1 | //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is the internal per-function state used for llvm translation. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
14 | #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
15 | |
16 | #include "CGBuilder.h" |
17 | #include "CGDebugInfo.h" |
18 | #include "CGLoopInfo.h" |
19 | #include "CGValue.h" |
20 | #include "CodeGenModule.h" |
21 | #include "CodeGenPGO.h" |
22 | #include "EHScopeStack.h" |
23 | #include "VarBypassDetector.h" |
24 | #include "clang/AST/CharUnits.h" |
25 | #include "clang/AST/CurrentSourceLocExprScope.h" |
26 | #include "clang/AST/ExprCXX.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/ExprOpenMP.h" |
29 | #include "clang/AST/StmtOpenACC.h" |
30 | #include "clang/AST/StmtOpenMP.h" |
31 | #include "clang/AST/Type.h" |
32 | #include "clang/Basic/ABI.h" |
33 | #include "clang/Basic/CapturedStmt.h" |
34 | #include "clang/Basic/CodeGenOptions.h" |
35 | #include "clang/Basic/OpenMPKinds.h" |
36 | #include "clang/Basic/TargetInfo.h" |
37 | #include "llvm/ADT/ArrayRef.h" |
38 | #include "llvm/ADT/DenseMap.h" |
39 | #include "llvm/ADT/MapVector.h" |
40 | #include "llvm/ADT/SmallVector.h" |
41 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
42 | #include "llvm/IR/ValueHandle.h" |
43 | #include "llvm/Support/Debug.h" |
44 | #include "llvm/Transforms/Utils/SanitizerStats.h" |
45 | #include <optional> |
46 | |
47 | namespace llvm { |
48 | class BasicBlock; |
49 | class LLVMContext; |
50 | class MDNode; |
51 | class SwitchInst; |
52 | class Twine; |
53 | class Value; |
54 | class CanonicalLoopInfo; |
55 | } |
56 | |
57 | namespace clang { |
58 | class ASTContext; |
59 | class CXXDestructorDecl; |
60 | class CXXForRangeStmt; |
61 | class CXXTryStmt; |
62 | class Decl; |
63 | class LabelDecl; |
64 | class FunctionDecl; |
65 | class FunctionProtoType; |
66 | class LabelStmt; |
67 | class ObjCContainerDecl; |
68 | class ObjCInterfaceDecl; |
69 | class ObjCIvarDecl; |
70 | class ObjCMethodDecl; |
71 | class ObjCImplementationDecl; |
72 | class ObjCPropertyImplDecl; |
73 | class TargetInfo; |
74 | class VarDecl; |
75 | class ObjCForCollectionStmt; |
76 | class ObjCAtTryStmt; |
77 | class ObjCAtThrowStmt; |
78 | class ObjCAtSynchronizedStmt; |
79 | class ObjCAutoreleasePoolStmt; |
80 | class OMPUseDevicePtrClause; |
81 | class OMPUseDeviceAddrClause; |
82 | class SVETypeFlags; |
83 | class OMPExecutableDirective; |
84 | |
85 | namespace analyze_os_log { |
86 | class OSLogBufferLayout; |
87 | } |
88 | |
89 | namespace CodeGen { |
90 | class CodeGenTypes; |
91 | class CGCallee; |
92 | class CGFunctionInfo; |
93 | class CGBlockInfo; |
94 | class CGCXXABI; |
95 | class BlockByrefHelpers; |
96 | class BlockByrefInfo; |
97 | class BlockFieldFlags; |
98 | class RegionCodeGenTy; |
99 | class TargetCodeGenInfo; |
100 | struct OMPTaskDataTy; |
101 | struct CGCoroData; |
102 | |
103 | /// The kind of evaluation to perform on values of a particular |
104 | /// type. Basically, is the code in CGExprScalar, CGExprComplex, or |
105 | /// CGExprAgg? |
106 | /// |
107 | /// TODO: should vectors maybe be split out into their own thing? |
108 | enum TypeEvaluationKind { |
109 | TEK_Scalar, |
110 | TEK_Complex, |
111 | TEK_Aggregate |
112 | }; |
113 | |
114 | #define LIST_SANITIZER_CHECKS \ |
115 | SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ |
116 | SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ |
117 | SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ |
118 | SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ |
119 | SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ |
120 | SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ |
121 | SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ |
122 | SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ |
123 | SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ |
124 | SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ |
125 | SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ |
126 | SANITIZER_CHECK(MissingReturn, missing_return, 0) \ |
127 | SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ |
128 | SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ |
129 | SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ |
130 | SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ |
131 | SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ |
132 | SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ |
133 | SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ |
134 | SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ |
135 | SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ |
136 | SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ |
137 | SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ |
138 | SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ |
139 | SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) |
140 | |
141 | enum SanitizerHandler { |
142 | #define SANITIZER_CHECK(Enum, Name, Version) Enum, |
143 | LIST_SANITIZER_CHECKS |
144 | #undef SANITIZER_CHECK |
145 | }; |
146 | |
147 | /// Helper class with most of the code for saving a value for a |
148 | /// conditional expression cleanup. |
149 | struct DominatingLLVMValue { |
150 | typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; |
151 | |
152 | /// Answer whether the given value needs extra work to be saved. |
153 | static bool needsSaving(llvm::Value *value) { |
154 | if (!value) |
155 | return false; |
156 | |
157 | // If it's not an instruction, we don't need to save. |
158 | if (!isa<llvm::Instruction>(Val: value)) return false; |
159 | |
160 | // If it's an instruction in the entry block, we don't need to save. |
161 | llvm::BasicBlock *block = cast<llvm::Instruction>(Val: value)->getParent(); |
162 | return (block != &block->getParent()->getEntryBlock()); |
163 | } |
164 | |
165 | static saved_type save(CodeGenFunction &CGF, llvm::Value *value); |
166 | static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); |
167 | }; |
168 | |
169 | /// A partial specialization of DominatingValue for llvm::Values that |
170 | /// might be llvm::Instructions. |
171 | template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { |
172 | typedef T *type; |
173 | static type restore(CodeGenFunction &CGF, saved_type value) { |
174 | return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); |
175 | } |
176 | }; |
177 | |
178 | /// A specialization of DominatingValue for Address. |
179 | template <> struct DominatingValue<Address> { |
180 | typedef Address type; |
181 | |
182 | struct saved_type { |
183 | DominatingLLVMValue::saved_type BasePtr; |
184 | llvm::Type *ElementType; |
185 | CharUnits Alignment; |
186 | DominatingLLVMValue::saved_type Offset; |
187 | llvm::PointerType *EffectiveType; |
188 | }; |
189 | |
190 | static bool needsSaving(type value) { |
191 | if (DominatingLLVMValue::needsSaving(value: value.getBasePointer()) || |
192 | DominatingLLVMValue::needsSaving(value: value.getOffset())) |
193 | return true; |
194 | return false; |
195 | } |
196 | static saved_type save(CodeGenFunction &CGF, type value) { |
197 | return {.BasePtr: DominatingLLVMValue::save(CGF, value: value.getBasePointer()), |
198 | .ElementType: value.getElementType(), .Alignment: value.getAlignment(), |
199 | .Offset: DominatingLLVMValue::save(CGF, value: value.getOffset()), .EffectiveType: value.getType()}; |
200 | } |
201 | static type restore(CodeGenFunction &CGF, saved_type value) { |
202 | return Address(DominatingLLVMValue::restore(CGF, value: value.BasePtr), |
203 | value.ElementType, value.Alignment, |
204 | DominatingLLVMValue::restore(CGF, value: value.Offset)); |
205 | } |
206 | }; |
207 | |
208 | /// A specialization of DominatingValue for RValue. |
209 | template <> struct DominatingValue<RValue> { |
210 | typedef RValue type; |
211 | class saved_type { |
212 | enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, |
213 | AggregateAddress, ComplexAddress }; |
214 | union { |
215 | struct { |
216 | DominatingLLVMValue::saved_type first, second; |
217 | } Vals; |
218 | DominatingValue<Address>::saved_type AggregateAddr; |
219 | }; |
220 | LLVM_PREFERRED_TYPE(Kind) |
221 | unsigned K : 3; |
222 | unsigned IsVolatile : 1; |
223 | |
224 | saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) |
225 | : Vals{.first: Val1, .second: DominatingLLVMValue::saved_type()}, K(K) {} |
226 | |
227 | saved_type(DominatingLLVMValue::saved_type Val1, |
228 | DominatingLLVMValue::saved_type Val2) |
229 | : Vals{.first: Val1, .second: Val2}, K(ComplexAddress) {} |
230 | |
231 | saved_type(DominatingValue<Address>::saved_type AggregateAddr, |
232 | bool IsVolatile, unsigned K) |
233 | : AggregateAddr(AggregateAddr), K(K) {} |
234 | |
235 | public: |
236 | static bool needsSaving(RValue value); |
237 | static saved_type save(CodeGenFunction &CGF, RValue value); |
238 | RValue restore(CodeGenFunction &CGF); |
239 | |
240 | // implementations in CGCleanup.cpp |
241 | }; |
242 | |
243 | static bool needsSaving(type value) { |
244 | return saved_type::needsSaving(value); |
245 | } |
246 | static saved_type save(CodeGenFunction &CGF, type value) { |
247 | return saved_type::save(CGF, value); |
248 | } |
249 | static type restore(CodeGenFunction &CGF, saved_type value) { |
250 | return value.restore(CGF); |
251 | } |
252 | }; |
253 | |
254 | /// CodeGenFunction - This class organizes the per-function state that is used |
255 | /// while generating LLVM code. |
256 | class CodeGenFunction : public CodeGenTypeCache { |
257 | CodeGenFunction(const CodeGenFunction &) = delete; |
258 | void operator=(const CodeGenFunction &) = delete; |
259 | |
260 | friend class CGCXXABI; |
261 | public: |
262 | /// A jump destination is an abstract label, branching to which may |
263 | /// require a jump out through normal cleanups. |
264 | struct JumpDest { |
265 | JumpDest() : Block(nullptr), Index(0) {} |
266 | JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, |
267 | unsigned Index) |
268 | : Block(Block), ScopeDepth(Depth), Index(Index) {} |
269 | |
270 | bool isValid() const { return Block != nullptr; } |
271 | llvm::BasicBlock *getBlock() const { return Block; } |
272 | EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } |
273 | unsigned getDestIndex() const { return Index; } |
274 | |
275 | // This should be used cautiously. |
276 | void setScopeDepth(EHScopeStack::stable_iterator depth) { |
277 | ScopeDepth = depth; |
278 | } |
279 | |
280 | private: |
281 | llvm::BasicBlock *Block; |
282 | EHScopeStack::stable_iterator ScopeDepth; |
283 | unsigned Index; |
284 | }; |
285 | |
286 | CodeGenModule &CGM; // Per-module state. |
287 | const TargetInfo &Target; |
288 | |
289 | // For EH/SEH outlined funclets, this field points to parent's CGF |
290 | CodeGenFunction *ParentCGF = nullptr; |
291 | |
292 | typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; |
293 | LoopInfoStack LoopStack; |
294 | CGBuilderTy Builder; |
295 | |
296 | // Stores variables for which we can't generate correct lifetime markers |
297 | // because of jumps. |
298 | VarBypassDetector Bypasses; |
299 | |
300 | /// List of recently emitted OMPCanonicalLoops. |
301 | /// |
302 | /// Since OMPCanonicalLoops are nested inside other statements (in particular |
303 | /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested |
304 | /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its |
305 | /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any |
306 | /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to |
307 | /// this stack when done. Entering a new loop requires clearing this list; it |
308 | /// either means we start parsing a new loop nest (in which case the previous |
309 | /// loop nest goes out of scope) or a second loop in the same level in which |
310 | /// case it would be ambiguous into which of the two (or more) loops the loop |
311 | /// nest would extend. |
312 | SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; |
313 | |
314 | /// Stack to track the Logical Operator recursion nest for MC/DC. |
315 | SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; |
316 | |
317 | /// Number of nested loop to be consumed by the last surrounding |
318 | /// loop-associated directive. |
319 | int ExpectedOMPLoopDepth = 0; |
320 | |
321 | // CodeGen lambda for loops and support for ordered clause |
322 | typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, |
323 | JumpDest)> |
324 | CodeGenLoopTy; |
325 | typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, |
326 | const unsigned, const bool)> |
327 | CodeGenOrderedTy; |
328 | |
329 | // Codegen lambda for loop bounds in worksharing loop constructs |
330 | typedef llvm::function_ref<std::pair<LValue, LValue>( |
331 | CodeGenFunction &, const OMPExecutableDirective &S)> |
332 | CodeGenLoopBoundsTy; |
333 | |
334 | // Codegen lambda for loop bounds in dispatch-based loop implementation |
335 | typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( |
336 | CodeGenFunction &, const OMPExecutableDirective &S, Address LB, |
337 | Address UB)> |
338 | CodeGenDispatchBoundsTy; |
339 | |
340 | /// CGBuilder insert helper. This function is called after an |
341 | /// instruction is created using Builder. |
342 | void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, |
343 | llvm::BasicBlock *BB, |
344 | llvm::BasicBlock::iterator InsertPt) const; |
345 | |
346 | /// CurFuncDecl - Holds the Decl for the current outermost |
347 | /// non-closure context. |
348 | const Decl *CurFuncDecl = nullptr; |
349 | /// CurCodeDecl - This is the inner-most code context, which includes blocks. |
350 | const Decl *CurCodeDecl = nullptr; |
351 | const CGFunctionInfo *CurFnInfo = nullptr; |
352 | QualType FnRetTy; |
353 | llvm::Function *CurFn = nullptr; |
354 | |
355 | /// Save Parameter Decl for coroutine. |
356 | llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; |
357 | |
358 | // Holds coroutine data if the current function is a coroutine. We use a |
359 | // wrapper to manage its lifetime, so that we don't have to define CGCoroData |
360 | // in this header. |
361 | struct CGCoroInfo { |
362 | std::unique_ptr<CGCoroData> Data; |
363 | bool InSuspendBlock = false; |
364 | CGCoroInfo(); |
365 | ~CGCoroInfo(); |
366 | }; |
367 | CGCoroInfo CurCoro; |
368 | |
369 | bool isCoroutine() const { |
370 | return CurCoro.Data != nullptr; |
371 | } |
372 | |
373 | bool inSuspendBlock() const { |
374 | return isCoroutine() && CurCoro.InSuspendBlock; |
375 | } |
376 | |
377 | // Holds FramePtr for await_suspend wrapper generation, |
378 | // so that __builtin_coro_frame call can be lowered |
379 | // directly to value of its second argument |
380 | struct AwaitSuspendWrapperInfo { |
381 | llvm::Value *FramePtr = nullptr; |
382 | }; |
383 | AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; |
384 | |
385 | // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. |
386 | // It encapsulates SuspendExpr in a function, to separate it's body |
387 | // from the main coroutine to avoid miscompilations. Intrinisic |
388 | // is lowered to this function call in CoroSplit pass |
389 | // Function signature is: |
390 | // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) |
391 | // where type is one of (void, i1, ptr) |
392 | llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, |
393 | Twine const &SuspendPointName, |
394 | CoroutineSuspendExpr const &S); |
395 | |
396 | /// CurGD - The GlobalDecl for the current function being compiled. |
397 | GlobalDecl CurGD; |
398 | |
399 | /// PrologueCleanupDepth - The cleanup depth enclosing all the |
400 | /// cleanups associated with the parameters. |
401 | EHScopeStack::stable_iterator PrologueCleanupDepth; |
402 | |
403 | /// ReturnBlock - Unified return block. |
404 | JumpDest ReturnBlock; |
405 | |
406 | /// ReturnValue - The temporary alloca to hold the return |
407 | /// value. This is invalid iff the function has no return value. |
408 | Address ReturnValue = Address::invalid(); |
409 | |
410 | /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. |
411 | /// This is invalid if sret is not in use. |
412 | Address ReturnValuePointer = Address::invalid(); |
413 | |
414 | /// If a return statement is being visited, this holds the return statment's |
415 | /// result expression. |
416 | const Expr *RetExpr = nullptr; |
417 | |
418 | /// Return true if a label was seen in the current scope. |
419 | bool hasLabelBeenSeenInCurrentScope() const { |
420 | if (CurLexicalScope) |
421 | return CurLexicalScope->hasLabels(); |
422 | return !LabelMap.empty(); |
423 | } |
424 | |
425 | /// AllocaInsertPoint - This is an instruction in the entry block before which |
426 | /// we prefer to insert allocas. |
427 | llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; |
428 | |
429 | private: |
430 | /// PostAllocaInsertPt - This is a place in the prologue where code can be |
431 | /// inserted that will be dominated by all the static allocas. This helps |
432 | /// achieve two things: |
433 | /// 1. Contiguity of all static allocas (within the prologue) is maintained. |
434 | /// 2. All other prologue code (which are dominated by static allocas) do |
435 | /// appear in the source order immediately after all static allocas. |
436 | /// |
437 | /// PostAllocaInsertPt will be lazily created when it is *really* required. |
438 | llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; |
439 | |
440 | public: |
441 | /// Return PostAllocaInsertPt. If it is not yet created, then insert it |
442 | /// immediately after AllocaInsertPt. |
443 | llvm::Instruction *getPostAllocaInsertPoint() { |
444 | if (!PostAllocaInsertPt) { |
445 | assert(AllocaInsertPt && |
446 | "Expected static alloca insertion point at function prologue" ); |
447 | assert(AllocaInsertPt->getParent()->isEntryBlock() && |
448 | "EBB should be entry block of the current code gen function" ); |
449 | PostAllocaInsertPt = AllocaInsertPt->clone(); |
450 | PostAllocaInsertPt->setName("postallocapt" ); |
451 | PostAllocaInsertPt->insertAfter(InsertPos: AllocaInsertPt); |
452 | } |
453 | |
454 | return PostAllocaInsertPt; |
455 | } |
456 | |
457 | /// API for captured statement code generation. |
458 | class CGCapturedStmtInfo { |
459 | public: |
460 | explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) |
461 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} |
462 | explicit CGCapturedStmtInfo(const CapturedStmt &S, |
463 | CapturedRegionKind K = CR_Default) |
464 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { |
465 | |
466 | RecordDecl::field_iterator Field = |
467 | S.getCapturedRecordDecl()->field_begin(); |
468 | for (CapturedStmt::const_capture_iterator I = S.capture_begin(), |
469 | E = S.capture_end(); |
470 | I != E; ++I, ++Field) { |
471 | if (I->capturesThis()) |
472 | CXXThisFieldDecl = *Field; |
473 | else if (I->capturesVariable()) |
474 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
475 | else if (I->capturesVariableByCopy()) |
476 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
477 | } |
478 | } |
479 | |
480 | virtual ~CGCapturedStmtInfo(); |
481 | |
482 | CapturedRegionKind getKind() const { return Kind; } |
483 | |
484 | virtual void setContextValue(llvm::Value *V) { ThisValue = V; } |
485 | // Retrieve the value of the context parameter. |
486 | virtual llvm::Value *getContextValue() const { return ThisValue; } |
487 | |
488 | /// Lookup the captured field decl for a variable. |
489 | virtual const FieldDecl *lookup(const VarDecl *VD) const { |
490 | return CaptureFields.lookup(Val: VD->getCanonicalDecl()); |
491 | } |
492 | |
493 | bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } |
494 | virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } |
495 | |
496 | static bool classof(const CGCapturedStmtInfo *) { |
497 | return true; |
498 | } |
499 | |
500 | /// Emit the captured statement body. |
501 | virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { |
502 | CGF.incrementProfileCounter(S); |
503 | CGF.EmitStmt(S); |
504 | } |
505 | |
506 | /// Get the name of the capture helper. |
507 | virtual StringRef getHelperName() const { return "__captured_stmt" ; } |
508 | |
509 | /// Get the CaptureFields |
510 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { |
511 | return CaptureFields; |
512 | } |
513 | |
514 | private: |
515 | /// The kind of captured statement being generated. |
516 | CapturedRegionKind Kind; |
517 | |
518 | /// Keep the map between VarDecl and FieldDecl. |
519 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; |
520 | |
521 | /// The base address of the captured record, passed in as the first |
522 | /// argument of the parallel region function. |
523 | llvm::Value *ThisValue; |
524 | |
525 | /// Captured 'this' type. |
526 | FieldDecl *CXXThisFieldDecl; |
527 | }; |
528 | CGCapturedStmtInfo *CapturedStmtInfo = nullptr; |
529 | |
530 | /// RAII for correct setting/restoring of CapturedStmtInfo. |
531 | class CGCapturedStmtRAII { |
532 | private: |
533 | CodeGenFunction &CGF; |
534 | CGCapturedStmtInfo *PrevCapturedStmtInfo; |
535 | public: |
536 | CGCapturedStmtRAII(CodeGenFunction &CGF, |
537 | CGCapturedStmtInfo *NewCapturedStmtInfo) |
538 | : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { |
539 | CGF.CapturedStmtInfo = NewCapturedStmtInfo; |
540 | } |
541 | ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } |
542 | }; |
543 | |
544 | /// An abstract representation of regular/ObjC call/message targets. |
545 | class AbstractCallee { |
546 | /// The function declaration of the callee. |
547 | const Decl *CalleeDecl; |
548 | |
549 | public: |
550 | AbstractCallee() : CalleeDecl(nullptr) {} |
551 | AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} |
552 | AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} |
553 | bool hasFunctionDecl() const { |
554 | return isa_and_nonnull<FunctionDecl>(Val: CalleeDecl); |
555 | } |
556 | const Decl *getDecl() const { return CalleeDecl; } |
557 | unsigned getNumParams() const { |
558 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
559 | return FD->getNumParams(); |
560 | return cast<ObjCMethodDecl>(Val: CalleeDecl)->param_size(); |
561 | } |
562 | const ParmVarDecl *getParamDecl(unsigned I) const { |
563 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
564 | return FD->getParamDecl(i: I); |
565 | return *(cast<ObjCMethodDecl>(Val: CalleeDecl)->param_begin() + I); |
566 | } |
567 | }; |
568 | |
569 | /// Sanitizers enabled for this function. |
570 | SanitizerSet SanOpts; |
571 | |
572 | /// True if CodeGen currently emits code implementing sanitizer checks. |
573 | bool IsSanitizerScope = false; |
574 | |
575 | /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. |
576 | class SanitizerScope { |
577 | CodeGenFunction *CGF; |
578 | public: |
579 | SanitizerScope(CodeGenFunction *CGF); |
580 | ~SanitizerScope(); |
581 | }; |
582 | |
583 | /// In C++, whether we are code generating a thunk. This controls whether we |
584 | /// should emit cleanups. |
585 | bool CurFuncIsThunk = false; |
586 | |
587 | /// In ARC, whether we should autorelease the return value. |
588 | bool AutoreleaseResult = false; |
589 | |
590 | /// Whether we processed a Microsoft-style asm block during CodeGen. These can |
591 | /// potentially set the return value. |
592 | bool SawAsmBlock = false; |
593 | |
594 | GlobalDecl CurSEHParent; |
595 | |
596 | /// True if the current function is an outlined SEH helper. This can be a |
597 | /// finally block or filter expression. |
598 | bool IsOutlinedSEHHelper = false; |
599 | |
600 | /// True if CodeGen currently emits code inside presereved access index |
601 | /// region. |
602 | bool IsInPreservedAIRegion = false; |
603 | |
604 | /// True if the current statement has nomerge attribute. |
605 | bool InNoMergeAttributedStmt = false; |
606 | |
607 | /// True if the current statement has noinline attribute. |
608 | bool InNoInlineAttributedStmt = false; |
609 | |
610 | /// True if the current statement has always_inline attribute. |
611 | bool InAlwaysInlineAttributedStmt = false; |
612 | |
613 | // The CallExpr within the current statement that the musttail attribute |
614 | // applies to. nullptr if there is no 'musttail' on the current statement. |
615 | const CallExpr *MustTailCall = nullptr; |
616 | |
617 | /// Returns true if a function must make progress, which means the |
618 | /// mustprogress attribute can be added. |
619 | bool checkIfFunctionMustProgress() { |
620 | if (CGM.getCodeGenOpts().getFiniteLoops() == |
621 | CodeGenOptions::FiniteLoopsKind::Never) |
622 | return false; |
623 | |
624 | // C++11 and later guarantees that a thread eventually will do one of the |
625 | // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): |
626 | // - terminate, |
627 | // - make a call to a library I/O function, |
628 | // - perform an access through a volatile glvalue, or |
629 | // - perform a synchronization operation or an atomic operation. |
630 | // |
631 | // Hence each function is 'mustprogress' in C++11 or later. |
632 | return getLangOpts().CPlusPlus11; |
633 | } |
634 | |
635 | /// Returns true if a loop must make progress, which means the mustprogress |
636 | /// attribute can be added. \p HasConstantCond indicates whether the branch |
637 | /// condition is a known constant. |
638 | bool checkIfLoopMustProgress(bool HasConstantCond) { |
639 | if (CGM.getCodeGenOpts().getFiniteLoops() == |
640 | CodeGenOptions::FiniteLoopsKind::Always) |
641 | return true; |
642 | if (CGM.getCodeGenOpts().getFiniteLoops() == |
643 | CodeGenOptions::FiniteLoopsKind::Never) |
644 | return false; |
645 | |
646 | // If the containing function must make progress, loops also must make |
647 | // progress (as in C++11 and later). |
648 | if (checkIfFunctionMustProgress()) |
649 | return true; |
650 | |
651 | // Now apply rules for plain C (see 6.8.5.6 in C11). |
652 | // Loops with constant conditions do not have to make progress in any C |
653 | // version. |
654 | if (HasConstantCond) |
655 | return false; |
656 | |
657 | // Loops with non-constant conditions must make progress in C11 and later. |
658 | return getLangOpts().C11; |
659 | } |
660 | |
661 | const CodeGen::CGBlockInfo *BlockInfo = nullptr; |
662 | llvm::Value *BlockPointer = nullptr; |
663 | |
664 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
665 | FieldDecl *LambdaThisCaptureField = nullptr; |
666 | |
667 | /// A mapping from NRVO variables to the flags used to indicate |
668 | /// when the NRVO has been applied to this variable. |
669 | llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; |
670 | |
671 | EHScopeStack EHStack; |
672 | llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; |
673 | llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; |
674 | |
675 | llvm::Instruction *CurrentFuncletPad = nullptr; |
676 | |
677 | class CallLifetimeEnd final : public EHScopeStack::Cleanup { |
678 | bool isRedundantBeforeReturn() override { return true; } |
679 | |
680 | llvm::Value *Addr; |
681 | llvm::Value *Size; |
682 | |
683 | public: |
684 | CallLifetimeEnd(RawAddress addr, llvm::Value *size) |
685 | : Addr(addr.getPointer()), Size(size) {} |
686 | |
687 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
688 | CGF.EmitLifetimeEnd(Size, Addr); |
689 | } |
690 | }; |
691 | |
692 | /// Header for data within LifetimeExtendedCleanupStack. |
693 | struct { |
694 | /// The size of the following cleanup object. |
695 | unsigned ; |
696 | /// The kind of cleanup to push. |
697 | LLVM_PREFERRED_TYPE(CleanupKind) |
698 | unsigned : 31; |
699 | /// Whether this is a conditional cleanup. |
700 | LLVM_PREFERRED_TYPE(bool) |
701 | unsigned : 1; |
702 | |
703 | size_t () const { return Size; } |
704 | CleanupKind () const { return (CleanupKind)Kind; } |
705 | bool () const { return IsConditional; } |
706 | }; |
707 | |
708 | /// i32s containing the indexes of the cleanup destinations. |
709 | RawAddress NormalCleanupDest = RawAddress::invalid(); |
710 | |
711 | unsigned NextCleanupDestIndex = 1; |
712 | |
713 | /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. |
714 | llvm::BasicBlock *EHResumeBlock = nullptr; |
715 | |
716 | /// The exception slot. All landing pads write the current exception pointer |
717 | /// into this alloca. |
718 | llvm::Value *ExceptionSlot = nullptr; |
719 | |
720 | /// The selector slot. Under the MandatoryCleanup model, all landing pads |
721 | /// write the current selector value into this alloca. |
722 | llvm::AllocaInst *EHSelectorSlot = nullptr; |
723 | |
724 | /// A stack of exception code slots. Entering an __except block pushes a slot |
725 | /// on the stack and leaving pops one. The __exception_code() intrinsic loads |
726 | /// a value from the top of the stack. |
727 | SmallVector<Address, 1> SEHCodeSlotStack; |
728 | |
729 | /// Value returned by __exception_info intrinsic. |
730 | llvm::Value *SEHInfo = nullptr; |
731 | |
732 | /// Emits a landing pad for the current EH stack. |
733 | llvm::BasicBlock *EmitLandingPad(); |
734 | |
735 | llvm::BasicBlock *getInvokeDestImpl(); |
736 | |
737 | /// Parent loop-based directive for scan directive. |
738 | const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; |
739 | llvm::BasicBlock *OMPBeforeScanBlock = nullptr; |
740 | llvm::BasicBlock *OMPAfterScanBlock = nullptr; |
741 | llvm::BasicBlock *OMPScanExitBlock = nullptr; |
742 | llvm::BasicBlock *OMPScanDispatch = nullptr; |
743 | bool OMPFirstScanLoop = false; |
744 | |
745 | /// Manages parent directive for scan directives. |
