1 | //===- Lexer.cpp - C Language Family Lexer --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Lexer and Token interfaces. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Lex/Lexer.h" |
14 | #include "UnicodeCharSets.h" |
15 | #include "clang/Basic/CharInfo.h" |
16 | #include "clang/Basic/Diagnostic.h" |
17 | #include "clang/Basic/IdentifierTable.h" |
18 | #include "clang/Basic/LLVM.h" |
19 | #include "clang/Basic/LangOptions.h" |
20 | #include "clang/Basic/SourceLocation.h" |
21 | #include "clang/Basic/SourceManager.h" |
22 | #include "clang/Basic/TokenKinds.h" |
23 | #include "clang/Lex/LexDiagnostic.h" |
24 | #include "clang/Lex/LiteralSupport.h" |
25 | #include "clang/Lex/MultipleIncludeOpt.h" |
26 | #include "clang/Lex/Preprocessor.h" |
27 | #include "clang/Lex/PreprocessorOptions.h" |
28 | #include "clang/Lex/Token.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/StringExtras.h" |
31 | #include "llvm/ADT/StringRef.h" |
32 | #include "llvm/ADT/StringSwitch.h" |
33 | #include "llvm/Support/Compiler.h" |
34 | #include "llvm/Support/ConvertUTF.h" |
35 | #include "llvm/Support/MathExtras.h" |
36 | #include "llvm/Support/MemoryBufferRef.h" |
37 | #include "llvm/Support/NativeFormatting.h" |
38 | #include "llvm/Support/Unicode.h" |
39 | #include "llvm/Support/UnicodeCharRanges.h" |
40 | #include <algorithm> |
41 | #include <cassert> |
42 | #include <cstddef> |
43 | #include <cstdint> |
44 | #include <cstring> |
45 | #include <optional> |
46 | #include <string> |
47 | #include <tuple> |
48 | #include <utility> |
49 | |
50 | #ifdef __SSE4_2__ |
51 | #include <nmmintrin.h> |
52 | #endif |
53 | |
54 | using namespace clang; |
55 | |
56 | //===----------------------------------------------------------------------===// |
57 | // Token Class Implementation |
58 | //===----------------------------------------------------------------------===// |
59 | |
60 | /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier. |
61 | bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const { |
62 | if (isAnnotation()) |
63 | return false; |
64 | if (const IdentifierInfo *II = getIdentifierInfo()) |
65 | return II->getObjCKeywordID() == objcKey; |
66 | return false; |
67 | } |
68 | |
69 | /// getObjCKeywordID - Return the ObjC keyword kind. |
70 | tok::ObjCKeywordKind Token::getObjCKeywordID() const { |
71 | if (isAnnotation()) |
72 | return tok::objc_not_keyword; |
73 | const IdentifierInfo *specId = getIdentifierInfo(); |
74 | return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword; |
75 | } |
76 | |
77 | /// Determine whether the token kind starts a simple-type-specifier. |
78 | bool Token::isSimpleTypeSpecifier(const LangOptions &LangOpts) const { |
79 | switch (getKind()) { |
80 | case tok::annot_typename: |
81 | case tok::annot_decltype: |
82 | case tok::annot_pack_indexing_type: |
83 | return true; |
84 | |
85 | case tok::kw_short: |
86 | case tok::kw_long: |
87 | case tok::kw___int64: |
88 | case tok::kw___int128: |
89 | case tok::kw_signed: |
90 | case tok::kw_unsigned: |
91 | case tok::kw_void: |
92 | case tok::kw_char: |
93 | case tok::kw_int: |
94 | case tok::kw_half: |
95 | case tok::kw_float: |
96 | case tok::kw_double: |
97 | case tok::kw___bf16: |
98 | case tok::kw__Float16: |
99 | case tok::kw___float128: |
100 | case tok::kw___ibm128: |
101 | case tok::kw_wchar_t: |
102 | case tok::kw_bool: |
103 | case tok::kw__Bool: |
104 | case tok::kw__Accum: |
105 | case tok::kw__Fract: |
106 | case tok::kw__Sat: |
107 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: |
108 | #include "clang/Basic/TransformTypeTraits.def" |
109 | case tok::kw___auto_type: |
110 | case tok::kw_char16_t: |
111 | case tok::kw_char32_t: |
112 | case tok::kw_typeof: |
113 | case tok::kw_decltype: |
114 | case tok::kw_char8_t: |
115 | return getIdentifierInfo()->isKeyword(LangOpts); |
116 | |
117 | default: |
118 | return false; |
119 | } |
120 | } |
121 | |
122 | //===----------------------------------------------------------------------===// |
123 | // Lexer Class Implementation |
124 | //===----------------------------------------------------------------------===// |
125 | |
126 | void Lexer::anchor() {} |
127 | |
128 | void Lexer::InitLexer(const char *BufStart, const char *BufPtr, |
129 | const char *BufEnd) { |
130 | BufferStart = BufStart; |
131 | BufferPtr = BufPtr; |
132 | BufferEnd = BufEnd; |
133 | |
134 | assert(BufEnd[0] == 0 && |
135 | "We assume that the input buffer has a null character at the end" |
136 | " to simplify lexing!" ); |
137 | |
138 | // Check whether we have a BOM in the beginning of the buffer. If yes - act |
139 | // accordingly. Right now we support only UTF-8 with and without BOM, so, just |
140 | // skip the UTF-8 BOM if it's present. |
141 | if (BufferStart == BufferPtr) { |
142 | // Determine the size of the BOM. |
143 | StringRef Buf(BufferStart, BufferEnd - BufferStart); |
144 | size_t BOMLength = llvm::StringSwitch<size_t>(Buf) |
145 | .StartsWith(S: "\xEF\xBB\xBF" , Value: 3) // UTF-8 BOM |
146 | .Default(Value: 0); |
147 | |
148 | // Skip the BOM. |
149 | BufferPtr += BOMLength; |
150 | } |
151 | |
152 | Is_PragmaLexer = false; |
153 | CurrentConflictMarkerState = CMK_None; |
154 | |
155 | // Start of the file is a start of line. |
156 | IsAtStartOfLine = true; |
157 | IsAtPhysicalStartOfLine = true; |
158 | |
159 | HasLeadingSpace = false; |
160 | HasLeadingEmptyMacro = false; |
161 | |
162 | // We are not after parsing a #. |
163 | ParsingPreprocessorDirective = false; |
164 | |
165 | // We are not after parsing #include. |
166 | ParsingFilename = false; |
167 | |
168 | // We are not in raw mode. Raw mode disables diagnostics and interpretation |
169 | // of tokens (e.g. identifiers, thus disabling macro expansion). It is used |
170 | // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block |
171 | // or otherwise skipping over tokens. |
172 | LexingRawMode = false; |
173 | |
174 | // Default to not keeping comments. |
175 | ExtendedTokenMode = 0; |
176 | |
177 | NewLinePtr = nullptr; |
178 | } |
179 | |
180 | /// Lexer constructor - Create a new lexer object for the specified buffer |
181 | /// with the specified preprocessor managing the lexing process. This lexer |
182 | /// assumes that the associated file buffer and Preprocessor objects will |
183 | /// outlive it, so it doesn't take ownership of either of them. |
184 | Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile, |
185 | Preprocessor &PP, bool IsFirstIncludeOfFile) |
186 | : PreprocessorLexer(&PP, FID), |
187 | FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)), |
188 | LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment), |
189 | IsFirstTimeLexingFile(IsFirstIncludeOfFile) { |
190 | InitLexer(BufStart: InputFile.getBufferStart(), BufPtr: InputFile.getBufferStart(), |
191 | BufEnd: InputFile.getBufferEnd()); |
192 | |
193 | resetExtendedTokenMode(); |
194 | } |
195 | |
196 | /// Lexer constructor - Create a new raw lexer object. This object is only |
197 | /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text |
198 | /// range will outlive it, so it doesn't take ownership of it. |
199 | Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts, |
200 | const char *BufStart, const char *BufPtr, const char *BufEnd, |
201 | bool IsFirstIncludeOfFile) |
202 | : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment), |
203 | IsFirstTimeLexingFile(IsFirstIncludeOfFile) { |
204 | InitLexer(BufStart, BufPtr, BufEnd); |
205 | |
206 | // We *are* in raw mode. |
207 | LexingRawMode = true; |
208 | } |
209 | |
210 | /// Lexer constructor - Create a new raw lexer object. This object is only |
211 | /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text |
212 | /// range will outlive it, so it doesn't take ownership of it. |
213 | Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile, |
214 | const SourceManager &SM, const LangOptions &langOpts, |
215 | bool IsFirstIncludeOfFile) |
216 | : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(), |
217 | FromFile.getBufferStart(), FromFile.getBufferEnd(), |
218 | IsFirstIncludeOfFile) {} |
219 | |
220 | void Lexer::resetExtendedTokenMode() { |
221 | assert(PP && "Cannot reset token mode without a preprocessor" ); |
222 | if (LangOpts.TraditionalCPP) |
223 | SetKeepWhitespaceMode(true); |
224 | else |
225 | SetCommentRetentionState(PP->getCommentRetentionState()); |
226 | } |
227 | |
228 | /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for |
229 | /// _Pragma expansion. This has a variety of magic semantics that this method |
230 | /// sets up. It returns a new'd Lexer that must be delete'd when done. |
231 | /// |
232 | /// On entrance to this routine, TokStartLoc is a macro location which has a |
233 | /// spelling loc that indicates the bytes to be lexed for the token and an |
234 | /// expansion location that indicates where all lexed tokens should be |
235 | /// "expanded from". |
236 | /// |
237 | /// TODO: It would really be nice to make _Pragma just be a wrapper around a |
238 | /// normal lexer that remaps tokens as they fly by. This would require making |
239 | /// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer |
240 | /// interface that could handle this stuff. This would pull GetMappedTokenLoc |
241 | /// out of the critical path of the lexer! |
242 | /// |
243 | Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc, |
244 | SourceLocation ExpansionLocStart, |
245 | SourceLocation ExpansionLocEnd, |
246 | unsigned TokLen, Preprocessor &PP) { |
247 | SourceManager &SM = PP.getSourceManager(); |
248 | |
249 | // Create the lexer as if we were going to lex the file normally. |
250 | FileID SpellingFID = SM.getFileID(SpellingLoc); |
251 | llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(FID: SpellingFID); |
252 | Lexer *L = new Lexer(SpellingFID, InputFile, PP); |
253 | |
254 | // Now that the lexer is created, change the start/end locations so that we |
255 | // just lex the subsection of the file that we want. This is lexing from a |
256 | // scratch buffer. |
257 | const char *StrData = SM.getCharacterData(SL: SpellingLoc); |
258 | |
259 | L->BufferPtr = StrData; |
260 | L->BufferEnd = StrData+TokLen; |
261 | assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!" ); |
262 | |
263 | // Set the SourceLocation with the remapping information. This ensures that |
264 | // GetMappedTokenLoc will remap the tokens as they are lexed. |
265 | L->FileLoc = SM.createExpansionLoc(SpellingLoc: SM.getLocForStartOfFile(FID: SpellingFID), |
266 | ExpansionLocStart, |
267 | ExpansionLocEnd, Length: TokLen); |
268 | |
269 | // Ensure that the lexer thinks it is inside a directive, so that end \n will |
270 | // return an EOD token. |
271 | L->ParsingPreprocessorDirective = true; |
272 | |
273 | // This lexer really is for _Pragma. |
274 | L->Is_PragmaLexer = true; |
275 | return L; |
276 | } |
277 | |
278 | void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) { |
279 | this->IsAtPhysicalStartOfLine = IsAtStartOfLine; |
280 | this->IsAtStartOfLine = IsAtStartOfLine; |
281 | assert((BufferStart + Offset) <= BufferEnd); |
282 | BufferPtr = BufferStart + Offset; |
283 | } |
284 | |
285 | template <typename T> static void StringifyImpl(T &Str, char Quote) { |
286 | typename T::size_type i = 0, e = Str.size(); |
287 | while (i < e) { |
288 | if (Str[i] == '\\' || Str[i] == Quote) { |
289 | Str.insert(Str.begin() + i, '\\'); |
290 | i += 2; |
291 | ++e; |
292 | } else if (Str[i] == '\n' || Str[i] == '\r') { |
293 | // Replace '\r\n' and '\n\r' to '\\' followed by 'n'. |
294 | if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') && |
295 | Str[i] != Str[i + 1]) { |
296 | Str[i] = '\\'; |
297 | Str[i + 1] = 'n'; |
298 | } else { |
299 | // Replace '\n' and '\r' to '\\' followed by 'n'. |
300 | Str[i] = '\\'; |
301 | Str.insert(Str.begin() + i + 1, 'n'); |
302 | ++e; |
303 | } |
304 | i += 2; |
305 | } else |
306 | ++i; |
307 | } |
308 | } |
309 | |
310 | std::string Lexer::Stringify(StringRef Str, bool Charify) { |
311 | std::string Result = std::string(Str); |
312 | char Quote = Charify ? '\'' : '"'; |
313 | StringifyImpl(Str&: Result, Quote); |
314 | return Result; |
315 | } |
316 | |
317 | void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, Quote: '"'); } |
318 | |
319 | //===----------------------------------------------------------------------===// |
320 | // Token Spelling |
321 | //===----------------------------------------------------------------------===// |
322 | |
323 | /// Slow case of getSpelling. Extract the characters comprising the |
324 | /// spelling of this token from the provided input buffer. |
325 | static size_t getSpellingSlow(const Token &Tok, const char *BufPtr, |
326 | const LangOptions &LangOpts, char *Spelling) { |
327 | assert(Tok.needsCleaning() && "getSpellingSlow called on simple token" ); |
328 | |
329 | size_t Length = 0; |
330 | const char *BufEnd = BufPtr + Tok.getLength(); |
331 | |
332 | if (tok::isStringLiteral(K: Tok.getKind())) { |
333 | // Munch the encoding-prefix and opening double-quote. |
334 | while (BufPtr < BufEnd) { |
335 | auto CharAndSize = Lexer::getCharAndSizeNoWarn(Ptr: BufPtr, LangOpts); |
336 | Spelling[Length++] = CharAndSize.Char; |
337 | BufPtr += CharAndSize.Size; |
338 | |
339 | if (Spelling[Length - 1] == '"') |
340 | break; |
341 | } |
342 | |
343 | // Raw string literals need special handling; trigraph expansion and line |
344 | // splicing do not occur within their d-char-sequence nor within their |
345 | // r-char-sequence. |
346 | if (Length >= 2 && |
347 | Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') { |
348 | // Search backwards from the end of the token to find the matching closing |
349 | // quote. |
350 | const char *RawEnd = BufEnd; |
351 | do --RawEnd; while (*RawEnd != '"'); |
352 | size_t RawLength = RawEnd - BufPtr + 1; |
353 | |
354 | // Everything between the quotes is included verbatim in the spelling. |
355 | memcpy(dest: Spelling + Length, src: BufPtr, n: RawLength); |
356 | Length += RawLength; |
357 | BufPtr += RawLength; |
358 | |
359 | // The rest of the token is lexed normally. |
360 | } |
361 | } |
362 | |
363 | while (BufPtr < BufEnd) { |
364 | auto CharAndSize = Lexer::getCharAndSizeNoWarn(Ptr: BufPtr, LangOpts); |
365 | Spelling[Length++] = CharAndSize.Char; |
366 | BufPtr += CharAndSize.Size; |
367 | } |
368 | |
369 | assert(Length < Tok.getLength() && |
370 | "NeedsCleaning flag set on token that didn't need cleaning!" ); |
371 | return Length; |
372 | } |
373 | |
374 | /// getSpelling() - Return the 'spelling' of this token. The spelling of a |
375 | /// token are the characters used to represent the token in the source file |
376 | /// after trigraph expansion and escaped-newline folding. In particular, this |
377 | /// wants to get the true, uncanonicalized, spelling of things like digraphs |
378 | /// UCNs, etc. |
379 | StringRef Lexer::getSpelling(SourceLocation loc, |
380 | SmallVectorImpl<char> &buffer, |
381 | const SourceManager &SM, |
382 | const LangOptions &options, |
383 | bool *invalid) { |
384 | // Break down the source location. |
385 | std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(Loc: loc); |
386 | |
387 | // Try to the load the file buffer. |
388 | bool invalidTemp = false; |
389 | StringRef file = SM.getBufferData(FID: locInfo.first, Invalid: &invalidTemp); |
390 | if (invalidTemp) { |
391 | if (invalid) *invalid = true; |
392 | return {}; |
393 | } |
394 | |
395 | const char *tokenBegin = file.data() + locInfo.second; |
396 | |
397 | // Lex from the start of the given location. |
398 | Lexer lexer(SM.getLocForStartOfFile(FID: locInfo.first), options, |
399 | file.begin(), tokenBegin, file.end()); |
400 | Token token; |
401 | lexer.LexFromRawLexer(Result&: token); |
402 | |
403 | unsigned length = token.getLength(); |
404 | |
405 | // Common case: no need for cleaning. |
406 | if (!token.needsCleaning()) |
407 | return StringRef(tokenBegin, length); |
408 | |
409 | // Hard case, we need to relex the characters into the string. |
410 | buffer.resize(N: length); |
411 | buffer.resize(N: getSpellingSlow(Tok: token, BufPtr: tokenBegin, LangOpts: options, Spelling: buffer.data())); |
412 | return StringRef(buffer.data(), buffer.size()); |
413 | } |
414 | |
415 | /// getSpelling() - Return the 'spelling' of this token. The spelling of a |
416 | /// token are the characters used to represent the token in the source file |
417 | /// after trigraph expansion and escaped-newline folding. In particular, this |
418 | /// wants to get the true, uncanonicalized, spelling of things like digraphs |
419 | /// UCNs, etc. |
420 | std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr, |
421 | const LangOptions &LangOpts, bool *Invalid) { |
422 | assert((int)Tok.getLength() >= 0 && "Token character range is bogus!" ); |
423 | |
424 | bool CharDataInvalid = false; |
425 | const char *TokStart = SourceMgr.getCharacterData(SL: Tok.getLocation(), |
426 | Invalid: &CharDataInvalid); |
427 | if (Invalid) |
428 | *Invalid = CharDataInvalid; |
429 | if (CharDataInvalid) |
430 | return {}; |
431 | |
432 | // If this token contains nothing interesting, return it directly. |
433 | if (!Tok.needsCleaning()) |
434 | return std::string(TokStart, TokStart + Tok.getLength()); |
435 | |
436 | std::string Result; |
437 | Result.resize(n: Tok.getLength()); |
438 | Result.resize(n: getSpellingSlow(Tok, BufPtr: TokStart, LangOpts, Spelling: &*Result.begin())); |
439 | return Result; |
440 | } |
441 | |
442 | /// getSpelling - This method is used to get the spelling of a token into a |
443 | /// preallocated buffer, instead of as an std::string. The caller is required |
444 | /// to allocate enough space for the token, which is guaranteed to be at least |
445 | /// Tok.getLength() bytes long. The actual length of the token is returned. |
446 | /// |
447 | /// Note that this method may do two possible things: it may either fill in |
448 | /// the buffer specified with characters, or it may *change the input pointer* |
449 | /// to point to a constant buffer with the data already in it (avoiding a |
450 | /// copy). The caller is not allowed to modify the returned buffer pointer |
451 | /// if an internal buffer is returned. |
452 | unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer, |
453 | const SourceManager &SourceMgr, |
454 | const LangOptions &LangOpts, bool *Invalid) { |
455 | assert((int)Tok.getLength() >= 0 && "Token character range is bogus!" ); |
456 | |
457 | const char *TokStart = nullptr; |
458 | // NOTE: this has to be checked *before* testing for an IdentifierInfo. |
459 | if (Tok.is(K: tok::raw_identifier)) |
460 | TokStart = Tok.getRawIdentifier().data(); |
461 | else if (!Tok.hasUCN()) { |
462 | if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { |
463 | // Just return the string from the identifier table, which is very quick. |
464 | Buffer = II->getNameStart(); |
465 | return II->getLength(); |
466 | } |
467 | } |
468 | |
469 | // NOTE: this can be checked even after testing for an IdentifierInfo. |
470 | if (Tok.isLiteral()) |
471 | TokStart = Tok.getLiteralData(); |
472 | |
473 | if (!TokStart) { |
474 | // Compute the start of the token in the input lexer buffer. |
475 | bool CharDataInvalid = false; |
476 | TokStart = SourceMgr.getCharacterData(SL: Tok.getLocation(), Invalid: &CharDataInvalid); |
477 | if (Invalid) |
478 | *Invalid = CharDataInvalid; |
479 | if (CharDataInvalid) { |
480 | Buffer = "" ; |
481 | return 0; |
482 | } |
483 | } |
484 | |
485 | // If this token contains nothing interesting, return it directly. |
486 | if (!Tok.needsCleaning()) { |
487 | Buffer = TokStart; |
488 | return Tok.getLength(); |
489 | } |
490 | |
491 | // Otherwise, hard case, relex the characters into the string. |
492 | return getSpellingSlow(Tok, BufPtr: TokStart, LangOpts, Spelling: const_cast<char*>(Buffer)); |
493 | } |
494 | |
495 | /// MeasureTokenLength - Relex the token at the specified location and return |
496 | /// its length in bytes in the input file. If the token needs cleaning (e.g. |
497 | /// includes a trigraph or an escaped newline) then this count includes bytes |
498 | /// that are part of that. |
499 | unsigned Lexer::MeasureTokenLength(SourceLocation Loc, |
500 | const SourceManager &SM, |
501 | const LangOptions &LangOpts) { |
502 | Token TheTok; |
503 | if (getRawToken(Loc, Result&: TheTok, SM, LangOpts)) |
504 | return 0; |
505 | return TheTok.getLength(); |
506 | } |
507 | |
508 | /// Relex the token at the specified location. |
509 | /// \returns true if there was a failure, false on success. |
510 | bool Lexer::getRawToken(SourceLocation Loc, Token &Result, |
511 | const SourceManager &SM, |
512 | const LangOptions &LangOpts, |
513 | bool IgnoreWhiteSpace) { |
514 | // TODO: this could be special cased for common tokens like identifiers, ')', |
515 | // etc to make this faster, if it mattered. Just look at StrData[0] to handle |
516 | // all obviously single-char tokens. This could use |
517 | // Lexer::isObviouslySimpleCharacter for example to handle identifiers or |
518 | // something. |
519 | |
520 | // If this comes from a macro expansion, we really do want the macro name, not |
521 | // the token this macro expanded to. |
522 | Loc = SM.getExpansionLoc(Loc); |
523 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
524 | bool Invalid = false; |
525 | StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid); |
526 | if (Invalid) |
527 | return true; |
528 | |
529 | const char *StrData = Buffer.data()+LocInfo.second; |
530 | |
531 | if (!IgnoreWhiteSpace && isWhitespace(c: StrData[0])) |
532 | return true; |
533 | |
534 | // Create a lexer starting at the beginning of this token. |
535 | Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), LangOpts, |
536 | Buffer.begin(), StrData, Buffer.end()); |
537 | TheLexer.SetCommentRetentionState(true); |
538 | TheLexer.LexFromRawLexer(Result); |
539 | return false; |
540 | } |
541 | |
542 | /// Returns the pointer that points to the beginning of line that contains |
543 | /// the given offset, or null if the offset if invalid. |
544 | static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) { |
545 | const char *BufStart = Buffer.data(); |
546 | if (Offset >= Buffer.size()) |
547 | return nullptr; |
548 | |
549 | const char *LexStart = BufStart + Offset; |
550 | for (; LexStart != BufStart; --LexStart) { |
551 | if (isVerticalWhitespace(c: LexStart[0]) && |
552 | !Lexer::isNewLineEscaped(BufferStart: BufStart, Str: LexStart)) { |
553 | // LexStart should point at first character of logical line. |
554 | ++LexStart; |
555 | break; |
556 | } |
557 | } |
558 | return LexStart; |
559 | } |
560 | |
561 | static SourceLocation getBeginningOfFileToken(SourceLocation Loc, |
562 | const SourceManager &SM, |
563 | const LangOptions &LangOpts) { |
564 | assert(Loc.isFileID()); |
565 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
566 | if (LocInfo.first.isInvalid()) |
567 | return Loc; |
568 | |
569 | bool Invalid = false; |
570 | StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid); |
571 | if (Invalid) |
572 | return Loc; |
573 | |
574 | // Back up from the current location until we hit the beginning of a line |
575 | // (or the buffer). We'll relex from that point. |
576 | const char *StrData = Buffer.data() + LocInfo.second; |
577 | const char *LexStart = findBeginningOfLine(Buffer, Offset: LocInfo.second); |
578 | if (!LexStart || LexStart == StrData) |
579 | return Loc; |
580 | |
581 | // Create a lexer starting at the beginning of this token. |
582 | SourceLocation LexerStartLoc = Loc.getLocWithOffset(Offset: -LocInfo.second); |
583 | Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart, |
584 | Buffer.end()); |
585 | TheLexer.SetCommentRetentionState(true); |
586 | |
