1//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ access control semantics.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Basic/Specifiers.h"
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DependentDiagnostic.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/Sema/DelayedDiagnostic.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25
26using namespace clang;
27using namespace sema;
28
29/// A copy of Sema's enum without AR_delayed.
30enum AccessResult {
31 AR_accessible,
32 AR_inaccessible,
33 AR_dependent
34};
35
36/// SetMemberAccessSpecifier - Set the access specifier of a member.
37/// Returns true on error (when the previous member decl access specifier
38/// is different from the new member decl access specifier).
39bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40 NamedDecl *PrevMemberDecl,
41 AccessSpecifier LexicalAS) {
42 if (!PrevMemberDecl) {
43 // Use the lexical access specifier.
44 MemberDecl->setAccess(LexicalAS);
45 return false;
46 }
47
48 // C++ [class.access.spec]p3: When a member is redeclared its access
49 // specifier must be same as its initial declaration.
50 if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51 Diag(MemberDecl->getLocation(),
52 diag::err_class_redeclared_with_different_access)
53 << MemberDecl << LexicalAS;
54 Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55 << PrevMemberDecl << PrevMemberDecl->getAccess();
56
57 MemberDecl->setAccess(LexicalAS);
58 return true;
59 }
60
61 MemberDecl->setAccess(PrevMemberDecl->getAccess());
62 return false;
63}
64
65static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66 DeclContext *DC = D->getDeclContext();
67
68 // This can only happen at top: enum decls only "publish" their
69 // immediate members.
70 if (isa<EnumDecl>(Val: DC))
71 DC = cast<EnumDecl>(Val: DC)->getDeclContext();
72
73 CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(Val: DC);
74 while (DeclaringClass->isAnonymousStructOrUnion())
75 DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76 return DeclaringClass;
77}
78
79namespace {
80struct EffectiveContext {
81 EffectiveContext() : Inner(nullptr), Dependent(false) {}
82
83 explicit EffectiveContext(DeclContext *DC)
84 : Inner(DC),
85 Dependent(DC->isDependentContext()) {
86
87 // An implicit deduction guide is semantically in the context enclosing the
88 // class template, but for access purposes behaves like the constructor
89 // from which it was produced.
90 if (auto *DGD = dyn_cast<CXXDeductionGuideDecl>(Val: DC)) {
91 if (DGD->isImplicit()) {
92 DC = DGD->getCorrespondingConstructor();
93 if (!DC) {
94 // The copy deduction candidate doesn't have a corresponding
95 // constructor.
96 DC = cast<DeclContext>(Val: DGD->getDeducedTemplate()->getTemplatedDecl());
97 }
98 }
99 }
100
101 // C++11 [class.access.nest]p1:
102 // A nested class is a member and as such has the same access
103 // rights as any other member.
104 // C++11 [class.access]p2:
105 // A member of a class can also access all the names to which
106 // the class has access. A local class of a member function
107 // may access the same names that the member function itself
108 // may access.
109 // This almost implies that the privileges of nesting are transitive.
110 // Technically it says nothing about the local classes of non-member
111 // functions (which can gain privileges through friendship), but we
112 // take that as an oversight.
113 while (true) {
114 // We want to add canonical declarations to the EC lists for
115 // simplicity of checking, but we need to walk up through the
116 // actual current DC chain. Otherwise, something like a local
117 // extern or friend which happens to be the canonical
118 // declaration will really mess us up.
119
120 if (isa<CXXRecordDecl>(Val: DC)) {
121 CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC);
122 Records.push_back(Elt: Record->getCanonicalDecl());
123 DC = Record->getDeclContext();
124 } else if (isa<FunctionDecl>(Val: DC)) {
125 FunctionDecl *Function = cast<FunctionDecl>(Val: DC);
126 Functions.push_back(Elt: Function->getCanonicalDecl());
127 if (Function->getFriendObjectKind())
128 DC = Function->getLexicalDeclContext();
129 else
130 DC = Function->getDeclContext();
131 } else if (DC->isFileContext()) {
132 break;
133 } else {
134 DC = DC->getParent();
135 }
136 }
137 }
138
139 bool isDependent() const { return Dependent; }
140
141 bool includesClass(const CXXRecordDecl *R) const {
142 R = R->getCanonicalDecl();
143 return llvm::is_contained(Range: Records, Element: R);
144 }
145
146 /// Retrieves the innermost "useful" context. Can be null if we're
147 /// doing access-control without privileges.
148 DeclContext *getInnerContext() const {
149 return Inner;
150 }
151
152 typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
153
154 DeclContext *Inner;
155 SmallVector<FunctionDecl*, 4> Functions;
156 SmallVector<CXXRecordDecl*, 4> Records;
157 bool Dependent;
158};
159
160/// Like sema::AccessedEntity, but kindly lets us scribble all over
161/// it.
162struct AccessTarget : public AccessedEntity {
163 AccessTarget(const AccessedEntity &Entity)
164 : AccessedEntity(Entity) {
165 initialize();
166 }
167
168 AccessTarget(ASTContext &Context,
169 MemberNonce _,
170 CXXRecordDecl *NamingClass,
171 DeclAccessPair FoundDecl,
172 QualType BaseObjectType)
173 : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
174 FoundDecl, BaseObjectType) {
175 initialize();
176 }
177
178 AccessTarget(ASTContext &Context,
179 BaseNonce _,
180 CXXRecordDecl *BaseClass,
181 CXXRecordDecl *DerivedClass,
182 AccessSpecifier Access)
183 : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
184 Access) {
185 initialize();
186 }
187
188 bool isInstanceMember() const {
189 return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
190 }
191
192 bool hasInstanceContext() const {
193 return HasInstanceContext;
194 }
195
196 class SavedInstanceContext {
197 public:
198 SavedInstanceContext(SavedInstanceContext &&S)
199 : Target(S.Target), Has(S.Has) {
200 S.Target = nullptr;
201 }
202
203 // The move assignment operator is defined as deleted pending further
204 // motivation.
205 SavedInstanceContext &operator=(SavedInstanceContext &&) = delete;
206
207 // The copy constrcutor and copy assignment operator is defined as deleted
208 // pending further motivation.
209 SavedInstanceContext(const SavedInstanceContext &) = delete;
210 SavedInstanceContext &operator=(const SavedInstanceContext &) = delete;
211
212 ~SavedInstanceContext() {
213 if (Target)
214 Target->HasInstanceContext = Has;
215 }
216
217 private:
218 friend struct AccessTarget;
219 explicit SavedInstanceContext(AccessTarget &Target)
220 : Target(&Target), Has(Target.HasInstanceContext) {}
221 AccessTarget *Target;
222 bool Has;
223 };
224
225 SavedInstanceContext saveInstanceContext() {
226 return SavedInstanceContext(*this);
227 }
228
229 void suppressInstanceContext() {
230 HasInstanceContext = false;
231 }
232
233 const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
234 assert(HasInstanceContext);
235 if (CalculatedInstanceContext)
236 return InstanceContext;
237
238 CalculatedInstanceContext = true;
239 DeclContext *IC = S.computeDeclContext(getBaseObjectType());
240 InstanceContext = (IC ? cast<CXXRecordDecl>(Val: IC)->getCanonicalDecl()
241 : nullptr);
242 return InstanceContext;
243 }
244
245 const CXXRecordDecl *getDeclaringClass() const {
246 return DeclaringClass;
247 }
248
249 /// The "effective" naming class is the canonical non-anonymous
250 /// class containing the actual naming class.
251 const CXXRecordDecl *getEffectiveNamingClass() const {
252 const CXXRecordDecl *namingClass = getNamingClass();
253 while (namingClass->isAnonymousStructOrUnion())
254 namingClass = cast<CXXRecordDecl>(namingClass->getParent());
255 return namingClass->getCanonicalDecl();
256 }
257
258private:
259 void initialize() {
260 HasInstanceContext = (isMemberAccess() &&
261 !getBaseObjectType().isNull() &&
262 getTargetDecl()->isCXXInstanceMember());
263 CalculatedInstanceContext = false;
264 InstanceContext = nullptr;
265
266 if (isMemberAccess())
267 DeclaringClass = FindDeclaringClass(getTargetDecl());
268 else
269 DeclaringClass = getBaseClass();
270 DeclaringClass = DeclaringClass->getCanonicalDecl();
271 }
272
273 bool HasInstanceContext : 1;
274 mutable bool CalculatedInstanceContext : 1;
275 mutable const CXXRecordDecl *InstanceContext;
276 const CXXRecordDecl *DeclaringClass;
277};
278
279}
280
281/// Checks whether one class might instantiate to the other.
282static bool MightInstantiateTo(const CXXRecordDecl *From,
283 const CXXRecordDecl *To) {
284 // Declaration names are always preserved by instantiation.
285 if (From->getDeclName() != To->getDeclName())
286 return false;
287
288 const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
289 const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
290 if (FromDC == ToDC) return true;
291 if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
292
293 // Be conservative.
