1 | //===--- HeuristicResolver.cpp ---------------------------*- C++-*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "clang/Sema/HeuristicResolver.h" |
10 | #include "clang/AST/ASTContext.h" |
11 | #include "clang/AST/CXXInheritance.h" |
12 | #include "clang/AST/DeclTemplate.h" |
13 | #include "clang/AST/ExprCXX.h" |
14 | #include "clang/AST/TemplateBase.h" |
15 | #include "clang/AST/Type.h" |
16 | |
17 | namespace clang { |
18 | |
19 | namespace { |
20 | |
21 | // Helper class for implementing HeuristicResolver. |
22 | // Unlike HeuristicResolver which is a long-lived class, |
23 | // a new instance of this class is created for every external |
24 | // call into a HeuristicResolver operation. That allows this |
25 | // class to store state that's local to such a top-level call, |
26 | // particularly "recursion protection sets" that keep track of |
27 | // nodes that have already been seen to avoid infinite recursion. |
28 | class HeuristicResolverImpl { |
29 | public: |
30 | HeuristicResolverImpl(ASTContext &Ctx) : Ctx(Ctx) {} |
31 | |
32 | // These functions match the public interface of HeuristicResolver |
33 | // (but aren't const since they may modify the recursion protection sets). |
34 | std::vector<const NamedDecl *> |
35 | resolveMemberExpr(const CXXDependentScopeMemberExpr *ME); |
36 | std::vector<const NamedDecl *> |
37 | resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE); |
38 | std::vector<const NamedDecl *> resolveTypeOfCallExpr(const CallExpr *CE); |
39 | std::vector<const NamedDecl *> resolveCalleeOfCallExpr(const CallExpr *CE); |
40 | std::vector<const NamedDecl *> |
41 | resolveUsingValueDecl(const UnresolvedUsingValueDecl *UUVD); |
42 | std::vector<const NamedDecl *> |
43 | resolveDependentNameType(const DependentNameType *DNT); |
44 | std::vector<const NamedDecl *> resolveTemplateSpecializationType( |
45 | const DependentTemplateSpecializationType *DTST); |
46 | QualType resolveNestedNameSpecifierToType(const NestedNameSpecifier *NNS); |
47 | QualType getPointeeType(QualType T); |
48 | std::vector<const NamedDecl *> |
49 | lookupDependentName(CXXRecordDecl *RD, DeclarationName Name, |
50 | llvm::function_ref<bool(const NamedDecl *ND)> Filter); |
51 | TagDecl *resolveTypeToTagDecl(QualType T); |
52 | QualType simplifyType(QualType Type, const Expr *E, bool UnwrapPointer); |
53 | |
54 | private: |
55 | ASTContext &Ctx; |
56 | |
57 | // Recursion protection sets |
58 | llvm::SmallSet<const DependentNameType *, 4> SeenDependentNameTypes; |
59 | |
60 | // Given a tag-decl type and a member name, heuristically resolve the |
61 | // name to one or more declarations. |
62 | // The current heuristic is simply to look up the name in the primary |
63 | // template. This is a heuristic because the template could potentially |
64 | // have specializations that declare different members. |
65 | // Multiple declarations could be returned if the name is overloaded |
66 | // (e.g. an overloaded method in the primary template). |
67 | // This heuristic will give the desired answer in many cases, e.g. |
68 | // for a call to vector<T>::size(). |
69 | std::vector<const NamedDecl *> |
70 | resolveDependentMember(QualType T, DeclarationName Name, |
71 | llvm::function_ref<bool(const NamedDecl *ND)> Filter); |
72 | |
73 | // Try to heuristically resolve the type of a possibly-dependent expression |
74 | // `E`. |
75 | QualType resolveExprToType(const Expr *E); |
76 | std::vector<const NamedDecl *> resolveExprToDecls(const Expr *E); |
77 | |
