1 | //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the top level handling of macro expansion for the |
10 | // preprocessor. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/Basic/AttributeCommonInfo.h" |
15 | #include "clang/Basic/Attributes.h" |
16 | #include "clang/Basic/Builtins.h" |
17 | #include "clang/Basic/IdentifierTable.h" |
18 | #include "clang/Basic/LLVM.h" |
19 | #include "clang/Basic/LangOptions.h" |
20 | #include "clang/Basic/SourceLocation.h" |
21 | #include "clang/Basic/TargetInfo.h" |
22 | #include "clang/Lex/CodeCompletionHandler.h" |
23 | #include "clang/Lex/DirectoryLookup.h" |
24 | #include "clang/Lex/ExternalPreprocessorSource.h" |
25 | #include "clang/Lex/HeaderSearch.h" |
26 | #include "clang/Lex/LexDiagnostic.h" |
27 | #include "clang/Lex/LiteralSupport.h" |
28 | #include "clang/Lex/MacroArgs.h" |
29 | #include "clang/Lex/MacroInfo.h" |
30 | #include "clang/Lex/Preprocessor.h" |
31 | #include "clang/Lex/PreprocessorLexer.h" |
32 | #include "clang/Lex/PreprocessorOptions.h" |
33 | #include "clang/Lex/Token.h" |
34 | #include "llvm/ADT/ArrayRef.h" |
35 | #include "llvm/ADT/DenseMap.h" |
36 | #include "llvm/ADT/DenseSet.h" |
37 | #include "llvm/ADT/FoldingSet.h" |
38 | #include "llvm/ADT/STLExtras.h" |
39 | #include "llvm/ADT/SmallVector.h" |
40 | #include "llvm/ADT/StringRef.h" |
41 | #include "llvm/ADT/StringSwitch.h" |
42 | #include "llvm/Support/ErrorHandling.h" |
43 | #include "llvm/Support/Format.h" |
44 | #include "llvm/Support/Path.h" |
45 | #include "llvm/Support/raw_ostream.h" |
46 | #include <algorithm> |
47 | #include <cassert> |
48 | #include <cstddef> |
49 | #include <cstring> |
50 | #include <ctime> |
51 | #include <iomanip> |
52 | #include <optional> |
53 | #include <sstream> |
54 | #include <string> |
55 | #include <tuple> |
56 | #include <utility> |
57 | |
58 | using namespace clang; |
59 | |
60 | MacroDirective * |
61 | Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { |
62 | if (!II->hadMacroDefinition()) |
63 | return nullptr; |
64 | auto Pos = CurSubmoduleState->Macros.find(Val: II); |
65 | return Pos == CurSubmoduleState->Macros.end() ? nullptr |
66 | : Pos->second.getLatest(); |
67 | } |
68 | |
69 | void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ |
70 | assert(MD && "MacroDirective should be non-zero!"); |
71 | assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); |
72 | |
73 | MacroState &StoredMD = CurSubmoduleState->Macros[II]; |
74 | auto *OldMD = StoredMD.getLatest(); |
75 | MD->setPrevious(OldMD); |
76 | StoredMD.setLatest(MD); |
77 | StoredMD.overrideActiveModuleMacros(PP&: *this, II); |
78 | |
79 | if (needModuleMacros()) { |
80 | // Track that we created a new macro directive, so we know we should |
81 | // consider building a ModuleMacro for it when we get to the end of |
82 | // the module. |
83 | PendingModuleMacroNames.push_back(Elt: II); |
84 | } |
85 | |
86 | // Set up the identifier as having associated macro history. |
87 | II->setHasMacroDefinition(true); |
88 | if (!MD->isDefined() && !LeafModuleMacros.contains(Val: II)) |
89 | II->setHasMacroDefinition(false); |
90 | if (II->isFromAST()) |
91 | II->setChangedSinceDeserialization(); |
92 | } |
93 | |
94 | void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, |
95 | MacroDirective *ED, |
96 | MacroDirective *MD) { |
97 | // Normally, when a macro is defined, it goes through appendMacroDirective() |
98 | // above, which chains a macro to previous defines, undefs, etc. |
99 | // However, in a pch, the whole macro history up to the end of the pch is |
100 | // stored, so ASTReader goes through this function instead. |
101 | // However, built-in macros are already registered in the Preprocessor |
102 | // ctor, and ASTWriter stops writing the macro chain at built-in macros, |
103 | // so in that case the chain from the pch needs to be spliced to the existing |
104 | // built-in. |
105 | |
106 | assert(II && MD); |
107 | MacroState &StoredMD = CurSubmoduleState->Macros[II]; |
108 | |
109 | if (auto *OldMD = StoredMD.getLatest()) { |
110 | // shouldIgnoreMacro() in ASTWriter also stops at macros from the |
111 | // predefines buffer in module builds. However, in module builds, modules |
112 | // are loaded completely before predefines are processed, so StoredMD |
113 | // will be nullptr for them when they're loaded. StoredMD should only be |
114 | // non-nullptr for builtins read from a pch file. |
115 | assert(OldMD->getMacroInfo()->isBuiltinMacro() && |
116 | "only built-ins should have an entry here"); |
117 | assert(!OldMD->getPrevious() && "builtin should only have a single entry"); |
118 | ED->setPrevious(OldMD); |
119 | StoredMD.setLatest(MD); |
120 | } else { |
121 | StoredMD = MD; |
122 | } |
123 | |
124 | // Setup the identifier as having associated macro history. |
125 | II->setHasMacroDefinition(true); |
126 | if (!MD->isDefined() && !LeafModuleMacros.contains(Val: II)) |
127 | II->setHasMacroDefinition(false); |
128 | } |
129 | |
130 | ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, |
131 | MacroInfo *Macro, |
132 | ArrayRef<ModuleMacro *> Overrides, |
133 | bool &New) { |
134 | llvm::FoldingSetNodeID ID; |
135 | ModuleMacro::Profile(ID, OwningModule: Mod, II); |
136 | |
137 | void *InsertPos; |
138 | if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { |
139 | New = false; |
140 | return MM; |
141 | } |
142 | |
143 | auto *MM = ModuleMacro::create(PP&: *this, OwningModule: Mod, II, Macro, Overrides); |
144 | ModuleMacros.InsertNode(N: MM, InsertPos); |
145 | |
146 | // Each overridden macro is now overridden by one more macro. |
147 | bool HidAny = false; |
148 | for (auto *O : Overrides) { |
149 | HidAny |= (O->NumOverriddenBy == 0); |
150 | ++O->NumOverriddenBy; |
151 | } |
152 | |
153 | // If we were the first overrider for any macro, it's no longer a leaf. |
154 | auto &LeafMacros = LeafModuleMacros[II]; |
155 | if (HidAny) { |
156 | llvm::erase_if(C&: LeafMacros, |
157 | P: [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }); |
158 | } |
159 | |
160 | // The new macro is always a leaf macro. |
161 | LeafMacros.push_back(NewVal: MM); |
162 | // The identifier now has defined macros (that may or may not be visible). |
163 | II->setHasMacroDefinition(true); |
164 | |
165 | New = true; |
166 | return MM; |
167 | } |
168 | |
169 | ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, |
170 | const IdentifierInfo *II) { |
171 | llvm::FoldingSetNodeID ID; |
172 | ModuleMacro::Profile(ID, OwningModule: Mod, II); |
173 | |
174 | void *InsertPos; |
175 | return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); |
176 | } |
177 | |
178 | void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, |
179 | ModuleMacroInfo &Info) { |
180 | assert(Info.ActiveModuleMacrosGeneration != |
181 | CurSubmoduleState->VisibleModules.getGeneration() && |
182 | "don't need to update this macro name info"); |
183 | Info.ActiveModuleMacrosGeneration = |
184 | CurSubmoduleState->VisibleModules.getGeneration(); |
185 | |
186 | auto Leaf = LeafModuleMacros.find(Val: II); |
187 | if (Leaf == LeafModuleMacros.end()) { |
188 | // No imported macros at all: nothing to do. |
189 | return; |
190 | } |
191 | |
192 | Info.ActiveModuleMacros.clear(); |
193 | |
194 | // Every macro that's locally overridden is overridden by a visible macro. |
195 | llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; |
196 | for (auto *O : Info.OverriddenMacros) |
197 | NumHiddenOverrides[O] = -1; |
198 | |
199 | // Collect all macros that are not overridden by a visible macro. |
200 | llvm::SmallVector<ModuleMacro *, 16> Worklist; |
201 | for (auto *LeafMM : Leaf->second) { |
202 | assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); |
203 | if (NumHiddenOverrides.lookup(Val: LeafMM) == 0) |
204 | Worklist.push_back(Elt: LeafMM); |
205 | } |
206 | while (!Worklist.empty()) { |
207 | auto *MM = Worklist.pop_back_val(); |
208 | if (CurSubmoduleState->VisibleModules.isVisible(M: MM->getOwningModule())) { |
209 | // We only care about collecting definitions; undefinitions only act |
210 | // to override other definitions. |
211 | if (MM->getMacroInfo()) |
212 | Info.ActiveModuleMacros.push_back(NewVal: MM); |
213 | } else { |
214 | for (auto *O : MM->overrides()) |
215 | if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) |
216 | Worklist.push_back(Elt: O); |
217 | } |
218 | } |
219 | // Our reverse postorder walk found the macros in reverse order. |
220 | std::reverse(first: Info.ActiveModuleMacros.begin(), last: Info.ActiveModuleMacros.end()); |
221 | |
222 | // Determine whether the macro name is ambiguous. |
223 | MacroInfo *MI = nullptr; |
224 | bool IsSystemMacro = true; |
225 | bool IsAmbiguous = false; |
226 | if (auto *MD = Info.MD) { |
227 | while (isa_and_nonnull<VisibilityMacroDirective>(Val: MD)) |
228 | MD = MD->getPrevious(); |
229 | if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(Val: MD)) { |
230 | MI = DMD->getInfo(); |
231 | IsSystemMacro &= SourceMgr.isInSystemHeader(Loc: DMD->getLocation()); |
232 | } |
233 | } |
234 | for (auto *Active : Info.ActiveModuleMacros) { |
235 | auto *NewMI = Active->getMacroInfo(); |
236 | |
237 | // Before marking the macro as ambiguous, check if this is a case where |
238 | // both macros are in system headers. If so, we trust that the system |
239 | // did not get it wrong. This also handles cases where Clang's own |
240 | // headers have a different spelling of certain system macros: |
241 | // #define LONG_MAX __LONG_MAX__ (clang's limits.h) |
242 | // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) |
243 | // |
244 | // FIXME: Remove the defined-in-system-headers check. clang's limits.h |
245 | // overrides the system limits.h's macros, so there's no conflict here. |
246 | if (MI && NewMI != MI && |
247 | !MI->isIdenticalTo(Other: *NewMI, PP&: *this, /*Syntactically=*/true)) |
248 | IsAmbiguous = true; |
249 | IsSystemMacro &= Active->getOwningModule()->IsSystem || |
250 | SourceMgr.isInSystemHeader(Loc: NewMI->getDefinitionLoc()); |
251 | MI = NewMI; |
252 | } |
253 | Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; |
254 | } |
255 | |
256 | void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { |
257 | ArrayRef<ModuleMacro*> Leaf; |
258 | auto LeafIt = LeafModuleMacros.find(Val: II); |
259 | if (LeafIt != LeafModuleMacros.end()) |
260 | Leaf = LeafIt->second; |
261 | const MacroState *State = nullptr; |
262 | auto Pos = CurSubmoduleState->Macros.find(Val: II); |
263 | if (Pos != CurSubmoduleState->Macros.end()) |
264 | State = &Pos->second; |
265 | |
266 | llvm::errs() << "MacroState "<< State << " "<< II->getNameStart(); |
267 | if (State && State->isAmbiguous(PP&: *this, II)) |
268 | llvm::errs() << " ambiguous"; |
269 | if (State && !State->getOverriddenMacros().empty()) { |
270 | llvm::errs() << " overrides"; |
271 | for (auto *O : State->getOverriddenMacros()) |
272 | llvm::errs() << " "<< O->getOwningModule()->getFullModuleName(); |
273 | } |
274 | llvm::errs() << "\n"; |
275 | |
276 | // Dump local macro directives. |
277 | for (auto *MD = State ? State->getLatest() : nullptr; MD; |
278 | MD = MD->getPrevious()) { |
279 | llvm::errs() << " "; |
280 | MD->dump(); |
281 | } |
282 | |
283 | // Dump module macros. |
284 | llvm::DenseSet<ModuleMacro*> Active; |
285 | for (auto *MM : State ? State->getActiveModuleMacros(PP&: *this, II) |
286 | : ArrayRef<ModuleMacro *>()) |