587 | // Lex tokens until we find the token that contains the source location. |
588 | Token TheTok; |
589 | do { |
590 | TheLexer.LexFromRawLexer(Result&: TheTok); |
591 | |
592 | if (TheLexer.getBufferLocation() > StrData) { |
593 | // Lexing this token has taken the lexer past the source location we're |
594 | // looking for. If the current token encompasses our source location, |
595 | // return the beginning of that token. |
596 | if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData) |
597 | return TheTok.getLocation(); |
598 | |
599 | // We ended up skipping over the source location entirely, which means |
600 | // that it points into whitespace. We're done here. |
601 | break; |
602 | } |
603 | } while (TheTok.getKind() != tok::eof); |
604 | |
605 | // We've passed our source location; just return the original source location. |
606 | return Loc; |
607 | } |
608 | |
609 | SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc, |
610 | const SourceManager &SM, |
611 | const LangOptions &LangOpts) { |
612 | if (Loc.isFileID()) |
613 | return getBeginningOfFileToken(Loc, SM, LangOpts); |
614 | |
615 | if (!SM.isMacroArgExpansion(Loc)) |
616 | return Loc; |
617 | |
618 | SourceLocation FileLoc = SM.getSpellingLoc(Loc); |
619 | SourceLocation BeginFileLoc = getBeginningOfFileToken(Loc: FileLoc, SM, LangOpts); |
620 | std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(Loc: FileLoc); |
621 | std::pair<FileID, unsigned> BeginFileLocInfo = |
622 | SM.getDecomposedLoc(Loc: BeginFileLoc); |
623 | assert(FileLocInfo.first == BeginFileLocInfo.first && |
624 | FileLocInfo.second >= BeginFileLocInfo.second); |
625 | return Loc.getLocWithOffset(Offset: BeginFileLocInfo.second - FileLocInfo.second); |
626 | } |
627 | |
628 | namespace { |
629 | |
630 | enum PreambleDirectiveKind { |
631 | PDK_Skipped, |
632 | PDK_Unknown |
633 | }; |
634 | |
635 | } // namespace |
636 | |
637 | PreambleBounds Lexer::ComputePreamble(StringRef Buffer, |
638 | const LangOptions &LangOpts, |
639 | unsigned MaxLines) { |
640 | // Create a lexer starting at the beginning of the file. Note that we use a |
641 | // "fake" file source location at offset 1 so that the lexer will track our |
642 | // position within the file. |
643 | const SourceLocation::UIntTy StartOffset = 1; |
644 | SourceLocation FileLoc = SourceLocation::getFromRawEncoding(Encoding: StartOffset); |
645 | Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(), |
646 | Buffer.end()); |
647 | TheLexer.SetCommentRetentionState(true); |
648 | |
649 | bool InPreprocessorDirective = false; |
650 | Token TheTok; |
651 | SourceLocation ; |
652 | |
653 | unsigned MaxLineOffset = 0; |
654 | if (MaxLines) { |
655 | const char *CurPtr = Buffer.begin(); |
656 | unsigned CurLine = 0; |
657 | while (CurPtr != Buffer.end()) { |
658 | char ch = *CurPtr++; |
659 | if (ch == '\n') { |
660 | ++CurLine; |
661 | if (CurLine == MaxLines) |
662 | break; |
663 | } |
664 | } |
665 | if (CurPtr != Buffer.end()) |
666 | MaxLineOffset = CurPtr - Buffer.begin(); |
667 | } |
668 | |
669 | do { |
670 | TheLexer.LexFromRawLexer(Result&: TheTok); |
671 | |
672 | if (InPreprocessorDirective) { |
673 | // If we've hit the end of the file, we're done. |
674 | if (TheTok.getKind() == tok::eof) { |
675 | break; |
676 | } |
677 | |
678 | // If we haven't hit the end of the preprocessor directive, skip this |
679 | // token. |
680 | if (!TheTok.isAtStartOfLine()) |
681 | continue; |
682 | |
683 | // We've passed the end of the preprocessor directive, and will look |
684 | // at this token again below. |
685 | InPreprocessorDirective = false; |
686 | } |
687 | |
688 | // Keep track of the # of lines in the preamble. |
689 | if (TheTok.isAtStartOfLine()) { |
690 | unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset; |
691 | |
692 | // If we were asked to limit the number of lines in the preamble, |
693 | // and we're about to exceed that limit, we're done. |
694 | if (MaxLineOffset && TokOffset >= MaxLineOffset) |
695 | break; |
696 | } |
697 | |
698 | // Comments are okay; skip over them. |
699 | if (TheTok.getKind() == tok::comment) { |
700 | if (ActiveCommentLoc.isInvalid()) |
701 | ActiveCommentLoc = TheTok.getLocation(); |
702 | continue; |
703 | } |
704 | |
705 | if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) { |
706 | // This is the start of a preprocessor directive. |
707 | Token HashTok = TheTok; |
708 | InPreprocessorDirective = true; |
709 | ActiveCommentLoc = SourceLocation(); |
710 | |
711 | // Figure out which directive this is. Since we're lexing raw tokens, |
712 | // we don't have an identifier table available. Instead, just look at |
713 | // the raw identifier to recognize and categorize preprocessor directives. |
714 | TheLexer.LexFromRawLexer(Result&: TheTok); |
715 | if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) { |
716 | StringRef Keyword = TheTok.getRawIdentifier(); |
717 | PreambleDirectiveKind PDK |
718 | = llvm::StringSwitch<PreambleDirectiveKind>(Keyword) |
719 | .Case(S: "include" , Value: PDK_Skipped) |
720 | .Case(S: "__include_macros" , Value: PDK_Skipped) |
721 | .Case(S: "define" , Value: PDK_Skipped) |
722 | .Case(S: "undef" , Value: PDK_Skipped) |
723 | .Case(S: "line" , Value: PDK_Skipped) |
724 | .Case(S: "error" , Value: PDK_Skipped) |
725 | .Case(S: "pragma" , Value: PDK_Skipped) |
726 | .Case(S: "import" , Value: PDK_Skipped) |
727 | .Case(S: "include_next" , Value: PDK_Skipped) |
728 | .Case(S: "warning" , Value: PDK_Skipped) |
729 | .Case(S: "ident" , Value: PDK_Skipped) |
730 | .Case(S: "sccs" , Value: PDK_Skipped) |
731 | .Case(S: "assert" , Value: PDK_Skipped) |
732 | .Case(S: "unassert" , Value: PDK_Skipped) |
733 | .Case(S: "if" , Value: PDK_Skipped) |
734 | .Case(S: "ifdef" , Value: PDK_Skipped) |
735 | .Case(S: "ifndef" , Value: PDK_Skipped) |
736 | .Case(S: "elif" , Value: PDK_Skipped) |
737 | .Case(S: "elifdef" , Value: PDK_Skipped) |
738 | .Case(S: "elifndef" , Value: PDK_Skipped) |
739 | .Case(S: "else" , Value: PDK_Skipped) |
740 | .Case(S: "endif" , Value: PDK_Skipped) |
741 | .Default(Value: PDK_Unknown); |
742 | |
743 | switch (PDK) { |
744 | case PDK_Skipped: |
745 | continue; |
746 | |
747 | case PDK_Unknown: |
748 | // We don't know what this directive is; stop at the '#'. |
749 | break; |
750 | } |
751 | } |
752 | |
753 | // We only end up here if we didn't recognize the preprocessor |
754 | // directive or it was one that can't occur in the preamble at this |
755 | // point. Roll back the current token to the location of the '#'. |
756 | TheTok = HashTok; |
757 | } else if (TheTok.isAtStartOfLine() && |
758 | TheTok.getKind() == tok::raw_identifier && |
759 | TheTok.getRawIdentifier() == "module" && |
760 | LangOpts.CPlusPlusModules) { |
761 | // The initial global module fragment introducer "module;" is part of |
762 | // the preamble, which runs up to the module declaration "module foo;". |
763 | Token ModuleTok = TheTok; |
764 | do { |
765 | TheLexer.LexFromRawLexer(Result&: TheTok); |
766 | } while (TheTok.getKind() == tok::comment); |
767 | if (TheTok.getKind() != tok::semi) { |
768 | // Not global module fragment, roll back. |
769 | TheTok = ModuleTok; |
770 | break; |
771 | } |
772 | continue; |
773 | } |
774 | |
775 | // We hit a token that we don't recognize as being in the |
776 | // "preprocessing only" part of the file, so we're no longer in |
777 | // the preamble. |
778 | break; |
779 | } while (true); |
780 | |
781 | SourceLocation End; |
782 | if (ActiveCommentLoc.isValid()) |
783 | End = ActiveCommentLoc; // don't truncate a decl comment. |
784 | else |
785 | End = TheTok.getLocation(); |
786 | |
787 | return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(), |
788 | TheTok.isAtStartOfLine()); |
789 | } |
790 | |
791 | unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo, |
792 | const SourceManager &SM, |
793 | const LangOptions &LangOpts) { |
794 | // Figure out how many physical characters away the specified expansion |
795 | // character is. This needs to take into consideration newlines and |
796 | // trigraphs. |
797 | bool Invalid = false; |
798 | const char *TokPtr = SM.getCharacterData(SL: TokStart, Invalid: &Invalid); |
799 | |
800 | // If they request the first char of the token, we're trivially done. |
801 | if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(C: *TokPtr))) |
802 | return 0; |
803 | |
804 | unsigned PhysOffset = 0; |
805 | |
806 | // The usual case is that tokens don't contain anything interesting. Skip |
807 | // over the uninteresting characters. If a token only consists of simple |
808 | // chars, this method is extremely fast. |
809 | while (Lexer::isObviouslySimpleCharacter(C: *TokPtr)) { |
810 | if (CharNo == 0) |
811 | return PhysOffset; |
812 | ++TokPtr; |
813 | --CharNo; |
814 | ++PhysOffset; |
815 | } |
816 | |
817 | // If we have a character that may be a trigraph or escaped newline, use a |
818 | // lexer to parse it correctly. |
819 | for (; CharNo; --CharNo) { |
820 | auto CharAndSize = Lexer::getCharAndSizeNoWarn(Ptr: TokPtr, LangOpts); |
821 | TokPtr += CharAndSize.Size; |
822 | PhysOffset += CharAndSize.Size; |
823 | } |
824 | |
825 | // Final detail: if we end up on an escaped newline, we want to return the |
826 | // location of the actual byte of the token. For example foo\<newline>bar |
827 | // advanced by 3 should return the location of b, not of \\. One compounding |
828 | // detail of this is that the escape may be made by a trigraph. |
829 | if (!Lexer::isObviouslySimpleCharacter(C: *TokPtr)) |
830 | PhysOffset += Lexer::SkipEscapedNewLines(P: TokPtr)-TokPtr; |
831 | |
832 | return PhysOffset; |
833 | } |
834 | |
835 | /// Computes the source location just past the end of the |
836 | /// token at this source location. |
837 | /// |
838 | /// This routine can be used to produce a source location that |
839 | /// points just past the end of the token referenced by \p Loc, and |
840 | /// is generally used when a diagnostic needs to point just after a |
841 | /// token where it expected something different that it received. If |
842 | /// the returned source location would not be meaningful (e.g., if |
843 | /// it points into a macro), this routine returns an invalid |
844 | /// source location. |
845 | /// |
846 | /// \param Offset an offset from the end of the token, where the source |
847 | /// location should refer to. The default offset (0) produces a source |
848 | /// location pointing just past the end of the token; an offset of 1 produces |
849 | /// a source location pointing to the last character in the token, etc. |
850 | SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset, |
851 | const SourceManager &SM, |
852 | const LangOptions &LangOpts) { |
853 | if (Loc.isInvalid()) |
854 | return {}; |
855 | |
856 | if (Loc.isMacroID()) { |
857 | if (Offset > 0 || !isAtEndOfMacroExpansion(loc: Loc, SM, LangOpts, MacroEnd: &Loc)) |
858 | return {}; // Points inside the macro expansion. |
859 | } |
860 | |
861 | unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts); |
862 | if (Len > Offset) |
863 | Len = Len - Offset; |
864 | else |
865 | return Loc; |
866 | |
867 | return Loc.getLocWithOffset(Offset: Len); |
868 | } |
869 | |
870 | /// Returns true if the given MacroID location points at the first |
871 | /// token of the macro expansion. |
872 | bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc, |
873 | const SourceManager &SM, |
874 | const LangOptions &LangOpts, |
875 | SourceLocation *MacroBegin) { |
876 | assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc" ); |
877 | |
878 | SourceLocation expansionLoc; |
879 | if (!SM.isAtStartOfImmediateMacroExpansion(Loc: loc, MacroBegin: &expansionLoc)) |
880 | return false; |
881 | |
882 | if (expansionLoc.isFileID()) { |
883 | // No other macro expansions, this is the first. |
884 | if (MacroBegin) |
885 | *MacroBegin = expansionLoc; |
886 | return true; |
887 | } |
888 | |
889 | return isAtStartOfMacroExpansion(loc: expansionLoc, SM, LangOpts, MacroBegin); |
890 | } |
891 | |
892 | /// Returns true if the given MacroID location points at the last |
893 | /// token of the macro expansion. |
894 | bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc, |
895 | const SourceManager &SM, |
896 | const LangOptions &LangOpts, |
897 | SourceLocation *MacroEnd) { |
898 | assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc" ); |
899 | |
900 | SourceLocation spellLoc = SM.getSpellingLoc(Loc: loc); |
901 | unsigned tokLen = MeasureTokenLength(Loc: spellLoc, SM, LangOpts); |
902 | if (tokLen == 0) |
903 | return false; |
904 | |
905 | SourceLocation afterLoc = loc.getLocWithOffset(Offset: tokLen); |
906 | SourceLocation expansionLoc; |
907 | if (!SM.isAtEndOfImmediateMacroExpansion(Loc: afterLoc, MacroEnd: &expansionLoc)) |
908 | return false; |
909 | |
910 | if (expansionLoc.isFileID()) { |
911 | // No other macro expansions. |
912 | if (MacroEnd) |
913 | *MacroEnd = expansionLoc; |
914 | return true; |
915 | } |
916 | |
917 | return isAtEndOfMacroExpansion(loc: expansionLoc, SM, LangOpts, MacroEnd); |
918 | } |
919 | |
920 | static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range, |
921 | const SourceManager &SM, |
922 | const LangOptions &LangOpts) { |
923 | SourceLocation Begin = Range.getBegin(); |
924 | SourceLocation End = Range.getEnd(); |
925 | assert(Begin.isFileID() && End.isFileID()); |
926 | if (Range.isTokenRange()) { |
927 | End = Lexer::getLocForEndOfToken(Loc: End, Offset: 0, SM,LangOpts); |
928 | if (End.isInvalid()) |
929 | return {}; |
930 | } |
931 | |
932 | // Break down the source locations. |
933 | FileID FID; |
934 | unsigned BeginOffs; |
935 | std::tie(args&: FID, args&: BeginOffs) = SM.getDecomposedLoc(Loc: Begin); |
936 | if (FID.isInvalid()) |
937 | return {}; |
938 | |
939 | unsigned EndOffs; |
940 | if (!SM.isInFileID(Loc: End, FID, RelativeOffset: &EndOffs) || |
941 | BeginOffs > EndOffs) |
942 | return {}; |
943 | |
944 | return CharSourceRange::getCharRange(B: Begin, E: End); |
945 | } |
946 | |
947 | // Assumes that `Loc` is in an expansion. |
948 | static bool isInExpansionTokenRange(const SourceLocation Loc, |
949 | const SourceManager &SM) { |
950 | return SM.getSLocEntry(FID: SM.getFileID(SpellingLoc: Loc)) |
951 | .getExpansion() |
952 | .isExpansionTokenRange(); |
953 | } |
954 | |
955 | CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range, |
956 | const SourceManager &SM, |
957 | const LangOptions &LangOpts) { |
958 | SourceLocation Begin = Range.getBegin(); |
959 | SourceLocation End = Range.getEnd(); |
960 | if (Begin.isInvalid() || End.isInvalid()) |
961 | return {}; |
962 | |
963 | if (Begin.isFileID() && End.isFileID()) |
964 | return makeRangeFromFileLocs(Range, SM, LangOpts); |
965 | |
966 | if (Begin.isMacroID() && End.isFileID()) { |
967 | if (!isAtStartOfMacroExpansion(loc: Begin, SM, LangOpts, MacroBegin: &Begin)) |
968 | return {}; |
969 | Range.setBegin(Begin); |
970 | return makeRangeFromFileLocs(Range, SM, LangOpts); |
971 | } |
972 | |
973 | if (Begin.isFileID() && End.isMacroID()) { |
974 | if (Range.isTokenRange()) { |
975 | if (!isAtEndOfMacroExpansion(loc: End, SM, LangOpts, MacroEnd: &End)) |
976 | return {}; |
977 | // Use the *original* end, not the expanded one in `End`. |
978 | Range.setTokenRange(isInExpansionTokenRange(Loc: Range.getEnd(), SM)); |
979 | } else if (!isAtStartOfMacroExpansion(loc: End, SM, LangOpts, MacroBegin: &End)) |
980 | return {}; |
981 | Range.setEnd(End); |
982 | return makeRangeFromFileLocs(Range, SM, LangOpts); |
983 | } |
984 | |
985 | assert(Begin.isMacroID() && End.isMacroID()); |
986 | SourceLocation MacroBegin, MacroEnd; |
987 | if (isAtStartOfMacroExpansion(loc: Begin, SM, LangOpts, MacroBegin: &MacroBegin) && |
988 | ((Range.isTokenRange() && isAtEndOfMacroExpansion(loc: End, SM, LangOpts, |
989 | MacroEnd: &MacroEnd)) || |
990 | (Range.isCharRange() && isAtStartOfMacroExpansion(loc: End, SM, LangOpts, |
991 | MacroBegin: &MacroEnd)))) { |
992 | Range.setBegin(MacroBegin); |
993 | Range.setEnd(MacroEnd); |
994 | // Use the *original* `End`, not the expanded one in `MacroEnd`. |
995 | if (Range.isTokenRange()) |
996 | Range.setTokenRange(isInExpansionTokenRange(Loc: End, SM)); |
997 | return makeRangeFromFileLocs(Range, SM, LangOpts); |
998 | } |
999 | |
1000 | bool Invalid = false; |
1001 | const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(FID: SM.getFileID(SpellingLoc: Begin), |
1002 | Invalid: &Invalid); |
1003 | if (Invalid) |
1004 | return {}; |
1005 | |
1006 | if (BeginEntry.getExpansion().isMacroArgExpansion()) { |
1007 | const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(FID: SM.getFileID(SpellingLoc: End), |
1008 | Invalid: &Invalid); |
1009 | if (Invalid) |
1010 | return {}; |
1011 | |
1012 | if (EndEntry.getExpansion().isMacroArgExpansion() && |
1013 | BeginEntry.getExpansion().getExpansionLocStart() == |
1014 | EndEntry.getExpansion().getExpansionLocStart()) { |
1015 | Range.setBegin(SM.getImmediateSpellingLoc(Loc: Begin)); |
1016 | Range.setEnd(SM.getImmediateSpellingLoc(Loc: End)); |
1017 | return makeFileCharRange(Range, SM, LangOpts); |
1018 | } |
1019 | } |
1020 | |
1021 | return {}; |
1022 | } |
1023 | |
1024 | StringRef Lexer::getSourceText(CharSourceRange Range, |
1025 | const SourceManager &SM, |
1026 | const LangOptions &LangOpts, |
1027 | bool *Invalid) { |
1028 | Range = makeFileCharRange(Range, SM, LangOpts); |
1029 | if (Range.isInvalid()) { |
1030 | if (Invalid) *Invalid = true; |
1031 | return {}; |
1032 | } |
1033 | |
1034 | // Break down the source location. |
1035 | std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Loc: Range.getBegin()); |
1036 | if (beginInfo.first.isInvalid()) { |
1037 | if (Invalid) *Invalid = true; |
1038 | return {}; |
1039 | } |
1040 | |
1041 | unsigned EndOffs; |
1042 | if (!SM.isInFileID(Loc: Range.getEnd(), FID: beginInfo.first, RelativeOffset: &EndOffs) || |
1043 | beginInfo.second > EndOffs) { |
1044 | if (Invalid) *Invalid = true; |
1045 | return {}; |
1046 | } |
1047 | |
1048 | // Try to the load the file buffer. |
1049 | bool invalidTemp = false; |
1050 | StringRef file = SM.getBufferData(FID: beginInfo.first, Invalid: &invalidTemp); |
1051 | if (invalidTemp) { |
1052 | if (Invalid) *Invalid = true; |
1053 | return {}; |
1054 | } |
1055 | |
1056 | if (Invalid) *Invalid = false; |
1057 | return file.substr(Start: beginInfo.second, N: EndOffs - beginInfo.second); |
1058 | } |
1059 | |
1060 | StringRef Lexer::getImmediateMacroName(SourceLocation Loc, |
1061 | const SourceManager &SM, |
1062 | const LangOptions &LangOpts) { |
1063 | assert(Loc.isMacroID() && "Only reasonable to call this on macros" ); |
1064 | |
1065 | // Find the location of the immediate macro expansion. |
1066 | while (true) { |
1067 | FileID FID = SM.getFileID(SpellingLoc: Loc); |
1068 | const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID); |
1069 | const SrcMgr::ExpansionInfo &Expansion = E->getExpansion(); |
1070 | Loc = Expansion.getExpansionLocStart(); |
1071 | if (!Expansion.isMacroArgExpansion()) |
1072 | break; |
1073 | |
1074 | // For macro arguments we need to check that the argument did not come |
1075 | // from an inner macro, e.g: "MAC1( MAC2(foo) )" |
1076 | |
1077 | // Loc points to the argument id of the macro definition, move to the |
1078 | // macro expansion. |
1079 | Loc = SM.getImmediateExpansionRange(Loc).getBegin(); |
1080 | SourceLocation SpellLoc = Expansion.getSpellingLoc(); |
1081 | if (SpellLoc.isFileID()) |
1082 | break; // No inner macro. |
1083 | |
1084 | // If spelling location resides in the same FileID as macro expansion |
1085 | // location, it means there is no inner macro. |
1086 | FileID MacroFID = SM.getFileID(SpellingLoc: Loc); |
1087 | if (SM.isInFileID(Loc: SpellLoc, FID: MacroFID)) |
1088 | break; |
1089 | |
1090 | // Argument came from inner macro. |
1091 | Loc = SpellLoc; |
1092 | } |
1093 | |
1094 | // Find the spelling location of the start of the non-argument expansion |
1095 | // range. This is where the macro name was spelled in order to begin |
1096 | // expanding this macro. |
1097 | Loc = SM.getSpellingLoc(Loc); |
1098 | |
1099 | // Dig out the buffer where the macro name was spelled and the extents of the |
1100 | // name so that we can render it into the expansion note. |
1101 | std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); |
1102 | unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); |
1103 | StringRef ExpansionBuffer = SM.getBufferData(FID: ExpansionInfo.first); |
1104 | return ExpansionBuffer.substr(Start: ExpansionInfo.second, N: MacroTokenLength); |
1105 | } |
1106 | |
1107 | StringRef Lexer::getImmediateMacroNameForDiagnostics( |
1108 | SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) { |
1109 | assert(Loc.isMacroID() && "Only reasonable to call this on macros" ); |
1110 | // Walk past macro argument expansions. |
1111 | while (SM.isMacroArgExpansion(Loc)) |
1112 | Loc = SM.getImmediateExpansionRange(Loc).getBegin(); |
1113 | |
1114 | // If the macro's spelling isn't FileID or from scratch space, then it's |
1115 | // actually a token paste or stringization (or similar) and not a macro at |
1116 | // all. |
1117 | SourceLocation SpellLoc = SM.getSpellingLoc(Loc); |
1118 | if (!SpellLoc.isFileID() || SM.isWrittenInScratchSpace(Loc: SpellLoc)) |
1119 | return {}; |
1120 | |
1121 | // Find the spelling location of the start of the non-argument expansion |
1122 | // range. This is where the macro name was spelled in order to begin |
1123 | // expanding this macro. |
1124 | Loc = SM.getSpellingLoc(Loc: SM.getImmediateExpansionRange(Loc).getBegin()); |
1125 | |
1126 | // Dig out the buffer where the macro name was spelled and the extents of the |
1127 | // name so that we can render it into the expansion note. |
1128 | std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); |
1129 | unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); |
1130 | StringRef ExpansionBuffer = SM.getBufferData(FID: ExpansionInfo.first); |
1131 | return ExpansionBuffer.substr(Start: ExpansionInfo.second, N: MacroTokenLength); |
1132 | } |
1133 | |
1134 | bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) { |
1135 | return isAsciiIdentifierContinue(c, AllowDollar: LangOpts.DollarIdents); |
1136 | } |
1137 | |
1138 | bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) { |
1139 | assert(isVerticalWhitespace(Str[0])); |
1140 | if (Str - 1 < BufferStart) |
1141 | return false; |
1142 | |
1143 | if ((Str[0] == '\n' && Str[-1] == '\r') || |
1144 | (Str[0] == '\r' && Str[-1] == '\n')) { |
1145 | if (Str - 2 < BufferStart) |
1146 | return false; |
1147 | --Str; |
1148 | } |
1149 | --Str; |
1150 | |
1151 | // Rewind to first non-space character: |
1152 | while (Str > BufferStart && isHorizontalWhitespace(c: *Str)) |
1153 | --Str; |
1154 | |
1155 | return *Str == '\\'; |
1156 | } |
1157 | |
1158 | StringRef Lexer::getIndentationForLine(SourceLocation Loc, |
1159 | const SourceManager &SM) { |
1160 | if (Loc.isInvalid() || Loc.isMacroID()) |
1161 | return {}; |
1162 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
1163 | if (LocInfo.first.isInvalid()) |
1164 | return {}; |
1165 | bool Invalid = false; |
1166 | StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid); |
1167 | if (Invalid) |
1168 | return {}; |
1169 | const char *Line = findBeginningOfLine(Buffer, Offset: LocInfo.second); |
1170 | if (!Line) |
1171 | return {}; |
1172 | StringRef Rest = Buffer.substr(Start: Line - Buffer.data()); |
1173 | size_t NumWhitespaceChars = Rest.find_first_not_of(Chars: " \t" ); |
1174 | return NumWhitespaceChars == StringRef::npos |
1175 | ? "" |
1176 | : Rest.take_front(N: NumWhitespaceChars); |
1177 | } |
1178 | |
1179 | //===----------------------------------------------------------------------===// |
1180 | // Diagnostics forwarding code. |