294 return true;
295}
296
297/// Checks whether one class is derived from another, inclusively.
298/// Properly indicates when it couldn't be determined due to
299/// dependence.
300///
301/// This should probably be donated to AST or at least Sema.
302static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
303 const CXXRecordDecl *Target) {
304 assert(Derived->getCanonicalDecl() == Derived);
305 assert(Target->getCanonicalDecl() == Target);
306
307 if (Derived == Target) return AR_accessible;
308
309 bool CheckDependent = Derived->isDependentContext();
310 if (CheckDependent && MightInstantiateTo(From: Derived, To: Target))
311 return AR_dependent;
312
313 AccessResult OnFailure = AR_inaccessible;
314 SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
315
316 while (true) {
317 if (Derived->isDependentContext() && !Derived->hasDefinition() &&
318 !Derived->isLambda())
319 return AR_dependent;
320
321 for (const auto &I : Derived->bases()) {
322 const CXXRecordDecl *RD;
323
324 QualType T = I.getType();
325 if (const RecordType *RT = T->getAs<RecordType>()) {
326 RD = cast<CXXRecordDecl>(Val: RT->getDecl());
327 } else if (const InjectedClassNameType *IT
328 = T->getAs<InjectedClassNameType>()) {
329 RD = IT->getDecl();
330 } else {
331 assert(T->isDependentType() && "non-dependent base wasn't a record?");
332 OnFailure = AR_dependent;
333 continue;
334 }
335
336 RD = RD->getCanonicalDecl();
337 if (RD == Target) return AR_accessible;
338 if (CheckDependent && MightInstantiateTo(From: RD, To: Target))
339 OnFailure = AR_dependent;
340
341 Queue.push_back(Elt: RD);
342 }
343
344 if (Queue.empty()) break;
345
346 Derived = Queue.pop_back_val();
347 }
348
349 return OnFailure;
350}
351
352
353static bool MightInstantiateTo(Sema &S, DeclContext *Context,
354 DeclContext *Friend) {
355 if (Friend == Context)
356 return true;
357
358 assert(!Friend->isDependentContext() &&
359 "can't handle friends with dependent contexts here");
360
361 if (!Context->isDependentContext())
362 return false;
363
364 if (Friend->isFileContext())
365 return false;
366
367 // TODO: this is very conservative
368 return true;
369}
370
371// Asks whether the type in 'context' can ever instantiate to the type
372// in 'friend'.
373static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
374 if (Friend == Context)
375 return true;
376
377 if (!Friend->isDependentType() && !Context->isDependentType())
378 return false;
379
380 // TODO: this is very conservative.
381 return true;
382}
383
384static bool MightInstantiateTo(Sema &S,
385 FunctionDecl *Context,
386 FunctionDecl *Friend) {
387 if (Context->getDeclName() != Friend->getDeclName())
388 return false;
389
390 if (!MightInstantiateTo(S,
391 Context->getDeclContext(),
392 Friend->getDeclContext()))
393 return false;
394
395 CanQual<FunctionProtoType> FriendTy
396 = S.Context.getCanonicalType(Friend->getType())
397 ->getAs<FunctionProtoType>();
398 CanQual<FunctionProtoType> ContextTy
399 = S.Context.getCanonicalType(Context->getType())
400 ->getAs<FunctionProtoType>();
401
402 // There isn't any way that I know of to add qualifiers
403 // during instantiation.
404 if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
405 return false;
406
407 if (FriendTy->getNumParams() != ContextTy->getNumParams())
408 return false;
409
410 if (!MightInstantiateTo(S, ContextTy->getReturnType(),
411 FriendTy->getReturnType()))
412 return false;
413
414 for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
415 if (!MightInstantiateTo(S, ContextTy->getParamType(I),
416 FriendTy->getParamType(I)))
417 return false;
418
419 return true;
420}
421
422static bool MightInstantiateTo(Sema &S,
423 FunctionTemplateDecl *Context,
424 FunctionTemplateDecl *Friend) {
425 return MightInstantiateTo(S,
426 Context: Context->getTemplatedDecl(),
427 Friend: Friend->getTemplatedDecl());
428}
429
430static AccessResult MatchesFriend(Sema &S,
431 const EffectiveContext &EC,
432 const CXXRecordDecl *Friend) {
433 if (EC.includesClass(R: Friend))
434 return AR_accessible;
435
436 if (EC.isDependent()) {
437 for (const CXXRecordDecl *Context : EC.Records) {
438 if (MightInstantiateTo(From: Context, To: Friend))
439 return AR_dependent;
440 }
441 }
442
443 return AR_inaccessible;
444}
445
446static AccessResult MatchesFriend(Sema &S,
447 const EffectiveContext &EC,
448 CanQualType Friend) {
449 if (const RecordType *RT = Friend->getAs<RecordType>())
450 return MatchesFriend(S, EC, Friend: cast<CXXRecordDecl>(Val: RT->getDecl()));
451
452 // TODO: we can do better than this
453 if (Friend->isDependentType())
454 return AR_dependent;
455
456 return AR_inaccessible;
457}
458
459/// Determines whether the given friend class template matches
460/// anything in the effective context.
461static AccessResult MatchesFriend(Sema &S,
462 const EffectiveContext &EC,
463 ClassTemplateDecl *Friend) {
464 AccessResult OnFailure = AR_inaccessible;
465
466 // Check whether the friend is the template of a class in the
467 // context chain.
468 for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
469 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
470 CXXRecordDecl *Record = *I;
471
472 // Figure out whether the current class has a template:
473 ClassTemplateDecl *CTD;
474
475 // A specialization of the template...
476 if (isa<ClassTemplateSpecializationDecl>(Val: Record)) {
477 CTD = cast<ClassTemplateSpecializationDecl>(Val: Record)
478 ->getSpecializedTemplate();
479
480 // ... or the template pattern itself.
481 } else {
482 CTD = Record->getDescribedClassTemplate();
483 if (!CTD) continue;
484 }
485
486 // It's a match.
487 if (Friend == CTD->getCanonicalDecl())
488 return AR_accessible;
489
490 // If the context isn't dependent, it can't be a dependent match.
491 if (!EC.isDependent())
492 continue;
493
494 // If the template names don't match, it can't be a dependent
495 // match.
496 if (CTD->getDeclName() != Friend->getDeclName())
497 continue;
498
499 // If the class's context can't instantiate to the friend's
500 // context, it can't be a dependent match.
501 if (!MightInstantiateTo(S, CTD->getDeclContext(),
502 Friend->getDeclContext()))
503 continue;
504
505 // Otherwise, it's a dependent match.
506 OnFailure = AR_dependent;
507 }
508
509 return OnFailure;
510}
511
512/// Determines whether the given friend function matches anything in
513/// the effective context.
514static AccessResult MatchesFriend(Sema &S,
515 const EffectiveContext &EC,
516 FunctionDecl *Friend) {
517 AccessResult OnFailure = AR_inaccessible;
518
519 for (SmallVectorImpl<FunctionDecl*>::const_iterator
520 I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
521 if (Friend == *I)
522 return AR_accessible;
523
524 if (EC.isDependent() && MightInstantiateTo(S, Context: *I, Friend))
525 OnFailure = AR_dependent;
526 }
527
528 return OnFailure;
529}
530
531/// Determines whether the given friend function template matches
532/// anything in the effective context.
533static AccessResult MatchesFriend(Sema &S,
534 const EffectiveContext &EC,
535 FunctionTemplateDecl *Friend) {
536 if (EC.Functions.empty()) return AR_inaccessible;
537
538 AccessResult OnFailure = AR_inaccessible;
539
540 for (SmallVectorImpl<FunctionDecl*>::const_iterator
541 I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
542
543 FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
544 if (!FTD)
545 FTD = (*I)->getDescribedFunctionTemplate();
546 if (!FTD)
547 continue;
548
549 FTD = FTD->getCanonicalDecl();
550
551 if (Friend == FTD)
552 return AR_accessible;
553
554 if (EC.isDependent() && MightInstantiateTo(S, Context: FTD, Friend))
555 OnFailure = AR_dependent;
556 }
557
558 return OnFailure;
559}
560
561/// Determines whether the given friend declaration matches anything
562/// in the effective context.
563static AccessResult MatchesFriend(Sema &S,
564 const EffectiveContext &EC,
565 FriendDecl *FriendD) {
566 // Whitelist accesses if there's an invalid or unsupported friend
567 // declaration.
568 if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
569 return AR_accessible;
570
571 if (TypeSourceInfo *T = FriendD->getFriendType())
572 return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
573
574 NamedDecl *Friend
575 = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
576
577 // FIXME: declarations with dependent or templated scope.
