FunctionCallee &AtExit); |
5067 | |
5068 | /// Call atexit() with a function that passes the given argument to |
5069 | /// the given function. |
5070 | void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, |
5071 | llvm::Constant *addr); |
5072 | |
5073 | /// Registers the dtor using 'llvm.global_dtors' for platforms that do not |
5074 | /// support an 'atexit()' function. |
5075 | void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, |
5076 | llvm::Constant *addr); |
5077 | |
5078 | /// Call atexit() with function dtorStub. |
5079 | void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); |
5080 | |
5081 | /// Call unatexit() with function dtorStub. |
5082 | llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); |
5083 | |
5084 | /// Emit code in this function to perform a guarded variable |
5085 | /// initialization. Guarded initializations are used when it's not |
5086 | /// possible to prove that an initialization will be done exactly |
5087 | /// once, e.g. with a static local variable or a static data member |
5088 | /// of a class template. |
5089 | void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, |
5090 | bool PerformInit); |
5091 | |
5092 | enum class GuardKind { VariableGuard, TlsGuard }; |
5093 | |
5094 | /// Emit a branch to select whether or not to perform guarded initialization. |
5095 | void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, |
5096 | llvm::BasicBlock *InitBlock, |
5097 | llvm::BasicBlock *NoInitBlock, GuardKind Kind, |
5098 | const VarDecl *D); |
5099 | |
5100 | /// GenerateCXXGlobalInitFunc - Generates code for initializing global |
5101 | /// variables. |
5102 | void |
5103 | GenerateCXXGlobalInitFunc(llvm::Function *Fn, |
5104 | ArrayRef<llvm::Function *> CXXThreadLocals, |
5105 | ConstantAddress Guard = ConstantAddress::invalid()); |
5106 | |
5107 | /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global |
5108 | /// variables. |
5109 | void GenerateCXXGlobalCleanUpFunc( |
5110 | llvm::Function *Fn, |
5111 | ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, |
5112 | llvm::Constant *>> |
5113 | DtorsOrStermFinalizers); |
5114 | |
5115 | void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D, |
5116 | llvm::GlobalVariable *Addr, |
5117 | bool PerformInit); |
5118 | |
5119 | void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); |
5120 | |
5121 | void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); |
5122 | |
5123 | void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); |
5124 | |
5125 | RValue EmitAtomicExpr(AtomicExpr *E); |
5126 | |
5127 | void EmitFakeUse(Address Addr); |
5128 | |
5129 | //===--------------------------------------------------------------------===// |
5130 | // Annotations Emission |
5131 | //===--------------------------------------------------------------------===// |
5132 | |
5133 | /// Emit an annotation call (intrinsic). |
5134 | llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, |
5135 | llvm::Value *AnnotatedVal, |
5136 | StringRef AnnotationStr, |
5137 | SourceLocation Location, |
5138 | const AnnotateAttr *Attr); |
5139 | |
5140 | /// Emit local annotations for the local variable V, declared by D. |
5141 | void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); |
5142 | |
5143 | /// Emit field annotations for the given field & value. Returns the |
5144 | /// annotation result. |
5145 | Address EmitFieldAnnotations(const FieldDecl *D, Address V); |
5146 | |
5147 | //===--------------------------------------------------------------------===// |
5148 | // Internal Helpers |
5149 | //===--------------------------------------------------------------------===// |
5150 | |
5151 | /// ContainsLabel - Return true if the statement contains a label in it. If |
5152 | /// this statement is not executed normally, it not containing a label means |
5153 | /// that we can just remove the code. |
5154 | static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); |
5155 | |
5156 | /// containsBreak - Return true if the statement contains a break out of it. |
5157 | /// If the statement (recursively) contains a switch or loop with a break |
5158 | /// inside of it, this is fine. |
5159 | static bool containsBreak(const Stmt *S); |
5160 | |
5161 | /// Determine if the given statement might introduce a declaration into the |
5162 | /// current scope, by being a (possibly-labelled) DeclStmt. |
5163 | static bool mightAddDeclToScope(const Stmt *S); |
5164 | |
5165 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
5166 | /// to a constant, or if it does but contains a label, return false. If it |