1181 | //===----------------------------------------------------------------------===// |
1182 | |
1183 | /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the |
1184 | /// lexer buffer was all expanded at a single point, perform the mapping. |
1185 | /// This is currently only used for _Pragma implementation, so it is the slow |
1186 | /// path of the hot getSourceLocation method. Do not allow it to be inlined. |
1187 | static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc( |
1188 | Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen); |
1189 | static SourceLocation GetMappedTokenLoc(Preprocessor &PP, |
1190 | SourceLocation FileLoc, |
1191 | unsigned CharNo, unsigned TokLen) { |
1192 | assert(FileLoc.isMacroID() && "Must be a macro expansion" ); |
1193 | |
1194 | // Otherwise, we're lexing "mapped tokens". This is used for things like |
1195 | // _Pragma handling. Combine the expansion location of FileLoc with the |
1196 | // spelling location. |
1197 | SourceManager &SM = PP.getSourceManager(); |
1198 | |
1199 | // Create a new SLoc which is expanded from Expansion(FileLoc) but whose |
1200 | // characters come from spelling(FileLoc)+Offset. |
1201 | SourceLocation SpellingLoc = SM.getSpellingLoc(Loc: FileLoc); |
1202 | SpellingLoc = SpellingLoc.getLocWithOffset(Offset: CharNo); |
1203 | |
1204 | // Figure out the expansion loc range, which is the range covered by the |
1205 | // original _Pragma(...) sequence. |
1206 | CharSourceRange II = SM.getImmediateExpansionRange(Loc: FileLoc); |
1207 | |
1208 | return SM.createExpansionLoc(SpellingLoc, ExpansionLocStart: II.getBegin(), ExpansionLocEnd: II.getEnd(), Length: TokLen); |
1209 | } |
1210 | |
1211 | /// getSourceLocation - Return a source location identifier for the specified |
1212 | /// offset in the current file. |
1213 | SourceLocation Lexer::getSourceLocation(const char *Loc, |
1214 | unsigned TokLen) const { |
1215 | assert(Loc >= BufferStart && Loc <= BufferEnd && |
1216 | "Location out of range for this buffer!" ); |
1217 | |
1218 | // In the normal case, we're just lexing from a simple file buffer, return |
1219 | // the file id from FileLoc with the offset specified. |
1220 | unsigned CharNo = Loc-BufferStart; |
1221 | if (FileLoc.isFileID()) |
1222 | return FileLoc.getLocWithOffset(Offset: CharNo); |
1223 | |
1224 | // Otherwise, this is the _Pragma lexer case, which pretends that all of the |
1225 | // tokens are lexed from where the _Pragma was defined. |
1226 | assert(PP && "This doesn't work on raw lexers" ); |
1227 | return GetMappedTokenLoc(PP&: *PP, FileLoc, CharNo, TokLen); |
1228 | } |
1229 | |
1230 | /// Diag - Forwarding function for diagnostics. This translate a source |
1231 | /// position in the current buffer into a SourceLocation object for rendering. |
1232 | DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const { |
1233 | return PP->Diag(Loc: getSourceLocation(Loc), DiagID); |
1234 | } |
1235 | |
1236 | //===----------------------------------------------------------------------===// |
1237 | // Trigraph and Escaped Newline Handling Code. |
1238 | //===----------------------------------------------------------------------===// |
1239 | |
1240 | /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair, |
1241 | /// return the decoded trigraph letter it corresponds to, or '\0' if nothing. |
1242 | static char GetTrigraphCharForLetter(char Letter) { |
1243 | switch (Letter) { |
1244 | default: return 0; |
1245 | case '=': return '#'; |
1246 | case ')': return ']'; |
1247 | case '(': return '['; |
1248 | case '!': return '|'; |
1249 | case '\'': return '^'; |
1250 | case '>': return '}'; |
1251 | case '/': return '\\'; |
1252 | case '<': return '{'; |
1253 | case '-': return '~'; |
1254 | } |
1255 | } |
1256 | |
1257 | /// DecodeTrigraphChar - If the specified character is a legal trigraph when |
1258 | /// prefixed with ??, emit a trigraph warning. If trigraphs are enabled, |
1259 | /// return the result character. Finally, emit a warning about trigraph use |
1260 | /// whether trigraphs are enabled or not. |
1261 | static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) { |
1262 | char Res = GetTrigraphCharForLetter(Letter: *CP); |
1263 | if (!Res) |
1264 | return Res; |
1265 | |
1266 | if (!Trigraphs) { |
1267 | if (L && !L->isLexingRawMode()) |
1268 | L->Diag(Loc: CP-2, diag::DiagID: trigraph_ignored); |
1269 | return 0; |
1270 | } |
1271 | |
1272 | if (L && !L->isLexingRawMode()) |
1273 | L->Diag(Loc: CP-2, diag::DiagID: trigraph_converted) << StringRef(&Res, 1); |
1274 | return Res; |
1275 | } |
1276 | |
1277 | /// getEscapedNewLineSize - Return the size of the specified escaped newline, |
1278 | /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a |
1279 | /// trigraph equivalent on entry to this function. |
1280 | unsigned Lexer::getEscapedNewLineSize(const char *Ptr) { |
1281 | unsigned Size = 0; |
1282 | while (isWhitespace(c: Ptr[Size])) { |
1283 | ++Size; |
1284 | |
1285 | if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r') |
1286 | continue; |
1287 | |
1288 | // If this is a \r\n or \n\r, skip the other half. |
1289 | if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') && |
1290 | Ptr[Size-1] != Ptr[Size]) |
1291 | ++Size; |
1292 | |
1293 | return Size; |
1294 | } |
1295 | |
1296 | // Not an escaped newline, must be a \t or something else. |
1297 | return 0; |
1298 | } |
1299 | |
1300 | /// SkipEscapedNewLines - If P points to an escaped newline (or a series of |
1301 | /// them), skip over them and return the first non-escaped-newline found, |
1302 | /// otherwise return P. |
1303 | const char *Lexer::SkipEscapedNewLines(const char *P) { |
1304 | while (true) { |
1305 | const char *AfterEscape; |
1306 | if (*P == '\\') { |
1307 | AfterEscape = P+1; |
1308 | } else if (*P == '?') { |
1309 | // If not a trigraph for escape, bail out. |
1310 | if (P[1] != '?' || P[2] != '/') |
1311 | return P; |
1312 | // FIXME: Take LangOpts into account; the language might not |
1313 | // support trigraphs. |
1314 | AfterEscape = P+3; |
1315 | } else { |
1316 | return P; |
1317 | } |
1318 | |
1319 | unsigned NewLineSize = Lexer::getEscapedNewLineSize(Ptr: AfterEscape); |
1320 | if (NewLineSize == 0) return P; |
1321 | P = AfterEscape+NewLineSize; |
1322 | } |
1323 | } |
1324 | |
1325 | std::optional<Token> Lexer::findNextToken(SourceLocation Loc, |
1326 | const SourceManager &SM, |
1327 | const LangOptions &LangOpts) { |
1328 | if (Loc.isMacroID()) { |
1329 | if (!Lexer::isAtEndOfMacroExpansion(loc: Loc, SM, LangOpts, MacroEnd: &Loc)) |
1330 | return std::nullopt; |
1331 | } |
1332 | Loc = Lexer::getLocForEndOfToken(Loc, Offset: 0, SM, LangOpts); |
1333 | |
1334 | // Break down the source location. |
1335 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
1336 | |
1337 | // Try to load the file buffer. |
1338 | bool InvalidTemp = false; |
1339 | StringRef File = SM.getBufferData(FID: LocInfo.first, Invalid: &InvalidTemp); |
1340 | if (InvalidTemp) |
1341 | return std::nullopt; |
1342 | |
1343 | const char *TokenBegin = File.data() + LocInfo.second; |
1344 | |
1345 | // Lex from the start of the given location. |
1346 | Lexer lexer(SM.getLocForStartOfFile(FID: LocInfo.first), LangOpts, File.begin(), |
1347 | TokenBegin, File.end()); |
1348 | // Find the token. |
1349 | Token Tok; |
1350 | lexer.LexFromRawLexer(Result&: Tok); |
1351 | return Tok; |
1352 | } |
1353 | |
1354 | /// Checks that the given token is the first token that occurs after the |
1355 | /// given location (this excludes comments and whitespace). Returns the location |
1356 | /// immediately after the specified token. If the token is not found or the |
1357 | /// location is inside a macro, the returned source location will be invalid. |
1358 | SourceLocation Lexer::findLocationAfterToken( |
1359 | SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM, |
1360 | const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) { |
1361 | std::optional<Token> Tok = findNextToken(Loc, SM, LangOpts); |
1362 | if (!Tok || Tok->isNot(K: TKind)) |
1363 | return {}; |
1364 | SourceLocation TokenLoc = Tok->getLocation(); |
1365 | |
1366 | // Calculate how much whitespace needs to be skipped if any. |
1367 | unsigned NumWhitespaceChars = 0; |
1368 | if (SkipTrailingWhitespaceAndNewLine) { |
1369 | const char *TokenEnd = SM.getCharacterData(SL: TokenLoc) + Tok->getLength(); |
1370 | unsigned char C = *TokenEnd; |
1371 | while (isHorizontalWhitespace(c: C)) { |
1372 | C = *(++TokenEnd); |
1373 | NumWhitespaceChars++; |
1374 | } |
1375 | |
1376 | // Skip \r, \n, \r\n, or \n\r |
1377 | if (C == '\n' || C == '\r') { |
1378 | char PrevC = C; |
1379 | C = *(++TokenEnd); |
1380 | NumWhitespaceChars++; |
1381 | if ((C == '\n' || C == '\r') && C != PrevC) |
1382 | NumWhitespaceChars++; |
1383 | } |
1384 | } |
1385 | |
1386 | return TokenLoc.getLocWithOffset(Offset: Tok->getLength() + NumWhitespaceChars); |
1387 | } |
1388 | |
1389 | /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer, |
1390 | /// get its size, and return it. This is tricky in several cases: |
1391 | /// 1. If currently at the start of a trigraph, we warn about the trigraph, |
1392 | /// then either return the trigraph (skipping 3 chars) or the '?', |
1393 | /// depending on whether trigraphs are enabled or not. |
1394 | /// 2. If this is an escaped newline (potentially with whitespace between |
1395 | /// the backslash and newline), implicitly skip the newline and return |
1396 | /// the char after it. |
1397 | /// |
1398 | /// This handles the slow/uncommon case of the getCharAndSize method. Here we |
1399 | /// know that we can accumulate into Size, and that we have already incremented |
1400 | /// Ptr by Size bytes. |
1401 | /// |
1402 | /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should |
1403 | /// be updated to match. |
1404 | Lexer::SizedChar Lexer::getCharAndSizeSlow(const char *Ptr, Token *Tok) { |
1405 | unsigned Size = 0; |
1406 | // If we have a slash, look for an escaped newline. |
1407 | if (Ptr[0] == '\\') { |
1408 | ++Size; |
1409 | ++Ptr; |
1410 | Slash: |
1411 | // Common case, backslash-char where the char is not whitespace. |
1412 | if (!isWhitespace(c: Ptr[0])) |
1413 | return {.Char: '\\', .Size: Size}; |
1414 | |
1415 | // See if we have optional whitespace characters between the slash and |
1416 | // newline. |
1417 | if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { |
1418 | // Remember that this token needs to be cleaned. |
1419 | if (Tok) Tok->setFlag(Token::NeedsCleaning); |
1420 | |
1421 | // Warn if there was whitespace between the backslash and newline. |
1422 | if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode()) |
1423 | Diag(Loc: Ptr, diag::DiagID: backslash_newline_space); |
1424 | |
1425 | // Found backslash<whitespace><newline>. Parse the char after it. |
1426 | Size += EscapedNewLineSize; |
1427 | Ptr += EscapedNewLineSize; |
1428 | |
1429 | // Use slow version to accumulate a correct size field. |
1430 | auto CharAndSize = getCharAndSizeSlow(Ptr, Tok); |
1431 | CharAndSize.Size += Size; |
1432 | return CharAndSize; |
1433 | } |
1434 | |
1435 | // Otherwise, this is not an escaped newline, just return the slash. |
1436 | return {.Char: '\\', .Size: Size}; |
1437 | } |
1438 | |
1439 | // If this is a trigraph, process it. |
1440 | if (Ptr[0] == '?' && Ptr[1] == '?') { |
1441 | // If this is actually a legal trigraph (not something like "??x"), emit |
1442 | // a trigraph warning. If so, and if trigraphs are enabled, return it. |
1443 | if (char C = DecodeTrigraphChar(CP: Ptr + 2, L: Tok ? this : nullptr, |
1444 | Trigraphs: LangOpts.Trigraphs)) { |
1445 | // Remember that this token needs to be cleaned. |
1446 | if (Tok) Tok->setFlag(Token::NeedsCleaning); |
1447 | |
1448 | Ptr += 3; |
1449 | Size += 3; |
1450 | if (C == '\\') goto Slash; |
1451 | return {.Char: C, .Size: Size}; |
1452 | } |
1453 | } |
1454 | |
1455 | // If this is neither, return a single character. |
1456 | return {.Char: *Ptr, .Size: Size + 1u}; |
1457 | } |
1458 | |
1459 | /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the |
1460 | /// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size, |
1461 | /// and that we have already incremented Ptr by Size bytes. |
1462 | /// |
1463 | /// NOTE: When this method is updated, getCharAndSizeSlow (above) should |
1464 | /// be updated to match. |
1465 | Lexer::SizedChar Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, |
1466 | const LangOptions &LangOpts) { |
1467 | |
1468 | unsigned Size = 0; |
1469 | // If we have a slash, look for an escaped newline. |
1470 | if (Ptr[0] == '\\') { |
1471 | ++Size; |
1472 | ++Ptr; |
1473 | Slash: |
1474 | // Common case, backslash-char where the char is not whitespace. |
1475 | if (!isWhitespace(c: Ptr[0])) |
1476 | return {.Char: '\\', .Size: Size}; |
1477 | |
1478 | // See if we have optional whitespace characters followed by a newline. |
1479 | if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { |
1480 | // Found backslash<whitespace><newline>. Parse the char after it. |
1481 | Size += EscapedNewLineSize; |
1482 | Ptr += EscapedNewLineSize; |
1483 | |
1484 | // Use slow version to accumulate a correct size field. |
1485 | auto CharAndSize = getCharAndSizeSlowNoWarn(Ptr, LangOpts); |
1486 | CharAndSize.Size += Size; |
1487 | return CharAndSize; |
1488 | } |
1489 | |
1490 | // Otherwise, this is not an escaped newline, just return the slash. |
1491 | return {.Char: '\\', .Size: Size}; |
1492 | } |
1493 | |
1494 | // If this is a trigraph, process it. |
1495 | if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') { |
1496 | // If this is actually a legal trigraph (not something like "??x"), return |
1497 | // it. |
1498 | if (char C = GetTrigraphCharForLetter(Letter: Ptr[2])) { |
1499 | Ptr += 3; |
1500 | Size += 3; |
1501 | if (C == '\\') goto Slash; |
1502 | return {.Char: C, .Size: Size}; |
1503 | } |
1504 | } |
1505 | |
1506 | // If this is neither, return a single character. |
1507 | return {.Char: *Ptr, .Size: Size + 1u}; |
1508 | } |
1509 | |
1510 | //===----------------------------------------------------------------------===// |
1511 | // Helper methods for lexing. |
1512 | //===----------------------------------------------------------------------===// |
1513 | |
1514 | /// Routine that indiscriminately sets the offset into the source file. |
1515 | void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) { |
1516 | BufferPtr = BufferStart + Offset; |
1517 | if (BufferPtr > BufferEnd) |
1518 | BufferPtr = BufferEnd; |
1519 | // FIXME: What exactly does the StartOfLine bit mean? There are two |
1520 | // possible meanings for the "start" of the line: the first token on the |
1521 | // unexpanded line, or the first token on the expanded line. |
1522 | IsAtStartOfLine = StartOfLine; |
1523 | IsAtPhysicalStartOfLine = StartOfLine; |
1524 | } |
1525 | |
1526 | static bool isUnicodeWhitespace(uint32_t Codepoint) { |
1527 | static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars( |
1528 | UnicodeWhitespaceCharRanges); |
1529 | return UnicodeWhitespaceChars.contains(C: Codepoint); |
1530 | } |
1531 | |
1532 | static llvm::SmallString<5> codepointAsHexString(uint32_t C) { |
1533 | llvm::SmallString<5> CharBuf; |
1534 | llvm::raw_svector_ostream CharOS(CharBuf); |
1535 | llvm::write_hex(S&: CharOS, N: C, Style: llvm::HexPrintStyle::Upper, Width: 4); |
1536 | return CharBuf; |
1537 | } |
1538 | |
1539 | // To mitigate https://github.com/llvm/llvm-project/issues/54732, |
1540 | // we allow "Mathematical Notation Characters" in identifiers. |
1541 | // This is a proposed profile that extends the XID_Start/XID_continue |
1542 | // with mathematical symbols, superscipts and subscripts digits |
1543 | // found in some production software. |
1544 | // https://www.unicode.org/L2/L2022/22230-math-profile.pdf |
1545 | static bool isMathematicalExtensionID(uint32_t C, const LangOptions &LangOpts, |
1546 | bool IsStart, bool &IsExtension) { |
1547 | static const llvm::sys::UnicodeCharSet MathStartChars( |
1548 | MathematicalNotationProfileIDStartRanges); |
1549 | static const llvm::sys::UnicodeCharSet MathContinueChars( |
1550 | MathematicalNotationProfileIDContinueRanges); |
1551 | if (MathStartChars.contains(C) || |
1552 | (!IsStart && MathContinueChars.contains(C))) { |
1553 | IsExtension = true; |
1554 | return true; |
1555 | } |
1556 | return false; |
1557 | } |
1558 | |
1559 | static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts, |
1560 | bool &IsExtension) { |
1561 | if (LangOpts.AsmPreprocessor) { |
1562 | return false; |
1563 | } else if (LangOpts.DollarIdents && '$' == C) { |
1564 | return true; |
1565 | } else if (LangOpts.CPlusPlus || LangOpts.C23) { |
1566 | // A non-leading codepoint must have the XID_Continue property. |
1567 | // XIDContinueRanges doesn't contains characters also in XIDStartRanges, |
1568 | // so we need to check both tables. |
1569 | // '_' doesn't have the XID_Continue property but is allowed in C and C++. |
1570 | static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges); |
1571 | static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges); |
1572 | if (C == '_' || XIDStartChars.contains(C) || XIDContinueChars.contains(C)) |
1573 | return true; |
1574 | return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/false, |
1575 | IsExtension); |
1576 | } else if (LangOpts.C11) { |
1577 | static const llvm::sys::UnicodeCharSet C11AllowedIDChars( |
1578 | C11AllowedIDCharRanges); |
1579 | return C11AllowedIDChars.contains(C); |
1580 | } else { |
1581 | static const llvm::sys::UnicodeCharSet C99AllowedIDChars( |
1582 | C99AllowedIDCharRanges); |
1583 | return C99AllowedIDChars.contains(C); |
1584 | } |
1585 | } |
1586 | |
1587 | static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts, |
1588 | bool &IsExtension) { |
1589 | assert(C > 0x7F && "isAllowedInitiallyIDChar called with an ASCII codepoint" ); |
1590 | IsExtension = false; |
1591 | if (LangOpts.AsmPreprocessor) { |
1592 | return false; |
1593 | } |
1594 | if (LangOpts.CPlusPlus || LangOpts.C23) { |
1595 | static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges); |
1596 | if (XIDStartChars.contains(C)) |
1597 | return true; |
1598 | return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/true, |
1599 | IsExtension); |
1600 | } |
1601 | if (!isAllowedIDChar(C, LangOpts, IsExtension)) |
1602 | return false; |
1603 | if (LangOpts.C11) { |
1604 | static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars( |
1605 | C11DisallowedInitialIDCharRanges); |
1606 | return !C11DisallowedInitialIDChars.contains(C); |
1607 | } |
1608 | static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( |
1609 | C99DisallowedInitialIDCharRanges); |
1610 | return !C99DisallowedInitialIDChars.contains(C); |
1611 | } |
1612 | |
1613 | static void diagnoseExtensionInIdentifier(DiagnosticsEngine &Diags, uint32_t C, |
1614 | CharSourceRange Range) { |
1615 | |
1616 | static const llvm::sys::UnicodeCharSet MathStartChars( |
1617 | MathematicalNotationProfileIDStartRanges); |
1618 | static const llvm::sys::UnicodeCharSet MathContinueChars( |
1619 | MathematicalNotationProfileIDContinueRanges); |
1620 | |
1621 | (void)MathStartChars; |
1622 | (void)MathContinueChars; |
1623 | assert((MathStartChars.contains(C) || MathContinueChars.contains(C)) && |
1624 | "Unexpected mathematical notation codepoint" ); |
1625 | Diags.Report(Range.getBegin(), diag::ext_mathematical_notation) |
1626 | << codepointAsHexString(C) << Range; |
1627 | } |
1628 | |
1629 | static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin, |
1630 | const char *End) { |
1631 | return CharSourceRange::getCharRange(B: L.getSourceLocation(Loc: Begin), |
1632 | E: L.getSourceLocation(Loc: End)); |
1633 | } |
1634 | |
1635 | static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C, |
1636 | CharSourceRange Range, bool IsFirst) { |
1637 | // Check C99 compatibility. |
1638 | if (!Diags.isIgnored(diag::DiagID: warn_c99_compat_unicode_id, Loc: Range.getBegin())) { |
1639 | enum { |
1640 | CannotAppearInIdentifier = 0, |
1641 | CannotStartIdentifier |
1642 | }; |
1643 | |
1644 | static const llvm::sys::UnicodeCharSet C99AllowedIDChars( |
1645 | C99AllowedIDCharRanges); |
1646 | static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( |
1647 | C99DisallowedInitialIDCharRanges); |
1648 | if (!C99AllowedIDChars.contains(C)) { |
1649 | Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) |
1650 | << Range |
1651 | << CannotAppearInIdentifier; |
1652 | } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) { |
1653 | Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) |
1654 | << Range |
1655 | << CannotStartIdentifier; |
1656 | } |
1657 | } |
1658 | } |
1659 | |
1660 | /// After encountering UTF-8 character C and interpreting it as an identifier |
1661 | /// character, check whether it's a homoglyph for a common non-identifier |
1662 | /// source character that is unlikely to be an intentional identifier |
1663 | /// character and warn if so. |
1664 | static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C, |
1665 | CharSourceRange Range) { |
1666 | // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes). |
1667 | struct HomoglyphPair { |
1668 | uint32_t Character; |
1669 | char LooksLike; |
1670 | bool operator<(HomoglyphPair R) const { return Character < R.Character; } |
1671 | }; |
1672 | static constexpr HomoglyphPair SortedHomoglyphs[] = { |
1673 | {.Character: U'\u00ad', .LooksLike: 0}, // SOFT HYPHEN |
1674 | {.Character: U'\u01c3', .LooksLike: '!'}, // LATIN LETTER RETROFLEX CLICK |
1675 | {.Character: U'\u037e', .LooksLike: ';'}, // GREEK QUESTION MARK |
1676 | {.Character: U'\u200b', .LooksLike: 0}, // ZERO WIDTH SPACE |
1677 | {.Character: U'\u200c', .LooksLike: 0}, // ZERO WIDTH NON-JOINER |
1678 | {.Character: U'\u200d', .LooksLike: 0}, // ZERO WIDTH JOINER |
1679 | {.Character: U'\u2060', .LooksLike: 0}, // WORD JOINER |
1680 | {.Character: U'\u2061', .LooksLike: 0}, // FUNCTION APPLICATION |
1681 | {.Character: U'\u2062', .LooksLike: 0}, // INVISIBLE TIMES |
1682 | {.Character: U'\u2063', .LooksLike: 0}, // INVISIBLE SEPARATOR |
1683 | {.Character: U'\u2064', .LooksLike: 0}, // INVISIBLE PLUS |
1684 | {.Character: U'\u2212', .LooksLike: '-'}, // MINUS SIGN |
1685 | {.Character: U'\u2215', .LooksLike: '/'}, // DIVISION SLASH |
1686 | {.Character: U'\u2216', .LooksLike: '\\'}, // SET MINUS |
1687 | {.Character: U'\u2217', .LooksLike: '*'}, // ASTERISK OPERATOR |
1688 | {.Character: U'\u2223', .LooksLike: '|'}, // DIVIDES |
1689 | {.Character: U'\u2227', .LooksLike: '^'}, // LOGICAL AND |
1690 | {.Character: U'\u2236', .LooksLike: ':'}, // RATIO |
1691 | {.Character: U'\u223c', .LooksLike: '~'}, // TILDE OPERATOR |
1692 | {.Character: U'\ua789', .LooksLike: ':'}, // MODIFIER LETTER COLON |
1693 | {.Character: U'\ufeff', .LooksLike: 0}, // ZERO WIDTH NO-BREAK SPACE |
1694 | {.Character: U'\uff01', .LooksLike: '!'}, // FULLWIDTH EXCLAMATION MARK |
1695 | {.Character: U'\uff03', .LooksLike: '#'}, // FULLWIDTH NUMBER SIGN |
1696 | {.Character: U'\uff04', .LooksLike: '$'}, // FULLWIDTH DOLLAR SIGN |
1697 | {.Character: U'\uff05', .LooksLike: '%'}, // FULLWIDTH PERCENT SIGN |
1698 | {.Character: U'\uff06', .LooksLike: '&'}, // FULLWIDTH AMPERSAND |
1699 | {.Character: U'\uff08', .LooksLike: '('}, // FULLWIDTH LEFT PARENTHESIS |
1700 | {.Character: U'\uff09', .LooksLike: ')'}, // FULLWIDTH RIGHT PARENTHESIS |
1701 | {.Character: U'\uff0a', .LooksLike: '*'}, // FULLWIDTH ASTERISK |
1702 | {.Character: U'\uff0b', .LooksLike: '+'}, // FULLWIDTH ASTERISK |
1703 | {.Character: U'\uff0c', .LooksLike: ','}, // FULLWIDTH COMMA |
1704 | {.Character: U'\uff0d', .LooksLike: '-'}, // FULLWIDTH HYPHEN-MINUS |
1705 | {.Character: U'\uff0e', .LooksLike: '.'}, // FULLWIDTH FULL STOP |