578
579 if (isa<ClassTemplateDecl>(Val: Friend))
580 return MatchesFriend(S, EC, Friend: cast<ClassTemplateDecl>(Val: Friend));
581
582 if (isa<FunctionTemplateDecl>(Val: Friend))
583 return MatchesFriend(S, EC, Friend: cast<FunctionTemplateDecl>(Val: Friend));
584
585 if (isa<CXXRecordDecl>(Val: Friend))
586 return MatchesFriend(S, EC, Friend: cast<CXXRecordDecl>(Val: Friend));
587
588 assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
589 return MatchesFriend(S, EC, Friend: cast<FunctionDecl>(Val: Friend));
590}
591
592static AccessResult GetFriendKind(Sema &S,
593 const EffectiveContext &EC,
594 const CXXRecordDecl *Class) {
595 AccessResult OnFailure = AR_inaccessible;
596
597 // Okay, check friends.
598 for (auto *Friend : Class->friends()) {
599 switch (MatchesFriend(S, EC, FriendD: Friend)) {
600 case AR_accessible:
601 return AR_accessible;
602
603 case AR_inaccessible:
604 continue;
605
606 case AR_dependent:
607 OnFailure = AR_dependent;
608 break;
609 }
610 }
611
612 // That's it, give up.
613 return OnFailure;
614}
615
616namespace {
617
618/// A helper class for checking for a friend which will grant access
619/// to a protected instance member.
620struct ProtectedFriendContext {
621 Sema &S;
622 const EffectiveContext &EC;
623 const CXXRecordDecl *NamingClass;
624 bool CheckDependent;
625 bool EverDependent;
626
627 /// The path down to the current base class.
628 SmallVector<const CXXRecordDecl*, 20> CurPath;
629
630 ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
631 const CXXRecordDecl *InstanceContext,
632 const CXXRecordDecl *NamingClass)
633 : S(S), EC(EC), NamingClass(NamingClass),
634 CheckDependent(InstanceContext->isDependentContext() ||
635 NamingClass->isDependentContext()),
636 EverDependent(false) {}
637
638 /// Check classes in the current path for friendship, starting at
639 /// the given index.
640 bool checkFriendshipAlongPath(unsigned I) {
641 assert(I < CurPath.size());
642 for (unsigned E = CurPath.size(); I != E; ++I) {
643 switch (GetFriendKind(S, EC, Class: CurPath[I])) {
644 case AR_accessible: return true;
645 case AR_inaccessible: continue;
646 case AR_dependent: EverDependent = true; continue;
647 }
648 }
649 return false;
650 }
651
652 /// Perform a search starting at the given class.
653 ///
654 /// PrivateDepth is the index of the last (least derived) class
655 /// along the current path such that a notional public member of
656 /// the final class in the path would have access in that class.
657 bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
658 // If we ever reach the naming class, check the current path for
659 // friendship. We can also stop recursing because we obviously
660 // won't find the naming class there again.
661 if (Cur == NamingClass)
662 return checkFriendshipAlongPath(I: PrivateDepth);
663
664 if (CheckDependent && MightInstantiateTo(From: Cur, To: NamingClass))
665 EverDependent = true;
666
667 // Recurse into the base classes.
668 for (const auto &I : Cur->bases()) {
669 // If this is private inheritance, then a public member of the
670 // base will not have any access in classes derived from Cur.
671 unsigned BasePrivateDepth = PrivateDepth;
672 if (I.getAccessSpecifier() == AS_private)
673 BasePrivateDepth = CurPath.size() - 1;
674
675 const CXXRecordDecl *RD;
676
677 QualType T = I.getType();
678 if (const RecordType *RT = T->getAs<RecordType>()) {
679 RD = cast<CXXRecordDecl>(Val: RT->getDecl());
680 } else if (const InjectedClassNameType *IT
681 = T->getAs<InjectedClassNameType>()) {
682 RD = IT->getDecl();
683 } else {
684 assert(T->isDependentType() && "non-dependent base wasn't a record?");
685 EverDependent = true;
686 continue;
687 }
688
689 // Recurse. We don't need to clean up if this returns true.
690 CurPath.push_back(Elt: RD);
691 if (findFriendship(Cur: RD->getCanonicalDecl(), PrivateDepth: BasePrivateDepth))
692 return true;
693 CurPath.pop_back();
694 }
695
696 return false;
697 }
698
699 bool findFriendship(const CXXRecordDecl *Cur) {
700 assert(CurPath.empty());
701 CurPath.push_back(Elt: Cur);
702 return findFriendship(Cur, PrivateDepth: 0);
703 }
704};
705}
706
707/// Search for a class P that EC is a friend of, under the constraint
708/// InstanceContext <= P
709/// if InstanceContext exists, or else
710/// NamingClass <= P
711/// and with the additional restriction that a protected member of
712/// NamingClass would have some natural access in P, which implicitly
713/// imposes the constraint that P <= NamingClass.
714///
715/// This isn't quite the condition laid out in the standard.
716/// Instead of saying that a notional protected member of NamingClass
717/// would have to have some natural access in P, it says the actual
718/// target has to have some natural access in P, which opens up the
719/// possibility that the target (which is not necessarily a member
720/// of NamingClass) might be more accessible along some path not
721/// passing through it. That's really a bad idea, though, because it
722/// introduces two problems:
723/// - Most importantly, it breaks encapsulation because you can
724/// access a forbidden base class's members by directly subclassing
725/// it elsewhere.
726/// - It also makes access substantially harder to compute because it
727/// breaks the hill-climbing algorithm: knowing that the target is
728/// accessible in some base class would no longer let you change
729/// the question solely to whether the base class is accessible,
730/// because the original target might have been more accessible
731/// because of crazy subclassing.
732/// So we don't implement that.
733static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
734 const CXXRecordDecl *InstanceContext,
735 const CXXRecordDecl *NamingClass) {
736 assert(InstanceContext == nullptr ||
737 InstanceContext->getCanonicalDecl() == InstanceContext);
738 assert(NamingClass->getCanonicalDecl() == NamingClass);
739
740 // If we don't have an instance context, our constraints give us
741 // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
742 // This is just the usual friendship check.
743 if (!InstanceContext) return GetFriendKind(S, EC, Class: NamingClass);
744
745 ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
746 if (PRC.findFriendship(Cur: InstanceContext)) return AR_accessible;
747 if (PRC.EverDependent) return AR_dependent;
748 return AR_inaccessible;
749}
750
751static AccessResult HasAccess(Sema &S,
752 const EffectiveContext &EC,
753 const CXXRecordDecl *NamingClass,
754 AccessSpecifier Access,
755 const AccessTarget &Target) {
756 assert(NamingClass->getCanonicalDecl() == NamingClass &&
757 "declaration should be canonicalized before being passed here");
758
759 if (Access == AS_public) return AR_accessible;
760 assert(Access == AS_private || Access == AS_protected);
761
762 AccessResult OnFailure = AR_inaccessible;
763
764 for (EffectiveContext::record_iterator
765 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
766 // All the declarations in EC have been canonicalized, so pointer
767 // equality from this point on will work fine.
768 const CXXRecordDecl *ECRecord = *I;
769
770 // [B2] and [M2]
771 if (Access == AS_private) {
772 if (ECRecord == NamingClass)
773 return AR_accessible;
774
775 if (EC.isDependent() && MightInstantiateTo(From: ECRecord, To: NamingClass))
776 OnFailure = AR_dependent;
777
778 // [B3] and [M3]
779 } else {
780 assert(Access == AS_protected);
781 switch (IsDerivedFromInclusive(Derived: ECRecord, Target: NamingClass)) {
782 case AR_accessible: break;
783 case AR_inaccessible: continue;
784 case AR_dependent: OnFailure = AR_dependent; continue;
785 }
786
787 // C++ [class.protected]p1:
788 // An additional access check beyond those described earlier in
789 // [class.access] is applied when a non-static data member or
790 // non-static member function is a protected member of its naming
791 // class. As described earlier, access to a protected member is
792 // granted because the reference occurs in a friend or member of
793 // some class C. If the access is to form a pointer to member,
794 // the nested-name-specifier shall name C or a class derived from
795 // C. All other accesses involve a (possibly implicit) object
796 // expression. In this case, the class of the object expression
797 // shall be C or a class derived from C.
798 //
799 // We interpret this as a restriction on [M3].
800
801 // In this part of the code, 'C' is just our context class ECRecord.
802
803 // These rules are different if we don't have an instance context.
804 if (!Target.hasInstanceContext()) {
805 // If it's not an instance member, these restrictions don't apply.
806 if (!Target.isInstanceMember()) return AR_accessible;
807
808 // If it's an instance member, use the pointer-to-member rule
809 // that the naming class has to be derived from the effective
810 // context.
811
812 // Emulate a MSVC bug where the creation of pointer-to-member
813 // to protected member of base class is allowed but only from
814 // static member functions.
