1 | //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is the code that handles AST -> LLVM type lowering. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenTypes.h" |
14 | #include "CGCXXABI.h" |
15 | #include "CGCall.h" |
16 | #include "CGOpenCLRuntime.h" |
17 | #include "CGRecordLayout.h" |
18 | #include "TargetInfo.h" |
19 | #include "clang/AST/ASTContext.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclObjC.h" |
22 | #include "clang/AST/Expr.h" |
23 | #include "clang/AST/RecordLayout.h" |
24 | #include "clang/CodeGen/CGFunctionInfo.h" |
25 | #include "llvm/IR/DataLayout.h" |
26 | #include "llvm/IR/DerivedTypes.h" |
27 | #include "llvm/IR/Module.h" |
28 | |
29 | using namespace clang; |
30 | using namespace CodeGen; |
31 | |
32 | CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) |
33 | : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), |
34 | Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), |
35 | TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { |
36 | SkippedLayout = false; |
37 | } |
38 | |
39 | CodeGenTypes::~CodeGenTypes() { |
40 | for (llvm::FoldingSet<CGFunctionInfo>::iterator |
41 | I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) |
42 | delete &*I++; |
43 | } |
44 | |
45 | const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const { |
46 | return CGM.getCodeGenOpts(); |
47 | } |
48 | |
49 | void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, |
50 | llvm::StructType *Ty, |
51 | StringRef suffix) { |
52 | SmallString<256> TypeName; |
53 | llvm::raw_svector_ostream OS(TypeName); |
54 | OS << RD->getKindName() << '.'; |
55 | |
56 | // FIXME: We probably want to make more tweaks to the printing policy. For |
57 | // example, we should probably enable PrintCanonicalTypes and |
58 | // FullyQualifiedNames. |
59 | PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy(); |
60 | Policy.SuppressInlineNamespace = false; |
61 | |
62 | // Name the codegen type after the typedef name |
63 | // if there is no tag type name available |
64 | if (RD->getIdentifier()) { |
65 | // FIXME: We should not have to check for a null decl context here. |
66 | // Right now we do it because the implicit Obj-C decls don't have one. |
67 | if (RD->getDeclContext()) |
68 | RD->printQualifiedName(OS, Policy); |
69 | else |
70 | RD->printName(OS, Policy); |
71 | } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { |
72 | // FIXME: We should not have to check for a null decl context here. |
73 | // Right now we do it because the implicit Obj-C decls don't have one. |
74 | if (TDD->getDeclContext()) |
75 | TDD->printQualifiedName(OS, Policy); |
76 | else |
77 | TDD->printName(OS); |
78 | } else |
79 | OS << "anon" ; |
80 | |
81 | if (!suffix.empty()) |
82 | OS << suffix; |
83 | |
84 | Ty->setName(OS.str()); |
85 | } |
86 | |
87 | /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from |
88 | /// ConvertType in that it is used to convert to the memory representation for |
89 | /// a type. For example, the scalar representation for _Bool is i1, but the |
90 | /// memory representation is usually i8 or i32, depending on the target. |
91 | llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) { |
92 | if (T->isConstantMatrixType()) { |
93 | const Type *Ty = Context.getCanonicalType(T).getTypePtr(); |
94 | const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty); |
95 | return llvm::ArrayType::get(ConvertType(MT->getElementType()), |
96 | MT->getNumRows() * MT->getNumColumns()); |
97 | } |
98 | |
99 | llvm::Type *R = ConvertType(T); |
100 | |
101 | // Check for the boolean vector case. |
102 | if (T->isExtVectorBoolType()) { |
103 | auto *FixedVT = cast<llvm::FixedVectorType>(Val: R); |
104 | // Pad to at least one byte. |
105 | uint64_t BytePadded = std::max<uint64_t>(a: FixedVT->getNumElements(), b: 8); |
106 | return llvm::IntegerType::get(C&: FixedVT->getContext(), NumBits: BytePadded); |
107 | } |
108 | |
109 | // If this is a bool type, or a bit-precise integer type in a bitfield |
110 | // representation, map this integer to the target-specified size. |
111 | if ((ForBitField && T->isBitIntType()) || |
112 | (!T->isBitIntType() && R->isIntegerTy(1))) |
113 | return llvm::IntegerType::get(getLLVMContext(), |
114 | (unsigned)Context.getTypeSize(T)); |
115 | |
116 | // Else, don't map it. |
117 | return R; |
118 | } |
119 | |
120 | /// isRecordLayoutComplete - Return true if the specified type is already |
121 | /// completely laid out. |
122 | bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { |
123 | llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = |
124 | RecordDeclTypes.find(Val: Ty); |
125 | return I != RecordDeclTypes.end() && !I->second->isOpaque(); |
126 | } |
127 | |
128 | static bool |
129 | isSafeToConvert(QualType T, CodeGenTypes &CGT, |
130 | llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); |
131 | |
132 | |
133 | /// isSafeToConvert - Return true if it is safe to convert the specified record |
134 | /// decl to IR and lay it out, false if doing so would cause us to get into a |