287 | Active.insert(V: MM); |
288 | llvm::DenseSet<ModuleMacro*> Visited; |
289 | llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf); |
290 | while (!Worklist.empty()) { |
291 | auto *MM = Worklist.pop_back_val(); |
292 | llvm::errs() << " ModuleMacro "<< MM << " " |
293 | << MM->getOwningModule()->getFullModuleName(); |
294 | if (!MM->getMacroInfo()) |
295 | llvm::errs() << " undef"; |
296 | |
297 | if (Active.count(V: MM)) |
298 | llvm::errs() << " active"; |
299 | else if (!CurSubmoduleState->VisibleModules.isVisible( |
300 | M: MM->getOwningModule())) |
301 | llvm::errs() << " hidden"; |
302 | else if (MM->getMacroInfo()) |
303 | llvm::errs() << " overridden"; |
304 | |
305 | if (!MM->overrides().empty()) { |
306 | llvm::errs() << " overrides"; |
307 | for (auto *O : MM->overrides()) { |
308 | llvm::errs() << " "<< O->getOwningModule()->getFullModuleName(); |
309 | if (Visited.insert(V: O).second) |
310 | Worklist.push_back(Elt: O); |
311 | } |
312 | } |
313 | llvm::errs() << "\n"; |
314 | if (auto *MI = MM->getMacroInfo()) { |
315 | llvm::errs() << " "; |
316 | MI->dump(); |
317 | llvm::errs() << "\n"; |
318 | } |
319 | } |
320 | } |
321 | |
322 | /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the |
323 | /// identifier table. |
324 | void Preprocessor::RegisterBuiltinMacros() { |
325 | Ident__LINE__ = RegisterBuiltinMacro(Name: "__LINE__"); |
326 | Ident__FILE__ = RegisterBuiltinMacro(Name: "__FILE__"); |
327 | Ident__DATE__ = RegisterBuiltinMacro(Name: "__DATE__"); |
328 | Ident__TIME__ = RegisterBuiltinMacro(Name: "__TIME__"); |
329 | Ident__COUNTER__ = RegisterBuiltinMacro(Name: "__COUNTER__"); |
330 | Ident_Pragma = RegisterBuiltinMacro(Name: "_Pragma"); |
331 | Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(Name: "__FLT_EVAL_METHOD__"); |
332 | |
333 | // C++ Standing Document Extensions. |
334 | if (getLangOpts().CPlusPlus) |
335 | Ident__has_cpp_attribute = RegisterBuiltinMacro(Name: "__has_cpp_attribute"); |
336 | else |
337 | Ident__has_cpp_attribute = nullptr; |
338 | |
339 | // GCC Extensions. |
340 | Ident__BASE_FILE__ = RegisterBuiltinMacro(Name: "__BASE_FILE__"); |
341 | Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(Name: "__INCLUDE_LEVEL__"); |
342 | Ident__TIMESTAMP__ = RegisterBuiltinMacro(Name: "__TIMESTAMP__"); |
343 | |
344 | // Microsoft Extensions. |
345 | if (getLangOpts().MicrosoftExt) { |
346 | Ident__identifier = RegisterBuiltinMacro(Name: "__identifier"); |
347 | Ident__pragma = RegisterBuiltinMacro(Name: "__pragma"); |
348 | } else { |
349 | Ident__identifier = nullptr; |
350 | Ident__pragma = nullptr; |
351 | } |
352 | |
353 | // Clang Extensions. |
354 | Ident__FILE_NAME__ = RegisterBuiltinMacro(Name: "__FILE_NAME__"); |
355 | Ident__has_feature = RegisterBuiltinMacro(Name: "__has_feature"); |
356 | Ident__has_extension = RegisterBuiltinMacro(Name: "__has_extension"); |
357 | Ident__has_builtin = RegisterBuiltinMacro(Name: "__has_builtin"); |
358 | Ident__has_constexpr_builtin = |
359 | RegisterBuiltinMacro(Name: "__has_constexpr_builtin"); |
360 | Ident__has_attribute = RegisterBuiltinMacro(Name: "__has_attribute"); |
361 | if (!getLangOpts().CPlusPlus) |
362 | Ident__has_c_attribute = RegisterBuiltinMacro(Name: "__has_c_attribute"); |
363 | else |
364 | Ident__has_c_attribute = nullptr; |
365 | |
366 | Ident__has_declspec = RegisterBuiltinMacro(Name: "__has_declspec_attribute"); |
367 | Ident__has_embed = RegisterBuiltinMacro(Name: "__has_embed"); |
368 | Ident__has_include = RegisterBuiltinMacro(Name: "__has_include"); |
369 | Ident__has_include_next = RegisterBuiltinMacro(Name: "__has_include_next"); |
370 | Ident__has_warning = RegisterBuiltinMacro(Name: "__has_warning"); |
371 | Ident__is_identifier = RegisterBuiltinMacro(Name: "__is_identifier"); |
372 | Ident__is_target_arch = RegisterBuiltinMacro(Name: "__is_target_arch"); |
373 | Ident__is_target_vendor = RegisterBuiltinMacro(Name: "__is_target_vendor"); |
374 | Ident__is_target_os = RegisterBuiltinMacro(Name: "__is_target_os"); |
375 | Ident__is_target_environment = |
376 | RegisterBuiltinMacro(Name: "__is_target_environment"); |
377 | Ident__is_target_variant_os = RegisterBuiltinMacro(Name: "__is_target_variant_os"); |
378 | Ident__is_target_variant_environment = |
379 | RegisterBuiltinMacro(Name: "__is_target_variant_environment"); |
380 | |
381 | // Modules. |
382 | Ident__building_module = RegisterBuiltinMacro(Name: "__building_module"); |
383 | if (!getLangOpts().CurrentModule.empty()) |
384 | Ident__MODULE__ = RegisterBuiltinMacro(Name: "__MODULE__"); |
385 | else |
386 | Ident__MODULE__ = nullptr; |
387 | } |
388 | |
389 | /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token |
390 | /// in its expansion, currently expands to that token literally. |
391 | static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, |
392 | const IdentifierInfo *MacroIdent, |
393 | Preprocessor &PP) { |
394 | IdentifierInfo *II = MI->getReplacementToken(Tok: 0).getIdentifierInfo(); |
395 | |
396 | // If the token isn't an identifier, it's always literally expanded. |
397 | if (!II) return true; |
398 | |
399 | // If the information about this identifier is out of date, update it from |
400 | // the external source. |
401 | if (II->isOutOfDate()) |
402 | PP.getExternalSource()->updateOutOfDateIdentifier(II: *II); |
403 | |
404 | // If the identifier is a macro, and if that macro is enabled, it may be |
405 | // expanded so it's not a trivial expansion. |
406 | if (auto *ExpansionMI = PP.getMacroInfo(II)) |
407 | if (ExpansionMI->isEnabled() && |
408 | // Fast expanding "#define X X" is ok, because X would be disabled. |
409 | II != MacroIdent) |
410 | return false; |
411 | |
412 | // If this is an object-like macro invocation, it is safe to trivially expand |
413 | // it. |
414 | if (MI->isObjectLike()) return true; |
415 | |
416 | // If this is a function-like macro invocation, it's safe to trivially expand |
417 | // as long as the identifier is not a macro argument. |
418 | return !llvm::is_contained(Range: MI->params(), Element: II); |
419 | } |
420 | |
421 | /// isNextPPTokenLParen - Determine whether the next preprocessor token to be |
422 | /// lexed is a '('. If so, consume the token and return true, if not, this |
423 | /// method should have no observable side-effect on the lexed tokens. |
424 | bool Preprocessor::isNextPPTokenLParen() { |
425 | // Do some quick tests for rejection cases. |
426 | unsigned Val; |
427 | if (CurLexer) |
428 | Val = CurLexer->isNextPPTokenLParen(); |
429 | else |
430 | Val = CurTokenLexer->isNextTokenLParen(); |
431 | |
432 | if (Val == 2) { |
433 | // We have run off the end. If it's a source file we don't |
434 | // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the |
435 | // macro stack. |
436 | if (CurPPLexer) |
437 | return false; |
438 | for (const IncludeStackInfo &Entry : llvm::reverse(C&: IncludeMacroStack)) { |
439 | if (Entry.TheLexer) |
440 | Val = Entry.TheLexer->isNextPPTokenLParen(); |
441 | else |
442 | Val = Entry.TheTokenLexer->isNextTokenLParen(); |
443 | |
444 | if (Val != 2) |
445 | break; |
446 | |
447 | // Ran off the end of a source file? |
448 | if (Entry.ThePPLexer) |
449 | return false; |
450 | } |
451 | } |
452 | |
453 | // Okay, if we know that the token is a '(', lex it and return. Otherwise we |
454 | // have found something that isn't a '(' or we found the end of the |
455 | // translation unit. In either case, return false. |
456 | return Val == 1; |
457 | } |
458 | |
459 | /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be |
460 | /// expanded as a macro, handle it and return the next token as 'Identifier'. |
461 | bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, |
462 | const MacroDefinition &M) { |
463 | emitMacroExpansionWarnings(Identifier); |
464 | |
465 | MacroInfo *MI = M.getMacroInfo(); |
466 | |
467 | // If this is a macro expansion in the "#if !defined(x)" line for the file, |
468 | // then the macro could expand to different things in other contexts, we need |
469 | // to disable the optimization in this case. |
470 | if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); |
471 | |
472 | // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. |
473 | if (MI->isBuiltinMacro()) { |
474 | if (Callbacks) |
475 | Callbacks->MacroExpands(MacroNameTok: Identifier, MD: M, Range: Identifier.getLocation(), |
476 | /*Args=*/nullptr); |
477 | ExpandBuiltinMacro(Tok&: Identifier); |
478 | return true; |
479 | } |
480 | |
481 | /// Args - If this is a function-like macro expansion, this contains, |
482 | /// for each macro argument, the list of tokens that were provided to the |
483 | /// invocation. |
484 | MacroArgs *Args = nullptr; |
485 | |
486 | // Remember where the end of the expansion occurred. For an object-like |
487 | // macro, this is the identifier. For a function-like macro, this is the ')'. |
488 | SourceLocation ExpansionEnd = Identifier.getLocation(); |
489 | |
490 | // If this is a function-like macro, read the arguments. |
491 | if (MI->isFunctionLike()) { |
492 | // Remember that we are now parsing the arguments to a macro invocation. |
493 | // Preprocessor directives used inside macro arguments are not portable, and |
494 | // this enables the warning. |
495 | InMacroArgs = true; |
496 | ArgMacro = &Identifier; |
497 | |
498 | Args = ReadMacroCallArgumentList(MacroName&: Identifier, MI, MacroEnd&: ExpansionEnd); |
499 | |
500 | // Finished parsing args. |
501 | InMacroArgs = false; |
502 | ArgMacro = nullptr; |
503 | |
504 | // If there was an error parsing the arguments, bail out. |
505 | if (!Args) return true; |
506 | |
507 | ++NumFnMacroExpanded; |
508 | } else { |
509 | ++NumMacroExpanded; |
510 | } |
511 | |
512 | // Notice that this macro has been used. |
513 | markMacroAsUsed(MI); |
514 | |
515 | // Remember where the token is expanded. |
516 | SourceLocation ExpandLoc = Identifier.getLocation(); |
517 | SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); |
518 | |
519 | if (Callbacks) { |
520 | if (InMacroArgs) { |
521 | // We can have macro expansion inside a conditional directive while |
522 | // reading the function macro arguments. To ensure, in that case, that |
523 | // MacroExpands callbacks still happen in source order, queue this |
524 | // callback to have it happen after the function macro callback. |
525 | DelayedMacroExpandsCallbacks.push_back( |
526 | Elt: MacroExpandsInfo(Identifier, M, ExpansionRange)); |
527 | } else { |
528 | Callbacks->MacroExpands(MacroNameTok: Identifier, MD: M, Range: ExpansionRange, Args); |
529 | if (!DelayedMacroExpandsCallbacks.empty()) { |
530 | for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { |
531 | // FIXME: We lose macro args info with delayed callback. |
532 | Callbacks->MacroExpands(MacroNameTok: Info.Tok, MD: Info.MD, Range: Info.Range, |
533 | /*Args=*/nullptr); |
534 | } |
535 | DelayedMacroExpandsCallbacks.clear(); |
536 | } |
537 | } |
538 | } |
539 | |
540 | // If the macro definition is ambiguous, complain. |
541 | if (M.isAmbiguous()) { |
542 | Diag(Identifier, diag::warn_pp_ambiguous_macro) |
543 | << Identifier.getIdentifierInfo(); |
544 | Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) |
545 | << Identifier.getIdentifierInfo(); |
546 | M.forAllDefinitions(F: [&](const MacroInfo *OtherMI) { |
547 | if (OtherMI != MI) |
