1 | //===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code to emit HLSL Builtin calls as LLVM code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CGBuiltin.h" |
14 | #include "CGHLSLRuntime.h" |
15 | |
16 | using namespace clang; |
17 | using namespace CodeGen; |
18 | using namespace llvm; |
19 | |
20 | static Value *handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E) { |
21 | assert((E->getArg(0)->getType()->hasUnsignedIntegerRepresentation() && |
22 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation()) && |
23 | "asdouble operands types mismatch" ); |
24 | Value *OpLowBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
25 | Value *OpHighBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
26 | |
27 | llvm::Type *ResultType = CGF.DoubleTy; |
28 | int N = 1; |
29 | if (auto *VTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
30 | N = VTy->getNumElements(); |
31 | ResultType = llvm::FixedVectorType::get(ElementType: CGF.DoubleTy, NumElts: N); |
32 | } |
33 | |
34 | if (CGF.CGM.getTarget().getTriple().isDXIL()) |
35 | return CGF.Builder.CreateIntrinsic( |
36 | /*ReturnType=*/ResultType, Intrinsic::dx_asdouble, |
37 | {OpLowBits, OpHighBits}, nullptr, "hlsl.asdouble" ); |
38 | |
39 | if (!E->getArg(Arg: 0)->getType()->isVectorType()) { |
40 | OpLowBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpLowBits); |
41 | OpHighBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpHighBits); |
42 | } |
43 | |
44 | llvm::SmallVector<int> Mask; |
45 | for (int i = 0; i < N; i++) { |
46 | Mask.push_back(Elt: i); |
47 | Mask.push_back(Elt: i + N); |
48 | } |
49 | |
50 | Value *BitVec = CGF.Builder.CreateShuffleVector(V1: OpLowBits, V2: OpHighBits, Mask); |
51 | |
52 | return CGF.Builder.CreateBitCast(V: BitVec, DestTy: ResultType); |
53 | } |
54 | |
55 | static Value *handleHlslClip(const CallExpr *E, CodeGenFunction *CGF) { |
56 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
57 | |
58 | Constant *FZeroConst = ConstantFP::getZero(Ty: CGF->FloatTy); |
59 | Value *CMP; |
60 | Value *LastInstr; |
61 | |
62 | if (const auto *VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
63 | FZeroConst = ConstantVector::getSplat( |
64 | EC: ElementCount::getFixed(MinVal: VecTy->getNumElements()), Elt: FZeroConst); |
65 | auto *FCompInst = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
66 | CMP = CGF->Builder.CreateIntrinsic( |
67 | RetTy: CGF->Builder.getInt1Ty(), ID: CGF->CGM.getHLSLRuntime().getAnyIntrinsic(), |
68 | Args: {FCompInst}); |
69 | } else { |
70 | CMP = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
71 | } |
72 | |
73 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
74 | LastInstr = CGF->Builder.CreateIntrinsic(Intrinsic::dx_discard, {CMP}); |
75 | } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) { |
76 | BasicBlock *LT0 = CGF->createBasicBlock(name: "lt0" , parent: CGF->CurFn); |
77 | BasicBlock *End = CGF->createBasicBlock(name: "end" , parent: CGF->CurFn); |
78 | |
79 | CGF->Builder.CreateCondBr(Cond: CMP, True: LT0, False: End); |
80 | |
81 | CGF->Builder.SetInsertPoint(LT0); |
82 | |
83 | CGF->Builder.CreateIntrinsic(Intrinsic::spv_discard, {}); |
84 | |
85 | LastInstr = CGF->Builder.CreateBr(Dest: End); |
86 | CGF->Builder.SetInsertPoint(End); |
87 | } else { |
88 | llvm_unreachable("Backend Codegen not supported." ); |
89 | } |
90 | |
91 | return LastInstr; |
92 | } |
93 | |
94 | static Value *handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF) { |
95 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
96 | const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 1)); |
97 | const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 2)); |
98 | |
99 | CallArgList Args; |
100 | LValue Op1TmpLValue = |
101 | CGF->EmitHLSLOutArgExpr(E: OutArg1, Args, Ty: OutArg1->getType()); |
102 | LValue Op2TmpLValue = |
103 | CGF->EmitHLSLOutArgExpr(E: OutArg2, Args, Ty: OutArg2->getType()); |
104 | |
105 | if (CGF->getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
106 | Args.reverseWritebacks(); |
107 | |
108 | Value *LowBits = nullptr; |
109 | Value *HighBits = nullptr; |
110 | |
111 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
112 | llvm::Type *RetElementTy = CGF->Int32Ty; |
113 | if (auto *Op0VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
114 | RetElementTy = llvm::VectorType::get( |
115 | ElementType: CGF->Int32Ty, EC: ElementCount::getFixed(MinVal: Op0VecTy->getNumElements())); |
116 | auto *RetTy = llvm::StructType::get(elt1: RetElementTy, elts: RetElementTy); |