135 | /// recursive compilation mess. |
136 | static bool |
137 | isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, |
138 | llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { |
139 | // If we have already checked this type (maybe the same type is used by-value |
140 | // multiple times in multiple structure fields, don't check again. |
141 | if (!AlreadyChecked.insert(Ptr: RD).second) |
142 | return true; |
143 | |
144 | const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); |
145 | |
146 | // If this type is already laid out, converting it is a noop. |
147 | if (CGT.isRecordLayoutComplete(Ty: Key)) return true; |
148 | |
149 | // If this type is currently being laid out, we can't recursively compile it. |
150 | if (CGT.isRecordBeingLaidOut(Ty: Key)) |
151 | return false; |
152 | |
153 | // If this type would require laying out bases that are currently being laid |
154 | // out, don't do it. This includes virtual base classes which get laid out |
155 | // when a class is translated, even though they aren't embedded by-value into |
156 | // the class. |
157 | if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
158 | for (const auto &I : CRD->bases()) |
159 | if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT, |
160 | AlreadyChecked)) |
161 | return false; |
162 | } |
163 | |
164 | // If this type would require laying out members that are currently being laid |
165 | // out, don't do it. |
166 | for (const auto *I : RD->fields()) |
167 | if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) |
168 | return false; |
169 | |
170 | // If there are no problems, lets do it. |
171 | return true; |
172 | } |
173 | |
174 | /// isSafeToConvert - Return true if it is safe to convert this field type, |
175 | /// which requires the structure elements contained by-value to all be |
176 | /// recursively safe to convert. |
177 | static bool |
178 | isSafeToConvert(QualType T, CodeGenTypes &CGT, |
179 | llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { |
180 | // Strip off atomic type sugar. |
181 | if (const auto *AT = T->getAs<AtomicType>()) |
182 | T = AT->getValueType(); |
183 | |
184 | // If this is a record, check it. |
185 | if (const auto *RT = T->getAs<RecordType>()) |
186 | return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); |
187 | |
188 | // If this is an array, check the elements, which are embedded inline. |
189 | if (const auto *AT = CGT.getContext().getAsArrayType(T)) |
190 | return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); |
191 | |
192 | // Otherwise, there is no concern about transforming this. We only care about |
193 | // things that are contained by-value in a structure that can have another |
194 | // structure as a member. |
195 | return true; |
196 | } |
197 | |
198 | |
199 | /// isSafeToConvert - Return true if it is safe to convert the specified record |
200 | /// decl to IR and lay it out, false if doing so would cause us to get into a |
201 | /// recursive compilation mess. |
202 | static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { |
203 | // If no structs are being laid out, we can certainly do this one. |
204 | if (CGT.noRecordsBeingLaidOut()) return true; |
205 | |
206 | llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; |
207 | return isSafeToConvert(RD, CGT, AlreadyChecked); |
208 | } |
209 | |
210 | /// isFuncParamTypeConvertible - Return true if the specified type in a |
211 | /// function parameter or result position can be converted to an IR type at this |
212 | /// point. This boils down to being whether it is complete, as well as whether |
213 | /// we've temporarily deferred expanding the type because we're in a recursive |
214 | /// context. |
215 | bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { |
216 | // Some ABIs cannot have their member pointers represented in IR unless |
217 | // certain circumstances have been reached. |
218 | if (const auto *MPT = Ty->getAs<MemberPointerType>()) |
219 | return getCXXABI().isMemberPointerConvertible(MPT); |
220 | |
221 | // If this isn't a tagged type, we can convert it! |
222 | const TagType *TT = Ty->getAs<TagType>(); |
223 | if (!TT) return true; |
224 | |
225 | // Incomplete types cannot be converted. |
226 | if (TT->isIncompleteType()) |
227 | return false; |
228 | |
229 | // If this is an enum, then it is always safe to convert. |
230 | const RecordType *RT = dyn_cast<RecordType>(TT); |
231 | if (!RT) return true; |
232 | |
233 | // Otherwise, we have to be careful. If it is a struct that we're in the |
234 | // process of expanding, then we can't convert the function type. That's ok |
235 | // though because we must be in a pointer context under the struct, so we can |
236 | // just convert it to a dummy type. |
237 | // |
238 | // We decide this by checking whether ConvertRecordDeclType returns us an |
239 | // opaque type for a struct that we know is defined. |
240 | return isSafeToConvert(RT->getDecl(), *this); |
241 | } |
242 | |
243 | |
244 | /// Code to verify a given function type is complete, i.e. the return type |