78 | bool findOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier, |
79 | CXXBasePath &Path, |
80 | DeclarationName Name); |
81 | }; |
82 | |
83 | // Convenience lambdas for use as the 'Filter' parameter of |
84 | // HeuristicResolver::resolveDependentMember(). |
85 | const auto NoFilter = [](const NamedDecl *D) { return true; }; |
86 | const auto NonStaticFilter = [](const NamedDecl *D) { |
87 | return D->isCXXInstanceMember(); |
88 | }; |
89 | const auto StaticFilter = [](const NamedDecl *D) { |
90 | return !D->isCXXInstanceMember(); |
91 | }; |
92 | const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(Val: D); }; |
93 | const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(Val: D); }; |
94 | const auto TemplateFilter = [](const NamedDecl *D) { |
95 | return isa<TemplateDecl>(Val: D); |
96 | }; |
97 | |
98 | QualType resolveDeclsToType(const std::vector<const NamedDecl *> &Decls, |
99 | ASTContext &Ctx) { |
100 | if (Decls.size() != 1) // Names an overload set -- just bail. |
101 | return QualType(); |
102 | if (const auto *TD = dyn_cast<TypeDecl>(Val: Decls[0])) { |
103 | return Ctx.getTypeDeclType(Decl: TD); |
104 | } |
105 | if (const auto *VD = dyn_cast<ValueDecl>(Val: Decls[0])) { |
106 | return VD->getType(); |
107 | } |
108 | return QualType(); |
109 | } |
110 | |
111 | TemplateName getReferencedTemplateName(const Type *T) { |
112 | if (const auto *TST = T->getAs<TemplateSpecializationType>()) { |
113 | return TST->getTemplateName(); |
114 | } |
115 | if (const auto *DTST = T->getAs<DeducedTemplateSpecializationType>()) { |
116 | return DTST->getTemplateName(); |
117 | } |
118 | return TemplateName(); |
119 | } |
120 | |
121 | // Helper function for HeuristicResolver::resolveDependentMember() |
122 | // which takes a possibly-dependent type `T` and heuristically |
123 | // resolves it to a CXXRecordDecl in which we can try name lookup. |
124 | TagDecl *HeuristicResolverImpl::resolveTypeToTagDecl(QualType QT) { |
125 | const Type *T = QT.getTypePtrOrNull(); |
126 | if (!T) |
127 | return nullptr; |
128 | |
129 | // Unwrap type sugar such as type aliases. |
130 | T = T->getCanonicalTypeInternal().getTypePtr(); |
131 | |
132 | if (const auto *DNT = T->getAs<DependentNameType>()) { |
133 | T = resolveDeclsToType(Decls: resolveDependentNameType(DNT), Ctx) |
134 | .getTypePtrOrNull(); |
135 | if (!T) |
136 | return nullptr; |
137 | T = T->getCanonicalTypeInternal().getTypePtr(); |
138 | } |
139 | |
140 | if (auto *TT = T->getAs<TagType>()) { |
141 | TagDecl *TD = TT->getDecl(); |
142 | // Template might not be instantiated yet, fall back to primary template |
143 | // in such cases. |
144 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: TD)) { |
145 | if (CTSD->getTemplateSpecializationKind() == TSK_Undeclared) { |
146 | return CTSD->getSpecializedTemplate()->getTemplatedDecl(); |
147 | } |
148 | } |
149 | return TD; |
150 | } |
151 | |
152 | if (const auto *ICNT = T->getAs<InjectedClassNameType>()) |
153 | T = ICNT->getInjectedSpecializationType().getTypePtrOrNull(); |
154 | if (!T) |
155 | return nullptr; |
156 | |
157 | TemplateName TN = getReferencedTemplateName(T); |
158 | if (TN.isNull()) |
159 | return nullptr; |
160 | |
161 | const ClassTemplateDecl *TD = |
162 | dyn_cast_or_null<ClassTemplateDecl>(Val: TN.getAsTemplateDecl()); |
163 | if (!TD) |
164 | return nullptr; |
165 | |
166 | return TD->getTemplatedDecl(); |
167 | } |
168 | |
169 | QualType HeuristicResolverImpl::getPointeeType(QualType T) { |
170 | if (T.isNull()) |