117 | |
118 | CallInst *CI = CGF->Builder.CreateIntrinsic( |
119 | RetTy, Intrinsic::dx_splitdouble, {Op0}, nullptr, "hlsl.splitdouble" ); |
120 | |
121 | LowBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 0); |
122 | HighBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 1); |
123 | } else { |
124 | // For Non DXIL targets we generate the instructions. |
125 | |
126 | if (!Op0->getType()->isVectorTy()) { |
127 | FixedVectorType *DestTy = FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: 2); |
128 | Value *Bitcast = CGF->Builder.CreateBitCast(V: Op0, DestTy); |
129 | |
130 | LowBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: (uint64_t)0); |
131 | HighBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: 1); |
132 | } else { |
133 | int NumElements = 1; |
134 | if (const auto *VecTy = |
135 | E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
136 | NumElements = VecTy->getNumElements(); |
137 | |
138 | FixedVectorType *Uint32VecTy = |
139 | FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: NumElements * 2); |
140 | Value *Uint32Vec = CGF->Builder.CreateBitCast(V: Op0, DestTy: Uint32VecTy); |
141 | if (NumElements == 1) { |
142 | LowBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: (uint64_t)0); |
143 | HighBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: 1); |
144 | } else { |
145 | SmallVector<int> EvenMask, OddMask; |
146 | for (int I = 0, E = NumElements; I != E; ++I) { |
147 | EvenMask.push_back(Elt: I * 2); |
148 | OddMask.push_back(Elt: I * 2 + 1); |
149 | } |
150 | LowBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: EvenMask); |
151 | HighBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: OddMask); |
152 | } |
153 | } |
154 | } |
155 | CGF->Builder.CreateStore(Val: LowBits, Addr: Op1TmpLValue.getAddress()); |
156 | auto *LastInst = |
157 | CGF->Builder.CreateStore(Val: HighBits, Addr: Op2TmpLValue.getAddress()); |
158 | CGF->EmitWritebacks(Args); |
159 | return LastInst; |
160 | } |
161 | |
162 | // Return dot product intrinsic that corresponds to the QT scalar type |
163 | static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
164 | if (QT->isFloatingType()) |
165 | return RT.getFDotIntrinsic(); |
166 | if (QT->isSignedIntegerType()) |
167 | return RT.getSDotIntrinsic(); |
168 | assert(QT->isUnsignedIntegerType()); |
169 | return RT.getUDotIntrinsic(); |
170 | } |
171 | |
172 | static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
173 | if (QT->hasSignedIntegerRepresentation()) { |
174 | return RT.getFirstBitSHighIntrinsic(); |
175 | } |
176 | |
177 | assert(QT->hasUnsignedIntegerRepresentation()); |
178 | return RT.getFirstBitUHighIntrinsic(); |
179 | } |
180 | |
181 | // Return wave active sum that corresponds to the QT scalar type |
182 | static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, |
183 | CGHLSLRuntime &RT, QualType QT) { |
184 | switch (Arch) { |
185 | case llvm::Triple::spirv: |
186 | return Intrinsic::spv_wave_reduce_sum; |
187 | case llvm::Triple::dxil: { |
188 | if (QT->isUnsignedIntegerType()) |
189 | return Intrinsic::dx_wave_reduce_usum; |
190 | return Intrinsic::dx_wave_reduce_sum; |
191 | } |
192 | default: |
193 | llvm_unreachable("Intrinsic WaveActiveSum" |
194 | " not supported by target architecture" ); |
195 | } |
196 | } |
197 | |
198 | // Return wave active sum that corresponds to the QT scalar type |
199 | static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, |
200 | CGHLSLRuntime &RT, QualType QT) { |
201 | switch (Arch) { |
202 | case llvm::Triple::spirv: |
203 | if (QT->isUnsignedIntegerType()) |
204 | return Intrinsic::spv_wave_reduce_umax; |
205 | return Intrinsic::spv_wave_reduce_max; |
206 | case llvm::Triple::dxil: { |
207 | if (QT->isUnsignedIntegerType()) |
208 | return Intrinsic::dx_wave_reduce_umax; |
209 | return Intrinsic::dx_wave_reduce_max; |
210 | } |
211 | default: |
212 | llvm_unreachable("Intrinsic WaveActiveMax" |
213 | " not supported by target architecture" ); |
214 | } |
215 | } |
216 | |
217 | Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID, |
218 | const CallExpr *E, |
219 | ReturnValueSlot ReturnValue) { |
220 | if (!getLangOpts().HLSL) |
221 | return nullptr; |
222 | |
223 | switch (BuiltinID) { |
224 | case Builtin::BI__builtin_hlsl_adduint64: { |
225 | Value *OpA = EmitScalarExpr(E: E->getArg(Arg: 0)); |
226 | Value *OpB = EmitScalarExpr(E: E->getArg(Arg: 1)); |
227 | QualType Arg0Ty = E->getArg(Arg: 0)->getType(); |