815 if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
816 if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(Val: EC.Functions.front()))
817 if (MD->isStatic()) return AR_accessible;
818
819 // Despite the standard's confident wording, there is a case
820 // where you can have an instance member that's neither in a
821 // pointer-to-member expression nor in a member access: when
822 // it names a field in an unevaluated context that can't be an
823 // implicit member. Pending clarification, we just apply the
824 // same naming-class restriction here.
825 // FIXME: we're probably not correctly adding the
826 // protected-member restriction when we retroactively convert
827 // an expression to being evaluated.
828
829 // We know that ECRecord derives from NamingClass. The
830 // restriction says to check whether NamingClass derives from
831 // ECRecord, but that's not really necessary: two distinct
832 // classes can't be recursively derived from each other. So
833 // along this path, we just need to check whether the classes
834 // are equal.
835 if (NamingClass == ECRecord) return AR_accessible;
836
837 // Otherwise, this context class tells us nothing; on to the next.
838 continue;
839 }
840
841 assert(Target.isInstanceMember());
842
843 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
844 if (!InstanceContext) {
845 OnFailure = AR_dependent;
846 continue;
847 }
848
849 switch (IsDerivedFromInclusive(Derived: InstanceContext, Target: ECRecord)) {
850 case AR_accessible: return AR_accessible;
851 case AR_inaccessible: continue;
852 case AR_dependent: OnFailure = AR_dependent; continue;
853 }
854 }
855 }
856
857 // [M3] and [B3] say that, if the target is protected in N, we grant
858 // access if the access occurs in a friend or member of some class P
859 // that's a subclass of N and where the target has some natural
860 // access in P. The 'member' aspect is easy to handle because P
861 // would necessarily be one of the effective-context records, and we
862 // address that above. The 'friend' aspect is completely ridiculous
863 // to implement because there are no restrictions at all on P
864 // *unless* the [class.protected] restriction applies. If it does,
865 // however, we should ignore whether the naming class is a friend,
866 // and instead rely on whether any potential P is a friend.
867 if (Access == AS_protected && Target.isInstanceMember()) {
868 // Compute the instance context if possible.
869 const CXXRecordDecl *InstanceContext = nullptr;
870 if (Target.hasInstanceContext()) {
871 InstanceContext = Target.resolveInstanceContext(S);
872 if (!InstanceContext) return AR_dependent;
873 }
874
875 switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
876 case AR_accessible: return AR_accessible;
877 case AR_inaccessible: return OnFailure;
878 case AR_dependent: return AR_dependent;
879 }
880 llvm_unreachable("impossible friendship kind");
881 }
882
883 switch (GetFriendKind(S, EC, Class: NamingClass)) {
884 case AR_accessible: return AR_accessible;
885 case AR_inaccessible: return OnFailure;
886 case AR_dependent: return AR_dependent;
887 }
888
889 // Silence bogus warnings
890 llvm_unreachable("impossible friendship kind");
891}
892
893/// Finds the best path from the naming class to the declaring class,
894/// taking friend declarations into account.
895///
896/// C++0x [class.access.base]p5:
897/// A member m is accessible at the point R when named in class N if
898/// [M1] m as a member of N is public, or
899/// [M2] m as a member of N is private, and R occurs in a member or
900/// friend of class N, or
901/// [M3] m as a member of N is protected, and R occurs in a member or
902/// friend of class N, or in a member or friend of a class P
903/// derived from N, where m as a member of P is public, private,
904/// or protected, or
905/// [M4] there exists a base class B of N that is accessible at R, and
906/// m is accessible at R when named in class B.
907///
908/// C++0x [class.access.base]p4:
909/// A base class B of N is accessible at R, if
910/// [B1] an invented public member of B would be a public member of N, or
911/// [B2] R occurs in a member or friend of class N, and an invented public
912/// member of B would be a private or protected member of N, or
913/// [B3] R occurs in a member or friend of a class P derived from N, and an
914/// invented public member of B would be a private or protected member
915/// of P, or
916/// [B4] there exists a class S such that B is a base class of S accessible
917/// at R and S is a base class of N accessible at R.
918///
919/// Along a single inheritance path we can restate both of these
920/// iteratively:
921///
922/// First, we note that M1-4 are equivalent to B1-4 if the member is
923/// treated as a notional base of its declaring class with inheritance
924/// access equivalent to the member's access. Therefore we need only
925/// ask whether a class B is accessible from a class N in context R.
926///
927/// Let B_1 .. B_n be the inheritance path in question (i.e. where
928/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
929/// B_i). For i in 1..n, we will calculate ACAB(i), the access to the
930/// closest accessible base in the path:
931/// Access(a, b) = (* access on the base specifier from a to b *)
932/// Merge(a, forbidden) = forbidden
933/// Merge(a, private) = forbidden
934/// Merge(a, b) = min(a,b)
935/// Accessible(c, forbidden) = false
936/// Accessible(c, private) = (R is c) || IsFriend(c, R)
937/// Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
938/// Accessible(c, public) = true
939/// ACAB(n) = public
940/// ACAB(i) =
941/// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
942/// if Accessible(B_i, AccessToBase) then public else AccessToBase
943///
944/// B is an accessible base of N at R iff ACAB(1) = public.
945///
946/// \param FinalAccess the access of the "final step", or AS_public if
947/// there is no final step.
948/// \return null if friendship is dependent
949static CXXBasePath *FindBestPath(Sema &S,
950 const EffectiveContext &EC,
951 AccessTarget &Target,
952 AccessSpecifier FinalAccess,
953 CXXBasePaths &Paths) {
954 // Derive the paths to the desired base.
955 const CXXRecordDecl *Derived = Target.getNamingClass();
956 const CXXRecordDecl *Base = Target.getDeclaringClass();
957
958 // FIXME: fail correctly when there are dependent paths.
959 bool isDerived = Derived->isDerivedFrom(Base: const_cast<CXXRecordDecl*>(Base),
960 Paths);
961 assert(isDerived && "derived class not actually derived from base");
962 (void) isDerived;
963
964 CXXBasePath *BestPath = nullptr;
965
966 assert(FinalAccess != AS_none && "forbidden access after declaring class");
967
968 bool AnyDependent = false;
969
970 // Derive the friend-modified access along each path.
971 for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
972 PI != PE; ++PI) {
973 AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
974
975 // Walk through the path backwards.
976 AccessSpecifier PathAccess = FinalAccess;
977 CXXBasePath::iterator I = PI->end(), E = PI->begin();
978 while (I != E) {
979 --I;
980
981 assert(PathAccess != AS_none);
982
983 // If the declaration is a private member of a base class, there
984 // is no level of friendship in derived classes that can make it
985 // accessible.
986 if (PathAccess == AS_private) {
987 PathAccess = AS_none;
988 break;
989 }
990
991 const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
992
993 AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
994 PathAccess = std::max(a: PathAccess, b: BaseAccess);
995
996 switch (HasAccess(S, EC, NamingClass: NC, Access: PathAccess, Target)) {
997 case AR_inaccessible: break;
998 case AR_accessible:
999 PathAccess = AS_public;
1000
1001 // Future tests are not against members and so do not have
1002 // instance context.
1003 Target.suppressInstanceContext();
1004 break;
1005 case AR_dependent:
1006 AnyDependent = true;
1007 goto Next;
1008 }
1009 }
1010
1011 // Note that we modify the path's Access field to the
1012 // friend-modified access.
1013 if (BestPath == nullptr || PathAccess < BestPath->Access) {
1014 BestPath = &*PI;
1015 BestPath->Access = PathAccess;
1016
1017 // Short-circuit if we found a public path.
1018 if (BestPath->Access == AS_public)
1019 return BestPath;
1020 }
1021
1022 Next: ;
1023 }
1024
1025 assert((!BestPath || BestPath->Access != AS_public) &&
1026 "fell out of loop with public path");
1027
1028 // We didn't find a public path, but at least one path was subject
1029 // to dependent friendship, so delay the check.
1030 if (AnyDependent)
1031 return nullptr;
1032
1033 return BestPath;
1034}
1035
1036/// Given that an entity has protected natural access, check whether
1037/// access might be denied because of the protected member access
1038/// restriction.
1039///
1040/// \return true if a note was emitted
1041static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1042 AccessTarget &Target) {
1043 // Only applies to instance accesses.
1044 if (!Target.isInstanceMember())
1045 return false;
1046
1047 assert(Target.isMemberAccess());
1048
1049 const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1050
1051 for (EffectiveContext::record_iterator
1052 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1053 const CXXRecordDecl *ECRecord = *I;
1054 switch (IsDerivedFromInclusive(Derived: ECRecord, Target: NamingClass)) {
1055 case AR_accessible: break;
1056 case AR_inaccessible: continue;
1057 case AR_dependent: continue;
1058 }
1059
1060 // The effective context is a subclass of the declaring class.
1061 // Check whether the [class.protected] restriction is limiting
1062 // access.
1063
1064 // To get this exactly right, this might need to be checked more
1065 // holistically; it's not necessarily the case that gaining
1066 // access here would grant us access overall.