171 | return QualType(); |
172 | |
173 | if (T->isPointerType()) |
174 | return T->castAs<PointerType>()->getPointeeType(); |
175 | |
176 | // Try to handle smart pointer types. |
177 | |
178 | // Look up operator-> in the primary template. If we find one, it's probably a |
179 | // smart pointer type. |
180 | auto ArrowOps = resolveDependentMember( |
181 | T, Name: Ctx.DeclarationNames.getCXXOperatorName(Op: OO_Arrow), Filter: NonStaticFilter); |
182 | if (ArrowOps.empty()) |
183 | return QualType(); |
184 | |
185 | // Getting the return type of the found operator-> method decl isn't useful, |
186 | // because we discarded template arguments to perform lookup in the primary |
187 | // template scope, so the return type would just have the form U* where U is a |
188 | // template parameter type. |
189 | // Instead, just handle the common case where the smart pointer type has the |
190 | // form of SmartPtr<X, ...>, and assume X is the pointee type. |
191 | auto *TST = T->getAs<TemplateSpecializationType>(); |
192 | if (!TST) |
193 | return QualType(); |
194 | if (TST->template_arguments().size() == 0) |
195 | return QualType(); |
196 | const TemplateArgument &FirstArg = TST->template_arguments()[0]; |
197 | if (FirstArg.getKind() != TemplateArgument::Type) |
198 | return QualType(); |
199 | return FirstArg.getAsType(); |
200 | } |
201 | |
202 | QualType HeuristicResolverImpl::simplifyType(QualType Type, const Expr *E, |
203 | bool UnwrapPointer) { |
204 | bool DidUnwrapPointer = false; |
205 | // A type, together with an optional expression whose type it represents |
206 | // which may have additional information about the expression's type |
207 | // not stored in the QualType itself. |
208 | struct TypeExprPair { |
209 | QualType Type; |
210 | const Expr *E = nullptr; |
211 | }; |
212 | TypeExprPair Current{Type, E}; |
213 | auto SimplifyOneStep = [UnwrapPointer, &DidUnwrapPointer, |
214 | this](TypeExprPair T) -> TypeExprPair { |
215 | if (UnwrapPointer) { |
216 | if (QualType Pointee = getPointeeType(T: T.Type); !Pointee.isNull()) { |
217 | DidUnwrapPointer = true; |
218 | return {Pointee}; |
219 | } |
220 | } |
221 | if (const auto *RT = T.Type->getAs<ReferenceType>()) { |
222 | // Does not count as "unwrap pointer". |
223 | return {RT->getPointeeType()}; |
224 | } |
225 | if (const auto *BT = T.Type->getAs<BuiltinType>()) { |
226 | // If BaseType is the type of a dependent expression, it's just |
227 | // represented as BuiltinType::Dependent which gives us no information. We |
228 | // can get further by analyzing the dependent expression. |
229 | if (T.E && BT->getKind() == BuiltinType::Dependent) { |
230 | return {resolveExprToType(T.E), T.E}; |
231 | } |
232 | } |
233 | if (const auto *AT = T.Type->getContainedAutoType()) { |
234 | // If T contains a dependent `auto` type, deduction will not have |
235 | // been performed on it yet. In simple cases (e.g. `auto` variable with |
236 | // initializer), get the approximate type that would result from |
237 | // deduction. |
238 | // FIXME: A more accurate implementation would propagate things like the |
239 | // `const` in `const auto`. |
240 | if (T.E && AT->isUndeducedAutoType()) { |
241 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: T.E)) { |
242 | if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
243 | if (auto *Init = VD->getInit()) |
244 | return {resolveExprToType(Init), Init}; |
245 | } |
246 | } |
247 | } |
248 | } |
249 | if (const auto *TTPT = dyn_cast_if_present<TemplateTypeParmType>(T.Type)) { |