746 | class ParentLoopDirectiveForScanRegion { |
747 | CodeGenFunction &CGF; |
748 | const OMPExecutableDirective *ParentLoopDirectiveForScan; |
749 | |
750 | public: |
751 | ParentLoopDirectiveForScanRegion( |
752 | CodeGenFunction &CGF, |
753 | const OMPExecutableDirective &ParentLoopDirectiveForScan) |
754 | : CGF(CGF), |
755 | ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { |
756 | CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; |
757 | } |
758 | ~ParentLoopDirectiveForScanRegion() { |
759 | CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; |
760 | } |
761 | }; |
762 | |
763 | template <class T> |
764 | typename DominatingValue<T>::saved_type saveValueInCond(T value) { |
765 | return DominatingValue<T>::save(*this, value); |
766 | } |
767 | |
768 | class CGFPOptionsRAII { |
769 | public: |
770 | CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); |
771 | CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); |
772 | ~CGFPOptionsRAII(); |
773 | |
774 | private: |
775 | void ConstructorHelper(FPOptions FPFeatures); |
776 | CodeGenFunction &CGF; |
777 | FPOptions OldFPFeatures; |
778 | llvm::fp::ExceptionBehavior OldExcept; |
779 | llvm::RoundingMode OldRounding; |
780 | std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; |
781 | }; |
782 | FPOptions CurFPFeatures; |
783 | |
784 | public: |
785 | /// ObjCEHValueStack - Stack of Objective-C exception values, used for |
786 | /// rethrows. |
787 | SmallVector<llvm::Value*, 8> ObjCEHValueStack; |
788 | |
789 | /// A class controlling the emission of a finally block. |
790 | class FinallyInfo { |
791 | /// Where the catchall's edge through the cleanup should go. |
792 | JumpDest RethrowDest; |
793 | |
794 | /// A function to call to enter the catch. |
795 | llvm::FunctionCallee BeginCatchFn; |
796 | |
797 | /// An i1 variable indicating whether or not the @finally is |
798 | /// running for an exception. |
799 | llvm::AllocaInst *ForEHVar = nullptr; |
800 | |
801 | /// An i8* variable into which the exception pointer to rethrow |
802 | /// has been saved. |
803 | llvm::AllocaInst *SavedExnVar = nullptr; |
804 | |
805 | public: |
806 | void enter(CodeGenFunction &CGF, const Stmt *Finally, |
807 | llvm::FunctionCallee beginCatchFn, |
808 | llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); |
809 | void exit(CodeGenFunction &CGF); |
810 | }; |
811 | |
812 | /// Returns true inside SEH __try blocks. |
813 | bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } |
814 | |
815 | /// Returns true while emitting a cleanuppad. |
816 | bool isCleanupPadScope() const { |
817 | return CurrentFuncletPad && isa<llvm::CleanupPadInst>(Val: CurrentFuncletPad); |
818 | } |
819 | |
820 | /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
821 | /// current full-expression. Safe against the possibility that |
822 | /// we're currently inside a conditionally-evaluated expression. |
823 | template <class T, class... As> |
824 | void pushFullExprCleanup(CleanupKind kind, As... A) { |
825 | // If we're not in a conditional branch, or if none of the |
826 | // arguments requires saving, then use the unconditional cleanup. |
827 | if (!isInConditionalBranch()) |
828 | return EHStack.pushCleanup<T>(kind, A...); |
829 | |
830 | // Stash values in a tuple so we can guarantee the order of saves. |
831 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
832 | SavedTuple Saved{saveValueInCond(A)...}; |
833 | |
834 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
835 | EHStack.pushCleanupTuple<CleanupType>(kind, Saved); |
836 | initFullExprCleanup(); |
837 | } |
838 | |
839 | /// Queue a cleanup to be pushed after finishing the current full-expression, |
840 | /// potentially with an active flag. |
841 | template <class T, class... As> |
842 | void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { |
843 | if (!isInConditionalBranch()) |
844 | return pushCleanupAfterFullExprWithActiveFlag<T>( |
845 | Kind, RawAddress::invalid(), A...); |
846 | |
847 | RawAddress ActiveFlag = createCleanupActiveFlag(); |
848 | assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && |
849 | "cleanup active flag should never need saving" ); |
850 | |
851 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
852 | SavedTuple Saved{saveValueInCond(A)...}; |
853 | |
854 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
855 | pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); |
856 | } |
857 | |
858 | template <class T, class... As> |
859 | void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, |
860 | RawAddress ActiveFlag, As... A) { |
861 | LifetimeExtendedCleanupHeader = {.Size: sizeof(T), .Kind: Kind, |
862 | .IsConditional: ActiveFlag.isValid()}; |
863 | |
864 | size_t OldSize = LifetimeExtendedCleanupStack.size(); |
865 | LifetimeExtendedCleanupStack.resize( |
866 | N: LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + |
867 | (Header.IsConditional ? sizeof(ActiveFlag) : 0)); |
868 | |
869 | static_assert(sizeof(Header) % alignof(T) == 0, |
870 | "Cleanup will be allocated on misaligned address" ); |
871 | char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; |
872 | new (Buffer) LifetimeExtendedCleanupHeader(Header); |
873 | new (Buffer + sizeof(Header)) T(A...); |
874 | if (Header.IsConditional) |
875 | new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); |
876 | } |
877 | |
878 | /// Set up the last cleanup that was pushed as a conditional |
879 | /// full-expression cleanup. |
880 | void initFullExprCleanup() { |
881 | initFullExprCleanupWithFlag(ActiveFlag: createCleanupActiveFlag()); |
882 | } |
883 | |
884 | void initFullExprCleanupWithFlag(RawAddress ActiveFlag); |
885 | RawAddress createCleanupActiveFlag(); |
886 | |
887 | /// PushDestructorCleanup - Push a cleanup to call the |
888 | /// complete-object destructor of an object of the given type at the |
889 | /// given address. Does nothing if T is not a C++ class type with a |
890 | /// non-trivial destructor. |
891 | void PushDestructorCleanup(QualType T, Address Addr); |
892 | |
893 | /// PushDestructorCleanup - Push a cleanup to call the |
894 | /// complete-object variant of the given destructor on the object at |
895 | /// the given address. |
896 | void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, |
897 | Address Addr); |
898 | |
899 | /// PopCleanupBlock - Will pop the cleanup entry on the stack and |
900 | /// process all branch fixups. |
901 | void PopCleanupBlock(bool FallThroughIsBranchThrough = false); |
902 | |
903 | /// DeactivateCleanupBlock - Deactivates the given cleanup block. |
904 | /// The block cannot be reactivated. Pops it if it's the top of the |
905 | /// stack. |
906 | /// |
907 | /// \param DominatingIP - An instruction which is known to |
908 | /// dominate the current IP (if set) and which lies along |
909 | /// all paths of execution between the current IP and the |
910 | /// the point at which the cleanup comes into scope. |
911 | void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
912 | llvm::Instruction *DominatingIP); |
913 | |
914 | /// ActivateCleanupBlock - Activates an initially-inactive cleanup. |
915 | /// Cannot be used to resurrect a deactivated cleanup. |
916 | /// |
917 | /// \param DominatingIP - An instruction which is known to |
918 | /// dominate the current IP (if set) and which lies along |
919 | /// all paths of execution between the current IP and the |
920 | /// the point at which the cleanup comes into scope. |
921 | void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
922 | llvm::Instruction *DominatingIP); |
923 | |
924 | /// Enters a new scope for capturing cleanups, all of which |
925 | /// will be executed once the scope is exited. |
926 | class RunCleanupsScope { |
927 | EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; |
928 | size_t LifetimeExtendedCleanupStackSize; |
929 | bool OldDidCallStackSave; |
930 | protected: |
931 | bool PerformCleanup; |
932 | private: |
933 | |
934 | RunCleanupsScope(const RunCleanupsScope &) = delete; |
935 | void operator=(const RunCleanupsScope &) = delete; |
936 | |
937 | protected: |
938 | CodeGenFunction& CGF; |
939 | |
940 | public: |
941 | /// Enter a new cleanup scope. |
942 | explicit RunCleanupsScope(CodeGenFunction &CGF) |
943 | : PerformCleanup(true), CGF(CGF) |
944 | { |
945 | CleanupStackDepth = CGF.EHStack.stable_begin(); |
946 | LifetimeExtendedCleanupStackSize = |
947 | CGF.LifetimeExtendedCleanupStack.size(); |
948 | OldDidCallStackSave = CGF.DidCallStackSave; |
949 | CGF.DidCallStackSave = false; |
950 | OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; |
951 | CGF.CurrentCleanupScopeDepth = CleanupStackDepth; |
952 | } |
953 | |
954 | /// Exit this cleanup scope, emitting any accumulated cleanups. |
955 | ~RunCleanupsScope() { |
956 | if (PerformCleanup) |
957 | ForceCleanup(); |
958 | } |
959 | |
960 | /// Determine whether this scope requires any cleanups. |
961 | bool requiresCleanups() const { |
962 | return CGF.EHStack.stable_begin() != CleanupStackDepth; |
963 | } |
964 | |
965 | /// Force the emission of cleanups now, instead of waiting |
966 | /// until this object is destroyed. |
967 | /// \param ValuesToReload - A list of values that need to be available at |
968 | /// the insertion point after cleanup emission. If cleanup emission created |
969 | /// a shared cleanup block, these value pointers will be rewritten. |
970 | /// Otherwise, they not will be modified. |
971 | void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { |
972 | assert(PerformCleanup && "Already forced cleanup" ); |
973 | CGF.DidCallStackSave = OldDidCallStackSave; |
974 | CGF.PopCleanupBlocks(OldCleanupStackSize: CleanupStackDepth, OldLifetimeExtendedStackSize: LifetimeExtendedCleanupStackSize, |
975 | ValuesToReload); |
976 | PerformCleanup = false; |
977 | CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; |
978 | } |
979 | }; |
980 | |
981 | // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. |
982 | EHScopeStack::stable_iterator CurrentCleanupScopeDepth = |
983 | EHScopeStack::stable_end(); |
984 | |
985 | class LexicalScope : public RunCleanupsScope { |
986 | SourceRange Range; |
987 | SmallVector<const LabelDecl*, 4> Labels; |
988 | LexicalScope *ParentScope; |
989 | |
990 | LexicalScope(const LexicalScope &) = delete; |
991 | void operator=(const LexicalScope &) = delete; |
992 | |
993 | public: |
994 | /// Enter a new cleanup scope. |
995 | explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) |
996 | : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { |
997 | CGF.CurLexicalScope = this; |
998 | if (CGDebugInfo *DI = CGF.getDebugInfo()) |
999 | DI->EmitLexicalBlockStart(Builder&: CGF.Builder, Loc: Range.getBegin()); |
1000 | } |
1001 | |
1002 | void addLabel(const LabelDecl *label) { |
1003 | assert(PerformCleanup && "adding label to dead scope?" ); |
1004 | Labels.push_back(Elt: label); |
1005 | } |
1006 | |
1007 | /// Exit this cleanup scope, emitting any accumulated |
1008 | /// cleanups. |
1009 | ~LexicalScope() { |
1010 | if (CGDebugInfo *DI = CGF.getDebugInfo()) |
1011 | DI->EmitLexicalBlockEnd(Builder&: CGF.Builder, Loc: Range.getEnd()); |
1012 | |
1013 | // If we should perform a cleanup, force them now. Note that |
1014 | // this ends the cleanup scope before rescoping any labels. |
1015 | if (PerformCleanup) { |
1016 | ApplyDebugLocation DL(CGF, Range.getEnd()); |
1017 | ForceCleanup(); |
1018 | } |
1019 | } |
1020 | |
1021 | /// Force the emission of cleanups now, instead of waiting |
1022 | /// until this object is destroyed. |
1023 | void ForceCleanup() { |
1024 | CGF.CurLexicalScope = ParentScope; |
1025 | RunCleanupsScope::ForceCleanup(); |
1026 | |
1027 | if (!Labels.empty()) |
1028 | rescopeLabels(); |
1029 | } |
1030 | |
1031 | bool hasLabels() const { |
1032 | return !Labels.empty(); |
1033 | } |
1034 | |
1035 | void rescopeLabels(); |
1036 | }; |
1037 | |
1038 | typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; |
1039 | |
1040 | /// The class used to assign some variables some temporarily addresses. |
1041 | class OMPMapVars { |
1042 | DeclMapTy SavedLocals; |
1043 | DeclMapTy SavedTempAddresses; |
1044 | OMPMapVars(const OMPMapVars &) = delete; |
1045 | void operator=(const OMPMapVars &) = delete; |
1046 | |
1047 | public: |
1048 | explicit OMPMapVars() = default; |
1049 | ~OMPMapVars() { |
1050 | assert(SavedLocals.empty() && "Did not restored original addresses." ); |
1051 | }; |
1052 | |
1053 | /// Sets the address of the variable \p LocalVD to be \p TempAddr in |
1054 | /// function \p CGF. |
1055 | /// \return true if at least one variable was set already, false otherwise. |
1056 | bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, |
1057 | Address TempAddr) { |
1058 | LocalVD = LocalVD->getCanonicalDecl(); |
1059 | // Only save it once. |
1060 | if (SavedLocals.count(LocalVD)) return false; |
1061 | |
1062 | // Copy the existing local entry to SavedLocals. |
1063 | auto it = CGF.LocalDeclMap.find(LocalVD); |
1064 | if (it != CGF.LocalDeclMap.end()) |
1065 | SavedLocals.try_emplace(LocalVD, it->second); |
1066 | else |
1067 | SavedLocals.try_emplace(LocalVD, Address::invalid()); |
1068 | |
1069 | // Generate the private entry. |
1070 | QualType VarTy = LocalVD->getType(); |
1071 | if (VarTy->isReferenceType()) { |
1072 | Address Temp = CGF.CreateMemTemp(T: VarTy); |
1073 | CGF.Builder.CreateStore(Val: TempAddr.emitRawPointer(CGF), Addr: Temp); |
1074 | TempAddr = Temp; |
1075 | } |
1076 | SavedTempAddresses.try_emplace(LocalVD, TempAddr); |
1077 | |
1078 | return true; |
1079 | } |
1080 | |
1081 | /// Applies new addresses to the list of the variables. |
1082 | /// \return true if at least one variable is using new address, false |
1083 | /// otherwise. |
1084 | bool apply(CodeGenFunction &CGF) { |
1085 | copyInto(Src: SavedTempAddresses, Dest&: CGF.LocalDeclMap); |
1086 | SavedTempAddresses.clear(); |
1087 | return !SavedLocals.empty(); |
1088 | } |
1089 | |
1090 | /// Restores original addresses of the variables. |
1091 | void restore(CodeGenFunction &CGF) { |
1092 | if (!SavedLocals.empty()) { |
1093 | copyInto(Src: SavedLocals, Dest&: CGF.LocalDeclMap); |
1094 | SavedLocals.clear(); |
1095 | } |
1096 | } |
1097 | |
1098 | private: |
1099 | /// Copy all the entries in the source map over the corresponding |
1100 | /// entries in the destination, which must exist. |
1101 | static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { |
1102 | for (auto &Pair : Src) { |
1103 | if (!Pair.second.isValid()) { |
1104 | Dest.erase(Val: Pair.first); |
1105 | continue; |
1106 | } |
1107 | |
1108 | auto I = Dest.find(Val: Pair.first); |
1109 | if (I != Dest.end()) |
1110 | I->second = Pair.second; |
1111 | else |
1112 | Dest.insert(KV: Pair); |
1113 | } |
1114 | } |
1115 | }; |
1116 | |
1117 | /// The scope used to remap some variables as private in the OpenMP loop body |
1118 | /// (or other captured region emitted without outlining), and to restore old |
1119 | /// vars back on exit. |
1120 | class OMPPrivateScope : public RunCleanupsScope { |
1121 | OMPMapVars MappedVars; |
1122 | OMPPrivateScope(const OMPPrivateScope &) = delete; |
1123 | void operator=(const OMPPrivateScope &) = delete; |
1124 | |
1125 | public: |
1126 | /// Enter a new OpenMP private scope. |
1127 | explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} |
1128 | |
1129 | /// Registers \p LocalVD variable as a private with \p Addr as the address |
1130 | /// of the corresponding private variable. \p |
1131 | /// PrivateGen is the address of the generated private variable. |
1132 | /// \return true if the variable is registered as private, false if it has |
1133 | /// been privatized already. |
1134 | bool addPrivate(const VarDecl *LocalVD, Address Addr) { |
1135 | assert(PerformCleanup && "adding private to dead scope" ); |
1136 | return MappedVars.setVarAddr(CGF, LocalVD, TempAddr: Addr); |
1137 | } |
1138 | |
1139 | /// Privatizes local variables previously registered as private. |
1140 | /// Registration is separate from the actual privatization to allow |
1141 | /// initializers use values of the original variables, not the private one. |
1142 | /// This is important, for example, if the private variable is a class |
1143 | /// variable initialized by a constructor that references other private |
1144 | /// variables. But at initialization original variables must be used, not |
1145 | /// private copies. |
1146 | /// \return true if at least one variable was privatized, false otherwise. |
1147 | bool Privatize() { return MappedVars.apply(CGF); } |
1148 | |
1149 | void ForceCleanup() { |
1150 | RunCleanupsScope::ForceCleanup(); |
1151 | restoreMap(); |
1152 | } |
1153 | |
1154 | /// Exit scope - all the mapped variables are restored. |
1155 | ~OMPPrivateScope() { |
1156 | if (PerformCleanup) |
1157 | ForceCleanup(); |
1158 | } |
1159 | |
1160 | /// Checks if the global variable is captured in current function. |
1161 | bool isGlobalVarCaptured(const VarDecl *VD) const { |
1162 | VD = VD->getCanonicalDecl(); |
1163 | return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; |
1164 | } |
1165 | |
1166 | /// Restore all mapped variables w/o clean up. This is usefully when we want |
1167 | /// to reference the original variables but don't want the clean up because |
1168 | /// that could emit lifetime end too early, causing backend issue #56913. |
1169 | void restoreMap() { MappedVars.restore(CGF); } |
1170 | }; |
1171 | |
1172 | /// Save/restore original map of previously emitted local vars in case when we |
1173 | /// need to duplicate emission of the same code several times in the same |
1174 | /// function for OpenMP code. |
1175 | class OMPLocalDeclMapRAII { |
1176 | CodeGenFunction &CGF; |
1177 | DeclMapTy SavedMap; |
1178 | |
1179 | public: |
1180 | OMPLocalDeclMapRAII(CodeGenFunction &CGF) |
1181 | : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} |
1182 | ~OMPLocalDeclMapRAII() { SavedMap.swap(RHS&: CGF.LocalDeclMap); } |
1183 | }; |
1184 | |
1185 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1186 | /// that have been added. |
1187 | void |
1188 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1189 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1190 | |
1191 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1192 | /// that have been added, then adds all lifetime-extended cleanups from |
1193 | /// the given position to the stack. |
1194 | void |
1195 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1196 | size_t OldLifetimeExtendedStackSize, |
1197 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1198 | |
1199 | void ResolveBranchFixups(llvm::BasicBlock *Target); |
1200 | |
1201 | /// The given basic block lies in the current EH scope, but may be a |
1202 | /// target of a potentially scope-crossing jump; get a stable handle |
1203 | /// to which we can perform this jump later. |
1204 | JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { |
1205 | return JumpDest(Target, |
1206 | EHStack.getInnermostNormalCleanup(), |
1207 | NextCleanupDestIndex++); |
1208 | } |
1209 | |
1210 | /// The given basic block lies in the current EH scope, but may be a |
1211 | /// target of a potentially scope-crossing jump; get a stable handle |
1212 | /// to which we can perform this jump later. |
1213 | JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { |
1214 | return getJumpDestInCurrentScope(Target: createBasicBlock(name: Name)); |
1215 | } |
1216 | |
1217 | /// EmitBranchThroughCleanup - Emit a branch from the current insert |
1218 | /// block through the normal cleanup handling code (if any) and then |
1219 | /// on to \arg Dest. |
1220 | void EmitBranchThroughCleanup(JumpDest Dest); |
1221 | |
1222 | /// isObviouslyBranchWithoutCleanups - Return true if a branch to the |
1223 | /// specified destination obviously has no cleanups to run. 'false' is always |
1224 | /// a conservatively correct answer for this method. |
1225 | bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; |
1226 | |
1227 | /// popCatchScope - Pops the catch scope at the top of the EHScope |
1228 | /// stack, emitting any required code (other than the catch handlers |
1229 | /// themselves). |
1230 | void popCatchScope(); |
1231 | |
1232 | llvm::BasicBlock *getEHResumeBlock(bool isCleanup); |
1233 | llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1234 | llvm::BasicBlock * |
1235 | getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1236 | |
1237 | /// An object to manage conditionally-evaluated expressions. |
1238 | class ConditionalEvaluation { |
1239 | llvm::BasicBlock *StartBB; |
1240 | |
1241 | public: |
1242 | ConditionalEvaluation(CodeGenFunction &CGF) |
1243 | : StartBB(CGF.Builder.GetInsertBlock()) {} |
1244 | |
1245 | void begin(CodeGenFunction &CGF) { |
1246 | assert(CGF.OutermostConditional != this); |
1247 | if (!CGF.OutermostConditional) |
1248 | CGF.OutermostConditional = this; |
1249 | } |
1250 | |
1251 | void end(CodeGenFunction &CGF) { |
1252 | assert(CGF.OutermostConditional != nullptr); |
1253 | if (CGF.OutermostConditional == this) |
1254 | CGF.OutermostConditional = nullptr; |
1255 | } |
1256 | |
1257 | /// Returns a block which will be executed prior to each |
1258 | /// evaluation of the conditional code. |
1259 | llvm::BasicBlock *getStartingBlock() const { |
1260 | return StartBB; |
1261 | } |
1262 | }; |
1263 | |
1264 | /// isInConditionalBranch - Return true if we're currently emitting |
1265 | /// one branch or the other of a conditional expression. |
1266 | bool isInConditionalBranch() const { return OutermostConditional != nullptr; } |
1267 | |
1268 | void setBeforeOutermostConditional(llvm::Value *value, Address addr, |
1269 | CodeGenFunction &CGF) { |
1270 | assert(isInConditionalBranch()); |
1271 | llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); |
1272 | auto store = |
1273 | new llvm::StoreInst(value, addr.emitRawPointer(CGF), &block->back()); |
1274 | store->setAlignment(addr.getAlignment().getAsAlign()); |
1275 | } |
1276 | |
1277 | /// An RAII object to record that we're evaluating a statement |
1278 | /// expression. |
1279 | class StmtExprEvaluation { |
1280 | CodeGenFunction &CGF; |
1281 | |
1282 | /// We have to save the outermost conditional: cleanups in a |
1283 | /// statement expression aren't conditional just because the |
1284 | /// StmtExpr is. |
1285 | ConditionalEvaluation *SavedOutermostConditional; |
1286 | |
1287 | public: |
1288 | StmtExprEvaluation(CodeGenFunction &CGF) |
1289 | : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { |
1290 | CGF.OutermostConditional = nullptr; |
1291 | } |
1292 | |
1293 | ~StmtExprEvaluation() { |
1294 | CGF.OutermostConditional = SavedOutermostConditional; |
1295 | CGF.EnsureInsertPoint(); |
1296 | } |
1297 | }; |
1298 | |
1299 | /// An object which temporarily prevents a value from being |
1300 | /// destroyed by aggressive peephole optimizations that assume that |
1301 | /// all uses of a value have been realized in the IR. |
1302 | class PeepholeProtection { |
1303 | llvm::Instruction *Inst = nullptr; |
1304 | friend class CodeGenFunction; |
1305 | |
1306 | public: |
1307 | PeepholeProtection() = default; |
1308 | }; |
1309 | |
1310 | /// A non-RAII class containing all the information about a bound |
1311 | /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for |
1312 | /// this which makes individual mappings very simple; using this |
1313 | /// class directly is useful when you have a variable number of |
1314 | /// opaque values or don't want the RAII functionality for some |
1315 | /// reason. |
1316 | class OpaqueValueMappingData { |
1317 | const OpaqueValueExpr *OpaqueValue; |
1318 | bool BoundLValue; |
1319 | CodeGenFunction::PeepholeProtection Protection; |
1320 | |
1321 | OpaqueValueMappingData(const OpaqueValueExpr *ov, |
1322 | bool boundLValue) |
1323 | : OpaqueValue(ov), BoundLValue(boundLValue) {} |
1324 | public: |
1325 | OpaqueValueMappingData() : OpaqueValue(nullptr) {} |
1326 | |
1327 | static bool shouldBindAsLValue(const Expr *expr) { |
1328 | // gl-values should be bound as l-values for obvious reasons. |
1329 | // Records should be bound as l-values because IR generation |
1330 | // always keeps them in memory. Expressions of function type |
1331 | // act exactly like l-values but are formally required to be |
1332 | // r-values in C. |
1333 | return expr->isGLValue() || |
1334 | expr->getType()->isFunctionType() || |
1335 | hasAggregateEvaluationKind(T: expr->getType()); |
1336 | } |
1337 | |
1338 | static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
1339 | const OpaqueValueExpr *ov, |
1340 | const Expr *e) { |
1341 | if (shouldBindAsLValue(ov)) |
1342 | return bind(CGF, ov, lv: CGF.EmitLValue(E: e)); |
1343 | return bind(CGF, ov, rv: CGF.EmitAnyExpr(E: e)); |
1344 | } |
1345 | |
1346 | static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
1347 | const OpaqueValueExpr *ov, |
1348 | const LValue &lv) { |
1349 | assert(shouldBindAsLValue(ov)); |
1350 | CGF.OpaqueLValues.insert(KV: std::make_pair(x&: ov, y: lv)); |
1351 | return OpaqueValueMappingData(ov, true); |
1352 | } |
1353 | |
1354 | static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
1355 | const OpaqueValueExpr *ov, |
1356 | const RValue &rv) { |
1357 | assert(!shouldBindAsLValue(ov)); |
1358 | CGF.OpaqueRValues.insert(KV: std::make_pair(x&: ov, y: rv)); |
1359 | |
1360 | OpaqueValueMappingData data(ov, false); |
1361 | |
1362 | // Work around an extremely aggressive peephole optimization in |
1363 | // EmitScalarConversion which assumes that all other uses of a |
1364 | // value are extant. |
1365 | data.Protection = CGF.protectFromPeepholes(rvalue: rv); |
1366 | |
1367 | return data; |
1368 | } |
1369 | |
1370 | bool isValid() const { return OpaqueValue != nullptr; } |
1371 | void clear() { OpaqueValue = nullptr; } |
1372 | |
1373 | void unbind(CodeGenFunction &CGF) { |
1374 | assert(OpaqueValue && "no data to unbind!" ); |
1375 | |
1376 | if (BoundLValue) { |
1377 | CGF.OpaqueLValues.erase(Val: OpaqueValue); |
1378 | } else { |
1379 | CGF.OpaqueRValues.erase(Val: OpaqueValue); |
1380 | CGF.unprotectFromPeepholes(protection: Protection); |
1381 | } |
1382 | } |
1383 | }; |
1384 | |
1385 | /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. |
1386 | class OpaqueValueMapping { |
1387 | CodeGenFunction &CGF; |
1388 | OpaqueValueMappingData Data; |
1389 | |
1390 | public: |
1391 | static bool shouldBindAsLValue(const Expr *expr) { |
1392 | return OpaqueValueMappingData::shouldBindAsLValue(expr); |
1393 | } |
1394 | |
1395 | /// Build the opaque value mapping for the given conditional |
1396 | /// operator if it's the GNU ?: extension. This is a common |
1397 | /// enough pattern that the convenience operator is really |
1398 | /// helpful. |
1399 | /// |
1400 | OpaqueValueMapping(CodeGenFunction &CGF, |
1401 | const AbstractConditionalOperator *op) : CGF(CGF) { |
1402 | if (isa<ConditionalOperator>(Val: op)) |
1403 | // Leave Data empty. |
1404 | return; |
1405 | |
1406 | const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(Val: op); |
1407 | Data = OpaqueValueMappingData::bind(CGF, ov: e->getOpaqueValue(), |
1408 | e: e->getCommon()); |
1409 | } |
1410 | |
1411 | /// Build the opaque value mapping for an OpaqueValueExpr whose source |
1412 | /// expression is set to the expression the OVE represents. |
1413 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) |
1414 | : CGF(CGF) { |
1415 | if (OV) { |
1416 | assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " |
1417 | "for OVE with no source expression" ); |
1418 | Data = OpaqueValueMappingData::bind(CGF, ov: OV, e: OV->getSourceExpr()); |
1419 | } |
1420 | } |
1421 | |
1422 | OpaqueValueMapping(CodeGenFunction &CGF, |
1423 | const OpaqueValueExpr *opaqueValue, |
1424 | LValue lvalue) |
1425 | : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, lv: lvalue)) { |
1426 | } |
1427 | |
1428 | OpaqueValueMapping(CodeGenFunction &CGF, |
1429 | const OpaqueValueExpr *opaqueValue, |
1430 | RValue rvalue) |
1431 | : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, rv: rvalue)) { |
1432 | } |
1433 | |
1434 | void pop() { |
1435 | Data.unbind(CGF); |
1436 | Data.clear(); |
1437 | } |
1438 | |
1439 | ~OpaqueValueMapping() { |
1440 | if (Data.isValid()) Data.unbind(CGF); |
1441 | } |
1442 | }; |
1443 | |
1444 | private: |
1445 | CGDebugInfo *DebugInfo; |
1446 | /// Used to create unique names for artificial VLA size debug info variables. |
1447 | unsigned VLAExprCounter = 0; |
1448 | bool DisableDebugInfo = false; |
1449 | |
1450 | /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid |
1451 | /// calling llvm.stacksave for multiple VLAs in the same scope. |
1452 | bool DidCallStackSave = false; |
1453 | |
1454 | /// IndirectBranch - The first time an indirect goto is seen we create a block |
1455 | /// with an indirect branch. Every time we see the address of a label taken, |
1456 | /// we add the label to the indirect goto. Every subsequent indirect goto is |
1457 | /// codegen'd as a jump to the IndirectBranch's basic block. |
1458 | llvm::IndirectBrInst *IndirectBranch = nullptr; |
1459 | |
1460 | /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C |
1461 | /// decls. |
1462 | DeclMapTy LocalDeclMap; |
1463 | |
1464 | // Keep track of the cleanups for callee-destructed parameters pushed to the |
1465 | // cleanup stack so that they can be deactivated later. |