1067
1068 NamedDecl *D = Target.getTargetDecl();
1069
1070 // If we don't have an instance context, [class.protected] says the
1071 // naming class has to equal the context class.
1072 if (!Target.hasInstanceContext()) {
1073 // If it does, the restriction doesn't apply.
1074 if (NamingClass == ECRecord) continue;
1075
1076 // TODO: it would be great to have a fixit here, since this is
1077 // such an obvious error.
1078 S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1079 << S.Context.getTypeDeclType(ECRecord);
1080 return true;
1081 }
1082
1083 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1084 assert(InstanceContext && "diagnosing dependent access");
1085
1086 switch (IsDerivedFromInclusive(Derived: InstanceContext, Target: ECRecord)) {
1087 case AR_accessible: continue;
1088 case AR_dependent: continue;
1089 case AR_inaccessible:
1090 break;
1091 }
1092
1093 // Okay, the restriction seems to be what's limiting us.
1094
1095 // Use a special diagnostic for constructors and destructors.
1096 if (isa<CXXConstructorDecl>(Val: D) || isa<CXXDestructorDecl>(Val: D) ||
1097 (isa<FunctionTemplateDecl>(Val: D) &&
1098 isa<CXXConstructorDecl>(
1099 Val: cast<FunctionTemplateDecl>(Val: D)->getTemplatedDecl()))) {
1100 return S.Diag(D->getLocation(),
1101 diag::note_access_protected_restricted_ctordtor)
1102 << isa<CXXDestructorDecl>(D->getAsFunction());
1103 }
1104
1105 // Otherwise, use the generic diagnostic.
1106 return S.Diag(D->getLocation(),
1107 diag::note_access_protected_restricted_object)
1108 << S.Context.getTypeDeclType(ECRecord);
1109 }
1110
1111 return false;
1112}
1113
1114/// We are unable to access a given declaration due to its direct
1115/// access control; diagnose that.
1116static void diagnoseBadDirectAccess(Sema &S,
1117 const EffectiveContext &EC,
1118 AccessTarget &entity) {
1119 assert(entity.isMemberAccess());
1120 NamedDecl *D = entity.getTargetDecl();
1121
1122 if (D->getAccess() == AS_protected &&
1123 TryDiagnoseProtectedAccess(S, EC, Target&: entity))
1124 return;
1125
1126 // Find an original declaration.
1127 while (D->isOutOfLine()) {
1128 NamedDecl *PrevDecl = nullptr;
1129 if (VarDecl *VD = dyn_cast<VarDecl>(Val: D))
1130 PrevDecl = VD->getPreviousDecl();
1131 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D))
1132 PrevDecl = FD->getPreviousDecl();
1133 else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(Val: D))
1134 PrevDecl = TND->getPreviousDecl();
1135 else if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) {
1136 if (isa<RecordDecl>(Val: D) && cast<RecordDecl>(Val: D)->isInjectedClassName())
1137 break;
1138 PrevDecl = TD->getPreviousDecl();
1139 }
1140 if (!PrevDecl) break;
1141 D = PrevDecl;
1142 }
1143
1144 CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1145 Decl *ImmediateChild;
1146 if (D->getDeclContext() == DeclaringClass)
1147 ImmediateChild = D;
1148 else {
1149 DeclContext *DC = D->getDeclContext();
1150 while (DC->getParent() != DeclaringClass)
1151 DC = DC->getParent();
1152 ImmediateChild = cast<Decl>(Val: DC);
1153 }
1154
1155 // Check whether there's an AccessSpecDecl preceding this in the
1156 // chain of the DeclContext.
1157 bool isImplicit = true;
1158 for (const auto *I : DeclaringClass->decls()) {
1159 if (I == ImmediateChild) break;
1160 if (isa<AccessSpecDecl>(I)) {
1161 isImplicit = false;
1162 break;
1163 }
1164 }
1165
1166 S.Diag(D->getLocation(), diag::note_access_natural)
1167 << (unsigned) (D->getAccess() == AS_protected)
1168 << isImplicit;
1169}
1170
1171/// Diagnose the path which caused the given declaration or base class
1172/// to become inaccessible.
1173static void DiagnoseAccessPath(Sema &S,
1174 const EffectiveContext &EC,
1175 AccessTarget &entity) {
1176 // Save the instance context to preserve invariants.
1177 AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1178
1179 // This basically repeats the main algorithm but keeps some more
1180 // information.
1181
1182 // The natural access so far.
1183 AccessSpecifier accessSoFar = AS_public;
1184
1185 // Check whether we have special rights to the declaring class.
1186 if (entity.isMemberAccess()) {
1187 NamedDecl *D = entity.getTargetDecl();
1188 accessSoFar = D->getAccess();
1189 const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1190
1191 switch (HasAccess(S, EC, NamingClass: declaringClass, Access: accessSoFar, Target: entity)) {
1192 // If the declaration is accessible when named in its declaring
1193 // class, then we must be constrained by the path.
1194 case AR_accessible:
1195 accessSoFar = AS_public;
1196 entity.suppressInstanceContext();
1197 break;
1198
1199 case AR_inaccessible:
1200 if (accessSoFar == AS_private ||
1201 declaringClass == entity.getEffectiveNamingClass())
1202 return diagnoseBadDirectAccess(S, EC, entity);
1203 break;
1204
1205 case AR_dependent:
1206 llvm_unreachable("cannot diagnose dependent access");
1207 }
1208 }
1209
1210 CXXBasePaths paths;
1211 CXXBasePath &path = *FindBestPath(S, EC, Target&: entity, FinalAccess: accessSoFar, Paths&: paths);
1212 assert(path.Access != AS_public);
1213
1214 CXXBasePath::iterator i = path.end(), e = path.begin();
1215 CXXBasePath::iterator constrainingBase = i;
1216 while (i != e) {
1217 --i;
1218
1219 assert(accessSoFar != AS_none && accessSoFar != AS_private);
1220
1221 // Is the entity accessible when named in the deriving class, as
1222 // modified by the base specifier?
1223 const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1224 const CXXBaseSpecifier *base = i->Base;
1225
1226 // If the access to this base is worse than the access we have to
1227 // the declaration, remember it.
1228 AccessSpecifier baseAccess = base->getAccessSpecifier();
1229 if (baseAccess > accessSoFar) {
1230 constrainingBase = i;
1231 accessSoFar = baseAccess;
1232 }
1233
1234 switch (HasAccess(S, EC, NamingClass: derivingClass, Access: accessSoFar, Target: entity)) {
1235 case AR_inaccessible: break;
1236 case AR_accessible:
1237 accessSoFar = AS_public;
1238 entity.suppressInstanceContext();
1239 constrainingBase = nullptr;
1240 break;
1241 case AR_dependent:
1242 llvm_unreachable("cannot diagnose dependent access");
1243 }
1244
1245 // If this was private inheritance, but we don't have access to
1246 // the deriving class, we're done.
1247 if (accessSoFar == AS_private) {
1248 assert(baseAccess == AS_private);
1249 assert(constrainingBase == i);
1250 break;
1251 }
1252 }
1253
1254 // If we don't have a constraining base, the access failure must be
1255 // due to the original declaration.
1256 if (constrainingBase == path.end())
1257 return diagnoseBadDirectAccess(S, EC, entity);
1258
1259 // We're constrained by inheritance, but we want to say
1260 // "declared private here" if we're diagnosing a hierarchy
1261 // conversion and this is the final step.
1262 unsigned diagnostic;
1263 if (entity.isMemberAccess() ||
1264 constrainingBase + 1 != path.end()) {
1265 diagnostic = diag::note_access_constrained_by_path;
1266 } else {
1267 diagnostic = diag::note_access_natural;
1268 }
1269
1270 const CXXBaseSpecifier *base = constrainingBase->Base;
1271
1272 S.Diag(Loc: base->getSourceRange().getBegin(), DiagID: diagnostic)
1273 << base->getSourceRange()
1274 << (base->getAccessSpecifier() == AS_protected)
1275 << (base->getAccessSpecifierAsWritten() == AS_none);
1276
1277 if (entity.isMemberAccess())
1278 S.Diag(entity.getTargetDecl()->getLocation(),
1279 diag::note_member_declared_at);
1280}
1281
1282static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1283 const EffectiveContext &EC,
1284 AccessTarget &Entity) {
1285 const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1286 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1287 NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1288
1289 S.Diag(Loc, Entity.getDiag())
1290 << (Entity.getAccess() == AS_protected)
1291 << (D ? D->getDeclName() : DeclarationName())
1292 << S.Context.getTypeDeclType(NamingClass)
1293 << S.Context.getTypeDeclType(DeclaringClass);
1294 DiagnoseAccessPath(S, EC, entity&: Entity);
1295}
1296
1297/// MSVC has a bug where if during an using declaration name lookup,
1298/// the declaration found is unaccessible (private) and that declaration
1299/// was bring into scope via another using declaration whose target
1300/// declaration is accessible (public) then no error is generated.