250 | // We can't do much useful with a template parameter (e.g. we cannot look |
251 | // up member names inside it). However, if the template parameter has a |
252 | // default argument, as a heuristic we can replace T with the default |
253 | // argument type. |
254 | if (const auto *TTPD = TTPT->getDecl()) { |
255 | if (TTPD->hasDefaultArgument()) { |
256 | const auto &DefaultArg = TTPD->getDefaultArgument().getArgument(); |
257 | if (DefaultArg.getKind() == TemplateArgument::Type) { |
258 | return {DefaultArg.getAsType()}; |
259 | } |
260 | } |
261 | } |
262 | } |
263 | return T; |
264 | }; |
265 | // As an additional protection against infinite loops, bound the number of |
266 | // simplification steps. |
267 | size_t StepCount = 0; |
268 | const size_t MaxSteps = 64; |
269 | while (!Current.Type.isNull() && StepCount++ < MaxSteps) { |
270 | TypeExprPair New = SimplifyOneStep(Current); |
271 | if (New.Type == Current.Type) |
272 | break; |
273 | Current = New; |
274 | } |
275 | if (UnwrapPointer && !DidUnwrapPointer) |
276 | return QualType(); |
277 | return Current.Type; |
278 | } |
279 | |
280 | std::vector<const NamedDecl *> HeuristicResolverImpl::resolveMemberExpr( |
281 | const CXXDependentScopeMemberExpr *ME) { |
282 | // If the expression has a qualifier, try resolving the member inside the |
283 | // qualifier's type. |
284 | // Note that we cannot use a NonStaticFilter in either case, for a couple |
285 | // of reasons: |
286 | // 1. It's valid to access a static member using instance member syntax, |
287 | // e.g. `instance.static_member`. |
288 | // 2. We can sometimes get a CXXDependentScopeMemberExpr for static |
289 | // member syntax too, e.g. if `X::static_member` occurs inside |
290 | // an instance method, it's represented as a CXXDependentScopeMemberExpr |
291 | // with `this` as the base expression as `X` as the qualifier |
292 | // (which could be valid if `X` names a base class after instantiation). |
293 | if (NestedNameSpecifier *NNS = ME->getQualifier()) { |
294 | if (QualType QualifierType = resolveNestedNameSpecifierToType(NNS); |
295 | !QualifierType.isNull()) { |
296 | auto Decls = |
297 | resolveDependentMember(T: QualifierType, Name: ME->getMember(), Filter: NoFilter); |
298 | if (!Decls.empty()) |
299 | return Decls; |
300 | } |
301 | |
302 | // Do not proceed to try resolving the member in the expression's base type |
303 | // without regard to the qualifier, as that could produce incorrect results. |
304 | // For example, `void foo() { this->Base::foo(); }` shouldn't resolve to |
305 | // foo() itself! |
306 | return {}; |
307 | } |
308 | |
309 | // Try resolving the member inside the expression's base type. |
310 | Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase(); |
311 | QualType BaseType = ME->getBaseType(); |
312 | BaseType = simplifyType(Type: BaseType, E: Base, UnwrapPointer: ME->isArrow()); |
313 | return resolveDependentMember(T: BaseType, Name: ME->getMember(), Filter: NoFilter); |
314 | } |
315 | |
316 | std::vector<const NamedDecl *> |
317 | HeuristicResolverImpl::resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE) { |
318 | QualType Qualifier = resolveNestedNameSpecifierToType(NNS: RE->getQualifier()); |
319 | Qualifier = simplifyType(Type: Qualifier, E: nullptr, /*UnwrapPointer=*/false); |
320 | return resolveDependentMember(T: Qualifier, Name: RE->getDeclName(), Filter: StaticFilter); |
321 | } |
322 | |
323 | std::vector<const NamedDecl *> |