548 | Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) |
549 | << Identifier.getIdentifierInfo(); |
550 | }); |
551 | } |
552 | |
553 | // If we started lexing a macro, enter the macro expansion body. |
554 | |
555 | // If this macro expands to no tokens, don't bother to push it onto the |
556 | // expansion stack, only to take it right back off. |
557 | if (MI->getNumTokens() == 0) { |
558 | // No need for arg info. |
559 | if (Args) Args->destroy(PP&: *this); |
560 | |
561 | // Propagate whitespace info as if we had pushed, then popped, |
562 | // a macro context. |
563 | Identifier.setFlag(Token::LeadingEmptyMacro); |
564 | PropagateLineStartLeadingSpaceInfo(Result&: Identifier); |
565 | ++NumFastMacroExpanded; |
566 | return false; |
567 | } else if (MI->getNumTokens() == 1 && |
568 | isTrivialSingleTokenExpansion(MI, MacroIdent: Identifier.getIdentifierInfo(), |
569 | PP&: *this)) { |
570 | // Otherwise, if this macro expands into a single trivially-expanded |
571 | // token: expand it now. This handles common cases like |
572 | // "#define VAL 42". |
573 | |
574 | // No need for arg info. |
575 | if (Args) Args->destroy(PP&: *this); |
576 | |
577 | // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro |
578 | // identifier to the expanded token. |
579 | bool isAtStartOfLine = Identifier.isAtStartOfLine(); |
580 | bool hasLeadingSpace = Identifier.hasLeadingSpace(); |
581 | |
582 | // Replace the result token. |
583 | Identifier = MI->getReplacementToken(Tok: 0); |
584 | |
585 | // Restore the StartOfLine/LeadingSpace markers. |
586 | Identifier.setFlagValue(Flag: Token::StartOfLine , Val: isAtStartOfLine); |
587 | Identifier.setFlagValue(Flag: Token::LeadingSpace, Val: hasLeadingSpace); |
588 | |
589 | // Update the tokens location to include both its expansion and physical |
590 | // locations. |
591 | SourceLocation Loc = |
592 | SourceMgr.createExpansionLoc(SpellingLoc: Identifier.getLocation(), ExpansionLocStart: ExpandLoc, |
593 | ExpansionLocEnd: ExpansionEnd,Length: Identifier.getLength()); |
594 | Identifier.setLocation(Loc); |
595 | |
596 | // If this is a disabled macro or #define X X, we must mark the result as |
597 | // unexpandable. |
598 | if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { |
599 | if (MacroInfo *NewMI = getMacroInfo(II: NewII)) |
600 | if (!NewMI->isEnabled() || NewMI == MI) { |
601 | Identifier.setFlag(Token::DisableExpand); |
602 | // Don't warn for "#define X X" like "#define bool bool" from |
603 | // stdbool.h. |
604 | if (NewMI != MI || MI->isFunctionLike()) |
605 | Diag(Tok: Identifier, diag::DiagID: pp_disabled_macro_expansion); |
606 | } |
607 | } |
608 | |
609 | // Since this is not an identifier token, it can't be macro expanded, so |
610 | // we're done. |
611 | ++NumFastMacroExpanded; |
612 | return true; |
613 | } |
614 | |
615 | // Start expanding the macro. |
616 | EnterMacro(Tok&: Identifier, ILEnd: ExpansionEnd, Macro: MI, Args); |
617 | return false; |
618 | } |
619 | |
620 | enum Bracket { |
621 | Brace, |
622 | Paren |
623 | }; |
624 | |
625 | /// CheckMatchedBrackets - Returns true if the braces and parentheses in the |
626 | /// token vector are properly nested. |
627 | static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { |
628 | SmallVector<Bracket, 8> Brackets; |
629 | for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), |
630 | E = Tokens.end(); |
631 | I != E; ++I) { |
632 | if (I->is(K: tok::l_paren)) { |
633 | Brackets.push_back(Elt: Paren); |
634 | } else if (I->is(K: tok::r_paren)) { |
635 | if (Brackets.empty() || Brackets.back() == Brace) |
636 | return false; |
637 | Brackets.pop_back(); |
638 | } else if (I->is(K: tok::l_brace)) { |
639 | Brackets.push_back(Elt: Brace); |
640 | } else if (I->is(K: tok::r_brace)) { |
641 | if (Brackets.empty() || Brackets.back() == Paren) |
642 | return false; |
643 | Brackets.pop_back(); |
644 | } |
645 | } |
646 | return Brackets.empty(); |
647 | } |
648 | |
649 | /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new |
650 | /// vector of tokens in NewTokens. The new number of arguments will be placed |
651 | /// in NumArgs and the ranges which need to surrounded in parentheses will be |
652 | /// in ParenHints. |
653 | /// Returns false if the token stream cannot be changed. If this is because |
654 | /// of an initializer list starting a macro argument, the range of those |
655 | /// initializer lists will be place in InitLists. |
656 | static bool GenerateNewArgTokens(Preprocessor &PP, |
657 | SmallVectorImpl<Token> &OldTokens, |
658 | SmallVectorImpl<Token> &NewTokens, |
659 | unsigned &NumArgs, |
660 | SmallVectorImpl<SourceRange> &ParenHints, |
661 | SmallVectorImpl<SourceRange> &InitLists) { |
662 | if (!CheckMatchedBrackets(Tokens: OldTokens)) |
663 | return false; |
664 | |
665 | // Once it is known that the brackets are matched, only a simple count of the |
666 | // braces is needed. |
667 | unsigned Braces = 0; |
668 | |
669 | // First token of a new macro argument. |
670 | SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); |
671 | |
672 | // First closing brace in a new macro argument. Used to generate |
673 | // SourceRanges for InitLists. |
674 | SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); |
675 | NumArgs = 0; |
676 | Token TempToken; |
677 | // Set to true when a macro separator token is found inside a braced list. |
678 | // If true, the fixed argument spans multiple old arguments and ParenHints |
679 | // will be updated. |
680 | bool FoundSeparatorToken = false; |
681 | for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), |
682 | E = OldTokens.end(); |
683 | I != E; ++I) { |
684 | if (I->is(K: tok::l_brace)) { |
685 | ++Braces; |
686 | } else if (I->is(K: tok::r_brace)) { |
687 | --Braces; |
688 | if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) |
689 | ClosingBrace = I; |
690 | } else if (I->is(K: tok::eof)) { |
691 | // EOF token is used to separate macro arguments |
692 | if (Braces != 0) { |
693 | // Assume comma separator is actually braced list separator and change |
694 | // it back to a comma. |
695 | FoundSeparatorToken = true; |
696 | I->setKind(tok::comma); |
697 | I->setLength(1); |
698 | } else { // Braces == 0 |
699 | // Separator token still separates arguments. |
700 | ++NumArgs; |
701 | |
702 | // If the argument starts with a brace, it can't be fixed with |
703 | // parentheses. A different diagnostic will be given. |
704 | if (FoundSeparatorToken && ArgStartIterator->is(K: tok::l_brace)) { |
705 | InitLists.push_back( |
706 | Elt: SourceRange(ArgStartIterator->getLocation(), |
707 | PP.getLocForEndOfToken(Loc: ClosingBrace->getLocation()))); |
708 | ClosingBrace = E; |
709 | } |
710 | |
711 | // Add left paren |
712 | if (FoundSeparatorToken) { |
713 | TempToken.startToken(); |
714 | TempToken.setKind(tok::l_paren); |
715 | TempToken.setLocation(ArgStartIterator->getLocation()); |
716 | TempToken.setLength(0); |
717 | NewTokens.push_back(Elt: TempToken); |
718 | } |
719 | |
720 | // Copy over argument tokens |
721 | NewTokens.insert(I: NewTokens.end(), From: ArgStartIterator, To: I); |
722 | |
723 | // Add right paren and store the paren locations in ParenHints |
724 | if (FoundSeparatorToken) { |
725 | SourceLocation Loc = PP.getLocForEndOfToken(Loc: (I - 1)->getLocation()); |
726 | TempToken.startToken(); |
727 | TempToken.setKind(tok::r_paren); |
728 | TempToken.setLocation(Loc); |
729 | TempToken.setLength(0); |
730 | NewTokens.push_back(Elt: TempToken); |
731 | ParenHints.push_back(Elt: SourceRange(ArgStartIterator->getLocation(), |
732 | Loc)); |
733 | } |
734 | |
735 | // Copy separator token |
736 | NewTokens.push_back(Elt: *I); |
737 | |
738 | // Reset values |
739 | ArgStartIterator = I + 1; |
740 | FoundSeparatorToken = false; |
741 | } |
742 | } |
743 | } |
744 | |
745 | return !ParenHints.empty() && InitLists.empty(); |
746 | } |
747 | |
748 | /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next |
749 | /// token is the '(' of the macro, this method is invoked to read all of the |
750 | /// actual arguments specified for the macro invocation. This returns null on |
751 | /// error. |
752 | MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, |
753 | MacroInfo *MI, |
754 | SourceLocation &MacroEnd) { |
755 | // The number of fixed arguments to parse. |
756 | unsigned NumFixedArgsLeft = MI->getNumParams(); |
757 | bool isVariadic = MI->isVariadic(); |
758 | |
759 | // Outer loop, while there are more arguments, keep reading them. |
760 | Token Tok; |
761 | |
762 | // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
763 | // an argument value in a macro could expand to ',' or '(' or ')'. |
764 | LexUnexpandedToken(Result&: Tok); |
765 | assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); |
766 | |
767 | // ArgTokens - Build up a list of tokens that make up each argument. Each |
768 | // argument is separated by an EOF token. Use a SmallVector so we can avoid |
769 | // heap allocations in the common case. |
770 | SmallVector<Token, 64> ArgTokens; |
771 | bool ContainsCodeCompletionTok = false; |
772 | bool FoundElidedComma = false; |
773 | |
774 | SourceLocation TooManyArgsLoc; |
775 | |
776 | unsigned NumActuals = 0; |
777 | while (Tok.isNot(K: tok::r_paren)) { |
778 | if (ContainsCodeCompletionTok && Tok.isOneOf(K1: tok::eof, K2: tok::eod)) |
779 | break; |
780 | |
781 | assert(Tok.isOneOf(tok::l_paren, tok::comma) && |
782 | "only expect argument separators here"); |
783 | |
784 | size_t ArgTokenStart = ArgTokens.size(); |
785 | SourceLocation ArgStartLoc = Tok.getLocation(); |
786 | |
787 | // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note |
788 | // that we already consumed the first one. |
789 | unsigned NumParens = 0; |
790 | |
791 | while (true) { |
792 | // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
793 | // an argument value in a macro could expand to ',' or '(' or ')'. |
794 | LexUnexpandedToken(Result&: Tok); |
795 | |
796 | if (Tok.isOneOf(K1: tok::eof, K2: tok::eod)) { // "#if f(<eof>" & "#if f(\n" |
797 | if (!ContainsCodeCompletionTok) { |
798 | Diag(MacroName, diag::err_unterm_macro_invoc); |
799 | Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
800 | << MacroName.getIdentifierInfo(); |
801 | // Do not lose the EOF/EOD. Return it to the client. |
802 | MacroName = Tok; |
803 | return nullptr; |
804 | } |
805 | // Do not lose the EOF/EOD. |
806 | auto Toks = std::make_unique<Token[]>(num: 1); |
807 | Toks[0] = Tok; |
808 | EnterTokenStream(Toks: std::move(Toks), NumToks: 1, DisableMacroExpansion: true, /*IsReinject*/ false); |
809 | break; |
810 | } else if (Tok.is(K: tok::r_paren)) { |
811 | // If we found the ) token, the macro arg list is done. |
812 | if (NumParens-- == 0) { |
813 | MacroEnd = Tok.getLocation(); |
814 | if (!ArgTokens.empty() && |
815 | ArgTokens.back().commaAfterElided()) { |
816 | FoundElidedComma = true; |
817 | } |
818 | break; |
819 | } |
820 | } else if (Tok.is(K: tok::l_paren)) { |
821 | ++NumParens; |
822 | } else if (Tok.is(K: tok::comma)) { |
823 | // In Microsoft-compatibility mode, single commas from nested macro |
824 | // expansions should not be considered as argument separators. We test |
825 | // for this with the IgnoredComma token flag. |
826 | if (Tok.getFlags() & Token::IgnoredComma) { |
827 | // However, in MSVC's preprocessor, subsequent expansions do treat |