245 | /// and all of the parameter types are complete. Also check to see if we are in |
246 | /// a RS_StructPointer context, and if so whether any struct types have been |
247 | /// pended. If so, we don't want to ask the ABI lowering code to handle a type |
248 | /// that cannot be converted to an IR type. |
249 | bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { |
250 | if (!isFuncParamTypeConvertible(FT->getReturnType())) |
251 | return false; |
252 | |
253 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) |
254 | for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) |
255 | if (!isFuncParamTypeConvertible(Ty: FPT->getParamType(i))) |
256 | return false; |
257 | |
258 | return true; |
259 | } |
260 | |
261 | /// UpdateCompletedType - When we find the full definition for a TagDecl, |
262 | /// replace the 'opaque' type we previously made for it if applicable. |
263 | void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { |
264 | // If this is an enum being completed, then we flush all non-struct types from |
265 | // the cache. This allows function types and other things that may be derived |
266 | // from the enum to be recomputed. |
267 | if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { |
268 | // Only flush the cache if we've actually already converted this type. |
269 | if (TypeCache.count(ED->getTypeForDecl())) { |
270 | // Okay, we formed some types based on this. We speculated that the enum |
271 | // would be lowered to i32, so we only need to flush the cache if this |
272 | // didn't happen. |
273 | if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) |
274 | TypeCache.clear(); |
275 | } |
276 | // If necessary, provide the full definition of a type only used with a |
277 | // declaration so far. |
278 | if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
279 | DI->completeType(ED); |
280 | return; |
281 | } |
282 | |
283 | // If we completed a RecordDecl that we previously used and converted to an |
284 | // anonymous type, then go ahead and complete it now. |
285 | const RecordDecl *RD = cast<RecordDecl>(TD); |
286 | if (RD->isDependentType()) return; |
287 | |
288 | // Only complete it if we converted it already. If we haven't converted it |
289 | // yet, we'll just do it lazily. |
290 | if (RecordDeclTypes.count(Val: Context.getTagDeclType(RD).getTypePtr())) |
291 | ConvertRecordDeclType(TD: RD); |
292 | |
293 | // If necessary, provide the full definition of a type only used with a |
294 | // declaration so far. |
295 | if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
296 | DI->completeType(RD); |
297 | } |
298 | |
299 | void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { |
300 | QualType T = Context.getRecordType(RD); |
301 | T = Context.getCanonicalType(T); |
302 | |
303 | const Type *Ty = T.getTypePtr(); |
304 | if (RecordsWithOpaqueMemberPointers.count(Val: Ty)) { |
305 | TypeCache.clear(); |
306 | RecordsWithOpaqueMemberPointers.clear(); |
307 | } |
308 | } |
309 | |
310 | static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, |
311 | const llvm::fltSemantics &format, |
312 | bool UseNativeHalf = false) { |
313 | if (&format == &llvm::APFloat::IEEEhalf()) { |
314 | if (UseNativeHalf) |
315 | return llvm::Type::getHalfTy(C&: VMContext); |
316 | else |
317 | return llvm::Type::getInt16Ty(C&: VMContext); |
318 | } |
319 | if (&format == &llvm::APFloat::BFloat()) |
320 | return llvm::Type::getBFloatTy(C&: VMContext); |
321 | if (&format == &llvm::APFloat::IEEEsingle()) |
322 | return llvm::Type::getFloatTy(C&: VMContext); |
323 | if (&format == &llvm::APFloat::IEEEdouble()) |
324 | return llvm::Type::getDoubleTy(C&: VMContext); |
325 | if (&format == &llvm::APFloat::IEEEquad()) |
326 | return llvm::Type::getFP128Ty(C&: VMContext); |
327 | if (&format == &llvm::APFloat::PPCDoubleDouble()) |
328 | return llvm::Type::getPPC_FP128Ty(C&: VMContext); |
329 | if (&format == &llvm::APFloat::x87DoubleExtended()) |
330 | return llvm::Type::getX86_FP80Ty(C&: VMContext); |
331 | llvm_unreachable("Unknown float format!" ); |
332 | } |
333 | |
334 | llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) { |
335 | assert(QFT.isCanonical()); |
336 | const Type *Ty = QFT.getTypePtr(); |
337 | const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); |
338 | // First, check whether we can build the full function type. If the |
339 | // function type depends on an incomplete type (e.g. a struct or enum), we |
340 | // cannot lower the function type. |
341 | if (!isFuncTypeConvertible(FT)) { |
342 | // This function's type depends on an incomplete tag type. |
343 | |
344 | // Force conversion of all the relevant record types, to make sure |
345 | // we re-convert the FunctionType when appropriate. |
346 | if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) |
347 | ConvertRecordDeclType(RT->getDecl()); |
348 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) |
349 | for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) |
350 | if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) |