5167 | /// constant folds return true and set the boolean result in Result. |
5168 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, |
5169 | bool AllowLabels = false); |
5170 | |
5171 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
5172 | /// to a constant, or if it does but contains a label, return false. If it |
5173 | /// constant folds return true and set the folded value. |
5174 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, |
5175 | bool AllowLabels = false); |
5176 | |
5177 | /// Ignore parentheses and logical-NOT to track conditions consistently. |
5178 | static const Expr *stripCond(const Expr *C); |
5179 | |
5180 | /// isInstrumentedCondition - Determine whether the given condition is an |
5181 | /// instrumentable condition (i.e. no "&&" or "||"). |
5182 | static bool isInstrumentedCondition(const Expr *C); |
5183 | |
5184 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
5185 | /// increments a profile counter based on the semantics of the given logical |
5186 | /// operator opcode. This is used to instrument branch condition coverage |
5187 | /// for logical operators. |
5188 | void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, |
5189 | llvm::BasicBlock *TrueBlock, |
5190 | llvm::BasicBlock *FalseBlock, |
5191 | uint64_t TrueCount = 0, |
5192 | Stmt::Likelihood LH = Stmt::LH_None, |
5193 | const Expr *CntrIdx = nullptr); |
5194 | |
5195 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an |
5196 | /// if statement) to the specified blocks. Based on the condition, this might |
5197 | /// try to simplify the codegen of the conditional based on the branch. |
5198 | /// TrueCount should be the number of times we expect the condition to |
5199 | /// evaluate to true based on PGO data. |
5200 | void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, |
5201 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount, |
5202 | Stmt::Likelihood LH = Stmt::LH_None, |
5203 | const Expr *ConditionalOp = nullptr, |
5204 | const VarDecl *ConditionalDecl = nullptr); |
5205 | |
5206 | /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is |
5207 | /// nonnull, if \p LHS is marked _Nonnull. |
5208 | void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); |
5209 | |
5210 | /// An enumeration which makes it easier to specify whether or not an |
5211 | /// operation is a subtraction. |
5212 | enum { NotSubtraction = false, IsSubtraction = true }; |
5213 | |
5214 | /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to |
5215 | /// detect undefined behavior when the pointer overflow sanitizer is enabled. |
5216 | /// \p SignedIndices indicates whether any of the GEP indices are signed. |
5217 | /// \p IsSubtraction indicates whether the expression used to form the GEP |
5218 | /// is a subtraction. |
5219 | llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, |
5220 | ArrayRef<llvm::Value *> IdxList, |
5221 | bool SignedIndices, bool IsSubtraction, |
5222 | SourceLocation Loc, |
5223 | const Twine &Name = "" ); |
5224 | |
5225 | Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, |
5226 | llvm::Type *elementType, bool SignedIndices, |
5227 | bool IsSubtraction, SourceLocation Loc, |
5228 | CharUnits Align, const Twine &Name = "" ); |
5229 | |
5230 | /// Specifies which type of sanitizer check to apply when handling a |
5231 | /// particular builtin. |
5232 | enum BuiltinCheckKind { |
5233 | BCK_CTZPassedZero, |
5234 | BCK_CLZPassedZero, |
5235 | BCK_AssumePassedFalse, |
5236 | }; |
5237 | |
5238 | /// Emits an argument for a call to a builtin. If the builtin sanitizer is |
5239 | /// enabled, a runtime check specified by \p Kind is also emitted. |
5240 | llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); |
5241 | |
5242 | /// Emits an argument for a call to a `__builtin_assume`. If the builtin |
5243 | /// sanitizer is enabled, a runtime check is also emitted. |
5244 | llvm::Value *EmitCheckedArgForAssume(const Expr *E); |
5245 | |
5246 | /// Emit a description of a type in a format suitable for passing to |
5247 | /// a runtime sanitizer handler. |
5248 | llvm::Constant *EmitCheckTypeDescriptor(QualType T); |
5249 | |
5250 | /// Convert a value into a format suitable for passing to a runtime |
5251 | /// sanitizer handler. |
5252 | llvm::Value *EmitCheckValue(llvm::Value *V); |
5253 | |
5254 | /// Emit a description of a source location in a format suitable for |
5255 | /// passing to a runtime sanitizer handler. |
5256 | llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); |
5257 | |
5258 | void EmitKCFIOperandBundle(const CGCallee &Callee, |