228 | uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements(); |
229 | assert(Arg0Ty == E->getArg(1)->getType() && |
230 | "AddUint64 operand types must match" ); |
231 | assert(Arg0Ty->hasIntegerRepresentation() && |
232 | "AddUint64 operands must have an integer representation" ); |
233 | assert((NumElements == 2 || NumElements == 4) && |
234 | "AddUint64 operands must have 2 or 4 elements" ); |
235 | |
236 | llvm::Value *LowA; |
237 | llvm::Value *HighA; |
238 | llvm::Value *LowB; |
239 | llvm::Value *HighB; |
240 | |
241 | // Obtain low and high words of inputs A and B |
242 | if (NumElements == 2) { |
243 | LowA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)0, Name: "LowA" ); |
244 | HighA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)1, Name: "HighA" ); |
245 | LowB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)0, Name: "LowB" ); |
246 | HighB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)1, Name: "HighB" ); |
247 | } else { |
248 | LowA = Builder.CreateShuffleVector(V: OpA, Mask: {0, 2}, Name: "LowA" ); |
249 | HighA = Builder.CreateShuffleVector(V: OpA, Mask: {1, 3}, Name: "HighA" ); |
250 | LowB = Builder.CreateShuffleVector(V: OpB, Mask: {0, 2}, Name: "LowB" ); |
251 | HighB = Builder.CreateShuffleVector(V: OpB, Mask: {1, 3}, Name: "HighB" ); |
252 | } |
253 | |
254 | // Use an uadd_with_overflow to compute the sum of low words and obtain a |
255 | // carry value |
256 | llvm::Value *Carry; |
257 | llvm::Value *LowSum = EmitOverflowIntrinsic( |
258 | *this, Intrinsic::uadd_with_overflow, LowA, LowB, Carry); |
259 | llvm::Value *ZExtCarry = |
260 | Builder.CreateZExt(V: Carry, DestTy: HighA->getType(), Name: "CarryZExt" ); |
261 | |
262 | // Sum the high words and the carry |
263 | llvm::Value *HighSum = Builder.CreateAdd(LHS: HighA, RHS: HighB, Name: "HighSum" ); |
264 | llvm::Value *HighSumPlusCarry = |
265 | Builder.CreateAdd(LHS: HighSum, RHS: ZExtCarry, Name: "HighSumPlusCarry" ); |
266 | |
267 | if (NumElements == 4) { |
268 | return Builder.CreateShuffleVector(V1: LowSum, V2: HighSumPlusCarry, Mask: {0, 2, 1, 3}, |
269 | Name: "hlsl.AddUint64" ); |
270 | } |
271 | |
272 | llvm::Value *Result = PoisonValue::get(T: OpA->getType()); |
273 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: LowSum, Idx: (uint64_t)0, |
274 | Name: "hlsl.AddUint64.upto0" ); |
275 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: HighSumPlusCarry, Idx: (uint64_t)1, |
276 | Name: "hlsl.AddUint64" ); |
277 | return Result; |
278 | } |
279 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
280 | Value *HandleOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
281 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
282 | |
283 | llvm::Type *RetTy = ConvertType(E->getType()); |
284 | return Builder.CreateIntrinsic( |
285 | RetTy, ID: CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(), |
286 | Args: ArrayRef<Value *>{HandleOp, IndexOp}); |
287 | } |
288 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
289 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
290 | return llvm::PoisonValue::get(T: HandleTy); |
291 | } |
292 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
293 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
294 | Value *RegisterOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
295 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
296 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
297 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 4)); |
298 | // FIXME: NonUniformResourceIndex bit is not yet implemented |
299 | // (llvm/llvm-project#135452) |
300 | Value *NonUniform = |
301 | llvm::ConstantInt::get(Ty: llvm::Type::getInt1Ty(C&: getLLVMContext()), V: false); |
302 | |
303 | auto [IntrinsicID, HasNameArg] = |
304 | CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic(); |
305 | SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, IndexOp, |
306 | NonUniform}; |
307 | if (HasNameArg) |
308 | Args.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 5))); |
309 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
310 | } |
311 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
312 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
313 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
314 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
315 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
316 | Value *OrderID = EmitScalarExpr(E: E->getArg(Arg: 4)); |
317 | // FIXME: NonUniformResourceIndex bit is not yet implemented |
318 | // (llvm/llvm-project#135452) |
