| 1 | //===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit HLSL Builtin calls as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGBuiltin.h" |
| 14 | #include "CGHLSLRuntime.h" |
| 15 | |
| 16 | using namespace clang; |
| 17 | using namespace CodeGen; |
| 18 | using namespace llvm; |
| 19 | |
| 20 | static Value *handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E) { |
| 21 | assert((E->getArg(0)->getType()->hasUnsignedIntegerRepresentation() && |
| 22 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation()) && |
| 23 | "asdouble operands types mismatch" ); |
| 24 | Value *OpLowBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 25 | Value *OpHighBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 26 | |
| 27 | llvm::Type *ResultType = CGF.DoubleTy; |
| 28 | int N = 1; |
| 29 | if (auto *VTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
| 30 | N = VTy->getNumElements(); |
| 31 | ResultType = llvm::FixedVectorType::get(ElementType: CGF.DoubleTy, NumElts: N); |
| 32 | } |
| 33 | |
| 34 | if (CGF.CGM.getTarget().getTriple().isDXIL()) |
| 35 | return CGF.Builder.CreateIntrinsic( |
| 36 | /*ReturnType=*/ResultType, Intrinsic::dx_asdouble, |
| 37 | {OpLowBits, OpHighBits}, nullptr, "hlsl.asdouble" ); |
| 38 | |
| 39 | if (!E->getArg(Arg: 0)->getType()->isVectorType()) { |
| 40 | OpLowBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpLowBits); |
| 41 | OpHighBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpHighBits); |
| 42 | } |
| 43 | |
| 44 | llvm::SmallVector<int> Mask; |
| 45 | for (int i = 0; i < N; i++) { |
| 46 | Mask.push_back(Elt: i); |
| 47 | Mask.push_back(Elt: i + N); |
| 48 | } |
| 49 | |
| 50 | Value *BitVec = CGF.Builder.CreateShuffleVector(V1: OpLowBits, V2: OpHighBits, Mask); |
| 51 | |
| 52 | return CGF.Builder.CreateBitCast(V: BitVec, DestTy: ResultType); |
| 53 | } |
| 54 | |
| 55 | static Value *handleHlslClip(const CallExpr *E, CodeGenFunction *CGF) { |
| 56 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 57 | |
| 58 | Constant *FZeroConst = ConstantFP::getZero(Ty: CGF->FloatTy); |
| 59 | Value *CMP; |
| 60 | Value *LastInstr; |
| 61 | |
| 62 | if (const auto *VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
| 63 | FZeroConst = ConstantVector::getSplat( |
| 64 | EC: ElementCount::getFixed(MinVal: VecTy->getNumElements()), Elt: FZeroConst); |
| 65 | auto *FCompInst = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
| 66 | CMP = CGF->Builder.CreateIntrinsic( |
| 67 | RetTy: CGF->Builder.getInt1Ty(), ID: CGF->CGM.getHLSLRuntime().getAnyIntrinsic(), |
| 68 | Args: {FCompInst}); |
| 69 | } else { |
| 70 | CMP = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
| 71 | } |
| 72 | |
| 73 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| 74 | LastInstr = CGF->Builder.CreateIntrinsic(Intrinsic::dx_discard, {CMP}); |
| 75 | } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) { |
| 76 | BasicBlock *LT0 = CGF->createBasicBlock(name: "lt0" , parent: CGF->CurFn); |
| 77 | BasicBlock *End = CGF->createBasicBlock(name: "end" , parent: CGF->CurFn); |
| 78 | |
| 79 | CGF->Builder.CreateCondBr(Cond: CMP, True: LT0, False: End); |
| 80 | |
| 81 | CGF->Builder.SetInsertPoint(LT0); |
| 82 | |
| 83 | CGF->Builder.CreateIntrinsic(Intrinsic::spv_discard, {}); |
| 84 | |
| 85 | LastInstr = CGF->Builder.CreateBr(Dest: End); |
| 86 | CGF->Builder.SetInsertPoint(End); |
| 87 | } else { |
| 88 | llvm_unreachable("Backend Codegen not supported." ); |
| 89 | } |
| 90 | |
| 91 | return LastInstr; |
| 92 | } |
| 93 | |
| 94 | static Value *handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF) { |
| 95 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 96 | const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 1)); |
| 97 | const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 2)); |
| 98 | |
| 99 | CallArgList Args; |
| 100 | LValue Op1TmpLValue = |
| 101 | CGF->EmitHLSLOutArgExpr(E: OutArg1, Args, Ty: OutArg1->getType()); |
| 102 | LValue Op2TmpLValue = |
| 103 | CGF->EmitHLSLOutArgExpr(E: OutArg2, Args, Ty: OutArg2->getType()); |
| 104 | |
| 105 | if (CGF->getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
| 106 | Args.reverseWritebacks(); |
| 107 | |
| 108 | Value *LowBits = nullptr; |
| 109 | Value *HighBits = nullptr; |
| 110 | |
| 111 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| 112 | llvm::Type *RetElementTy = CGF->Int32Ty; |
| 113 | if (auto *Op0VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
| 114 | RetElementTy = llvm::VectorType::get( |
| 115 | ElementType: CGF->Int32Ty, EC: ElementCount::getFixed(MinVal: Op0VecTy->getNumElements())); |
| 116 | auto *RetTy = llvm::StructType::get(elt1: RetElementTy, elts: RetElementTy); |