1466 | llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> |
1467 | CalleeDestructedParamCleanups; |
1468 | |
1469 | /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this |
1470 | /// will contain a mapping from said ParmVarDecl to its implicit "object_size" |
1471 | /// parameter. |
1472 | llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> |
1473 | SizeArguments; |
1474 | |
1475 | /// Track escaped local variables with auto storage. Used during SEH |
1476 | /// outlining to produce a call to llvm.localescape. |
1477 | llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; |
1478 | |
1479 | /// LabelMap - This keeps track of the LLVM basic block for each C label. |
1480 | llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; |
1481 | |
1482 | // BreakContinueStack - This keeps track of where break and continue |
1483 | // statements should jump to. |
1484 | struct BreakContinue { |
1485 | BreakContinue(JumpDest Break, JumpDest Continue) |
1486 | : BreakBlock(Break), ContinueBlock(Continue) {} |
1487 | |
1488 | JumpDest BreakBlock; |
1489 | JumpDest ContinueBlock; |
1490 | }; |
1491 | SmallVector<BreakContinue, 8> BreakContinueStack; |
1492 | |
1493 | /// Handles cancellation exit points in OpenMP-related constructs. |
1494 | class OpenMPCancelExitStack { |
1495 | /// Tracks cancellation exit point and join point for cancel-related exit |
1496 | /// and normal exit. |
1497 | struct CancelExit { |
1498 | CancelExit() = default; |
1499 | CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, |
1500 | JumpDest ContBlock) |
1501 | : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} |
1502 | OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; |
1503 | /// true if the exit block has been emitted already by the special |
1504 | /// emitExit() call, false if the default codegen is used. |
1505 | bool HasBeenEmitted = false; |
1506 | JumpDest ExitBlock; |
1507 | JumpDest ContBlock; |
1508 | }; |
1509 | |
1510 | SmallVector<CancelExit, 8> Stack; |
1511 | |
1512 | public: |
1513 | OpenMPCancelExitStack() : Stack(1) {} |
1514 | ~OpenMPCancelExitStack() = default; |
1515 | /// Fetches the exit block for the current OpenMP construct. |
1516 | JumpDest getExitBlock() const { return Stack.back().ExitBlock; } |
1517 | /// Emits exit block with special codegen procedure specific for the related |
1518 | /// OpenMP construct + emits code for normal construct cleanup. |
1519 | void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
1520 | const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { |
1521 | if (Stack.back().Kind == Kind && getExitBlock().isValid()) { |
1522 | assert(CGF.getOMPCancelDestination(Kind).isValid()); |
1523 | assert(CGF.HaveInsertPoint()); |
1524 | assert(!Stack.back().HasBeenEmitted); |
1525 | auto IP = CGF.Builder.saveAndClearIP(); |
1526 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1527 | CodeGen(CGF); |
1528 | CGF.EmitBranch(Block: Stack.back().ContBlock.getBlock()); |
1529 | CGF.Builder.restoreIP(IP); |
1530 | Stack.back().HasBeenEmitted = true; |
1531 | } |
1532 | CodeGen(CGF); |
1533 | } |
1534 | /// Enter the cancel supporting \a Kind construct. |
1535 | /// \param Kind OpenMP directive that supports cancel constructs. |
1536 | /// \param HasCancel true, if the construct has inner cancel directive, |
1537 | /// false otherwise. |
1538 | void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { |
1539 | Stack.push_back(Elt: {Kind, |
1540 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.exit" ) |
1541 | : JumpDest(), |
1542 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.cont" ) |
1543 | : JumpDest()}); |
1544 | } |
1545 | /// Emits default exit point for the cancel construct (if the special one |
1546 | /// has not be used) + join point for cancel/normal exits. |
1547 | void exit(CodeGenFunction &CGF) { |
1548 | if (getExitBlock().isValid()) { |
1549 | assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); |
1550 | bool HaveIP = CGF.HaveInsertPoint(); |
1551 | if (!Stack.back().HasBeenEmitted) { |
1552 | if (HaveIP) |
1553 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1554 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1555 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1556 | } |
1557 | CGF.EmitBlock(BB: Stack.back().ContBlock.getBlock()); |
1558 | if (!HaveIP) { |
1559 | CGF.Builder.CreateUnreachable(); |
1560 | CGF.Builder.ClearInsertionPoint(); |
1561 | } |
1562 | } |
1563 | Stack.pop_back(); |
1564 | } |
1565 | }; |
1566 | OpenMPCancelExitStack OMPCancelStack; |
1567 | |
1568 | /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. |
1569 | llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
1570 | Stmt::Likelihood LH); |
1571 | |
1572 | CodeGenPGO PGO; |
1573 | |
1574 | /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. |
1575 | Address MCDCCondBitmapAddr = Address::invalid(); |
1576 | |
1577 | /// Calculate branch weights appropriate for PGO data |
1578 | llvm::MDNode *createProfileWeights(uint64_t TrueCount, |
1579 | uint64_t FalseCount) const; |
1580 | llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; |
1581 | llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, |
1582 | uint64_t LoopCount) const; |
1583 | |
1584 | public: |
1585 | /// Increment the profiler's counter for the given statement by \p StepV. |
1586 | /// If \p StepV is null, the default increment is 1. |
1587 | void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { |
1588 | if (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1589 | !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && |
1590 | !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) |
1591 | PGO.emitCounterSetOrIncrement(Builder, S, StepV); |
1592 | PGO.setCurrentStmt(S); |
1593 | } |
1594 | |
1595 | bool isMCDCCoverageEnabled() const { |
1596 | return (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1597 | CGM.getCodeGenOpts().MCDCCoverage && |
1598 | !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); |
1599 | } |
1600 | |
1601 | /// Allocate a temp value on the stack that MCDC can use to track condition |
1602 | /// results. |
1603 | void maybeCreateMCDCCondBitmap() { |
1604 | if (isMCDCCoverageEnabled()) { |
1605 | PGO.emitMCDCParameters(Builder); |
1606 | MCDCCondBitmapAddr = |
1607 | CreateIRTemp(T: getContext().UnsignedIntTy, Name: "mcdc.addr" ); |
1608 | } |
1609 | } |
1610 | |
1611 | bool isBinaryLogicalOp(const Expr *E) const { |
1612 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: E->IgnoreParens()); |
1613 | return (BOp && BOp->isLogicalOp()); |
1614 | } |
1615 | |
1616 | /// Zero-init the MCDC temp value. |
1617 | void maybeResetMCDCCondBitmap(const Expr *E) { |
1618 | if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { |
1619 | PGO.emitMCDCCondBitmapReset(Builder, S: E, MCDCCondBitmapAddr); |
1620 | PGO.setCurrentStmt(E); |
1621 | } |
1622 | } |
1623 | |
1624 | /// Increment the profiler's counter for the given expression by \p StepV. |
1625 | /// If \p StepV is null, the default increment is 1. |
1626 | void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { |
1627 | if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { |
1628 | PGO.emitMCDCTestVectorBitmapUpdate(Builder, S: E, MCDCCondBitmapAddr, CGF&: *this); |
1629 | PGO.setCurrentStmt(E); |
1630 | } |
1631 | } |
1632 | |
1633 | /// Update the MCDC temp value with the condition's evaluated result. |
1634 | void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { |
1635 | if (isMCDCCoverageEnabled()) { |
1636 | PGO.emitMCDCCondBitmapUpdate(Builder, S: E, MCDCCondBitmapAddr, Val, CGF&: *this); |
1637 | PGO.setCurrentStmt(E); |
1638 | } |
1639 | } |
1640 | |
1641 | /// Get the profiler's count for the given statement. |
1642 | uint64_t getProfileCount(const Stmt *S) { |
1643 | return PGO.getStmtCount(S).value_or(u: 0); |
1644 | } |
1645 | |
1646 | /// Set the profiler's current count. |
1647 | void setCurrentProfileCount(uint64_t Count) { |
1648 | PGO.setCurrentRegionCount(Count); |
1649 | } |
1650 | |
1651 | /// Get the profiler's current count. This is generally the count for the most |
1652 | /// recently incremented counter. |
1653 | uint64_t getCurrentProfileCount() { |
1654 | return PGO.getCurrentRegionCount(); |
1655 | } |
1656 | |
1657 | private: |
1658 | |
1659 | /// SwitchInsn - This is nearest current switch instruction. It is null if |
1660 | /// current context is not in a switch. |
1661 | llvm::SwitchInst *SwitchInsn = nullptr; |
1662 | /// The branch weights of SwitchInsn when doing instrumentation based PGO. |
1663 | SmallVector<uint64_t, 16> *SwitchWeights = nullptr; |
1664 | |
1665 | /// The likelihood attributes of the SwitchCase. |
1666 | SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; |
1667 | |
1668 | /// CaseRangeBlock - This block holds if condition check for last case |
1669 | /// statement range in current switch instruction. |
1670 | llvm::BasicBlock *CaseRangeBlock = nullptr; |
1671 | |
1672 | /// OpaqueLValues - Keeps track of the current set of opaque value |
1673 | /// expressions. |
1674 | llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; |
1675 | llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; |
1676 | |
1677 | // VLASizeMap - This keeps track of the associated size for each VLA type. |
1678 | // We track this by the size expression rather than the type itself because |
1679 | // in certain situations, like a const qualifier applied to an VLA typedef, |
1680 | // multiple VLA types can share the same size expression. |
1681 | // FIXME: Maybe this could be a stack of maps that is pushed/popped as we |
1682 | // enter/leave scopes. |
1683 | llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; |
1684 | |
1685 | /// A block containing a single 'unreachable' instruction. Created |
1686 | /// lazily by getUnreachableBlock(). |
1687 | llvm::BasicBlock *UnreachableBlock = nullptr; |
1688 | |
1689 | /// Counts of the number return expressions in the function. |
1690 | unsigned NumReturnExprs = 0; |
1691 | |
1692 | /// Count the number of simple (constant) return expressions in the function. |
1693 | unsigned NumSimpleReturnExprs = 0; |
1694 | |
1695 | /// The last regular (non-return) debug location (breakpoint) in the function. |
1696 | SourceLocation LastStopPoint; |
1697 | |
1698 | public: |
1699 | /// Source location information about the default argument or member |
1700 | /// initializer expression we're evaluating, if any. |
1701 | CurrentSourceLocExprScope CurSourceLocExprScope; |
1702 | using SourceLocExprScopeGuard = |
1703 | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
1704 | |
1705 | /// A scope within which we are constructing the fields of an object which |
1706 | /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use |
1707 | /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. |
1708 | class FieldConstructionScope { |
1709 | public: |
1710 | FieldConstructionScope(CodeGenFunction &CGF, Address This) |
1711 | : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { |
1712 | CGF.CXXDefaultInitExprThis = This; |
1713 | } |
1714 | ~FieldConstructionScope() { |
1715 | CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; |
1716 | } |
1717 | |
1718 | private: |
1719 | CodeGenFunction &CGF; |
1720 | Address OldCXXDefaultInitExprThis; |
1721 | }; |
1722 | |
1723 | /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' |
1724 | /// is overridden to be the object under construction. |
1725 | class CXXDefaultInitExprScope { |
1726 | public: |
1727 | CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) |
1728 | : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), |
1729 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1730 | SourceLocScope(E, CGF.CurSourceLocExprScope) { |
1731 | CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); |
1732 | CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); |
1733 | } |
1734 | ~CXXDefaultInitExprScope() { |
1735 | CGF.CXXThisValue = OldCXXThisValue; |
1736 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1737 | } |
1738 | |
1739 | public: |
1740 | CodeGenFunction &CGF; |
1741 | llvm::Value *OldCXXThisValue; |
1742 | CharUnits OldCXXThisAlignment; |
1743 | SourceLocExprScopeGuard SourceLocScope; |
1744 | }; |
1745 | |
1746 | struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { |
1747 | CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) |
1748 | : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} |
1749 | }; |
1750 | |
1751 | /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the |
1752 | /// current loop index is overridden. |
1753 | class ArrayInitLoopExprScope { |
1754 | public: |
1755 | ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) |
1756 | : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { |
1757 | CGF.ArrayInitIndex = Index; |
1758 | } |
1759 | ~ArrayInitLoopExprScope() { |
1760 | CGF.ArrayInitIndex = OldArrayInitIndex; |
1761 | } |
1762 | |
1763 | private: |
1764 | CodeGenFunction &CGF; |
1765 | llvm::Value *OldArrayInitIndex; |
1766 | }; |
1767 | |
1768 | class InlinedInheritingConstructorScope { |
1769 | public: |
1770 | InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) |
1771 | : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), |
1772 | OldCurCodeDecl(CGF.CurCodeDecl), |
1773 | OldCXXABIThisDecl(CGF.CXXABIThisDecl), |
1774 | OldCXXABIThisValue(CGF.CXXABIThisValue), |
1775 | OldCXXThisValue(CGF.CXXThisValue), |
1776 | OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), |
1777 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1778 | OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), |
1779 | OldCXXInheritedCtorInitExprArgs( |
1780 | std::move(CGF.CXXInheritedCtorInitExprArgs)) { |
1781 | CGF.CurGD = GD; |
1782 | CGF.CurFuncDecl = CGF.CurCodeDecl = |
1783 | cast<CXXConstructorDecl>(Val: GD.getDecl()); |
1784 | CGF.CXXABIThisDecl = nullptr; |
1785 | CGF.CXXABIThisValue = nullptr; |
1786 | CGF.CXXThisValue = nullptr; |
1787 | CGF.CXXABIThisAlignment = CharUnits(); |
1788 | CGF.CXXThisAlignment = CharUnits(); |
1789 | CGF.ReturnValue = Address::invalid(); |
1790 | CGF.FnRetTy = QualType(); |
1791 | CGF.CXXInheritedCtorInitExprArgs.clear(); |
1792 | } |
1793 | ~InlinedInheritingConstructorScope() { |
1794 | CGF.CurGD = OldCurGD; |
1795 | CGF.CurFuncDecl = OldCurFuncDecl; |
1796 | CGF.CurCodeDecl = OldCurCodeDecl; |
1797 | CGF.CXXABIThisDecl = OldCXXABIThisDecl; |
1798 | CGF.CXXABIThisValue = OldCXXABIThisValue; |
1799 | CGF.CXXThisValue = OldCXXThisValue; |
1800 | CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; |
1801 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1802 | CGF.ReturnValue = OldReturnValue; |
1803 | CGF.FnRetTy = OldFnRetTy; |
1804 | CGF.CXXInheritedCtorInitExprArgs = |
1805 | std::move(OldCXXInheritedCtorInitExprArgs); |
1806 | } |
1807 | |
1808 | private: |
1809 | CodeGenFunction &CGF; |
1810 | GlobalDecl OldCurGD; |
1811 | const Decl *OldCurFuncDecl; |
1812 | const Decl *OldCurCodeDecl; |
1813 | ImplicitParamDecl *OldCXXABIThisDecl; |
1814 | llvm::Value *OldCXXABIThisValue; |
1815 | llvm::Value *OldCXXThisValue; |
1816 | CharUnits OldCXXABIThisAlignment; |
1817 | CharUnits OldCXXThisAlignment; |
1818 | Address OldReturnValue; |
1819 | QualType OldFnRetTy; |
1820 | CallArgList OldCXXInheritedCtorInitExprArgs; |
1821 | }; |
1822 | |
1823 | // Helper class for the OpenMP IR Builder. Allows reusability of code used for |
1824 | // region body, and finalization codegen callbacks. This will class will also |
1825 | // contain privatization functions used by the privatization call backs |
1826 | // |
1827 | // TODO: this is temporary class for things that are being moved out of |
1828 | // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or |
1829 | // utility function for use with the OMPBuilder. Once that move to use the |
1830 | // OMPBuilder is done, everything here will either become part of CodeGenFunc. |
1831 | // directly, or a new helper class that will contain functions used by both |
1832 | // this and the OMPBuilder |
1833 | |
1834 | struct OMPBuilderCBHelpers { |
1835 | |
1836 | OMPBuilderCBHelpers() = delete; |
1837 | OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; |
1838 | OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; |
1839 | |
1840 | using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; |
1841 | |
1842 | /// Cleanup action for allocate support. |
1843 | class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { |
1844 | |
1845 | private: |
1846 | llvm::CallInst *RTLFnCI; |
1847 | |
1848 | public: |
1849 | OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { |
1850 | RLFnCI->removeFromParent(); |
1851 | } |
1852 | |
1853 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
1854 | if (!CGF.HaveInsertPoint()) |
1855 | return; |
1856 | CGF.Builder.Insert(I: RTLFnCI); |
1857 | } |
1858 | }; |
1859 | |
1860 | /// Returns address of the threadprivate variable for the current |
1861 | /// thread. This Also create any necessary OMP runtime calls. |
1862 | /// |
1863 | /// \param VD VarDecl for Threadprivate variable. |
1864 | /// \param VDAddr Address of the Vardecl |
1865 | /// \param Loc The location where the barrier directive was encountered |
1866 | static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, |
1867 | const VarDecl *VD, Address VDAddr, |
1868 | SourceLocation Loc); |
1869 | |
1870 | /// Gets the OpenMP-specific address of the local variable /p VD. |
1871 | static Address getAddressOfLocalVariable(CodeGenFunction &CGF, |
1872 | const VarDecl *VD); |
1873 | /// Get the platform-specific name separator. |
1874 | /// \param Parts different parts of the final name that needs separation |
1875 | /// \param FirstSeparator First separator used between the initial two |
1876 | /// parts of the name. |
1877 | /// \param Separator separator used between all of the rest consecutinve |
1878 | /// parts of the name |
1879 | static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, |
1880 | StringRef FirstSeparator = "." , |
1881 | StringRef Separator = "." ); |
1882 | /// Emit the Finalization for an OMP region |
1883 | /// \param CGF The Codegen function this belongs to |
1884 | /// \param IP Insertion point for generating the finalization code. |
1885 | static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { |
1886 | CGBuilderTy::InsertPointGuard IPG(CGF.Builder); |
1887 | assert(IP.getBlock()->end() != IP.getPoint() && |
1888 | "OpenMP IR Builder should cause terminated block!" ); |
1889 | |
1890 | llvm::BasicBlock *IPBB = IP.getBlock(); |
1891 | llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); |
1892 | assert(DestBB && "Finalization block should have one successor!" ); |
1893 | |
1894 | // erase and replace with cleanup branch. |
1895 | IPBB->getTerminator()->eraseFromParent(); |
1896 | CGF.Builder.SetInsertPoint(IPBB); |
1897 | CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(Target: DestBB); |
1898 | CGF.EmitBranchThroughCleanup(Dest); |
1899 | } |
1900 | |
1901 | /// Emit the body of an OMP region |
1902 | /// \param CGF The Codegen function this belongs to |
1903 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1904 | /// generated |
1905 | /// \param AllocaIP Where to insert alloca instructions |
1906 | /// \param CodeGenIP Where to insert the region code |
1907 | /// \param RegionName Name to be used for new blocks |
1908 | static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, |
1909 | const Stmt *RegionBodyStmt, |
1910 | InsertPointTy AllocaIP, |
1911 | InsertPointTy CodeGenIP, |
1912 | Twine RegionName); |
1913 | |
1914 | static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, |
1915 | llvm::BasicBlock &FiniBB, llvm::Function *Fn, |
1916 | ArrayRef<llvm::Value *> Args) { |
1917 | llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); |
1918 | if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) |
1919 | CodeGenIPBBTI->eraseFromParent(); |
1920 | |
1921 | CGF.Builder.SetInsertPoint(CodeGenIPBB); |
1922 | |
1923 | if (Fn->doesNotThrow()) |
1924 | CGF.EmitNounwindRuntimeCall(callee: Fn, args: Args); |
1925 | else |
1926 | CGF.EmitRuntimeCall(callee: Fn, args: Args); |
1927 | |
1928 | if (CGF.Builder.saveIP().isSet()) |
1929 | CGF.Builder.CreateBr(Dest: &FiniBB); |
1930 | } |
1931 | |
1932 | /// Emit the body of an OMP region that will be outlined in |
1933 | /// OpenMPIRBuilder::finalize(). |
1934 | /// \param CGF The Codegen function this belongs to |
1935 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1936 | /// generated |
1937 | /// \param AllocaIP Where to insert alloca instructions |
1938 | /// \param CodeGenIP Where to insert the region code |
1939 | /// \param RegionName Name to be used for new blocks |
1940 | static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, |
1941 | const Stmt *RegionBodyStmt, |
1942 | InsertPointTy AllocaIP, |
1943 | InsertPointTy CodeGenIP, |
1944 | Twine RegionName); |
1945 | |
1946 | /// RAII for preserving necessary info during Outlined region body codegen. |
1947 | class OutlinedRegionBodyRAII { |
1948 | |
1949 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
1950 | CodeGenFunction::JumpDest OldReturnBlock; |
1951 | CodeGenFunction &CGF; |
1952 | |
1953 | public: |
1954 | OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
1955 | llvm::BasicBlock &RetBB) |
1956 | : CGF(cgf) { |
1957 | assert(AllocaIP.isSet() && |
1958 | "Must specify Insertion point for allocas of outlined function" ); |
1959 | OldAllocaIP = CGF.AllocaInsertPt; |
1960 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
1961 | |
1962 | OldReturnBlock = CGF.ReturnBlock; |
1963 | CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(Target: &RetBB); |
1964 | } |
1965 | |
1966 | ~OutlinedRegionBodyRAII() { |
1967 | CGF.AllocaInsertPt = OldAllocaIP; |
1968 | CGF.ReturnBlock = OldReturnBlock; |
1969 | } |
1970 | }; |
1971 | |
1972 | /// RAII for preserving necessary info during inlined region body codegen. |
1973 | class InlinedRegionBodyRAII { |
1974 | |
1975 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
1976 | CodeGenFunction &CGF; |
1977 | |
1978 | public: |
1979 | InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
1980 | llvm::BasicBlock &FiniBB) |
1981 | : CGF(cgf) { |
1982 | // Alloca insertion block should be in the entry block of the containing |
1983 | // function so it expects an empty AllocaIP in which case will reuse the |
1984 | // old alloca insertion point, or a new AllocaIP in the same block as |
1985 | // the old one |
1986 | assert((!AllocaIP.isSet() || |
1987 | CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && |
1988 | "Insertion point should be in the entry block of containing " |
1989 | "function!" ); |
1990 | OldAllocaIP = CGF.AllocaInsertPt; |
1991 | if (AllocaIP.isSet()) |
1992 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
1993 | |
1994 | // TODO: Remove the call, after making sure the counter is not used by |
1995 | // the EHStack. |
1996 | // Since this is an inlined region, it should not modify the |
1997 | // ReturnBlock, and should reuse the one for the enclosing outlined |
1998 | // region. So, the JumpDest being return by the function is discarded |
1999 | (void)CGF.getJumpDestInCurrentScope(Target: &FiniBB); |
2000 | } |
2001 | |
2002 | ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } |
2003 | }; |
2004 | }; |
2005 | |
2006 | private: |
2007 | /// CXXThisDecl - When generating code for a C++ member function, |
2008 | /// this will hold the implicit 'this' declaration. |
2009 | ImplicitParamDecl *CXXABIThisDecl = nullptr; |
2010 | llvm::Value *CXXABIThisValue = nullptr; |
2011 | llvm::Value *CXXThisValue = nullptr; |
2012 | CharUnits CXXABIThisAlignment; |
2013 | CharUnits CXXThisAlignment; |
2014 | |
2015 | /// The value of 'this' to use when evaluating CXXDefaultInitExprs within |
2016 | /// this expression. |
2017 | Address CXXDefaultInitExprThis = Address::invalid(); |
2018 | |
2019 | /// The current array initialization index when evaluating an |
2020 | /// ArrayInitIndexExpr within an ArrayInitLoopExpr. |
2021 | llvm::Value *ArrayInitIndex = nullptr; |
2022 | |
2023 | /// The values of function arguments to use when evaluating |
2024 | /// CXXInheritedCtorInitExprs within this context. |
2025 | CallArgList CXXInheritedCtorInitExprArgs; |
2026 | |
2027 | /// CXXStructorImplicitParamDecl - When generating code for a constructor or |
2028 | /// destructor, this will hold the implicit argument (e.g. VTT). |
2029 | ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; |
2030 | llvm::Value *CXXStructorImplicitParamValue = nullptr; |
2031 | |
2032 | /// OutermostConditional - Points to the outermost active |
2033 | /// conditional control. This is used so that we know if a |
2034 | /// temporary should be destroyed conditionally. |
2035 | ConditionalEvaluation *OutermostConditional = nullptr; |
2036 | |
2037 | /// The current lexical scope. |
2038 | LexicalScope *CurLexicalScope = nullptr; |
2039 | |
2040 | /// The current source location that should be used for exception |
2041 | /// handling code. |
2042 | SourceLocation CurEHLocation; |
2043 | |
2044 | /// BlockByrefInfos - For each __block variable, contains |
2045 | /// information about the layout of the variable. |
2046 | llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; |
2047 | |
2048 | /// Used by -fsanitize=nullability-return to determine whether the return |
2049 | /// value can be checked. |
2050 | llvm::Value *RetValNullabilityPrecondition = nullptr; |
2051 | |
2052 | /// Check if -fsanitize=nullability-return instrumentation is required for |
2053 | /// this function. |
2054 | bool requiresReturnValueNullabilityCheck() const { |
2055 | return RetValNullabilityPrecondition; |
2056 | } |
2057 | |
2058 | /// Used to store precise source locations for return statements by the |
2059 | /// runtime return value checks. |
2060 | Address ReturnLocation = Address::invalid(); |
2061 | |
2062 | /// Check if the return value of this function requires sanitization. |
2063 | bool requiresReturnValueCheck() const; |
2064 | |
2065 | bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); |
2066 | bool hasInAllocaArg(const CXXMethodDecl *MD); |
2067 | |
2068 | llvm::BasicBlock *TerminateLandingPad = nullptr; |
2069 | llvm::BasicBlock *TerminateHandler = nullptr; |
2070 | llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; |
2071 | |
2072 | /// Terminate funclets keyed by parent funclet pad. |
2073 | llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; |
2074 | |
2075 | /// Largest vector width used in ths function. Will be used to create a |
2076 | /// function attribute. |
2077 | unsigned LargestVectorWidth = 0; |
2078 | |
2079 | /// True if we need emit the life-time markers. This is initially set in |
2080 | /// the constructor, but could be overwritten to true if this is a coroutine. |
2081 | bool ShouldEmitLifetimeMarkers; |
2082 | |
2083 | /// Add OpenCL kernel arg metadata and the kernel attribute metadata to |
2084 | /// the function metadata. |
2085 | void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); |
2086 | |
2087 | public: |
2088 | CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); |
2089 | ~CodeGenFunction(); |
2090 | |
2091 | CodeGenTypes &getTypes() const { return CGM.getTypes(); } |
2092 | ASTContext &getContext() const { return CGM.getContext(); } |
2093 | CGDebugInfo *getDebugInfo() { |
2094 | if (DisableDebugInfo) |
2095 | return nullptr; |
2096 | return DebugInfo; |
2097 | } |
2098 | void disableDebugInfo() { DisableDebugInfo = true; } |
2099 | void enableDebugInfo() { DisableDebugInfo = false; } |
2100 | |
2101 | bool shouldUseFusedARCCalls() { |
2102 | return CGM.getCodeGenOpts().OptimizationLevel == 0; |
2103 | } |
2104 | |
2105 | const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } |
2106 | |
2107 | /// Returns a pointer to the function's exception object and selector slot, |
2108 | /// which is assigned in every landing pad. |
2109 | Address getExceptionSlot(); |
2110 | Address getEHSelectorSlot(); |
2111 | |
2112 | /// Returns the contents of the function's exception object and selector |
2113 | /// slots. |
2114 | llvm::Value *getExceptionFromSlot(); |
2115 | llvm::Value *getSelectorFromSlot(); |
2116 | |
2117 | RawAddress getNormalCleanupDestSlot(); |
2118 | |
2119 | llvm::BasicBlock *getUnreachableBlock() { |
2120 | if (!UnreachableBlock) { |
2121 | UnreachableBlock = createBasicBlock(name: "unreachable" ); |
2122 | new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); |
2123 | } |
2124 | return UnreachableBlock; |
2125 | } |
2126 | |
2127 | llvm::BasicBlock *getInvokeDest() { |
2128 | if (!EHStack.requiresLandingPad()) return nullptr; |
2129 | return getInvokeDestImpl(); |
2130 | } |
2131 | |
2132 | bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } |
2133 | |
2134 | const TargetInfo &getTarget() const { return Target; } |
2135 | llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } |
2136 | const TargetCodeGenInfo &getTargetHooks() const { |
2137 | return CGM.getTargetCodeGenInfo(); |
2138 | } |
2139 | |
2140 | //===--------------------------------------------------------------------===// |
2141 | // Cleanups |
2142 | //===--------------------------------------------------------------------===// |
2143 | |
2144 | typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); |
2145 | |
2146 | void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, |
2147 | Address arrayEndPointer, |
2148 | QualType elementType, |
2149 | CharUnits elementAlignment, |
2150 | Destroyer *destroyer); |