319 | Value *NonUniform = |
320 | llvm::ConstantInt::get(Ty: llvm::Type::getInt1Ty(C&: getLLVMContext()), V: false); |
321 | |
322 | auto [IntrinsicID, HasNameArg] = |
323 | CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic(); |
324 | SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, IndexOp, NonUniform}; |
325 | if (HasNameArg) |
326 | Args.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 5))); |
327 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
328 | } |
329 | case Builtin::BI__builtin_hlsl_all: { |
330 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
331 | return Builder.CreateIntrinsic( |
332 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
333 | ID: CGM.getHLSLRuntime().getAllIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
334 | Name: "hlsl.all" ); |
335 | } |
336 | case Builtin::BI__builtin_hlsl_and: { |
337 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
338 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
339 | return Builder.CreateAnd(LHS: Op0, RHS: Op1, Name: "hlsl.and" ); |
340 | } |
341 | case Builtin::BI__builtin_hlsl_or: { |
342 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
343 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
344 | return Builder.CreateOr(LHS: Op0, RHS: Op1, Name: "hlsl.or" ); |
345 | } |
346 | case Builtin::BI__builtin_hlsl_any: { |
347 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
348 | return Builder.CreateIntrinsic( |
349 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
350 | ID: CGM.getHLSLRuntime().getAnyIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
351 | Name: "hlsl.any" ); |
352 | } |
353 | case Builtin::BI__builtin_hlsl_asdouble: |
354 | return handleAsDoubleBuiltin(CGF&: *this, E); |
355 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
356 | Value *OpX = EmitScalarExpr(E: E->getArg(Arg: 0)); |
357 | Value *OpMin = EmitScalarExpr(E: E->getArg(Arg: 1)); |
358 | Value *OpMax = EmitScalarExpr(E: E->getArg(Arg: 2)); |
359 | |
360 | QualType Ty = E->getArg(Arg: 0)->getType(); |
361 | if (auto *VecTy = Ty->getAs<VectorType>()) |
362 | Ty = VecTy->getElementType(); |
363 | |
364 | Intrinsic::ID Intr; |
365 | if (Ty->isFloatingType()) { |
366 | Intr = CGM.getHLSLRuntime().getNClampIntrinsic(); |
367 | } else if (Ty->isUnsignedIntegerType()) { |
368 | Intr = CGM.getHLSLRuntime().getUClampIntrinsic(); |
369 | } else { |
370 | assert(Ty->isSignedIntegerType()); |
371 | Intr = CGM.getHLSLRuntime().getSClampIntrinsic(); |
372 | } |
373 | return Builder.CreateIntrinsic( |
374 | /*ReturnType=*/RetTy: OpX->getType(), ID: Intr, |
375 | Args: ArrayRef<Value *>{OpX, OpMin, OpMax}, FMFSource: nullptr, Name: "hlsl.clamp" ); |
376 | } |
377 | case Builtin::BI__builtin_hlsl_crossf16: |
378 | case Builtin::BI__builtin_hlsl_crossf32: { |
379 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
380 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
381 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
382 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
383 | "cross operands must have a float representation" ); |
384 | // make sure each vector has exactly 3 elements |
385 | assert( |
386 | E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
387 | E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
388 | "input vectors must have 3 elements each" ); |
389 | return Builder.CreateIntrinsic( |
390 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getCrossIntrinsic(), |
391 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.cross" ); |
392 | } |
393 | case Builtin::BI__builtin_hlsl_dot: { |
394 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
395 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
396 | llvm::Type *T0 = Op0->getType(); |
397 | llvm::Type *T1 = Op1->getType(); |
398 | |
399 | // If the arguments are scalars, just emit a multiply |
400 | if (!T0->isVectorTy() && !T1->isVectorTy()) { |
401 | if (T0->isFloatingPointTy()) |
402 | return Builder.CreateFMul(L: Op0, R: Op1, Name: "hlsl.dot" ); |
403 | |
404 | if (T0->isIntegerTy()) |
405 | return Builder.CreateMul(LHS: Op0, RHS: Op1, Name: "hlsl.dot" ); |
406 | |
407 | llvm_unreachable( |
408 | "Scalar dot product is only supported on ints and floats." ); |
409 | } |
410 | // For vectors, validate types and emit the appropriate intrinsic |
411 | assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(), |
412 | E->getArg(1)->getType()) && |
413 | "Dot product operands must have the same type." ); |
414 | |