| 117 | |
| 118 | CallInst *CI = CGF->Builder.CreateIntrinsic( |
| 119 | RetTy, Intrinsic::dx_splitdouble, {Op0}, nullptr, "hlsl.splitdouble" ); |
| 120 | |
| 121 | LowBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 0); |
| 122 | HighBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 1); |
| 123 | } else { |
| 124 | // For Non DXIL targets we generate the instructions. |
| 125 | |
| 126 | if (!Op0->getType()->isVectorTy()) { |
| 127 | FixedVectorType *DestTy = FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: 2); |
| 128 | Value *Bitcast = CGF->Builder.CreateBitCast(V: Op0, DestTy); |
| 129 | |
| 130 | LowBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: (uint64_t)0); |
| 131 | HighBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: 1); |
| 132 | } else { |
| 133 | int NumElements = 1; |
| 134 | if (const auto *VecTy = |
| 135 | E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
| 136 | NumElements = VecTy->getNumElements(); |
| 137 | |
| 138 | FixedVectorType *Uint32VecTy = |
| 139 | FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: NumElements * 2); |
| 140 | Value *Uint32Vec = CGF->Builder.CreateBitCast(V: Op0, DestTy: Uint32VecTy); |
| 141 | if (NumElements == 1) { |
| 142 | LowBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: (uint64_t)0); |
| 143 | HighBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: 1); |
| 144 | } else { |
| 145 | SmallVector<int> EvenMask, OddMask; |
| 146 | for (int I = 0, E = NumElements; I != E; ++I) { |
| 147 | EvenMask.push_back(Elt: I * 2); |
| 148 | OddMask.push_back(Elt: I * 2 + 1); |
| 149 | } |
| 150 | LowBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: EvenMask); |
| 151 | HighBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: OddMask); |
| 152 | } |
| 153 | } |
| 154 | } |
| 155 | CGF->Builder.CreateStore(Val: LowBits, Addr: Op1TmpLValue.getAddress()); |
| 156 | auto *LastInst = |
| 157 | CGF->Builder.CreateStore(Val: HighBits, Addr: Op2TmpLValue.getAddress()); |
| 158 | CGF->EmitWritebacks(Args); |
| 159 | return LastInst; |
| 160 | } |
| 161 | |
| 162 | // Return dot product intrinsic that corresponds to the QT scalar type |
| 163 | static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| 164 | if (QT->isFloatingType()) |
| 165 | return RT.getFDotIntrinsic(); |
| 166 | if (QT->isSignedIntegerType()) |
| 167 | return RT.getSDotIntrinsic(); |
| 168 | assert(QT->isUnsignedIntegerType()); |
| 169 | return RT.getUDotIntrinsic(); |
| 170 | } |
| 171 | |
| 172 | static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| 173 | if (QT->hasSignedIntegerRepresentation()) { |
| 174 | return RT.getFirstBitSHighIntrinsic(); |
| 175 | } |
| 176 | |
| 177 | assert(QT->hasUnsignedIntegerRepresentation()); |
| 178 | return RT.getFirstBitUHighIntrinsic(); |
| 179 | } |
| 180 | |
| 181 | // Return wave active sum that corresponds to the QT scalar type |
| 182 | static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, |
| 183 | CGHLSLRuntime &RT, QualType QT) { |
| 184 | switch (Arch) { |
| 185 | case llvm::Triple::spirv: |
| 186 | return Intrinsic::spv_wave_reduce_sum; |
| 187 | case llvm::Triple::dxil: { |
| 188 | if (QT->isUnsignedIntegerType()) |
| 189 | return Intrinsic::dx_wave_reduce_usum; |
| 190 | return Intrinsic::dx_wave_reduce_sum; |
| 191 | } |
| 192 | default: |
| 193 | llvm_unreachable("Intrinsic WaveActiveSum" |
| 194 | " not supported by target architecture" ); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | // Return wave active sum that corresponds to the QT scalar type |
| 199 | static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, |
| 200 | CGHLSLRuntime &RT, QualType QT) { |
| 201 | switch (Arch) { |
| 202 | case llvm::Triple::spirv: |
| 203 | if (QT->isUnsignedIntegerType()) |
| 204 | return Intrinsic::spv_wave_reduce_umax; |
| 205 | return Intrinsic::spv_wave_reduce_max; |
| 206 | case llvm::Triple::dxil: { |
| 207 | if (QT->isUnsignedIntegerType()) |
| 208 | return Intrinsic::dx_wave_reduce_umax; |
| 209 | return Intrinsic::dx_wave_reduce_max; |
| 210 | } |
| 211 | default: |
| 212 | llvm_unreachable("Intrinsic WaveActiveMax" |
| 213 | " not supported by target architecture" ); |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID, |
| 218 | const CallExpr *E, |
| 219 | ReturnValueSlot ReturnValue) { |
| 220 | if (!getLangOpts().HLSL) |
| 221 | return nullptr; |
| 222 | |
| 223 | switch (BuiltinID) { |
| 224 | case Builtin::BI__builtin_hlsl_adduint64: { |
| 225 | Value *OpA = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 226 | Value *OpB = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 227 | QualType Arg0Ty = E->getArg(Arg: 0)->getType(); |