324 | HeuristicResolverImpl::resolveTypeOfCallExpr(const CallExpr *CE) { |
325 | QualType CalleeType = resolveExprToType(E: CE->getCallee()); |
326 | if (CalleeType.isNull()) |
327 | return {}; |
328 | if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) |
329 | CalleeType = FnTypePtr->getPointeeType(); |
330 | if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) { |
331 | if (const auto *D = resolveTypeToTagDecl(QT: FnType->getReturnType())) { |
332 | return {D}; |
333 | } |
334 | } |
335 | return {}; |
336 | } |
337 | |
338 | std::vector<const NamedDecl *> |
339 | HeuristicResolverImpl::resolveCalleeOfCallExpr(const CallExpr *CE) { |
340 | if (const auto *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) { |
341 | return {ND}; |
342 | } |
343 | |
344 | return resolveExprToDecls(E: CE->getCallee()); |
345 | } |
346 | |
347 | std::vector<const NamedDecl *> HeuristicResolverImpl::resolveUsingValueDecl( |
348 | const UnresolvedUsingValueDecl *UUVD) { |
349 | return resolveDependentMember(T: QualType(UUVD->getQualifier()->getAsType(), 0), |
350 | Name: UUVD->getNameInfo().getName(), Filter: ValueFilter); |
351 | } |
352 | |
353 | std::vector<const NamedDecl *> |
354 | HeuristicResolverImpl::resolveDependentNameType(const DependentNameType *DNT) { |
355 | if (auto [_, inserted] = SeenDependentNameTypes.insert(Ptr: DNT); !inserted) |
356 | return {}; |
357 | return resolveDependentMember( |
358 | T: resolveNestedNameSpecifierToType(NNS: DNT->getQualifier()), |
359 | Name: DNT->getIdentifier(), Filter: TypeFilter); |
360 | } |
361 | |
362 | std::vector<const NamedDecl *> |
363 | HeuristicResolverImpl::resolveTemplateSpecializationType( |
364 | const DependentTemplateSpecializationType *DTST) { |
365 | const DependentTemplateStorage &DTN = DTST->getDependentTemplateName(); |
366 | return resolveDependentMember( |
367 | T: resolveNestedNameSpecifierToType(NNS: DTN.getQualifier()), |
368 | Name: DTN.getName().getIdentifier(), Filter: TemplateFilter); |
369 | } |
370 | |
371 | std::vector<const NamedDecl *> |
372 | HeuristicResolverImpl::resolveExprToDecls(const Expr *E) { |
373 | if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(Val: E)) { |
374 | return resolveMemberExpr(ME); |
375 | } |
376 | if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(Val: E)) { |
377 | return resolveDeclRefExpr(RE); |
378 | } |
379 | if (const auto *OE = dyn_cast<OverloadExpr>(Val: E)) { |
380 | return {OE->decls_begin(), OE->decls_end()}; |
381 | } |
382 | if (const auto *CE = dyn_cast<CallExpr>(Val: E)) { |
383 | return resolveTypeOfCallExpr(CE); |
384 | } |
385 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
386 | return {ME->getMemberDecl()}; |
387 | |
388 | return {}; |
389 | } |
390 | |
391 | QualType HeuristicResolverImpl::resolveExprToType(const Expr *E) { |
392 | std::vector<const NamedDecl *> Decls = resolveExprToDecls(E); |
393 | if (!Decls.empty()) |
394 | return resolveDeclsToType(Decls, Ctx); |
395 | |
396 | return E->getType(); |
397 | } |
398 | |
399 | QualType HeuristicResolverImpl::resolveNestedNameSpecifierToType( |
400 | const NestedNameSpecifier *NNS) { |
401 | if (!NNS) |
402 | return QualType(); |
403 | |
404 | // The purpose of this function is to handle the dependent (Kind == |
405 | // Identifier) case, but we need to recurse on the prefix because |
406 | // that may be dependent as well, so for convenience handle |
407 | // the TypeSpec cases too. |
408 | switch (NNS->getKind()) { |
409 | case NestedNameSpecifier::TypeSpec: |