415 | auto *VecTy0 = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
416 | assert(VecTy0 && "Dot product argument must be a vector." ); |
417 | |
418 | return Builder.CreateIntrinsic( |
419 | /*ReturnType=*/RetTy: T0->getScalarType(), |
420 | ID: getDotProductIntrinsic(RT&: CGM.getHLSLRuntime(), QT: VecTy0->getElementType()), |
421 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.dot" ); |
422 | } |
423 | case Builtin::BI__builtin_hlsl_dot4add_i8packed: { |
424 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
425 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
426 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
427 | |
428 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic(); |
429 | // Note that the argument order disagrees between the builtin and the |
430 | // intrinsic here. |
431 | return Builder.CreateIntrinsic( |
432 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
433 | FMFSource: nullptr, Name: "hlsl.dot4add.i8packed" ); |
434 | } |
435 | case Builtin::BI__builtin_hlsl_dot4add_u8packed: { |
436 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
437 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
438 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
439 | |
440 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic(); |
441 | // Note that the argument order disagrees between the builtin and the |
442 | // intrinsic here. |
443 | return Builder.CreateIntrinsic( |
444 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
445 | FMFSource: nullptr, Name: "hlsl.dot4add.u8packed" ); |
446 | } |
447 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: { |
448 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
449 | |
450 | return Builder.CreateIntrinsic( |
451 | /*ReturnType=*/ConvertType(E->getType()), |
452 | getFirstBitHighIntrinsic(RT&: CGM.getHLSLRuntime(), QT: E->getArg(Arg: 0)->getType()), |
453 | ArrayRef<Value *>{X}, nullptr, "hlsl.firstbithigh" ); |
454 | } |
455 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
456 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
457 | |
458 | return Builder.CreateIntrinsic( |
459 | /*ReturnType=*/ConvertType(E->getType()), |
460 | CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), ArrayRef<Value *>{X}, |
461 | nullptr, "hlsl.firstbitlow" ); |
462 | } |
463 | case Builtin::BI__builtin_hlsl_lerp: { |
464 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
465 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
466 | Value *S = EmitScalarExpr(E: E->getArg(Arg: 2)); |
467 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
468 | llvm_unreachable("lerp operand must have a float representation" ); |
469 | return Builder.CreateIntrinsic( |
470 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getLerpIntrinsic(), |
471 | Args: ArrayRef<Value *>{X, Y, S}, FMFSource: nullptr, Name: "hlsl.lerp" ); |
472 | } |
473 | case Builtin::BI__builtin_hlsl_normalize: { |
474 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
475 | |
476 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
477 | "normalize operand must have a float representation" ); |
478 | |
479 | return Builder.CreateIntrinsic( |
480 | /*ReturnType=*/RetTy: X->getType(), |
481 | ID: CGM.getHLSLRuntime().getNormalizeIntrinsic(), Args: ArrayRef<Value *>{X}, |
482 | FMFSource: nullptr, Name: "hlsl.normalize" ); |
483 | } |
484 | case Builtin::BI__builtin_hlsl_elementwise_degrees: { |
485 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
486 | |
487 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
488 | "degree operand must have a float representation" ); |
489 | |
490 | return Builder.CreateIntrinsic( |
491 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getDegreesIntrinsic(), |
492 | Args: ArrayRef<Value *>{X}, FMFSource: nullptr, Name: "hlsl.degrees" ); |
493 | } |
494 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
495 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
496 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
497 | llvm_unreachable("frac operand must have a float representation" ); |
498 | return Builder.CreateIntrinsic( |
499 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getFracIntrinsic(), |
500 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.frac" ); |
501 | } |
502 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
503 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
504 | llvm::Type *Xty = Op0->getType(); |
505 | llvm::Type *retType = llvm::Type::getInt1Ty(C&: this->getLLVMContext()); |
506 | if (Xty->isVectorTy()) { |