1706 | {.Character: U'\uff0f', .LooksLike: '/'}, // FULLWIDTH SOLIDUS |
1707 | {.Character: U'\uff1a', .LooksLike: ':'}, // FULLWIDTH COLON |
1708 | {.Character: U'\uff1b', .LooksLike: ';'}, // FULLWIDTH SEMICOLON |
1709 | {.Character: U'\uff1c', .LooksLike: '<'}, // FULLWIDTH LESS-THAN SIGN |
1710 | {.Character: U'\uff1d', .LooksLike: '='}, // FULLWIDTH EQUALS SIGN |
1711 | {.Character: U'\uff1e', .LooksLike: '>'}, // FULLWIDTH GREATER-THAN SIGN |
1712 | {.Character: U'\uff1f', .LooksLike: '?'}, // FULLWIDTH QUESTION MARK |
1713 | {.Character: U'\uff20', .LooksLike: '@'}, // FULLWIDTH COMMERCIAL AT |
1714 | {.Character: U'\uff3b', .LooksLike: '['}, // FULLWIDTH LEFT SQUARE BRACKET |
1715 | {.Character: U'\uff3c', .LooksLike: '\\'}, // FULLWIDTH REVERSE SOLIDUS |
1716 | {.Character: U'\uff3d', .LooksLike: ']'}, // FULLWIDTH RIGHT SQUARE BRACKET |
1717 | {.Character: U'\uff3e', .LooksLike: '^'}, // FULLWIDTH CIRCUMFLEX ACCENT |
1718 | {.Character: U'\uff5b', .LooksLike: '{'}, // FULLWIDTH LEFT CURLY BRACKET |
1719 | {.Character: U'\uff5c', .LooksLike: '|'}, // FULLWIDTH VERTICAL LINE |
1720 | {.Character: U'\uff5d', .LooksLike: '}'}, // FULLWIDTH RIGHT CURLY BRACKET |
1721 | {.Character: U'\uff5e', .LooksLike: '~'}, // FULLWIDTH TILDE |
1722 | {.Character: 0, .LooksLike: 0} |
1723 | }; |
1724 | auto Homoglyph = |
1725 | std::lower_bound(first: std::begin(arr: SortedHomoglyphs), |
1726 | last: std::end(arr: SortedHomoglyphs) - 1, val: HomoglyphPair{.Character: C, .LooksLike: '\0'}); |
1727 | if (Homoglyph->Character == C) { |
1728 | if (Homoglyph->LooksLike) { |
1729 | const char LooksLikeStr[] = {Homoglyph->LooksLike, 0}; |
1730 | Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph) |
1731 | << Range << codepointAsHexString(C) << LooksLikeStr; |
1732 | } else { |
1733 | Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width) |
1734 | << Range << codepointAsHexString(C); |
1735 | } |
1736 | } |
1737 | } |
1738 | |
1739 | static void diagnoseInvalidUnicodeCodepointInIdentifier( |
1740 | DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint, |
1741 | CharSourceRange Range, bool IsFirst) { |
1742 | if (isASCII(c: CodePoint)) |
1743 | return; |
1744 | |
1745 | bool IsExtension; |
1746 | bool IsIDStart = isAllowedInitiallyIDChar(C: CodePoint, LangOpts, IsExtension); |
1747 | bool IsIDContinue = |
1748 | IsIDStart || isAllowedIDChar(C: CodePoint, LangOpts, IsExtension); |
1749 | |
1750 | if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue)) |
1751 | return; |
1752 | |
1753 | bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue; |
1754 | |
1755 | if (!IsFirst || InvalidOnlyAtStart) { |
1756 | Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier) |
1757 | << Range << codepointAsHexString(C: CodePoint) << int(InvalidOnlyAtStart) |
1758 | << FixItHint::CreateRemoval(RemoveRange: Range); |
1759 | } else { |
1760 | Diags.Report(Range.getBegin(), diag::err_character_not_allowed) |
1761 | << Range << codepointAsHexString(C: CodePoint) |
1762 | << FixItHint::CreateRemoval(RemoveRange: Range); |
1763 | } |
1764 | } |
1765 | |
1766 | bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size, |
1767 | Token &Result) { |
1768 | const char *UCNPtr = CurPtr + Size; |
1769 | uint32_t CodePoint = tryReadUCN(StartPtr&: UCNPtr, SlashLoc: CurPtr, /*Token=*/Result: nullptr); |
1770 | if (CodePoint == 0) { |
1771 | return false; |
1772 | } |
1773 | bool IsExtension = false; |
1774 | if (!isAllowedIDChar(C: CodePoint, LangOpts, IsExtension)) { |
1775 | if (isASCII(c: CodePoint) || isUnicodeWhitespace(Codepoint: CodePoint)) |
1776 | return false; |
1777 | if (!isLexingRawMode() && !ParsingPreprocessorDirective && |
1778 | !PP->isPreprocessedOutput()) |
1779 | diagnoseInvalidUnicodeCodepointInIdentifier( |
1780 | Diags&: PP->getDiagnostics(), LangOpts, CodePoint, |
1781 | Range: makeCharRange(L&: *this, Begin: CurPtr, End: UCNPtr), |
1782 | /*IsFirst=*/false); |
1783 | |
1784 | // We got a unicode codepoint that is neither a space nor a |
1785 | // a valid identifier part. |
1786 | // Carry on as if the codepoint was valid for recovery purposes. |
1787 | } else if (!isLexingRawMode()) { |
1788 | if (IsExtension) |
1789 | diagnoseExtensionInIdentifier(Diags&: PP->getDiagnostics(), C: CodePoint, |
1790 | Range: makeCharRange(L&: *this, Begin: CurPtr, End: UCNPtr)); |
1791 | |
1792 | maybeDiagnoseIDCharCompat(Diags&: PP->getDiagnostics(), C: CodePoint, |
1793 | Range: makeCharRange(L&: *this, Begin: CurPtr, End: UCNPtr), |
1794 | /*IsFirst=*/false); |
1795 | } |
1796 | |
1797 | Result.setFlag(Token::HasUCN); |
1798 | if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') || |
1799 | (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U')) |
1800 | CurPtr = UCNPtr; |
1801 | else |
1802 | while (CurPtr != UCNPtr) |
1803 | (void)getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
1804 | return true; |
1805 | } |
1806 | |
1807 | bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr, Token &Result) { |
1808 | llvm::UTF32 CodePoint; |
1809 | |
1810 | // If a UTF-8 codepoint appears immediately after an escaped new line, |
1811 | // CurPtr may point to the splicing \ on the preceding line, |
1812 | // so we need to skip it. |
1813 | unsigned FirstCodeUnitSize; |
1814 | getCharAndSize(Ptr: CurPtr, Size&: FirstCodeUnitSize); |
1815 | const char *CharStart = CurPtr + FirstCodeUnitSize - 1; |
1816 | const char *UnicodePtr = CharStart; |
1817 | |
1818 | llvm::ConversionResult ConvResult = llvm::convertUTF8Sequence( |
1819 | source: (const llvm::UTF8 **)&UnicodePtr, sourceEnd: (const llvm::UTF8 *)BufferEnd, |
1820 | target: &CodePoint, flags: llvm::strictConversion); |
1821 | if (ConvResult != llvm::conversionOK) |
1822 | return false; |
1823 | |
1824 | bool IsExtension = false; |
1825 | if (!isAllowedIDChar(C: static_cast<uint32_t>(CodePoint), LangOpts, |
1826 | IsExtension)) { |
1827 | if (isASCII(c: CodePoint) || isUnicodeWhitespace(Codepoint: CodePoint)) |
1828 | return false; |
1829 | |
1830 | if (!isLexingRawMode() && !ParsingPreprocessorDirective && |
1831 | !PP->isPreprocessedOutput()) |
1832 | diagnoseInvalidUnicodeCodepointInIdentifier( |
1833 | Diags&: PP->getDiagnostics(), LangOpts, CodePoint, |
1834 | Range: makeCharRange(L&: *this, Begin: CharStart, End: UnicodePtr), /*IsFirst=*/false); |
1835 | // We got a unicode codepoint that is neither a space nor a |
1836 | // a valid identifier part. Carry on as if the codepoint was |
1837 | // valid for recovery purposes. |
1838 | } else if (!isLexingRawMode()) { |
1839 | if (IsExtension) |
1840 | diagnoseExtensionInIdentifier( |
1841 | Diags&: PP->getDiagnostics(), C: CodePoint, |
1842 | Range: makeCharRange(L&: *this, Begin: CharStart, End: UnicodePtr)); |
1843 | maybeDiagnoseIDCharCompat(Diags&: PP->getDiagnostics(), C: CodePoint, |
1844 | Range: makeCharRange(L&: *this, Begin: CharStart, End: UnicodePtr), |
1845 | /*IsFirst=*/false); |
1846 | maybeDiagnoseUTF8Homoglyph(Diags&: PP->getDiagnostics(), C: CodePoint, |
1847 | Range: makeCharRange(L&: *this, Begin: CharStart, End: UnicodePtr)); |
1848 | } |
1849 | |
1850 | // Once we sucessfully parsed some UTF-8, |
1851 | // calling ConsumeChar ensures the NeedsCleaning flag is set on the token |
1852 | // being lexed, and that warnings about trailing spaces are emitted. |
1853 | ConsumeChar(Ptr: CurPtr, Size: FirstCodeUnitSize, Tok&: Result); |
1854 | CurPtr = UnicodePtr; |
1855 | return true; |
1856 | } |
1857 | |
1858 | bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C, |
1859 | const char *CurPtr) { |
1860 | bool IsExtension = false; |
1861 | if (isAllowedInitiallyIDChar(C, LangOpts, IsExtension)) { |
1862 | if (!isLexingRawMode() && !ParsingPreprocessorDirective && |
1863 | !PP->isPreprocessedOutput()) { |
1864 | if (IsExtension) |
1865 | diagnoseExtensionInIdentifier(Diags&: PP->getDiagnostics(), C, |
1866 | Range: makeCharRange(L&: *this, Begin: BufferPtr, End: CurPtr)); |
1867 | maybeDiagnoseIDCharCompat(Diags&: PP->getDiagnostics(), C, |
1868 | Range: makeCharRange(L&: *this, Begin: BufferPtr, End: CurPtr), |
1869 | /*IsFirst=*/true); |
1870 | maybeDiagnoseUTF8Homoglyph(Diags&: PP->getDiagnostics(), C, |
1871 | Range: makeCharRange(L&: *this, Begin: BufferPtr, End: CurPtr)); |
1872 | } |
1873 | |
1874 | MIOpt.ReadToken(); |
1875 | return LexIdentifierContinue(Result, CurPtr); |
1876 | } |
1877 | |
1878 | if (!isLexingRawMode() && !ParsingPreprocessorDirective && |
1879 | !PP->isPreprocessedOutput() && !isASCII(c: *BufferPtr) && |
1880 | !isUnicodeWhitespace(Codepoint: C)) { |
1881 | // Non-ASCII characters tend to creep into source code unintentionally. |
1882 | // Instead of letting the parser complain about the unknown token, |
1883 | // just drop the character. |
1884 | // Note that we can /only/ do this when the non-ASCII character is actually |
1885 | // spelled as Unicode, not written as a UCN. The standard requires that |
1886 | // we not throw away any possible preprocessor tokens, but there's a |
1887 | // loophole in the mapping of Unicode characters to basic character set |
1888 | // characters that allows us to map these particular characters to, say, |
1889 | // whitespace. |
1890 | diagnoseInvalidUnicodeCodepointInIdentifier( |
1891 | Diags&: PP->getDiagnostics(), LangOpts, CodePoint: C, |
1892 | Range: makeCharRange(L&: *this, Begin: BufferPtr, End: CurPtr), /*IsStart*/ IsFirst: true); |
1893 | BufferPtr = CurPtr; |
1894 | return false; |
1895 | } |
1896 | |
1897 | // Otherwise, we have an explicit UCN or a character that's unlikely to show |
1898 | // up by accident. |
1899 | MIOpt.ReadToken(); |
1900 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
1901 | return true; |
1902 | } |
1903 | |
1904 | static const char * |
1905 | fastParseASCIIIdentifier(const char *CurPtr, |
1906 | [[maybe_unused]] const char *BufferEnd) { |
1907 | #ifdef __SSE4_2__ |
1908 | alignas(16) static constexpr char AsciiIdentifierRange[16] = { |
1909 | '_', '_', 'A', 'Z', 'a', 'z', '0', '9', |
1910 | }; |
1911 | constexpr ssize_t BytesPerRegister = 16; |
1912 | |
1913 | __m128i AsciiIdentifierRangeV = |
1914 | _mm_load_si128((const __m128i *)AsciiIdentifierRange); |
1915 | |
1916 | while (LLVM_LIKELY(BufferEnd - CurPtr >= BytesPerRegister)) { |
1917 | __m128i Cv = _mm_loadu_si128((const __m128i *)(CurPtr)); |
1918 | |
1919 | int Consumed = _mm_cmpistri(AsciiIdentifierRangeV, Cv, |
1920 | _SIDD_LEAST_SIGNIFICANT | _SIDD_CMP_RANGES | |
1921 | _SIDD_UBYTE_OPS | _SIDD_NEGATIVE_POLARITY); |
1922 | CurPtr += Consumed; |
1923 | if (Consumed == BytesPerRegister) |
1924 | continue; |
1925 | return CurPtr; |
1926 | } |
1927 | #endif |
1928 | |
1929 | unsigned char C = *CurPtr; |
1930 | while (isAsciiIdentifierContinue(c: C)) |
1931 | C = *++CurPtr; |
1932 | return CurPtr; |
1933 | } |
1934 | |
1935 | bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) { |
1936 | // Match [_A-Za-z0-9]*, we have already matched an identifier start. |
1937 | |
1938 | while (true) { |
1939 | |
1940 | CurPtr = fastParseASCIIIdentifier(CurPtr, BufferEnd); |
1941 | |
1942 | unsigned Size; |
1943 | // Slow path: handle trigraph, unicode codepoints, UCNs. |
1944 | unsigned char C = getCharAndSize(Ptr: CurPtr, Size); |
1945 | if (isAsciiIdentifierContinue(c: C)) { |
1946 | CurPtr = ConsumeChar(Ptr: CurPtr, Size, Tok&: Result); |
1947 | continue; |
1948 | } |
1949 | if (C == '$') { |
1950 | // If we hit a $ and they are not supported in identifiers, we are done. |
1951 | if (!LangOpts.DollarIdents) |
1952 | break; |
1953 | // Otherwise, emit a diagnostic and continue. |
1954 | if (!isLexingRawMode()) |
1955 | Diag(Loc: CurPtr, diag::DiagID: ext_dollar_in_identifier); |
1956 | CurPtr = ConsumeChar(Ptr: CurPtr, Size, Tok&: Result); |
1957 | continue; |
1958 | } |
1959 | if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) |
1960 | continue; |
1961 | if (!isASCII(c: C) && tryConsumeIdentifierUTF8Char(CurPtr, Result)) |
1962 | continue; |
1963 | // Neither an expected Unicode codepoint nor a UCN. |
1964 | break; |
1965 | } |
1966 | |
1967 | const char *IdStart = BufferPtr; |
1968 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::raw_identifier); |
1969 | Result.setRawIdentifierData(IdStart); |
1970 | |
1971 | // If we are in raw mode, return this identifier raw. There is no need to |
1972 | // look up identifier information or attempt to macro expand it. |
1973 | if (LexingRawMode) |
1974 | return true; |
1975 | |
1976 | // Fill in Result.IdentifierInfo and update the token kind, |
1977 | // looking up the identifier in the identifier table. |
1978 | const IdentifierInfo *II = PP->LookUpIdentifierInfo(Identifier&: Result); |
1979 | // Note that we have to call PP->LookUpIdentifierInfo() even for code |
1980 | // completion, it writes IdentifierInfo into Result, and callers rely on it. |
1981 | |
1982 | // If the completion point is at the end of an identifier, we want to treat |
1983 | // the identifier as incomplete even if it resolves to a macro or a keyword. |
1984 | // This allows e.g. 'class^' to complete to 'classifier'. |
1985 | if (isCodeCompletionPoint(CurPtr)) { |
1986 | // Return the code-completion token. |
1987 | Result.setKind(tok::code_completion); |
1988 | // Skip the code-completion char and all immediate identifier characters. |
1989 | // This ensures we get consistent behavior when completing at any point in |
1990 | // an identifier (i.e. at the start, in the middle, at the end). Note that |
1991 | // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code |
1992 | // simpler. |
1993 | assert(*CurPtr == 0 && "Completion character must be 0" ); |
1994 | ++CurPtr; |
1995 | // Note that code completion token is not added as a separate character |
1996 | // when the completion point is at the end of the buffer. Therefore, we need |
1997 | // to check if the buffer has ended. |
1998 | if (CurPtr < BufferEnd) { |
1999 | while (isAsciiIdentifierContinue(c: *CurPtr)) |
2000 | ++CurPtr; |
2001 | } |
2002 | BufferPtr = CurPtr; |
2003 | return true; |
2004 | } |
2005 | |
2006 | // Finally, now that we know we have an identifier, pass this off to the |
2007 | // preprocessor, which may macro expand it or something. |
2008 | if (II->isHandleIdentifierCase()) |
2009 | return PP->HandleIdentifier(Identifier&: Result); |
2010 | |
2011 | return true; |
2012 | } |
2013 | |
2014 | /// isHexaLiteral - Return true if Start points to a hex constant. |
2015 | /// in microsoft mode (where this is supposed to be several different tokens). |
2016 | bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) { |
2017 | auto CharAndSize1 = Lexer::getCharAndSizeNoWarn(Ptr: Start, LangOpts); |
2018 | char C1 = CharAndSize1.Char; |
2019 | if (C1 != '0') |
2020 | return false; |
2021 | |
2022 | auto CharAndSize2 = |
2023 | Lexer::getCharAndSizeNoWarn(Ptr: Start + CharAndSize1.Size, LangOpts); |
2024 | char C2 = CharAndSize2.Char; |
2025 | return (C2 == 'x' || C2 == 'X'); |
2026 | } |
2027 | |
2028 | /// LexNumericConstant - Lex the remainder of a integer or floating point |
2029 | /// constant. From[-1] is the first character lexed. Return the end of the |
2030 | /// constant. |
2031 | bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) { |
2032 | unsigned Size; |
2033 | char C = getCharAndSize(Ptr: CurPtr, Size); |
2034 | char PrevCh = 0; |
2035 | while (isPreprocessingNumberBody(c: C)) { |
2036 | CurPtr = ConsumeChar(Ptr: CurPtr, Size, Tok&: Result); |
2037 | PrevCh = C; |
2038 | if (LangOpts.HLSL && C == '.' && (*CurPtr == 'x' || *CurPtr == 'r')) { |
2039 | CurPtr -= Size; |
2040 | break; |
2041 | } |
2042 | C = getCharAndSize(Ptr: CurPtr, Size); |
2043 | } |
2044 | |
2045 | // If we fell out, check for a sign, due to 1e+12. If we have one, continue. |
2046 | if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) { |
2047 | // If we are in Microsoft mode, don't continue if the constant is hex. |
2048 | // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1 |
2049 | if (!LangOpts.MicrosoftExt || !isHexaLiteral(Start: BufferPtr, LangOpts)) |
2050 | return LexNumericConstant(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size, Tok&: Result)); |
2051 | } |
2052 | |
2053 | // If we have a hex FP constant, continue. |
2054 | if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) { |
2055 | // Outside C99 and C++17, we accept hexadecimal floating point numbers as a |
2056 | // not-quite-conforming extension. Only do so if this looks like it's |
2057 | // actually meant to be a hexfloat, and not if it has a ud-suffix. |
2058 | bool IsHexFloat = true; |
2059 | if (!LangOpts.C99) { |
2060 | if (!isHexaLiteral(Start: BufferPtr, LangOpts)) |
2061 | IsHexFloat = false; |
2062 | else if (!LangOpts.CPlusPlus17 && |
2063 | std::find(first: BufferPtr, last: CurPtr, val: '_') != CurPtr) |
2064 | IsHexFloat = false; |
2065 | } |
2066 | if (IsHexFloat) |
2067 | return LexNumericConstant(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size, Tok&: Result)); |
2068 | } |
2069 | |
2070 | // If we have a digit separator, continue. |
2071 | if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C23)) { |
2072 | auto [Next, NextSize] = getCharAndSizeNoWarn(Ptr: CurPtr + Size, LangOpts); |
2073 | if (isAsciiIdentifierContinue(c: Next)) { |
2074 | if (!isLexingRawMode()) |
2075 | Diag(Loc: CurPtr, DiagID: LangOpts.CPlusPlus |
2076 | ? diag::warn_cxx11_compat_digit_separator |
2077 | : diag::warn_c23_compat_digit_separator); |
2078 | CurPtr = ConsumeChar(Ptr: CurPtr, Size, Tok&: Result); |
2079 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: NextSize, Tok&: Result); |
2080 | return LexNumericConstant(Result, CurPtr); |
2081 | } |
2082 | } |
2083 | |
2084 | // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue. |
2085 | if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) |
2086 | return LexNumericConstant(Result, CurPtr); |
2087 | if (!isASCII(c: C) && tryConsumeIdentifierUTF8Char(CurPtr, Result)) |
2088 | return LexNumericConstant(Result, CurPtr); |
2089 | |
2090 | // Update the location of token as well as BufferPtr. |
2091 | const char *TokStart = BufferPtr; |
2092 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::numeric_constant); |
2093 | Result.setLiteralData(TokStart); |
2094 | return true; |
2095 | } |
2096 | |
2097 | /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes |
2098 | /// in C++11, or warn on a ud-suffix in C++98. |
2099 | const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr, |
2100 | bool IsStringLiteral) { |
2101 | assert(LangOpts.CPlusPlus); |
2102 | |
2103 | // Maximally munch an identifier. |
2104 | unsigned Size; |
2105 | char C = getCharAndSize(Ptr: CurPtr, Size); |
2106 | bool Consumed = false; |
2107 | |
2108 | if (!isAsciiIdentifierStart(c: C)) { |
2109 | if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) |
2110 | Consumed = true; |
2111 | else if (!isASCII(c: C) && tryConsumeIdentifierUTF8Char(CurPtr, Result)) |
2112 | Consumed = true; |
2113 | else |
2114 | return CurPtr; |
2115 | } |
2116 | |
2117 | if (!LangOpts.CPlusPlus11) { |
2118 | if (!isLexingRawMode()) |
2119 | Diag(Loc: CurPtr, |
2120 | DiagID: C == '_' ? diag::warn_cxx11_compat_user_defined_literal |
2121 | : diag::warn_cxx11_compat_reserved_user_defined_literal) |
2122 | << FixItHint::CreateInsertion(InsertionLoc: getSourceLocation(Loc: CurPtr), Code: " " ); |
2123 | return CurPtr; |
2124 | } |
2125 | |
2126 | // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix |
2127 | // that does not start with an underscore is ill-formed. As a conforming |
2128 | // extension, we treat all such suffixes as if they had whitespace before |
2129 | // them. We assume a suffix beginning with a UCN or UTF-8 character is more |
2130 | // likely to be a ud-suffix than a macro, however, and accept that. |
2131 | if (!Consumed) { |
2132 | bool IsUDSuffix = false; |
2133 | if (C == '_') |
2134 | IsUDSuffix = true; |
2135 | else if (IsStringLiteral && LangOpts.CPlusPlus14) { |
2136 | // In C++1y, we need to look ahead a few characters to see if this is a |
2137 | // valid suffix for a string literal or a numeric literal (this could be |
2138 | // the 'operator""if' defining a numeric literal operator). |
2139 | const unsigned MaxStandardSuffixLength = 3; |
2140 | char Buffer[MaxStandardSuffixLength] = { C }; |
2141 | unsigned Consumed = Size; |
2142 | unsigned Chars = 1; |
2143 | while (true) { |
2144 | auto [Next, NextSize] = |
2145 | getCharAndSizeNoWarn(Ptr: CurPtr + Consumed, LangOpts); |
2146 | if (!isAsciiIdentifierContinue(c: Next)) { |
2147 | // End of suffix. Check whether this is on the allowed list. |
2148 | const StringRef CompleteSuffix(Buffer, Chars); |
2149 | IsUDSuffix = |
2150 | StringLiteralParser::isValidUDSuffix(LangOpts, Suffix: CompleteSuffix); |
2151 | break; |
2152 | } |
2153 | |
2154 | if (Chars == MaxStandardSuffixLength) |
2155 | // Too long: can't be a standard suffix. |
2156 | break; |
2157 | |
2158 | Buffer[Chars++] = Next; |
2159 | Consumed += NextSize; |
2160 | } |
2161 | } |
2162 | |
2163 | if (!IsUDSuffix) { |
2164 | if (!isLexingRawMode()) |
2165 | Diag(Loc: CurPtr, DiagID: LangOpts.MSVCCompat |
2166 | ? diag::ext_ms_reserved_user_defined_literal |
2167 | : diag::ext_reserved_user_defined_literal) |
2168 | << FixItHint::CreateInsertion(InsertionLoc: getSourceLocation(Loc: CurPtr), Code: " " ); |
2169 | return CurPtr; |
2170 | } |
2171 | |
2172 | CurPtr = ConsumeChar(Ptr: CurPtr, Size, Tok&: Result); |
2173 | } |
2174 | |
2175 | Result.setFlag(Token::HasUDSuffix); |
2176 | while (true) { |
2177 | C = getCharAndSize(Ptr: CurPtr, Size); |
2178 | if (isAsciiIdentifierContinue(c: C)) { |
2179 | CurPtr = ConsumeChar(Ptr: CurPtr, Size, Tok&: Result); |
2180 | } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) { |
2181 | } else if (!isASCII(c: C) && tryConsumeIdentifierUTF8Char(CurPtr, Result)) { |
2182 | } else |
2183 | break; |
2184 | } |
2185 | |
2186 | return CurPtr; |
2187 | } |
2188 | |
2189 | /// LexStringLiteral - Lex the remainder of a string literal, after having lexed |
2190 | /// either " or L" or u8" or u" or U". |
2191 | bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr, |
2192 | tok::TokenKind Kind) { |
2193 | const char *AfterQuote = CurPtr; |
2194 | // Does this string contain the \0 character? |
2195 | const char *NulCharacter = nullptr; |
2196 | |
2197 | if (!isLexingRawMode() && |
2198 | (Kind == tok::utf8_string_literal || |
2199 | Kind == tok::utf16_string_literal || |
2200 | Kind == tok::utf32_string_literal)) |
2201 | Diag(Loc: BufferPtr, DiagID: LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal |
2202 | : diag::warn_c99_compat_unicode_literal); |
2203 | |
2204 | char C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2205 | while (C != '"') { |
2206 | // Skip escaped characters. Escaped newlines will already be processed by |
2207 | // getAndAdvanceChar. |
2208 | if (C == '\\') |
2209 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2210 | |
2211 | if (C == '\n' || C == '\r' || // Newline. |
2212 | (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. |
2213 | if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) |
2214 | Diag(Loc: BufferPtr, diag::DiagID: ext_unterminated_char_or_string) << 1; |
2215 | FormTokenWithChars(Result, TokEnd: CurPtr-1, Kind: tok::unknown); |
2216 | return true; |
2217 | } |
2218 | |
2219 | if (C == 0) { |
2220 | if (isCodeCompletionPoint(CurPtr: CurPtr-1)) { |
2221 | if (ParsingFilename) |
2222 | codeCompleteIncludedFile(PathStart: AfterQuote, CompletionPoint: CurPtr - 1, /*IsAngled=*/false); |
2223 | else |
2224 | PP->CodeCompleteNaturalLanguage(); |
2225 | FormTokenWithChars(Result, TokEnd: CurPtr - 1, Kind: tok::unknown); |
2226 | cutOffLexing(); |
2227 | return true; |
2228 | } |
2229 | |
2230 | NulCharacter = CurPtr-1; |
2231 | } |
2232 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2233 | } |