1301/// Example:
1302/// class A {
1303/// public:
1304/// int f();
1305/// };
1306/// class B : public A {
1307/// private:
1308/// using A::f;
1309/// };
1310/// class C : public B {
1311/// private:
1312/// using B::f;
1313/// };
1314///
1315/// Here, B::f is private so this should fail in Standard C++, but
1316/// because B::f refers to A::f which is public MSVC accepts it.
1317static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1318 SourceLocation AccessLoc,
1319 AccessTarget &Entity) {
1320 if (UsingShadowDecl *Shadow =
1321 dyn_cast<UsingShadowDecl>(Entity.getTargetDecl()))
1322 if (UsingDecl *UD = dyn_cast<UsingDecl>(Val: Shadow->getIntroducer())) {
1323 const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1324 if (Entity.getTargetDecl()->getAccess() == AS_private &&
1325 (OrigDecl->getAccess() == AS_public ||
1326 OrigDecl->getAccess() == AS_protected)) {
1327 S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1328 << UD->getQualifiedNameAsString()
1329 << OrigDecl->getQualifiedNameAsString();
1330 return true;
1331 }
1332 }
1333 return false;
1334}
1335
1336/// Determines whether the accessed entity is accessible. Public members
1337/// have been weeded out by this point.
1338static AccessResult IsAccessible(Sema &S,
1339 const EffectiveContext &EC,
1340 AccessTarget &Entity) {
1341 // Determine the actual naming class.
1342 const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1343
1344 AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1345 assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1346
1347 // Before we try to recalculate access paths, try to white-list
1348 // accesses which just trade in on the final step, i.e. accesses
1349 // which don't require [M4] or [B4]. These are by far the most
1350 // common forms of privileged access.
1351 if (UnprivilegedAccess != AS_none) {
1352 switch (HasAccess(S, EC, NamingClass, Access: UnprivilegedAccess, Target: Entity)) {
1353 case AR_dependent:
1354 // This is actually an interesting policy decision. We don't
1355 // *have* to delay immediately here: we can do the full access
1356 // calculation in the hope that friendship on some intermediate
1357 // class will make the declaration accessible non-dependently.
1358 // But that's not cheap, and odds are very good (note: assertion
1359 // made without data) that the friend declaration will determine
1360 // access.
1361 return AR_dependent;
1362
1363 case AR_accessible: return AR_accessible;
1364 case AR_inaccessible: break;
1365 }
1366 }
1367
1368 AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1369
1370 // We lower member accesses to base accesses by pretending that the
1371 // member is a base class of its declaring class.
1372 AccessSpecifier FinalAccess;
1373
1374 if (Entity.isMemberAccess()) {
1375 // Determine if the declaration is accessible from EC when named
1376 // in its declaring class.
1377 NamedDecl *Target = Entity.getTargetDecl();
1378 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1379
1380 FinalAccess = Target->getAccess();
1381 switch (HasAccess(S, EC, NamingClass: DeclaringClass, Access: FinalAccess, Target: Entity)) {
1382 case AR_accessible:
1383 // Target is accessible at EC when named in its declaring class.
1384 // We can now hill-climb and simply check whether the declaring
1385 // class is accessible as a base of the naming class. This is
1386 // equivalent to checking the access of a notional public
1387 // member with no instance context.
1388 FinalAccess = AS_public;
1389 Entity.suppressInstanceContext();
1390 break;
1391 case AR_inaccessible: break;
1392 case AR_dependent: return AR_dependent; // see above
1393 }
1394
1395 if (DeclaringClass == NamingClass)
1396 return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1397 } else {
1398 FinalAccess = AS_public;
1399 }
1400
1401 assert(Entity.getDeclaringClass() != NamingClass);
1402
1403 // Append the declaration's access if applicable.
1404 CXXBasePaths Paths;
1405 CXXBasePath *Path = FindBestPath(S, EC, Target&: Entity, FinalAccess, Paths);
1406 if (!Path)
1407 return AR_dependent;
1408
1409 assert(Path->Access <= UnprivilegedAccess &&
1410 "access along best path worse than direct?");
1411 if (Path->Access == AS_public)
1412 return AR_accessible;
1413 return AR_inaccessible;
1414}
1415
1416static void DelayDependentAccess(Sema &S,
1417 const EffectiveContext &EC,
1418 SourceLocation Loc,
1419 const AccessTarget &Entity) {
1420 assert(EC.isDependent() && "delaying non-dependent access");
1421 DeclContext *DC = EC.getInnerContext();
1422 assert(DC->isDependentContext() && "delaying non-dependent access");
1423 DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1424 Loc,
1425 Entity.isMemberAccess(),
1426 Entity.getAccess(),
1427 Entity.getTargetDecl(),
1428 Entity.getNamingClass(),
1429 Entity.getBaseObjectType(),
1430 Entity.getDiag());
1431}
1432
1433/// Checks access to an entity from the given effective context.
1434static AccessResult CheckEffectiveAccess(Sema &S,
1435 const EffectiveContext &EC,
1436 SourceLocation Loc,
1437 AccessTarget &Entity) {
1438 assert(Entity.getAccess() != AS_public && "called for public access!");
1439
1440 switch (IsAccessible(S, EC, Entity)) {
1441 case AR_dependent:
1442 DelayDependentAccess(S, EC, Loc, Entity);
1443 return AR_dependent;
1444
1445 case AR_inaccessible:
1446 if (S.getLangOpts().MSVCCompat &&
1447 IsMicrosoftUsingDeclarationAccessBug(S, AccessLoc: Loc, Entity))
1448 return AR_accessible;
1449 if (!Entity.isQuiet())
1450 DiagnoseBadAccess(S, Loc, EC, Entity);
1451 return AR_inaccessible;
1452
1453 case AR_accessible:
1454 return AR_accessible;
1455 }
1456
1457 // silence unnecessary warning
1458 llvm_unreachable("invalid access result");
1459}
1460
1461static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1462 AccessTarget &Entity) {
1463 // If the access path is public, it's accessible everywhere.
1464 if (Entity.getAccess() == AS_public)
1465 return Sema::AR_accessible;
1466
1467 // If we're currently parsing a declaration, we may need to delay
1468 // access control checking, because our effective context might be
1469 // different based on what the declaration comes out as.
1470 //
1471 // For example, we might be parsing a declaration with a scope
1472 // specifier, like this:
1473 // A::private_type A::foo() { ... }
1474 //
1475 // Or we might be parsing something that will turn out to be a friend:
1476 // void foo(A::private_type);
1477 // void B::foo(A::private_type);
1478 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1479 S.DelayedDiagnostics.add(diag: DelayedDiagnostic::makeAccess(Loc, Entity));
1480 return Sema::AR_delayed;
1481 }
1482
1483 EffectiveContext EC(S.CurContext);
1484 switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1485 case AR_accessible: return Sema::AR_accessible;
1486 case AR_inaccessible: return Sema::AR_inaccessible;
1487 case AR_dependent: return Sema::AR_dependent;
1488 }
1489 llvm_unreachable("invalid access result");
1490}
1491
1492void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1493 // Access control for names used in the declarations of functions
1494 // and function templates should normally be evaluated in the context
1495 // of the declaration, just in case it's a friend of something.
1496 // However, this does not apply to local extern declarations.