351 | ConvertRecordDeclType(RT->getDecl()); |
352 | |
353 | SkippedLayout = true; |
354 | |
355 | // Return a placeholder type. |
356 | return llvm::StructType::get(Context&: getLLVMContext()); |
357 | } |
358 | |
359 | // While we're converting the parameter types for a function, we don't want |
360 | // to recursively convert any pointed-to structs. Converting directly-used |
361 | // structs is ok though. |
362 | if (!RecordsBeingLaidOut.insert(Ptr: Ty).second) { |
363 | SkippedLayout = true; |
364 | return llvm::StructType::get(Context&: getLLVMContext()); |
365 | } |
366 | |
367 | // The function type can be built; call the appropriate routines to |
368 | // build it. |
369 | const CGFunctionInfo *FI; |
370 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { |
371 | FI = &arrangeFreeFunctionType( |
372 | CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); |
373 | } else { |
374 | const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); |
375 | FI = &arrangeFreeFunctionType( |
376 | CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); |
377 | } |
378 | |
379 | llvm::Type *ResultType = nullptr; |
380 | // If there is something higher level prodding our CGFunctionInfo, then |
381 | // don't recurse into it again. |
382 | if (FunctionsBeingProcessed.count(FI)) { |
383 | |
384 | ResultType = llvm::StructType::get(Context&: getLLVMContext()); |
385 | SkippedLayout = true; |
386 | } else { |
387 | |
388 | // Otherwise, we're good to go, go ahead and convert it. |
389 | ResultType = GetFunctionType(*FI); |
390 | } |
391 | |
392 | RecordsBeingLaidOut.erase(Ptr: Ty); |
393 | |
394 | if (RecordsBeingLaidOut.empty()) |
395 | while (!DeferredRecords.empty()) |
396 | ConvertRecordDeclType(DeferredRecords.pop_back_val()); |
397 | return ResultType; |
398 | } |
399 | |
400 | /// ConvertType - Convert the specified type to its LLVM form. |
401 | llvm::Type *CodeGenTypes::ConvertType(QualType T) { |
402 | T = Context.getCanonicalType(T); |
403 | |
404 | const Type *Ty = T.getTypePtr(); |
405 | |
406 | // For the device-side compilation, CUDA device builtin surface/texture types |
407 | // may be represented in different types. |
408 | if (Context.getLangOpts().CUDAIsDevice) { |
409 | if (T->isCUDADeviceBuiltinSurfaceType()) { |
410 | if (auto *Ty = CGM.getTargetCodeGenInfo() |
411 | .getCUDADeviceBuiltinSurfaceDeviceType()) |
412 | return Ty; |
413 | } else if (T->isCUDADeviceBuiltinTextureType()) { |
414 | if (auto *Ty = CGM.getTargetCodeGenInfo() |
415 | .getCUDADeviceBuiltinTextureDeviceType()) |
416 | return Ty; |
417 | } |
418 | } |
419 | |
420 | // RecordTypes are cached and processed specially. |
421 | if (const RecordType *RT = dyn_cast<RecordType>(Ty)) |
422 | return ConvertRecordDeclType(RT->getDecl()); |
423 | |
424 | // The LLVM type we return for a given Clang type may not always be the same, |
425 | // most notably when dealing with recursive structs. We mark these potential |
426 | // cases with ShouldUseCache below. Builtin types cannot be recursive. |
427 | // TODO: when clang uses LLVM opaque pointers we won't be able to represent |
428 | // recursive types with LLVM types, making this logic much simpler. |
429 | llvm::Type *CachedType = nullptr; |
430 | bool ShouldUseCache = |
431 | Ty->isBuiltinType() || |
432 | (noRecordsBeingLaidOut() && FunctionsBeingProcessed.empty()); |
433 | if (ShouldUseCache) { |
434 | llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = |
435 | TypeCache.find(Val: Ty); |
436 | if (TCI != TypeCache.end()) |
437 | CachedType = TCI->second; |
438 | // With expensive checks, check that the type we compute matches the |
439 | // cached type. |
440 | #ifndef EXPENSIVE_CHECKS |
441 | if (CachedType) |
442 | return CachedType; |
443 | #endif |
444 | } |
445 | |
446 | // If we don't have it in the cache, convert it now. |
447 | llvm::Type *ResultType = nullptr; |
448 | switch (Ty->getTypeClass()) { |
449 | case Type::Record: // Handled above. |
450 | #define TYPE(Class, Base) |
451 | #define ABSTRACT_TYPE(Class, Base) |
452 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
453 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
454 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
455 | #include "clang/AST/TypeNodes.inc" |
456 | llvm_unreachable("Non-canonical or dependent types aren't possible." ); |
457 | |
458 | case Type::Builtin: { |
459 | switch (cast<BuiltinType>(Ty)->getKind()) { |
460 | case BuiltinType::Void: |
461 | case BuiltinType::ObjCId: |
462 | case BuiltinType::ObjCClass: |
463 | case BuiltinType::ObjCSel: |
464 | // LLVM void type can only be used as the result of a function call. Just |
465 | // map to the same as char. |
466 | ResultType = llvm::Type::getInt8Ty(C&: getLLVMContext()); |
467 | break; |
468 | |
469 | case BuiltinType::Bool: |
470 | // Note that we always return bool as i1 for use as a scalar type. |
471 | ResultType = llvm::Type::getInt1Ty(C&: getLLVMContext()); |
472 | break; |
473 | |
474 | case BuiltinType::Char_S: |
475 | case BuiltinType::Char_U: |