828 | // these commas as argument separators. This leads to a common |
829 | // workaround used in macros that need to work in both MSVC and |
830 | // compliant preprocessors. Therefore, the IgnoredComma flag can only |
831 | // apply once to any given token. |
832 | Tok.clearFlag(Flag: Token::IgnoredComma); |
833 | } else if (NumParens == 0) { |
834 | // Comma ends this argument if there are more fixed arguments |
835 | // expected. However, if this is a variadic macro, and this is part of |
836 | // the variadic part, then the comma is just an argument token. |
837 | if (!isVariadic) |
838 | break; |
839 | if (NumFixedArgsLeft > 1) |
840 | break; |
841 | } |
842 | } else if (Tok.is(K: tok::comment) && !KeepMacroComments) { |
843 | // If this is a comment token in the argument list and we're just in |
844 | // -C mode (not -CC mode), discard the comment. |
845 | continue; |
846 | } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { |
847 | // Reading macro arguments can cause macros that we are currently |
848 | // expanding from to be popped off the expansion stack. Doing so causes |
849 | // them to be reenabled for expansion. Here we record whether any |
850 | // identifiers we lex as macro arguments correspond to disabled macros. |
851 | // If so, we mark the token as noexpand. This is a subtle aspect of |
852 | // C99 6.10.3.4p2. |
853 | if (MacroInfo *MI = getMacroInfo(II: Tok.getIdentifierInfo())) |
854 | if (!MI->isEnabled()) |
855 | Tok.setFlag(Token::DisableExpand); |
856 | } else if (Tok.is(K: tok::code_completion)) { |
857 | ContainsCodeCompletionTok = true; |
858 | if (CodeComplete) |
859 | CodeComplete->CodeCompleteMacroArgument(Macro: MacroName.getIdentifierInfo(), |
860 | MacroInfo: MI, ArgumentIndex: NumActuals); |
861 | // Don't mark that we reached the code-completion point because the |
862 | // parser is going to handle the token and there will be another |
863 | // code-completion callback. |
864 | } |
865 | |
866 | ArgTokens.push_back(Elt: Tok); |
867 | } |
868 | |
869 | // If this was an empty argument list foo(), don't add this as an empty |
870 | // argument. |
871 | if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) |
872 | break; |
873 | |
874 | // If this is not a variadic macro, and too many args were specified, emit |
875 | // an error. |
876 | if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { |
877 | if (ArgTokens.size() != ArgTokenStart) |
878 | TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); |
879 | else |
880 | TooManyArgsLoc = ArgStartLoc; |
881 | } |
882 | |
883 | // Empty arguments are standard in C99 and C++0x, and are supported as an |
884 | // extension in other modes. |
885 | if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99) |
886 | Diag(Tok, getLangOpts().CPlusPlus11 |
887 | ? diag::warn_cxx98_compat_empty_fnmacro_arg |
888 | : diag::ext_empty_fnmacro_arg); |
889 | |
890 | // Add a marker EOF token to the end of the token list for this argument. |
891 | Token EOFTok; |
892 | EOFTok.startToken(); |
893 | EOFTok.setKind(tok::eof); |
894 | EOFTok.setLocation(Tok.getLocation()); |
895 | EOFTok.setLength(0); |
896 | ArgTokens.push_back(Elt: EOFTok); |
897 | ++NumActuals; |
898 | if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) |
899 | --NumFixedArgsLeft; |
900 | } |
901 | |
902 | // Okay, we either found the r_paren. Check to see if we parsed too few |
903 | // arguments. |
904 | unsigned MinArgsExpected = MI->getNumParams(); |
905 | |
906 | // If this is not a variadic macro, and too many args were specified, emit |
907 | // an error. |
908 | if (!isVariadic && NumActuals > MinArgsExpected && |
909 | !ContainsCodeCompletionTok) { |
910 | // Emit the diagnostic at the macro name in case there is a missing ). |
911 | // Emitting it at the , could be far away from the macro name. |
912 | Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); |
913 | Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
914 | << MacroName.getIdentifierInfo(); |
915 | |
916 | // Commas from braced initializer lists will be treated as argument |
917 | // separators inside macros. Attempt to correct for this with parentheses. |
918 | // TODO: See if this can be generalized to angle brackets for templates |
919 | // inside macro arguments. |
920 | |
921 | SmallVector<Token, 4> FixedArgTokens; |
922 | unsigned FixedNumArgs = 0; |
923 | SmallVector<SourceRange, 4> ParenHints, InitLists; |
924 | if (!GenerateNewArgTokens(PP&: *this, OldTokens&: ArgTokens, NewTokens&: FixedArgTokens, NumArgs&: FixedNumArgs, |
925 | ParenHints, InitLists)) { |
926 | if (!InitLists.empty()) { |
927 | DiagnosticBuilder DB = |
928 | Diag(MacroName, |
929 | diag::note_init_list_at_beginning_of_macro_argument); |
930 | for (SourceRange Range : InitLists) |
931 | DB << Range; |
932 | } |
933 | return nullptr; |
934 | } |
935 | if (FixedNumArgs != MinArgsExpected) |
936 | return nullptr; |
937 | |
938 | DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); |
939 | for (SourceRange ParenLocation : ParenHints) { |
940 | DB << FixItHint::CreateInsertion(InsertionLoc: ParenLocation.getBegin(), Code: "("); |
941 | DB << FixItHint::CreateInsertion(InsertionLoc: ParenLocation.getEnd(), Code: ")"); |
942 | } |
943 | ArgTokens.swap(RHS&: FixedArgTokens); |
944 | NumActuals = FixedNumArgs; |
945 | } |
946 | |
947 | // See MacroArgs instance var for description of this. |
948 | bool isVarargsElided = false; |
949 | |
950 | if (ContainsCodeCompletionTok) { |
951 | // Recover from not-fully-formed macro invocation during code-completion. |
952 | Token EOFTok; |
953 | EOFTok.startToken(); |
954 | EOFTok.setKind(tok::eof); |
955 | EOFTok.setLocation(Tok.getLocation()); |
956 | EOFTok.setLength(0); |
957 | for (; NumActuals < MinArgsExpected; ++NumActuals) |
958 | ArgTokens.push_back(Elt: EOFTok); |
959 | } |
960 | |
961 | if (NumActuals < MinArgsExpected) { |
962 | // There are several cases where too few arguments is ok, handle them now. |
963 | if (NumActuals == 0 && MinArgsExpected == 1) { |
964 | // #define A(X) or #define A(...) ---> A() |
965 | |
966 | // If there is exactly one argument, and that argument is missing, |
967 | // then we have an empty "()" argument empty list. This is fine, even if |
968 | // the macro expects one argument (the argument is just empty). |
969 | isVarargsElided = MI->isVariadic(); |
970 | } else if ((FoundElidedComma || MI->isVariadic()) && |
971 | (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) |
972 | (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() |
973 | // Varargs where the named vararg parameter is missing: OK as extension. |
974 | // #define A(x, ...) |
975 | // A("blah") |
976 | // |
977 | // If the macro contains the comma pasting extension, the diagnostic |
978 | // is suppressed; we know we'll get another diagnostic later. |
979 | if (!MI->hasCommaPasting()) { |
980 | // C++20 [cpp.replace]p15, C23 6.10.5p12 |
981 | // |
982 | // C++20 and C23 allow this construct, but standards before that |
983 | // do not (we allow it as an extension). |
984 | unsigned ID; |
985 | if (getLangOpts().CPlusPlus20) |
986 | ID = diag::warn_cxx17_compat_missing_varargs_arg; |
987 | else if (getLangOpts().CPlusPlus) |
988 | ID = diag::ext_cxx_missing_varargs_arg; |
989 | else if (getLangOpts().C23) |
990 | ID = diag::warn_c17_compat_missing_varargs_arg; |
991 | else |
992 | ID = diag::ext_c_missing_varargs_arg; |
993 | Diag(Tok, DiagID: ID); |
994 | Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
995 | << MacroName.getIdentifierInfo(); |
996 | } |
997 | |
998 | // Remember this occurred, allowing us to elide the comma when used for |
999 | // cases like: |
1000 | // #define A(x, foo...) blah(a, ## foo) |
1001 | // #define B(x, ...) blah(a, ## __VA_ARGS__) |
1002 | // #define C(...) blah(a, ## __VA_ARGS__) |
1003 | // A(x) B(x) C() |
1004 | isVarargsElided = true; |
1005 | } else if (!ContainsCodeCompletionTok) { |
1006 | // Otherwise, emit the error. |
1007 | Diag(Tok, diag::err_too_few_args_in_macro_invoc); |
1008 | Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
1009 | << MacroName.getIdentifierInfo(); |
1010 | return nullptr; |
1011 | } |
1012 | |
1013 | // Add a marker EOF token to the end of the token list for this argument. |
1014 | SourceLocation EndLoc = Tok.getLocation(); |
1015 | Tok.startToken(); |
1016 | Tok.setKind(tok::eof); |
1017 | Tok.setLocation(EndLoc); |
1018 | Tok.setLength(0); |
1019 | ArgTokens.push_back(Elt: Tok); |
1020 | |
1021 | // If we expect two arguments, add both as empty. |
1022 | if (NumActuals == 0 && MinArgsExpected == 2) |
1023 | ArgTokens.push_back(Elt: Tok); |
1024 | |
1025 | } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && |
1026 | !ContainsCodeCompletionTok) { |
1027 | // Emit the diagnostic at the macro name in case there is a missing ). |
1028 | // Emitting it at the , could be far away from the macro name. |
1029 | Diag(MacroName, diag::err_too_many_args_in_macro_invoc); |
1030 | Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
1031 | << MacroName.getIdentifierInfo(); |
1032 | return nullptr; |
1033 | } |
1034 | |
1035 | return MacroArgs::create(MI, UnexpArgTokens: ArgTokens, VarargsElided: isVarargsElided, PP&: *this); |
1036 | } |
1037 | |
1038 | /// Keeps macro expanded tokens for TokenLexers. |
1039 | // |
1040 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
1041 | /// going to lex in the cache and when it finishes the tokens are removed |
1042 | /// from the end of the cache. |
1043 | Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, |
1044 | ArrayRef<Token> tokens) { |
1045 | assert(tokLexer); |
1046 | if (tokens.empty()) |
1047 | return nullptr; |
1048 | |
1049 | size_t newIndex = MacroExpandedTokens.size(); |
1050 | bool cacheNeedsToGrow = tokens.size() > |
1051 | MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); |
1052 | MacroExpandedTokens.append(in_start: tokens.begin(), in_end: tokens.end()); |
1053 | |
1054 | if (cacheNeedsToGrow) { |
1055 | // Go through all the TokenLexers whose 'Tokens' pointer points in the |
1056 | // buffer and update the pointers to the (potential) new buffer array. |
1057 | for (const auto &Lexer : MacroExpandingLexersStack) { |
1058 | TokenLexer *prevLexer; |
1059 | size_t tokIndex; |
1060 | std::tie(args&: prevLexer, args&: tokIndex) = Lexer; |
1061 | prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; |
1062 | } |
1063 | } |
1064 | |
1065 | MacroExpandingLexersStack.push_back(x: std::make_pair(x&: tokLexer, y&: newIndex)); |
1066 | return MacroExpandedTokens.data() + newIndex; |
1067 | } |
1068 | |
1069 | void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { |
1070 | assert(!MacroExpandingLexersStack.empty()); |
1071 | size_t tokIndex = MacroExpandingLexersStack.back().second; |
1072 | assert(tokIndex < MacroExpandedTokens.size()); |
1073 | // Pop the cached macro expanded tokens from the end. |
1074 | MacroExpandedTokens.resize(N: tokIndex); |
1075 | MacroExpandingLexersStack.pop_back(); |
1076 | } |
1077 | |
1078 | /// ComputeDATE_TIME - Compute the current time, enter it into the specified |
1079 | /// scratch buffer, then return DATELoc/TIMELoc locations with the position of |
1080 | /// the identifier tokens inserted. |
1081 | static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, |
1082 | Preprocessor &PP) { |
1083 | time_t TT; |
1084 | std::tm *TM; |
1085 | if (PP.getPreprocessorOpts().SourceDateEpoch) { |