2151 | void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, |
2152 | llvm::Value *arrayEnd, |
2153 | QualType elementType, |
2154 | CharUnits elementAlignment, |
2155 | Destroyer *destroyer); |
2156 | |
2157 | void pushDestroy(QualType::DestructionKind dtorKind, |
2158 | Address addr, QualType type); |
2159 | void pushEHDestroy(QualType::DestructionKind dtorKind, |
2160 | Address addr, QualType type); |
2161 | void pushDestroy(CleanupKind kind, Address addr, QualType type, |
2162 | Destroyer *destroyer, bool useEHCleanupForArray); |
2163 | void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, |
2164 | QualType type, Destroyer *destroyer, |
2165 | bool useEHCleanupForArray); |
2166 | void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, |
2167 | llvm::Value *CompletePtr, |
2168 | QualType ElementType); |
2169 | void pushStackRestore(CleanupKind kind, Address SPMem); |
2170 | void pushKmpcAllocFree(CleanupKind Kind, |
2171 | std::pair<llvm::Value *, llvm::Value *> AddrSizePair); |
2172 | void emitDestroy(Address addr, QualType type, Destroyer *destroyer, |
2173 | bool useEHCleanupForArray); |
2174 | llvm::Function *generateDestroyHelper(Address addr, QualType type, |
2175 | Destroyer *destroyer, |
2176 | bool useEHCleanupForArray, |
2177 | const VarDecl *VD); |
2178 | void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, |
2179 | QualType elementType, CharUnits elementAlign, |
2180 | Destroyer *destroyer, |
2181 | bool checkZeroLength, bool useEHCleanup); |
2182 | |
2183 | Destroyer *getDestroyer(QualType::DestructionKind destructionKind); |
2184 | |
2185 | /// Determines whether an EH cleanup is required to destroy a type |
2186 | /// with the given destruction kind. |
2187 | bool needsEHCleanup(QualType::DestructionKind kind) { |
2188 | switch (kind) { |
2189 | case QualType::DK_none: |
2190 | return false; |
2191 | case QualType::DK_cxx_destructor: |
2192 | case QualType::DK_objc_weak_lifetime: |
2193 | case QualType::DK_nontrivial_c_struct: |
2194 | return getLangOpts().Exceptions; |
2195 | case QualType::DK_objc_strong_lifetime: |
2196 | return getLangOpts().Exceptions && |
2197 | CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; |
2198 | } |
2199 | llvm_unreachable("bad destruction kind" ); |
2200 | } |
2201 | |
2202 | CleanupKind getCleanupKind(QualType::DestructionKind kind) { |
2203 | return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); |
2204 | } |
2205 | |
2206 | //===--------------------------------------------------------------------===// |
2207 | // Objective-C |
2208 | //===--------------------------------------------------------------------===// |
2209 | |
2210 | void GenerateObjCMethod(const ObjCMethodDecl *OMD); |
2211 | |
2212 | void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); |
2213 | |
2214 | /// GenerateObjCGetter - Synthesize an Objective-C property getter function. |
2215 | void GenerateObjCGetter(ObjCImplementationDecl *IMP, |
2216 | const ObjCPropertyImplDecl *PID); |
2217 | void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
2218 | const ObjCPropertyImplDecl *propImpl, |
2219 | const ObjCMethodDecl *GetterMothodDecl, |
2220 | llvm::Constant *AtomicHelperFn); |
2221 | |
2222 | void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
2223 | ObjCMethodDecl *MD, bool ctor); |
2224 | |
2225 | /// GenerateObjCSetter - Synthesize an Objective-C property setter function |
2226 | /// for the given property. |
2227 | void GenerateObjCSetter(ObjCImplementationDecl *IMP, |
2228 | const ObjCPropertyImplDecl *PID); |
2229 | void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
2230 | const ObjCPropertyImplDecl *propImpl, |
2231 | llvm::Constant *AtomicHelperFn); |
2232 | |
2233 | //===--------------------------------------------------------------------===// |
2234 | // Block Bits |
2235 | //===--------------------------------------------------------------------===// |
2236 | |
2237 | /// Emit block literal. |
2238 | /// \return an LLVM value which is a pointer to a struct which contains |
2239 | /// information about the block, including the block invoke function, the |
2240 | /// captured variables, etc. |
2241 | llvm::Value *EmitBlockLiteral(const BlockExpr *); |
2242 | |
2243 | llvm::Function *GenerateBlockFunction(GlobalDecl GD, |
2244 | const CGBlockInfo &Info, |
2245 | const DeclMapTy &ldm, |
2246 | bool IsLambdaConversionToBlock, |
2247 | bool BuildGlobalBlock); |
2248 | |
2249 | /// Check if \p T is a C++ class that has a destructor that can throw. |
2250 | static bool cxxDestructorCanThrow(QualType T); |
2251 | |
2252 | llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); |
2253 | llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); |
2254 | llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( |
2255 | const ObjCPropertyImplDecl *PID); |
2256 | llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( |
2257 | const ObjCPropertyImplDecl *PID); |
2258 | llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); |
2259 | |
2260 | void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, |
2261 | bool CanThrow); |
2262 | |
2263 | class AutoVarEmission; |
2264 | |
2265 | void emitByrefStructureInit(const AutoVarEmission &emission); |
2266 | |
2267 | /// Enter a cleanup to destroy a __block variable. Note that this |
2268 | /// cleanup should be a no-op if the variable hasn't left the stack |
2269 | /// yet; if a cleanup is required for the variable itself, that needs |
2270 | /// to be done externally. |
2271 | /// |
2272 | /// \param Kind Cleanup kind. |
2273 | /// |
2274 | /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block |
2275 | /// structure that will be passed to _Block_object_dispose. When |
2276 | /// \p LoadBlockVarAddr is true, the address of the field of the block |
2277 | /// structure that holds the address of the __block structure. |
2278 | /// |
2279 | /// \param Flags The flag that will be passed to _Block_object_dispose. |
2280 | /// |
2281 | /// \param LoadBlockVarAddr Indicates whether we need to emit a load from |
2282 | /// \p Addr to get the address of the __block structure. |
2283 | void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, |
2284 | bool LoadBlockVarAddr, bool CanThrow); |
2285 | |
2286 | void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, |
2287 | llvm::Value *ptr); |
2288 | |
2289 | Address LoadBlockStruct(); |
2290 | Address GetAddrOfBlockDecl(const VarDecl *var); |
2291 | |
2292 | /// BuildBlockByrefAddress - Computes the location of the |
2293 | /// data in a variable which is declared as __block. |
2294 | Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, |
2295 | bool followForward = true); |
2296 | Address emitBlockByrefAddress(Address baseAddr, |
2297 | const BlockByrefInfo &info, |
2298 | bool followForward, |
2299 | const llvm::Twine &name); |
2300 | |
2301 | const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); |
2302 | |
2303 | QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); |
2304 | |
2305 | void GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
2306 | const CGFunctionInfo &FnInfo); |
2307 | |
2308 | /// Annotate the function with an attribute that disables TSan checking at |
2309 | /// runtime. |
2310 | void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); |
2311 | |
2312 | /// Emit code for the start of a function. |
2313 | /// \param Loc The location to be associated with the function. |
2314 | /// \param StartLoc The location of the function body. |
2315 | void StartFunction(GlobalDecl GD, |
2316 | QualType RetTy, |
2317 | llvm::Function *Fn, |
2318 | const CGFunctionInfo &FnInfo, |
2319 | const FunctionArgList &Args, |
2320 | SourceLocation Loc = SourceLocation(), |
2321 | SourceLocation StartLoc = SourceLocation()); |
2322 | |
2323 | static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); |
2324 | |
2325 | void EmitConstructorBody(FunctionArgList &Args); |
2326 | void EmitDestructorBody(FunctionArgList &Args); |
2327 | void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); |
2328 | void EmitFunctionBody(const Stmt *Body); |
2329 | void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); |
2330 | |
2331 | void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, |
2332 | CallArgList &CallArgs, |
2333 | const CGFunctionInfo *CallOpFnInfo = nullptr, |
2334 | llvm::Constant *CallOpFn = nullptr); |
2335 | void EmitLambdaBlockInvokeBody(); |
2336 | void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); |
2337 | void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, |
2338 | CallArgList &CallArgs); |
2339 | void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, |
2340 | const CGFunctionInfo **ImplFnInfo, |
2341 | llvm::Function **ImplFn); |
2342 | void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); |
2343 | void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { |
2344 | EmitStoreThroughLValue(Src: RValue::get(V: VLASizeMap[VAT->getSizeExpr()]), Dst: LV); |
2345 | } |
2346 | void EmitAsanPrologueOrEpilogue(bool Prologue); |
2347 | |
2348 | /// Emit the unified return block, trying to avoid its emission when |
2349 | /// possible. |
2350 | /// \return The debug location of the user written return statement if the |
2351 | /// return block is avoided. |
2352 | llvm::DebugLoc EmitReturnBlock(); |
2353 | |
2354 | /// FinishFunction - Complete IR generation of the current function. It is |
2355 | /// legal to call this function even if there is no current insertion point. |
2356 | void FinishFunction(SourceLocation EndLoc=SourceLocation()); |
2357 | |
2358 | void StartThunk(llvm::Function *Fn, GlobalDecl GD, |
2359 | const CGFunctionInfo &FnInfo, bool IsUnprototyped); |
2360 | |
2361 | void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, |
2362 | const ThunkInfo *Thunk, bool IsUnprototyped); |
2363 | |
2364 | void FinishThunk(); |
2365 | |
2366 | /// Emit a musttail call for a thunk with a potentially adjusted this pointer. |
2367 | void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, |
2368 | llvm::FunctionCallee Callee); |
2369 | |
2370 | /// Generate a thunk for the given method. |
2371 | void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
2372 | GlobalDecl GD, const ThunkInfo &Thunk, |
2373 | bool IsUnprototyped); |
2374 | |
2375 | llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, |
2376 | const CGFunctionInfo &FnInfo, |
2377 | GlobalDecl GD, const ThunkInfo &Thunk); |
2378 | |
2379 | void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, |
2380 | FunctionArgList &Args); |
2381 | |
2382 | void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); |
2383 | |
2384 | /// Struct with all information about dynamic [sub]class needed to set vptr. |
2385 | struct VPtr { |
2386 | BaseSubobject Base; |
2387 | const CXXRecordDecl *NearestVBase; |
2388 | CharUnits OffsetFromNearestVBase; |
2389 | const CXXRecordDecl *VTableClass; |
2390 | }; |
2391 | |
2392 | /// Initialize the vtable pointer of the given subobject. |
2393 | void InitializeVTablePointer(const VPtr &vptr); |
2394 | |
2395 | typedef llvm::SmallVector<VPtr, 4> VPtrsVector; |
2396 | |
2397 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
2398 | VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); |
2399 | |
2400 | void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, |
2401 | CharUnits OffsetFromNearestVBase, |
2402 | bool BaseIsNonVirtualPrimaryBase, |
2403 | const CXXRecordDecl *VTableClass, |
2404 | VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); |
2405 | |
2406 | void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); |
2407 | |
2408 | /// GetVTablePtr - Return the Value of the vtable pointer member pointed |
2409 | /// to by This. |
2410 | llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, |
2411 | const CXXRecordDecl *VTableClass); |
2412 | |
2413 | enum CFITypeCheckKind { |
2414 | CFITCK_VCall, |
2415 | CFITCK_NVCall, |
2416 | CFITCK_DerivedCast, |
2417 | CFITCK_UnrelatedCast, |
2418 | CFITCK_ICall, |
2419 | CFITCK_NVMFCall, |
2420 | CFITCK_VMFCall, |
2421 | }; |
2422 | |
2423 | /// Derived is the presumed address of an object of type T after a |
2424 | /// cast. If T is a polymorphic class type, emit a check that the virtual |
2425 | /// table for Derived belongs to a class derived from T. |
2426 | void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, |
2427 | CFITypeCheckKind TCK, SourceLocation Loc); |
2428 | |
2429 | /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. |
2430 | /// If vptr CFI is enabled, emit a check that VTable is valid. |
2431 | void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, |
2432 | CFITypeCheckKind TCK, SourceLocation Loc); |
2433 | |
2434 | /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for |
2435 | /// RD using llvm.type.test. |
2436 | void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, |
2437 | CFITypeCheckKind TCK, SourceLocation Loc); |
2438 | |
2439 | /// If whole-program virtual table optimization is enabled, emit an assumption |
2440 | /// that VTable is a member of RD's type identifier. Or, if vptr CFI is |
2441 | /// enabled, emit a check that VTable is a member of RD's type identifier. |
2442 | void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, |
2443 | llvm::Value *VTable, SourceLocation Loc); |
2444 | |
2445 | /// Returns whether we should perform a type checked load when loading a |
2446 | /// virtual function for virtual calls to members of RD. This is generally |
2447 | /// true when both vcall CFI and whole-program-vtables are enabled. |
2448 | bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); |
2449 | |
2450 | /// Emit a type checked load from the given vtable. |
2451 | llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, |
2452 | llvm::Value *VTable, |
2453 | llvm::Type *VTableTy, |
2454 | uint64_t VTableByteOffset); |
2455 | |
2456 | /// EnterDtorCleanups - Enter the cleanups necessary to complete the |
2457 | /// given phase of destruction for a destructor. The end result |
2458 | /// should call destructors on members and base classes in reverse |
2459 | /// order of their construction. |
2460 | void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); |
2461 | |
2462 | /// ShouldInstrumentFunction - Return true if the current function should be |
2463 | /// instrumented with __cyg_profile_func_* calls |
2464 | bool ShouldInstrumentFunction(); |
2465 | |
2466 | /// ShouldSkipSanitizerInstrumentation - Return true if the current function |
2467 | /// should not be instrumented with sanitizers. |
2468 | bool ShouldSkipSanitizerInstrumentation(); |
2469 | |
2470 | /// ShouldXRayInstrument - Return true if the current function should be |
2471 | /// instrumented with XRay nop sleds. |
2472 | bool ShouldXRayInstrumentFunction() const; |
2473 | |
2474 | /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit |
2475 | /// XRay custom event handling calls. |
2476 | bool AlwaysEmitXRayCustomEvents() const; |
2477 | |
2478 | /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit |
2479 | /// XRay typed event handling calls. |
2480 | bool AlwaysEmitXRayTypedEvents() const; |
2481 | |
2482 | /// Return a type hash constant for a function instrumented by |
2483 | /// -fsanitize=function. |
2484 | llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; |
2485 | |
2486 | /// EmitFunctionProlog - Emit the target specific LLVM code to load the |
2487 | /// arguments for the given function. This is also responsible for naming the |
2488 | /// LLVM function arguments. |
2489 | void EmitFunctionProlog(const CGFunctionInfo &FI, |
2490 | llvm::Function *Fn, |
2491 | const FunctionArgList &Args); |
2492 | |
2493 | /// EmitFunctionEpilog - Emit the target specific LLVM code to return the |
2494 | /// given temporary. |
2495 | void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, |
2496 | SourceLocation EndLoc); |
2497 | |
2498 | /// Emit a test that checks if the return value \p RV is nonnull. |
2499 | void EmitReturnValueCheck(llvm::Value *RV); |
2500 | |
2501 | /// EmitStartEHSpec - Emit the start of the exception spec. |
2502 | void EmitStartEHSpec(const Decl *D); |
2503 | |
2504 | /// EmitEndEHSpec - Emit the end of the exception spec. |
2505 | void EmitEndEHSpec(const Decl *D); |
2506 | |
2507 | /// getTerminateLandingPad - Return a landing pad that just calls terminate. |
2508 | llvm::BasicBlock *getTerminateLandingPad(); |
2509 | |
2510 | /// getTerminateLandingPad - Return a cleanup funclet that just calls |
2511 | /// terminate. |
2512 | llvm::BasicBlock *getTerminateFunclet(); |
2513 | |
2514 | /// getTerminateHandler - Return a handler (not a landing pad, just |
2515 | /// a catch handler) that just calls terminate. This is used when |
2516 | /// a terminate scope encloses a try. |
2517 | llvm::BasicBlock *getTerminateHandler(); |
2518 | |
2519 | llvm::Type *ConvertTypeForMem(QualType T); |
2520 | llvm::Type *ConvertType(QualType T); |
2521 | llvm::Type *ConvertType(const TypeDecl *T) { |
2522 | return ConvertType(T: getContext().getTypeDeclType(Decl: T)); |
2523 | } |
2524 | |
2525 | /// LoadObjCSelf - Load the value of self. This function is only valid while |
2526 | /// generating code for an Objective-C method. |
2527 | llvm::Value *LoadObjCSelf(); |
2528 | |
2529 | /// TypeOfSelfObject - Return type of object that this self represents. |
2530 | QualType TypeOfSelfObject(); |
2531 | |
2532 | /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. |
2533 | static TypeEvaluationKind getEvaluationKind(QualType T); |
2534 | |
2535 | static bool hasScalarEvaluationKind(QualType T) { |
2536 | return getEvaluationKind(T) == TEK_Scalar; |
2537 | } |
2538 | |
2539 | static bool hasAggregateEvaluationKind(QualType T) { |
2540 | return getEvaluationKind(T) == TEK_Aggregate; |
2541 | } |
2542 | |
2543 | /// createBasicBlock - Create an LLVM basic block. |
2544 | llvm::BasicBlock *createBasicBlock(const Twine &name = "" , |
2545 | llvm::Function *parent = nullptr, |
2546 | llvm::BasicBlock *before = nullptr) { |
2547 | return llvm::BasicBlock::Create(Context&: getLLVMContext(), Name: name, Parent: parent, InsertBefore: before); |
2548 | } |
2549 | |
2550 | /// getBasicBlockForLabel - Return the LLVM basicblock that the specified |
2551 | /// label maps to. |
2552 | JumpDest getJumpDestForLabel(const LabelDecl *S); |
2553 | |
2554 | /// SimplifyForwardingBlocks - If the given basic block is only a branch to |
2555 | /// another basic block, simplify it. This assumes that no other code could |
2556 | /// potentially reference the basic block. |
2557 | void SimplifyForwardingBlocks(llvm::BasicBlock *BB); |
2558 | |
2559 | /// EmitBlock - Emit the given block \arg BB and set it as the insert point, |
2560 | /// adding a fall-through branch from the current insert block if |
2561 | /// necessary. It is legal to call this function even if there is no current |
2562 | /// insertion point. |
2563 | /// |
2564 | /// IsFinished - If true, indicates that the caller has finished emitting |
2565 | /// branches to the given block and does not expect to emit code into it. This |
2566 | /// means the block can be ignored if it is unreachable. |
2567 | void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); |
2568 | |
2569 | /// EmitBlockAfterUses - Emit the given block somewhere hopefully |
2570 | /// near its uses, and leave the insertion point in it. |
2571 | void EmitBlockAfterUses(llvm::BasicBlock *BB); |
2572 | |
2573 | /// EmitBranch - Emit a branch to the specified basic block from the current |
2574 | /// insert block, taking care to avoid creation of branches from dummy |
2575 | /// blocks. It is legal to call this function even if there is no current |
2576 | /// insertion point. |
2577 | /// |
2578 | /// This function clears the current insertion point. The caller should follow |
2579 | /// calls to this function with calls to Emit*Block prior to generation new |
2580 | /// code. |
2581 | void EmitBranch(llvm::BasicBlock *Block); |
2582 | |
2583 | /// HaveInsertPoint - True if an insertion point is defined. If not, this |
2584 | /// indicates that the current code being emitted is unreachable. |
2585 | bool HaveInsertPoint() const { |
2586 | return Builder.GetInsertBlock() != nullptr; |
2587 | } |
2588 | |
2589 | /// EnsureInsertPoint - Ensure that an insertion point is defined so that |
2590 | /// emitted IR has a place to go. Note that by definition, if this function |
2591 | /// creates a block then that block is unreachable; callers may do better to |
2592 | /// detect when no insertion point is defined and simply skip IR generation. |
2593 | void EnsureInsertPoint() { |
2594 | if (!HaveInsertPoint()) |
2595 | EmitBlock(BB: createBasicBlock()); |
2596 | } |
2597 | |
2598 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2599 | /// specified stmt yet. |
2600 | void ErrorUnsupported(const Stmt *S, const char *Type); |
2601 | |
2602 | //===--------------------------------------------------------------------===// |
2603 | // Helpers |
2604 | //===--------------------------------------------------------------------===// |
2605 | |
2606 | Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, |
2607 | llvm::BasicBlock *LHSBlock, |
2608 | llvm::BasicBlock *RHSBlock, |
2609 | llvm::BasicBlock *MergeBlock, |
2610 | QualType MergedType) { |
2611 | Builder.SetInsertPoint(MergeBlock); |
2612 | llvm::PHINode *PtrPhi = Builder.CreatePHI(Ty: LHS.getType(), NumReservedValues: 2, Name: "cond" ); |
2613 | PtrPhi->addIncoming(V: LHS.getBasePointer(), BB: LHSBlock); |
2614 | PtrPhi->addIncoming(V: RHS.getBasePointer(), BB: RHSBlock); |
2615 | LHS.replaceBasePointer(P: PtrPhi); |
2616 | LHS.setAlignment(std::min(a: LHS.getAlignment(), b: RHS.getAlignment())); |
2617 | return LHS; |
2618 | } |
2619 | |
2620 | /// Construct an address with the natural alignment of T. If a pointer to T |
2621 | /// is expected to be signed, the pointer passed to this function must have |
2622 | /// been signed, and the returned Address will have the pointer authentication |
2623 | /// information needed to authenticate the signed pointer. |
2624 | Address makeNaturalAddressForPointer( |
2625 | llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), |
2626 | bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, |
2627 | TBAAAccessInfo *TBAAInfo = nullptr, |
2628 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { |
2629 | if (Alignment.isZero()) |
2630 | Alignment = |
2631 | CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, forPointeeType: ForPointeeType); |
2632 | return Address(Ptr, ConvertTypeForMem(T), Alignment, nullptr, |
2633 | IsKnownNonNull); |
2634 | } |
2635 | |
2636 | LValue MakeAddrLValue(Address Addr, QualType T, |
2637 | AlignmentSource Source = AlignmentSource::Type) { |
2638 | return MakeAddrLValue(Addr, T, BaseInfo: LValueBaseInfo(Source), |
2639 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2640 | } |
2641 | |
2642 | LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, |
2643 | TBAAAccessInfo TBAAInfo) { |
2644 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo, TBAAInfo); |
2645 | } |
2646 | |
2647 | LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2648 | AlignmentSource Source = AlignmentSource::Type) { |
2649 | return MakeAddrLValue(Addr: makeNaturalAddressForPointer(Ptr: V, T, Alignment), T, |
2650 | BaseInfo: LValueBaseInfo(Source), TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2651 | } |
2652 | |
2653 | /// Same as MakeAddrLValue above except that the pointer is known to be |
2654 | /// unsigned. |
2655 | LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2656 | AlignmentSource Source = AlignmentSource::Type) { |
2657 | Address Addr(V, ConvertTypeForMem(T), Alignment); |
2658 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2659 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2660 | } |
2661 | |
2662 | LValue |
2663 | MakeAddrLValueWithoutTBAA(Address Addr, QualType T, |
2664 | AlignmentSource Source = AlignmentSource::Type) { |
2665 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2666 | TBAAInfo: TBAAAccessInfo()); |
2667 | } |
2668 | |
2669 | /// Given a value of type T* that may not be to a complete object, construct |
2670 | /// an l-value with the natural pointee alignment of T. |
2671 | LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); |
2672 | |
2673 | LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); |
2674 | |
2675 | /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known |
2676 | /// to be unsigned. |
2677 | LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); |
2678 | |
2679 | LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); |
2680 | |
2681 | Address EmitLoadOfReference(LValue RefLVal, |
2682 | LValueBaseInfo *PointeeBaseInfo = nullptr, |
2683 | TBAAAccessInfo *PointeeTBAAInfo = nullptr); |
2684 | LValue EmitLoadOfReferenceLValue(LValue RefLVal); |
2685 | LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, |
2686 | AlignmentSource Source = |
2687 | AlignmentSource::Type) { |
2688 | LValue RefLVal = MakeAddrLValue(Addr: RefAddr, T: RefTy, BaseInfo: LValueBaseInfo(Source), |
2689 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: RefTy)); |
2690 | return EmitLoadOfReferenceLValue(RefLVal); |
2691 | } |
2692 | |
2693 | /// Load a pointer with type \p PtrTy stored at address \p Ptr. |
2694 | /// Note that \p PtrTy is the type of the loaded pointer, not the addresses |
2695 | /// it is loaded from. |
2696 | Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, |
2697 | LValueBaseInfo *BaseInfo = nullptr, |
2698 | TBAAAccessInfo *TBAAInfo = nullptr); |
2699 | LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); |
2700 | |
2701 | /// CreateTempAlloca - This creates an alloca and inserts it into the entry |
2702 | /// block if \p ArraySize is nullptr, otherwise inserts it at the current |
2703 | /// insertion point of the builder. The caller is responsible for setting an |
2704 | /// appropriate alignment on |
2705 | /// the alloca. |
2706 | /// |
2707 | /// \p ArraySize is the number of array elements to be allocated if it |
2708 | /// is not nullptr. |
2709 | /// |
2710 | /// LangAS::Default is the address space of pointers to local variables and |
2711 | /// temporaries, as exposed in the source language. In certain |
2712 | /// configurations, this is not the same as the alloca address space, and a |
2713 | /// cast is needed to lift the pointer from the alloca AS into |
2714 | /// LangAS::Default. This can happen when the target uses a restricted |
2715 | /// address space for the stack but the source language requires |
2716 | /// LangAS::Default to be a generic address space. The latter condition is |
2717 | /// common for most programming languages; OpenCL is an exception in that |
2718 | /// LangAS::Default is the private address space, which naturally maps |
2719 | /// to the stack. |
2720 | /// |
2721 | /// Because the address of a temporary is often exposed to the program in |
2722 | /// various ways, this function will perform the cast. The original alloca |
2723 | /// instruction is returned through \p Alloca if it is not nullptr. |
2724 | /// |
2725 | /// The cast is not performaed in CreateTempAllocaWithoutCast. This is |
2726 | /// more efficient if the caller knows that the address will not be exposed. |
2727 | llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp" , |
2728 | llvm::Value *ArraySize = nullptr); |
2729 | RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, |
2730 | const Twine &Name = "tmp" , |
2731 | llvm::Value *ArraySize = nullptr, |
2732 | RawAddress *Alloca = nullptr); |
2733 | RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, |
2734 | const Twine &Name = "tmp" , |
2735 | llvm::Value *ArraySize = nullptr); |
2736 | |
2737 | /// CreateDefaultAlignedTempAlloca - This creates an alloca with the |
2738 | /// default ABI alignment of the given LLVM type. |
2739 | /// |
2740 | /// IMPORTANT NOTE: This is *not* generally the right alignment for |
2741 | /// any given AST type that happens to have been lowered to the |
2742 | /// given IR type. This should only ever be used for function-local, |
2743 | /// IR-driven manipulations like saving and restoring a value. Do |
2744 | /// not hand this address off to arbitrary IRGen routines, and especially |
2745 | /// do not pass it as an argument to a function that might expect a |
2746 | /// properly ABI-aligned value. |
2747 | RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, |
2748 | const Twine &Name = "tmp" ); |
2749 | |
2750 | /// CreateIRTemp - Create a temporary IR object of the given type, with |
2751 | /// appropriate alignment. This routine should only be used when an temporary |
2752 | /// value needs to be stored into an alloca (for example, to avoid explicit |
2753 | /// PHI construction), but the type is the IR type, not the type appropriate |
2754 | /// for storing in memory. |
2755 | /// |
2756 | /// That is, this is exactly equivalent to CreateMemTemp, but calling |
2757 | /// ConvertType instead of ConvertTypeForMem. |
2758 | RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp" ); |
2759 | |
2760 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2761 | /// appropriate alignmen and cast it to the default address space. Returns |
2762 | /// the original alloca instruction by \p Alloca if it is not nullptr. |
2763 | RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp" , |
2764 | RawAddress *Alloca = nullptr); |
2765 | RawAddress CreateMemTemp(QualType T, CharUnits Align, |