1497
1498 DeclContext *DC = D->getDeclContext();
1499 if (D->isLocalExternDecl()) {
1500 DC = D->getLexicalDeclContext();
1501 } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(Val: D)) {
1502 DC = FN;
1503 } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) {
1504 if (isa<DeclContext>(Val: TD->getTemplatedDecl()))
1505 DC = cast<DeclContext>(Val: TD->getTemplatedDecl());
1506 } else if (auto *RD = dyn_cast<RequiresExprBodyDecl>(Val: D)) {
1507 DC = RD;
1508 }
1509
1510 EffectiveContext EC(DC);
1511
1512 AccessTarget Target(DD.getAccessData());
1513
1514 if (CheckEffectiveAccess(S&: *this, EC, Loc: DD.Loc, Entity&: Target) == ::AR_inaccessible)
1515 DD.Triggered = true;
1516}
1517
1518void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1519 const MultiLevelTemplateArgumentList &TemplateArgs) {
1520 SourceLocation Loc = DD.getAccessLoc();
1521 AccessSpecifier Access = DD.getAccess();
1522
1523 Decl *NamingD = FindInstantiatedDecl(Loc, D: DD.getAccessNamingClass(),
1524 TemplateArgs);
1525 if (!NamingD) return;
1526 Decl *TargetD = FindInstantiatedDecl(Loc, D: DD.getAccessTarget(),
1527 TemplateArgs);
1528 if (!TargetD) return;
1529
1530 if (DD.isAccessToMember()) {
1531 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Val: NamingD);
1532 NamedDecl *TargetDecl = cast<NamedDecl>(Val: TargetD);
1533 QualType BaseObjectType = DD.getAccessBaseObjectType();
1534 if (!BaseObjectType.isNull()) {
1535 BaseObjectType = SubstType(T: BaseObjectType, TemplateArgs, Loc,
1536 Entity: DeclarationName());
1537 if (BaseObjectType.isNull()) return;
1538 }
1539
1540 AccessTarget Entity(Context,
1541 AccessTarget::Member,
1542 NamingClass,
1543 DeclAccessPair::make(D: TargetDecl, AS: Access),
1544 BaseObjectType);
1545 Entity.setDiag(DD.getDiagnostic());
1546 CheckAccess(S&: *this, Loc, Entity);
1547 } else {
1548 AccessTarget Entity(Context,
1549 AccessTarget::Base,
1550 cast<CXXRecordDecl>(Val: TargetD),
1551 cast<CXXRecordDecl>(Val: NamingD),
1552 Access);
1553 Entity.setDiag(DD.getDiagnostic());
1554 CheckAccess(S&: *this, Loc, Entity);
1555 }
1556}
1557
1558Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1559 DeclAccessPair Found) {
1560 if (!getLangOpts().AccessControl ||
1561 !E->getNamingClass() ||
1562 Found.getAccess() == AS_public)
1563 return AR_accessible;
1564
1565 AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1566 Found, QualType());
1567 Entity.setDiag(diag::err_access) << E->getSourceRange();
1568
1569 return CheckAccess(*this, E->getNameLoc(), Entity);
1570}
1571
1572/// Perform access-control checking on a previously-unresolved member
1573/// access which has now been resolved to a member.
1574Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1575 DeclAccessPair Found) {
1576 if (!getLangOpts().AccessControl ||
1577 Found.getAccess() == AS_public)
1578 return AR_accessible;
1579
1580 QualType BaseType = E->getBaseType();
1581 if (E->isArrow())
1582 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1583
1584 AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1585 Found, BaseType);
1586 Entity.setDiag(diag::err_access) << E->getSourceRange();
1587
1588 return CheckAccess(S&: *this, Loc: E->getMemberLoc(), Entity);
1589}
1590
1591/// Is the given member accessible for the purposes of deciding whether to
1592/// define a special member function as deleted?
1593bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
1594 DeclAccessPair Found,
1595 QualType ObjectType,
1596 SourceLocation Loc,
1597 const PartialDiagnostic &Diag) {
1598 // Fast path.
1599 if (Found.getAccess() == AS_public || !getLangOpts().AccessControl)
1600 return true;
1601
1602 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1603 ObjectType);
1604
1605 // Suppress diagnostics.
1606 Entity.setDiag(Diag);
1607
1608 switch (CheckAccess(S&: *this, Loc, Entity)) {
1609 case AR_accessible: return true;
1610 case AR_inaccessible: return false;
1611 case AR_dependent: llvm_unreachable("dependent for =delete computation");
1612 case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1613 }
1614 llvm_unreachable("bad access result");
1615}
1616
1617Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1618 CXXDestructorDecl *Dtor,
1619 const PartialDiagnostic &PDiag,
1620 QualType ObjectTy) {
1621 if (!getLangOpts().AccessControl)
1622 return AR_accessible;
1623
1624 // There's never a path involved when checking implicit destructor access.
1625 AccessSpecifier Access = Dtor->getAccess();
1626 if (Access == AS_public)
1627 return AR_accessible;
1628
1629 CXXRecordDecl *NamingClass = Dtor->getParent();
1630 if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1631
1632 AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1633 DeclAccessPair::make(Dtor, Access),
1634 ObjectTy);
1635 Entity.setDiag(PDiag); // TODO: avoid copy
1636
1637 return CheckAccess(S&: *this, Loc, Entity);
1638}
1639
1640/// Checks access to a constructor.
1641Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1642 CXXConstructorDecl *Constructor,
1643 DeclAccessPair Found,
1644 const InitializedEntity &Entity,
1645 bool IsCopyBindingRefToTemp) {
1646 if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
1647 return AR_accessible;
1648
1649 PartialDiagnostic PD(PDiag());
1650 switch (Entity.getKind()) {
1651 default:
1652 PD = PDiag(IsCopyBindingRefToTemp
1653 ? diag::ext_rvalue_to_reference_access_ctor
1654 : diag::err_access_ctor);
1655
1656 break;
1657
1658 case InitializedEntity::EK_Base:
1659 PD = PDiag(diag::err_access_base_ctor);
1660 PD << Entity.isInheritedVirtualBase()
1661 << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1662 break;
1663
1664 case InitializedEntity::EK_Member:
1665 case InitializedEntity::EK_ParenAggInitMember: {
1666 const FieldDecl *Field = cast<FieldDecl>(Val: Entity.getDecl());
1667 PD = PDiag(diag::err_access_field_ctor);
1668 PD << Field->getType() << getSpecialMember(Constructor);
1669 break;
1670 }
1671
1672 case InitializedEntity::EK_LambdaCapture: {
1673 StringRef VarName = Entity.getCapturedVarName();
1674 PD = PDiag(diag::err_access_lambda_capture);
1675 PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1676 break;
1677 }
1678
1679 }
1680
1681 return CheckConstructorAccess(Loc: UseLoc, D: Constructor, FoundDecl: Found, Entity, PDiag: PD);
1682}
1683
1684/// Checks access to a constructor.
1685Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1686 CXXConstructorDecl *Constructor,
1687 DeclAccessPair Found,
1688 const InitializedEntity &Entity,
1689 const PartialDiagnostic &PD) {
1690 if (!getLangOpts().AccessControl ||
1691 Found.getAccess() == AS_public)
1692 return AR_accessible;
1693
1694 CXXRecordDecl *NamingClass = Constructor->getParent();
1695
1696 // Initializing a base sub-object is an instance method call on an
1697 // object of the derived class. Otherwise, we have an instance method
1698 // call on an object of the constructed type.
1699 //
1700 // FIXME: If we have a parent, we're initializing the base class subobject
1701 // in aggregate initialization. It's not clear whether the object class
1702 // should be the base class or the derived class in that case.
1703 CXXRecordDecl *ObjectClass;
1704 if ((Entity.getKind() == InitializedEntity::EK_Base ||
1705 Entity.getKind() == InitializedEntity::EK_Delegating) &&
1706 !Entity.getParent()) {
1707 ObjectClass = cast<CXXConstructorDecl>(Val: CurContext)->getParent();
1708 } else if (auto *Shadow =
1709 dyn_cast<ConstructorUsingShadowDecl>(Val: Found.getDecl())) {
1710 // If we're using an inheriting constructor to construct an object,
1711 // the object class is the derived class, not the base class.
1712 ObjectClass = Shadow->getParent();
1713 } else {
1714 ObjectClass = NamingClass;
1715 }
1716
1717 AccessTarget AccessEntity(
1718 Context, AccessTarget::Member, NamingClass,
1719 DeclAccessPair::make(Constructor, Found.getAccess()),
1720 Context.getTypeDeclType(ObjectClass));
1721 AccessEntity.setDiag(PD);
1722
1723 return CheckAccess(S&: *this, Loc: UseLoc, Entity&: AccessEntity);
1724}
1725
1726/// Checks access to an overloaded operator new or delete.
1727Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1728 SourceRange PlacementRange,
1729 CXXRecordDecl *NamingClass,
1730 DeclAccessPair Found,
1731 bool Diagnose) {
1732 if (!getLangOpts().AccessControl ||
1733 !NamingClass ||
1734 Found.getAccess() == AS_public)
1735 return AR_accessible;
1736
1737 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1738 QualType());
1739 if (Diagnose)
1740 Entity.setDiag(diag::err_access)
1741 << PlacementRange;
1742
1743 return CheckAccess(S&: *this, Loc: OpLoc, Entity);
1744}
1745
1746/// Checks access to a member.
1747Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1748 CXXRecordDecl *NamingClass,
1749 DeclAccessPair Found) {
1750 if (!getLangOpts().AccessControl ||
1751 !NamingClass ||
1752 Found.getAccess() == AS_public)
1753 return AR_accessible;
1754
1755 AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1756 Found, QualType());
1757
1758 return CheckAccess(S&: *this, Loc: UseLoc, Entity);
1759}
1760
1761/// Checks implicit access to a member in a structured binding.
