1 | //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for Objective C declarations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "TypeLocBuilder.h" |
14 | #include "clang/AST/ASTConsumer.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/DeclObjC.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprObjC.h" |
20 | #include "clang/AST/RecursiveASTVisitor.h" |
21 | #include "clang/Basic/SourceManager.h" |
22 | #include "clang/Basic/TargetInfo.h" |
23 | #include "clang/Sema/DeclSpec.h" |
24 | #include "clang/Sema/Lookup.h" |
25 | #include "clang/Sema/Scope.h" |
26 | #include "clang/Sema/ScopeInfo.h" |
27 | #include "clang/Sema/SemaInternal.h" |
28 | #include "llvm/ADT/DenseMap.h" |
29 | #include "llvm/ADT/DenseSet.h" |
30 | |
31 | using namespace clang; |
32 | |
33 | /// Check whether the given method, which must be in the 'init' |
34 | /// family, is a valid member of that family. |
35 | /// |
36 | /// \param receiverTypeIfCall - if null, check this as if declaring it; |
37 | /// if non-null, check this as if making a call to it with the given |
38 | /// receiver type |
39 | /// |
40 | /// \return true to indicate that there was an error and appropriate |
41 | /// actions were taken |
42 | bool Sema::checkInitMethod(ObjCMethodDecl *method, |
43 | QualType receiverTypeIfCall) { |
44 | if (method->isInvalidDecl()) return true; |
45 | |
46 | // This castAs is safe: methods that don't return an object |
47 | // pointer won't be inferred as inits and will reject an explicit |
48 | // objc_method_family(init). |
49 | |
50 | // We ignore protocols here. Should we? What about Class? |
51 | |
52 | const ObjCObjectType *result = |
53 | method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); |
54 | |
55 | if (result->isObjCId()) { |
56 | return false; |
57 | } else if (result->isObjCClass()) { |
58 | // fall through: always an error |
59 | } else { |
60 | ObjCInterfaceDecl *resultClass = result->getInterface(); |
61 | assert(resultClass && "unexpected object type!" ); |
62 | |
63 | // It's okay for the result type to still be a forward declaration |
64 | // if we're checking an interface declaration. |
65 | if (!resultClass->hasDefinition()) { |
66 | if (receiverTypeIfCall.isNull() && |
67 | !isa<ObjCImplementationDecl>(method->getDeclContext())) |
68 | return false; |
69 | |
70 | // Otherwise, we try to compare class types. |
71 | } else { |
72 | // If this method was declared in a protocol, we can't check |
73 | // anything unless we have a receiver type that's an interface. |
74 | const ObjCInterfaceDecl *receiverClass = nullptr; |
75 | if (isa<ObjCProtocolDecl>(method->getDeclContext())) { |
76 | if (receiverTypeIfCall.isNull()) |
77 | return false; |
78 | |
79 | receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() |
80 | ->getInterfaceDecl(); |
81 | |
82 | // This can be null for calls to e.g. id<Foo>. |
83 | if (!receiverClass) return false; |
84 | } else { |
85 | receiverClass = method->getClassInterface(); |
86 | assert(receiverClass && "method not associated with a class!" ); |
87 | } |
88 | |
89 | // If either class is a subclass of the other, it's fine. |
90 | if (receiverClass->isSuperClassOf(I: resultClass) || |
91 | resultClass->isSuperClassOf(I: receiverClass)) |
92 | return false; |
93 | } |
94 | } |
95 | |
96 | SourceLocation loc = method->getLocation(); |
97 | |
98 | // If we're in a system header, and this is not a call, just make |
99 | // the method unusable. |
100 | if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(Loc: loc)) { |
101 | method->addAttr(UnavailableAttr::CreateImplicit(Context, "" , |
102 | UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); |
103 | return true; |
104 | } |
105 | |
106 | // Otherwise, it's an error. |
107 | Diag(loc, diag::err_arc_init_method_unrelated_result_type); |
108 | method->setInvalidDecl(); |
109 | return true; |
110 | } |
111 | |
112 | /// Issue a warning if the parameter of the overridden method is non-escaping |
113 | /// but the parameter of the overriding method is not. |
114 | static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
115 | Sema &S) { |
116 | if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { |
117 | S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); |
118 | S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); |
119 | return false; |
120 | } |
121 | |
122 | return true; |
123 | } |
124 | |
125 | /// Produce additional diagnostics if a category conforms to a protocol that |
126 | /// defines a method taking a non-escaping parameter. |
127 | static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
128 | const ObjCCategoryDecl *CD, |
129 | const ObjCProtocolDecl *PD, Sema &S) { |
130 | if (!diagnoseNoescape(NewD, OldD, S)) |
131 | S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) |
132 | << CD->IsClassExtension() << PD |
133 | << cast<ObjCMethodDecl>(NewD->getDeclContext()); |
134 | } |
135 | |
136 | void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, |
137 | const ObjCMethodDecl *Overridden) { |
138 | if (Overridden->hasRelatedResultType() && |
139 | !NewMethod->hasRelatedResultType()) { |
140 | // This can only happen when the method follows a naming convention that |
141 | // implies a related result type, and the original (overridden) method has |
142 | // a suitable return type, but the new (overriding) method does not have |
143 | // a suitable return type. |