5259 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
5260 | |
5261 | /// Create a basic block that will either trap or call a handler function in |
5262 | /// the UBSan runtime with the provided arguments, and create a conditional |
5263 | /// branch to it. |
5264 | void |
5265 | EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
5266 | Checked, |
5267 | SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, |
5268 | ArrayRef<llvm::Value *> DynamicArgs); |
5269 | |
5270 | /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath |
5271 | /// if Cond if false. |
5272 | void EmitCfiSlowPathCheck(SanitizerKind::SanitizerOrdinal Ordinal, |
5273 | llvm::Value *Cond, llvm::ConstantInt *TypeId, |
5274 | llvm::Value *Ptr, |
5275 | ArrayRef<llvm::Constant *> StaticArgs); |
5276 | |
5277 | /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime |
5278 | /// checking is enabled. Otherwise, just emit an unreachable instruction. |
5279 | void EmitUnreachable(SourceLocation Loc); |
5280 | |
5281 | /// Create a basic block that will call the trap intrinsic, and emit a |
5282 | /// conditional branch to it, for the -ftrapv checks. |
5283 | void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, |
5284 | bool NoMerge = false); |
5285 | |
5286 | /// Emit a call to trap or debugtrap and attach function attribute |
5287 | /// "trap-func-name" if specified. |
5288 | llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); |
5289 | |
5290 | /// Emit a stub for the cross-DSO CFI check function. |
5291 | void EmitCfiCheckStub(); |
5292 | |
5293 | /// Emit a cross-DSO CFI failure handling function. |
5294 | void EmitCfiCheckFail(); |
5295 | |
5296 | /// Create a check for a function parameter that may potentially be |
5297 | /// declared as non-null. |
5298 | void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, |
5299 | AbstractCallee AC, unsigned ParmNum); |
5300 | |
5301 | void EmitNonNullArgCheck(Address Addr, QualType ArgType, |
5302 | SourceLocation ArgLoc, AbstractCallee AC, |
5303 | unsigned ParmNum); |
5304 | |
5305 | /// EmitWriteback - Emit callbacks for function. |
5306 | void EmitWritebacks(const CallArgList &Args); |
5307 | |
5308 | /// EmitCallArg - Emit a single call argument. |
5309 | void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); |
5310 | |
5311 | /// EmitDelegateCallArg - We are performing a delegate call; that |
5312 | /// is, the current function is delegating to another one. Produce |
5313 | /// a r-value suitable for passing the given parameter. |
5314 | void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, |
5315 | SourceLocation loc); |
5316 | |
5317 | /// SetFPAccuracy - Set the minimum required accuracy of the given floating |
5318 | /// point operation, expressed as the maximum relative error in ulp. |
5319 | void SetFPAccuracy(llvm::Value *Val, float Accuracy); |
5320 | |
5321 | /// Set the minimum required accuracy of the given sqrt operation |
5322 | /// based on CodeGenOpts. |
5323 | void SetSqrtFPAccuracy(llvm::Value *Val); |
5324 | |
5325 | /// Set the minimum required accuracy of the given sqrt operation based on |
5326 | /// CodeGenOpts. |
5327 | void SetDivFPAccuracy(llvm::Value *Val); |
5328 | |
5329 | /// Set the codegen fast-math flags. |
5330 | void SetFastMathFlags(FPOptions FPFeatures); |
5331 | |
5332 | // Truncate or extend a boolean vector to the requested number of elements. |
5333 | llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, |
5334 | unsigned NumElementsDst, |
5335 | const llvm::Twine &Name = "" ); |
5336 | |
5337 | void maybeAttachRangeForLoad(llvm::LoadInst *Load, QualType Ty, |
5338 | SourceLocation Loc); |
5339 | |
5340 | private: |
5341 | // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| |
5342 | // as it's parent convergence instr. |
5343 | llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB); |
5344 | |
5345 | // Adds a convergence_ctrl token with |ParentToken| as parent convergence |
5346 | // instr to the call |Input|. |
5347 | llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input); |
5348 | |
5349 | // Find the convergence_entry instruction |F|, or emits ones if none exists. |
5350 | // Returns the convergence instruction. |
5351 | llvm::ConvergenceControlInst * |
5352 | getOrEmitConvergenceEntryToken(llvm::Function *F); |
5353 | |
5354 | private: |
5355 | llvm::MDNode *getRangeForLoadFromType(QualType Ty); |
5356 | void EmitReturnOfRValue(RValue RV, QualType Ty); |
5357 | |
5358 | void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); |
5359 | |
5360 | llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> |