507 | auto *XVecTy = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
508 | retType = llvm::VectorType::get( |
509 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
510 | } |
511 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
512 | llvm_unreachable("isinf operand must have a float representation" ); |
513 | return Builder.CreateIntrinsic(retType, Intrinsic::dx_isinf, |
514 | ArrayRef<Value *>{Op0}, nullptr, "dx.isinf" ); |
515 | } |
516 | case Builtin::BI__builtin_hlsl_mad: { |
517 | Value *M = EmitScalarExpr(E: E->getArg(Arg: 0)); |
518 | Value *A = EmitScalarExpr(E: E->getArg(Arg: 1)); |
519 | Value *B = EmitScalarExpr(E: E->getArg(Arg: 2)); |
520 | if (E->getArg(0)->getType()->hasFloatingRepresentation()) |
521 | return Builder.CreateIntrinsic( |
522 | /*ReturnType*/ M->getType(), Intrinsic::fmuladd, |
523 | ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad" ); |
524 | |
525 | if (E->getArg(Arg: 0)->getType()->hasSignedIntegerRepresentation()) { |
526 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
527 | return Builder.CreateIntrinsic( |
528 | /*ReturnType*/ M->getType(), Intrinsic::dx_imad, |
529 | ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad" ); |
530 | |
531 | Value *Mul = Builder.CreateNSWMul(LHS: M, RHS: A); |
532 | return Builder.CreateNSWAdd(LHS: Mul, RHS: B); |
533 | } |
534 | assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation()); |
535 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
536 | return Builder.CreateIntrinsic( |
537 | /*ReturnType=*/M->getType(), Intrinsic::dx_umad, |
538 | ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad" ); |
539 | |
540 | Value *Mul = Builder.CreateNUWMul(LHS: M, RHS: A); |
541 | return Builder.CreateNUWAdd(LHS: Mul, RHS: B); |
542 | } |
543 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
544 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
545 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
546 | llvm_unreachable("rcp operand must have a float representation" ); |
547 | llvm::Type *Ty = Op0->getType(); |
548 | llvm::Type *EltTy = Ty->getScalarType(); |
549 | Constant *One = Ty->isVectorTy() |
550 | ? ConstantVector::getSplat( |
551 | EC: ElementCount::getFixed( |
552 | MinVal: cast<FixedVectorType>(Val: Ty)->getNumElements()), |
553 | Elt: ConstantFP::get(Ty: EltTy, V: 1.0)) |
554 | : ConstantFP::get(Ty: EltTy, V: 1.0); |
555 | return Builder.CreateFDiv(L: One, R: Op0, Name: "hlsl.rcp" ); |
556 | } |
557 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: { |
558 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
559 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
560 | llvm_unreachable("rsqrt operand must have a float representation" ); |
561 | return Builder.CreateIntrinsic( |
562 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getRsqrtIntrinsic(), |
563 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.rsqrt" ); |
564 | } |
565 | case Builtin::BI__builtin_hlsl_elementwise_saturate: { |
566 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
567 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
568 | "saturate operand must have a float representation" ); |
569 | return Builder.CreateIntrinsic( |
570 | /*ReturnType=*/RetTy: Op0->getType(), |
571 | ID: CGM.getHLSLRuntime().getSaturateIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
572 | FMFSource: nullptr, Name: "hlsl.saturate" ); |
573 | } |
574 | case Builtin::BI__builtin_hlsl_select: { |
575 | Value *OpCond = EmitScalarExpr(E: E->getArg(Arg: 0)); |
576 | RValue RValTrue = EmitAnyExpr(E: E->getArg(Arg: 1)); |
577 | Value *OpTrue = |
578 | RValTrue.isScalar() |
579 | ? RValTrue.getScalarVal() |
580 | : RValTrue.getAggregatePointer(PointeeType: E->getArg(Arg: 1)->getType(), CGF&: *this); |
581 | RValue RValFalse = EmitAnyExpr(E: E->getArg(Arg: 2)); |
582 | Value *OpFalse = |
583 | RValFalse.isScalar() |
584 | ? RValFalse.getScalarVal() |
585 | : RValFalse.getAggregatePointer(PointeeType: E->getArg(Arg: 2)->getType(), CGF&: *this); |
586 | if (auto *VTy = E->getType()->getAs<VectorType>()) { |
587 | if (!OpTrue->getType()->isVectorTy()) |
588 | OpTrue = |
589 | Builder.CreateVectorSplat(VTy->getNumElements(), OpTrue, "splat" ); |
590 | if (!OpFalse->getType()->isVectorTy()) |
591 | OpFalse = |
592 | Builder.CreateVectorSplat(VTy->getNumElements(), OpFalse, "splat" ); |
593 | } |
594 | |
595 | Value *SelectVal = |
596 | Builder.CreateSelect(C: OpCond, True: OpTrue, False: OpFalse, Name: "hlsl.select" ); |