| 228 | uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements(); |
| 229 | assert(Arg0Ty == E->getArg(1)->getType() && |
| 230 | "AddUint64 operand types must match" ); |
| 231 | assert(Arg0Ty->hasIntegerRepresentation() && |
| 232 | "AddUint64 operands must have an integer representation" ); |
| 233 | assert((NumElements == 2 || NumElements == 4) && |
| 234 | "AddUint64 operands must have 2 or 4 elements" ); |
| 235 | |
| 236 | llvm::Value *LowA; |
| 237 | llvm::Value *HighA; |
| 238 | llvm::Value *LowB; |
| 239 | llvm::Value *HighB; |
| 240 | |
| 241 | // Obtain low and high words of inputs A and B |
| 242 | if (NumElements == 2) { |
| 243 | LowA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)0, Name: "LowA" ); |
| 244 | HighA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)1, Name: "HighA" ); |
| 245 | LowB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)0, Name: "LowB" ); |
| 246 | HighB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)1, Name: "HighB" ); |
| 247 | } else { |
| 248 | LowA = Builder.CreateShuffleVector(V: OpA, Mask: {0, 2}, Name: "LowA" ); |
| 249 | HighA = Builder.CreateShuffleVector(V: OpA, Mask: {1, 3}, Name: "HighA" ); |
| 250 | LowB = Builder.CreateShuffleVector(V: OpB, Mask: {0, 2}, Name: "LowB" ); |
| 251 | HighB = Builder.CreateShuffleVector(V: OpB, Mask: {1, 3}, Name: "HighB" ); |
| 252 | } |
| 253 | |
| 254 | // Use an uadd_with_overflow to compute the sum of low words and obtain a |
| 255 | // carry value |
| 256 | llvm::Value *Carry; |
| 257 | llvm::Value *LowSum = EmitOverflowIntrinsic( |
| 258 | *this, Intrinsic::uadd_with_overflow, LowA, LowB, Carry); |
| 259 | llvm::Value *ZExtCarry = |
| 260 | Builder.CreateZExt(V: Carry, DestTy: HighA->getType(), Name: "CarryZExt" ); |
| 261 | |
| 262 | // Sum the high words and the carry |
| 263 | llvm::Value *HighSum = Builder.CreateAdd(LHS: HighA, RHS: HighB, Name: "HighSum" ); |
| 264 | llvm::Value *HighSumPlusCarry = |
| 265 | Builder.CreateAdd(LHS: HighSum, RHS: ZExtCarry, Name: "HighSumPlusCarry" ); |
| 266 | |
| 267 | if (NumElements == 4) { |
| 268 | return Builder.CreateShuffleVector(V1: LowSum, V2: HighSumPlusCarry, Mask: {0, 2, 1, 3}, |
| 269 | Name: "hlsl.AddUint64" ); |
| 270 | } |
| 271 | |
| 272 | llvm::Value *Result = PoisonValue::get(T: OpA->getType()); |
| 273 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: LowSum, Idx: (uint64_t)0, |
| 274 | Name: "hlsl.AddUint64.upto0" ); |
| 275 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: HighSumPlusCarry, Idx: (uint64_t)1, |
| 276 | Name: "hlsl.AddUint64" ); |
| 277 | return Result; |
| 278 | } |
| 279 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
| 280 | Value *HandleOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 281 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 282 | |
| 283 | llvm::Type *RetTy = ConvertType(E->getType()); |
| 284 | return Builder.CreateIntrinsic( |
| 285 | RetTy, ID: CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(), |
| 286 | Args: ArrayRef<Value *>{HandleOp, IndexOp}); |
| 287 | } |
| 288 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
| 289 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 290 | return llvm::PoisonValue::get(T: HandleTy); |
| 291 | } |
| 292 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
| 293 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 294 | Value *RegisterOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 295 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 296 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 297 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 298 | // FIXME: NonUniformResourceIndex bit is not yet implemented |
| 299 | // (llvm/llvm-project#135452) |
| 300 | Value *NonUniform = |
| 301 | llvm::ConstantInt::get(Ty: llvm::Type::getInt1Ty(C&: getLLVMContext()), V: false); |
| 302 | |
| 303 | auto [IntrinsicID, HasNameArg] = |
| 304 | CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic(); |
| 305 | SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, IndexOp, |
| 306 | NonUniform}; |
| 307 | if (HasNameArg) |
| 308 | Args.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 5))); |
| 309 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 310 | } |
| 311 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
| 312 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 313 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 314 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 315 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 316 | Value *OrderID = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 317 | // FIXME: NonUniformResourceIndex bit is not yet implemented |
| 318 | // (llvm/llvm-project#135452) |