476 | case BuiltinType::SChar: |
477 | case BuiltinType::UChar: |
478 | case BuiltinType::Short: |
479 | case BuiltinType::UShort: |
480 | case BuiltinType::Int: |
481 | case BuiltinType::UInt: |
482 | case BuiltinType::Long: |
483 | case BuiltinType::ULong: |
484 | case BuiltinType::LongLong: |
485 | case BuiltinType::ULongLong: |
486 | case BuiltinType::WChar_S: |
487 | case BuiltinType::WChar_U: |
488 | case BuiltinType::Char8: |
489 | case BuiltinType::Char16: |
490 | case BuiltinType::Char32: |
491 | case BuiltinType::ShortAccum: |
492 | case BuiltinType::Accum: |
493 | case BuiltinType::LongAccum: |
494 | case BuiltinType::UShortAccum: |
495 | case BuiltinType::UAccum: |
496 | case BuiltinType::ULongAccum: |
497 | case BuiltinType::ShortFract: |
498 | case BuiltinType::Fract: |
499 | case BuiltinType::LongFract: |
500 | case BuiltinType::UShortFract: |
501 | case BuiltinType::UFract: |
502 | case BuiltinType::ULongFract: |
503 | case BuiltinType::SatShortAccum: |
504 | case BuiltinType::SatAccum: |
505 | case BuiltinType::SatLongAccum: |
506 | case BuiltinType::SatUShortAccum: |
507 | case BuiltinType::SatUAccum: |
508 | case BuiltinType::SatULongAccum: |
509 | case BuiltinType::SatShortFract: |
510 | case BuiltinType::SatFract: |
511 | case BuiltinType::SatLongFract: |
512 | case BuiltinType::SatUShortFract: |
513 | case BuiltinType::SatUFract: |
514 | case BuiltinType::SatULongFract: |
515 | ResultType = llvm::IntegerType::get(getLLVMContext(), |
516 | static_cast<unsigned>(Context.getTypeSize(T))); |
517 | break; |
518 | |
519 | case BuiltinType::Float16: |
520 | ResultType = |
521 | getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), |
522 | /* UseNativeHalf = */ true); |
523 | break; |
524 | |
525 | case BuiltinType::Half: |
526 | // Half FP can either be storage-only (lowered to i16) or native. |
527 | ResultType = getTypeForFormat( |
528 | getLLVMContext(), Context.getFloatTypeSemantics(T), |
529 | Context.getLangOpts().NativeHalfType || |
530 | !Context.getTargetInfo().useFP16ConversionIntrinsics()); |
531 | break; |
532 | case BuiltinType::BFloat16: |
533 | case BuiltinType::Float: |
534 | case BuiltinType::Double: |
535 | case BuiltinType::LongDouble: |
536 | case BuiltinType::Float128: |
537 | case BuiltinType::Ibm128: |
538 | ResultType = getTypeForFormat(getLLVMContext(), |
539 | Context.getFloatTypeSemantics(T), |
540 | /* UseNativeHalf = */ false); |
541 | break; |
542 | |
543 | case BuiltinType::NullPtr: |
544 | // Model std::nullptr_t as i8* |
545 | ResultType = llvm::Type::getInt8PtrTy(C&: getLLVMContext()); |
546 | break; |
547 | |
548 | case BuiltinType::UInt128: |
549 | case BuiltinType::Int128: |
550 | ResultType = llvm::IntegerType::get(C&: getLLVMContext(), NumBits: 128); |
551 | break; |
552 | |
553 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
554 | case BuiltinType::Id: |
555 | #include "clang/Basic/OpenCLImageTypes.def" |
556 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
557 | case BuiltinType::Id: |
558 | #include "clang/Basic/OpenCLExtensionTypes.def" |
559 | case BuiltinType::OCLSampler: |
560 | case BuiltinType::OCLEvent: |
561 | case BuiltinType::OCLClkEvent: |
562 | case BuiltinType::OCLQueue: |
563 | case BuiltinType::OCLReserveID: |
564 | ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(T: Ty); |
565 | break; |
566 | case BuiltinType::SveInt8: |
567 | case BuiltinType::SveUint8: |
568 | case BuiltinType::SveInt8x2: |
569 | case BuiltinType::SveUint8x2: |
570 | case BuiltinType::SveInt8x3: |
571 | case BuiltinType::SveUint8x3: |
572 | case BuiltinType::SveInt8x4: |
573 | case BuiltinType::SveUint8x4: |
574 | case BuiltinType::SveInt16: |
575 | case BuiltinType::SveUint16: |
576 | case BuiltinType::SveInt16x2: |
577 | case BuiltinType::SveUint16x2: |
578 | case BuiltinType::SveInt16x3: |
579 | case BuiltinType::SveUint16x3: |
580 | case BuiltinType::SveInt16x4: |
581 | case BuiltinType::SveUint16x4: |
582 | case BuiltinType::SveInt32: |
583 | case BuiltinType::SveUint32: |
584 | case BuiltinType::SveInt32x2: |
585 | case BuiltinType::SveUint32x2: |
586 | case BuiltinType::SveInt32x3: |
587 | case BuiltinType::SveUint32x3: |
588 | case BuiltinType::SveInt32x4: |
589 | case BuiltinType::SveUint32x4: |
590 | case BuiltinType::SveInt64: |
591 | case BuiltinType::SveUint64: |
592 | case BuiltinType::SveInt64x2: |
593 | case BuiltinType::SveUint64x2: |
594 | case BuiltinType::SveInt64x3: |
595 | case BuiltinType::SveUint64x3: |
596 | case BuiltinType::SveInt64x4: |
597 | case BuiltinType::SveUint64x4: |
598 | case BuiltinType::SveBool: |
599 | case BuiltinType::SveBoolx2: |
600 | case BuiltinType::SveBoolx4: |
601 | case BuiltinType::SveFloat16: |
602 | case BuiltinType::SveFloat16x2: |
603 | case BuiltinType::SveFloat16x3: |
604 | case BuiltinType::SveFloat16x4: |
605 | case BuiltinType::SveFloat32: |
606 | case BuiltinType::SveFloat32x2: |
607 | case BuiltinType::SveFloat32x3: |
608 | case BuiltinType::SveFloat32x4: |
609 | case BuiltinType::SveFloat64: |
610 | case BuiltinType::SveFloat64x2: |