410 | return QualType(NNS->getAsType(), 0); |
411 | case NestedNameSpecifier::Identifier: { |
412 | return resolveDeclsToType( |
413 | Decls: resolveDependentMember( |
414 | T: resolveNestedNameSpecifierToType(NNS: NNS->getPrefix()), |
415 | Name: NNS->getAsIdentifier(), Filter: TypeFilter), |
416 | Ctx); |
417 | } |
418 | default: |
419 | break; |
420 | } |
421 | return QualType(); |
422 | } |
423 | |
424 | bool isOrdinaryMember(const NamedDecl *ND) { |
425 | return ND->isInIdentifierNamespace(Decl::IDNS_Ordinary | Decl::IDNS_Tag | |
426 | Decl::IDNS_Member); |
427 | } |
428 | |
429 | bool findOrdinaryMember(const CXXRecordDecl *RD, CXXBasePath &Path, |
430 | DeclarationName Name) { |
431 | Path.Decls = RD->lookup(Name).begin(); |
432 | for (DeclContext::lookup_iterator I = Path.Decls, E = I.end(); I != E; ++I) |
433 | if (isOrdinaryMember(ND: *I)) |
434 | return true; |
435 | |
436 | return false; |
437 | } |
438 | |
439 | bool HeuristicResolverImpl::findOrdinaryMemberInDependentClasses( |
440 | const CXXBaseSpecifier *Specifier, CXXBasePath &Path, |
441 | DeclarationName Name) { |
442 | TagDecl *TD = resolveTypeToTagDecl(QT: Specifier->getType()); |
443 | if (const auto *RD = dyn_cast_if_present<CXXRecordDecl>(Val: TD)) { |
444 | return findOrdinaryMember(RD, Path, Name); |
445 | } |
446 | return false; |
447 | } |
448 | |
449 | std::vector<const NamedDecl *> HeuristicResolverImpl::lookupDependentName( |
450 | CXXRecordDecl *RD, DeclarationName Name, |
451 | llvm::function_ref<bool(const NamedDecl *ND)> Filter) { |
452 | std::vector<const NamedDecl *> Results; |
453 | |
454 | // Lookup in the class. |
455 | bool AnyOrdinaryMembers = false; |
456 | for (const NamedDecl *ND : RD->lookup(Name)) { |
457 | if (isOrdinaryMember(ND)) |
458 | AnyOrdinaryMembers = true; |
459 | if (Filter(ND)) |
460 | Results.push_back(ND); |
461 | } |
462 | if (AnyOrdinaryMembers) |
463 | return Results; |
464 | |
465 | // Perform lookup into our base classes. |
466 | CXXBasePaths Paths; |
467 | Paths.setOrigin(RD); |
468 | if (!RD->lookupInBases( |
469 | BaseMatches: [&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
470 | return findOrdinaryMemberInDependentClasses(Specifier, Path, Name); |
471 | }, |
472 | Paths, /*LookupInDependent=*/true)) |
473 | return Results; |
474 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); |
475 | I != E; ++I) { |
476 | if (isOrdinaryMember(ND: *I) && Filter(*I)) |
477 | Results.push_back(x: *I); |
478 | } |
479 | return Results; |
480 | } |
481 | |
482 | std::vector<const NamedDecl *> HeuristicResolverImpl::resolveDependentMember( |
483 | QualType QT, DeclarationName Name, |
484 | llvm::function_ref<bool(const NamedDecl *ND)> Filter) { |
485 | TagDecl *TD = resolveTypeToTagDecl(QT); |
486 | if (!TD) |
487 | return {}; |
488 | if (auto *ED = dyn_cast<EnumDecl>(Val: TD)) { |
489 | auto Result = ED->lookup(Name); |
490 | return {Result.begin(), Result.end()}; |
491 | } |
492 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: TD)) { |
493 | if (!RD->hasDefinition()) |
494 | return {}; |
495 | RD = RD->getDefinition(); |
496 | return lookupDependentName(RD, Name, Filter: [&](const NamedDecl *ND) { |
497 | if (!Filter(ND)) |
498 | return false; |
499 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND)) { |
500 | return !MD->isInstance() || |
501 | MD->getMethodQualifiers().compatiblyIncludes(other: QT.getQualifiers(), |
502 | Ctx); |
503 | } |
504 | return true; |
505 | }); |
506 | } |
507 | return {}; |
508 | } |
509 | } // namespace |