| 319 | Value *NonUniform = |
| 320 | llvm::ConstantInt::get(Ty: llvm::Type::getInt1Ty(C&: getLLVMContext()), V: false); |
| 321 | |
| 322 | auto [IntrinsicID, HasNameArg] = |
| 323 | CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic(); |
| 324 | SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, IndexOp, NonUniform}; |
| 325 | if (HasNameArg) |
| 326 | Args.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 5))); |
| 327 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 328 | } |
| 329 | case Builtin::BI__builtin_hlsl_all: { |
| 330 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 331 | return Builder.CreateIntrinsic( |
| 332 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
| 333 | ID: CGM.getHLSLRuntime().getAllIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 334 | Name: "hlsl.all" ); |
| 335 | } |
| 336 | case Builtin::BI__builtin_hlsl_and: { |
| 337 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 338 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 339 | return Builder.CreateAnd(LHS: Op0, RHS: Op1, Name: "hlsl.and" ); |
| 340 | } |
| 341 | case Builtin::BI__builtin_hlsl_or: { |
| 342 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 343 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 344 | return Builder.CreateOr(LHS: Op0, RHS: Op1, Name: "hlsl.or" ); |
| 345 | } |
| 346 | case Builtin::BI__builtin_hlsl_any: { |
| 347 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 348 | return Builder.CreateIntrinsic( |
| 349 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
| 350 | ID: CGM.getHLSLRuntime().getAnyIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 351 | Name: "hlsl.any" ); |
| 352 | } |
| 353 | case Builtin::BI__builtin_hlsl_asdouble: |
| 354 | return handleAsDoubleBuiltin(CGF&: *this, E); |
| 355 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
| 356 | Value *OpX = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 357 | Value *OpMin = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 358 | Value *OpMax = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 359 | |
| 360 | QualType Ty = E->getArg(Arg: 0)->getType(); |
| 361 | if (auto *VecTy = Ty->getAs<VectorType>()) |
| 362 | Ty = VecTy->getElementType(); |
| 363 | |
| 364 | Intrinsic::ID Intr; |
| 365 | if (Ty->isFloatingType()) { |
| 366 | Intr = CGM.getHLSLRuntime().getNClampIntrinsic(); |
| 367 | } else if (Ty->isUnsignedIntegerType()) { |
| 368 | Intr = CGM.getHLSLRuntime().getUClampIntrinsic(); |
| 369 | } else { |
| 370 | assert(Ty->isSignedIntegerType()); |
| 371 | Intr = CGM.getHLSLRuntime().getSClampIntrinsic(); |
| 372 | } |
| 373 | return Builder.CreateIntrinsic( |
| 374 | /*ReturnType=*/RetTy: OpX->getType(), ID: Intr, |
| 375 | Args: ArrayRef<Value *>{OpX, OpMin, OpMax}, FMFSource: nullptr, Name: "hlsl.clamp" ); |
| 376 | } |
| 377 | case Builtin::BI__builtin_hlsl_crossf16: |
| 378 | case Builtin::BI__builtin_hlsl_crossf32: { |
| 379 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 380 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 381 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 382 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
| 383 | "cross operands must have a float representation" ); |
| 384 | // make sure each vector has exactly 3 elements |
| 385 | assert( |
| 386 | E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| 387 | E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| 388 | "input vectors must have 3 elements each" ); |
| 389 | return Builder.CreateIntrinsic( |
| 390 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getCrossIntrinsic(), |
| 391 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.cross" ); |
| 392 | } |
| 393 | case Builtin::BI__builtin_hlsl_dot: { |
| 394 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 395 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 396 | llvm::Type *T0 = Op0->getType(); |
| 397 | llvm::Type *T1 = Op1->getType(); |
| 398 | |
| 399 | // If the arguments are scalars, just emit a multiply |
| 400 | if (!T0->isVectorTy() && !T1->isVectorTy()) { |
| 401 | if (T0->isFloatingPointTy()) |
| 402 | return Builder.CreateFMul(L: Op0, R: Op1, Name: "hlsl.dot" ); |
| 403 | |
| 404 | if (T0->isIntegerTy()) |
| 405 | return Builder.CreateMul(LHS: Op0, RHS: Op1, Name: "hlsl.dot" ); |
| 406 | |
| 407 | llvm_unreachable( |
| 408 | "Scalar dot product is only supported on ints and floats." ); |
| 409 | } |
| 410 | // For vectors, validate types and emit the appropriate intrinsic |
| 411 | assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(), |
| 412 | E->getArg(1)->getType()) && |
| 413 | "Dot product operands must have the same type." ); |
| 414 | |