1086 | TT = *PP.getPreprocessorOpts().SourceDateEpoch; |
1087 | TM = std::gmtime(timer: &TT); |
1088 | } else { |
1089 | TT = std::time(timer: nullptr); |
1090 | TM = std::localtime(timer: &TT); |
1091 | } |
1092 | |
1093 | static const char * const Months[] = { |
1094 | "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
1095 | }; |
1096 | |
1097 | { |
1098 | SmallString<32> TmpBuffer; |
1099 | llvm::raw_svector_ostream TmpStream(TmpBuffer); |
1100 | if (TM) |
1101 | TmpStream << llvm::format(Fmt: "\"%s %2d %4d\"", Vals: Months[TM->tm_mon], |
1102 | Vals: TM->tm_mday, Vals: TM->tm_year + 1900); |
1103 | else |
1104 | TmpStream << "??? ?? ????"; |
1105 | Token TmpTok; |
1106 | TmpTok.startToken(); |
1107 | PP.CreateString(Str: TmpStream.str(), Tok&: TmpTok); |
1108 | DATELoc = TmpTok.getLocation(); |
1109 | } |
1110 | |
1111 | { |
1112 | SmallString<32> TmpBuffer; |
1113 | llvm::raw_svector_ostream TmpStream(TmpBuffer); |
1114 | if (TM) |
1115 | TmpStream << llvm::format(Fmt: "\"%02d:%02d:%02d\"", Vals: TM->tm_hour, Vals: TM->tm_min, |
1116 | Vals: TM->tm_sec); |
1117 | else |
1118 | TmpStream << "??:??:??"; |
1119 | Token TmpTok; |
1120 | TmpTok.startToken(); |
1121 | PP.CreateString(Str: TmpStream.str(), Tok&: TmpTok); |
1122 | TIMELoc = TmpTok.getLocation(); |
1123 | } |
1124 | } |
1125 | |
1126 | /// HasFeature - Return true if we recognize and implement the feature |
1127 | /// specified by the identifier as a standard language feature. |
1128 | static bool HasFeature(const Preprocessor &PP, StringRef Feature) { |
1129 | const LangOptions &LangOpts = PP.getLangOpts(); |
1130 | |
1131 | // Normalize the feature name, __foo__ becomes foo. |
1132 | if (Feature.starts_with(Prefix: "__") && Feature.ends_with(Suffix: "__") && |
1133 | Feature.size() >= 4) |
1134 | Feature = Feature.substr(Start: 2, N: Feature.size() - 4); |
1135 | |
1136 | #define FEATURE(Name, Predicate) .Case(#Name, Predicate) |
1137 | return llvm::StringSwitch<bool>(Feature) |
1138 | #include "clang/Basic/Features.def" |
1139 | .Default(Value: false); |
1140 | #undef FEATURE |
1141 | } |
1142 | |
1143 | /// HasExtension - Return true if we recognize and implement the feature |
1144 | /// specified by the identifier, either as an extension or a standard language |
1145 | /// feature. |
1146 | static bool HasExtension(const Preprocessor &PP, StringRef Extension) { |
1147 | if (HasFeature(PP, Feature: Extension)) |
1148 | return true; |
1149 | |
1150 | // If the use of an extension results in an error diagnostic, extensions are |
1151 | // effectively unavailable, so just return false here. |
1152 | if (PP.getDiagnostics().getExtensionHandlingBehavior() >= |
1153 | diag::Severity::Error) |
1154 | return false; |
1155 | |
1156 | const LangOptions &LangOpts = PP.getLangOpts(); |
1157 | |
1158 | // Normalize the extension name, __foo__ becomes foo. |
1159 | if (Extension.starts_with(Prefix: "__") && Extension.ends_with(Suffix: "__") && |
1160 | Extension.size() >= 4) |
1161 | Extension = Extension.substr(Start: 2, N: Extension.size() - 4); |
1162 | |
1163 | // Because we inherit the feature list from HasFeature, this string switch |
1164 | // must be less restrictive than HasFeature's. |
1165 | #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) |
1166 | return llvm::StringSwitch<bool>(Extension) |
1167 | #include "clang/Basic/Features.def" |
1168 | .Default(Value: false); |
1169 | #undef EXTENSION |
1170 | } |
1171 | |
1172 | /// EvaluateHasIncludeCommon - Process a '__has_include("path")' |
1173 | /// or '__has_include_next("path")' expression. |
1174 | /// Returns true if successful. |
1175 | static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, |
1176 | Preprocessor &PP, |
1177 | ConstSearchDirIterator LookupFrom, |
1178 | const FileEntry *LookupFromFile) { |
1179 | // Save the location of the current token. If a '(' is later found, use |
1180 | // that location. If not, use the end of this location instead. |
1181 | SourceLocation LParenLoc = Tok.getLocation(); |
1182 | |
1183 | // These expressions are only allowed within a preprocessor directive. |
1184 | if (!PP.isParsingIfOrElifDirective()) { |
1185 | PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; |
1186 | // Return a valid identifier token. |
1187 | assert(Tok.is(tok::identifier)); |
1188 | Tok.setIdentifierInfo(II); |
1189 | return false; |
1190 | } |
1191 | |
1192 | // Get '('. If we don't have a '(', try to form a header-name token. |
1193 | do { |
1194 | if (PP.LexHeaderName(Result&: Tok)) |
1195 | return false; |
1196 | } while (Tok.getKind() == tok::comment); |
1197 | |
1198 | // Ensure we have a '('. |
1199 | if (Tok.isNot(K: tok::l_paren)) { |
1200 | // No '(', use end of last token. |
1201 | LParenLoc = PP.getLocForEndOfToken(Loc: LParenLoc); |
1202 | PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; |
1203 | // If the next token looks like a filename or the start of one, |
1204 | // assume it is and process it as such. |
1205 | if (Tok.isNot(K: tok::header_name)) |
1206 | return false; |
1207 | } else { |
1208 | // Save '(' location for possible missing ')' message. |
1209 | LParenLoc = Tok.getLocation(); |
1210 | if (PP.LexHeaderName(Result&: Tok)) |
1211 | return false; |
1212 | } |
1213 | |
1214 | if (Tok.isNot(K: tok::header_name)) { |
1215 | PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); |
1216 | return false; |
1217 | } |
1218 | |
1219 | // Reserve a buffer to get the spelling. |
1220 | SmallString<128> FilenameBuffer; |
1221 | bool Invalid = false; |
1222 | StringRef Filename = PP.getSpelling(Tok, Buffer&: FilenameBuffer, Invalid: &Invalid); |
1223 | if (Invalid) |
1224 | return false; |
1225 | |
1226 | SourceLocation FilenameLoc = Tok.getLocation(); |
1227 | |
1228 | // Get ')'. |
1229 | PP.LexNonComment(Result&: Tok); |
1230 | |
1231 | // Ensure we have a trailing ). |
1232 | if (Tok.isNot(K: tok::r_paren)) { |
1233 | PP.Diag(PP.getLocForEndOfToken(Loc: FilenameLoc), diag::err_pp_expected_after) |
1234 | << II << tok::r_paren; |
1235 | PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
1236 | return false; |
1237 | } |
1238 | |
1239 | bool isAngled = PP.GetIncludeFilenameSpelling(Loc: Tok.getLocation(), Buffer&: Filename); |
1240 | // If GetIncludeFilenameSpelling set the start ptr to null, there was an |
1241 | // error. |
1242 | if (Filename.empty()) |
1243 | return false; |
1244 | |
1245 | // Passing this to LookupFile forces header search to check whether the found |
1246 | // file belongs to a module. Skipping that check could incorrectly mark |
1247 | // modular header as textual, causing issues down the line. |
1248 | ModuleMap::KnownHeader KH; |
1249 | |
1250 | // Search include directories. |
1251 | OptionalFileEntryRef File = |
1252 | PP.LookupFile(FilenameLoc, Filename, isAngled, FromDir: LookupFrom, FromFile: LookupFromFile, |
1253 | CurDir: nullptr, SearchPath: nullptr, RelativePath: nullptr, SuggestedModule: &KH, IsMapped: nullptr, IsFrameworkFound: nullptr); |
1254 | |
1255 | if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { |
1256 | SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; |
1257 | if (File) |
1258 | FileType = PP.getHeaderSearchInfo().getFileDirFlavor(File: *File); |
1259 | Callbacks->HasInclude(Loc: FilenameLoc, FileName: Filename, IsAngled: isAngled, File, FileType); |
1260 | } |
1261 | |
1262 | // Get the result value. A result of true means the file exists. |
1263 | return File.has_value(); |
1264 | } |
1265 | |
1266 | /// EvaluateHasEmbed - Process a '__has_embed("foo" params...)' expression. |
1267 | /// Returns a filled optional with the value if successful; otherwise, empty. |
1268 | EmbedResult Preprocessor::EvaluateHasEmbed(Token &Tok, IdentifierInfo *II) { |
1269 | // These expressions are only allowed within a preprocessor directive. |
1270 | if (!this->isParsingIfOrElifDirective()) { |
1271 | Diag(Tok, diag::err_pp_directive_required) << II; |
1272 | // Return a valid identifier token. |
1273 | assert(Tok.is(tok::identifier)); |
1274 | Tok.setIdentifierInfo(II); |
1275 | return EmbedResult::Invalid; |
1276 | } |
1277 | |
1278 | // Ensure we have a '('. |
1279 | LexUnexpandedToken(Result&: Tok); |
1280 | if (Tok.isNot(K: tok::l_paren)) { |
1281 | Diag(Tok, diag::err_pp_expected_after) << II << tok::l_paren; |
1282 | // If the next token looks like a filename or the start of one, |
1283 | // assume it is and process it as such. |
1284 | return EmbedResult::Invalid; |
1285 | } |
1286 | |
1287 | // Save '(' location for possible missing ')' message and then lex the header |
1288 | // name token for the embed resource. |
1289 | SourceLocation LParenLoc = Tok.getLocation(); |
1290 | if (this->LexHeaderName(Result&: Tok)) |
1291 | return EmbedResult::Invalid; |
1292 | |
1293 | if (Tok.isNot(K: tok::header_name)) { |
1294 | Diag(Tok.getLocation(), diag::err_pp_expects_filename); |
1295 | return EmbedResult::Invalid; |
1296 | } |
1297 | |
1298 | SourceLocation FilenameLoc = Tok.getLocation(); |
1299 | Token FilenameTok = Tok; |
1300 | |
1301 | std::optional<LexEmbedParametersResult> Params = |
1302 | this->LexEmbedParameters(Current&: Tok, /*ForHasEmbed=*/true); |
1303 | assert((Params || Tok.is(tok::eod)) && |
1304 | "expected success or to be at the end of the directive"); |
1305 | |
1306 | if (!Params) |
1307 | return EmbedResult::Invalid; |
1308 | |
1309 | if (Params->UnrecognizedParams > 0) |
1310 | return EmbedResult::NotFound; |
1311 | |
1312 | if (!Tok.is(K: tok::r_paren)) { |
1313 | Diag(this->getLocForEndOfToken(Loc: FilenameLoc), diag::err_pp_expected_after) |
1314 | << II << tok::r_paren; |
1315 | Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
1316 | if (Tok.isNot(K: tok::eod)) |
1317 | DiscardUntilEndOfDirective(); |
1318 | return EmbedResult::Invalid; |
1319 | } |
1320 | |
1321 | SmallString<128> FilenameBuffer; |
1322 | StringRef Filename = this->getSpelling(Tok: FilenameTok, Buffer&: FilenameBuffer); |
1323 | bool isAngled = |
1324 | this->GetIncludeFilenameSpelling(Loc: FilenameTok.getLocation(), Buffer&: Filename); |
1325 | // If GetIncludeFilenameSpelling set the start ptr to null, there was an |
1326 | // error. |
1327 | assert(!Filename.empty()); |
1328 | const FileEntry *LookupFromFile = |
1329 | this->getCurrentFileLexer() ? *this->getCurrentFileLexer()->getFileEntry() |
1330 | : static_cast<FileEntry *>(nullptr); |
1331 | OptionalFileEntryRef MaybeFileEntry = |
1332 | this->LookupEmbedFile(Filename, isAngled, OpenFile: false, LookupFromFile); |
1333 | if (Callbacks) { |
1334 | Callbacks->HasEmbed(Loc: LParenLoc, FileName: Filename, IsAngled: isAngled, File: MaybeFileEntry); |
1335 | } |
1336 | if (!MaybeFileEntry) |
1337 | return EmbedResult::NotFound; |
1338 | |
1339 | size_t FileSize = MaybeFileEntry->getSize(); |
1340 | // First, "offset" into the file (this reduces the amount of data we can read |
1341 | // from the file). |
1342 | if (Params->MaybeOffsetParam) { |
1343 | if (Params->MaybeOffsetParam->Offset > FileSize) |
1344 | FileSize = 0; |
1345 | else |
1346 | FileSize -= Params->MaybeOffsetParam->Offset; |
1347 | } |
1348 | |
1349 | // Second, limit the data from the file (this also reduces the amount of data |
1350 | // we can read from the file). |
1351 | if (Params->MaybeLimitParam) { |
1352 | if (Params->MaybeLimitParam->Limit > FileSize) |
1353 | FileSize = 0; |
1354 | else |
1355 | FileSize = Params->MaybeLimitParam->Limit; |