597 | if (!RValTrue.isScalar()) |
598 | Builder.CreateStore(Val: SelectVal, Addr: ReturnValue.getAddress(), |
599 | IsVolatile: ReturnValue.isVolatile()); |
600 | |
601 | return SelectVal; |
602 | } |
603 | case Builtin::BI__builtin_hlsl_step: { |
604 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
605 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
606 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
607 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
608 | "step operands must have a float representation" ); |
609 | return Builder.CreateIntrinsic( |
610 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getStepIntrinsic(), |
611 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.step" ); |
612 | } |
613 | case Builtin::BI__builtin_hlsl_wave_active_all_true: { |
614 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
615 | assert(Op->getType()->isIntegerTy(1) && |
616 | "Intrinsic WaveActiveAllTrue operand must be a bool" ); |
617 | |
618 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic(); |
619 | return EmitRuntimeCall( |
620 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
621 | } |
622 | case Builtin::BI__builtin_hlsl_wave_active_any_true: { |
623 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
624 | assert(Op->getType()->isIntegerTy(1) && |
625 | "Intrinsic WaveActiveAnyTrue operand must be a bool" ); |
626 | |
627 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic(); |
628 | return EmitRuntimeCall( |
629 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
630 | } |
631 | case Builtin::BI__builtin_hlsl_wave_active_count_bits: { |
632 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
633 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic(); |
634 | return EmitRuntimeCall( |
635 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), |
636 | args: ArrayRef{OpExpr}); |
637 | } |
638 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
639 | // Due to the use of variadic arguments, explicitly retreive argument |
640 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
641 | llvm::FunctionType *FT = llvm::FunctionType::get( |
642 | Result: OpExpr->getType(), Params: ArrayRef{OpExpr->getType()}, isVarArg: false); |
643 | Intrinsic::ID IID = getWaveActiveSumIntrinsic( |
644 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
645 | QT: E->getArg(Arg: 0)->getType()); |
646 | |
647 | // Get overloaded name |
648 | std::string Name = |
649 | Intrinsic::getName(Id: IID, Tys: ArrayRef{OpExpr->getType()}, M: &CGM.getModule()); |
650 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FT, Name, ExtraAttrs: {}, |
651 | /*Local=*/false, |
652 | /*AssumeConvergent=*/true), |
653 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.sum" ); |
654 | } |
655 | case Builtin::BI__builtin_hlsl_wave_active_max: { |
656 | // Due to the use of variadic arguments, explicitly retreive argument |
657 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
658 | llvm::FunctionType *FT = llvm::FunctionType::get( |
659 | Result: OpExpr->getType(), Params: ArrayRef{OpExpr->getType()}, isVarArg: false); |
660 | Intrinsic::ID IID = getWaveActiveMaxIntrinsic( |
661 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
662 | QT: E->getArg(Arg: 0)->getType()); |
663 | |
664 | // Get overloaded name |
665 | std::string Name = |
666 | Intrinsic::getName(Id: IID, Tys: ArrayRef{OpExpr->getType()}, M: &CGM.getModule()); |
667 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FT, Name, ExtraAttrs: {}, |
668 | /*Local=*/false, |
669 | /*AssumeConvergent=*/true), |
670 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.max" ); |
671 | } |
672 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
673 | // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in |
674 | // defined in SPIRVBuiltins.td. So instead we manually get the matching name |
675 | // for the DirectX intrinsic and the demangled builtin name |
676 | switch (CGM.getTarget().getTriple().getArch()) { |
677 | case llvm::Triple::dxil: |
678 | return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration( |
679 | &CGM.getModule(), Intrinsic::dx_wave_getlaneindex)); |
680 | case llvm::Triple::spirv: |
681 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction( |
682 | Ty: llvm::FunctionType::get(Result: IntTy, Params: {}, isVarArg: false), |
683 | Name: "__hlsl_wave_get_lane_index" , ExtraAttrs: {}, Local: false, AssumeConvergent: true)); |
684 | default: |
685 | llvm_unreachable( |
686 | "Intrinsic WaveGetLaneIndex not supported by target architecture" ); |