| 415 | auto *VecTy0 = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 416 | assert(VecTy0 && "Dot product argument must be a vector." ); |
| 417 | |
| 418 | return Builder.CreateIntrinsic( |
| 419 | /*ReturnType=*/RetTy: T0->getScalarType(), |
| 420 | ID: getDotProductIntrinsic(RT&: CGM.getHLSLRuntime(), QT: VecTy0->getElementType()), |
| 421 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.dot" ); |
| 422 | } |
| 423 | case Builtin::BI__builtin_hlsl_dot4add_i8packed: { |
| 424 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 425 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 426 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 427 | |
| 428 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic(); |
| 429 | // Note that the argument order disagrees between the builtin and the |
| 430 | // intrinsic here. |
| 431 | return Builder.CreateIntrinsic( |
| 432 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
| 433 | FMFSource: nullptr, Name: "hlsl.dot4add.i8packed" ); |
| 434 | } |
| 435 | case Builtin::BI__builtin_hlsl_dot4add_u8packed: { |
| 436 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 437 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 438 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 439 | |
| 440 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic(); |
| 441 | // Note that the argument order disagrees between the builtin and the |
| 442 | // intrinsic here. |
| 443 | return Builder.CreateIntrinsic( |
| 444 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
| 445 | FMFSource: nullptr, Name: "hlsl.dot4add.u8packed" ); |
| 446 | } |
| 447 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: { |
| 448 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 449 | |
| 450 | return Builder.CreateIntrinsic( |
| 451 | /*ReturnType=*/ConvertType(E->getType()), |
| 452 | getFirstBitHighIntrinsic(RT&: CGM.getHLSLRuntime(), QT: E->getArg(Arg: 0)->getType()), |
| 453 | ArrayRef<Value *>{X}, nullptr, "hlsl.firstbithigh" ); |
| 454 | } |
| 455 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
| 456 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 457 | |
| 458 | return Builder.CreateIntrinsic( |
| 459 | /*ReturnType=*/ConvertType(E->getType()), |
| 460 | CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), ArrayRef<Value *>{X}, |
| 461 | nullptr, "hlsl.firstbitlow" ); |
| 462 | } |
| 463 | case Builtin::BI__builtin_hlsl_lerp: { |
| 464 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 465 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 466 | Value *S = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 467 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 468 | llvm_unreachable("lerp operand must have a float representation" ); |
| 469 | return Builder.CreateIntrinsic( |
| 470 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getLerpIntrinsic(), |
| 471 | Args: ArrayRef<Value *>{X, Y, S}, FMFSource: nullptr, Name: "hlsl.lerp" ); |
| 472 | } |
| 473 | case Builtin::BI__builtin_hlsl_normalize: { |
| 474 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 475 | |
| 476 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 477 | "normalize operand must have a float representation" ); |
| 478 | |
| 479 | return Builder.CreateIntrinsic( |
| 480 | /*ReturnType=*/RetTy: X->getType(), |
| 481 | ID: CGM.getHLSLRuntime().getNormalizeIntrinsic(), Args: ArrayRef<Value *>{X}, |
| 482 | FMFSource: nullptr, Name: "hlsl.normalize" ); |
| 483 | } |
| 484 | case Builtin::BI__builtin_hlsl_elementwise_degrees: { |
| 485 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 486 | |
| 487 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 488 | "degree operand must have a float representation" ); |
| 489 | |
| 490 | return Builder.CreateIntrinsic( |
| 491 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getDegreesIntrinsic(), |
| 492 | Args: ArrayRef<Value *>{X}, FMFSource: nullptr, Name: "hlsl.degrees" ); |
| 493 | } |
| 494 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
| 495 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 496 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 497 | llvm_unreachable("frac operand must have a float representation" ); |
| 498 | return Builder.CreateIntrinsic( |
| 499 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getFracIntrinsic(), |
| 500 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.frac" ); |
| 501 | } |
| 502 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
| 503 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 504 | llvm::Type *Xty = Op0->getType(); |
| 505 | llvm::Type *retType = llvm::Type::getInt1Ty(C&: this->getLLVMContext()); |
| 506 | if (Xty->isVectorTy()) { |