2766 | const Twine &Name = "tmp" , |
2767 | RawAddress *Alloca = nullptr); |
2768 | |
2769 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2770 | /// appropriate alignmen without casting it to the default address space. |
2771 | RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp" ); |
2772 | RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, |
2773 | const Twine &Name = "tmp" ); |
2774 | |
2775 | /// CreateAggTemp - Create a temporary memory object for the given |
2776 | /// aggregate type. |
2777 | AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp" , |
2778 | RawAddress *Alloca = nullptr) { |
2779 | return AggValueSlot::forAddr( |
2780 | addr: CreateMemTemp(T, Name, Alloca), quals: T.getQualifiers(), |
2781 | isDestructed: AggValueSlot::IsNotDestructed, needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
2782 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap); |
2783 | } |
2784 | |
2785 | /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
2786 | /// expression and compare the result against zero, returning an Int1Ty value. |
2787 | llvm::Value *EvaluateExprAsBool(const Expr *E); |
2788 | |
2789 | /// Retrieve the implicit cast expression of the rhs in a binary operator |
2790 | /// expression by passing pointers to Value and QualType |
2791 | /// This is used for implicit bitfield conversion checks, which |
2792 | /// must compare with the value before potential truncation. |
2793 | llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, |
2794 | llvm::Value **Previous, |
2795 | QualType *SrcType); |
2796 | |
2797 | /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, |
2798 | /// so we use the value after conversion. |
2799 | void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, |
2800 | llvm::Value *Dst, QualType DstType, |
2801 | const CGBitFieldInfo &Info, |
2802 | SourceLocation Loc); |
2803 | |
2804 | /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. |
2805 | void EmitIgnoredExpr(const Expr *E); |
2806 | |
2807 | /// EmitAnyExpr - Emit code to compute the specified expression which can have |
2808 | /// any type. The result is returned as an RValue struct. If this is an |
2809 | /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
2810 | /// the result should be returned. |
2811 | /// |
2812 | /// \param ignoreResult True if the resulting value isn't used. |
2813 | RValue EmitAnyExpr(const Expr *E, |
2814 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
2815 | bool ignoreResult = false); |
2816 | |
2817 | // EmitVAListRef - Emit a "reference" to a va_list; this is either the address |
2818 | // or the value of the expression, depending on how va_list is defined. |
2819 | Address EmitVAListRef(const Expr *E); |
2820 | |
2821 | /// Emit a "reference" to a __builtin_ms_va_list; this is |
2822 | /// always the value of the expression, because a __builtin_ms_va_list is a |
2823 | /// pointer to a char. |
2824 | Address EmitMSVAListRef(const Expr *E); |
2825 | |
2826 | /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will |
2827 | /// always be accessible even if no aggregate location is provided. |
2828 | RValue EmitAnyExprToTemp(const Expr *E); |
2829 | |
2830 | /// EmitAnyExprToMem - Emits the code necessary to evaluate an |
2831 | /// arbitrary expression into the given memory location. |
2832 | void EmitAnyExprToMem(const Expr *E, Address Location, |
2833 | Qualifiers Quals, bool IsInitializer); |
2834 | |
2835 | void EmitAnyExprToExn(const Expr *E, Address Addr); |
2836 | |
2837 | /// EmitExprAsInit - Emits the code necessary to initialize a |
2838 | /// location in memory with the given initializer. |
2839 | void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
2840 | bool capturedByInit); |
2841 | |
2842 | /// hasVolatileMember - returns true if aggregate type has a volatile |
2843 | /// member. |
2844 | bool hasVolatileMember(QualType T) { |
2845 | if (const RecordType *RT = T->getAs<RecordType>()) { |
2846 | const RecordDecl *RD = cast<RecordDecl>(Val: RT->getDecl()); |
2847 | return RD->hasVolatileMember(); |
2848 | } |
2849 | return false; |
2850 | } |
2851 | |
2852 | /// Determine whether a return value slot may overlap some other object. |
2853 | AggValueSlot::Overlap_t getOverlapForReturnValue() { |
2854 | // FIXME: Assuming no overlap here breaks guaranteed copy elision for base |
2855 | // class subobjects. These cases may need to be revisited depending on the |
2856 | // resolution of the relevant core issue. |
2857 | return AggValueSlot::DoesNotOverlap; |
2858 | } |
2859 | |
2860 | /// Determine whether a field initialization may overlap some other object. |
2861 | AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); |
2862 | |
2863 | /// Determine whether a base class initialization may overlap some other |
2864 | /// object. |
2865 | AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, |
2866 | const CXXRecordDecl *BaseRD, |
2867 | bool IsVirtual); |
2868 | |
2869 | /// Emit an aggregate assignment. |
2870 | void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { |
2871 | bool IsVolatile = hasVolatileMember(T: EltTy); |
2872 | EmitAggregateCopy(Dest, Src, EltTy, MayOverlap: AggValueSlot::MayOverlap, isVolatile: IsVolatile); |
2873 | } |
2874 | |
2875 | void EmitAggregateCopyCtor(LValue Dest, LValue Src, |
2876 | AggValueSlot::Overlap_t MayOverlap) { |
2877 | EmitAggregateCopy(Dest, Src, EltTy: Src.getType(), MayOverlap); |
2878 | } |
2879 | |
2880 | /// EmitAggregateCopy - Emit an aggregate copy. |
2881 | /// |
2882 | /// \param isVolatile \c true iff either the source or the destination is |
2883 | /// volatile. |
2884 | /// \param MayOverlap Whether the tail padding of the destination might be |
2885 | /// occupied by some other object. More efficient code can often be |
2886 | /// generated if not. |
2887 | void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, |
2888 | AggValueSlot::Overlap_t MayOverlap, |
2889 | bool isVolatile = false); |
2890 | |
2891 | /// GetAddrOfLocalVar - Return the address of a local variable. |
2892 | Address GetAddrOfLocalVar(const VarDecl *VD) { |
2893 | auto it = LocalDeclMap.find(VD); |
2894 | assert(it != LocalDeclMap.end() && |
2895 | "Invalid argument to GetAddrOfLocalVar(), no decl!" ); |
2896 | return it->second; |
2897 | } |
2898 | |
2899 | /// Given an opaque value expression, return its LValue mapping if it exists, |
2900 | /// otherwise create one. |
2901 | LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); |
2902 | |
2903 | /// Given an opaque value expression, return its RValue mapping if it exists, |
2904 | /// otherwise create one. |
2905 | RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); |
2906 | |
2907 | /// Get the index of the current ArrayInitLoopExpr, if any. |
2908 | llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } |
2909 | |
2910 | /// getAccessedFieldNo - Given an encoded value and a result number, return |
2911 | /// the input field number being accessed. |
2912 | static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); |
2913 | |
2914 | llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); |
2915 | llvm::BasicBlock *GetIndirectGotoBlock(); |
2916 | |
2917 | /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. |
2918 | static bool IsWrappedCXXThis(const Expr *E); |
2919 | |
2920 | /// EmitNullInitialization - Generate code to set a value of the given type to |
2921 | /// null, If the type contains data member pointers, they will be initialized |
2922 | /// to -1 in accordance with the Itanium C++ ABI. |
2923 | void EmitNullInitialization(Address DestPtr, QualType Ty); |
2924 | |
2925 | /// Emits a call to an LLVM variable-argument intrinsic, either |
2926 | /// \c llvm.va_start or \c llvm.va_end. |
2927 | /// \param ArgValue A reference to the \c va_list as emitted by either |
2928 | /// \c EmitVAListRef or \c EmitMSVAListRef. |
2929 | /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, |
2930 | /// calls \c llvm.va_end. |
2931 | llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); |
2932 | |
2933 | /// Generate code to get an argument from the passed in pointer |
2934 | /// and update it accordingly. |
2935 | /// \param VE The \c VAArgExpr for which to generate code. |
2936 | /// \param VAListAddr Receives a reference to the \c va_list as emitted by |
2937 | /// either \c EmitVAListRef or \c EmitMSVAListRef. |
2938 | /// \returns A pointer to the argument. |
2939 | // FIXME: We should be able to get rid of this method and use the va_arg |
2940 | // instruction in LLVM instead once it works well enough. |
2941 | Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); |
2942 | |
2943 | /// emitArrayLength - Compute the length of an array, even if it's a |
2944 | /// VLA, and drill down to the base element type. |
2945 | llvm::Value *emitArrayLength(const ArrayType *arrayType, |
2946 | QualType &baseType, |
2947 | Address &addr); |
2948 | |
2949 | /// EmitVLASize - Capture all the sizes for the VLA expressions in |
2950 | /// the given variably-modified type and store them in the VLASizeMap. |
2951 | /// |
2952 | /// This function can be called with a null (unreachable) insert point. |
2953 | void EmitVariablyModifiedType(QualType Ty); |
2954 | |
2955 | struct VlaSizePair { |
2956 | llvm::Value *NumElts; |
2957 | QualType Type; |
2958 | |
2959 | VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} |
2960 | }; |
2961 | |
2962 | /// Return the number of elements for a single dimension |
2963 | /// for the given array type. |
2964 | VlaSizePair getVLAElements1D(const VariableArrayType *vla); |
2965 | VlaSizePair getVLAElements1D(QualType vla); |
2966 | |
2967 | /// Returns an LLVM value that corresponds to the size, |
2968 | /// in non-variably-sized elements, of a variable length array type, |
2969 | /// plus that largest non-variably-sized element type. Assumes that |
2970 | /// the type has already been emitted with EmitVariablyModifiedType. |
2971 | VlaSizePair getVLASize(const VariableArrayType *vla); |
2972 | VlaSizePair getVLASize(QualType vla); |
2973 | |
2974 | /// LoadCXXThis - Load the value of 'this'. This function is only valid while |
2975 | /// generating code for an C++ member function. |
2976 | llvm::Value *LoadCXXThis() { |
2977 | assert(CXXThisValue && "no 'this' value for this function" ); |
2978 | return CXXThisValue; |
2979 | } |
2980 | Address LoadCXXThisAddress(); |
2981 | |
2982 | /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have |
2983 | /// virtual bases. |
2984 | // FIXME: Every place that calls LoadCXXVTT is something |
2985 | // that needs to be abstracted properly. |
2986 | llvm::Value *LoadCXXVTT() { |
2987 | assert(CXXStructorImplicitParamValue && "no VTT value for this function" ); |
2988 | return CXXStructorImplicitParamValue; |
2989 | } |
2990 | |
2991 | /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a |
2992 | /// complete class to the given direct base. |
2993 | Address |
2994 | GetAddressOfDirectBaseInCompleteClass(Address Value, |
2995 | const CXXRecordDecl *Derived, |
2996 | const CXXRecordDecl *Base, |
2997 | bool BaseIsVirtual); |
2998 | |
2999 | static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); |
3000 | |
3001 | /// GetAddressOfBaseClass - This function will add the necessary delta to the |
3002 | /// load of 'this' and returns address of the base class. |
3003 | Address GetAddressOfBaseClass(Address Value, |
3004 | const CXXRecordDecl *Derived, |
3005 | CastExpr::path_const_iterator PathBegin, |
3006 | CastExpr::path_const_iterator PathEnd, |
3007 | bool NullCheckValue, SourceLocation Loc); |
3008 | |
3009 | Address GetAddressOfDerivedClass(Address Value, |
3010 | const CXXRecordDecl *Derived, |
3011 | CastExpr::path_const_iterator PathBegin, |
3012 | CastExpr::path_const_iterator PathEnd, |
3013 | bool NullCheckValue); |
3014 | |
3015 | /// GetVTTParameter - Return the VTT parameter that should be passed to a |
3016 | /// base constructor/destructor with virtual bases. |
3017 | /// FIXME: VTTs are Itanium ABI-specific, so the definition should move |
3018 | /// to ItaniumCXXABI.cpp together with all the references to VTT. |
3019 | llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, |
3020 | bool Delegating); |
3021 | |
3022 | void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3023 | CXXCtorType CtorType, |
3024 | const FunctionArgList &Args, |
3025 | SourceLocation Loc); |
3026 | // It's important not to confuse this and the previous function. Delegating |
3027 | // constructors are the C++0x feature. The constructor delegate optimization |
3028 | // is used to reduce duplication in the base and complete consturctors where |
3029 | // they are substantially the same. |
3030 | void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3031 | const FunctionArgList &Args); |
3032 | |
3033 | /// Emit a call to an inheriting constructor (that is, one that invokes a |
3034 | /// constructor inherited from a base class) by inlining its definition. This |
3035 | /// is necessary if the ABI does not support forwarding the arguments to the |
3036 | /// base class constructor (because they're variadic or similar). |
3037 | void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3038 | CXXCtorType CtorType, |
3039 | bool ForVirtualBase, |
3040 | bool Delegating, |
3041 | CallArgList &Args); |
3042 | |
3043 | /// Emit a call to a constructor inherited from a base class, passing the |
3044 | /// current constructor's arguments along unmodified (without even making |
3045 | /// a copy). |
3046 | void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, |
3047 | bool ForVirtualBase, Address This, |
3048 | bool InheritedFromVBase, |
3049 | const CXXInheritedCtorInitExpr *E); |
3050 | |
3051 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3052 | bool ForVirtualBase, bool Delegating, |
3053 | AggValueSlot ThisAVS, const CXXConstructExpr *E); |
3054 | |
3055 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3056 | bool ForVirtualBase, bool Delegating, |
3057 | Address This, CallArgList &Args, |
3058 | AggValueSlot::Overlap_t Overlap, |
3059 | SourceLocation Loc, bool NewPointerIsChecked); |
3060 | |
3061 | /// Emit assumption load for all bases. Requires to be called only on |
3062 | /// most-derived class and not under construction of the object. |
3063 | void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); |
3064 | |
3065 | /// Emit assumption that vptr load == global vtable. |
3066 | void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); |
3067 | |
3068 | void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, |
3069 | Address This, Address Src, |
3070 | const CXXConstructExpr *E); |
3071 | |
3072 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3073 | const ArrayType *ArrayTy, |
3074 | Address ArrayPtr, |
3075 | const CXXConstructExpr *E, |
3076 | bool NewPointerIsChecked, |
3077 | bool ZeroInitialization = false); |
3078 | |
3079 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3080 | llvm::Value *NumElements, |
3081 | Address ArrayPtr, |
3082 | const CXXConstructExpr *E, |
3083 | bool NewPointerIsChecked, |
3084 | bool ZeroInitialization = false); |
3085 | |
3086 | static Destroyer destroyCXXObject; |
3087 | |
3088 | void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, |
3089 | bool ForVirtualBase, bool Delegating, Address This, |
3090 | QualType ThisTy); |
3091 | |
3092 | void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, |
3093 | llvm::Type *ElementTy, Address NewPtr, |
3094 | llvm::Value *NumElements, |
3095 | llvm::Value *AllocSizeWithoutCookie); |
3096 | |
3097 | void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, |
3098 | Address Ptr); |
3099 | |
3100 | void EmitSehCppScopeBegin(); |
3101 | void EmitSehCppScopeEnd(); |
3102 | void EmitSehTryScopeBegin(); |
3103 | void EmitSehTryScopeEnd(); |
3104 | |
3105 | llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); |
3106 | void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); |
3107 | |
3108 | llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); |
3109 | void EmitCXXDeleteExpr(const CXXDeleteExpr *E); |
3110 | |
3111 | void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, |
3112 | QualType DeleteTy, llvm::Value *NumElements = nullptr, |
3113 | CharUnits CookieSize = CharUnits()); |
3114 | |
3115 | RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, |
3116 | const CallExpr *TheCallExpr, bool IsDelete); |
3117 | |
3118 | llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); |
3119 | llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); |
3120 | Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); |
3121 | |
3122 | /// Situations in which we might emit a check for the suitability of a |
3123 | /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in |
3124 | /// compiler-rt. |
3125 | enum TypeCheckKind { |
3126 | /// Checking the operand of a load. Must be suitably sized and aligned. |
3127 | TCK_Load, |
3128 | /// Checking the destination of a store. Must be suitably sized and aligned. |
3129 | TCK_Store, |
3130 | /// Checking the bound value in a reference binding. Must be suitably sized |
3131 | /// and aligned, but is not required to refer to an object (until the |
3132 | /// reference is used), per core issue 453. |
3133 | TCK_ReferenceBinding, |
3134 | /// Checking the object expression in a non-static data member access. Must |
3135 | /// be an object within its lifetime. |
3136 | TCK_MemberAccess, |
3137 | /// Checking the 'this' pointer for a call to a non-static member function. |
3138 | /// Must be an object within its lifetime. |
3139 | TCK_MemberCall, |
3140 | /// Checking the 'this' pointer for a constructor call. |
3141 | TCK_ConstructorCall, |
3142 | /// Checking the operand of a static_cast to a derived pointer type. Must be |
3143 | /// null or an object within its lifetime. |
3144 | TCK_DowncastPointer, |
3145 | /// Checking the operand of a static_cast to a derived reference type. Must |
3146 | /// be an object within its lifetime. |
3147 | TCK_DowncastReference, |
3148 | /// Checking the operand of a cast to a base object. Must be suitably sized |
3149 | /// and aligned. |
3150 | TCK_Upcast, |
3151 | /// Checking the operand of a cast to a virtual base object. Must be an |
3152 | /// object within its lifetime. |
3153 | TCK_UpcastToVirtualBase, |
3154 | /// Checking the value assigned to a _Nonnull pointer. Must not be null. |
3155 | TCK_NonnullAssign, |
3156 | /// Checking the operand of a dynamic_cast or a typeid expression. Must be |
3157 | /// null or an object within its lifetime. |
3158 | TCK_DynamicOperation |
3159 | }; |
3160 | |
3161 | /// Determine whether the pointer type check \p TCK permits null pointers. |
3162 | static bool isNullPointerAllowed(TypeCheckKind TCK); |
3163 | |
3164 | /// Determine whether the pointer type check \p TCK requires a vptr check. |
3165 | static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); |
3166 | |
3167 | /// Whether any type-checking sanitizers are enabled. If \c false, |
3168 | /// calls to EmitTypeCheck can be skipped. |
3169 | bool sanitizePerformTypeCheck() const; |
3170 | |
3171 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, |
3172 | QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), |
3173 | llvm::Value *ArraySize = nullptr) { |
3174 | if (!sanitizePerformTypeCheck()) |
3175 | return; |
3176 | EmitTypeCheck(TCK, Loc, V: LV.emitRawPointer(CGF&: *this), Type, Alignment: LV.getAlignment(), |
3177 | SkippedChecks, ArraySize); |
3178 | } |
3179 | |
3180 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, |
3181 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3182 | SanitizerSet SkippedChecks = SanitizerSet(), |
3183 | llvm::Value *ArraySize = nullptr) { |
3184 | if (!sanitizePerformTypeCheck()) |
3185 | return; |
3186 | EmitTypeCheck(TCK, Loc, V: Addr.emitRawPointer(CGF&: *this), Type, Alignment, |
3187 | SkippedChecks, ArraySize); |
3188 | } |
3189 | |
3190 | /// Emit a check that \p V is the address of storage of the |
3191 | /// appropriate size and alignment for an object of type \p Type |
3192 | /// (or if ArraySize is provided, for an array of that bound). |
3193 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, |
3194 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3195 | SanitizerSet SkippedChecks = SanitizerSet(), |
3196 | llvm::Value *ArraySize = nullptr); |
3197 | |
3198 | /// Emit a check that \p Base points into an array object, which |
3199 | /// we can access at index \p Index. \p Accessed should be \c false if we |
3200 | /// this expression is used as an lvalue, for instance in "&Arr[Idx]". |
3201 | void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, |
3202 | QualType IndexType, bool Accessed); |
3203 | void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, |
3204 | llvm::Value *Index, QualType IndexType, |
3205 | QualType IndexedType, bool Accessed); |
3206 | |
3207 | // Find a struct's flexible array member. It may be embedded inside multiple |
3208 | // sub-structs, but must still be the last field. |
3209 | const FieldDecl *FindFlexibleArrayMemberField(ASTContext &Ctx, |
3210 | const RecordDecl *RD, |
3211 | StringRef Name, |
3212 | uint64_t &Offset); |
3213 | |
3214 | /// Find the FieldDecl specified in a FAM's "counted_by" attribute. Returns |
3215 | /// \p nullptr if either the attribute or the field doesn't exist. |
3216 | const FieldDecl *FindCountedByField(const FieldDecl *FD); |
3217 | |
3218 | /// Build an expression accessing the "counted_by" field. |
3219 | llvm::Value *EmitCountedByFieldExpr(const Expr *Base, |
3220 | const FieldDecl *FAMDecl, |
3221 | const FieldDecl *CountDecl); |
3222 | |
3223 | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
3224 | bool isInc, bool isPre); |
3225 | ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
3226 | bool isInc, bool isPre); |
3227 | |
3228 | /// Converts Location to a DebugLoc, if debug information is enabled. |
3229 | llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); |
3230 | |
3231 | /// Get the record field index as represented in debug info. |
3232 | unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); |
3233 | |
3234 | |
3235 | //===--------------------------------------------------------------------===// |
3236 | // Declaration Emission |
3237 | //===--------------------------------------------------------------------===// |
3238 | |
3239 | /// EmitDecl - Emit a declaration. |
3240 | /// |
3241 | /// This function can be called with a null (unreachable) insert point. |
3242 | void EmitDecl(const Decl &D); |
3243 | |
3244 | /// EmitVarDecl - Emit a local variable declaration. |
3245 | /// |
3246 | /// This function can be called with a null (unreachable) insert point. |
3247 | void EmitVarDecl(const VarDecl &D); |
3248 | |
3249 | void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
3250 | bool capturedByInit); |
3251 | |
3252 | typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, |
3253 | llvm::Value *Address); |
3254 | |
3255 | /// Determine whether the given initializer is trivial in the sense |
3256 | /// that it requires no code to be generated. |
3257 | bool isTrivialInitializer(const Expr *Init); |
3258 | |
3259 | /// EmitAutoVarDecl - Emit an auto variable declaration. |
3260 | /// |
3261 | /// This function can be called with a null (unreachable) insert point. |
3262 | void EmitAutoVarDecl(const VarDecl &D); |
3263 | |
3264 | class AutoVarEmission { |
3265 | friend class CodeGenFunction; |
3266 | |
3267 | const VarDecl *Variable; |
3268 | |
3269 | /// The address of the alloca for languages with explicit address space |
3270 | /// (e.g. OpenCL) or alloca casted to generic pointer for address space |
3271 | /// agnostic languages (e.g. C++). Invalid if the variable was emitted |
3272 | /// as a global constant. |
3273 | Address Addr; |
3274 | |
3275 | llvm::Value *NRVOFlag; |
3276 | |
3277 | /// True if the variable is a __block variable that is captured by an |
3278 | /// escaping block. |
3279 | bool IsEscapingByRef; |
3280 | |
3281 | /// True if the variable is of aggregate type and has a constant |
3282 | /// initializer. |
3283 | bool IsConstantAggregate; |
3284 | |
3285 | /// Non-null if we should use lifetime annotations. |
3286 | llvm::Value *SizeForLifetimeMarkers; |
3287 | |
3288 | /// Address with original alloca instruction. Invalid if the variable was |
3289 | /// emitted as a global constant. |
3290 | RawAddress AllocaAddr; |
3291 | |
3292 | struct Invalid {}; |
3293 | AutoVarEmission(Invalid) |
3294 | : Variable(nullptr), Addr(Address::invalid()), |
3295 | AllocaAddr(RawAddress::invalid()) {} |
3296 | |
3297 | AutoVarEmission(const VarDecl &variable) |
3298 | : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), |
3299 | IsEscapingByRef(false), IsConstantAggregate(false), |
3300 | SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} |
3301 | |
3302 | bool wasEmittedAsGlobal() const { return !Addr.isValid(); } |
3303 | |
3304 | public: |
3305 | static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } |
3306 | |
3307 | bool useLifetimeMarkers() const { |
3308 | return SizeForLifetimeMarkers != nullptr; |
3309 | } |
3310 | llvm::Value *getSizeForLifetimeMarkers() const { |
3311 | assert(useLifetimeMarkers()); |
3312 | return SizeForLifetimeMarkers; |
3313 | } |
3314 | |
3315 | /// Returns the raw, allocated address, which is not necessarily |
3316 | /// the address of the object itself. It is casted to default |
3317 | /// address space for address space agnostic languages. |
3318 | Address getAllocatedAddress() const { |
3319 | return Addr; |
3320 | } |
3321 | |
3322 | /// Returns the address for the original alloca instruction. |
3323 | RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } |
3324 | |
3325 | /// Returns the address of the object within this declaration. |
3326 | /// Note that this does not chase the forwarding pointer for |
3327 | /// __block decls. |
3328 | Address getObjectAddress(CodeGenFunction &CGF) const { |
3329 | if (!IsEscapingByRef) return Addr; |
3330 | |
3331 | return CGF.emitBlockByrefAddress(baseAddr: Addr, V: Variable, /*forward*/ followForward: false); |
3332 | } |
3333 | }; |
3334 | AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); |
3335 | void EmitAutoVarInit(const AutoVarEmission &emission); |
3336 | void EmitAutoVarCleanups(const AutoVarEmission &emission); |
3337 | void emitAutoVarTypeCleanup(const AutoVarEmission &emission, |
3338 | QualType::DestructionKind dtorKind); |
3339 | |
3340 | /// Emits the alloca and debug information for the size expressions for each |
3341 | /// dimension of an array. It registers the association of its (1-dimensional) |
3342 | /// QualTypes and size expression's debug node, so that CGDebugInfo can |
3343 | /// reference this node when creating the DISubrange object to describe the |
3344 | /// array types. |
3345 | void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, |
3346 | const VarDecl &D, |
3347 | bool EmitDebugInfo); |
3348 | |
3349 | void EmitStaticVarDecl(const VarDecl &D, |
3350 | llvm::GlobalValue::LinkageTypes Linkage); |
3351 | |
3352 | class ParamValue { |
3353 | union { |
3354 | Address Addr; |
3355 | llvm::Value *Value; |
3356 | }; |
3357 | |
3358 | bool IsIndirect; |
3359 | |
3360 | ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} |
3361 | ParamValue(Address A) : Addr(A), IsIndirect(true) {} |
3362 | |
3363 | public: |
3364 | static ParamValue forDirect(llvm::Value *value) { |
3365 | return ParamValue(value); |
3366 | } |
3367 | static ParamValue forIndirect(Address addr) { |
3368 | assert(!addr.getAlignment().isZero()); |
3369 | return ParamValue(addr); |
3370 | } |
3371 | |
3372 | bool isIndirect() const { return IsIndirect; } |
3373 | llvm::Value *getAnyValue() const { |
3374 | if (!isIndirect()) |
3375 | return Value; |
3376 | assert(!Addr.hasOffset() && "unexpected offset" ); |
3377 | return Addr.getBasePointer(); |
3378 | } |
3379 | |
3380 | llvm::Value *getDirectValue() const { |
3381 | assert(!isIndirect()); |
3382 | return Value; |
3383 | } |
3384 | |
3385 | Address getIndirectAddress() const { |
3386 | assert(isIndirect()); |
3387 | return Addr; |
3388 | } |
3389 | }; |
3390 | |
3391 | /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. |
3392 | void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); |
3393 | |
3394 | /// protectFromPeepholes - Protect a value that we're intending to |
3395 | /// store to the side, but which will probably be used later, from |
3396 | /// aggressive peepholing optimizations that might delete it. |
3397 | /// |
3398 | /// Pass the result to unprotectFromPeepholes to declare that |
3399 | /// protection is no longer required. |
3400 | /// |
3401 | /// There's no particular reason why this shouldn't apply to |
3402 | /// l-values, it's just that no existing peepholes work on pointers. |
3403 | PeepholeProtection protectFromPeepholes(RValue rvalue); |
3404 | void unprotectFromPeepholes(PeepholeProtection protection); |
3405 | |
3406 | void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, |
3407 | SourceLocation Loc, |
3408 | SourceLocation AssumptionLoc, |
3409 | llvm::Value *Alignment, |
3410 | llvm::Value *OffsetValue, |
3411 | llvm::Value *TheCheck, |
3412 | llvm::Instruction *Assumption); |
3413 | |
3414 | void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, |
3415 | SourceLocation Loc, SourceLocation AssumptionLoc, |
3416 | llvm::Value *Alignment, |
3417 | llvm::Value *OffsetValue = nullptr); |