1356 | } |
1357 | |
1358 | // If we have no data left to read, the file is empty, otherwise we have the |
1359 | // expected resource. |
1360 | if (FileSize == 0) |
1361 | return EmbedResult::Empty; |
1362 | return EmbedResult::Found; |
1363 | } |
1364 | |
1365 | bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) { |
1366 | return EvaluateHasIncludeCommon(Tok, II, PP&: *this, LookupFrom: nullptr, LookupFromFile: nullptr); |
1367 | } |
1368 | |
1369 | bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) { |
1370 | ConstSearchDirIterator Lookup = nullptr; |
1371 | const FileEntry *LookupFromFile; |
1372 | std::tie(args&: Lookup, args&: LookupFromFile) = getIncludeNextStart(IncludeNextTok: Tok); |
1373 | |
1374 | return EvaluateHasIncludeCommon(Tok, II, PP&: *this, LookupFrom: Lookup, LookupFromFile); |
1375 | } |
1376 | |
1377 | /// Process single-argument builtin feature-like macros that return |
1378 | /// integer values. |
1379 | static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, |
1380 | Token &Tok, IdentifierInfo *II, |
1381 | Preprocessor &PP, bool ExpandArgs, |
1382 | llvm::function_ref< |
1383 | int(Token &Tok, |
1384 | bool &HasLexedNextTok)> Op) { |
1385 | // Parse the initial '('. |
1386 | PP.LexUnexpandedToken(Result&: Tok); |
1387 | if (Tok.isNot(K: tok::l_paren)) { |
1388 | PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II |
1389 | << tok::l_paren; |
1390 | |
1391 | // Provide a dummy '0' value on output stream to elide further errors. |
1392 | if (!Tok.isOneOf(K1: tok::eof, K2: tok::eod)) { |
1393 | OS << 0; |
1394 | Tok.setKind(tok::numeric_constant); |
1395 | } |
1396 | return; |
1397 | } |
1398 | |
1399 | unsigned ParenDepth = 1; |
1400 | SourceLocation LParenLoc = Tok.getLocation(); |
1401 | std::optional<int> Result; |
1402 | |
1403 | Token ResultTok; |
1404 | bool SuppressDiagnostic = false; |
1405 | while (true) { |
1406 | // Parse next token. |
1407 | if (ExpandArgs) |
1408 | PP.Lex(Result&: Tok); |
1409 | else |
1410 | PP.LexUnexpandedToken(Result&: Tok); |
1411 | |
1412 | already_lexed: |
1413 | switch (Tok.getKind()) { |
1414 | case tok::eof: |
1415 | case tok::eod: |
1416 | // Don't provide even a dummy value if the eod or eof marker is |
1417 | // reached. Simply provide a diagnostic. |
1418 | PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); |
1419 | return; |
1420 | |
1421 | case tok::comma: |
1422 | if (!SuppressDiagnostic) { |
1423 | PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); |
1424 | SuppressDiagnostic = true; |
1425 | } |
1426 | continue; |
1427 | |
1428 | case tok::l_paren: |
1429 | ++ParenDepth; |
1430 | if (Result) |
1431 | break; |
1432 | if (!SuppressDiagnostic) { |
1433 | PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; |
1434 | SuppressDiagnostic = true; |
1435 | } |
1436 | continue; |
1437 | |
1438 | case tok::r_paren: |
1439 | if (--ParenDepth > 0) |
1440 | continue; |
1441 | |
1442 | // The last ')' has been reached; return the value if one found or |
1443 | // a diagnostic and a dummy value. |
1444 | if (Result) { |
1445 | OS << *Result; |
1446 | // For strict conformance to __has_cpp_attribute rules, use 'L' |
1447 | // suffix for dated literals. |
1448 | if (*Result > 1) |
1449 | OS << 'L'; |
1450 | } else { |
1451 | OS << 0; |
1452 | if (!SuppressDiagnostic) |
1453 | PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); |
1454 | } |
1455 | Tok.setKind(tok::numeric_constant); |
1456 | return; |
1457 | |
1458 | default: { |
1459 | // Parse the macro argument, if one not found so far. |
1460 | if (Result) |
1461 | break; |
1462 | |
1463 | bool HasLexedNextToken = false; |
1464 | Result = Op(Tok, HasLexedNextToken); |
1465 | ResultTok = Tok; |
1466 | if (HasLexedNextToken) |
1467 | goto already_lexed; |
1468 | continue; |
1469 | } |
1470 | } |
1471 | |
1472 | // Diagnose missing ')'. |
1473 | if (!SuppressDiagnostic) { |
1474 | if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { |
1475 | if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) |
1476 | Diag << LastII; |
1477 | else |
1478 | Diag << ResultTok.getKind(); |
1479 | Diag << tok::r_paren << ResultTok.getLocation(); |
1480 | } |
1481 | PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
1482 | SuppressDiagnostic = true; |
1483 | } |
1484 | } |
1485 | } |
1486 | |
1487 | /// Helper function to return the IdentifierInfo structure of a Token |
1488 | /// or generate a diagnostic if none available. |
1489 | static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, |
1490 | Preprocessor &PP, |
1491 | signed DiagID) { |
1492 | IdentifierInfo *II; |
1493 | if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) |
1494 | return II; |
1495 | |
1496 | PP.Diag(Loc: Tok.getLocation(), DiagID); |
1497 | return nullptr; |
1498 | } |
1499 | |
1500 | /// Implements the __is_target_arch builtin macro. |
1501 | static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { |
1502 | std::string ArchName = II->getName().lower() + "--"; |
1503 | llvm::Triple Arch(ArchName); |
1504 | const llvm::Triple &TT = TI.getTriple(); |
1505 | if (TT.isThumb()) { |
1506 | // arm matches thumb or thumbv7. armv7 matches thumbv7. |
1507 | if ((Arch.getSubArch() == llvm::Triple::NoSubArch || |
1508 | Arch.getSubArch() == TT.getSubArch()) && |
1509 | ((TT.getArch() == llvm::Triple::thumb && |
1510 | Arch.getArch() == llvm::Triple::arm) || |
1511 | (TT.getArch() == llvm::Triple::thumbeb && |
1512 | Arch.getArch() == llvm::Triple::armeb))) |
1513 | return true; |
1514 | } |
1515 | // Check the parsed arch when it has no sub arch to allow Clang to |
1516 | // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. |
1517 | return (Arch.getSubArch() == llvm::Triple::NoSubArch || |
1518 | Arch.getSubArch() == TT.getSubArch()) && |
1519 | Arch.getArch() == TT.getArch(); |
1520 | } |
1521 | |
1522 | /// Implements the __is_target_vendor builtin macro. |
1523 | static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { |
1524 | StringRef VendorName = TI.getTriple().getVendorName(); |
1525 | if (VendorName.empty()) |
1526 | VendorName = "unknown"; |
1527 | return VendorName.equals_insensitive(RHS: II->getName()); |
1528 | } |
1529 | |
1530 | /// Implements the __is_target_os builtin macro. |
1531 | static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { |
1532 | std::string OSName = |
1533 | (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); |
1534 | llvm::Triple OS(OSName); |
1535 | if (OS.getOS() == llvm::Triple::Darwin) { |
1536 | // Darwin matches macos, ios, etc. |
1537 | return TI.getTriple().isOSDarwin(); |
1538 | } |
1539 | return TI.getTriple().getOS() == OS.getOS(); |
1540 | } |
1541 | |
1542 | /// Implements the __is_target_environment builtin macro. |
1543 | static bool isTargetEnvironment(const TargetInfo &TI, |
1544 | const IdentifierInfo *II) { |
1545 | std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); |
1546 | llvm::Triple Env(EnvName); |
1547 | // The unknown environment is matched only if |
1548 | // '__is_target_environment(unknown)' is used. |
1549 | if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment && |
1550 | EnvName != "---unknown") |
1551 | return false; |
1552 | return TI.getTriple().getEnvironment() == Env.getEnvironment(); |
1553 | } |
1554 | |
1555 | /// Implements the __is_target_variant_os builtin macro. |
1556 | static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) { |
1557 | if (TI.getTriple().isOSDarwin()) { |
1558 | const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); |
1559 | if (!VariantTriple) |
1560 | return false; |
1561 | |
1562 | std::string OSName = |
1563 | (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); |
1564 | llvm::Triple OS(OSName); |
1565 | if (OS.getOS() == llvm::Triple::Darwin) { |
1566 | // Darwin matches macos, ios, etc. |
1567 | return VariantTriple->isOSDarwin(); |
1568 | } |
1569 | return VariantTriple->getOS() == OS.getOS(); |
1570 | } |
1571 | return false; |
1572 | } |
1573 | |
1574 | /// Implements the __is_target_variant_environment builtin macro. |
1575 | static bool isTargetVariantEnvironment(const TargetInfo &TI, |
1576 | const IdentifierInfo *II) { |
1577 | if (TI.getTriple().isOSDarwin()) { |
1578 | const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); |
1579 | if (!VariantTriple) |
1580 | return false; |
1581 | std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); |
1582 | llvm::Triple Env(EnvName); |
1583 | return VariantTriple->getEnvironment() == Env.getEnvironment(); |
1584 | } |
1585 | return false; |
1586 | } |
1587 | |
1588 | #if defined(__sun__) && defined(__svr4__) && defined(__clang__) && \ |
1589 | __clang__ < 20 |
1590 | // GCC mangles std::tm as tm for binary compatibility on Solaris (Issue |
1591 | // #33114). We need to match this to allow the std::put_time calls to link |
1592 | // (PR #99075). clang 20 contains a fix, but the workaround is still needed |
1593 | // with older versions. |
1594 | asm("_ZNKSt8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE3putES3_" |
1595 | "RSt8ios_basecPKSt2tmPKcSB_ = " |
1596 | "_ZNKSt8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE3putES3_" |
1597 | "RSt8ios_basecPK2tmPKcSB_"); |
1598 | #endif |
1599 | |
1600 | static bool IsBuiltinTrait(Token &Tok) { |
1601 | |
1602 | #define TYPE_TRAIT_1(Spelling, Name, Key) \ |
1603 | case tok::kw_##Spelling: \ |
1604 | return true; |
1605 | #define TYPE_TRAIT_2(Spelling, Name, Key) \ |
1606 | case tok::kw_##Spelling: \ |
1607 | return true; |
1608 | #define TYPE_TRAIT_N(Spelling, Name, Key) \ |
1609 | case tok::kw_##Spelling: \ |
1610 | return true; |
1611 | #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \ |
1612 | case tok::kw_##Spelling: \ |
1613 | return true; |
1614 | #define EXPRESSION_TRAIT(Spelling, Name, Key) \ |
1615 | case tok::kw_##Spelling: \ |
1616 | return true; |
1617 | #define TRANSFORM_TYPE_TRAIT_DEF(K, Spelling) \ |
1618 | case tok::kw___##Spelling: \ |
1619 | return true; |
1620 | |
1621 | switch (Tok.getKind()) { |
1622 | default: |
1623 | return false; |
1624 | #include "clang/Basic/TokenKinds.def" |
1625 | } |
1626 | } |
1627 | |
1628 | /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded |
1629 | /// as a builtin macro, handle it and return the next token as 'Tok'. |
1630 | void Preprocessor::ExpandBuiltinMacro(Token &Tok) { |
1631 | // Figure out which token this is. |
1632 | IdentifierInfo *II = Tok.getIdentifierInfo(); |
1633 | assert(II && "Can't be a macro without id info!"); |
1634 | |
1635 | // If this is an _Pragma or Microsoft __pragma directive, expand it, |
1636 | // invoke the pragma handler, then lex the token after it. |
1637 | if (II == Ident_Pragma) |
1638 | return Handle_Pragma(Tok); |
1639 | else if (II == Ident__pragma) // in non-MS mode this is null |
1640 | return HandleMicrosoft__pragma(Tok); |
1641 | |
1642 | ++NumBuiltinMacroExpanded; |
1643 | |
1644 | SmallString<128> TmpBuffer; |
1645 | llvm::raw_svector_ostream OS(TmpBuffer); |
1646 | |
1647 | // Set up the return result. |
1648 | Tok.setIdentifierInfo(nullptr); |
1649 | Tok.clearFlag(Flag: Token::NeedsCleaning); |
1650 | bool IsAtStartOfLine = Tok.isAtStartOfLine(); |
1651 | bool HasLeadingSpace = Tok.hasLeadingSpace(); |
1652 | |
1653 | if (II == Ident__LINE__) { |
1654 | // C99 6.10.8: "__LINE__: The presumed line number (within the current |
1655 | // source file) of the current source line (an integer constant)". This can |