1762Sema::AccessResult
1763Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
1764 CXXRecordDecl *DecomposedClass,
1765 DeclAccessPair Field) {
1766 if (!getLangOpts().AccessControl ||
1767 Field.getAccess() == AS_public)
1768 return AR_accessible;
1769
1770 AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field,
1771 Context.getRecordType(DecomposedClass));
1772 Entity.setDiag(diag::err_decomp_decl_inaccessible_field);
1773
1774 return CheckAccess(S&: *this, Loc: UseLoc, Entity);
1775}
1776
1777Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1778 Expr *ObjectExpr,
1779 const SourceRange &Range,
1780 DeclAccessPair Found) {
1781 if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
1782 return AR_accessible;
1783
1784 const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1785 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Val: RT->getDecl());
1786
1787 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1788 ObjectExpr->getType());
1789 Entity.setDiag(diag::err_access) << ObjectExpr->getSourceRange() << Range;
1790
1791 return CheckAccess(S&: *this, Loc: OpLoc, Entity);
1792}
1793
1794/// Checks access to an overloaded member operator, including
1795/// conversion operators.
1796Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1797 Expr *ObjectExpr,
1798 Expr *ArgExpr,
1799 DeclAccessPair Found) {
1800 return CheckMemberOperatorAccess(
1801 OpLoc, ObjectExpr, ArgExpr ? ArgExpr->getSourceRange() : SourceRange(),
1802 Found);
1803}
1804
1805Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1806 Expr *ObjectExpr,
1807 ArrayRef<Expr *> ArgExprs,
1808 DeclAccessPair FoundDecl) {
1809 SourceRange R;
1810 if (!ArgExprs.empty()) {
1811 R = SourceRange(ArgExprs.front()->getBeginLoc(),
1812 ArgExprs.back()->getEndLoc());
1813 }
1814
1815 return CheckMemberOperatorAccess(OpLoc, ObjectExpr, Range: R, Found: FoundDecl);
1816}
1817
1818/// Checks access to the target of a friend declaration.
1819Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1820 assert(isa<CXXMethodDecl>(target->getAsFunction()));
1821
1822 // Friendship lookup is a redeclaration lookup, so there's never an
1823 // inheritance path modifying access.
1824 AccessSpecifier access = target->getAccess();
1825
1826 if (!getLangOpts().AccessControl || access == AS_public)
1827 return AR_accessible;
1828
1829 CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1830
1831 AccessTarget entity(Context, AccessTarget::Member,
1832 cast<CXXRecordDecl>(target->getDeclContext()),
1833 DeclAccessPair::make(D: target, AS: access),
1834 /*no instance context*/ QualType());
1835 entity.setDiag(diag::err_access_friend_function)
1836 << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1837 : method->getNameInfo().getSourceRange());
1838
1839 // We need to bypass delayed-diagnostics because we might be called
1840 // while the ParsingDeclarator is active.
1841 EffectiveContext EC(CurContext);
1842 switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1843 case ::AR_accessible: return Sema::AR_accessible;
1844 case ::AR_inaccessible: return Sema::AR_inaccessible;
1845 case ::AR_dependent: return Sema::AR_dependent;
1846 }
1847 llvm_unreachable("invalid access result");
1848}
1849
1850Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1851 DeclAccessPair Found) {
1852 if (!getLangOpts().AccessControl ||
1853 Found.getAccess() == AS_none ||
1854 Found.getAccess() == AS_public)
1855 return AR_accessible;
1856
1857 OverloadExpr *Ovl = OverloadExpr::find(E: OvlExpr).Expression;
1858 CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1859
1860 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1861 /*no instance context*/ QualType());
1862 Entity.setDiag(diag::err_access)
1863 << Ovl->getSourceRange();
1864
1865 return CheckAccess(S&: *this, Loc: Ovl->getNameLoc(), Entity);
1866}
1867
1868/// Checks access for a hierarchy conversion.
1869///
1870/// \param ForceCheck true if this check should be performed even if access
1871/// control is disabled; some things rely on this for semantics
1872/// \param ForceUnprivileged true if this check should proceed as if the
1873/// context had no special privileges
1874Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1875 QualType Base,
1876 QualType Derived,
1877 const CXXBasePath &Path,
1878 unsigned DiagID,
1879 bool ForceCheck,
1880 bool ForceUnprivileged) {
1881 if (!ForceCheck && !getLangOpts().AccessControl)
1882 return AR_accessible;
1883
1884 if (Path.Access == AS_public)
1885 return AR_accessible;
1886
1887 CXXRecordDecl *BaseD, *DerivedD;
1888 BaseD = cast<CXXRecordDecl>(Val: Base->castAs<RecordType>()->getDecl());
1889 DerivedD = cast<CXXRecordDecl>(Val: Derived->castAs<RecordType>()->getDecl());
1890
1891 AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1892 Path.Access);
1893 if (DiagID)
1894 Entity.setDiag(DiagID) << Derived << Base;
1895
1896 if (ForceUnprivileged) {
1897 switch (CheckEffectiveAccess(S&: *this, EC: EffectiveContext(),
1898 Loc: AccessLoc, Entity)) {
1899 case ::AR_accessible: return Sema::AR_accessible;
1900 case ::AR_inaccessible: return Sema::AR_inaccessible;
1901 case ::AR_dependent: return Sema::AR_dependent;
1902 }
1903 llvm_unreachable("unexpected result from CheckEffectiveAccess");
1904 }
1905 return CheckAccess(S&: *this, Loc: AccessLoc, Entity);
1906}
1907
1908/// Checks access to all the declarations in the given result set.
1909void Sema::CheckLookupAccess(const LookupResult &R) {
1910 assert(getLangOpts().AccessControl
1911 && "performing access check without access control");
1912 assert(R.getNamingClass() && "performing access check without naming class");
1913
1914 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1915 if (I.getAccess() != AS_public) {
1916 AccessTarget Entity(Context, AccessedEntity::Member,
1917 R.getNamingClass(), I.getPair(),
1918 R.getBaseObjectType());
1919 Entity.setDiag(diag::err_access);
1920 CheckAccess(S&: *this, Loc: R.getNameLoc(), Entity);
1921 }
1922 }
1923}
1924
1925/// Checks access to Target from the given class. The check will take access
1926/// specifiers into account, but no member access expressions and such.
1927///
1928/// \param Target the declaration to check if it can be accessed
1929/// \param NamingClass the class in which the lookup was started.
1930/// \param BaseType type of the left side of member access expression.
1931/// \p BaseType and \p NamingClass are used for C++ access control.
1932/// Depending on the lookup case, they should be set to the following:
1933/// - lhs.target (member access without a qualifier):
1934/// \p BaseType and \p NamingClass are both the type of 'lhs'.
1935/// - lhs.X::target (member access with a qualifier):
1936/// BaseType is the type of 'lhs', NamingClass is 'X'
1937/// - X::target (qualified lookup without member access):
1938/// BaseType is null, NamingClass is 'X'.
1939/// - target (unqualified lookup).
1940/// BaseType is null, NamingClass is the parent class of 'target'.
1941/// \return true if the Target is accessible from the Class, false otherwise.
1942bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass,
1943 QualType BaseType) {
1944 // Perform the C++ accessibility checks first.
1945 if (Target->isCXXClassMember() && NamingClass) {
1946 if (!getLangOpts().CPlusPlus)
1947 return false;
1948 // The unprivileged access is AS_none as we don't know how the member was
1949 // accessed, which is described by the access in DeclAccessPair.
1950 // `IsAccessible` will examine the actual access of Target (i.e.
1951 // Decl->getAccess()) when calculating the access.
1952 AccessTarget Entity(Context, AccessedEntity::Member, NamingClass,
1953 DeclAccessPair::make(D: Target, AS: AS_none), BaseType);
1954 EffectiveContext EC(CurContext);
1955 return ::IsAccessible(S&: *this, EC, Entity) != ::AR_inaccessible;
1956 }
1957
1958 if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Val: Target)) {
1959 // @public and @package ivars are always accessible.
1960 if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1961 Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1962 return true;
1963
1964 // If we are inside a class or category implementation, determine the
1965 // interface we're in.
1966 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1967 if (ObjCMethodDecl *MD = getCurMethodDecl())
1968 ClassOfMethodDecl = MD->getClassInterface();
1969 else if (FunctionDecl *FD = getCurFunctionDecl()) {
1970 if (ObjCImplDecl *Impl
1971 = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1972 if (ObjCImplementationDecl *IMPD
1973 = dyn_cast<ObjCImplementationDecl>(Val: Impl))
1974 ClassOfMethodDecl = IMPD->getClassInterface();
1975 else if (ObjCCategoryImplDecl* CatImplClass
1976 = dyn_cast<ObjCCategoryImplDecl>(Val: Impl))
1977 ClassOfMethodDecl = CatImplClass->getClassInterface();
1978 }
1979 }
1980
1981 // If we're not in an interface, this ivar is inaccessible.
1982 if (!ClassOfMethodDecl)
1983 return false;
1984
1985 // If we're inside the same interface that owns the ivar, we're fine.
1986 if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1987 return true;
1988
1989 // If the ivar is private, it's inaccessible.
1990 if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1991 return false;
1992
1993 return Ivar->getContainingInterface()->isSuperClassOf(I: ClassOfMethodDecl);
1994 }
1995
1996 return true;
1997}
1998

source code of clang/lib/Sema/SemaAccess.cpp