| 507 | auto *XVecTy = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 508 | retType = llvm::VectorType::get( |
| 509 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 510 | } |
| 511 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 512 | llvm_unreachable("isinf operand must have a float representation" ); |
| 513 | return Builder.CreateIntrinsic(retType, Intrinsic::dx_isinf, |
| 514 | ArrayRef<Value *>{Op0}, nullptr, "dx.isinf" ); |
| 515 | } |
| 516 | case Builtin::BI__builtin_hlsl_mad: { |
| 517 | Value *M = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 518 | Value *A = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 519 | Value *B = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 520 | if (E->getArg(0)->getType()->hasFloatingRepresentation()) |
| 521 | return Builder.CreateIntrinsic( |
| 522 | /*ReturnType*/ M->getType(), Intrinsic::fmuladd, |
| 523 | ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad" ); |
| 524 | |
| 525 | if (E->getArg(Arg: 0)->getType()->hasSignedIntegerRepresentation()) { |
| 526 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| 527 | return Builder.CreateIntrinsic( |
| 528 | /*ReturnType*/ M->getType(), Intrinsic::dx_imad, |
| 529 | ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad" ); |
| 530 | |
| 531 | Value *Mul = Builder.CreateNSWMul(LHS: M, RHS: A); |
| 532 | return Builder.CreateNSWAdd(LHS: Mul, RHS: B); |
| 533 | } |
| 534 | assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation()); |
| 535 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| 536 | return Builder.CreateIntrinsic( |
| 537 | /*ReturnType=*/M->getType(), Intrinsic::dx_umad, |
| 538 | ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad" ); |
| 539 | |
| 540 | Value *Mul = Builder.CreateNUWMul(LHS: M, RHS: A); |
| 541 | return Builder.CreateNUWAdd(LHS: Mul, RHS: B); |
| 542 | } |
| 543 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
| 544 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 545 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 546 | llvm_unreachable("rcp operand must have a float representation" ); |
| 547 | llvm::Type *Ty = Op0->getType(); |
| 548 | llvm::Type *EltTy = Ty->getScalarType(); |
| 549 | Constant *One = Ty->isVectorTy() |
| 550 | ? ConstantVector::getSplat( |
| 551 | EC: ElementCount::getFixed( |
| 552 | MinVal: cast<FixedVectorType>(Val: Ty)->getNumElements()), |
| 553 | Elt: ConstantFP::get(Ty: EltTy, V: 1.0)) |
| 554 | : ConstantFP::get(Ty: EltTy, V: 1.0); |
| 555 | return Builder.CreateFDiv(L: One, R: Op0, Name: "hlsl.rcp" ); |
| 556 | } |
| 557 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: { |
| 558 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 559 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 560 | llvm_unreachable("rsqrt operand must have a float representation" ); |
| 561 | return Builder.CreateIntrinsic( |
| 562 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getRsqrtIntrinsic(), |
| 563 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.rsqrt" ); |
| 564 | } |
| 565 | case Builtin::BI__builtin_hlsl_elementwise_saturate: { |
| 566 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 567 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 568 | "saturate operand must have a float representation" ); |
| 569 | return Builder.CreateIntrinsic( |
| 570 | /*ReturnType=*/RetTy: Op0->getType(), |
| 571 | ID: CGM.getHLSLRuntime().getSaturateIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
| 572 | FMFSource: nullptr, Name: "hlsl.saturate" ); |
| 573 | } |
| 574 | case Builtin::BI__builtin_hlsl_select: { |
| 575 | Value *OpCond = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 576 | RValue RValTrue = EmitAnyExpr(E: E->getArg(Arg: 1)); |
| 577 | Value *OpTrue = |
| 578 | RValTrue.isScalar() |
| 579 | ? RValTrue.getScalarVal() |
| 580 | : RValTrue.getAggregatePointer(PointeeType: E->getArg(Arg: 1)->getType(), CGF&: *this); |
| 581 | RValue RValFalse = EmitAnyExpr(E: E->getArg(Arg: 2)); |
| 582 | Value *OpFalse = |
| 583 | RValFalse.isScalar() |
| 584 | ? RValFalse.getScalarVal() |
| 585 | : RValFalse.getAggregatePointer(PointeeType: E->getArg(Arg: 2)->getType(), CGF&: *this); |
| 586 | if (auto *VTy = E->getType()->getAs<VectorType>()) { |
| 587 | if (!OpTrue->getType()->isVectorTy()) |
| 588 | OpTrue = |
| 589 | Builder.CreateVectorSplat(VTy->getNumElements(), OpTrue, "splat" ); |
| 590 | if (!OpFalse->getType()->isVectorTy()) |
| 591 | OpFalse = |
| 592 | Builder.CreateVectorSplat(VTy->getNumElements(), OpFalse, "splat" ); |
| 593 | } |
| 594 | |
| 595 | Value *SelectVal = |
| 596 | Builder.CreateSelect(C: OpCond, True: OpTrue, False: OpFalse, Name: "hlsl.select" ); |