1656 | // be affected by #line. |
1657 | SourceLocation Loc = Tok.getLocation(); |
1658 | |
1659 | // Advance to the location of the first _, this might not be the first byte |
1660 | // of the token if it starts with an escaped newline. |
1661 | Loc = AdvanceToTokenCharacter(TokStart: Loc, Char: 0); |
1662 | |
1663 | // One wrinkle here is that GCC expands __LINE__ to location of the *end* of |
1664 | // a macro expansion. This doesn't matter for object-like macros, but |
1665 | // can matter for a function-like macro that expands to contain __LINE__. |
1666 | // Skip down through expansion points until we find a file loc for the |
1667 | // end of the expansion history. |
1668 | Loc = SourceMgr.getExpansionRange(Loc).getEnd(); |
1669 | PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); |
1670 | |
1671 | // __LINE__ expands to a simple numeric value. |
1672 | OS << (PLoc.isValid()? PLoc.getLine() : 1); |
1673 | Tok.setKind(tok::numeric_constant); |
1674 | } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || |
1675 | II == Ident__FILE_NAME__) { |
1676 | // C99 6.10.8: "__FILE__: The presumed name of the current source file (a |
1677 | // character string literal)". This can be affected by #line. |
1678 | PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc: Tok.getLocation()); |
1679 | |
1680 | // __BASE_FILE__ is a GNU extension that returns the top of the presumed |
1681 | // #include stack instead of the current file. |
1682 | if (II == Ident__BASE_FILE__ && PLoc.isValid()) { |
1683 | SourceLocation NextLoc = PLoc.getIncludeLoc(); |
1684 | while (NextLoc.isValid()) { |
1685 | PLoc = SourceMgr.getPresumedLoc(Loc: NextLoc); |
1686 | if (PLoc.isInvalid()) |
1687 | break; |
1688 | |
1689 | NextLoc = PLoc.getIncludeLoc(); |
1690 | } |
1691 | } |
1692 | |
1693 | // Escape this filename. Turn '\' -> '\\' '"' -> '\"' |
1694 | SmallString<256> FN; |
1695 | if (PLoc.isValid()) { |
1696 | // __FILE_NAME__ is a Clang-specific extension that expands to the |
1697 | // the last part of __FILE__. |
1698 | if (II == Ident__FILE_NAME__) { |
1699 | processPathToFileName(FileName&: FN, PLoc, LangOpts: getLangOpts(), TI: getTargetInfo()); |
1700 | } else { |
1701 | FN += PLoc.getFilename(); |
1702 | processPathForFileMacro(Path&: FN, LangOpts: getLangOpts(), TI: getTargetInfo()); |
1703 | } |
1704 | Lexer::Stringify(Str&: FN); |
1705 | OS << '"' << FN << '"'; |
1706 | } |
1707 | Tok.setKind(tok::string_literal); |
1708 | } else if (II == Ident__DATE__) { |
1709 | Diag(Tok.getLocation(), diag::warn_pp_date_time); |
1710 | if (!DATELoc.isValid()) |
1711 | ComputeDATE_TIME(DATELoc, TIMELoc, PP&: *this); |
1712 | Tok.setKind(tok::string_literal); |
1713 | Tok.setLength(strlen(s: "\"Mmm dd yyyy\"")); |
1714 | Tok.setLocation(SourceMgr.createExpansionLoc(SpellingLoc: DATELoc, ExpansionLocStart: Tok.getLocation(), |
1715 | ExpansionLocEnd: Tok.getLocation(), |
1716 | Length: Tok.getLength())); |
1717 | return; |
1718 | } else if (II == Ident__TIME__) { |
1719 | Diag(Tok.getLocation(), diag::warn_pp_date_time); |
1720 | if (!TIMELoc.isValid()) |
1721 | ComputeDATE_TIME(DATELoc, TIMELoc, PP&: *this); |
1722 | Tok.setKind(tok::string_literal); |
1723 | Tok.setLength(strlen(s: "\"hh:mm:ss\"")); |
1724 | Tok.setLocation(SourceMgr.createExpansionLoc(SpellingLoc: TIMELoc, ExpansionLocStart: Tok.getLocation(), |
1725 | ExpansionLocEnd: Tok.getLocation(), |
1726 | Length: Tok.getLength())); |
1727 | return; |
1728 | } else if (II == Ident__INCLUDE_LEVEL__) { |
1729 | // Compute the presumed include depth of this token. This can be affected |
1730 | // by GNU line markers. |
1731 | unsigned Depth = 0; |
1732 | |
1733 | PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc: Tok.getLocation()); |
1734 | if (PLoc.isValid()) { |
1735 | PLoc = SourceMgr.getPresumedLoc(Loc: PLoc.getIncludeLoc()); |
1736 | for (; PLoc.isValid(); ++Depth) |
1737 | PLoc = SourceMgr.getPresumedLoc(Loc: PLoc.getIncludeLoc()); |
1738 | } |
1739 | |
1740 | // __INCLUDE_LEVEL__ expands to a simple numeric value. |
1741 | OS << Depth; |
1742 | Tok.setKind(tok::numeric_constant); |
1743 | } else if (II == Ident__TIMESTAMP__) { |
1744 | Diag(Tok.getLocation(), diag::warn_pp_date_time); |
1745 | // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be |
1746 | // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. |
1747 | std::string Result; |
1748 | std::stringstream TmpStream; |
1749 | TmpStream.imbue(loc: std::locale("C")); |
1750 | if (getPreprocessorOpts().SourceDateEpoch) { |
1751 | time_t TT = *getPreprocessorOpts().SourceDateEpoch; |
1752 | std::tm *TM = std::gmtime(timer: &TT); |
1753 | TmpStream << std::put_time(tmb: TM, fmt: "%a %b %e %T %Y"); |
1754 | } else { |
1755 | // Get the file that we are lexing out of. If we're currently lexing from |
1756 | // a macro, dig into the include stack. |
1757 | const FileEntry *CurFile = nullptr; |
1758 | if (PreprocessorLexer *TheLexer = getCurrentFileLexer()) |
1759 | CurFile = SourceMgr.getFileEntryForID(FID: TheLexer->getFileID()); |
1760 | if (CurFile) { |
1761 | time_t TT = CurFile->getModificationTime(); |
1762 | struct tm *TM = localtime(timer: &TT); |
1763 | TmpStream << std::put_time(tmb: TM, fmt: "%a %b %e %T %Y"); |
1764 | } |
1765 | } |
1766 | Result = TmpStream.str(); |
1767 | if (Result.empty()) |
1768 | Result = "??? ??? ?? ??:??:?? ????"; |
1769 | OS << '"' << Result << '"'; |
1770 | Tok.setKind(tok::string_literal); |
1771 | } else if (II == Ident__FLT_EVAL_METHOD__) { |
1772 | // __FLT_EVAL_METHOD__ is set to the default value. |
1773 | OS << getTUFPEvalMethod(); |
1774 | // __FLT_EVAL_METHOD__ expands to a simple numeric value. |
1775 | Tok.setKind(tok::numeric_constant); |
1776 | if (getLastFPEvalPragmaLocation().isValid()) { |
1777 | // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered |
1778 | // by the pragma. |
1779 | Diag(Tok, diag::err_illegal_use_of_flt_eval_macro); |
1780 | Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here); |
1781 | } |
1782 | } else if (II == Ident__COUNTER__) { |
1783 | // __COUNTER__ expands to a simple numeric value. |
1784 | OS << CounterValue++; |
1785 | Tok.setKind(tok::numeric_constant); |
1786 | } else if (II == Ident__has_feature) { |
1787 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, PP&: *this, ExpandArgs: false, |
1788 | Op: [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1789 | IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
1790 | diag::err_feature_check_malformed); |
1791 | return II && HasFeature(PP: *this, Feature: II->getName()); |
1792 | }); |
1793 | } else if (II == Ident__has_extension) { |
1794 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, PP&: *this, ExpandArgs: false, |
1795 | Op: [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1796 | IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
1797 | diag::err_feature_check_malformed); |
1798 | return II && HasExtension(PP: *this, Extension: II->getName()); |
1799 | }); |
1800 | } else if (II == Ident__has_builtin) { |
1801 | EvaluateFeatureLikeBuiltinMacro( |
1802 | OS, Tok, II, *this, false, |
1803 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1804 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
1805 | Tok, *this, diag::err_feature_check_malformed); |
1806 | if (!II) |
1807 | return false; |
1808 | else if (II->getBuiltinID() != 0) { |
1809 | switch (II->getBuiltinID()) { |
1810 | case Builtin::BI__builtin_cpu_is: |
1811 | return getTargetInfo().supportsCpuIs(); |
1812 | case Builtin::BI__builtin_cpu_init: |
1813 | return getTargetInfo().supportsCpuInit(); |
1814 | case Builtin::BI__builtin_cpu_supports: |
1815 | return getTargetInfo().supportsCpuSupports(); |
1816 | case Builtin::BI__builtin_operator_new: |
1817 | case Builtin::BI__builtin_operator_delete: |
1818 | // denotes date of behavior change to support calling arbitrary |
1819 | // usual allocation and deallocation functions. Required by libc++ |
1820 | return 201802; |
1821 | default: |
1822 | return Builtin::evaluateRequiredTargetFeatures( |
1823 | getBuiltinInfo().getRequiredFeatures(ID: II->getBuiltinID()), |
1824 | getTargetInfo().getTargetOpts().FeatureMap); |
1825 | } |
1826 | return true; |
1827 | } else if (IsBuiltinTrait(Tok)) { |
1828 | return true; |
1829 | } else if (II->getTokenID() != tok::identifier && |
1830 | II->getName().starts_with(Prefix: "__builtin_")) { |
1831 | return true; |
1832 | } else { |
1833 | return llvm::StringSwitch<bool>(II->getName()) |
1834 | // Report builtin templates as being builtins. |
1835 | #define BuiltinTemplate(BTName) .Case(#BTName, getLangOpts().CPlusPlus) |
1836 | #include "clang/Basic/BuiltinTemplates.inc" |
1837 | // Likewise for some builtin preprocessor macros. |
1838 | // FIXME: This is inconsistent; we usually suggest detecting |
1839 | // builtin macros via #ifdef. Don't add more cases here. |
1840 | .Case(S: "__is_target_arch", Value: true) |
1841 | .Case("__is_target_vendor", true) |
1842 | .Case("__is_target_os", true) |
1843 | .Case("__is_target_environment", true) |
1844 | .Case("__is_target_variant_os", true) |
1845 | .Case("__is_target_variant_environment", true) |
1846 | .Default(Value: false); |
1847 | } |
1848 | }); |
1849 | } else if (II == Ident__has_constexpr_builtin) { |
1850 | EvaluateFeatureLikeBuiltinMacro( |
1851 | OS, Tok, II, *this, false, |
1852 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1853 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
1854 | Tok, *this, diag::err_feature_check_malformed); |
1855 | if (!II) |
1856 | return false; |
1857 | unsigned BuiltinOp = II->getBuiltinID(); |
1858 | return BuiltinOp != 0 && |
1859 | this->getBuiltinInfo().isConstantEvaluated(ID: BuiltinOp); |
1860 | }); |
1861 | } else if (II == Ident__is_identifier) { |
1862 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, |
1863 | [](Token &Tok, bool &HasLexedNextToken) -> int { |
1864 | return Tok.is(K: tok::identifier); |
1865 | }); |
1866 | } else if (II == Ident__has_attribute) { |
1867 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, |
1868 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1869 | IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
1870 | diag::err_feature_check_malformed); |
1871 | return II ? hasAttribute(Syntax: AttributeCommonInfo::Syntax::AS_GNU, Scope: nullptr, |
1872 | Attr: II, Target: getTargetInfo(), LangOpts: getLangOpts()) |
1873 | : 0; |
1874 | }); |
1875 | } else if (II == Ident__has_declspec) { |
1876 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, |
1877 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1878 | IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
1879 | diag::err_feature_check_malformed); |
1880 | if (II) { |
1881 | const LangOptions &LangOpts = getLangOpts(); |
1882 | return LangOpts.DeclSpecKeyword && |
1883 | hasAttribute(Syntax: AttributeCommonInfo::Syntax::AS_Declspec, Scope: nullptr, |
1884 | Attr: II, Target: getTargetInfo(), LangOpts); |
1885 | } |
1886 | |
1887 | return false; |
1888 | }); |
1889 | } else if (II == Ident__has_cpp_attribute || |
1890 | II == Ident__has_c_attribute) { |
1891 | bool IsCXX = II == Ident__has_cpp_attribute; |
1892 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, |
1893 | [&](Token &Tok, bool &HasLexedNextToken) -> int { |
1894 | IdentifierInfo *ScopeII = nullptr; |
1895 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