510 | |
511 | std::vector<const NamedDecl *> HeuristicResolver::resolveMemberExpr( |
512 | const CXXDependentScopeMemberExpr *ME) const { |
513 | return HeuristicResolverImpl(Ctx).resolveMemberExpr(ME); |
514 | } |
515 | std::vector<const NamedDecl *> HeuristicResolver::resolveDeclRefExpr( |
516 | const DependentScopeDeclRefExpr *RE) const { |
517 | return HeuristicResolverImpl(Ctx).resolveDeclRefExpr(RE); |
518 | } |
519 | std::vector<const NamedDecl *> |
520 | HeuristicResolver::resolveTypeOfCallExpr(const CallExpr *CE) const { |
521 | return HeuristicResolverImpl(Ctx).resolveTypeOfCallExpr(CE); |
522 | } |
523 | std::vector<const NamedDecl *> |
524 | HeuristicResolver::resolveCalleeOfCallExpr(const CallExpr *CE) const { |
525 | return HeuristicResolverImpl(Ctx).resolveCalleeOfCallExpr(CE); |
526 | } |
527 | std::vector<const NamedDecl *> HeuristicResolver::resolveUsingValueDecl( |
528 | const UnresolvedUsingValueDecl *UUVD) const { |
529 | return HeuristicResolverImpl(Ctx).resolveUsingValueDecl(UUVD); |
530 | } |
531 | std::vector<const NamedDecl *> HeuristicResolver::resolveDependentNameType( |
532 | const DependentNameType *DNT) const { |
533 | return HeuristicResolverImpl(Ctx).resolveDependentNameType(DNT); |
534 | } |
535 | std::vector<const NamedDecl *> |
536 | HeuristicResolver::resolveTemplateSpecializationType( |
537 | const DependentTemplateSpecializationType *DTST) const { |
538 | return HeuristicResolverImpl(Ctx).resolveTemplateSpecializationType(DTST); |
539 | } |
540 | QualType HeuristicResolver::resolveNestedNameSpecifierToType( |
541 | const NestedNameSpecifier *NNS) const { |
542 | return HeuristicResolverImpl(Ctx).resolveNestedNameSpecifierToType(NNS); |
543 | } |
544 | std::vector<const NamedDecl *> HeuristicResolver::lookupDependentName( |
545 | CXXRecordDecl *RD, DeclarationName Name, |
546 | llvm::function_ref<bool(const NamedDecl *ND)> Filter) { |
547 | return HeuristicResolverImpl(Ctx).lookupDependentName(RD, Name, Filter); |
548 | } |
549 | const QualType HeuristicResolver::getPointeeType(QualType T) const { |
550 | return HeuristicResolverImpl(Ctx).getPointeeType(T); |
551 | } |
552 | TagDecl *HeuristicResolver::resolveTypeToTagDecl(QualType T) const { |
553 | return HeuristicResolverImpl(Ctx).resolveTypeToTagDecl(QT: T); |
554 | } |
555 | QualType HeuristicResolver::simplifyType(QualType Type, const Expr *E, |
556 | bool UnwrapPointer) { |
557 | return HeuristicResolverImpl(Ctx).simplifyType(Type, E, UnwrapPointer); |
558 | } |
559 | |
560 | } // namespace clang |
561 |
Definitions
- HeuristicResolverImpl
- HeuristicResolverImpl
- NoFilter
- NonStaticFilter
- StaticFilter
- ValueFilter
- TypeFilter
- TemplateFilter
- resolveDeclsToType
- getReferencedTemplateName
- resolveTypeToTagDecl
- getPointeeType
- simplifyType
- resolveMemberExpr
- resolveDeclRefExpr
- resolveTypeOfCallExpr
- resolveCalleeOfCallExpr
- resolveUsingValueDecl
- resolveDependentNameType
- resolveTemplateSpecializationType
- resolveExprToDecls
- resolveExprToType
- resolveNestedNameSpecifierToType
- isOrdinaryMember
- findOrdinaryMember
- findOrdinaryMemberInDependentClasses
- lookupDependentName
- resolveDependentMember
- resolveMemberExpr
- resolveDeclRefExpr
- resolveTypeOfCallExpr
- resolveCalleeOfCallExpr
- resolveUsingValueDecl
- resolveDependentNameType
- resolveTemplateSpecializationType
- resolveNestedNameSpecifierToType
- lookupDependentName
- getPointeeType
- resolveTypeToTagDecl
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more