2234 | |
2235 | // If we are in C++11, lex the optional ud-suffix. |
2236 | if (LangOpts.CPlusPlus) |
2237 | CurPtr = LexUDSuffix(Result, CurPtr, IsStringLiteral: true); |
2238 | |
2239 | // If a nul character existed in the string, warn about it. |
2240 | if (NulCharacter && !isLexingRawMode()) |
2241 | Diag(Loc: NulCharacter, diag::DiagID: null_in_char_or_string) << 1; |
2242 | |
2243 | // Update the location of the token as well as the BufferPtr instance var. |
2244 | const char *TokStart = BufferPtr; |
2245 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind); |
2246 | Result.setLiteralData(TokStart); |
2247 | return true; |
2248 | } |
2249 | |
2250 | /// LexRawStringLiteral - Lex the remainder of a raw string literal, after |
2251 | /// having lexed R", LR", u8R", uR", or UR". |
2252 | bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr, |
2253 | tok::TokenKind Kind) { |
2254 | // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3: |
2255 | // Between the initial and final double quote characters of the raw string, |
2256 | // any transformations performed in phases 1 and 2 (trigraphs, |
2257 | // universal-character-names, and line splicing) are reverted. |
2258 | |
2259 | if (!isLexingRawMode()) |
2260 | Diag(Loc: BufferPtr, diag::DiagID: warn_cxx98_compat_raw_string_literal); |
2261 | |
2262 | unsigned PrefixLen = 0; |
2263 | |
2264 | while (PrefixLen != 16 && isRawStringDelimBody(c: CurPtr[PrefixLen])) |
2265 | ++PrefixLen; |
2266 | |
2267 | // If the last character was not a '(', then we didn't lex a valid delimiter. |
2268 | if (CurPtr[PrefixLen] != '(') { |
2269 | if (!isLexingRawMode()) { |
2270 | const char *PrefixEnd = &CurPtr[PrefixLen]; |
2271 | if (PrefixLen == 16) { |
2272 | Diag(Loc: PrefixEnd, diag::DiagID: err_raw_delim_too_long); |
2273 | } else if (*PrefixEnd == '\n') { |
2274 | Diag(Loc: PrefixEnd, diag::DiagID: err_invalid_newline_raw_delim); |
2275 | } else { |
2276 | Diag(Loc: PrefixEnd, diag::DiagID: err_invalid_char_raw_delim) |
2277 | << StringRef(PrefixEnd, 1); |
2278 | } |
2279 | } |
2280 | |
2281 | // Search for the next '"' in hopes of salvaging the lexer. Unfortunately, |
2282 | // it's possible the '"' was intended to be part of the raw string, but |
2283 | // there's not much we can do about that. |
2284 | while (true) { |
2285 | char C = *CurPtr++; |
2286 | |
2287 | if (C == '"') |
2288 | break; |
2289 | if (C == 0 && CurPtr-1 == BufferEnd) { |
2290 | --CurPtr; |
2291 | break; |
2292 | } |
2293 | } |
2294 | |
2295 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
2296 | return true; |
2297 | } |
2298 | |
2299 | // Save prefix and move CurPtr past it |
2300 | const char *Prefix = CurPtr; |
2301 | CurPtr += PrefixLen + 1; // skip over prefix and '(' |
2302 | |
2303 | while (true) { |
2304 | char C = *CurPtr++; |
2305 | |
2306 | if (C == ')') { |
2307 | // Check for prefix match and closing quote. |
2308 | if (strncmp(s1: CurPtr, s2: Prefix, n: PrefixLen) == 0 && CurPtr[PrefixLen] == '"') { |
2309 | CurPtr += PrefixLen + 1; // skip over prefix and '"' |
2310 | break; |
2311 | } |
2312 | } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file. |
2313 | if (!isLexingRawMode()) |
2314 | Diag(Loc: BufferPtr, diag::DiagID: err_unterminated_raw_string) |
2315 | << StringRef(Prefix, PrefixLen); |
2316 | FormTokenWithChars(Result, TokEnd: CurPtr-1, Kind: tok::unknown); |
2317 | return true; |
2318 | } |
2319 | } |
2320 | |
2321 | // If we are in C++11, lex the optional ud-suffix. |
2322 | if (LangOpts.CPlusPlus) |
2323 | CurPtr = LexUDSuffix(Result, CurPtr, IsStringLiteral: true); |
2324 | |
2325 | // Update the location of token as well as BufferPtr. |
2326 | const char *TokStart = BufferPtr; |
2327 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind); |
2328 | Result.setLiteralData(TokStart); |
2329 | return true; |
2330 | } |
2331 | |
2332 | /// LexAngledStringLiteral - Lex the remainder of an angled string literal, |
2333 | /// after having lexed the '<' character. This is used for #include filenames. |
2334 | bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) { |
2335 | // Does this string contain the \0 character? |
2336 | const char *NulCharacter = nullptr; |
2337 | const char *AfterLessPos = CurPtr; |
2338 | char C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2339 | while (C != '>') { |
2340 | // Skip escaped characters. Escaped newlines will already be processed by |
2341 | // getAndAdvanceChar. |
2342 | if (C == '\\') |
2343 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2344 | |
2345 | if (isVerticalWhitespace(c: C) || // Newline. |
2346 | (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file. |
2347 | // If the filename is unterminated, then it must just be a lone < |
2348 | // character. Return this as such. |
2349 | FormTokenWithChars(Result, TokEnd: AfterLessPos, Kind: tok::less); |
2350 | return true; |
2351 | } |
2352 | |
2353 | if (C == 0) { |
2354 | if (isCodeCompletionPoint(CurPtr: CurPtr - 1)) { |
2355 | codeCompleteIncludedFile(PathStart: AfterLessPos, CompletionPoint: CurPtr - 1, /*IsAngled=*/true); |
2356 | cutOffLexing(); |
2357 | FormTokenWithChars(Result, TokEnd: CurPtr - 1, Kind: tok::unknown); |
2358 | return true; |
2359 | } |
2360 | NulCharacter = CurPtr-1; |
2361 | } |
2362 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2363 | } |
2364 | |
2365 | // If a nul character existed in the string, warn about it. |
2366 | if (NulCharacter && !isLexingRawMode()) |
2367 | Diag(Loc: NulCharacter, diag::DiagID: null_in_char_or_string) << 1; |
2368 | |
2369 | // Update the location of token as well as BufferPtr. |
2370 | const char *TokStart = BufferPtr; |
2371 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::header_name); |
2372 | Result.setLiteralData(TokStart); |
2373 | return true; |
2374 | } |
2375 | |
2376 | void Lexer::codeCompleteIncludedFile(const char *PathStart, |
2377 | const char *CompletionPoint, |
2378 | bool IsAngled) { |
2379 | // Completion only applies to the filename, after the last slash. |
2380 | StringRef PartialPath(PathStart, CompletionPoint - PathStart); |
2381 | llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/" ; |
2382 | auto Slash = PartialPath.find_last_of(Chars: SlashChars); |
2383 | StringRef Dir = |
2384 | (Slash == StringRef::npos) ? "" : PartialPath.take_front(N: Slash); |
2385 | const char *StartOfFilename = |
2386 | (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1; |
2387 | // Code completion filter range is the filename only, up to completion point. |
2388 | PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get( |
2389 | Name: StringRef(StartOfFilename, CompletionPoint - StartOfFilename))); |
2390 | // We should replace the characters up to the closing quote or closest slash, |
2391 | // if any. |
2392 | while (CompletionPoint < BufferEnd) { |
2393 | char Next = *(CompletionPoint + 1); |
2394 | if (Next == 0 || Next == '\r' || Next == '\n') |
2395 | break; |
2396 | ++CompletionPoint; |
2397 | if (Next == (IsAngled ? '>' : '"')) |
2398 | break; |
2399 | if (SlashChars.contains(C: Next)) |
2400 | break; |
2401 | } |
2402 | |
2403 | PP->setCodeCompletionTokenRange( |
2404 | Start: FileLoc.getLocWithOffset(Offset: StartOfFilename - BufferStart), |
2405 | End: FileLoc.getLocWithOffset(Offset: CompletionPoint - BufferStart)); |
2406 | PP->CodeCompleteIncludedFile(Dir, IsAngled); |
2407 | } |
2408 | |
2409 | /// LexCharConstant - Lex the remainder of a character constant, after having |
2410 | /// lexed either ' or L' or u8' or u' or U'. |
2411 | bool Lexer::LexCharConstant(Token &Result, const char *CurPtr, |
2412 | tok::TokenKind Kind) { |
2413 | // Does this character contain the \0 character? |
2414 | const char *NulCharacter = nullptr; |
2415 | |
2416 | if (!isLexingRawMode()) { |
2417 | if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant) |
2418 | Diag(Loc: BufferPtr, DiagID: LangOpts.CPlusPlus |
2419 | ? diag::warn_cxx98_compat_unicode_literal |
2420 | : diag::warn_c99_compat_unicode_literal); |
2421 | else if (Kind == tok::utf8_char_constant) |
2422 | Diag(Loc: BufferPtr, diag::DiagID: warn_cxx14_compat_u8_character_literal); |
2423 | } |
2424 | |
2425 | char C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2426 | if (C == '\'') { |
2427 | if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) |
2428 | Diag(Loc: BufferPtr, diag::DiagID: ext_empty_character); |
2429 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
2430 | return true; |
2431 | } |
2432 | |
2433 | while (C != '\'') { |
2434 | // Skip escaped characters. |
2435 | if (C == '\\') |
2436 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2437 | |
2438 | if (C == '\n' || C == '\r' || // Newline. |
2439 | (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. |
2440 | if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) |
2441 | Diag(Loc: BufferPtr, diag::DiagID: ext_unterminated_char_or_string) << 0; |
2442 | FormTokenWithChars(Result, TokEnd: CurPtr-1, Kind: tok::unknown); |
2443 | return true; |
2444 | } |
2445 | |
2446 | if (C == 0) { |
2447 | if (isCodeCompletionPoint(CurPtr: CurPtr-1)) { |
2448 | PP->CodeCompleteNaturalLanguage(); |
2449 | FormTokenWithChars(Result, TokEnd: CurPtr-1, Kind: tok::unknown); |
2450 | cutOffLexing(); |
2451 | return true; |
2452 | } |
2453 | |
2454 | NulCharacter = CurPtr-1; |
2455 | } |
2456 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2457 | } |
2458 | |
2459 | // If we are in C++11, lex the optional ud-suffix. |
2460 | if (LangOpts.CPlusPlus) |
2461 | CurPtr = LexUDSuffix(Result, CurPtr, IsStringLiteral: false); |
2462 | |
2463 | // If a nul character existed in the character, warn about it. |
2464 | if (NulCharacter && !isLexingRawMode()) |
2465 | Diag(Loc: NulCharacter, diag::DiagID: null_in_char_or_string) << 0; |
2466 | |
2467 | // Update the location of token as well as BufferPtr. |
2468 | const char *TokStart = BufferPtr; |
2469 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind); |
2470 | Result.setLiteralData(TokStart); |
2471 | return true; |
2472 | } |
2473 | |
2474 | /// SkipWhitespace - Efficiently skip over a series of whitespace characters. |
2475 | /// Update BufferPtr to point to the next non-whitespace character and return. |
2476 | /// |
2477 | /// This method forms a token and returns true if KeepWhitespaceMode is enabled. |
2478 | bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr, |
2479 | bool &TokAtPhysicalStartOfLine) { |
2480 | // Whitespace - Skip it, then return the token after the whitespace. |
2481 | bool SawNewline = isVerticalWhitespace(c: CurPtr[-1]); |
2482 | |
2483 | unsigned char Char = *CurPtr; |
2484 | |
2485 | const char *lastNewLine = nullptr; |
2486 | auto setLastNewLine = [&](const char *Ptr) { |
2487 | lastNewLine = Ptr; |
2488 | if (!NewLinePtr) |
2489 | NewLinePtr = Ptr; |
2490 | }; |
2491 | if (SawNewline) |
2492 | setLastNewLine(CurPtr - 1); |
2493 | |
2494 | // Skip consecutive spaces efficiently. |
2495 | while (true) { |
2496 | // Skip horizontal whitespace very aggressively. |
2497 | while (isHorizontalWhitespace(c: Char)) |
2498 | Char = *++CurPtr; |
2499 | |
2500 | // Otherwise if we have something other than whitespace, we're done. |
2501 | if (!isVerticalWhitespace(c: Char)) |
2502 | break; |
2503 | |
2504 | if (ParsingPreprocessorDirective) { |
2505 | // End of preprocessor directive line, let LexTokenInternal handle this. |
2506 | BufferPtr = CurPtr; |
2507 | return false; |
2508 | } |
2509 | |
2510 | // OK, but handle newline. |
2511 | if (*CurPtr == '\n') |
2512 | setLastNewLine(CurPtr); |
2513 | SawNewline = true; |
2514 | Char = *++CurPtr; |
2515 | } |
2516 | |
2517 | // If the client wants us to return whitespace, return it now. |
2518 | if (isKeepWhitespaceMode()) { |
2519 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
2520 | if (SawNewline) { |
2521 | IsAtStartOfLine = true; |
2522 | IsAtPhysicalStartOfLine = true; |
2523 | } |
2524 | // FIXME: The next token will not have LeadingSpace set. |
2525 | return true; |
2526 | } |
2527 | |
2528 | // If this isn't immediately after a newline, there is leading space. |
2529 | char PrevChar = CurPtr[-1]; |
2530 | bool HasLeadingSpace = !isVerticalWhitespace(c: PrevChar); |
2531 | |
2532 | Result.setFlagValue(Flag: Token::LeadingSpace, Val: HasLeadingSpace); |
2533 | if (SawNewline) { |
2534 | Result.setFlag(Token::StartOfLine); |
2535 | TokAtPhysicalStartOfLine = true; |
2536 | |
2537 | if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) { |
2538 | if (auto *Handler = PP->getEmptylineHandler()) |
2539 | Handler->HandleEmptyline(Range: SourceRange(getSourceLocation(Loc: NewLinePtr + 1), |
2540 | getSourceLocation(Loc: lastNewLine))); |
2541 | } |
2542 | } |
2543 | |
2544 | BufferPtr = CurPtr; |
2545 | return false; |
2546 | } |
2547 | |
2548 | /// We have just read the // characters from input. Skip until we find the |
2549 | /// newline character that terminates the comment. Then update BufferPtr and |
2550 | /// return. |
2551 | /// |
2552 | /// If we're in KeepCommentMode or any CommentHandler has inserted |
2553 | /// some tokens, this will store the first token and return true. |
2554 | bool Lexer::(Token &Result, const char *CurPtr, |
2555 | bool &TokAtPhysicalStartOfLine) { |
2556 | // If Line comments aren't explicitly enabled for this language, emit an |
2557 | // extension warning. |
2558 | if (!LineComment) { |
2559 | if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags. |
2560 | Diag(Loc: BufferPtr, diag::DiagID: ext_line_comment); |
2561 | |
2562 | // Mark them enabled so we only emit one warning for this translation |
2563 | // unit. |
2564 | LineComment = true; |
2565 | } |
2566 | |
2567 | // Scan over the body of the comment. The common case, when scanning, is that |
2568 | // the comment contains normal ascii characters with nothing interesting in |
2569 | // them. As such, optimize for this case with the inner loop. |
2570 | // |
2571 | // This loop terminates with CurPtr pointing at the newline (or end of buffer) |
2572 | // character that ends the line comment. |
2573 | |
2574 | // C++23 [lex.phases] p1 |
2575 | // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a |
2576 | // diagnostic only once per entire ill-formed subsequence to avoid |
2577 | // emiting to many diagnostics (see http://unicode.org/review/pr-121.html). |
2578 | bool UnicodeDecodingAlreadyDiagnosed = false; |
2579 | |
2580 | char C; |
2581 | while (true) { |
2582 | C = *CurPtr; |
2583 | // Skip over characters in the fast loop. |
2584 | while (isASCII(c: C) && C != 0 && // Potentially EOF. |
2585 | C != '\n' && C != '\r') { // Newline or DOS-style newline. |
2586 | C = *++CurPtr; |
2587 | UnicodeDecodingAlreadyDiagnosed = false; |
2588 | } |
2589 | |
2590 | if (!isASCII(c: C)) { |
2591 | unsigned Length = llvm::getUTF8SequenceSize( |
2592 | source: (const llvm::UTF8 *)CurPtr, sourceEnd: (const llvm::UTF8 *)BufferEnd); |
2593 | if (Length == 0) { |
2594 | if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode()) |
2595 | Diag(Loc: CurPtr, diag::DiagID: warn_invalid_utf8_in_comment); |
2596 | UnicodeDecodingAlreadyDiagnosed = true; |
2597 | ++CurPtr; |
2598 | } else { |
2599 | UnicodeDecodingAlreadyDiagnosed = false; |
2600 | CurPtr += Length; |
2601 | } |
2602 | continue; |
2603 | } |
2604 | |
2605 | const char *NextLine = CurPtr; |
2606 | if (C != 0) { |
2607 | // We found a newline, see if it's escaped. |
2608 | const char *EscapePtr = CurPtr-1; |
2609 | bool HasSpace = false; |
2610 | while (isHorizontalWhitespace(c: *EscapePtr)) { // Skip whitespace. |
2611 | --EscapePtr; |
2612 | HasSpace = true; |
2613 | } |
2614 | |
2615 | if (*EscapePtr == '\\') |
2616 | // Escaped newline. |
2617 | CurPtr = EscapePtr; |
2618 | else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' && |
2619 | EscapePtr[-2] == '?' && LangOpts.Trigraphs) |
2620 | // Trigraph-escaped newline. |
2621 | CurPtr = EscapePtr-2; |
2622 | else |
2623 | break; // This is a newline, we're done. |
2624 | |
2625 | // If there was space between the backslash and newline, warn about it. |
2626 | if (HasSpace && !isLexingRawMode()) |
2627 | Diag(Loc: EscapePtr, diag::DiagID: backslash_newline_space); |
2628 | } |
2629 | |
2630 | // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to |
2631 | // properly decode the character. Read it in raw mode to avoid emitting |
2632 | // diagnostics about things like trigraphs. If we see an escaped newline, |
2633 | // we'll handle it below. |
2634 | const char *OldPtr = CurPtr; |
2635 | bool OldRawMode = isLexingRawMode(); |
2636 | LexingRawMode = true; |
2637 | C = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
2638 | LexingRawMode = OldRawMode; |
2639 | |
2640 | // If we only read only one character, then no special handling is needed. |
2641 | // We're done and can skip forward to the newline. |
2642 | if (C != 0 && CurPtr == OldPtr+1) { |
2643 | CurPtr = NextLine; |
2644 | break; |
2645 | } |
2646 | |
2647 | // If we read multiple characters, and one of those characters was a \r or |
2648 | // \n, then we had an escaped newline within the comment. Emit diagnostic |
2649 | // unless the next line is also a // comment. |
2650 | if (CurPtr != OldPtr + 1 && C != '/' && |
2651 | (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) { |
2652 | for (; OldPtr != CurPtr; ++OldPtr) |
2653 | if (OldPtr[0] == '\n' || OldPtr[0] == '\r') { |
2654 | // Okay, we found a // comment that ends in a newline, if the next |
2655 | // line is also a // comment, but has spaces, don't emit a diagnostic. |
2656 | if (isWhitespace(c: C)) { |
2657 | const char *ForwardPtr = CurPtr; |
2658 | while (isWhitespace(c: *ForwardPtr)) // Skip whitespace. |
2659 | ++ForwardPtr; |
2660 | if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/') |
2661 | break; |
2662 | } |
2663 | |
2664 | if (!isLexingRawMode()) |
2665 | Diag(Loc: OldPtr-1, diag::DiagID: ext_multi_line_line_comment); |
2666 | break; |
2667 | } |
2668 | } |
2669 | |
2670 | if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) { |
2671 | --CurPtr; |
2672 | break; |
2673 | } |
2674 | |
2675 | if (C == '\0' && isCodeCompletionPoint(CurPtr: CurPtr-1)) { |
2676 | PP->CodeCompleteNaturalLanguage(); |
2677 | cutOffLexing(); |
2678 | return false; |
2679 | } |
2680 | } |
2681 | |
2682 | // Found but did not consume the newline. Notify comment handlers about the |
2683 | // comment unless we're in a #if 0 block. |
2684 | if (PP && !isLexingRawMode() && |
2685 | PP->HandleComment(result&: Result, Comment: SourceRange(getSourceLocation(Loc: BufferPtr), |
2686 | getSourceLocation(Loc: CurPtr)))) { |
2687 | BufferPtr = CurPtr; |
2688 | return true; // A token has to be returned. |
2689 | } |
2690 | |
2691 | // If we are returning comments as tokens, return this comment as a token. |
2692 | if (inKeepCommentMode()) |
2693 | return SaveLineComment(Result, CurPtr); |
2694 | |
2695 | // If we are inside a preprocessor directive and we see the end of line, |
2696 | // return immediately, so that the lexer can return this as an EOD token. |
2697 | if (ParsingPreprocessorDirective || CurPtr == BufferEnd) { |
2698 | BufferPtr = CurPtr; |
2699 | return false; |
2700 | } |
2701 | |
2702 | // Otherwise, eat the \n character. We don't care if this is a \n\r or |
2703 | // \r\n sequence. This is an efficiency hack (because we know the \n can't |
2704 | // contribute to another token), it isn't needed for correctness. Note that |
2705 | // this is ok even in KeepWhitespaceMode, because we would have returned the |
2706 | // comment above in that mode. |
2707 | NewLinePtr = CurPtr++; |
2708 | |
2709 | // The next returned token is at the start of the line. |
2710 | Result.setFlag(Token::StartOfLine); |
2711 | TokAtPhysicalStartOfLine = true; |
2712 | // No leading whitespace seen so far. |
2713 | Result.clearFlag(Flag: Token::LeadingSpace); |
2714 | BufferPtr = CurPtr; |
2715 | return false; |
2716 | } |
2717 | |
2718 | /// If in save-comment mode, package up this Line comment in an appropriate |
2719 | /// way and return it. |
2720 | bool Lexer::(Token &Result, const char *CurPtr) { |
2721 | // If we're not in a preprocessor directive, just return the // comment |
2722 | // directly. |
2723 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::comment); |
2724 | |
2725 | if (!ParsingPreprocessorDirective || LexingRawMode) |
2726 | return true; |
2727 | |
2728 | // If this Line-style comment is in a macro definition, transmogrify it into |
2729 | // a C-style block comment. |
2730 | bool Invalid = false; |
2731 | std::string Spelling = PP->getSpelling(Tok: Result, Invalid: &Invalid); |
2732 | if (Invalid) |
2733 | return true; |
2734 | |
2735 | assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?" ); |
2736 | Spelling[1] = '*'; // Change prefix to "/*". |
2737 | Spelling += "*/" ; // add suffix. |
2738 | |
2739 | Result.setKind(tok::comment); |
2740 | PP->CreateString(Str: Spelling, Tok&: Result, |
2741 | ExpansionLocStart: Result.getLocation(), ExpansionLocEnd: Result.getLocation()); |
2742 | return true; |
2743 | } |
2744 | |
2745 | /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline |
2746 | /// character (either \\n or \\r) is part of an escaped newline sequence. Issue |
2747 | /// a diagnostic if so. We know that the newline is inside of a block comment. |
2748 | static bool (const char *CurPtr, Lexer *L, |
2749 | bool Trigraphs) { |
2750 | assert(CurPtr[0] == '\n' || CurPtr[0] == '\r'); |
2751 | |
2752 | // Position of the first trigraph in the ending sequence. |
2753 | const char *TrigraphPos = nullptr; |
2754 | // Position of the first whitespace after a '\' in the ending sequence. |
2755 | const char *SpacePos = nullptr; |
2756 | |
2757 | while (true) { |
2758 | // Back up off the newline. |
2759 | --CurPtr; |
2760 | |
2761 | // If this is a two-character newline sequence, skip the other character. |
2762 | if (CurPtr[0] == '\n' || CurPtr[0] == '\r') { |
2763 | // \n\n or \r\r -> not escaped newline. |
2764 | if (CurPtr[0] == CurPtr[1]) |
2765 | return false; |
2766 | // \n\r or \r\n -> skip the newline. |
2767 | --CurPtr; |
2768 | } |
2769 | |
2770 | // If we have horizontal whitespace, skip over it. We allow whitespace |
2771 | // between the slash and newline. |
2772 | while (isHorizontalWhitespace(c: *CurPtr) || *CurPtr == 0) { |
2773 | SpacePos = CurPtr; |
2774 | --CurPtr; |
2775 | } |
2776 | |
2777 | // If we have a slash, this is an escaped newline. |
2778 | if (*CurPtr == '\\') { |
2779 | --CurPtr; |
2780 | } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') { |
2781 | // This is a trigraph encoding of a slash. |
2782 | TrigraphPos = CurPtr - 2; |
2783 | CurPtr -= 3; |
2784 | } else { |
2785 | return false; |
2786 | } |
2787 | |
2788 | // If the character preceding the escaped newline is a '*', then after line |
2789 | // splicing we have a '*/' ending the comment. |
2790 | if (*CurPtr == '*') |
2791 | break; |
2792 | |
2793 | if (*CurPtr != '\n' && *CurPtr != '\r') |
2794 | return false; |
2795 | } |
2796 | |
2797 | if (TrigraphPos) { |
2798 | // If no trigraphs are enabled, warn that we ignored this trigraph and |
2799 | // ignore this * character. |
2800 | if (!Trigraphs) { |
2801 | if (!L->isLexingRawMode()) |
2802 | L->Diag(Loc: TrigraphPos, diag::DiagID: trigraph_ignored_block_comment); |
2803 | return false; |
2804 | } |
2805 | if (!L->isLexingRawMode()) |
2806 | L->Diag(Loc: TrigraphPos, diag::DiagID: trigraph_ends_block_comment); |
2807 | } |
2808 | |
2809 | // Warn about having an escaped newline between the */ characters. |
2810 | if (!L->isLexingRawMode()) |
2811 | L->Diag(Loc: CurPtr + 1, diag::DiagID: escaped_newline_block_comment_end); |
2812 | |
2813 | // If there was space between the backslash and newline, warn about it. |
2814 | if (SpacePos && !L->isLexingRawMode()) |