| 597 | if (!RValTrue.isScalar()) |
| 598 | Builder.CreateStore(Val: SelectVal, Addr: ReturnValue.getAddress(), |
| 599 | IsVolatile: ReturnValue.isVolatile()); |
| 600 | |
| 601 | return SelectVal; |
| 602 | } |
| 603 | case Builtin::BI__builtin_hlsl_step: { |
| 604 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 605 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 606 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 607 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
| 608 | "step operands must have a float representation" ); |
| 609 | return Builder.CreateIntrinsic( |
| 610 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getStepIntrinsic(), |
| 611 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.step" ); |
| 612 | } |
| 613 | case Builtin::BI__builtin_hlsl_wave_active_all_true: { |
| 614 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 615 | assert(Op->getType()->isIntegerTy(1) && |
| 616 | "Intrinsic WaveActiveAllTrue operand must be a bool" ); |
| 617 | |
| 618 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic(); |
| 619 | return EmitRuntimeCall( |
| 620 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
| 621 | } |
| 622 | case Builtin::BI__builtin_hlsl_wave_active_any_true: { |
| 623 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 624 | assert(Op->getType()->isIntegerTy(1) && |
| 625 | "Intrinsic WaveActiveAnyTrue operand must be a bool" ); |
| 626 | |
| 627 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic(); |
| 628 | return EmitRuntimeCall( |
| 629 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
| 630 | } |
| 631 | case Builtin::BI__builtin_hlsl_wave_active_count_bits: { |
| 632 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 633 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic(); |
| 634 | return EmitRuntimeCall( |
| 635 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), |
| 636 | args: ArrayRef{OpExpr}); |
| 637 | } |
| 638 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
| 639 | // Due to the use of variadic arguments, explicitly retreive argument |
| 640 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 641 | llvm::FunctionType *FT = llvm::FunctionType::get( |
| 642 | Result: OpExpr->getType(), Params: ArrayRef{OpExpr->getType()}, isVarArg: false); |
| 643 | Intrinsic::ID IID = getWaveActiveSumIntrinsic( |
| 644 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
| 645 | QT: E->getArg(Arg: 0)->getType()); |
| 646 | |
| 647 | // Get overloaded name |
| 648 | std::string Name = |
| 649 | Intrinsic::getName(Id: IID, Tys: ArrayRef{OpExpr->getType()}, M: &CGM.getModule()); |
| 650 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FT, Name, ExtraAttrs: {}, |
| 651 | /*Local=*/false, |
| 652 | /*AssumeConvergent=*/true), |
| 653 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.sum" ); |
| 654 | } |
| 655 | case Builtin::BI__builtin_hlsl_wave_active_max: { |
| 656 | // Due to the use of variadic arguments, explicitly retreive argument |
| 657 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 658 | llvm::FunctionType *FT = llvm::FunctionType::get( |
| 659 | Result: OpExpr->getType(), Params: ArrayRef{OpExpr->getType()}, isVarArg: false); |
| 660 | Intrinsic::ID IID = getWaveActiveMaxIntrinsic( |
| 661 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
| 662 | QT: E->getArg(Arg: 0)->getType()); |
| 663 | |
| 664 | // Get overloaded name |
| 665 | std::string Name = |
| 666 | Intrinsic::getName(Id: IID, Tys: ArrayRef{OpExpr->getType()}, M: &CGM.getModule()); |
| 667 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FT, Name, ExtraAttrs: {}, |
| 668 | /*Local=*/false, |
| 669 | /*AssumeConvergent=*/true), |
| 670 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.max" ); |
| 671 | } |
| 672 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
| 673 | // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in |
| 674 | // defined in SPIRVBuiltins.td. So instead we manually get the matching name |
| 675 | // for the DirectX intrinsic and the demangled builtin name |
| 676 | switch (CGM.getTarget().getTriple().getArch()) { |
| 677 | case llvm::Triple::dxil: |
| 678 | return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration( |
| 679 | &CGM.getModule(), Intrinsic::dx_wave_getlaneindex)); |
| 680 | case llvm::Triple::spirv: |
| 681 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction( |
| 682 | Ty: llvm::FunctionType::get(Result: IntTy, Params: {}, isVarArg: false), |
| 683 | Name: "__hlsl_wave_get_lane_index" , ExtraAttrs: {}, Local: false, AssumeConvergent: true)); |
| 684 | default: |
| 685 | llvm_unreachable( |
| 686 | "Intrinsic WaveGetLaneIndex not supported by target architecture" ); |