687 | } |
688 | } |
689 | case Builtin::BI__builtin_hlsl_wave_is_first_lane: { |
690 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic(); |
691 | return EmitRuntimeCall( |
692 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
693 | } |
694 | case Builtin::BI__builtin_hlsl_wave_get_lane_count: { |
695 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic(); |
696 | return EmitRuntimeCall( |
697 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
698 | } |
699 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
700 | // Due to the use of variadic arguments we must explicitly retreive them and |
701 | // create our function type. |
702 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
703 | Value *OpIndex = EmitScalarExpr(E: E->getArg(Arg: 1)); |
704 | llvm::FunctionType *FT = llvm::FunctionType::get( |
705 | Result: OpExpr->getType(), Params: ArrayRef{OpExpr->getType(), OpIndex->getType()}, |
706 | isVarArg: false); |
707 | |
708 | // Get overloaded name |
709 | std::string Name = |
710 | Intrinsic::getName(Id: CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(), |
711 | Tys: ArrayRef{OpExpr->getType()}, M: &CGM.getModule()); |
712 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FT, Name, ExtraAttrs: {}, |
713 | /*Local=*/false, |
714 | /*AssumeConvergent=*/true), |
715 | args: ArrayRef{OpExpr, OpIndex}, name: "hlsl.wave.readlane" ); |
716 | } |
717 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
718 | auto *Arg0 = E->getArg(Arg: 0); |
719 | Value *Op0 = EmitScalarExpr(E: Arg0); |
720 | llvm::Type *Xty = Op0->getType(); |
721 | llvm::Type *retType = llvm::Type::getInt32Ty(C&: this->getLLVMContext()); |
722 | if (Xty->isVectorTy()) { |
723 | auto *XVecTy = Arg0->getType()->castAs<VectorType>(); |
724 | retType = llvm::VectorType::get( |
725 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
726 | } |
727 | assert((Arg0->getType()->hasFloatingRepresentation() || |
728 | Arg0->getType()->hasIntegerRepresentation()) && |
729 | "sign operand must have a float or int representation" ); |
730 | |
731 | if (Arg0->getType()->hasUnsignedIntegerRepresentation()) { |
732 | Value *Cmp = Builder.CreateICmpEQ(LHS: Op0, RHS: ConstantInt::get(Ty: Xty, V: 0)); |
733 | return Builder.CreateSelect(C: Cmp, True: ConstantInt::get(Ty: retType, V: 0), |
734 | False: ConstantInt::get(Ty: retType, V: 1), Name: "hlsl.sign" ); |
735 | } |
736 | |
737 | return Builder.CreateIntrinsic( |
738 | RetTy: retType, ID: CGM.getHLSLRuntime().getSignIntrinsic(), |
739 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.sign" ); |
740 | } |
741 | case Builtin::BI__builtin_hlsl_elementwise_radians: { |
742 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
743 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
744 | "radians operand must have a float representation" ); |
745 | return Builder.CreateIntrinsic( |
746 | /*ReturnType=*/RetTy: Op0->getType(), |
747 | ID: CGM.getHLSLRuntime().getRadiansIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
748 | FMFSource: nullptr, Name: "hlsl.radians" ); |
749 | } |
750 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
751 | Value *ResHandle = EmitScalarExpr(E: E->getArg(Arg: 0)); |
752 | Value *Offset = EmitScalarExpr(E: E->getArg(Arg: 1)); |
753 | Value *OffsetI8 = Builder.CreateIntCast(V: Offset, DestTy: Int8Ty, isSigned: true); |
754 | return Builder.CreateIntrinsic( |
755 | /*ReturnType=*/RetTy: Offset->getType(), |
756 | ID: CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(), |
757 | Args: ArrayRef<Value *>{ResHandle, OffsetI8}, FMFSource: nullptr); |
758 | } |
759 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
760 | |
761 | assert((E->getArg(0)->getType()->hasFloatingRepresentation() && |
762 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation() && |
763 | E->getArg(2)->getType()->hasUnsignedIntegerRepresentation()) && |
764 | "asuint operands types mismatch" ); |
765 | return handleHlslSplitdouble(E, CGF: this); |
766 | } |
767 | case Builtin::BI__builtin_hlsl_elementwise_clip: |
768 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
769 | "clip operands types mismatch" ); |
770 | return handleHlslClip(E, CGF: this); |
771 | case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: { |
772 | Intrinsic::ID ID = |
773 | CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic(); |
774 | return EmitRuntimeCall( |
775 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
776 | } |
777 | } |
778 | return nullptr; |
779 | } |
780 | |