5361 | DeferredReplacements; |
5362 | |
5363 | /// Set the address of a local variable. |
5364 | void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { |
5365 | assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!" ); |
5366 | LocalDeclMap.insert({VD, Addr}); |
5367 | } |
5368 | |
5369 | /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty |
5370 | /// from function arguments into \arg Dst. See ABIArgInfo::Expand. |
5371 | /// |
5372 | /// \param AI - The first function argument of the expansion. |
5373 | void ExpandTypeFromArgs(QualType Ty, LValue Dst, |
5374 | llvm::Function::arg_iterator &AI); |
5375 | |
5376 | /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg |
5377 | /// Ty, into individual arguments on the provided vector \arg IRCallArgs, |
5378 | /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. |
5379 | void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
5380 | SmallVectorImpl<llvm::Value *> &IRCallArgs, |
5381 | unsigned &IRCallArgPos); |
5382 | |
5383 | std::pair<llvm::Value *, llvm::Type *> |
5384 | EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, |
5385 | std::string &ConstraintStr); |
5386 | |
5387 | std::pair<llvm::Value *, llvm::Type *> |
5388 | EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, |
5389 | QualType InputType, std::string &ConstraintStr, |
5390 | SourceLocation Loc); |
5391 | |
5392 | /// Attempts to statically evaluate the object size of E. If that |
5393 | /// fails, emits code to figure the size of E out for us. This is |
5394 | /// pass_object_size aware. |
5395 | /// |
5396 | /// If EmittedExpr is non-null, this will use that instead of re-emitting E. |
5397 | llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
5398 | llvm::IntegerType *ResType, |
5399 | llvm::Value *EmittedE, |
5400 | bool IsDynamic); |
5401 | |
5402 | /// Emits the size of E, as required by __builtin_object_size. This |
5403 | /// function is aware of pass_object_size parameters, and will act accordingly |
5404 | /// if E is a parameter with the pass_object_size attribute. |
5405 | llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, |
5406 | llvm::IntegerType *ResType, |
5407 | llvm::Value *EmittedE, bool IsDynamic); |
5408 | |
5409 | llvm::Value *emitCountedBySize(const Expr *E, llvm::Value *EmittedE, |
5410 | unsigned Type, llvm::IntegerType *ResType); |
5411 | |
5412 | llvm::Value *emitCountedByMemberSize(const MemberExpr *E, const Expr *Idx, |
5413 | llvm::Value *EmittedE, |
5414 | QualType CastedArrayElementTy, |
5415 | unsigned Type, |
5416 | llvm::IntegerType *ResType); |
5417 | |
5418 | llvm::Value *emitCountedByPointerSize(const ImplicitCastExpr *E, |
5419 | const Expr *Idx, llvm::Value *EmittedE, |
5420 | QualType CastedArrayElementTy, |
5421 | unsigned Type, |
5422 | llvm::IntegerType *ResType); |
5423 | |
5424 | void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, |
5425 | Address Loc); |
5426 | |
5427 | public: |
5428 | enum class EvaluationOrder { |
5429 | ///! No language constraints on evaluation order. |
5430 | Default, |
5431 | ///! Language semantics require left-to-right evaluation. |
5432 | ForceLeftToRight, |
5433 | ///! Language semantics require right-to-left evaluation. |
5434 | ForceRightToLeft |
5435 | }; |
5436 | |
5437 | // Wrapper for function prototype sources. Wraps either a FunctionProtoType or |
5438 | // an ObjCMethodDecl. |
5439 | struct PrototypeWrapper { |
5440 | llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; |
5441 | |
5442 | PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} |
5443 | PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} |
5444 | }; |
5445 | |
5446 | void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, |
5447 | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
5448 | AbstractCallee AC = AbstractCallee(), |
5449 | unsigned ParamsToSkip = 0, |
5450 | EvaluationOrder Order = EvaluationOrder::Default); |
5451 | |
5452 | /// EmitPointerWithAlignment - Given an expression with a pointer type, |
5453 | /// emit the value and compute our best estimate of the alignment of the |
5454 | /// pointee. |
5455 | /// |
5456 | /// \param BaseInfo - If non-null, this will be initialized with |
5457 | /// information about the source of the alignment and the may-alias |
5458 | /// attribute. Note that this function will conservatively fall back on |
5459 | /// the type when it doesn't recognize the expression and may-alias will |
5460 | /// be set to false. |
5461 | /// |
5462 | /// One reasonable way to use this information is when there's a language |