2815 | L->Diag(Loc: SpacePos, diag::DiagID: backslash_newline_space); |
2816 | |
2817 | return true; |
2818 | } |
2819 | |
2820 | #ifdef __SSE2__ |
2821 | #include <emmintrin.h> |
2822 | #elif __ALTIVEC__ |
2823 | #include <altivec.h> |
2824 | #undef bool |
2825 | #endif |
2826 | |
2827 | /// We have just read from input the / and * characters that started a comment. |
2828 | /// Read until we find the * and / characters that terminate the comment. |
2829 | /// Note that we don't bother decoding trigraphs or escaped newlines in block |
2830 | /// comments, because they cannot cause the comment to end. The only thing |
2831 | /// that can happen is the comment could end with an escaped newline between |
2832 | /// the terminating * and /. |
2833 | /// |
2834 | /// If we're in KeepCommentMode or any CommentHandler has inserted |
2835 | /// some tokens, this will store the first token and return true. |
2836 | bool Lexer::(Token &Result, const char *CurPtr, |
2837 | bool &TokAtPhysicalStartOfLine) { |
2838 | // Scan one character past where we should, looking for a '/' character. Once |
2839 | // we find it, check to see if it was preceded by a *. This common |
2840 | // optimization helps people who like to put a lot of * characters in their |
2841 | // comments. |
2842 | |
2843 | // The first character we get with newlines and trigraphs skipped to handle |
2844 | // the degenerate /*/ case below correctly if the * has an escaped newline |
2845 | // after it. |
2846 | unsigned CharSize; |
2847 | unsigned char C = getCharAndSize(Ptr: CurPtr, Size&: CharSize); |
2848 | CurPtr += CharSize; |
2849 | if (C == 0 && CurPtr == BufferEnd+1) { |
2850 | if (!isLexingRawMode()) |
2851 | Diag(Loc: BufferPtr, diag::DiagID: err_unterminated_block_comment); |
2852 | --CurPtr; |
2853 | |
2854 | // KeepWhitespaceMode should return this broken comment as a token. Since |
2855 | // it isn't a well formed comment, just return it as an 'unknown' token. |
2856 | if (isKeepWhitespaceMode()) { |
2857 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
2858 | return true; |
2859 | } |
2860 | |
2861 | BufferPtr = CurPtr; |
2862 | return false; |
2863 | } |
2864 | |
2865 | // Check to see if the first character after the '/*' is another /. If so, |
2866 | // then this slash does not end the block comment, it is part of it. |
2867 | if (C == '/') |
2868 | C = *CurPtr++; |
2869 | |
2870 | // C++23 [lex.phases] p1 |
2871 | // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a |
2872 | // diagnostic only once per entire ill-formed subsequence to avoid |
2873 | // emiting to many diagnostics (see http://unicode.org/review/pr-121.html). |
2874 | bool UnicodeDecodingAlreadyDiagnosed = false; |
2875 | |
2876 | while (true) { |
2877 | // Skip over all non-interesting characters until we find end of buffer or a |
2878 | // (probably ending) '/' character. |
2879 | if (CurPtr + 24 < BufferEnd && |
2880 | // If there is a code-completion point avoid the fast scan because it |
2881 | // doesn't check for '\0'. |
2882 | !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) { |
2883 | // While not aligned to a 16-byte boundary. |
2884 | while (C != '/' && (intptr_t)CurPtr % 16 != 0) { |
2885 | if (!isASCII(c: C)) |
2886 | goto MultiByteUTF8; |
2887 | C = *CurPtr++; |
2888 | } |
2889 | if (C == '/') goto FoundSlash; |
2890 | |
2891 | #ifdef __SSE2__ |
2892 | __m128i Slashes = _mm_set1_epi8(b: '/'); |
2893 | while (CurPtr + 16 < BufferEnd) { |
2894 | int Mask = _mm_movemask_epi8(a: *(const __m128i *)CurPtr); |
2895 | if (LLVM_UNLIKELY(Mask != 0)) { |
2896 | goto MultiByteUTF8; |
2897 | } |
2898 | // look for slashes |
2899 | int cmp = _mm_movemask_epi8(a: _mm_cmpeq_epi8(a: *(const __m128i*)CurPtr, |
2900 | b: Slashes)); |
2901 | if (cmp != 0) { |
2902 | // Adjust the pointer to point directly after the first slash. It's |
2903 | // not necessary to set C here, it will be overwritten at the end of |
2904 | // the outer loop. |
2905 | CurPtr += llvm::countr_zero<unsigned>(Val: cmp) + 1; |
2906 | goto FoundSlash; |
2907 | } |
2908 | CurPtr += 16; |
2909 | } |
2910 | #elif __ALTIVEC__ |
2911 | __vector unsigned char LongUTF = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, |
2912 | 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, |
2913 | 0x80, 0x80, 0x80, 0x80}; |
2914 | __vector unsigned char Slashes = { |
2915 | '/', '/', '/', '/', '/', '/', '/', '/', |
2916 | '/', '/', '/', '/', '/', '/', '/', '/' |
2917 | }; |
2918 | while (CurPtr + 16 < BufferEnd) { |
2919 | if (LLVM_UNLIKELY( |
2920 | vec_any_ge(*(const __vector unsigned char *)CurPtr, LongUTF))) |
2921 | goto MultiByteUTF8; |
2922 | if (vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) { |
2923 | break; |
2924 | } |
2925 | CurPtr += 16; |
2926 | } |
2927 | |
2928 | #else |
2929 | while (CurPtr + 16 < BufferEnd) { |
2930 | bool HasNonASCII = false; |
2931 | for (unsigned I = 0; I < 16; ++I) |
2932 | HasNonASCII |= !isASCII(CurPtr[I]); |
2933 | |
2934 | if (LLVM_UNLIKELY(HasNonASCII)) |
2935 | goto MultiByteUTF8; |
2936 | |
2937 | bool HasSlash = false; |
2938 | for (unsigned I = 0; I < 16; ++I) |
2939 | HasSlash |= CurPtr[I] == '/'; |
2940 | if (HasSlash) |
2941 | break; |
2942 | CurPtr += 16; |
2943 | } |
2944 | #endif |
2945 | |
2946 | // It has to be one of the bytes scanned, increment to it and read one. |
2947 | C = *CurPtr++; |
2948 | } |
2949 | |
2950 | // Loop to scan the remainder, warning on invalid UTF-8 |
2951 | // if the corresponding warning is enabled, emitting a diagnostic only once |
2952 | // per sequence that cannot be decoded. |
2953 | while (C != '/' && C != '\0') { |
2954 | if (isASCII(c: C)) { |
2955 | UnicodeDecodingAlreadyDiagnosed = false; |
2956 | C = *CurPtr++; |
2957 | continue; |
2958 | } |
2959 | MultiByteUTF8: |
2960 | // CurPtr is 1 code unit past C, so to decode |
2961 | // the codepoint, we need to read from the previous position. |
2962 | unsigned Length = llvm::getUTF8SequenceSize( |
2963 | source: (const llvm::UTF8 *)CurPtr - 1, sourceEnd: (const llvm::UTF8 *)BufferEnd); |
2964 | if (Length == 0) { |
2965 | if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode()) |
2966 | Diag(Loc: CurPtr - 1, diag::DiagID: warn_invalid_utf8_in_comment); |
2967 | UnicodeDecodingAlreadyDiagnosed = true; |
2968 | } else { |
2969 | UnicodeDecodingAlreadyDiagnosed = false; |
2970 | CurPtr += Length - 1; |
2971 | } |
2972 | C = *CurPtr++; |
2973 | } |
2974 | |
2975 | if (C == '/') { |
2976 | FoundSlash: |
2977 | if (CurPtr[-2] == '*') // We found the final */. We're done! |
2978 | break; |
2979 | |
2980 | if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) { |
2981 | if (isEndOfBlockCommentWithEscapedNewLine(CurPtr: CurPtr - 2, L: this, |
2982 | Trigraphs: LangOpts.Trigraphs)) { |
2983 | // We found the final */, though it had an escaped newline between the |
2984 | // * and /. We're done! |
2985 | break; |
2986 | } |
2987 | } |
2988 | if (CurPtr[0] == '*' && CurPtr[1] != '/') { |
2989 | // If this is a /* inside of the comment, emit a warning. Don't do this |
2990 | // if this is a /*/, which will end the comment. This misses cases with |
2991 | // embedded escaped newlines, but oh well. |
2992 | if (!isLexingRawMode()) |
2993 | Diag(Loc: CurPtr-1, diag::DiagID: warn_nested_block_comment); |
2994 | } |
2995 | } else if (C == 0 && CurPtr == BufferEnd+1) { |
2996 | if (!isLexingRawMode()) |
2997 | Diag(Loc: BufferPtr, diag::DiagID: err_unterminated_block_comment); |
2998 | // Note: the user probably forgot a */. We could continue immediately |
2999 | // after the /*, but this would involve lexing a lot of what really is the |
3000 | // comment, which surely would confuse the parser. |
3001 | --CurPtr; |
3002 | |
3003 | // KeepWhitespaceMode should return this broken comment as a token. Since |
3004 | // it isn't a well formed comment, just return it as an 'unknown' token. |
3005 | if (isKeepWhitespaceMode()) { |
3006 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
3007 | return true; |
3008 | } |
3009 | |
3010 | BufferPtr = CurPtr; |
3011 | return false; |
3012 | } else if (C == '\0' && isCodeCompletionPoint(CurPtr: CurPtr-1)) { |
3013 | PP->CodeCompleteNaturalLanguage(); |
3014 | cutOffLexing(); |
3015 | return false; |
3016 | } |
3017 | |
3018 | C = *CurPtr++; |
3019 | } |
3020 | |
3021 | // Notify comment handlers about the comment unless we're in a #if 0 block. |
3022 | if (PP && !isLexingRawMode() && |
3023 | PP->HandleComment(result&: Result, Comment: SourceRange(getSourceLocation(Loc: BufferPtr), |
3024 | getSourceLocation(Loc: CurPtr)))) { |
3025 | BufferPtr = CurPtr; |
3026 | return true; // A token has to be returned. |
3027 | } |
3028 | |
3029 | // If we are returning comments as tokens, return this comment as a token. |
3030 | if (inKeepCommentMode()) { |
3031 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::comment); |
3032 | return true; |
3033 | } |
3034 | |
3035 | // It is common for the tokens immediately after a /**/ comment to be |
3036 | // whitespace. Instead of going through the big switch, handle it |
3037 | // efficiently now. This is safe even in KeepWhitespaceMode because we would |
3038 | // have already returned above with the comment as a token. |
3039 | if (isHorizontalWhitespace(c: *CurPtr)) { |
3040 | SkipWhitespace(Result, CurPtr: CurPtr+1, TokAtPhysicalStartOfLine); |
3041 | return false; |
3042 | } |
3043 | |
3044 | // Otherwise, just return so that the next character will be lexed as a token. |
3045 | BufferPtr = CurPtr; |
3046 | Result.setFlag(Token::LeadingSpace); |
3047 | return false; |
3048 | } |
3049 | |
3050 | //===----------------------------------------------------------------------===// |
3051 | // Primary Lexing Entry Points |
3052 | //===----------------------------------------------------------------------===// |
3053 | |
3054 | /// ReadToEndOfLine - Read the rest of the current preprocessor line as an |
3055 | /// uninterpreted string. This switches the lexer out of directive mode. |
3056 | void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) { |
3057 | assert(ParsingPreprocessorDirective && ParsingFilename == false && |
3058 | "Must be in a preprocessing directive!" ); |
3059 | Token Tmp; |
3060 | Tmp.startToken(); |
3061 | |
3062 | // CurPtr - Cache BufferPtr in an automatic variable. |
3063 | const char *CurPtr = BufferPtr; |
3064 | while (true) { |
3065 | char Char = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Tmp); |
3066 | switch (Char) { |
3067 | default: |
3068 | if (Result) |
3069 | Result->push_back(Elt: Char); |
3070 | break; |
3071 | case 0: // Null. |
3072 | // Found end of file? |
3073 | if (CurPtr-1 != BufferEnd) { |
3074 | if (isCodeCompletionPoint(CurPtr: CurPtr-1)) { |
3075 | PP->CodeCompleteNaturalLanguage(); |
3076 | cutOffLexing(); |
3077 | return; |
3078 | } |
3079 | |
3080 | // Nope, normal character, continue. |
3081 | if (Result) |
3082 | Result->push_back(Elt: Char); |
3083 | break; |
3084 | } |
3085 | // FALL THROUGH. |
3086 | [[fallthrough]]; |
3087 | case '\r': |
3088 | case '\n': |
3089 | // Okay, we found the end of the line. First, back up past the \0, \r, \n. |
3090 | assert(CurPtr[-1] == Char && "Trigraphs for newline?" ); |
3091 | BufferPtr = CurPtr-1; |
3092 | |
3093 | // Next, lex the character, which should handle the EOD transition. |
3094 | Lex(Result&: Tmp); |
3095 | if (Tmp.is(K: tok::code_completion)) { |
3096 | if (PP) |
3097 | PP->CodeCompleteNaturalLanguage(); |
3098 | Lex(Result&: Tmp); |
3099 | } |
3100 | assert(Tmp.is(tok::eod) && "Unexpected token!" ); |
3101 | |
3102 | // Finally, we're done; |
3103 | return; |
3104 | } |
3105 | } |
3106 | } |
3107 | |
3108 | /// LexEndOfFile - CurPtr points to the end of this file. Handle this |
3109 | /// condition, reporting diagnostics and handling other edge cases as required. |
3110 | /// This returns true if Result contains a token, false if PP.Lex should be |
3111 | /// called again. |
3112 | bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) { |
3113 | // If we hit the end of the file while parsing a preprocessor directive, |
3114 | // end the preprocessor directive first. The next token returned will |
3115 | // then be the end of file. |
3116 | if (ParsingPreprocessorDirective) { |
3117 | // Done parsing the "line". |
3118 | ParsingPreprocessorDirective = false; |
3119 | // Update the location of token as well as BufferPtr. |
3120 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::eod); |
3121 | |
3122 | // Restore comment saving mode, in case it was disabled for directive. |
3123 | if (PP) |
3124 | resetExtendedTokenMode(); |
3125 | return true; // Have a token. |
3126 | } |
3127 | |
3128 | // If we are in raw mode, return this event as an EOF token. Let the caller |
3129 | // that put us in raw mode handle the event. |
3130 | if (isLexingRawMode()) { |
3131 | Result.startToken(); |
3132 | BufferPtr = BufferEnd; |
3133 | FormTokenWithChars(Result, TokEnd: BufferEnd, Kind: tok::eof); |
3134 | return true; |
3135 | } |
3136 | |
3137 | if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) { |
3138 | PP->setRecordedPreambleConditionalStack(ConditionalStack); |
3139 | // If the preamble cuts off the end of a header guard, consider it guarded. |
3140 | // The guard is valid for the preamble content itself, and for tools the |
3141 | // most useful answer is "yes, this file has a header guard". |
3142 | if (!ConditionalStack.empty()) |
3143 | MIOpt.ExitTopLevelConditional(); |
3144 | ConditionalStack.clear(); |
3145 | } |
3146 | |
3147 | // Issue diagnostics for unterminated #if and missing newline. |
3148 | |
3149 | // If we are in a #if directive, emit an error. |
3150 | while (!ConditionalStack.empty()) { |
3151 | if (PP->getCodeCompletionFileLoc() != FileLoc) |
3152 | PP->Diag(ConditionalStack.back().IfLoc, |
3153 | diag::err_pp_unterminated_conditional); |
3154 | ConditionalStack.pop_back(); |
3155 | } |
3156 | |
3157 | // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue |
3158 | // a pedwarn. |
3159 | if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) { |
3160 | DiagnosticsEngine &Diags = PP->getDiagnostics(); |
3161 | SourceLocation EndLoc = getSourceLocation(Loc: BufferEnd); |
3162 | unsigned DiagID; |
3163 | |
3164 | if (LangOpts.CPlusPlus11) { |
3165 | // C++11 [lex.phases] 2.2 p2 |
3166 | // Prefer the C++98 pedantic compatibility warning over the generic, |
3167 | // non-extension, user-requested "missing newline at EOF" warning. |
3168 | if (!Diags.isIgnored(diag::DiagID: warn_cxx98_compat_no_newline_eof, Loc: EndLoc)) { |
3169 | DiagID = diag::warn_cxx98_compat_no_newline_eof; |
3170 | } else { |
3171 | DiagID = diag::warn_no_newline_eof; |
3172 | } |
3173 | } else { |
3174 | DiagID = diag::ext_no_newline_eof; |
3175 | } |
3176 | |
3177 | Diag(Loc: BufferEnd, DiagID) |
3178 | << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: "\n" ); |
3179 | } |
3180 | |
3181 | BufferPtr = CurPtr; |
3182 | |
3183 | // Finally, let the preprocessor handle this. |
3184 | return PP->HandleEndOfFile(Result, isEndOfMacro: isPragmaLexer()); |
3185 | } |
3186 | |
3187 | /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from |
3188 | /// the specified lexer will return a tok::l_paren token, 0 if it is something |
3189 | /// else and 2 if there are no more tokens in the buffer controlled by the |
3190 | /// lexer. |
3191 | unsigned Lexer::isNextPPTokenLParen() { |
3192 | assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?" ); |
3193 | |
3194 | if (isDependencyDirectivesLexer()) { |
3195 | if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) |
3196 | return 2; |
3197 | return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is( |
3198 | K: tok::l_paren); |
3199 | } |
3200 | |
3201 | // Switch to 'skipping' mode. This will ensure that we can lex a token |
3202 | // without emitting diagnostics, disables macro expansion, and will cause EOF |
3203 | // to return an EOF token instead of popping the include stack. |
3204 | LexingRawMode = true; |
3205 | |
3206 | // Save state that can be changed while lexing so that we can restore it. |
3207 | const char *TmpBufferPtr = BufferPtr; |
3208 | bool inPPDirectiveMode = ParsingPreprocessorDirective; |
3209 | bool atStartOfLine = IsAtStartOfLine; |
3210 | bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; |
3211 | bool leadingSpace = HasLeadingSpace; |
3212 | |
3213 | Token Tok; |
3214 | Lex(Result&: Tok); |
3215 | |
3216 | // Restore state that may have changed. |
3217 | BufferPtr = TmpBufferPtr; |
3218 | ParsingPreprocessorDirective = inPPDirectiveMode; |
3219 | HasLeadingSpace = leadingSpace; |
3220 | IsAtStartOfLine = atStartOfLine; |
3221 | IsAtPhysicalStartOfLine = atPhysicalStartOfLine; |
3222 | |
3223 | // Restore the lexer back to non-skipping mode. |
3224 | LexingRawMode = false; |
3225 | |
3226 | if (Tok.is(K: tok::eof)) |
3227 | return 2; |
3228 | return Tok.is(K: tok::l_paren); |
3229 | } |
3230 | |
3231 | /// Find the end of a version control conflict marker. |
3232 | static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd, |
3233 | ConflictMarkerKind CMK) { |
3234 | const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>" ; |
3235 | size_t TermLen = CMK == CMK_Perforce ? 5 : 7; |
3236 | auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(Start: TermLen); |
3237 | size_t Pos = RestOfBuffer.find(Str: Terminator); |
3238 | while (Pos != StringRef::npos) { |
3239 | // Must occur at start of line. |
3240 | if (Pos == 0 || |
3241 | (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) { |
3242 | RestOfBuffer = RestOfBuffer.substr(Start: Pos+TermLen); |
3243 | Pos = RestOfBuffer.find(Str: Terminator); |
3244 | continue; |
3245 | } |
3246 | return RestOfBuffer.data()+Pos; |
3247 | } |
3248 | return nullptr; |
3249 | } |
3250 | |
3251 | /// IsStartOfConflictMarker - If the specified pointer is the start of a version |
3252 | /// control conflict marker like '<<<<<<<', recognize it as such, emit an error |
3253 | /// and recover nicely. This returns true if it is a conflict marker and false |
3254 | /// if not. |
3255 | bool Lexer::IsStartOfConflictMarker(const char *CurPtr) { |
3256 | // Only a conflict marker if it starts at the beginning of a line. |
3257 | if (CurPtr != BufferStart && |
3258 | CurPtr[-1] != '\n' && CurPtr[-1] != '\r') |
3259 | return false; |
3260 | |
3261 | // Check to see if we have <<<<<<< or >>>>. |
3262 | if (!StringRef(CurPtr, BufferEnd - CurPtr).starts_with(Prefix: "<<<<<<<" ) && |
3263 | !StringRef(CurPtr, BufferEnd - CurPtr).starts_with(Prefix: ">>>> " )) |
3264 | return false; |
3265 | |
3266 | // If we have a situation where we don't care about conflict markers, ignore |
3267 | // it. |
3268 | if (CurrentConflictMarkerState || isLexingRawMode()) |
3269 | return false; |
3270 | |
3271 | ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce; |
3272 | |
3273 | // Check to see if there is an ending marker somewhere in the buffer at the |
3274 | // start of a line to terminate this conflict marker. |
3275 | if (FindConflictEnd(CurPtr, BufferEnd, CMK: Kind)) { |
3276 | // We found a match. We are really in a conflict marker. |
3277 | // Diagnose this, and ignore to the end of line. |
3278 | Diag(CurPtr, diag::err_conflict_marker); |
3279 | CurrentConflictMarkerState = Kind; |
3280 | |
3281 | // Skip ahead to the end of line. We know this exists because the |
3282 | // end-of-conflict marker starts with \r or \n. |
3283 | while (*CurPtr != '\r' && *CurPtr != '\n') { |
3284 | assert(CurPtr != BufferEnd && "Didn't find end of line" ); |
3285 | ++CurPtr; |
3286 | } |
3287 | BufferPtr = CurPtr; |
3288 | return true; |
3289 | } |
3290 | |
3291 | // No end of conflict marker found. |
3292 | return false; |
3293 | } |
3294 | |
3295 | /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if |
3296 | /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it |
3297 | /// is the end of a conflict marker. Handle it by ignoring up until the end of |
3298 | /// the line. This returns true if it is a conflict marker and false if not. |
3299 | bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) { |
3300 | // Only a conflict marker if it starts at the beginning of a line. |
3301 | if (CurPtr != BufferStart && |
3302 | CurPtr[-1] != '\n' && CurPtr[-1] != '\r') |
3303 | return false; |
3304 | |
3305 | // If we have a situation where we don't care about conflict markers, ignore |
3306 | // it. |
3307 | if (!CurrentConflictMarkerState || isLexingRawMode()) |
3308 | return false; |
3309 | |
3310 | // Check to see if we have the marker (4 characters in a row). |
3311 | for (unsigned i = 1; i != 4; ++i) |
3312 | if (CurPtr[i] != CurPtr[0]) |
3313 | return false; |
3314 | |
3315 | // If we do have it, search for the end of the conflict marker. This could |
3316 | // fail if it got skipped with a '#if 0' or something. Note that CurPtr might |
3317 | // be the end of conflict marker. |
3318 | if (const char *End = FindConflictEnd(CurPtr, BufferEnd, |
3319 | CMK: CurrentConflictMarkerState)) { |
3320 | CurPtr = End; |
3321 | |
3322 | // Skip ahead to the end of line. |
3323 | while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n') |
3324 | ++CurPtr; |
3325 | |
3326 | BufferPtr = CurPtr; |
3327 | |
3328 | // No longer in the conflict marker. |
3329 | CurrentConflictMarkerState = CMK_None; |
3330 | return true; |
3331 | } |
3332 | |
3333 | return false; |
3334 | } |
3335 | |
3336 | static const char *findPlaceholderEnd(const char *CurPtr, |
3337 | const char *BufferEnd) { |
3338 | if (CurPtr == BufferEnd) |
3339 | return nullptr; |
3340 | BufferEnd -= 1; // Scan until the second last character. |
3341 | for (; CurPtr != BufferEnd; ++CurPtr) { |
3342 | if (CurPtr[0] == '#' && CurPtr[1] == '>') |
3343 | return CurPtr + 2; |
3344 | } |
3345 | return nullptr; |
3346 | } |
3347 | |
3348 | bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) { |
3349 | assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!" ); |
3350 | if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode) |
3351 | return false; |
3352 | const char *End = findPlaceholderEnd(CurPtr: CurPtr + 1, BufferEnd); |
3353 | if (!End) |
3354 | return false; |
3355 | const char *Start = CurPtr - 1; |
3356 | if (!LangOpts.AllowEditorPlaceholders) |
3357 | Diag(Start, diag::err_placeholder_in_source); |
3358 | Result.startToken(); |
3359 | FormTokenWithChars(Result, TokEnd: End, Kind: tok::raw_identifier); |
3360 | Result.setRawIdentifierData(Start); |
3361 | PP->LookUpIdentifierInfo(Identifier&: Result); |
3362 | Result.setFlag(Token::IsEditorPlaceholder); |
3363 | BufferPtr = End; |
3364 | return true; |
3365 | } |
3366 | |
3367 | bool Lexer::isCodeCompletionPoint(const char *CurPtr) const { |
3368 | if (PP && PP->isCodeCompletionEnabled()) { |
3369 | SourceLocation Loc = FileLoc.getLocWithOffset(Offset: CurPtr-BufferStart); |
3370 | return Loc == PP->getCodeCompletionLoc(); |
3371 | } |
3372 | |
3373 | return false; |
3374 | } |
3375 | |
3376 | std::optional<uint32_t> Lexer::tryReadNumericUCN(const char *&StartPtr, |
3377 | const char *SlashLoc, |
3378 | Token *Result) { |
3379 | unsigned CharSize; |
3380 | char Kind = getCharAndSize(Ptr: StartPtr, Size&: CharSize); |
3381 | assert((Kind == 'u' || Kind == 'U') && "expected a UCN" ); |
3382 | |
3383 | unsigned NumHexDigits; |
3384 | if (Kind == 'u') |
3385 | NumHexDigits = 4; |
3386 | else if (Kind == 'U') |
3387 | NumHexDigits = 8; |
3388 | |
3389 | bool Delimited = false; |
3390 | bool FoundEndDelimiter = false; |
3391 | unsigned Count = 0; |
3392 | bool Diagnose = Result && !isLexingRawMode(); |
3393 | |
3394 | if (!LangOpts.CPlusPlus && !LangOpts.C99) { |
3395 | if (Diagnose) |
3396 | Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89); |
3397 | return std::nullopt; |
3398 | } |
3399 | |
3400 | const char *CurPtr = StartPtr + CharSize; |
3401 | const char *KindLoc = &CurPtr[-1]; |