3418 | |
3419 | void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, |
3420 | SourceLocation AssumptionLoc, |
3421 | llvm::Value *Alignment, |
3422 | llvm::Value *OffsetValue = nullptr); |
3423 | |
3424 | //===--------------------------------------------------------------------===// |
3425 | // Statement Emission |
3426 | //===--------------------------------------------------------------------===// |
3427 | |
3428 | /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. |
3429 | void EmitStopPoint(const Stmt *S); |
3430 | |
3431 | /// EmitStmt - Emit the code for the statement \arg S. It is legal to call |
3432 | /// this function even if there is no current insertion point. |
3433 | /// |
3434 | /// This function may clear the current insertion point; callers should use |
3435 | /// EnsureInsertPoint if they wish to subsequently generate code without first |
3436 | /// calling EmitBlock, EmitBranch, or EmitStmt. |
3437 | void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt); |
3438 | |
3439 | /// EmitSimpleStmt - Try to emit a "simple" statement which does not |
3440 | /// necessarily require an insertion point or debug information; typically |
3441 | /// because the statement amounts to a jump or a container of other |
3442 | /// statements. |
3443 | /// |
3444 | /// \return True if the statement was handled. |
3445 | bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); |
3446 | |
3447 | Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, |
3448 | AggValueSlot AVS = AggValueSlot::ignored()); |
3449 | Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, |
3450 | bool GetLast = false, |
3451 | AggValueSlot AVS = |
3452 | AggValueSlot::ignored()); |
3453 | |
3454 | /// EmitLabel - Emit the block for the given label. It is legal to call this |
3455 | /// function even if there is no current insertion point. |
3456 | void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. |
3457 | |
3458 | void EmitLabelStmt(const LabelStmt &S); |
3459 | void EmitAttributedStmt(const AttributedStmt &S); |
3460 | void EmitGotoStmt(const GotoStmt &S); |
3461 | void EmitIndirectGotoStmt(const IndirectGotoStmt &S); |
3462 | void EmitIfStmt(const IfStmt &S); |
3463 | |
3464 | void EmitWhileStmt(const WhileStmt &S, |
3465 | ArrayRef<const Attr *> Attrs = std::nullopt); |
3466 | void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt); |
3467 | void EmitForStmt(const ForStmt &S, |
3468 | ArrayRef<const Attr *> Attrs = std::nullopt); |
3469 | void EmitReturnStmt(const ReturnStmt &S); |
3470 | void EmitDeclStmt(const DeclStmt &S); |
3471 | void EmitBreakStmt(const BreakStmt &S); |
3472 | void EmitContinueStmt(const ContinueStmt &S); |
3473 | void EmitSwitchStmt(const SwitchStmt &S); |
3474 | void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); |
3475 | void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3476 | void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3477 | void EmitAsmStmt(const AsmStmt &S); |
3478 | |
3479 | void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); |
3480 | void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); |
3481 | void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); |
3482 | void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); |
3483 | void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); |
3484 | |
3485 | void EmitCoroutineBody(const CoroutineBodyStmt &S); |
3486 | void EmitCoreturnStmt(const CoreturnStmt &S); |
3487 | RValue EmitCoawaitExpr(const CoawaitExpr &E, |
3488 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3489 | bool ignoreResult = false); |
3490 | LValue EmitCoawaitLValue(const CoawaitExpr *E); |
3491 | RValue EmitCoyieldExpr(const CoyieldExpr &E, |
3492 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3493 | bool ignoreResult = false); |
3494 | LValue EmitCoyieldLValue(const CoyieldExpr *E); |
3495 | RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); |
3496 | |
3497 | void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3498 | void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3499 | |
3500 | void EmitCXXTryStmt(const CXXTryStmt &S); |
3501 | void EmitSEHTryStmt(const SEHTryStmt &S); |
3502 | void EmitSEHLeaveStmt(const SEHLeaveStmt &S); |
3503 | void EnterSEHTryStmt(const SEHTryStmt &S); |
3504 | void ExitSEHTryStmt(const SEHTryStmt &S); |
3505 | void VolatilizeTryBlocks(llvm::BasicBlock *BB, |
3506 | llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); |
3507 | |
3508 | void pushSEHCleanup(CleanupKind kind, |
3509 | llvm::Function *FinallyFunc); |
3510 | void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, |
3511 | const Stmt *OutlinedStmt); |
3512 | |
3513 | llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, |
3514 | const SEHExceptStmt &Except); |
3515 | |
3516 | llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, |
3517 | const SEHFinallyStmt &Finally); |
3518 | |
3519 | void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, |
3520 | llvm::Value *ParentFP, |
3521 | llvm::Value *EntryEBP); |
3522 | llvm::Value *EmitSEHExceptionCode(); |
3523 | llvm::Value *EmitSEHExceptionInfo(); |
3524 | llvm::Value *EmitSEHAbnormalTermination(); |
3525 | |
3526 | /// Emit simple code for OpenMP directives in Simd-only mode. |
3527 | void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); |
3528 | |
3529 | /// Scan the outlined statement for captures from the parent function. For |
3530 | /// each capture, mark the capture as escaped and emit a call to |
3531 | /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. |
3532 | void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, |
3533 | bool IsFilter); |
3534 | |
3535 | /// Recovers the address of a local in a parent function. ParentVar is the |
3536 | /// address of the variable used in the immediate parent function. It can |
3537 | /// either be an alloca or a call to llvm.localrecover if there are nested |
3538 | /// outlined functions. ParentFP is the frame pointer of the outermost parent |
3539 | /// frame. |
3540 | Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, |
3541 | Address ParentVar, |
3542 | llvm::Value *ParentFP); |
3543 | |
3544 | void EmitCXXForRangeStmt(const CXXForRangeStmt &S, |
3545 | ArrayRef<const Attr *> Attrs = std::nullopt); |
3546 | |
3547 | /// Controls insertion of cancellation exit blocks in worksharing constructs. |
3548 | class OMPCancelStackRAII { |
3549 | CodeGenFunction &CGF; |
3550 | |
3551 | public: |
3552 | OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
3553 | bool HasCancel) |
3554 | : CGF(CGF) { |
3555 | CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); |
3556 | } |
3557 | ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } |
3558 | }; |
3559 | |
3560 | /// Returns calculated size of the specified type. |
3561 | llvm::Value *getTypeSize(QualType Ty); |
3562 | LValue InitCapturedStruct(const CapturedStmt &S); |
3563 | llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); |
3564 | llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); |
3565 | Address GenerateCapturedStmtArgument(const CapturedStmt &S); |
3566 | llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, |
3567 | SourceLocation Loc); |
3568 | void GenerateOpenMPCapturedVars(const CapturedStmt &S, |
3569 | SmallVectorImpl<llvm::Value *> &CapturedVars); |
3570 | void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, |
3571 | SourceLocation Loc); |
3572 | /// Perform element by element copying of arrays with type \a |
3573 | /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure |
3574 | /// generated by \a CopyGen. |
3575 | /// |
3576 | /// \param DestAddr Address of the destination array. |
3577 | /// \param SrcAddr Address of the source array. |
3578 | /// \param OriginalType Type of destination and source arrays. |
3579 | /// \param CopyGen Copying procedure that copies value of single array element |
3580 | /// to another single array element. |
3581 | void EmitOMPAggregateAssign( |
3582 | Address DestAddr, Address SrcAddr, QualType OriginalType, |
3583 | const llvm::function_ref<void(Address, Address)> CopyGen); |
3584 | /// Emit proper copying of data from one variable to another. |
3585 | /// |
3586 | /// \param OriginalType Original type of the copied variables. |
3587 | /// \param DestAddr Destination address. |
3588 | /// \param SrcAddr Source address. |
3589 | /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has |
3590 | /// type of the base array element). |
3591 | /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of |
3592 | /// the base array element). |
3593 | /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a |
3594 | /// DestVD. |
3595 | void EmitOMPCopy(QualType OriginalType, |
3596 | Address DestAddr, Address SrcAddr, |
3597 | const VarDecl *DestVD, const VarDecl *SrcVD, |
3598 | const Expr *Copy); |
3599 | /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or |
3600 | /// \a X = \a E \a BO \a E. |
3601 | /// |
3602 | /// \param X Value to be updated. |
3603 | /// \param E Update value. |
3604 | /// \param BO Binary operation for update operation. |
3605 | /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update |
3606 | /// expression, false otherwise. |
3607 | /// \param AO Atomic ordering of the generated atomic instructions. |
3608 | /// \param CommonGen Code generator for complex expressions that cannot be |
3609 | /// expressed through atomicrmw instruction. |
3610 | /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was |
3611 | /// generated, <false, RValue::get(nullptr)> otherwise. |
3612 | std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( |
3613 | LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, |
3614 | llvm::AtomicOrdering AO, SourceLocation Loc, |
3615 | const llvm::function_ref<RValue(RValue)> CommonGen); |
3616 | bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, |
3617 | OMPPrivateScope &PrivateScope); |
3618 | void EmitOMPPrivateClause(const OMPExecutableDirective &D, |
3619 | OMPPrivateScope &PrivateScope); |
3620 | void EmitOMPUseDevicePtrClause( |
3621 | const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, |
3622 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3623 | CaptureDeviceAddrMap); |
3624 | void EmitOMPUseDeviceAddrClause( |
3625 | const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, |
3626 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3627 | CaptureDeviceAddrMap); |
3628 | /// Emit code for copyin clause in \a D directive. The next code is |
3629 | /// generated at the start of outlined functions for directives: |
3630 | /// \code |
3631 | /// threadprivate_var1 = master_threadprivate_var1; |
3632 | /// operator=(threadprivate_var2, master_threadprivate_var2); |
3633 | /// ... |
3634 | /// __kmpc_barrier(&loc, global_tid); |
3635 | /// \endcode |
3636 | /// |
3637 | /// \param D OpenMP directive possibly with 'copyin' clause(s). |
3638 | /// \returns true if at least one copyin variable is found, false otherwise. |
3639 | bool EmitOMPCopyinClause(const OMPExecutableDirective &D); |
3640 | /// Emit initial code for lastprivate variables. If some variable is |
3641 | /// not also firstprivate, then the default initialization is used. Otherwise |
3642 | /// initialization of this variable is performed by EmitOMPFirstprivateClause |
3643 | /// method. |
3644 | /// |
3645 | /// \param D Directive that may have 'lastprivate' directives. |
3646 | /// \param PrivateScope Private scope for capturing lastprivate variables for |
3647 | /// proper codegen in internal captured statement. |
3648 | /// |
3649 | /// \returns true if there is at least one lastprivate variable, false |
3650 | /// otherwise. |
3651 | bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, |
3652 | OMPPrivateScope &PrivateScope); |
3653 | /// Emit final copying of lastprivate values to original variables at |
3654 | /// the end of the worksharing or simd directive. |
3655 | /// |
3656 | /// \param D Directive that has at least one 'lastprivate' directives. |
3657 | /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if |
3658 | /// it is the last iteration of the loop code in associated directive, or to |
3659 | /// 'i1 false' otherwise. If this item is nullptr, no final check is required. |
3660 | void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, |
3661 | bool NoFinals, |
3662 | llvm::Value *IsLastIterCond = nullptr); |
3663 | /// Emit initial code for linear clauses. |
3664 | void EmitOMPLinearClause(const OMPLoopDirective &D, |
3665 | CodeGenFunction::OMPPrivateScope &PrivateScope); |
3666 | /// Emit final code for linear clauses. |
3667 | /// \param CondGen Optional conditional code for final part of codegen for |
3668 | /// linear clause. |
3669 | void EmitOMPLinearClauseFinal( |
3670 | const OMPLoopDirective &D, |
3671 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
3672 | /// Emit initial code for reduction variables. Creates reduction copies |
3673 | /// and initializes them with the values according to OpenMP standard. |
3674 | /// |
3675 | /// \param D Directive (possibly) with the 'reduction' clause. |
3676 | /// \param PrivateScope Private scope for capturing reduction variables for |
3677 | /// proper codegen in internal captured statement. |
3678 | /// |
3679 | void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, |
3680 | OMPPrivateScope &PrivateScope, |
3681 | bool ForInscan = false); |
3682 | /// Emit final update of reduction values to original variables at |
3683 | /// the end of the directive. |
3684 | /// |
3685 | /// \param D Directive that has at least one 'reduction' directives. |
3686 | /// \param ReductionKind The kind of reduction to perform. |
3687 | void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, |
3688 | const OpenMPDirectiveKind ReductionKind); |
3689 | /// Emit initial code for linear variables. Creates private copies |
3690 | /// and initializes them with the values according to OpenMP standard. |
3691 | /// |
3692 | /// \param D Directive (possibly) with the 'linear' clause. |
3693 | /// \return true if at least one linear variable is found that should be |
3694 | /// initialized with the value of the original variable, false otherwise. |
3695 | bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); |
3696 | |
3697 | typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, |
3698 | llvm::Function * /*OutlinedFn*/, |
3699 | const OMPTaskDataTy & /*Data*/)> |
3700 | TaskGenTy; |
3701 | void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, |
3702 | const OpenMPDirectiveKind CapturedRegion, |
3703 | const RegionCodeGenTy &BodyGen, |
3704 | const TaskGenTy &TaskGen, OMPTaskDataTy &Data); |
3705 | struct OMPTargetDataInfo { |
3706 | Address BasePointersArray = Address::invalid(); |
3707 | Address PointersArray = Address::invalid(); |
3708 | Address SizesArray = Address::invalid(); |
3709 | Address MappersArray = Address::invalid(); |
3710 | unsigned NumberOfTargetItems = 0; |
3711 | explicit OMPTargetDataInfo() = default; |
3712 | OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, |
3713 | Address SizesArray, Address MappersArray, |
3714 | unsigned NumberOfTargetItems) |
3715 | : BasePointersArray(BasePointersArray), PointersArray(PointersArray), |
3716 | SizesArray(SizesArray), MappersArray(MappersArray), |
3717 | NumberOfTargetItems(NumberOfTargetItems) {} |
3718 | }; |
3719 | void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, |
3720 | const RegionCodeGenTy &BodyGen, |
3721 | OMPTargetDataInfo &InputInfo); |
3722 | void processInReduction(const OMPExecutableDirective &S, |
3723 | OMPTaskDataTy &Data, |
3724 | CodeGenFunction &CGF, |
3725 | const CapturedStmt *CS, |
3726 | OMPPrivateScope &Scope); |
3727 | void EmitOMPMetaDirective(const OMPMetaDirective &S); |
3728 | void EmitOMPParallelDirective(const OMPParallelDirective &S); |
3729 | void EmitOMPSimdDirective(const OMPSimdDirective &S); |
3730 | void EmitOMPTileDirective(const OMPTileDirective &S); |
3731 | void EmitOMPUnrollDirective(const OMPUnrollDirective &S); |
3732 | void EmitOMPForDirective(const OMPForDirective &S); |
3733 | void EmitOMPForSimdDirective(const OMPForSimdDirective &S); |
3734 | void EmitOMPSectionsDirective(const OMPSectionsDirective &S); |
3735 | void EmitOMPSectionDirective(const OMPSectionDirective &S); |
3736 | void EmitOMPSingleDirective(const OMPSingleDirective &S); |
3737 | void EmitOMPMasterDirective(const OMPMasterDirective &S); |
3738 | void EmitOMPMaskedDirective(const OMPMaskedDirective &S); |
3739 | void EmitOMPCriticalDirective(const OMPCriticalDirective &S); |
3740 | void EmitOMPParallelForDirective(const OMPParallelForDirective &S); |
3741 | void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); |
3742 | void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); |
3743 | void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); |
3744 | void EmitOMPTaskDirective(const OMPTaskDirective &S); |
3745 | void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); |
3746 | void EmitOMPErrorDirective(const OMPErrorDirective &S); |
3747 | void EmitOMPBarrierDirective(const OMPBarrierDirective &S); |
3748 | void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); |
3749 | void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); |
3750 | void EmitOMPFlushDirective(const OMPFlushDirective &S); |
3751 | void EmitOMPDepobjDirective(const OMPDepobjDirective &S); |
3752 | void EmitOMPScanDirective(const OMPScanDirective &S); |
3753 | void EmitOMPOrderedDirective(const OMPOrderedDirective &S); |
3754 | void EmitOMPAtomicDirective(const OMPAtomicDirective &S); |
3755 | void EmitOMPTargetDirective(const OMPTargetDirective &S); |
3756 | void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); |
3757 | void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); |
3758 | void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); |
3759 | void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); |
3760 | void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); |
3761 | void |
3762 | EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); |
3763 | void EmitOMPTeamsDirective(const OMPTeamsDirective &S); |
3764 | void |
3765 | EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); |
3766 | void EmitOMPCancelDirective(const OMPCancelDirective &S); |
3767 | void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); |
3768 | void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); |
3769 | void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); |
3770 | void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); |
3771 | void |
3772 | EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); |
3773 | void EmitOMPParallelMasterTaskLoopDirective( |
3774 | const OMPParallelMasterTaskLoopDirective &S); |
3775 | void EmitOMPParallelMasterTaskLoopSimdDirective( |
3776 | const OMPParallelMasterTaskLoopSimdDirective &S); |
3777 | void EmitOMPDistributeDirective(const OMPDistributeDirective &S); |
3778 | void EmitOMPDistributeParallelForDirective( |
3779 | const OMPDistributeParallelForDirective &S); |
3780 | void EmitOMPDistributeParallelForSimdDirective( |
3781 | const OMPDistributeParallelForSimdDirective &S); |
3782 | void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); |
3783 | void EmitOMPTargetParallelForSimdDirective( |
3784 | const OMPTargetParallelForSimdDirective &S); |
3785 | void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); |
3786 | void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); |
3787 | void |
3788 | EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); |
3789 | void EmitOMPTeamsDistributeParallelForSimdDirective( |
3790 | const OMPTeamsDistributeParallelForSimdDirective &S); |
3791 | void EmitOMPTeamsDistributeParallelForDirective( |
3792 | const OMPTeamsDistributeParallelForDirective &S); |
3793 | void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); |
3794 | void EmitOMPTargetTeamsDistributeDirective( |
3795 | const OMPTargetTeamsDistributeDirective &S); |
3796 | void EmitOMPTargetTeamsDistributeParallelForDirective( |
3797 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3798 | void EmitOMPTargetTeamsDistributeParallelForSimdDirective( |
3799 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3800 | void EmitOMPTargetTeamsDistributeSimdDirective( |
3801 | const OMPTargetTeamsDistributeSimdDirective &S); |
3802 | void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); |
3803 | void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); |
3804 | void EmitOMPTargetParallelGenericLoopDirective( |
3805 | const OMPTargetParallelGenericLoopDirective &S); |
3806 | void EmitOMPTargetTeamsGenericLoopDirective( |
3807 | const OMPTargetTeamsGenericLoopDirective &S); |
3808 | void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); |
3809 | void EmitOMPInteropDirective(const OMPInteropDirective &S); |
3810 | void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); |
3811 | |
3812 | /// Emit device code for the target directive. |
3813 | static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, |
3814 | StringRef ParentName, |
3815 | const OMPTargetDirective &S); |
3816 | static void |
3817 | EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3818 | const OMPTargetParallelDirective &S); |
3819 | /// Emit device code for the target parallel for directive. |
3820 | static void EmitOMPTargetParallelForDeviceFunction( |
3821 | CodeGenModule &CGM, StringRef ParentName, |
3822 | const OMPTargetParallelForDirective &S); |
3823 | /// Emit device code for the target parallel for simd directive. |
3824 | static void EmitOMPTargetParallelForSimdDeviceFunction( |
3825 | CodeGenModule &CGM, StringRef ParentName, |
3826 | const OMPTargetParallelForSimdDirective &S); |
3827 | /// Emit device code for the target teams directive. |
3828 | static void |
3829 | EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3830 | const OMPTargetTeamsDirective &S); |
3831 | /// Emit device code for the target teams distribute directive. |
3832 | static void EmitOMPTargetTeamsDistributeDeviceFunction( |
3833 | CodeGenModule &CGM, StringRef ParentName, |
3834 | const OMPTargetTeamsDistributeDirective &S); |
3835 | /// Emit device code for the target teams distribute simd directive. |
3836 | static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( |
3837 | CodeGenModule &CGM, StringRef ParentName, |
3838 | const OMPTargetTeamsDistributeSimdDirective &S); |
3839 | /// Emit device code for the target simd directive. |
3840 | static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, |
3841 | StringRef ParentName, |
3842 | const OMPTargetSimdDirective &S); |
3843 | /// Emit device code for the target teams distribute parallel for simd |
3844 | /// directive. |
3845 | static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( |
3846 | CodeGenModule &CGM, StringRef ParentName, |
3847 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3848 | |
3849 | /// Emit device code for the target teams loop directive. |
3850 | static void EmitOMPTargetTeamsGenericLoopDeviceFunction( |
3851 | CodeGenModule &CGM, StringRef ParentName, |
3852 | const OMPTargetTeamsGenericLoopDirective &S); |
3853 | |
3854 | /// Emit device code for the target parallel loop directive. |
3855 | static void EmitOMPTargetParallelGenericLoopDeviceFunction( |
3856 | CodeGenModule &CGM, StringRef ParentName, |
3857 | const OMPTargetParallelGenericLoopDirective &S); |
3858 | |
3859 | static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( |
3860 | CodeGenModule &CGM, StringRef ParentName, |
3861 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3862 | |
3863 | /// Emit the Stmt \p S and return its topmost canonical loop, if any. |
3864 | /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the |
3865 | /// future it is meant to be the number of loops expected in the loop nests |
3866 | /// (usually specified by the "collapse" clause) that are collapsed to a |
3867 | /// single loop by this function. |
3868 | llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, |
3869 | int Depth); |
3870 | |
3871 | /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. |
3872 | void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); |
3873 | |
3874 | /// Emit inner loop of the worksharing/simd construct. |
3875 | /// |
3876 | /// \param S Directive, for which the inner loop must be emitted. |
3877 | /// \param RequiresCleanup true, if directive has some associated private |
3878 | /// variables. |
3879 | /// \param LoopCond Bollean condition for loop continuation. |
3880 | /// \param IncExpr Increment expression for loop control variable. |
3881 | /// \param BodyGen Generator for the inner body of the inner loop. |
3882 | /// \param PostIncGen Genrator for post-increment code (required for ordered |
3883 | /// loop directvies). |
3884 | void EmitOMPInnerLoop( |
3885 | const OMPExecutableDirective &S, bool RequiresCleanup, |
3886 | const Expr *LoopCond, const Expr *IncExpr, |
3887 | const llvm::function_ref<void(CodeGenFunction &)> BodyGen, |
3888 | const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); |
3889 | |
3890 | JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); |
3891 | /// Emit initial code for loop counters of loop-based directives. |
3892 | void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, |
3893 | OMPPrivateScope &LoopScope); |
3894 | |
3895 | /// Helper for the OpenMP loop directives. |
3896 | void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); |
3897 | |
3898 | /// Emit code for the worksharing loop-based directive. |
3899 | /// \return true, if this construct has any lastprivate clause, false - |
3900 | /// otherwise. |
3901 | bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, |
3902 | const CodeGenLoopBoundsTy &CodeGenLoopBounds, |
3903 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
3904 | |
3905 | /// Emit code for the distribute loop-based directive. |
3906 | void EmitOMPDistributeLoop(const OMPLoopDirective &S, |
3907 | const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); |
3908 | |
3909 | /// Helpers for the OpenMP loop directives. |
3910 | void EmitOMPSimdInit(const OMPLoopDirective &D); |
3911 | void EmitOMPSimdFinal( |
3912 | const OMPLoopDirective &D, |
3913 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
3914 | |
3915 | /// Emits the lvalue for the expression with possibly captured variable. |
3916 | LValue EmitOMPSharedLValue(const Expr *E); |
3917 | |
3918 | private: |
3919 | /// Helpers for blocks. |
3920 | llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); |
3921 | |
3922 | /// struct with the values to be passed to the OpenMP loop-related functions |
3923 | struct OMPLoopArguments { |
3924 | /// loop lower bound |
3925 | Address LB = Address::invalid(); |
3926 | /// loop upper bound |
3927 | Address UB = Address::invalid(); |
3928 | /// loop stride |
3929 | Address ST = Address::invalid(); |
3930 | /// isLastIteration argument for runtime functions |
3931 | Address IL = Address::invalid(); |
3932 | /// Chunk value generated by sema |
3933 | llvm::Value *Chunk = nullptr; |
3934 | /// EnsureUpperBound |
3935 | Expr *EUB = nullptr; |
3936 | /// IncrementExpression |
3937 | Expr *IncExpr = nullptr; |
3938 | /// Loop initialization |
3939 | Expr *Init = nullptr; |
3940 | /// Loop exit condition |
3941 | Expr *Cond = nullptr; |
3942 | /// Update of LB after a whole chunk has been executed |
3943 | Expr *NextLB = nullptr; |
3944 | /// Update of UB after a whole chunk has been executed |
3945 | Expr *NextUB = nullptr; |
3946 | /// Distinguish between the for distribute and sections |
3947 | OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; |
3948 | OMPLoopArguments() = default; |
3949 | OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, |
3950 | llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, |
3951 | Expr *IncExpr = nullptr, Expr *Init = nullptr, |
3952 | Expr *Cond = nullptr, Expr *NextLB = nullptr, |
3953 | Expr *NextUB = nullptr) |
3954 | : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), |
3955 | IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), |
3956 | NextUB(NextUB) {} |
3957 | }; |
3958 | void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, |
3959 | const OMPLoopDirective &S, OMPPrivateScope &LoopScope, |
3960 | const OMPLoopArguments &LoopArgs, |
3961 | const CodeGenLoopTy &CodeGenLoop, |
3962 | const CodeGenOrderedTy &CodeGenOrdered); |
3963 | void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, |
3964 | bool IsMonotonic, const OMPLoopDirective &S, |
3965 | OMPPrivateScope &LoopScope, bool Ordered, |
3966 | const OMPLoopArguments &LoopArgs, |
3967 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
3968 | void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, |
3969 | const OMPLoopDirective &S, |
3970 | OMPPrivateScope &LoopScope, |
3971 | const OMPLoopArguments &LoopArgs, |
3972 | const CodeGenLoopTy &CodeGenLoopContent); |
3973 | /// Emit code for sections directive. |
3974 | void EmitSections(const OMPExecutableDirective &S); |
3975 | |
3976 | public: |
3977 | //===--------------------------------------------------------------------===// |
3978 | // OpenACC Emission |
3979 | //===--------------------------------------------------------------------===// |
3980 | void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { |
3981 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
3982 | // simply emitting its structured block, but in the future we will implement |
3983 | // some sort of IR. |