| 687 | } |
| 688 | } |
| 689 | case Builtin::BI__builtin_hlsl_wave_is_first_lane: { |
| 690 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic(); |
| 691 | return EmitRuntimeCall( |
| 692 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 693 | } |
| 694 | case Builtin::BI__builtin_hlsl_wave_get_lane_count: { |
| 695 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic(); |
| 696 | return EmitRuntimeCall( |
| 697 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 698 | } |
| 699 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
| 700 | // Due to the use of variadic arguments we must explicitly retreive them and |
| 701 | // create our function type. |
| 702 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 703 | Value *OpIndex = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 704 | llvm::FunctionType *FT = llvm::FunctionType::get( |
| 705 | Result: OpExpr->getType(), Params: ArrayRef{OpExpr->getType(), OpIndex->getType()}, |
| 706 | isVarArg: false); |
| 707 | |
| 708 | // Get overloaded name |
| 709 | std::string Name = |
| 710 | Intrinsic::getName(Id: CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(), |
| 711 | Tys: ArrayRef{OpExpr->getType()}, M: &CGM.getModule()); |
| 712 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FT, Name, ExtraAttrs: {}, |
| 713 | /*Local=*/false, |
| 714 | /*AssumeConvergent=*/true), |
| 715 | args: ArrayRef{OpExpr, OpIndex}, name: "hlsl.wave.readlane" ); |
| 716 | } |
| 717 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
| 718 | auto *Arg0 = E->getArg(Arg: 0); |
| 719 | Value *Op0 = EmitScalarExpr(E: Arg0); |
| 720 | llvm::Type *Xty = Op0->getType(); |
| 721 | llvm::Type *retType = llvm::Type::getInt32Ty(C&: this->getLLVMContext()); |
| 722 | if (Xty->isVectorTy()) { |
| 723 | auto *XVecTy = Arg0->getType()->castAs<VectorType>(); |
| 724 | retType = llvm::VectorType::get( |
| 725 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 726 | } |
| 727 | assert((Arg0->getType()->hasFloatingRepresentation() || |
| 728 | Arg0->getType()->hasIntegerRepresentation()) && |
| 729 | "sign operand must have a float or int representation" ); |
| 730 | |
| 731 | if (Arg0->getType()->hasUnsignedIntegerRepresentation()) { |
| 732 | Value *Cmp = Builder.CreateICmpEQ(LHS: Op0, RHS: ConstantInt::get(Ty: Xty, V: 0)); |
| 733 | return Builder.CreateSelect(C: Cmp, True: ConstantInt::get(Ty: retType, V: 0), |
| 734 | False: ConstantInt::get(Ty: retType, V: 1), Name: "hlsl.sign" ); |
| 735 | } |
| 736 | |
| 737 | return Builder.CreateIntrinsic( |
| 738 | RetTy: retType, ID: CGM.getHLSLRuntime().getSignIntrinsic(), |
| 739 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.sign" ); |
| 740 | } |
| 741 | case Builtin::BI__builtin_hlsl_elementwise_radians: { |
| 742 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 743 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 744 | "radians operand must have a float representation" ); |
| 745 | return Builder.CreateIntrinsic( |
| 746 | /*ReturnType=*/RetTy: Op0->getType(), |
| 747 | ID: CGM.getHLSLRuntime().getRadiansIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
| 748 | FMFSource: nullptr, Name: "hlsl.radians" ); |
| 749 | } |
| 750 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
| 751 | Value *ResHandle = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 752 | Value *Offset = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 753 | Value *OffsetI8 = Builder.CreateIntCast(V: Offset, DestTy: Int8Ty, isSigned: true); |
| 754 | return Builder.CreateIntrinsic( |
| 755 | /*ReturnType=*/RetTy: Offset->getType(), |
| 756 | ID: CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(), |
| 757 | Args: ArrayRef<Value *>{ResHandle, OffsetI8}, FMFSource: nullptr); |
| 758 | } |
| 759 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
| 760 | |
| 761 | assert((E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 762 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation() && |
| 763 | E->getArg(2)->getType()->hasUnsignedIntegerRepresentation()) && |
| 764 | "asuint operands types mismatch" ); |
| 765 | return handleHlslSplitdouble(E, CGF: this); |
| 766 | } |
| 767 | case Builtin::BI__builtin_hlsl_elementwise_clip: |
| 768 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 769 | "clip operands types mismatch" ); |
| 770 | return handleHlslClip(E, CGF: this); |
| 771 | case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: { |
| 772 | Intrinsic::ID ID = |
| 773 | CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic(); |
| 774 | return EmitRuntimeCall( |
| 775 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 776 | } |
| 777 | } |
| 778 | return nullptr; |
| 779 | } |
| 780 | |