3402 | |
3403 | uint32_t CodePoint = 0; |
3404 | while (Count != NumHexDigits || Delimited) { |
3405 | char C = getCharAndSize(Ptr: CurPtr, Size&: CharSize); |
3406 | if (!Delimited && Count == 0 && C == '{') { |
3407 | Delimited = true; |
3408 | CurPtr += CharSize; |
3409 | continue; |
3410 | } |
3411 | |
3412 | if (Delimited && C == '}') { |
3413 | CurPtr += CharSize; |
3414 | FoundEndDelimiter = true; |
3415 | break; |
3416 | } |
3417 | |
3418 | unsigned Value = llvm::hexDigitValue(C); |
3419 | if (Value == -1U) { |
3420 | if (!Delimited) |
3421 | break; |
3422 | if (Diagnose) |
3423 | Diag(SlashLoc, diag::warn_delimited_ucn_incomplete) |
3424 | << StringRef(KindLoc, 1); |
3425 | return std::nullopt; |
3426 | } |
3427 | |
3428 | if (CodePoint & 0xF000'0000) { |
3429 | if (Diagnose) |
3430 | Diag(KindLoc, diag::err_escape_too_large) << 0; |
3431 | return std::nullopt; |
3432 | } |
3433 | |
3434 | CodePoint <<= 4; |
3435 | CodePoint |= Value; |
3436 | CurPtr += CharSize; |
3437 | Count++; |
3438 | } |
3439 | |
3440 | if (Count == 0) { |
3441 | if (Diagnose) |
3442 | Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty |
3443 | : diag::warn_ucn_escape_no_digits) |
3444 | << StringRef(KindLoc, 1); |
3445 | return std::nullopt; |
3446 | } |
3447 | |
3448 | if (Delimited && Kind == 'U') { |
3449 | if (Diagnose) |
3450 | Diag(SlashLoc, diag::err_hex_escape_no_digits) << StringRef(KindLoc, 1); |
3451 | return std::nullopt; |
3452 | } |
3453 | |
3454 | if (!Delimited && Count != NumHexDigits) { |
3455 | if (Diagnose) { |
3456 | Diag(SlashLoc, diag::warn_ucn_escape_incomplete); |
3457 | // If the user wrote \U1234, suggest a fixit to \u. |
3458 | if (Count == 4 && NumHexDigits == 8) { |
3459 | CharSourceRange URange = makeCharRange(L&: *this, Begin: KindLoc, End: KindLoc + 1); |
3460 | Diag(KindLoc, diag::note_ucn_four_not_eight) |
3461 | << FixItHint::CreateReplacement(URange, "u" ); |
3462 | } |
3463 | } |
3464 | return std::nullopt; |
3465 | } |
3466 | |
3467 | if (Delimited && PP) { |
3468 | Diag(SlashLoc, PP->getLangOpts().CPlusPlus23 |
3469 | ? diag::warn_cxx23_delimited_escape_sequence |
3470 | : diag::ext_delimited_escape_sequence) |
3471 | << /*delimited*/ 0 << (PP->getLangOpts().CPlusPlus ? 1 : 0); |
3472 | } |
3473 | |
3474 | if (Result) { |
3475 | Result->setFlag(Token::HasUCN); |
3476 | // If the UCN contains either a trigraph or a line splicing, |
3477 | // we need to call getAndAdvanceChar again to set the appropriate flags |
3478 | // on Result. |
3479 | if (CurPtr - StartPtr == (ptrdiff_t)(Count + 1 + (Delimited ? 2 : 0))) |
3480 | StartPtr = CurPtr; |
3481 | else |
3482 | while (StartPtr != CurPtr) |
3483 | (void)getAndAdvanceChar(Ptr&: StartPtr, Tok&: *Result); |
3484 | } else { |
3485 | StartPtr = CurPtr; |
3486 | } |
3487 | return CodePoint; |
3488 | } |
3489 | |
3490 | std::optional<uint32_t> Lexer::tryReadNamedUCN(const char *&StartPtr, |
3491 | const char *SlashLoc, |
3492 | Token *Result) { |
3493 | unsigned CharSize; |
3494 | bool Diagnose = Result && !isLexingRawMode(); |
3495 | |
3496 | char C = getCharAndSize(Ptr: StartPtr, Size&: CharSize); |
3497 | assert(C == 'N' && "expected \\N{...}" ); |
3498 | |
3499 | const char *CurPtr = StartPtr + CharSize; |
3500 | const char *KindLoc = &CurPtr[-1]; |
3501 | |
3502 | C = getCharAndSize(Ptr: CurPtr, Size&: CharSize); |
3503 | if (C != '{') { |
3504 | if (Diagnose) |
3505 | Diag(SlashLoc, diag::warn_ucn_escape_incomplete); |
3506 | return std::nullopt; |
3507 | } |
3508 | CurPtr += CharSize; |
3509 | const char *StartName = CurPtr; |
3510 | bool FoundEndDelimiter = false; |
3511 | llvm::SmallVector<char, 30> Buffer; |
3512 | while (C) { |
3513 | C = getCharAndSize(Ptr: CurPtr, Size&: CharSize); |
3514 | CurPtr += CharSize; |
3515 | if (C == '}') { |
3516 | FoundEndDelimiter = true; |
3517 | break; |
3518 | } |
3519 | |
3520 | if (isVerticalWhitespace(c: C)) |
3521 | break; |
3522 | Buffer.push_back(Elt: C); |
3523 | } |
3524 | |
3525 | if (!FoundEndDelimiter || Buffer.empty()) { |
3526 | if (Diagnose) |
3527 | Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty |
3528 | : diag::warn_delimited_ucn_incomplete) |
3529 | << StringRef(KindLoc, 1); |
3530 | return std::nullopt; |
3531 | } |
3532 | |
3533 | StringRef Name(Buffer.data(), Buffer.size()); |
3534 | std::optional<char32_t> Match = |
3535 | llvm::sys::unicode::nameToCodepointStrict(Name); |
3536 | std::optional<llvm::sys::unicode::LooseMatchingResult> LooseMatch; |
3537 | if (!Match) { |
3538 | LooseMatch = llvm::sys::unicode::nameToCodepointLooseMatching(Name); |
3539 | if (Diagnose) { |
3540 | Diag(StartName, diag::err_invalid_ucn_name) |
3541 | << StringRef(Buffer.data(), Buffer.size()) |
3542 | << makeCharRange(*this, StartName, CurPtr - CharSize); |
3543 | if (LooseMatch) { |
3544 | Diag(StartName, diag::note_invalid_ucn_name_loose_matching) |
3545 | << FixItHint::CreateReplacement( |
3546 | makeCharRange(*this, StartName, CurPtr - CharSize), |
3547 | LooseMatch->Name); |
3548 | } |
3549 | } |
3550 | // We do not offer misspelled character names suggestions here |
3551 | // as the set of what would be a valid suggestion depends on context, |
3552 | // and we should not make invalid suggestions. |
3553 | } |
3554 | |
3555 | if (Diagnose && Match) |
3556 | Diag(SlashLoc, PP->getLangOpts().CPlusPlus23 |
3557 | ? diag::warn_cxx23_delimited_escape_sequence |
3558 | : diag::ext_delimited_escape_sequence) |
3559 | << /*named*/ 1 << (PP->getLangOpts().CPlusPlus ? 1 : 0); |
3560 | |
3561 | // If no diagnostic has been emitted yet, likely because we are doing a |
3562 | // tentative lexing, we do not want to recover here to make sure the token |
3563 | // will not be incorrectly considered valid. This function will be called |
3564 | // again and a diagnostic emitted then. |
3565 | if (LooseMatch && Diagnose) |
3566 | Match = LooseMatch->CodePoint; |
3567 | |
3568 | if (Result) { |
3569 | Result->setFlag(Token::HasUCN); |
3570 | // If the UCN contains either a trigraph or a line splicing, |
3571 | // we need to call getAndAdvanceChar again to set the appropriate flags |
3572 | // on Result. |
3573 | if (CurPtr - StartPtr == (ptrdiff_t)(Buffer.size() + 3)) |
3574 | StartPtr = CurPtr; |
3575 | else |
3576 | while (StartPtr != CurPtr) |
3577 | (void)getAndAdvanceChar(Ptr&: StartPtr, Tok&: *Result); |
3578 | } else { |
3579 | StartPtr = CurPtr; |
3580 | } |
3581 | return Match ? std::optional<uint32_t>(*Match) : std::nullopt; |
3582 | } |
3583 | |
3584 | uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc, |
3585 | Token *Result) { |
3586 | |
3587 | unsigned CharSize; |
3588 | std::optional<uint32_t> CodePointOpt; |
3589 | char Kind = getCharAndSize(Ptr: StartPtr, Size&: CharSize); |
3590 | if (Kind == 'u' || Kind == 'U') |
3591 | CodePointOpt = tryReadNumericUCN(StartPtr, SlashLoc, Result); |
3592 | else if (Kind == 'N') |
3593 | CodePointOpt = tryReadNamedUCN(StartPtr, SlashLoc, Result); |
3594 | |
3595 | if (!CodePointOpt) |
3596 | return 0; |
3597 | |
3598 | uint32_t CodePoint = *CodePointOpt; |
3599 | |
3600 | // Don't apply C family restrictions to UCNs in assembly mode |
3601 | if (LangOpts.AsmPreprocessor) |
3602 | return CodePoint; |
3603 | |
3604 | // C23 6.4.3p2: A universal character name shall not designate a code point |
3605 | // where the hexadecimal value is: |
3606 | // - in the range D800 through DFFF inclusive; or |
3607 | // - greater than 10FFFF. |
3608 | // A universal-character-name outside the c-char-sequence of a character |
3609 | // constant, or the s-char-sequence of a string-literal shall not designate |
3610 | // a control character or a character in the basic character set. |
3611 | |
3612 | // C++11 [lex.charset]p2: If the hexadecimal value for a |
3613 | // universal-character-name corresponds to a surrogate code point (in the |
3614 | // range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally, |
3615 | // if the hexadecimal value for a universal-character-name outside the |
3616 | // c-char-sequence, s-char-sequence, or r-char-sequence of a character or |
3617 | // string literal corresponds to a control character (in either of the |
3618 | // ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the |
3619 | // basic source character set, the program is ill-formed. |
3620 | if (CodePoint < 0xA0) { |
3621 | // We don't use isLexingRawMode() here because we need to warn about bad |
3622 | // UCNs even when skipping preprocessing tokens in a #if block. |
3623 | if (Result && PP) { |
3624 | if (CodePoint < 0x20 || CodePoint >= 0x7F) |
3625 | Diag(BufferPtr, diag::err_ucn_control_character); |
3626 | else { |
3627 | char C = static_cast<char>(CodePoint); |
3628 | Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1); |
3629 | } |
3630 | } |
3631 | |
3632 | return 0; |
3633 | } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) { |
3634 | // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't. |
3635 | // We don't use isLexingRawMode() here because we need to diagnose bad |
3636 | // UCNs even when skipping preprocessing tokens in a #if block. |
3637 | if (Result && PP) { |
3638 | if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11) |
3639 | Diag(BufferPtr, diag::warn_ucn_escape_surrogate); |
3640 | else |
3641 | Diag(BufferPtr, diag::err_ucn_escape_invalid); |
3642 | } |
3643 | return 0; |
3644 | } |
3645 | |
3646 | return CodePoint; |
3647 | } |
3648 | |
3649 | bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C, |
3650 | const char *CurPtr) { |
3651 | if (!isLexingRawMode() && !PP->isPreprocessedOutput() && |
3652 | isUnicodeWhitespace(Codepoint: C)) { |
3653 | Diag(BufferPtr, diag::ext_unicode_whitespace) |
3654 | << makeCharRange(*this, BufferPtr, CurPtr); |
3655 | |
3656 | Result.setFlag(Token::LeadingSpace); |
3657 | return true; |
3658 | } |
3659 | return false; |
3660 | } |
3661 | |
3662 | void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) { |
3663 | IsAtStartOfLine = Result.isAtStartOfLine(); |
3664 | HasLeadingSpace = Result.hasLeadingSpace(); |
3665 | HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro(); |
3666 | // Note that this doesn't affect IsAtPhysicalStartOfLine. |
3667 | } |
3668 | |
3669 | bool Lexer::Lex(Token &Result) { |
3670 | assert(!isDependencyDirectivesLexer()); |
3671 | |
3672 | // Start a new token. |
3673 | Result.startToken(); |
3674 | |
3675 | // Set up misc whitespace flags for LexTokenInternal. |
3676 | if (IsAtStartOfLine) { |
3677 | Result.setFlag(Token::StartOfLine); |
3678 | IsAtStartOfLine = false; |
3679 | } |
3680 | |
3681 | if (HasLeadingSpace) { |
3682 | Result.setFlag(Token::LeadingSpace); |
3683 | HasLeadingSpace = false; |
3684 | } |
3685 | |
3686 | if (HasLeadingEmptyMacro) { |
3687 | Result.setFlag(Token::LeadingEmptyMacro); |
3688 | HasLeadingEmptyMacro = false; |
3689 | } |
3690 | |
3691 | bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; |
3692 | IsAtPhysicalStartOfLine = false; |
3693 | bool isRawLex = isLexingRawMode(); |
3694 | (void) isRawLex; |
3695 | bool returnedToken = LexTokenInternal(Result, TokAtPhysicalStartOfLine: atPhysicalStartOfLine); |
3696 | // (After the LexTokenInternal call, the lexer might be destroyed.) |
3697 | assert((returnedToken || !isRawLex) && "Raw lex must succeed" ); |
3698 | return returnedToken; |
3699 | } |
3700 | |
3701 | /// LexTokenInternal - This implements a simple C family lexer. It is an |
3702 | /// extremely performance critical piece of code. This assumes that the buffer |
3703 | /// has a null character at the end of the file. This returns a preprocessing |
3704 | /// token, not a normal token, as such, it is an internal interface. It assumes |
3705 | /// that the Flags of result have been cleared before calling this. |
3706 | bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) { |
3707 | LexStart: |
3708 | assert(!Result.needsCleaning() && "Result needs cleaning" ); |
3709 | assert(!Result.hasPtrData() && "Result has not been reset" ); |
3710 | |
3711 | // CurPtr - Cache BufferPtr in an automatic variable. |
3712 | const char *CurPtr = BufferPtr; |
3713 | |
3714 | // Small amounts of horizontal whitespace is very common between tokens. |
3715 | if (isHorizontalWhitespace(c: *CurPtr)) { |
3716 | do { |
3717 | ++CurPtr; |
3718 | } while (isHorizontalWhitespace(c: *CurPtr)); |
3719 | |
3720 | // If we are keeping whitespace and other tokens, just return what we just |
3721 | // skipped. The next lexer invocation will return the token after the |
3722 | // whitespace. |
3723 | if (isKeepWhitespaceMode()) { |
3724 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::unknown); |
3725 | // FIXME: The next token will not have LeadingSpace set. |
3726 | return true; |
3727 | } |
3728 | |
3729 | BufferPtr = CurPtr; |
3730 | Result.setFlag(Token::LeadingSpace); |
3731 | } |
3732 | |
3733 | unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below. |
3734 | |
3735 | // Read a character, advancing over it. |
3736 | char Char = getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
3737 | tok::TokenKind Kind; |
3738 | |
3739 | if (!isVerticalWhitespace(c: Char)) |
3740 | NewLinePtr = nullptr; |
3741 | |
3742 | switch (Char) { |
3743 | case 0: // Null. |
3744 | // Found end of file? |
3745 | if (CurPtr-1 == BufferEnd) |
3746 | return LexEndOfFile(Result, CurPtr: CurPtr-1); |
3747 | |
3748 | // Check if we are performing code completion. |
3749 | if (isCodeCompletionPoint(CurPtr: CurPtr-1)) { |
3750 | // Return the code-completion token. |
3751 | Result.startToken(); |
3752 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::code_completion); |
3753 | return true; |
3754 | } |
3755 | |
3756 | if (!isLexingRawMode()) |
3757 | Diag(CurPtr-1, diag::null_in_file); |
3758 | Result.setFlag(Token::LeadingSpace); |
3759 | if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
3760 | return true; // KeepWhitespaceMode |
3761 | |
3762 | // We know the lexer hasn't changed, so just try again with this lexer. |
3763 | // (We manually eliminate the tail call to avoid recursion.) |
3764 | goto LexNextToken; |
3765 | |
3766 | case 26: // DOS & CP/M EOF: "^Z". |
3767 | // If we're in Microsoft extensions mode, treat this as end of file. |
3768 | if (LangOpts.MicrosoftExt) { |
3769 | if (!isLexingRawMode()) |
3770 | Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft); |
3771 | return LexEndOfFile(Result, CurPtr: CurPtr-1); |
3772 | } |
3773 | |
3774 | // If Microsoft extensions are disabled, this is just random garbage. |
3775 | Kind = tok::unknown; |
3776 | break; |
3777 | |
3778 | case '\r': |
3779 | if (CurPtr[0] == '\n') |
3780 | (void)getAndAdvanceChar(Ptr&: CurPtr, Tok&: Result); |
3781 | [[fallthrough]]; |
3782 | case '\n': |
3783 | // If we are inside a preprocessor directive and we see the end of line, |
3784 | // we know we are done with the directive, so return an EOD token. |
3785 | if (ParsingPreprocessorDirective) { |
3786 | // Done parsing the "line". |
3787 | ParsingPreprocessorDirective = false; |
3788 | |
3789 | // Restore comment saving mode, in case it was disabled for directive. |
3790 | if (PP) |
3791 | resetExtendedTokenMode(); |
3792 | |
3793 | // Since we consumed a newline, we are back at the start of a line. |
3794 | IsAtStartOfLine = true; |
3795 | IsAtPhysicalStartOfLine = true; |
3796 | NewLinePtr = CurPtr - 1; |
3797 | |
3798 | Kind = tok::eod; |
3799 | break; |
3800 | } |
3801 | |
3802 | // No leading whitespace seen so far. |
3803 | Result.clearFlag(Flag: Token::LeadingSpace); |
3804 | |
3805 | if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
3806 | return true; // KeepWhitespaceMode |
3807 | |
3808 | // We only saw whitespace, so just try again with this lexer. |
3809 | // (We manually eliminate the tail call to avoid recursion.) |
3810 | goto LexNextToken; |
3811 | case ' ': |
3812 | case '\t': |
3813 | case '\f': |
3814 | case '\v': |
3815 | SkipHorizontalWhitespace: |
3816 | Result.setFlag(Token::LeadingSpace); |
3817 | if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
3818 | return true; // KeepWhitespaceMode |
3819 | |
3820 | SkipIgnoredUnits: |
3821 | CurPtr = BufferPtr; |
3822 | |
3823 | // If the next token is obviously a // or /* */ comment, skip it efficiently |
3824 | // too (without going through the big switch stmt). |
3825 | if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() && |
3826 | LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) { |
3827 | if (SkipLineComment(Result, CurPtr: CurPtr+2, TokAtPhysicalStartOfLine)) |
3828 | return true; // There is a token to return. |
3829 | goto SkipIgnoredUnits; |
3830 | } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) { |
3831 | if (SkipBlockComment(Result, CurPtr: CurPtr+2, TokAtPhysicalStartOfLine)) |
3832 | return true; // There is a token to return. |
3833 | goto SkipIgnoredUnits; |
3834 | } else if (isHorizontalWhitespace(c: *CurPtr)) { |
3835 | goto SkipHorizontalWhitespace; |
3836 | } |
3837 | // We only saw whitespace, so just try again with this lexer. |
3838 | // (We manually eliminate the tail call to avoid recursion.) |
3839 | goto LexNextToken; |
3840 | |
3841 | // C99 6.4.4.1: Integer Constants. |
3842 | // C99 6.4.4.2: Floating Constants. |
3843 | case '0': case '1': case '2': case '3': case '4': |
3844 | case '5': case '6': case '7': case '8': case '9': |
3845 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3846 | MIOpt.ReadToken(); |
3847 | return LexNumericConstant(Result, CurPtr); |
3848 | |
3849 | // Identifier (e.g., uber), or |
3850 | // UTF-8 (C23/C++17) or UTF-16 (C11/C++11) character literal, or |
3851 | // UTF-8 or UTF-16 string literal (C11/C++11). |
3852 | case 'u': |
3853 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3854 | MIOpt.ReadToken(); |
3855 | |
3856 | if (LangOpts.CPlusPlus11 || LangOpts.C11) { |
3857 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
3858 | |
3859 | // UTF-16 string literal |
3860 | if (Char == '"') |
3861 | return LexStringLiteral(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3862 | Kind: tok::utf16_string_literal); |
3863 | |
3864 | // UTF-16 character constant |
3865 | if (Char == '\'') |
3866 | return LexCharConstant(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3867 | Kind: tok::utf16_char_constant); |
3868 | |
3869 | // UTF-16 raw string literal |
3870 | if (Char == 'R' && LangOpts.CPlusPlus11 && |
3871 | getCharAndSize(Ptr: CurPtr + SizeTmp, Size&: SizeTmp2) == '"') |
3872 | return LexRawStringLiteral(Result, |
3873 | CurPtr: ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3874 | Size: SizeTmp2, Tok&: Result), |
3875 | Kind: tok::utf16_string_literal); |
3876 | |
3877 | if (Char == '8') { |
3878 | char Char2 = getCharAndSize(Ptr: CurPtr + SizeTmp, Size&: SizeTmp2); |
3879 | |
3880 | // UTF-8 string literal |
3881 | if (Char2 == '"') |
3882 | return LexStringLiteral(Result, |
3883 | CurPtr: ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3884 | Size: SizeTmp2, Tok&: Result), |
3885 | Kind: tok::utf8_string_literal); |
3886 | if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C23)) |
3887 | return LexCharConstant( |
3888 | Result, CurPtr: ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3889 | Size: SizeTmp2, Tok&: Result), |
3890 | Kind: tok::utf8_char_constant); |
3891 | |
3892 | if (Char2 == 'R' && LangOpts.CPlusPlus11) { |
3893 | unsigned SizeTmp3; |
3894 | char Char3 = getCharAndSize(Ptr: CurPtr + SizeTmp + SizeTmp2, Size&: SizeTmp3); |
3895 | // UTF-8 raw string literal |
3896 | if (Char3 == '"') { |
3897 | return LexRawStringLiteral(Result, |
3898 | CurPtr: ConsumeChar(Ptr: ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3899 | Size: SizeTmp2, Tok&: Result), |
3900 | Size: SizeTmp3, Tok&: Result), |
3901 | Kind: tok::utf8_string_literal); |
3902 | } |
3903 | } |
3904 | } |
3905 | } |
3906 | |
3907 | // treat u like the start of an identifier. |
3908 | return LexIdentifierContinue(Result, CurPtr); |
3909 | |
3910 | case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal |
3911 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3912 | MIOpt.ReadToken(); |
3913 | |
3914 | if (LangOpts.CPlusPlus11 || LangOpts.C11) { |
3915 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
3916 | |
3917 | // UTF-32 string literal |
3918 | if (Char == '"') |
3919 | return LexStringLiteral(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3920 | Kind: tok::utf32_string_literal); |
3921 | |
3922 | // UTF-32 character constant |
3923 | if (Char == '\'') |
3924 | return LexCharConstant(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3925 | Kind: tok::utf32_char_constant); |
3926 | |
3927 | // UTF-32 raw string literal |
3928 | if (Char == 'R' && LangOpts.CPlusPlus11 && |
3929 | getCharAndSize(Ptr: CurPtr + SizeTmp, Size&: SizeTmp2) == '"') |
3930 | return LexRawStringLiteral(Result, |
3931 | CurPtr: ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3932 | Size: SizeTmp2, Tok&: Result), |
3933 | Kind: tok::utf32_string_literal); |
3934 | } |
3935 | |
3936 | // treat U like the start of an identifier. |
3937 | return LexIdentifierContinue(Result, CurPtr); |
3938 | |
3939 | case 'R': // Identifier or C++0x raw string literal |
3940 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3941 | MIOpt.ReadToken(); |
3942 | |
3943 | if (LangOpts.CPlusPlus11) { |
3944 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
3945 | |
3946 | if (Char == '"') |
3947 | return LexRawStringLiteral(Result, |
3948 | CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3949 | Kind: tok::string_literal); |
3950 | } |
3951 | |
3952 | // treat R like the start of an identifier. |
3953 | return LexIdentifierContinue(Result, CurPtr); |
3954 | |
3955 | case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz"). |
3956 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3957 | MIOpt.ReadToken(); |
3958 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
3959 | |
3960 | // Wide string literal. |
3961 | if (Char == '"') |
3962 | return LexStringLiteral(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3963 | Kind: tok::wide_string_literal); |
3964 | |
3965 | // Wide raw string literal. |
3966 | if (LangOpts.CPlusPlus11 && Char == 'R' && |
3967 | getCharAndSize(Ptr: CurPtr + SizeTmp, Size&: SizeTmp2) == '"') |
3968 | return LexRawStringLiteral(Result, |
3969 | CurPtr: ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3970 | Size: SizeTmp2, Tok&: Result), |
3971 | Kind: tok::wide_string_literal); |
3972 | |
3973 | // Wide character constant. |
3974 | if (Char == '\'') |
3975 | return LexCharConstant(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
3976 | Kind: tok::wide_char_constant); |
3977 | // FALL THROUGH, treating L like the start of an identifier. |
3978 | [[fallthrough]]; |
3979 | |
3980 | // C99 6.4.2: Identifiers. |
3981 | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': |
3982 | case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N': |
3983 | case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/ |
3984 | case 'V': case 'W': case 'X': case 'Y': case 'Z': |
3985 | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': |
3986 | case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': |
3987 | case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/ |
3988 | case 'v': case 'w': case 'x': case 'y': case 'z': |
3989 | case '_': |
3990 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3991 | MIOpt.ReadToken(); |
3992 | return LexIdentifierContinue(Result, CurPtr); |
3993 | |
3994 | case '$': // $ in identifiers. |
3995 | if (LangOpts.DollarIdents) { |
3996 | if (!isLexingRawMode()) |
3997 | Diag(CurPtr-1, diag::ext_dollar_in_identifier); |
3998 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
3999 | MIOpt.ReadToken(); |
4000 | return LexIdentifierContinue(Result, CurPtr); |
4001 | } |
4002 | |
4003 | Kind = tok::unknown; |
4004 | break; |
4005 | |