1896 | Tok, *this, diag::err_feature_check_malformed); |
1897 | if (!II) |
1898 | return false; |
1899 | |
1900 | // It is possible to receive a scope token. Read the "::", if it is |
1901 | // available, and the subsequent identifier. |
1902 | LexUnexpandedToken(Result&: Tok); |
1903 | if (Tok.isNot(K: tok::coloncolon)) |
1904 | HasLexedNextToken = true; |
1905 | else { |
1906 | ScopeII = II; |
1907 | // Lex an expanded token for the attribute name. |
1908 | Lex(Result&: Tok); |
1909 | II = ExpectFeatureIdentifierInfo(Tok, *this, |
1910 | diag::err_feature_check_malformed); |
1911 | } |
1912 | |
1913 | AttributeCommonInfo::Syntax Syntax = |
1914 | IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11 |
1915 | : AttributeCommonInfo::Syntax::AS_C23; |
1916 | return II ? hasAttribute(Syntax, Scope: ScopeII, Attr: II, Target: getTargetInfo(), |
1917 | LangOpts: getLangOpts()) |
1918 | : 0; |
1919 | }); |
1920 | } else if (II == Ident__has_include || |
1921 | II == Ident__has_include_next) { |
1922 | // The argument to these two builtins should be a parenthesized |
1923 | // file name string literal using angle brackets (<>) or |
1924 | // double-quotes (""). |
1925 | bool Value; |
1926 | if (II == Ident__has_include) |
1927 | Value = EvaluateHasInclude(Tok, II); |
1928 | else |
1929 | Value = EvaluateHasIncludeNext(Tok, II); |
1930 | |
1931 | if (Tok.isNot(K: tok::r_paren)) |
1932 | return; |
1933 | OS << (int)Value; |
1934 | Tok.setKind(tok::numeric_constant); |
1935 | } else if (II == Ident__has_embed) { |
1936 | // The argument to these two builtins should be a parenthesized |
1937 | // file name string literal using angle brackets (<>) or |
1938 | // double-quotes (""), optionally followed by a series of |
1939 | // arguments similar to form like attributes. |
1940 | EmbedResult Value = EvaluateHasEmbed(Tok, II); |
1941 | if (Value == EmbedResult::Invalid) |
1942 | return; |
1943 | |
1944 | Tok.setKind(tok::numeric_constant); |
1945 | OS << static_cast<int>(Value); |
1946 | } else if (II == Ident__has_warning) { |
1947 | // The argument should be a parenthesized string literal. |
1948 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, |
1949 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1950 | std::string WarningName; |
1951 | SourceLocation StrStartLoc = Tok.getLocation(); |
1952 | |
1953 | HasLexedNextToken = Tok.is(K: tok::string_literal); |
1954 | if (!FinishLexStringLiteral(Result&: Tok, String&: WarningName, DiagnosticTag: "'__has_warning'", |
1955 | /*AllowMacroExpansion=*/false)) |
1956 | return false; |
1957 | |
1958 | // FIXME: Should we accept "-R..." flags here, or should that be |
1959 | // handled by a separate __has_remark? |
1960 | if (WarningName.size() < 3 || WarningName[0] != '-' || |
1961 | WarningName[1] != 'W') { |
1962 | Diag(StrStartLoc, diag::warn_has_warning_invalid_option); |
1963 | return false; |
1964 | } |
1965 | |
1966 | // Finally, check if the warning flags maps to a diagnostic group. |
1967 | // We construct a SmallVector here to talk to getDiagnosticIDs(). |
1968 | // Although we don't use the result, this isn't a hot path, and not |
1969 | // worth special casing. |
1970 | SmallVector<diag::kind, 10> Diags; |
1971 | return !getDiagnostics().getDiagnosticIDs()-> |
1972 | getDiagnosticsInGroup(Flavor: diag::Flavor::WarningOrError, |
1973 | Group: WarningName.substr(2), Diags&: Diags); |
1974 | }); |
1975 | } else if (II == Ident__building_module) { |
1976 | // The argument to this builtin should be an identifier. The |
1977 | // builtin evaluates to 1 when that identifier names the module we are |
1978 | // currently building. |
1979 | EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, |
1980 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
1981 | IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
1982 | diag::err_expected_id_building_module); |
1983 | return getLangOpts().isCompilingModule() && II && |
1984 | (II->getName() == getLangOpts().CurrentModule); |
1985 | }); |
1986 | } else if (II == Ident__MODULE__) { |
1987 | // The current module as an identifier. |
1988 | OS << getLangOpts().CurrentModule; |
1989 | IdentifierInfo *ModuleII = getIdentifierInfo(Name: getLangOpts().CurrentModule); |
1990 | Tok.setIdentifierInfo(ModuleII); |
1991 | Tok.setKind(ModuleII->getTokenID()); |
1992 | } else if (II == Ident__identifier) { |
1993 | SourceLocation Loc = Tok.getLocation(); |
1994 | |
1995 | // We're expecting '__identifier' '(' identifier ')'. Try to recover |
1996 | // if the parens are missing. |
1997 | LexNonComment(Result&: Tok); |
1998 | if (Tok.isNot(K: tok::l_paren)) { |
1999 | // No '(', use end of last token. |
2000 | Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) |
2001 | << II << tok::l_paren; |
2002 | // If the next token isn't valid as our argument, we can't recover. |
2003 | if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) |
2004 | Tok.setKind(tok::identifier); |
2005 | return; |
2006 | } |
2007 | |
2008 | SourceLocation LParenLoc = Tok.getLocation(); |
2009 | LexNonComment(Result&: Tok); |
2010 | |
2011 | if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) |
2012 | Tok.setKind(tok::identifier); |
2013 | else if (Tok.is(K: tok::string_literal) && !Tok.hasUDSuffix()) { |
2014 | StringLiteralParser Literal(Tok, *this, |
2015 | StringLiteralEvalMethod::Unevaluated); |
2016 | if (Literal.hadError) |
2017 | return; |
2018 | |
2019 | Tok.setIdentifierInfo(getIdentifierInfo(Name: Literal.GetString())); |
2020 | Tok.setKind(tok::identifier); |
2021 | } else { |
2022 | Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) |
2023 | << Tok.getKind(); |
2024 | // Don't walk past anything that's not a real token. |
2025 | if (Tok.isOneOf(K1: tok::eof, K2: tok::eod) || Tok.isAnnotation()) |
2026 | return; |
2027 | } |
2028 | |
2029 | // Discard the ')', preserving 'Tok' as our result. |
2030 | Token RParen; |
2031 | LexNonComment(Result&: RParen); |
2032 | if (RParen.isNot(K: tok::r_paren)) { |
2033 | Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) |
2034 | << Tok.getKind() << tok::r_paren; |
2035 | Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
2036 | } |
2037 | return; |
2038 | } else if (II == Ident__is_target_arch) { |
2039 | EvaluateFeatureLikeBuiltinMacro( |
2040 | OS, Tok, II, *this, false, |
2041 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
2042 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
2043 | Tok, *this, diag::err_feature_check_malformed); |
2044 | return II && isTargetArch(TI: getTargetInfo(), II); |
2045 | }); |
2046 | } else if (II == Ident__is_target_vendor) { |
2047 | EvaluateFeatureLikeBuiltinMacro( |
2048 | OS, Tok, II, *this, false, |
2049 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
2050 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
2051 | Tok, *this, diag::err_feature_check_malformed); |
2052 | return II && isTargetVendor(TI: getTargetInfo(), II); |
2053 | }); |
2054 | } else if (II == Ident__is_target_os) { |
2055 | EvaluateFeatureLikeBuiltinMacro( |
2056 | OS, Tok, II, *this, false, |
2057 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
2058 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
2059 | Tok, *this, diag::err_feature_check_malformed); |
2060 | return II && isTargetOS(TI: getTargetInfo(), II); |
2061 | }); |
2062 | } else if (II == Ident__is_target_environment) { |
2063 | EvaluateFeatureLikeBuiltinMacro( |
2064 | OS, Tok, II, *this, false, |
2065 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
2066 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
2067 | Tok, *this, diag::err_feature_check_malformed); |
2068 | return II && isTargetEnvironment(TI: getTargetInfo(), II); |
2069 | }); |
2070 | } else if (II == Ident__is_target_variant_os) { |
2071 | EvaluateFeatureLikeBuiltinMacro( |
2072 | OS, Tok, II, *this, false, |
2073 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
2074 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
2075 | Tok, *this, diag::err_feature_check_malformed); |
2076 | return II && isTargetVariantOS(TI: getTargetInfo(), II); |
2077 | }); |
2078 | } else if (II == Ident__is_target_variant_environment) { |
2079 | EvaluateFeatureLikeBuiltinMacro( |
2080 | OS, Tok, II, *this, false, |
2081 | [this](Token &Tok, bool &HasLexedNextToken) -> int { |
2082 | IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
2083 | Tok, *this, diag::err_feature_check_malformed); |
2084 | return II && isTargetVariantEnvironment(TI: getTargetInfo(), II); |
2085 | }); |
2086 | } else { |
2087 | llvm_unreachable("Unknown identifier!"); |
2088 | } |
2089 | CreateString(Str: OS.str(), Tok, ExpansionLocStart: Tok.getLocation(), ExpansionLocEnd: Tok.getLocation()); |
2090 | Tok.setFlagValue(Flag: Token::StartOfLine, Val: IsAtStartOfLine); |
2091 | Tok.setFlagValue(Flag: Token::LeadingSpace, Val: HasLeadingSpace); |
2092 | Tok.clearFlag(Flag: Token::NeedsCleaning); |
2093 | } |
2094 | |
2095 | void Preprocessor::markMacroAsUsed(MacroInfo *MI) { |
2096 | // If the 'used' status changed, and the macro requires 'unused' warning, |
2097 | // remove its SourceLocation from the warn-for-unused-macro locations. |
2098 | if (MI->isWarnIfUnused() && !MI->isUsed()) |
2099 | WarnUnusedMacroLocs.erase(V: MI->getDefinitionLoc()); |
2100 | MI->setIsUsed(true); |
2101 | } |
2102 | |
2103 | void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path, |
2104 | const LangOptions &LangOpts, |
2105 | const TargetInfo &TI) { |
2106 | LangOpts.remapPathPrefix(Path); |
2107 | if (LangOpts.UseTargetPathSeparator) { |
2108 | if (TI.getTriple().isOSWindows()) |
2109 | llvm::sys::path::remove_dots(path&: Path, remove_dot_dot: false, |
2110 | style: llvm::sys::path::Style::windows_backslash); |
2111 | else |
2112 | llvm::sys::path::remove_dots(path&: Path, remove_dot_dot: false, style: llvm::sys::path::Style::posix); |
2113 | } |
2114 | } |
2115 | |
2116 | void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName, |
2117 | const PresumedLoc &PLoc, |
2118 | const LangOptions &LangOpts, |
2119 | const TargetInfo &TI) { |
2120 | // Try to get the last path component, failing that return the original |
2121 | // presumed location. |
2122 | StringRef PLFileName = llvm::sys::path::filename(path: PLoc.getFilename()); |
2123 | if (PLFileName.empty()) |
2124 | PLFileName = PLoc.getFilename(); |
2125 | FileName.append(in_start: PLFileName.begin(), in_end: PLFileName.end()); |
2126 | processPathForFileMacro(Path&: FileName, LangOpts, TI); |
2127 | } |
2128 |
Definitions
- getLocalMacroDirectiveHistory
- appendMacroDirective
- setLoadedMacroDirective
- addModuleMacro
- getModuleMacro
- updateModuleMacroInfo
- dumpMacroInfo
- RegisterBuiltinMacros
- isTrivialSingleTokenExpansion
- isNextPPTokenLParen
- HandleMacroExpandedIdentifier
- Bracket
- CheckMatchedBrackets
- GenerateNewArgTokens
- ReadMacroCallArgumentList
- cacheMacroExpandedTokens
- removeCachedMacroExpandedTokensOfLastLexer
- ComputeDATE_TIME
- HasFeature
- HasExtension
- EvaluateHasIncludeCommon
- EvaluateHasEmbed
- EvaluateHasInclude
- EvaluateHasIncludeNext
- EvaluateFeatureLikeBuiltinMacro
- ExpectFeatureIdentifierInfo
- isTargetArch
- isTargetVendor
- isTargetOS
- isTargetEnvironment
- isTargetVariantOS
- isTargetVariantEnvironment
- IsBuiltinTrait
- ExpandBuiltinMacro
- markMacroAsUsed
- processPathForFileMacro
Learn to use CMake with our Intro Training
Find out more