5463 | /// guarantee that the pointer must be aligned to some stricter value, and |
5464 | /// we're simply trying to ensure that sufficiently obvious uses of under- |
5465 | /// aligned objects don't get miscompiled; for example, a placement new |
5466 | /// into the address of a local variable. In such a case, it's quite |
5467 | /// reasonable to just ignore the returned alignment when it isn't from an |
5468 | /// explicit source. |
5469 | Address |
5470 | EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, |
5471 | TBAAAccessInfo *TBAAInfo = nullptr, |
5472 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
5473 | |
5474 | /// If \p E references a parameter with pass_object_size info or a constant |
5475 | /// array size modifier, emit the object size divided by the size of \p EltTy. |
5476 | /// Otherwise return null. |
5477 | llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); |
5478 | |
5479 | void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); |
5480 | |
5481 | struct FMVResolverOption { |
5482 | llvm::Function *Function; |
5483 | llvm::SmallVector<StringRef, 8> Features; |
5484 | std::optional<StringRef> Architecture; |
5485 | |
5486 | FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats, |
5487 | std::optional<StringRef> Arch = std::nullopt) |
5488 | : Function(F), Features(Feats), Architecture(Arch) {} |
5489 | }; |
5490 | |
5491 | // Emits the body of a multiversion function's resolver. Assumes that the |
5492 | // options are already sorted in the proper order, with the 'default' option |
5493 | // last (if it exists). |
5494 | void EmitMultiVersionResolver(llvm::Function *Resolver, |
5495 | ArrayRef<FMVResolverOption> Options); |
5496 | void EmitX86MultiVersionResolver(llvm::Function *Resolver, |
5497 | ArrayRef<FMVResolverOption> Options); |
5498 | void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, |
5499 | ArrayRef<FMVResolverOption> Options); |
5500 | void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, |
5501 | ArrayRef<FMVResolverOption> Options); |
5502 | |
5503 | private: |
5504 | QualType getVarArgType(const Expr *Arg); |
5505 | |
5506 | void EmitDeclMetadata(); |
5507 | |
5508 | BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, |
5509 | const AutoVarEmission &emission); |
5510 | |
5511 | void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); |
5512 | |
5513 | llvm::Value *GetValueForARMHint(unsigned BuiltinID); |
5514 | llvm::Value *EmitX86CpuIs(const CallExpr *E); |
5515 | llvm::Value *EmitX86CpuIs(StringRef CPUStr); |
5516 | llvm::Value *EmitX86CpuSupports(const CallExpr *E); |
5517 | llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5518 | llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); |
5519 | llvm::Value *EmitX86CpuInit(); |
5520 | llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO); |
5521 | llvm::Value *EmitAArch64CpuInit(); |
5522 | llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO); |
5523 | llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); |
5524 | llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5525 | }; |
5526 | |
5527 | inline DominatingLLVMValue::saved_type |
5528 | DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { |
5529 | if (!needsSaving(value)) |
5530 | return saved_type(value, false); |
5531 | |
5532 | // Otherwise, we need an alloca. |
5533 | auto align = CharUnits::fromQuantity( |
5534 | Quantity: CGF.CGM.getDataLayout().getPrefTypeAlign(Ty: value->getType())); |
5535 | Address alloca = |
5536 | CGF.CreateTempAlloca(Ty: value->getType(), align, Name: "cond-cleanup.save" ); |
5537 | CGF.Builder.CreateStore(Val: value, Addr: alloca); |
5538 | |
5539 | return saved_type(alloca.emitRawPointer(CGF), true); |
5540 | } |
5541 | |
5542 | inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, |
5543 | saved_type value) { |
5544 | // If the value says it wasn't saved, trust that it's still dominating. |
5545 | if (!value.getInt()) |
5546 | return value.getPointer(); |
5547 | |
5548 | // Otherwise, it should be an alloca instruction, as set up in save(). |
5549 | auto alloca = cast<llvm::AllocaInst>(Val: value.getPointer()); |
5550 | return CGF.Builder.CreateAlignedLoad(Ty: alloca->getAllocatedType(), Ptr: alloca, |
5551 | Align: alloca->getAlign()); |
5552 | } |
5553 | |
5554 | } // end namespace CodeGen |
5555 | |
5556 | // Map the LangOption for floating point exception behavior into |
5557 | // the corresponding enum in the IR. |
5558 | llvm::fp::ExceptionBehavior |
5559 | ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); |
5560 | } // end namespace clang |
5561 | |
5562 | #endif |
5563 | |