3984 | EmitStmt(S: S.getStructuredBlock()); |
3985 | } |
3986 | |
3987 | //===--------------------------------------------------------------------===// |
3988 | // LValue Expression Emission |
3989 | //===--------------------------------------------------------------------===// |
3990 | |
3991 | /// Create a check that a scalar RValue is non-null. |
3992 | llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); |
3993 | |
3994 | /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. |
3995 | RValue GetUndefRValue(QualType Ty); |
3996 | |
3997 | /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E |
3998 | /// and issue an ErrorUnsupported style diagnostic (using the |
3999 | /// provided Name). |
4000 | RValue EmitUnsupportedRValue(const Expr *E, |
4001 | const char *Name); |
4002 | |
4003 | /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue |
4004 | /// an ErrorUnsupported style diagnostic (using the provided Name). |
4005 | LValue EmitUnsupportedLValue(const Expr *E, |
4006 | const char *Name); |
4007 | |
4008 | /// EmitLValue - Emit code to compute a designator that specifies the location |
4009 | /// of the expression. |
4010 | /// |
4011 | /// This can return one of two things: a simple address or a bitfield |
4012 | /// reference. In either case, the LLVM Value* in the LValue structure is |
4013 | /// guaranteed to be an LLVM pointer type. |
4014 | /// |
4015 | /// If this returns a bitfield reference, nothing about the pointee type of |
4016 | /// the LLVM value is known: For example, it may not be a pointer to an |
4017 | /// integer. |
4018 | /// |
4019 | /// If this returns a normal address, and if the lvalue's C type is fixed |
4020 | /// size, this method guarantees that the returned pointer type will point to |
4021 | /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
4022 | /// variable length type, this is not possible. |
4023 | /// |
4024 | LValue EmitLValue(const Expr *E, |
4025 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
4026 | |
4027 | private: |
4028 | LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); |
4029 | |
4030 | public: |
4031 | /// Same as EmitLValue but additionally we generate checking code to |
4032 | /// guard against undefined behavior. This is only suitable when we know |
4033 | /// that the address will be used to access the object. |
4034 | LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); |
4035 | |
4036 | RValue convertTempToRValue(Address addr, QualType type, |
4037 | SourceLocation Loc); |
4038 | |
4039 | void EmitAtomicInit(Expr *E, LValue lvalue); |
4040 | |
4041 | bool LValueIsSuitableForInlineAtomic(LValue Src); |
4042 | |
4043 | RValue EmitAtomicLoad(LValue LV, SourceLocation SL, |
4044 | AggValueSlot Slot = AggValueSlot::ignored()); |
4045 | |
4046 | RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, |
4047 | llvm::AtomicOrdering AO, bool IsVolatile = false, |
4048 | AggValueSlot slot = AggValueSlot::ignored()); |
4049 | |
4050 | void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); |
4051 | |
4052 | void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, |
4053 | bool IsVolatile, bool isInit); |
4054 | |
4055 | std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( |
4056 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
4057 | llvm::AtomicOrdering Success = |
4058 | llvm::AtomicOrdering::SequentiallyConsistent, |
4059 | llvm::AtomicOrdering Failure = |
4060 | llvm::AtomicOrdering::SequentiallyConsistent, |
4061 | bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); |
4062 | |
4063 | void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, |
4064 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
4065 | bool IsVolatile); |
4066 | |
4067 | /// EmitToMemory - Change a scalar value from its value |
4068 | /// representation to its in-memory representation. |
4069 | llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); |
4070 | |
4071 | /// EmitFromMemory - Change a scalar value from its memory |
4072 | /// representation to its value representation. |
4073 | llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); |
4074 | |
4075 | /// Check if the scalar \p Value is within the valid range for the given |
4076 | /// type \p Ty. |
4077 | /// |
4078 | /// Returns true if a check is needed (even if the range is unknown). |
4079 | bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, |
4080 | SourceLocation Loc); |
4081 | |
4082 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4083 | /// care to appropriately convert from the memory representation to |
4084 | /// the LLVM value representation. |
4085 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4086 | SourceLocation Loc, |
4087 | AlignmentSource Source = AlignmentSource::Type, |
4088 | bool isNontemporal = false) { |
4089 | return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, BaseInfo: LValueBaseInfo(Source), |
4090 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isNontemporal); |
4091 | } |
4092 | |
4093 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4094 | SourceLocation Loc, LValueBaseInfo BaseInfo, |
4095 | TBAAAccessInfo TBAAInfo, |
4096 | bool isNontemporal = false); |
4097 | |
4098 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4099 | /// care to appropriately convert from the memory representation to |
4100 | /// the LLVM value representation. The l-value must be a simple |
4101 | /// l-value. |
4102 | llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); |
4103 | |
4104 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4105 | /// care to appropriately convert from the memory representation to |
4106 | /// the LLVM value representation. |
4107 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
4108 | bool Volatile, QualType Ty, |
4109 | AlignmentSource Source = AlignmentSource::Type, |
4110 | bool isInit = false, bool isNontemporal = false) { |
4111 | EmitStoreOfScalar(Value, Addr, Volatile, Ty, BaseInfo: LValueBaseInfo(Source), |
4112 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isInit, isNontemporal); |
4113 | } |
4114 | |
4115 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
4116 | bool Volatile, QualType Ty, |
4117 | LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, |
4118 | bool isInit = false, bool isNontemporal = false); |
4119 | |
4120 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4121 | /// care to appropriately convert from the memory representation to |
4122 | /// the LLVM value representation. The l-value must be a simple |
4123 | /// l-value. The isInit flag indicates whether this is an initialization. |
4124 | /// If so, atomic qualifiers are ignored and the store is always non-atomic. |
4125 | void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); |
4126 | |
4127 | /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
4128 | /// this method emits the address of the lvalue, then loads the result as an |
4129 | /// rvalue, returning the rvalue. |
4130 | RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); |
4131 | RValue EmitLoadOfExtVectorElementLValue(LValue V); |
4132 | RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); |
4133 | RValue EmitLoadOfGlobalRegLValue(LValue LV); |
4134 | |
4135 | /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
4136 | /// lvalue, where both are guaranteed to the have the same type, and that type |
4137 | /// is 'Ty'. |
4138 | void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); |
4139 | void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); |
4140 | void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); |
4141 | |
4142 | /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints |
4143 | /// as EmitStoreThroughLValue. |
4144 | /// |
4145 | /// \param Result [out] - If non-null, this will be set to a Value* for the |
4146 | /// bit-field contents after the store, appropriate for use as the result of |
4147 | /// an assignment to the bit-field. |
4148 | void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
4149 | llvm::Value **Result=nullptr); |
4150 | |
4151 | /// Emit an l-value for an assignment (simple or compound) of complex type. |
4152 | LValue EmitComplexAssignmentLValue(const BinaryOperator *E); |
4153 | LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4154 | LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
4155 | llvm::Value *&Result); |
4156 | |
4157 | // Note: only available for agg return types |
4158 | LValue EmitBinaryOperatorLValue(const BinaryOperator *E); |
4159 | LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4160 | // Note: only available for agg return types |
4161 | LValue EmitCallExprLValue(const CallExpr *E); |
4162 | // Note: only available for agg return types |
4163 | LValue EmitVAArgExprLValue(const VAArgExpr *E); |
4164 | LValue EmitDeclRefLValue(const DeclRefExpr *E); |
4165 | LValue EmitStringLiteralLValue(const StringLiteral *E); |
4166 | LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); |
4167 | LValue EmitPredefinedLValue(const PredefinedExpr *E); |
4168 | LValue EmitUnaryOpLValue(const UnaryOperator *E); |
4169 | LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
4170 | bool Accessed = false); |
4171 | LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); |
4172 | LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, |
4173 | bool IsLowerBound = true); |
4174 | LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); |
4175 | LValue EmitMemberExpr(const MemberExpr *E); |
4176 | LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); |
4177 | LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); |
4178 | LValue EmitInitListLValue(const InitListExpr *E); |
4179 | void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); |
4180 | LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); |
4181 | LValue EmitCastLValue(const CastExpr *E); |
4182 | LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
4183 | LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); |
4184 | |
4185 | Address EmitExtVectorElementLValue(LValue V); |
4186 | |
4187 | RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); |
4188 | |
4189 | Address EmitArrayToPointerDecay(const Expr *Array, |
4190 | LValueBaseInfo *BaseInfo = nullptr, |
4191 | TBAAAccessInfo *TBAAInfo = nullptr); |
4192 | |
4193 | class ConstantEmission { |
4194 | llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; |
4195 | ConstantEmission(llvm::Constant *C, bool isReference) |
4196 | : ValueAndIsReference(C, isReference) {} |
4197 | public: |
4198 | ConstantEmission() {} |
4199 | static ConstantEmission forReference(llvm::Constant *C) { |
4200 | return ConstantEmission(C, true); |
4201 | } |
4202 | static ConstantEmission forValue(llvm::Constant *C) { |
4203 | return ConstantEmission(C, false); |
4204 | } |
4205 | |
4206 | explicit operator bool() const { |
4207 | return ValueAndIsReference.getOpaqueValue() != nullptr; |
4208 | } |
4209 | |
4210 | bool isReference() const { return ValueAndIsReference.getInt(); } |
4211 | LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { |
4212 | assert(isReference()); |
4213 | return CGF.MakeNaturalAlignAddrLValue(V: ValueAndIsReference.getPointer(), |
4214 | T: refExpr->getType()); |
4215 | } |
4216 | |
4217 | llvm::Constant *getValue() const { |
4218 | assert(!isReference()); |
4219 | return ValueAndIsReference.getPointer(); |
4220 | } |
4221 | }; |
4222 | |
4223 | ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); |
4224 | ConstantEmission tryEmitAsConstant(const MemberExpr *ME); |
4225 | llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); |
4226 | |
4227 | RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, |
4228 | AggValueSlot slot = AggValueSlot::ignored()); |
4229 | LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); |
4230 | |
4231 | llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
4232 | const ObjCIvarDecl *Ivar); |
4233 | llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, |
4234 | const ObjCIvarDecl *Ivar); |
4235 | LValue EmitLValueForField(LValue Base, const FieldDecl* Field); |
4236 | LValue EmitLValueForLambdaField(const FieldDecl *Field); |
4237 | LValue EmitLValueForLambdaField(const FieldDecl *Field, |
4238 | llvm::Value *ThisValue); |
4239 | |
4240 | /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that |
4241 | /// if the Field is a reference, this will return the address of the reference |
4242 | /// and not the address of the value stored in the reference. |
4243 | LValue EmitLValueForFieldInitialization(LValue Base, |
4244 | const FieldDecl* Field); |
4245 | |
4246 | LValue EmitLValueForIvar(QualType ObjectTy, |
4247 | llvm::Value* Base, const ObjCIvarDecl *Ivar, |
4248 | unsigned CVRQualifiers); |
4249 | |
4250 | LValue EmitCXXConstructLValue(const CXXConstructExpr *E); |
4251 | LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); |
4252 | LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); |
4253 | LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); |
4254 | |
4255 | LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); |
4256 | LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); |
4257 | LValue EmitStmtExprLValue(const StmtExpr *E); |
4258 | LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); |
4259 | LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); |
4260 | void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); |
4261 | |
4262 | //===--------------------------------------------------------------------===// |
4263 | // Scalar Expression Emission |
4264 | //===--------------------------------------------------------------------===// |
4265 | |
4266 | /// EmitCall - Generate a call of the given function, expecting the given |
4267 | /// result type, and using the given argument list which specifies both the |
4268 | /// LLVM arguments and the types they were derived from. |
4269 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4270 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4271 | llvm::CallBase **callOrInvoke, bool IsMustTail, |
4272 | SourceLocation Loc); |
4273 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4274 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4275 | llvm::CallBase **callOrInvoke = nullptr, |
4276 | bool IsMustTail = false) { |
4277 | return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, |
4278 | IsMustTail, Loc: SourceLocation()); |
4279 | } |
4280 | RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, |
4281 | ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); |
4282 | RValue EmitCallExpr(const CallExpr *E, |
4283 | ReturnValueSlot ReturnValue = ReturnValueSlot()); |
4284 | RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
4285 | CGCallee EmitCallee(const Expr *E); |
4286 | |
4287 | void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); |
4288 | void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); |
4289 | |
4290 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4291 | const Twine &name = "" ); |
4292 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4293 | ArrayRef<llvm::Value *> args, |
4294 | const Twine &name = "" ); |
4295 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4296 | const Twine &name = "" ); |
4297 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4298 | ArrayRef<Address> args, |
4299 | const Twine &name = "" ); |
4300 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4301 | ArrayRef<llvm::Value *> args, |
4302 | const Twine &name = "" ); |
4303 | |
4304 | SmallVector<llvm::OperandBundleDef, 1> |
4305 | getBundlesForFunclet(llvm::Value *Callee); |
4306 | |
4307 | llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, |
4308 | ArrayRef<llvm::Value *> Args, |
4309 | const Twine &Name = "" ); |
4310 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4311 | ArrayRef<llvm::Value *> args, |
4312 | const Twine &name = "" ); |
4313 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4314 | const Twine &name = "" ); |
4315 | void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4316 | ArrayRef<llvm::Value *> args); |
4317 | |
4318 | CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, |
4319 | NestedNameSpecifier *Qual, |
4320 | llvm::Type *Ty); |
4321 | |
4322 | CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, |
4323 | CXXDtorType Type, |
4324 | const CXXRecordDecl *RD); |
4325 | |
4326 | llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { |
4327 | return Addr.getBasePointer(); |
4328 | } |
4329 | |
4330 | bool isPointerKnownNonNull(const Expr *E); |
4331 | |
4332 | // Return the copy constructor name with the prefix "__copy_constructor_" |
4333 | // removed. |
4334 | static std::string getNonTrivialCopyConstructorStr(QualType QT, |
4335 | CharUnits Alignment, |
4336 | bool IsVolatile, |
4337 | ASTContext &Ctx); |
4338 | |
4339 | // Return the destructor name with the prefix "__destructor_" removed. |
4340 | static std::string getNonTrivialDestructorStr(QualType QT, |
4341 | CharUnits Alignment, |
4342 | bool IsVolatile, |
4343 | ASTContext &Ctx); |
4344 | |
4345 | // These functions emit calls to the special functions of non-trivial C |
4346 | // structs. |
4347 | void defaultInitNonTrivialCStructVar(LValue Dst); |
4348 | void callCStructDefaultConstructor(LValue Dst); |
4349 | void callCStructDestructor(LValue Dst); |
4350 | void callCStructCopyConstructor(LValue Dst, LValue Src); |
4351 | void callCStructMoveConstructor(LValue Dst, LValue Src); |
4352 | void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); |
4353 | void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); |
4354 | |
4355 | RValue |
4356 | EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, |
4357 | const CGCallee &Callee, |
4358 | ReturnValueSlot ReturnValue, llvm::Value *This, |
4359 | llvm::Value *ImplicitParam, |
4360 | QualType ImplicitParamTy, const CallExpr *E, |
4361 | CallArgList *RtlArgs); |
4362 | RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, |
4363 | llvm::Value *This, QualType ThisTy, |
4364 | llvm::Value *ImplicitParam, |
4365 | QualType ImplicitParamTy, const CallExpr *E); |
4366 | RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, |
4367 | ReturnValueSlot ReturnValue); |
4368 | RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, |
4369 | const CXXMethodDecl *MD, |
4370 | ReturnValueSlot ReturnValue, |
4371 | bool HasQualifier, |
4372 | NestedNameSpecifier *Qualifier, |
4373 | bool IsArrow, const Expr *Base); |
4374 | // Compute the object pointer. |
4375 | Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, |
4376 | llvm::Value *memberPtr, |
4377 | const MemberPointerType *memberPtrType, |
4378 | LValueBaseInfo *BaseInfo = nullptr, |
4379 | TBAAAccessInfo *TBAAInfo = nullptr); |
4380 | RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, |
4381 | ReturnValueSlot ReturnValue); |
4382 | |
4383 | RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, |
4384 | const CXXMethodDecl *MD, |
4385 | ReturnValueSlot ReturnValue); |
4386 | RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); |
4387 | |
4388 | RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, |
4389 | ReturnValueSlot ReturnValue); |
4390 | |
4391 | RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); |
4392 | RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); |
4393 | RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); |
4394 | |
4395 | RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
4396 | const CallExpr *E, ReturnValueSlot ReturnValue); |
4397 | |
4398 | RValue emitRotate(const CallExpr *E, bool IsRotateRight); |
4399 | |
4400 | /// Emit IR for __builtin_os_log_format. |
4401 | RValue emitBuiltinOSLogFormat(const CallExpr &E); |
4402 | |
4403 | /// Emit IR for __builtin_is_aligned. |
4404 | RValue EmitBuiltinIsAligned(const CallExpr *E); |
4405 | /// Emit IR for __builtin_align_up/__builtin_align_down. |
4406 | RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); |
4407 | |
4408 | llvm::Function *generateBuiltinOSLogHelperFunction( |
4409 | const analyze_os_log::OSLogBufferLayout &Layout, |
4410 | CharUnits BufferAlignment); |
4411 | |
4412 | RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
4413 | |
4414 | /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call |
4415 | /// is unhandled by the current target. |
4416 | llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4417 | ReturnValueSlot ReturnValue); |
4418 | |
4419 | llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, |
4420 | const llvm::CmpInst::Predicate Fp, |
4421 | const llvm::CmpInst::Predicate Ip, |
4422 | const llvm::Twine &Name = "" ); |
4423 | llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4424 | ReturnValueSlot ReturnValue, |
4425 | llvm::Triple::ArchType Arch); |
4426 | llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4427 | ReturnValueSlot ReturnValue, |
4428 | llvm::Triple::ArchType Arch); |
4429 | llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4430 | ReturnValueSlot ReturnValue, |
4431 | llvm::Triple::ArchType Arch); |
4432 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, |
4433 | QualType RTy); |
4434 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, |
4435 | QualType RTy); |
4436 | |
4437 | llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, |
4438 | unsigned LLVMIntrinsic, |
4439 | unsigned AltLLVMIntrinsic, |
4440 | const char *NameHint, |
4441 | unsigned Modifier, |
4442 | const CallExpr *E, |
4443 | SmallVectorImpl<llvm::Value *> &Ops, |
4444 | Address PtrOp0, Address PtrOp1, |
4445 | llvm::Triple::ArchType Arch); |
4446 | |
4447 | llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
4448 | unsigned Modifier, llvm::Type *ArgTy, |
4449 | const CallExpr *E); |
4450 | llvm::Value *EmitNeonCall(llvm::Function *F, |
4451 | SmallVectorImpl<llvm::Value*> &O, |
4452 | const char *name, |
4453 | unsigned shift = 0, bool rightshift = false); |
4454 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, |
4455 | const llvm::ElementCount &Count); |
4456 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); |
4457 | llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, |
4458 | bool negateForRightShift); |
4459 | llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, |
4460 | llvm::Type *Ty, bool usgn, const char *name); |
4461 | llvm::Value *vectorWrapScalar16(llvm::Value *Op); |
4462 | /// SVEBuiltinMemEltTy - Returns the memory element type for this memory |
4463 | /// access builtin. Only required if it can't be inferred from the base |
4464 | /// pointer operand. |
4465 | llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); |
4466 | |
4467 | SmallVector<llvm::Type *, 2> |
4468 | getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, |
4469 | ArrayRef<llvm::Value *> Ops); |
4470 | llvm::Type *getEltType(const SVETypeFlags &TypeFlags); |
4471 | llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); |
4472 | llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); |
4473 | llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, |
4474 | llvm::Type *ReturnType, |
4475 | ArrayRef<llvm::Value *> Ops); |
4476 | llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, |
4477 | llvm::Type *ReturnType, |
4478 | ArrayRef<llvm::Value *> Ops); |
4479 | llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); |
4480 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar); |
4481 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); |
4482 | llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); |
4483 | llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, |
4484 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4485 | unsigned BuiltinID); |
4486 | llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, |
4487 | llvm::ArrayRef<llvm::Value *> Ops, |
4488 | unsigned BuiltinID); |
4489 | llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, |
4490 | llvm::ScalableVectorType *VTy); |
4491 | llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, |
4492 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4493 | unsigned IntID); |
4494 | llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, |
4495 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4496 | unsigned IntID); |
4497 | llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, |
4498 | SmallVectorImpl<llvm::Value *> &Ops, |
4499 | unsigned BuiltinID, bool IsZExtReturn); |
4500 | llvm::Value *EmitSVEMaskedStore(const CallExpr *, |
4501 | SmallVectorImpl<llvm::Value *> &Ops, |
4502 | unsigned BuiltinID); |
4503 | llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, |
4504 | SmallVectorImpl<llvm::Value *> &Ops, |
4505 | unsigned BuiltinID); |
4506 | llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, |
4507 | SmallVectorImpl<llvm::Value *> &Ops, |
4508 | unsigned IntID); |
4509 | llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, |
4510 | SmallVectorImpl<llvm::Value *> &Ops, |
4511 | unsigned IntID); |
4512 | llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, |
4513 | SmallVectorImpl<llvm::Value *> &Ops, |
4514 | unsigned IntID); |
4515 | /// FormSVEBuiltinResult - Returns the struct of scalable vectors as a wider |
4516 | /// vector. It extracts the scalable vector from the struct and inserts into |
4517 | /// the wider vector. This avoids the error when allocating space in llvm |
4518 | /// for struct of scalable vectors if a function returns struct. |
4519 | llvm::Value *FormSVEBuiltinResult(llvm::Value *Call); |
4520 | |
4521 | llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4522 | |
4523 | llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, |
4524 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4525 | unsigned IntID); |
4526 | llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, |
4527 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4528 | unsigned IntID); |
4529 | llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, |
4530 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4531 | unsigned IntID); |
4532 | llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, |
4533 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4534 | unsigned IntID); |
4535 | |
4536 | void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, |
4537 | SmallVectorImpl<llvm::Value *> &Ops, |
4538 | SVETypeFlags TypeFlags); |
4539 | |
4540 | llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4541 | |
4542 | llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4543 | llvm::Triple::ArchType Arch); |
4544 | llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4545 | |
4546 | llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); |
4547 | llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4548 | llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4549 | llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4550 | llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4551 | llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, |
4552 | const CallExpr *E); |
4553 | llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4554 | llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4555 | llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
4556 | const CallExpr *E); |
4557 | llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4558 | llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4559 | ReturnValueSlot ReturnValue); |
4560 | void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, |
4561 | llvm::AtomicOrdering &AO, |
4562 | llvm::SyncScope::ID &SSID); |
4563 | |
4564 | enum class MSVCIntrin; |
4565 | llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); |
4566 | |
4567 | llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); |
4568 | |
4569 | llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); |
4570 | llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); |
4571 | llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); |
4572 | llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); |
4573 | llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); |
4574 | llvm::Value *EmitObjCCollectionLiteral(const Expr *E, |
4575 | const ObjCMethodDecl *MethodWithObjects); |
4576 | llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); |
4577 | RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, |
4578 | ReturnValueSlot Return = ReturnValueSlot()); |
4579 | |
4580 | /// Retrieves the default cleanup kind for an ARC cleanup. |
4581 | /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. |
4582 | CleanupKind getARCCleanupKind() { |
4583 | return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions |
4584 | ? NormalAndEHCleanup : NormalCleanup; |
4585 | } |
4586 | |
4587 | // ARC primitives. |
4588 | void EmitARCInitWeak(Address addr, llvm::Value *value); |
4589 | void EmitARCDestroyWeak(Address addr); |
4590 | llvm::Value *EmitARCLoadWeak(Address addr); |
4591 | llvm::Value *EmitARCLoadWeakRetained(Address addr); |
4592 | llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); |
4593 | void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4594 | void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4595 | void EmitARCCopyWeak(Address dst, Address src); |
4596 | void EmitARCMoveWeak(Address dst, Address src); |
4597 | llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); |
4598 | llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); |
4599 | llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, |
4600 | bool resultIgnored); |
4601 | llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, |
4602 | bool resultIgnored); |
4603 | llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); |