611 | case BuiltinType::SveFloat64x3: |
612 | case BuiltinType::SveFloat64x4: |
613 | case BuiltinType::SveBFloat16: |
614 | case BuiltinType::SveBFloat16x2: |
615 | case BuiltinType::SveBFloat16x3: |
616 | case BuiltinType::SveBFloat16x4: { |
617 | ASTContext::BuiltinVectorTypeInfo Info = |
618 | Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty)); |
619 | return llvm::ScalableVectorType::get(ConvertType(Info.ElementType), |
620 | Info.EC.getKnownMinValue() * |
621 | Info.NumVectors); |
622 | } |
623 | case BuiltinType::SveCount: |
624 | return llvm::TargetExtType::get(Context&: getLLVMContext(), Name: "aarch64.svcount" ); |
625 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
626 | case BuiltinType::Id: \ |
627 | ResultType = \ |
628 | llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \ |
629 | break; |
630 | #include "clang/Basic/PPCTypes.def" |
631 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
632 | #include "clang/Basic/RISCVVTypes.def" |
633 | { |
634 | ASTContext::BuiltinVectorTypeInfo Info = |
635 | Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty)); |
636 | return llvm::ScalableVectorType::get(ConvertType(Info.ElementType), |
637 | Info.EC.getKnownMinValue() * |
638 | Info.NumVectors); |
639 | } |
640 | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ |
641 | case BuiltinType::Id: { \ |
642 | if (BuiltinType::Id == BuiltinType::WasmExternRef) \ |
643 | ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \ |
644 | else \ |
645 | llvm_unreachable("Unexpected wasm reference builtin type!"); \ |
646 | } break; |
647 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
648 | case BuiltinType::Dependent: |
649 | #define BUILTIN_TYPE(Id, SingletonId) |
650 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
651 | case BuiltinType::Id: |
652 | #include "clang/AST/BuiltinTypes.def" |
653 | llvm_unreachable("Unexpected placeholder builtin type!" ); |
654 | } |
655 | break; |
656 | } |
657 | case Type::Auto: |
658 | case Type::DeducedTemplateSpecialization: |
659 | llvm_unreachable("Unexpected undeduced type!" ); |
660 | case Type::Complex: { |
661 | llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); |
662 | ResultType = llvm::StructType::get(EltTy, EltTy); |
663 | break; |
664 | } |
665 | case Type::LValueReference: |
666 | case Type::RValueReference: { |
667 | const ReferenceType *RTy = cast<ReferenceType>(Ty); |
668 | QualType ETy = RTy->getPointeeType(); |
669 | llvm::Type *PointeeType = ConvertTypeForMem(ETy); |
670 | unsigned AS = getTargetAddressSpace(ETy); |
671 | ResultType = llvm::PointerType::get(ElementType: PointeeType, AddressSpace: AS); |
672 | break; |
673 | } |
674 | case Type::Pointer: { |
675 | const PointerType *PTy = cast<PointerType>(Ty); |
676 | QualType ETy = PTy->getPointeeType(); |
677 | llvm::Type *PointeeType = ConvertTypeForMem(ETy); |
678 | if (PointeeType->isVoidTy()) |
679 | PointeeType = llvm::Type::getInt8Ty(C&: getLLVMContext()); |
680 | unsigned AS = getTargetAddressSpace(ETy); |
681 | ResultType = llvm::PointerType::get(ElementType: PointeeType, AddressSpace: AS); |
682 | break; |
683 | } |
684 | |
685 | case Type::VariableArray: { |
686 | const VariableArrayType *A = cast<VariableArrayType>(Ty); |
687 | assert(A->getIndexTypeCVRQualifiers() == 0 && |
688 | "FIXME: We only handle trivial array types so far!" ); |
689 | // VLAs resolve to the innermost element type; this matches |
690 | // the return of alloca, and there isn't any obviously better choice. |
691 | ResultType = ConvertTypeForMem(A->getElementType()); |
692 | break; |
693 | } |
694 | case Type::IncompleteArray: { |
695 | const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); |
696 | assert(A->getIndexTypeCVRQualifiers() == 0 && |
697 | "FIXME: We only handle trivial array types so far!" ); |
698 | // int X[] -> [0 x int], unless the element type is not sized. If it is |
699 | // unsized (e.g. an incomplete struct) just use [0 x i8]. |
700 | ResultType = ConvertTypeForMem(A->getElementType()); |
701 | if (!ResultType->isSized()) { |
702 | SkippedLayout = true; |
703 | ResultType = llvm::Type::getInt8Ty(C&: getLLVMContext()); |
704 | } |
705 | ResultType = llvm::ArrayType::get(ElementType: ResultType, NumElements: 0); |
706 | break; |
707 | } |
708 | case Type::ConstantArray: { |
709 | const ConstantArrayType *A = cast<ConstantArrayType>(Ty); |
710 | llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); |
711 | |
712 | // Lower arrays of undefined struct type to arrays of i8 just to have a |
713 | // concrete type. |
714 | if (!EltTy->isSized()) { |
715 | SkippedLayout = true; |
716 | EltTy = llvm::Type::getInt8Ty(C&: getLLVMContext()); |
717 | } |
718 | |
719 | ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); |
720 | break; |
721 | } |
722 | case Type::ExtVector: |
723 | case Type::Vector: { |
724 | const auto *VT = cast<VectorType>(Ty); |
725 | // An ext_vector_type of Bool is really a vector of bits. |
726 | llvm::Type *IRElemTy = VT->isExtVectorBoolType() |
727 | ? llvm::Type::getInt1Ty(getLLVMContext()) |