4006 | // C99 6.4.4: Character Constants. |
4007 | case '\'': |
4008 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
4009 | MIOpt.ReadToken(); |
4010 | return LexCharConstant(Result, CurPtr, Kind: tok::char_constant); |
4011 | |
4012 | // C99 6.4.5: String Literals. |
4013 | case '"': |
4014 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
4015 | MIOpt.ReadToken(); |
4016 | return LexStringLiteral(Result, CurPtr, |
4017 | Kind: ParsingFilename ? tok::header_name |
4018 | : tok::string_literal); |
4019 | |
4020 | // C99 6.4.6: Punctuators. |
4021 | case '?': |
4022 | Kind = tok::question; |
4023 | break; |
4024 | case '[': |
4025 | Kind = tok::l_square; |
4026 | break; |
4027 | case ']': |
4028 | Kind = tok::r_square; |
4029 | break; |
4030 | case '(': |
4031 | Kind = tok::l_paren; |
4032 | break; |
4033 | case ')': |
4034 | Kind = tok::r_paren; |
4035 | break; |
4036 | case '{': |
4037 | Kind = tok::l_brace; |
4038 | break; |
4039 | case '}': |
4040 | Kind = tok::r_brace; |
4041 | break; |
4042 | case '.': |
4043 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4044 | if (Char >= '0' && Char <= '9') { |
4045 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
4046 | MIOpt.ReadToken(); |
4047 | |
4048 | return LexNumericConstant(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result)); |
4049 | } else if (LangOpts.CPlusPlus && Char == '*') { |
4050 | Kind = tok::periodstar; |
4051 | CurPtr += SizeTmp; |
4052 | } else if (Char == '.' && |
4053 | getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2) == '.') { |
4054 | Kind = tok::ellipsis; |
4055 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4056 | Size: SizeTmp2, Tok&: Result); |
4057 | } else { |
4058 | Kind = tok::period; |
4059 | } |
4060 | break; |
4061 | case '&': |
4062 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4063 | if (Char == '&') { |
4064 | Kind = tok::ampamp; |
4065 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4066 | } else if (Char == '=') { |
4067 | Kind = tok::ampequal; |
4068 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4069 | } else { |
4070 | Kind = tok::amp; |
4071 | } |
4072 | break; |
4073 | case '*': |
4074 | if (getCharAndSize(Ptr: CurPtr, Size&: SizeTmp) == '=') { |
4075 | Kind = tok::starequal; |
4076 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4077 | } else { |
4078 | Kind = tok::star; |
4079 | } |
4080 | break; |
4081 | case '+': |
4082 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4083 | if (Char == '+') { |
4084 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4085 | Kind = tok::plusplus; |
4086 | } else if (Char == '=') { |
4087 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4088 | Kind = tok::plusequal; |
4089 | } else { |
4090 | Kind = tok::plus; |
4091 | } |
4092 | break; |
4093 | case '-': |
4094 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4095 | if (Char == '-') { // -- |
4096 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4097 | Kind = tok::minusminus; |
4098 | } else if (Char == '>' && LangOpts.CPlusPlus && |
4099 | getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2) == '*') { // C++ ->* |
4100 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4101 | Size: SizeTmp2, Tok&: Result); |
4102 | Kind = tok::arrowstar; |
4103 | } else if (Char == '>') { // -> |
4104 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4105 | Kind = tok::arrow; |
4106 | } else if (Char == '=') { // -= |
4107 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4108 | Kind = tok::minusequal; |
4109 | } else { |
4110 | Kind = tok::minus; |
4111 | } |
4112 | break; |
4113 | case '~': |
4114 | Kind = tok::tilde; |
4115 | break; |
4116 | case '!': |
4117 | if (getCharAndSize(Ptr: CurPtr, Size&: SizeTmp) == '=') { |
4118 | Kind = tok::exclaimequal; |
4119 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4120 | } else { |
4121 | Kind = tok::exclaim; |
4122 | } |
4123 | break; |
4124 | case '/': |
4125 | // 6.4.9: Comments |
4126 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4127 | if (Char == '/') { // Line comment. |
4128 | // Even if Line comments are disabled (e.g. in C89 mode), we generally |
4129 | // want to lex this as a comment. There is one problem with this though, |
4130 | // that in one particular corner case, this can change the behavior of the |
4131 | // resultant program. For example, In "foo //**/ bar", C89 would lex |
4132 | // this as "foo / bar" and languages with Line comments would lex it as |
4133 | // "foo". Check to see if the character after the second slash is a '*'. |
4134 | // If so, we will lex that as a "/" instead of the start of a comment. |
4135 | // However, we never do this if we are just preprocessing. |
4136 | bool = |
4137 | LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP); |
4138 | if (!TreatAsComment) |
4139 | if (!(PP && PP->isPreprocessedOutput())) |
4140 | TreatAsComment = getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2) != '*'; |
4141 | |
4142 | if (TreatAsComment) { |
4143 | if (SkipLineComment(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4144 | TokAtPhysicalStartOfLine)) |
4145 | return true; // There is a token to return. |
4146 | |
4147 | // It is common for the tokens immediately after a // comment to be |
4148 | // whitespace (indentation for the next line). Instead of going through |
4149 | // the big switch, handle it efficiently now. |
4150 | goto SkipIgnoredUnits; |
4151 | } |
4152 | } |
4153 | |
4154 | if (Char == '*') { // /**/ comment. |
4155 | if (SkipBlockComment(Result, CurPtr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4156 | TokAtPhysicalStartOfLine)) |
4157 | return true; // There is a token to return. |
4158 | |
4159 | // We only saw whitespace, so just try again with this lexer. |
4160 | // (We manually eliminate the tail call to avoid recursion.) |
4161 | goto LexNextToken; |
4162 | } |
4163 | |
4164 | if (Char == '=') { |
4165 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4166 | Kind = tok::slashequal; |
4167 | } else { |
4168 | Kind = tok::slash; |
4169 | } |
4170 | break; |
4171 | case '%': |
4172 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4173 | if (Char == '=') { |
4174 | Kind = tok::percentequal; |
4175 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4176 | } else if (LangOpts.Digraphs && Char == '>') { |
4177 | Kind = tok::r_brace; // '%>' -> '}' |
4178 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4179 | } else if (LangOpts.Digraphs && Char == ':') { |
4180 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4181 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4182 | if (Char == '%' && getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2) == ':') { |
4183 | Kind = tok::hashhash; // '%:%:' -> '##' |
4184 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4185 | Size: SizeTmp2, Tok&: Result); |
4186 | } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize |
4187 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4188 | if (!isLexingRawMode()) |
4189 | Diag(BufferPtr, diag::ext_charize_microsoft); |
4190 | Kind = tok::hashat; |
4191 | } else { // '%:' -> '#' |
4192 | // We parsed a # character. If this occurs at the start of the line, |
4193 | // it's actually the start of a preprocessing directive. Callback to |
4194 | // the preprocessor to handle it. |
4195 | // TODO: -fpreprocessed mode?? |
4196 | if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) |
4197 | goto HandleDirective; |
4198 | |
4199 | Kind = tok::hash; |
4200 | } |
4201 | } else { |
4202 | Kind = tok::percent; |
4203 | } |
4204 | break; |
4205 | case '<': |
4206 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4207 | if (ParsingFilename) { |
4208 | return LexAngledStringLiteral(Result, CurPtr); |
4209 | } else if (Char == '<') { |
4210 | char After = getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2); |
4211 | if (After == '=') { |
4212 | Kind = tok::lesslessequal; |
4213 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4214 | Size: SizeTmp2, Tok&: Result); |
4215 | } else if (After == '<' && IsStartOfConflictMarker(CurPtr: CurPtr-1)) { |
4216 | // If this is actually a '<<<<<<<' version control conflict marker, |
4217 | // recognize it as such and recover nicely. |
4218 | goto LexNextToken; |
4219 | } else if (After == '<' && HandleEndOfConflictMarker(CurPtr: CurPtr-1)) { |
4220 | // If this is '<<<<' and we're in a Perforce-style conflict marker, |
4221 | // ignore it. |
4222 | goto LexNextToken; |
4223 | } else if (LangOpts.CUDA && After == '<') { |
4224 | Kind = tok::lesslessless; |
4225 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4226 | Size: SizeTmp2, Tok&: Result); |
4227 | } else { |
4228 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4229 | Kind = tok::lessless; |
4230 | } |
4231 | } else if (Char == '=') { |
4232 | char After = getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2); |
4233 | if (After == '>') { |
4234 | if (LangOpts.CPlusPlus20) { |
4235 | if (!isLexingRawMode()) |
4236 | Diag(BufferPtr, diag::warn_cxx17_compat_spaceship); |
4237 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4238 | Size: SizeTmp2, Tok&: Result); |
4239 | Kind = tok::spaceship; |
4240 | break; |
4241 | } |
4242 | // Suggest adding a space between the '<=' and the '>' to avoid a |
4243 | // change in semantics if this turns up in C++ <=17 mode. |
4244 | if (LangOpts.CPlusPlus && !isLexingRawMode()) { |
4245 | Diag(BufferPtr, diag::warn_cxx20_compat_spaceship) |
4246 | << FixItHint::CreateInsertion( |
4247 | getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " " ); |
4248 | } |
4249 | } |
4250 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4251 | Kind = tok::lessequal; |
4252 | } else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '[' |
4253 | if (LangOpts.CPlusPlus11 && |
4254 | getCharAndSize(Ptr: CurPtr + SizeTmp, Size&: SizeTmp2) == ':') { |
4255 | // C++0x [lex.pptoken]p3: |
4256 | // Otherwise, if the next three characters are <:: and the subsequent |
4257 | // character is neither : nor >, the < is treated as a preprocessor |
4258 | // token by itself and not as the first character of the alternative |
4259 | // token <:. |
4260 | unsigned SizeTmp3; |
4261 | char After = getCharAndSize(Ptr: CurPtr + SizeTmp + SizeTmp2, Size&: SizeTmp3); |
4262 | if (After != ':' && After != '>') { |
4263 | Kind = tok::less; |
4264 | if (!isLexingRawMode()) |
4265 | Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon); |
4266 | break; |
4267 | } |
4268 | } |
4269 | |
4270 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4271 | Kind = tok::l_square; |
4272 | } else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{' |
4273 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4274 | Kind = tok::l_brace; |
4275 | } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 && |
4276 | lexEditorPlaceholder(Result, CurPtr)) { |
4277 | return true; |
4278 | } else { |
4279 | Kind = tok::less; |
4280 | } |
4281 | break; |
4282 | case '>': |
4283 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4284 | if (Char == '=') { |
4285 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4286 | Kind = tok::greaterequal; |
4287 | } else if (Char == '>') { |
4288 | char After = getCharAndSize(Ptr: CurPtr+SizeTmp, Size&: SizeTmp2); |
4289 | if (After == '=') { |
4290 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4291 | Size: SizeTmp2, Tok&: Result); |
4292 | Kind = tok::greatergreaterequal; |
4293 | } else if (After == '>' && IsStartOfConflictMarker(CurPtr: CurPtr-1)) { |
4294 | // If this is actually a '>>>>' conflict marker, recognize it as such |
4295 | // and recover nicely. |
4296 | goto LexNextToken; |
4297 | } else if (After == '>' && HandleEndOfConflictMarker(CurPtr: CurPtr-1)) { |
4298 | // If this is '>>>>>>>' and we're in a conflict marker, ignore it. |
4299 | goto LexNextToken; |
4300 | } else if (LangOpts.CUDA && After == '>') { |
4301 | Kind = tok::greatergreatergreater; |
4302 | CurPtr = ConsumeChar(Ptr: ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result), |
4303 | Size: SizeTmp2, Tok&: Result); |
4304 | } else { |
4305 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4306 | Kind = tok::greatergreater; |
4307 | } |
4308 | } else { |
4309 | Kind = tok::greater; |
4310 | } |
4311 | break; |
4312 | case '^': |
4313 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4314 | if (Char == '=') { |
4315 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4316 | Kind = tok::caretequal; |
4317 | } else if (LangOpts.OpenCL && Char == '^') { |
4318 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4319 | Kind = tok::caretcaret; |
4320 | } else { |
4321 | Kind = tok::caret; |
4322 | } |
4323 | break; |
4324 | case '|': |
4325 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4326 | if (Char == '=') { |
4327 | Kind = tok::pipeequal; |
4328 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4329 | } else if (Char == '|') { |
4330 | // If this is '|||||||' and we're in a conflict marker, ignore it. |
4331 | if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr: CurPtr-1)) |
4332 | goto LexNextToken; |
4333 | Kind = tok::pipepipe; |
4334 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4335 | } else { |
4336 | Kind = tok::pipe; |
4337 | } |
4338 | break; |
4339 | case ':': |
4340 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4341 | if (LangOpts.Digraphs && Char == '>') { |
4342 | Kind = tok::r_square; // ':>' -> ']' |
4343 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4344 | } else if (Char == ':') { |
4345 | Kind = tok::coloncolon; |
4346 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4347 | } else { |
4348 | Kind = tok::colon; |
4349 | } |
4350 | break; |
4351 | case ';': |
4352 | Kind = tok::semi; |
4353 | break; |
4354 | case '=': |
4355 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4356 | if (Char == '=') { |
4357 | // If this is '====' and we're in a conflict marker, ignore it. |
4358 | if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr: CurPtr-1)) |
4359 | goto LexNextToken; |
4360 | |
4361 | Kind = tok::equalequal; |
4362 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4363 | } else { |
4364 | Kind = tok::equal; |
4365 | } |
4366 | break; |
4367 | case ',': |
4368 | Kind = tok::comma; |
4369 | break; |
4370 | case '#': |
4371 | Char = getCharAndSize(Ptr: CurPtr, Size&: SizeTmp); |
4372 | if (Char == '#') { |
4373 | Kind = tok::hashhash; |
4374 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4375 | } else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize |
4376 | Kind = tok::hashat; |
4377 | if (!isLexingRawMode()) |
4378 | Diag(BufferPtr, diag::ext_charize_microsoft); |
4379 | CurPtr = ConsumeChar(Ptr: CurPtr, Size: SizeTmp, Tok&: Result); |
4380 | } else { |
4381 | // We parsed a # character. If this occurs at the start of the line, |
4382 | // it's actually the start of a preprocessing directive. Callback to |
4383 | // the preprocessor to handle it. |
4384 | // TODO: -fpreprocessed mode?? |
4385 | if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) |
4386 | goto HandleDirective; |
4387 | |
4388 | Kind = tok::hash; |
4389 | } |
4390 | break; |
4391 | |
4392 | case '@': |
4393 | // Objective C support. |
4394 | if (CurPtr[-1] == '@' && LangOpts.ObjC) |
4395 | Kind = tok::at; |
4396 | else |
4397 | Kind = tok::unknown; |
4398 | break; |
4399 | |
4400 | // UCNs (C99 6.4.3, C++11 [lex.charset]p2) |
4401 | case '\\': |
4402 | if (!LangOpts.AsmPreprocessor) { |
4403 | if (uint32_t CodePoint = tryReadUCN(StartPtr&: CurPtr, SlashLoc: BufferPtr, Result: &Result)) { |
4404 | if (CheckUnicodeWhitespace(Result, C: CodePoint, CurPtr)) { |
4405 | if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
4406 | return true; // KeepWhitespaceMode |
4407 | |
4408 | // We only saw whitespace, so just try again with this lexer. |
4409 | // (We manually eliminate the tail call to avoid recursion.) |
4410 | goto LexNextToken; |
4411 | } |
4412 | |
4413 | return LexUnicodeIdentifierStart(Result, C: CodePoint, CurPtr); |
4414 | } |
4415 | } |
4416 | |
4417 | Kind = tok::unknown; |
4418 | break; |
4419 | |
4420 | default: { |
4421 | if (isASCII(c: Char)) { |
4422 | Kind = tok::unknown; |
4423 | break; |
4424 | } |
4425 | |
4426 | llvm::UTF32 CodePoint; |
4427 | |
4428 | // We can't just reset CurPtr to BufferPtr because BufferPtr may point to |
4429 | // an escaped newline. |
4430 | --CurPtr; |
4431 | llvm::ConversionResult Status = |
4432 | llvm::convertUTF8Sequence(source: (const llvm::UTF8 **)&CurPtr, |
4433 | sourceEnd: (const llvm::UTF8 *)BufferEnd, |
4434 | target: &CodePoint, |
4435 | flags: llvm::strictConversion); |
4436 | if (Status == llvm::conversionOK) { |
4437 | if (CheckUnicodeWhitespace(Result, C: CodePoint, CurPtr)) { |
4438 | if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
4439 | return true; // KeepWhitespaceMode |
4440 | |
4441 | // We only saw whitespace, so just try again with this lexer. |
4442 | // (We manually eliminate the tail call to avoid recursion.) |
4443 | goto LexNextToken; |
4444 | } |
4445 | return LexUnicodeIdentifierStart(Result, C: CodePoint, CurPtr); |
4446 | } |
4447 | |
4448 | if (isLexingRawMode() || ParsingPreprocessorDirective || |
4449 | PP->isPreprocessedOutput()) { |
4450 | ++CurPtr; |
4451 | Kind = tok::unknown; |
4452 | break; |
4453 | } |
4454 | |
4455 | // Non-ASCII characters tend to creep into source code unintentionally. |
4456 | // Instead of letting the parser complain about the unknown token, |
4457 | // just diagnose the invalid UTF-8, then drop the character. |
4458 | Diag(CurPtr, diag::err_invalid_utf8); |
4459 | |
4460 | BufferPtr = CurPtr+1; |
4461 | // We're pretending the character didn't exist, so just try again with |
4462 | // this lexer. |
4463 | // (We manually eliminate the tail call to avoid recursion.) |
4464 | goto LexNextToken; |
4465 | } |
4466 | } |
4467 | |
4468 | // Notify MIOpt that we read a non-whitespace/non-comment token. |
4469 | MIOpt.ReadToken(); |
4470 | |
4471 | // Update the location of token as well as BufferPtr. |
4472 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind); |
4473 | return true; |
4474 | |
4475 | HandleDirective: |
4476 | // We parsed a # character and it's the start of a preprocessing directive. |
4477 | |
4478 | FormTokenWithChars(Result, TokEnd: CurPtr, Kind: tok::hash); |
4479 | PP->HandleDirective(Result); |
4480 | |
4481 | if (PP->hadModuleLoaderFatalFailure()) |
4482 | // With a fatal failure in the module loader, we abort parsing. |
4483 | return true; |
4484 | |
4485 | // We parsed the directive; lex a token with the new state. |
4486 | return false; |
4487 | |
4488 | LexNextToken: |
4489 | Result.clearFlag(Flag: Token::NeedsCleaning); |
4490 | goto LexStart; |
4491 | } |
4492 | |
4493 | const char *Lexer::convertDependencyDirectiveToken( |
4494 | const dependency_directives_scan::Token &DDTok, Token &Result) { |
4495 | const char *TokPtr = BufferStart + DDTok.Offset; |
4496 | Result.startToken(); |
4497 | Result.setLocation(getSourceLocation(Loc: TokPtr)); |
4498 | Result.setKind(DDTok.Kind); |
4499 | Result.setFlag((Token::TokenFlags)DDTok.Flags); |
4500 | Result.setLength(DDTok.Length); |
4501 | BufferPtr = TokPtr + DDTok.Length; |
4502 | return TokPtr; |
4503 | } |
4504 | |
4505 | bool Lexer::LexDependencyDirectiveToken(Token &Result) { |
4506 | assert(isDependencyDirectivesLexer()); |
4507 | |
4508 | using namespace dependency_directives_scan; |
4509 | |
4510 | while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) { |
4511 | if (DepDirectives.front().Kind == pp_eof) |
4512 | return LexEndOfFile(Result, CurPtr: BufferEnd); |
4513 | if (DepDirectives.front().Kind == tokens_present_before_eof) |
4514 | MIOpt.ReadToken(); |
4515 | NextDepDirectiveTokenIndex = 0; |
4516 | DepDirectives = DepDirectives.drop_front(); |
4517 | } |
4518 | |
4519 | const dependency_directives_scan::Token &DDTok = |
4520 | DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++]; |
4521 | if (NextDepDirectiveTokenIndex > 1 || DDTok.Kind != tok::hash) { |
4522 | // Read something other than a preprocessor directive hash. |
4523 | MIOpt.ReadToken(); |
4524 | } |
4525 | |
4526 | if (ParsingFilename && DDTok.is(K: tok::less)) { |
4527 | BufferPtr = BufferStart + DDTok.Offset; |
4528 | LexAngledStringLiteral(Result, CurPtr: BufferPtr + 1); |
4529 | if (Result.isNot(K: tok::header_name)) |
4530 | return true; |
4531 | // Advance the index of lexed tokens. |
4532 | while (true) { |
4533 | const dependency_directives_scan::Token &NextTok = |
4534 | DepDirectives.front().Tokens[NextDepDirectiveTokenIndex]; |
4535 | if (BufferStart + NextTok.Offset >= BufferPtr) |
4536 | break; |
4537 | ++NextDepDirectiveTokenIndex; |
4538 | } |
4539 | return true; |
4540 | } |
4541 | |
4542 | const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result); |
4543 | |
4544 | if (Result.is(K: tok::hash) && Result.isAtStartOfLine()) { |
4545 | PP->HandleDirective(Result); |
4546 | return false; |
4547 | } |
4548 | if (Result.is(K: tok::raw_identifier)) { |
4549 | Result.setRawIdentifierData(TokPtr); |
4550 | if (!isLexingRawMode()) { |
4551 | const IdentifierInfo *II = PP->LookUpIdentifierInfo(Identifier&: Result); |
4552 | if (II->isHandleIdentifierCase()) |
4553 | return PP->HandleIdentifier(Identifier&: Result); |
4554 | } |
4555 | return true; |
4556 | } |
4557 | if (Result.isLiteral()) { |
4558 | Result.setLiteralData(TokPtr); |
4559 | return true; |
4560 | } |
4561 | if (Result.is(K: tok::colon)) { |
4562 | // Convert consecutive colons to 'tok::coloncolon'. |
4563 | if (*BufferPtr == ':') { |
4564 | assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is( |
4565 | tok::colon)); |
4566 | ++NextDepDirectiveTokenIndex; |
4567 | Result.setKind(tok::coloncolon); |
4568 | } |
4569 | return true; |
4570 | } |
4571 | if (Result.is(K: tok::eod)) |
4572 | ParsingPreprocessorDirective = false; |
4573 | |
4574 | return true; |
4575 | } |
4576 | |
4577 | bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) { |
4578 | assert(isDependencyDirectivesLexer()); |
4579 | |
4580 | using namespace dependency_directives_scan; |
4581 | |
4582 | bool Stop = false; |
4583 | unsigned NestedIfs = 0; |
4584 | do { |
4585 | DepDirectives = DepDirectives.drop_front(); |
4586 | switch (DepDirectives.front().Kind) { |
4587 | case pp_none: |
4588 | llvm_unreachable("unexpected 'pp_none'" ); |
4589 | case pp_include: |
4590 | case pp___include_macros: |
4591 | case pp_define: |
4592 | case pp_undef: |
4593 | case pp_import: |
4594 | case pp_pragma_import: |
4595 | case pp_pragma_once: |
4596 | case pp_pragma_push_macro: |
4597 | case pp_pragma_pop_macro: |
4598 | case pp_pragma_include_alias: |
4599 | case pp_pragma_system_header: |
4600 | case pp_include_next: |
4601 | case decl_at_import: |
4602 | case cxx_module_decl: |
4603 | case cxx_import_decl: |
4604 | case cxx_export_module_decl: |
4605 | case cxx_export_import_decl: |
4606 | case tokens_present_before_eof: |
4607 | break; |
4608 | case pp_if: |
4609 | case pp_ifdef: |
4610 | case pp_ifndef: |
4611 | ++NestedIfs; |
4612 | break; |
4613 | case pp_elif: |
4614 | case pp_elifdef: |
4615 | case pp_elifndef: |
4616 | case pp_else: |
4617 | if (!NestedIfs) { |
4618 | Stop = true; |
4619 | } |
4620 | break; |
4621 | case pp_endif: |
4622 | if (!NestedIfs) { |
4623 | Stop = true; |
4624 | } else { |
4625 | --NestedIfs; |
4626 | } |
4627 | break; |
4628 | case pp_eof: |
4629 | NextDepDirectiveTokenIndex = 0; |
4630 | return LexEndOfFile(Result, CurPtr: BufferEnd); |
4631 | } |
4632 | } while (!Stop); |
4633 | |
4634 | const dependency_directives_scan::Token &DDTok = |
4635 | DepDirectives.front().Tokens.front(); |
4636 | assert(DDTok.is(tok::hash)); |
4637 | NextDepDirectiveTokenIndex = 1; |
4638 | |
4639 | convertDependencyDirectiveToken(DDTok, Result); |
4640 | return false; |
4641 | } |
4642 | |