4604 | llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); |
4605 | llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); |
4606 | void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); |
4607 | void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4608 | llvm::Value *EmitARCAutorelease(llvm::Value *value); |
4609 | llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); |
4610 | llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); |
4611 | llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); |
4612 | llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); |
4613 | |
4614 | llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); |
4615 | llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, |
4616 | llvm::Type *returnType); |
4617 | void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4618 | |
4619 | std::pair<LValue,llvm::Value*> |
4620 | EmitARCStoreAutoreleasing(const BinaryOperator *e); |
4621 | std::pair<LValue,llvm::Value*> |
4622 | EmitARCStoreStrong(const BinaryOperator *e, bool ignored); |
4623 | std::pair<LValue,llvm::Value*> |
4624 | EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); |
4625 | |
4626 | llvm::Value *EmitObjCAlloc(llvm::Value *value, |
4627 | llvm::Type *returnType); |
4628 | llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, |
4629 | llvm::Type *returnType); |
4630 | llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); |
4631 | |
4632 | llvm::Value *EmitObjCThrowOperand(const Expr *expr); |
4633 | llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); |
4634 | llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); |
4635 | |
4636 | llvm::Value *EmitARCExtendBlockObject(const Expr *expr); |
4637 | llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, |
4638 | bool allowUnsafeClaim); |
4639 | llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); |
4640 | llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); |
4641 | llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); |
4642 | |
4643 | void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); |
4644 | |
4645 | void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); |
4646 | |
4647 | static Destroyer destroyARCStrongImprecise; |
4648 | static Destroyer destroyARCStrongPrecise; |
4649 | static Destroyer destroyARCWeak; |
4650 | static Destroyer emitARCIntrinsicUse; |
4651 | static Destroyer destroyNonTrivialCStruct; |
4652 | |
4653 | void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); |
4654 | llvm::Value *EmitObjCAutoreleasePoolPush(); |
4655 | llvm::Value *EmitObjCMRRAutoreleasePoolPush(); |
4656 | void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); |
4657 | void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); |
4658 | |
4659 | /// Emits a reference binding to the passed in expression. |
4660 | RValue EmitReferenceBindingToExpr(const Expr *E); |
4661 | |
4662 | //===--------------------------------------------------------------------===// |
4663 | // Expression Emission |
4664 | //===--------------------------------------------------------------------===// |
4665 | |
4666 | // Expressions are broken into three classes: scalar, complex, aggregate. |
4667 | |
4668 | /// EmitScalarExpr - Emit the computation of the specified expression of LLVM |
4669 | /// scalar type, returning the result. |
4670 | llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); |
4671 | |
4672 | /// Emit a conversion from the specified type to the specified destination |
4673 | /// type, both of which are LLVM scalar types. |
4674 | llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, |
4675 | QualType DstTy, SourceLocation Loc); |
4676 | |
4677 | /// Emit a conversion from the specified complex type to the specified |
4678 | /// destination type, where the destination type is an LLVM scalar type. |
4679 | llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, |
4680 | QualType DstTy, |
4681 | SourceLocation Loc); |
4682 | |
4683 | /// EmitAggExpr - Emit the computation of the specified expression |
4684 | /// of aggregate type. The result is computed into the given slot, |
4685 | /// which may be null to indicate that the value is not needed. |
4686 | void EmitAggExpr(const Expr *E, AggValueSlot AS); |
4687 | |
4688 | /// EmitAggExprToLValue - Emit the computation of the specified expression of |
4689 | /// aggregate type into a temporary LValue. |
4690 | LValue EmitAggExprToLValue(const Expr *E); |
4691 | |
4692 | /// Build all the stores needed to initialize an aggregate at Dest with the |
4693 | /// value Val. |
4694 | void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); |
4695 | |
4696 | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
4697 | /// make sure it survives garbage collection until this point. |
4698 | void EmitExtendGCLifetime(llvm::Value *object); |
4699 | |
4700 | /// EmitComplexExpr - Emit the computation of the specified expression of |
4701 | /// complex type, returning the result. |
4702 | ComplexPairTy EmitComplexExpr(const Expr *E, |
4703 | bool IgnoreReal = false, |
4704 | bool IgnoreImag = false); |
4705 | |
4706 | /// EmitComplexExprIntoLValue - Emit the given expression of complex |
4707 | /// type and place its result into the specified l-value. |
4708 | void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); |
4709 | |
4710 | /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
4711 | void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); |
4712 | |
4713 | /// EmitLoadOfComplex - Load a complex number from the specified l-value. |
4714 | ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); |
4715 | |
4716 | ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); |
4717 | llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); |
4718 | ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); |
4719 | ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); |
4720 | |
4721 | Address emitAddrOfRealComponent(Address complex, QualType complexType); |
4722 | Address emitAddrOfImagComponent(Address complex, QualType complexType); |
4723 | |
4724 | /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the |
4725 | /// global variable that has already been created for it. If the initializer |
4726 | /// has a different type than GV does, this may free GV and return a different |
4727 | /// one. Otherwise it just returns GV. |
4728 | llvm::GlobalVariable * |
4729 | AddInitializerToStaticVarDecl(const VarDecl &D, |
4730 | llvm::GlobalVariable *GV); |
4731 | |
4732 | // Emit an @llvm.invariant.start call for the given memory region. |
4733 | void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); |
4734 | |
4735 | /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ |
4736 | /// variable with global storage. |
4737 | void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, |
4738 | bool PerformInit); |
4739 | |
4740 | llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, |
4741 | llvm::Constant *Addr); |
4742 | |
4743 | llvm::Function *createTLSAtExitStub(const VarDecl &VD, |
4744 | llvm::FunctionCallee Dtor, |
4745 | llvm::Constant *Addr, |
4746 | llvm::FunctionCallee &AtExit); |
4747 | |
4748 | /// Call atexit() with a function that passes the given argument to |
4749 | /// the given function. |
4750 | void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, |
4751 | llvm::Constant *addr); |
4752 | |
4753 | /// Registers the dtor using 'llvm.global_dtors' for platforms that do not |
4754 | /// support an 'atexit()' function. |
4755 | void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, |
4756 | llvm::Constant *addr); |
4757 | |
4758 | /// Call atexit() with function dtorStub. |
4759 | void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); |
4760 | |
4761 | /// Call unatexit() with function dtorStub. |
4762 | llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); |
4763 | |
4764 | /// Emit code in this function to perform a guarded variable |
4765 | /// initialization. Guarded initializations are used when it's not |
4766 | /// possible to prove that an initialization will be done exactly |
4767 | /// once, e.g. with a static local variable or a static data member |
4768 | /// of a class template. |
4769 | void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, |
4770 | bool PerformInit); |
4771 | |
4772 | enum class GuardKind { VariableGuard, TlsGuard }; |
4773 | |
4774 | /// Emit a branch to select whether or not to perform guarded initialization. |
4775 | void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, |
4776 | llvm::BasicBlock *InitBlock, |
4777 | llvm::BasicBlock *NoInitBlock, |
4778 | GuardKind Kind, const VarDecl *D); |
4779 | |
4780 | /// GenerateCXXGlobalInitFunc - Generates code for initializing global |
4781 | /// variables. |
4782 | void |
4783 | GenerateCXXGlobalInitFunc(llvm::Function *Fn, |
4784 | ArrayRef<llvm::Function *> CXXThreadLocals, |
4785 | ConstantAddress Guard = ConstantAddress::invalid()); |
4786 | |
4787 | /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global |
4788 | /// variables. |
4789 | void GenerateCXXGlobalCleanUpFunc( |
4790 | llvm::Function *Fn, |
4791 | ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, |
4792 | llvm::Constant *>> |
4793 | DtorsOrStermFinalizers); |
4794 | |
4795 | void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, |
4796 | const VarDecl *D, |
4797 | llvm::GlobalVariable *Addr, |
4798 | bool PerformInit); |
4799 | |
4800 | void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); |
4801 | |
4802 | void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); |
4803 | |
4804 | void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); |
4805 | |
4806 | RValue EmitAtomicExpr(AtomicExpr *E); |
4807 | |
4808 | //===--------------------------------------------------------------------===// |
4809 | // Annotations Emission |
4810 | //===--------------------------------------------------------------------===// |
4811 | |
4812 | /// Emit an annotation call (intrinsic). |
4813 | llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, |
4814 | llvm::Value *AnnotatedVal, |
4815 | StringRef AnnotationStr, |
4816 | SourceLocation Location, |
4817 | const AnnotateAttr *Attr); |
4818 | |
4819 | /// Emit local annotations for the local variable V, declared by D. |
4820 | void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); |
4821 | |
4822 | /// Emit field annotations for the given field & value. Returns the |
4823 | /// annotation result. |
4824 | Address EmitFieldAnnotations(const FieldDecl *D, Address V); |
4825 | |
4826 | //===--------------------------------------------------------------------===// |
4827 | // Internal Helpers |
4828 | //===--------------------------------------------------------------------===// |
4829 | |
4830 | /// ContainsLabel - Return true if the statement contains a label in it. If |
4831 | /// this statement is not executed normally, it not containing a label means |
4832 | /// that we can just remove the code. |
4833 | static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); |
4834 | |
4835 | /// containsBreak - Return true if the statement contains a break out of it. |
4836 | /// If the statement (recursively) contains a switch or loop with a break |
4837 | /// inside of it, this is fine. |
4838 | static bool containsBreak(const Stmt *S); |
4839 | |
4840 | /// Determine if the given statement might introduce a declaration into the |
4841 | /// current scope, by being a (possibly-labelled) DeclStmt. |
4842 | static bool mightAddDeclToScope(const Stmt *S); |
4843 | |
4844 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
4845 | /// to a constant, or if it does but contains a label, return false. If it |
4846 | /// constant folds return true and set the boolean result in Result. |
4847 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, |
4848 | bool AllowLabels = false); |
4849 | |
4850 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
4851 | /// to a constant, or if it does but contains a label, return false. If it |
4852 | /// constant folds return true and set the folded value. |
4853 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, |
4854 | bool AllowLabels = false); |
4855 | |
4856 | /// Ignore parentheses and logical-NOT to track conditions consistently. |
4857 | static const Expr *stripCond(const Expr *C); |
4858 | |
4859 | /// isInstrumentedCondition - Determine whether the given condition is an |
4860 | /// instrumentable condition (i.e. no "&&" or "||"). |
4861 | static bool isInstrumentedCondition(const Expr *C); |
4862 | |
4863 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
4864 | /// increments a profile counter based on the semantics of the given logical |
4865 | /// operator opcode. This is used to instrument branch condition coverage |
4866 | /// for logical operators. |
4867 | void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, |
4868 | llvm::BasicBlock *TrueBlock, |
4869 | llvm::BasicBlock *FalseBlock, |
4870 | uint64_t TrueCount = 0, |
4871 | Stmt::Likelihood LH = Stmt::LH_None, |
4872 | const Expr *CntrIdx = nullptr); |
4873 | |
4874 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an |
4875 | /// if statement) to the specified blocks. Based on the condition, this might |
4876 | /// try to simplify the codegen of the conditional based on the branch. |
4877 | /// TrueCount should be the number of times we expect the condition to |
4878 | /// evaluate to true based on PGO data. |
4879 | void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, |
4880 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount, |
4881 | Stmt::Likelihood LH = Stmt::LH_None, |
4882 | const Expr *ConditionalOp = nullptr); |
4883 | |
4884 | /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is |
4885 | /// nonnull, if \p LHS is marked _Nonnull. |
4886 | void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); |
4887 | |
4888 | /// An enumeration which makes it easier to specify whether or not an |
4889 | /// operation is a subtraction. |
4890 | enum { NotSubtraction = false, IsSubtraction = true }; |
4891 | |
4892 | /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to |
4893 | /// detect undefined behavior when the pointer overflow sanitizer is enabled. |
4894 | /// \p SignedIndices indicates whether any of the GEP indices are signed. |
4895 | /// \p IsSubtraction indicates whether the expression used to form the GEP |
4896 | /// is a subtraction. |
4897 | llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, |
4898 | ArrayRef<llvm::Value *> IdxList, |
4899 | bool SignedIndices, |
4900 | bool IsSubtraction, |
4901 | SourceLocation Loc, |
4902 | const Twine &Name = "" ); |
4903 | |
4904 | Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, |
4905 | llvm::Type *elementType, bool SignedIndices, |
4906 | bool IsSubtraction, SourceLocation Loc, |
4907 | CharUnits Align, const Twine &Name = "" ); |
4908 | |
4909 | /// Specifies which type of sanitizer check to apply when handling a |
4910 | /// particular builtin. |
4911 | enum BuiltinCheckKind { |
4912 | BCK_CTZPassedZero, |
4913 | BCK_CLZPassedZero, |
4914 | }; |
4915 | |
4916 | /// Emits an argument for a call to a builtin. If the builtin sanitizer is |
4917 | /// enabled, a runtime check specified by \p Kind is also emitted. |
4918 | llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); |
4919 | |
4920 | /// Emit a description of a type in a format suitable for passing to |
4921 | /// a runtime sanitizer handler. |
4922 | llvm::Constant *EmitCheckTypeDescriptor(QualType T); |
4923 | |
4924 | /// Convert a value into a format suitable for passing to a runtime |
4925 | /// sanitizer handler. |
4926 | llvm::Value *EmitCheckValue(llvm::Value *V); |
4927 | |
4928 | /// Emit a description of a source location in a format suitable for |
4929 | /// passing to a runtime sanitizer handler. |
4930 | llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); |
4931 | |
4932 | void EmitKCFIOperandBundle(const CGCallee &Callee, |
4933 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
4934 | |
4935 | /// Create a basic block that will either trap or call a handler function in |
4936 | /// the UBSan runtime with the provided arguments, and create a conditional |
4937 | /// branch to it. |
4938 | void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, |
4939 | SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, |
4940 | ArrayRef<llvm::Value *> DynamicArgs); |
4941 | |
4942 | /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath |
4943 | /// if Cond if false. |
4944 | void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, |
4945 | llvm::ConstantInt *TypeId, llvm::Value *Ptr, |
4946 | ArrayRef<llvm::Constant *> StaticArgs); |
4947 | |
4948 | /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime |
4949 | /// checking is enabled. Otherwise, just emit an unreachable instruction. |
4950 | void EmitUnreachable(SourceLocation Loc); |
4951 | |
4952 | /// Create a basic block that will call the trap intrinsic, and emit a |
4953 | /// conditional branch to it, for the -ftrapv checks. |
4954 | void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); |
4955 | |
4956 | /// Emit a call to trap or debugtrap and attach function attribute |
4957 | /// "trap-func-name" if specified. |
4958 | llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); |
4959 | |
4960 | /// Emit a stub for the cross-DSO CFI check function. |
4961 | void EmitCfiCheckStub(); |
4962 | |
4963 | /// Emit a cross-DSO CFI failure handling function. |
4964 | void EmitCfiCheckFail(); |
4965 | |
4966 | /// Create a check for a function parameter that may potentially be |
4967 | /// declared as non-null. |
4968 | void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, |
4969 | AbstractCallee AC, unsigned ParmNum); |
4970 | |
4971 | void EmitNonNullArgCheck(Address Addr, QualType ArgType, |
4972 | SourceLocation ArgLoc, AbstractCallee AC, |
4973 | unsigned ParmNum); |
4974 | |
4975 | /// EmitCallArg - Emit a single call argument. |
4976 | void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); |
4977 | |
4978 | /// EmitDelegateCallArg - We are performing a delegate call; that |
4979 | /// is, the current function is delegating to another one. Produce |
4980 | /// a r-value suitable for passing the given parameter. |
4981 | void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, |
4982 | SourceLocation loc); |
4983 | |
4984 | /// SetFPAccuracy - Set the minimum required accuracy of the given floating |
4985 | /// point operation, expressed as the maximum relative error in ulp. |
4986 | void SetFPAccuracy(llvm::Value *Val, float Accuracy); |
4987 | |
4988 | /// Set the minimum required accuracy of the given sqrt operation |
4989 | /// based on CodeGenOpts. |
4990 | void SetSqrtFPAccuracy(llvm::Value *Val); |
4991 | |
4992 | /// Set the minimum required accuracy of the given sqrt operation based on |
4993 | /// CodeGenOpts. |
4994 | void SetDivFPAccuracy(llvm::Value *Val); |
4995 | |
4996 | /// Set the codegen fast-math flags. |
4997 | void SetFastMathFlags(FPOptions FPFeatures); |
4998 | |
4999 | // Truncate or extend a boolean vector to the requested number of elements. |
5000 | llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, |
5001 | unsigned NumElementsDst, |
5002 | const llvm::Twine &Name = "" ); |
5003 | // Adds a convergence_ctrl token to |Input| and emits the required parent |
5004 | // convergence instructions. |
5005 | llvm::CallBase *addControlledConvergenceToken(llvm::CallBase *Input); |
5006 | |
5007 | private: |
5008 | // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| |
5009 | // as it's parent convergence instr. |
5010 | llvm::IntrinsicInst *emitConvergenceLoopToken(llvm::BasicBlock *BB, |
5011 | llvm::Value *ParentToken); |
5012 | // Adds a convergence_ctrl token with |ParentToken| as parent convergence |
5013 | // instr to the call |Input|. |
5014 | llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input, |
5015 | llvm::Value *ParentToken); |
5016 | // Find the convergence_entry instruction |F|, or emits ones if none exists. |
5017 | // Returns the convergence instruction. |
5018 | llvm::IntrinsicInst *getOrEmitConvergenceEntryToken(llvm::Function *F); |
5019 | // Find the convergence_loop instruction for the loop defined by |LI|, or |
5020 | // emits one if none exists. Returns the convergence instruction. |
5021 | llvm::IntrinsicInst *getOrEmitConvergenceLoopToken(const LoopInfo *LI); |
5022 | |
5023 | private: |
5024 | llvm::MDNode *getRangeForLoadFromType(QualType Ty); |
5025 | void EmitReturnOfRValue(RValue RV, QualType Ty); |
5026 | |
5027 | void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); |
5028 | |
5029 | llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> |
5030 | DeferredReplacements; |
5031 | |
5032 | /// Set the address of a local variable. |
5033 | void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { |
5034 | assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!" ); |
5035 | LocalDeclMap.insert({VD, Addr}); |
5036 | } |
5037 | |
5038 | /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty |
5039 | /// from function arguments into \arg Dst. See ABIArgInfo::Expand. |
5040 | /// |
5041 | /// \param AI - The first function argument of the expansion. |
5042 | void ExpandTypeFromArgs(QualType Ty, LValue Dst, |
5043 | llvm::Function::arg_iterator &AI); |
5044 | |
5045 | /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg |
5046 | /// Ty, into individual arguments on the provided vector \arg IRCallArgs, |
5047 | /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. |
5048 | void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
5049 | SmallVectorImpl<llvm::Value *> &IRCallArgs, |
5050 | unsigned &IRCallArgPos); |
5051 | |
5052 | std::pair<llvm::Value *, llvm::Type *> |
5053 | EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, |
5054 | std::string &ConstraintStr); |
5055 | |
5056 | std::pair<llvm::Value *, llvm::Type *> |
5057 | EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, |
5058 | QualType InputType, std::string &ConstraintStr, |
5059 | SourceLocation Loc); |
5060 | |
5061 | /// Attempts to statically evaluate the object size of E. If that |
5062 | /// fails, emits code to figure the size of E out for us. This is |
5063 | /// pass_object_size aware. |
5064 | /// |
5065 | /// If EmittedExpr is non-null, this will use that instead of re-emitting E. |
5066 | llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
5067 | llvm::IntegerType *ResType, |
5068 | llvm::Value *EmittedE, |
5069 | bool IsDynamic); |
5070 | |
5071 | /// Emits the size of E, as required by __builtin_object_size. This |
5072 | /// function is aware of pass_object_size parameters, and will act accordingly |
5073 | /// if E is a parameter with the pass_object_size attribute. |
5074 | llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, |
5075 | llvm::IntegerType *ResType, |
5076 | llvm::Value *EmittedE, |
5077 | bool IsDynamic); |
5078 | |
5079 | llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, |
5080 | llvm::IntegerType *ResType); |
5081 | |
5082 | void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, |
5083 | Address Loc); |
5084 | |
5085 | public: |
5086 | enum class EvaluationOrder { |
5087 | ///! No language constraints on evaluation order. |
5088 | Default, |
5089 | ///! Language semantics require left-to-right evaluation. |
5090 | ForceLeftToRight, |
5091 | ///! Language semantics require right-to-left evaluation. |
5092 | ForceRightToLeft |
5093 | }; |
5094 | |
5095 | // Wrapper for function prototype sources. Wraps either a FunctionProtoType or |
5096 | // an ObjCMethodDecl. |
5097 | struct PrototypeWrapper { |
5098 | llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; |
5099 | |
5100 | PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} |
5101 | PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} |
5102 | }; |
5103 | |
5104 | void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, |
5105 | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
5106 | AbstractCallee AC = AbstractCallee(), |
5107 | unsigned ParamsToSkip = 0, |
5108 | EvaluationOrder Order = EvaluationOrder::Default); |
5109 | |
5110 | /// EmitPointerWithAlignment - Given an expression with a pointer type, |
5111 | /// emit the value and compute our best estimate of the alignment of the |
5112 | /// pointee. |
5113 | /// |
5114 | /// \param BaseInfo - If non-null, this will be initialized with |
5115 | /// information about the source of the alignment and the may-alias |
5116 | /// attribute. Note that this function will conservatively fall back on |
5117 | /// the type when it doesn't recognize the expression and may-alias will |
5118 | /// be set to false. |
5119 | /// |
5120 | /// One reasonable way to use this information is when there's a language |
5121 | /// guarantee that the pointer must be aligned to some stricter value, and |
5122 | /// we're simply trying to ensure that sufficiently obvious uses of under- |
5123 | /// aligned objects don't get miscompiled; for example, a placement new |
5124 | /// into the address of a local variable. In such a case, it's quite |
5125 | /// reasonable to just ignore the returned alignment when it isn't from an |
5126 | /// explicit source. |
5127 | Address |
5128 | EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, |
5129 | TBAAAccessInfo *TBAAInfo = nullptr, |
5130 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
5131 | |
5132 | /// If \p E references a parameter with pass_object_size info or a constant |
5133 | /// array size modifier, emit the object size divided by the size of \p EltTy. |
5134 | /// Otherwise return null. |
5135 | llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); |
5136 | |
5137 | void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); |
5138 | |
5139 | struct MultiVersionResolverOption { |
5140 | llvm::Function *Function; |
5141 | struct Conds { |
5142 | StringRef Architecture; |
5143 | llvm::SmallVector<StringRef, 8> Features; |
5144 | |
5145 | Conds(StringRef Arch, ArrayRef<StringRef> Feats) |
5146 | : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} |
5147 | } Conditions; |
5148 | |
5149 | MultiVersionResolverOption(llvm::Function *F, StringRef Arch, |
5150 | ArrayRef<StringRef> Feats) |
5151 | : Function(F), Conditions(Arch, Feats) {} |
5152 | }; |
5153 | |
5154 | // Emits the body of a multiversion function's resolver. Assumes that the |
5155 | // options are already sorted in the proper order, with the 'default' option |
5156 | // last (if it exists). |
5157 | void EmitMultiVersionResolver(llvm::Function *Resolver, |
5158 | ArrayRef<MultiVersionResolverOption> Options); |
5159 | void |
5160 | EmitX86MultiVersionResolver(llvm::Function *Resolver, |
5161 | ArrayRef<MultiVersionResolverOption> Options); |
5162 | void |
5163 | EmitAArch64MultiVersionResolver(llvm::Function *Resolver, |
5164 | ArrayRef<MultiVersionResolverOption> Options); |
5165 | |
5166 | private: |
5167 | QualType getVarArgType(const Expr *Arg); |
5168 | |
5169 | void EmitDeclMetadata(); |
5170 | |
5171 | BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, |
5172 | const AutoVarEmission &emission); |
5173 | |
5174 | void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); |
5175 | |
5176 | llvm::Value *GetValueForARMHint(unsigned BuiltinID); |
5177 | llvm::Value *EmitX86CpuIs(const CallExpr *E); |
5178 | llvm::Value *EmitX86CpuIs(StringRef CPUStr); |
5179 | llvm::Value *EmitX86CpuSupports(const CallExpr *E); |
5180 | llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5181 | llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); |
5182 | llvm::Value *EmitX86CpuInit(); |
5183 | llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO); |
5184 | llvm::Value *EmitAArch64CpuInit(); |
5185 | llvm::Value * |
5186 | FormAArch64ResolverCondition(const MultiVersionResolverOption &RO); |
5187 | llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); |
5188 | llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5189 | }; |
5190 | |
5191 | inline DominatingLLVMValue::saved_type |
5192 | DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { |
5193 | if (!needsSaving(value)) return saved_type(value, false); |
5194 | |
5195 | // Otherwise, we need an alloca. |
5196 | auto align = CharUnits::fromQuantity( |
5197 | Quantity: CGF.CGM.getDataLayout().getPrefTypeAlign(Ty: value->getType())); |
5198 | Address alloca = |
5199 | CGF.CreateTempAlloca(Ty: value->getType(), align, Name: "cond-cleanup.save" ); |
5200 | CGF.Builder.CreateStore(Val: value, Addr: alloca); |
5201 | |
5202 | return saved_type(alloca.emitRawPointer(CGF), true); |
5203 | } |
5204 | |
5205 | inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, |
5206 | saved_type value) { |
5207 | // If the value says it wasn't saved, trust that it's still dominating. |
5208 | if (!value.getInt()) return value.getPointer(); |
5209 | |
5210 | // Otherwise, it should be an alloca instruction, as set up in save(). |
5211 | auto alloca = cast<llvm::AllocaInst>(Val: value.getPointer()); |
5212 | return CGF.Builder.CreateAlignedLoad(Ty: alloca->getAllocatedType(), Ptr: alloca, |
5213 | Align: alloca->getAlign()); |
5214 | } |
5215 | |
5216 | } // end namespace CodeGen |
5217 | |
5218 | // Map the LangOption for floating point exception behavior into |
5219 | // the corresponding enum in the IR. |
5220 | llvm::fp::ExceptionBehavior |
5221 | ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); |
5222 | } // end namespace clang |
5223 | |
5224 | #endif |
5225 | |