728 | : ConvertType(VT->getElementType()); |
729 | ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements()); |
730 | break; |
731 | } |
732 | case Type::ConstantMatrix: { |
733 | const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty); |
734 | ResultType = |
735 | llvm::FixedVectorType::get(ConvertType(MT->getElementType()), |
736 | MT->getNumRows() * MT->getNumColumns()); |
737 | break; |
738 | } |
739 | case Type::FunctionNoProto: |
740 | case Type::FunctionProto: |
741 | ResultType = ConvertFunctionTypeInternal(T); |
742 | break; |
743 | case Type::ObjCObject: |
744 | ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); |
745 | break; |
746 | |
747 | case Type::ObjCInterface: { |
748 | // Objective-C interfaces are always opaque (outside of the |
749 | // runtime, which can do whatever it likes); we never refine |
750 | // these. |
751 | llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; |
752 | if (!T) |
753 | T = llvm::StructType::create(Context&: getLLVMContext()); |
754 | ResultType = T; |
755 | break; |
756 | } |
757 | |
758 | case Type::ObjCObjectPointer: { |
759 | // Protocol qualifications do not influence the LLVM type, we just return a |
760 | // pointer to the underlying interface type. We don't need to worry about |
761 | // recursive conversion. |
762 | llvm::Type *T = |
763 | ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); |
764 | ResultType = T->getPointerTo(); |
765 | break; |
766 | } |
767 | |
768 | case Type::Enum: { |
769 | const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); |
770 | if (ED->isCompleteDefinition() || ED->isFixed()) |
771 | return ConvertType(ED->getIntegerType()); |
772 | // Return a placeholder 'i32' type. This can be changed later when the |
773 | // type is defined (see UpdateCompletedType), but is likely to be the |
774 | // "right" answer. |
775 | ResultType = llvm::Type::getInt32Ty(C&: getLLVMContext()); |
776 | break; |
777 | } |
778 | |
779 | case Type::BlockPointer: { |
780 | const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); |
781 | llvm::Type *PointeeType = CGM.getLangOpts().OpenCL |
782 | ? CGM.getGenericBlockLiteralType() |
783 | : ConvertTypeForMem(FTy); |
784 | // Block pointers lower to function type. For function type, |
785 | // getTargetAddressSpace() returns default address space for |
786 | // function pointer i.e. program address space. Therefore, for block |
787 | // pointers, it is important to pass the pointee AST address space when |
788 | // calling getTargetAddressSpace(), to ensure that we get the LLVM IR |
789 | // address space for data pointers and not function pointers. |
790 | unsigned AS = Context.getTargetAddressSpace(FTy.getAddressSpace()); |
791 | ResultType = llvm::PointerType::get(ElementType: PointeeType, AddressSpace: AS); |
792 | break; |
793 | } |
794 | |
795 | case Type::MemberPointer: { |
796 | auto *MPTy = cast<MemberPointerType>(Ty); |
797 | if (!getCXXABI().isMemberPointerConvertible(MPTy)) { |
798 | auto *C = MPTy->getClass(); |
799 | auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr}); |
800 | if (Insertion.second) |
801 | Insertion.first->second = llvm::StructType::create(getLLVMContext()); |
802 | ResultType = Insertion.first->second; |
803 | } else { |
804 | ResultType = getCXXABI().ConvertMemberPointerType(MPTy); |
805 | } |
806 | break; |
807 | } |
808 | |
809 | case Type::Atomic: { |
810 | QualType valueType = cast<AtomicType>(Ty)->getValueType(); |
811 | ResultType = ConvertTypeForMem(valueType); |
812 | |
813 | // Pad out to the inflated size if necessary. |
814 | uint64_t valueSize = Context.getTypeSize(valueType); |
815 | uint64_t atomicSize = Context.getTypeSize(Ty); |
816 | if (valueSize != atomicSize) { |
817 | assert(valueSize < atomicSize); |
818 | llvm::Type *elts[] = { |
819 | ResultType, |
820 | llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: (atomicSize - valueSize) / 8) |
821 | }; |
822 | ResultType = |
823 | llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts)); |
824 | } |
825 | break; |
826 | } |
827 | case Type::Pipe: { |
828 | ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty)); |
829 | break; |
830 | } |
831 | case Type::BitInt: { |
832 | const auto &EIT = cast<BitIntType>(Ty); |
833 | ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits()); |
834 | break; |
835 | } |
836 | } |
837 | |
838 | assert(ResultType && "Didn't convert a type?" ); |
839 | assert((!CachedType || CachedType == ResultType) && |
840 | "Cached type doesn't match computed type" ); |
841 | |
842 | if (ShouldUseCache) |
843 | TypeCache[Ty] = ResultType; |
844 | return ResultType; |
845 | } |
846 | |
847 | bool CodeGenModule::isPaddedAtomicType(QualType type) { |
848 | return isPaddedAtomicType(type->castAs<AtomicType>()); |
849 | } |
850 | |
851 | bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { |
852 | return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); |
853 | } |
854 | |
855 | /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. |
856 | llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { |
857 | // TagDecl's are not necessarily unique, instead use the (clang) |
858 | // type connected to the decl. |
859 | const Type *Key = Context.getTagDeclType(RD).getTypePtr(); |
860 | |
861 | llvm::StructType *&Entry = RecordDeclTypes[Key]; |
862 | |
863 | // If we don't have a StructType at all yet, create the forward declaration. |
864 | if (!Entry) { |
865 | Entry = llvm::StructType::create(Context&: getLLVMContext()); |
866 | addRecordTypeName(RD, Entry, "" ); |
867 | } |
868 | llvm::StructType *Ty = Entry; |
869 | |
870 | // If this is still a forward declaration, or the LLVM type is already |
871 | // complete, there's nothing more to do. |
872 | RD = RD->getDefinition(); |
873 | if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) |
874 | return Ty; |
875 | |
876 | // If converting this type would cause us to infinitely loop, don't do it! |
877 | if (!isSafeToConvert(RD, CGT&: *this)) { |
878 | DeferredRecords.push_back(RD); |
879 | return Ty; |
880 | } |
881 | |
882 | // Okay, this is a definition of a type. Compile the implementation now. |
883 | bool InsertResult = RecordsBeingLaidOut.insert(Ptr: Key).second; |
884 | (void)InsertResult; |
885 | assert(InsertResult && "Recursively compiling a struct?" ); |
886 | |
887 | // Force conversion of non-virtual base classes recursively. |
888 | if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
889 | for (const auto &I : CRD->bases()) { |
890 | if (I.isVirtual()) continue; |
891 | ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl()); |
892 | } |
893 | } |
894 | |
895 | // Layout fields. |
896 | std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(D: RD, Ty); |
897 | CGRecordLayouts[Key] = std::move(Layout); |
898 | |
899 | // We're done laying out this struct. |
900 | bool EraseResult = RecordsBeingLaidOut.erase(Ptr: Key); (void)EraseResult; |
901 | assert(EraseResult && "struct not in RecordsBeingLaidOut set?" ); |
902 | |
903 | // If this struct blocked a FunctionType conversion, then recompute whatever |
904 | // was derived from that. |
905 | // FIXME: This is hugely overconservative. |
906 | if (SkippedLayout) |
907 | TypeCache.clear(); |
908 | |
909 | // If we're done converting the outer-most record, then convert any deferred |
910 | // structs as well. |
911 | if (RecordsBeingLaidOut.empty()) |
912 | while (!DeferredRecords.empty()) |
913 | ConvertRecordDeclType(DeferredRecords.pop_back_val()); |
914 | |
915 | return Ty; |
916 | } |
917 | |
918 | /// getCGRecordLayout - Return record layout info for the given record decl. |
919 | const CGRecordLayout & |
920 | CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { |
921 | const Type *Key = Context.getTagDeclType(RD).getTypePtr(); |
922 | |
923 | auto I = CGRecordLayouts.find(Val: Key); |
924 | if (I != CGRecordLayouts.end()) |
925 | return *I->second; |
926 | // Compute the type information. |
927 | ConvertRecordDeclType(RD); |
928 | |
929 | // Now try again. |
930 | I = CGRecordLayouts.find(Val: Key); |
931 | |
932 | assert(I != CGRecordLayouts.end() && |
933 | "Unable to find record layout information for type" ); |
934 | return *I->second; |
935 | } |
936 | |
937 | bool CodeGenTypes::isPointerZeroInitializable(QualType T) { |
938 | assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type" ); |
939 | return isZeroInitializable(T); |
940 | } |
941 | |
942 | bool CodeGenTypes::isZeroInitializable(QualType T) { |
943 | if (T->getAs<PointerType>()) |
944 | return Context.getTargetNullPointerValue(T) == 0; |
945 | |
946 | if (const auto *AT = Context.getAsArrayType(T)) { |
947 | if (isa<IncompleteArrayType>(AT)) |
948 | return true; |
949 | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
950 | if (Context.getConstantArrayElementCount(CAT) == 0) |
951 | return true; |
952 | T = Context.getBaseElementType(T); |
953 | } |
954 | |
955 | // Records are non-zero-initializable if they contain any |
956 | // non-zero-initializable subobjects. |
957 | if (const RecordType *RT = T->getAs<RecordType>()) { |
958 | const RecordDecl *RD = RT->getDecl(); |
959 | return isZeroInitializable(RD); |
960 | } |
961 | |
962 | // We have to ask the ABI about member pointers. |
963 | if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) |
964 | return getCXXABI().isZeroInitializable(MPT); |
965 | |
966 | // Everything else is okay. |
967 | return true; |
968 | } |
969 | |
970 | bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { |
971 | return getCGRecordLayout(RD).isZeroInitializable(); |
972 | } |
973 | |
974 | unsigned CodeGenTypes::getTargetAddressSpace(QualType T) const { |
975 | // Return the address space for the type. If the type is a |
976 | // function type without an address space qualifier, the |
977 | // program address space is used. Otherwise, the target picks |
978 | // the best address space based on the type information |
979 | return T->isFunctionType() && !T.hasAddressSpace() |
980 | ? getDataLayout().getProgramAddressSpace() |
981 | : getContext().getTargetAddressSpace(T.getAddressSpace()); |
982 | } |
983 | |