144 | QualType ResultType = NewMethod->getReturnType(); |
145 | SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); |
146 | |
147 | // Figure out which class this method is part of, if any. |
148 | ObjCInterfaceDecl *CurrentClass |
149 | = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); |
150 | if (!CurrentClass) { |
151 | DeclContext *DC = NewMethod->getDeclContext(); |
152 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC)) |
153 | CurrentClass = Cat->getClassInterface(); |
154 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC)) |
155 | CurrentClass = Impl->getClassInterface(); |
156 | else if (ObjCCategoryImplDecl *CatImpl |
157 | = dyn_cast<ObjCCategoryImplDecl>(Val: DC)) |
158 | CurrentClass = CatImpl->getClassInterface(); |
159 | } |
160 | |
161 | if (CurrentClass) { |
162 | Diag(NewMethod->getLocation(), |
163 | diag::warn_related_result_type_compatibility_class) |
164 | << Context.getObjCInterfaceType(CurrentClass) |
165 | << ResultType |
166 | << ResultTypeRange; |
167 | } else { |
168 | Diag(NewMethod->getLocation(), |
169 | diag::warn_related_result_type_compatibility_protocol) |
170 | << ResultType |
171 | << ResultTypeRange; |
172 | } |
173 | |
174 | if (ObjCMethodFamily Family = Overridden->getMethodFamily()) |
175 | Diag(Overridden->getLocation(), |
176 | diag::note_related_result_type_family) |
177 | << /*overridden method*/ 0 |
178 | << Family; |
179 | else |
180 | Diag(Overridden->getLocation(), |
181 | diag::note_related_result_type_overridden); |
182 | } |
183 | |
184 | if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != |
185 | Overridden->hasAttr<NSReturnsRetainedAttr>())) { |
186 | Diag(NewMethod->getLocation(), |
187 | getLangOpts().ObjCAutoRefCount |
188 | ? diag::err_nsreturns_retained_attribute_mismatch |
189 | : diag::warn_nsreturns_retained_attribute_mismatch) |
190 | << 1; |
191 | Diag(Overridden->getLocation(), diag::note_previous_decl) << "method" ; |
192 | } |
193 | if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != |
194 | Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { |
195 | Diag(NewMethod->getLocation(), |
196 | getLangOpts().ObjCAutoRefCount |
197 | ? diag::err_nsreturns_retained_attribute_mismatch |
198 | : diag::warn_nsreturns_retained_attribute_mismatch) |
199 | << 0; |
200 | Diag(Overridden->getLocation(), diag::note_previous_decl) << "method" ; |
201 | } |
202 | |
203 | ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), |
204 | oe = Overridden->param_end(); |
205 | for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), |
206 | ne = NewMethod->param_end(); |
207 | ni != ne && oi != oe; ++ni, ++oi) { |
208 | const ParmVarDecl *oldDecl = (*oi); |
209 | ParmVarDecl *newDecl = (*ni); |
210 | if (newDecl->hasAttr<NSConsumedAttr>() != |
211 | oldDecl->hasAttr<NSConsumedAttr>()) { |
212 | Diag(newDecl->getLocation(), |
213 | getLangOpts().ObjCAutoRefCount |
214 | ? diag::err_nsconsumed_attribute_mismatch |
215 | : diag::warn_nsconsumed_attribute_mismatch); |
216 | Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter" ; |
217 | } |
218 | |
219 | diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: *this); |
220 | } |
221 | } |
222 | |
223 | /// Check a method declaration for compatibility with the Objective-C |
224 | /// ARC conventions. |
225 | bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { |
226 | ObjCMethodFamily family = method->getMethodFamily(); |
227 | switch (family) { |
228 | case OMF_None: |
229 | case OMF_finalize: |
230 | case OMF_retain: |
231 | case OMF_release: |
232 | case OMF_autorelease: |
233 | case OMF_retainCount: |
234 | case OMF_self: |
235 | case OMF_initialize: |
236 | case OMF_performSelector: |
237 | return false; |
238 | |
239 | case OMF_dealloc: |
240 | if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { |
241 | SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); |
242 | if (ResultTypeRange.isInvalid()) |
243 | Diag(method->getLocation(), diag::err_dealloc_bad_result_type) |
244 | << method->getReturnType() |
245 | << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)" ); |
246 | else |
247 | Diag(method->getLocation(), diag::err_dealloc_bad_result_type) |
248 | << method->getReturnType() |
249 | << FixItHint::CreateReplacement(ResultTypeRange, "void" ); |
250 | return true; |
251 | } |
252 | return false; |
253 | |
254 | case OMF_init: |
255 | // If the method doesn't obey the init rules, don't bother annotating it. |
256 | if (checkInitMethod(method, receiverTypeIfCall: QualType())) |
257 | return true; |
258 | |
259 | method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); |
260 | |
261 | // Don't add a second copy of this attribute, but otherwise don't |
262 | // let it be suppressed. |
263 | if (method->hasAttr<NSReturnsRetainedAttr>()) |
264 | return false; |
265 | break; |
266 | |
267 | case OMF_alloc: |
268 | case OMF_copy: |
269 | case OMF_mutableCopy: |
270 | case OMF_new: |
271 | if (method->hasAttr<NSReturnsRetainedAttr>() || |
272 | method->hasAttr<NSReturnsNotRetainedAttr>() || |
273 | method->hasAttr<NSReturnsAutoreleasedAttr>()) |
274 | return false; |
275 | break; |
276 | } |
277 | |
278 | method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); |
279 | return false; |
280 | } |
281 | |
282 | static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, |
283 | SourceLocation ImplLoc) { |
284 | if (!ND) |
285 | return; |
286 | bool IsCategory = false; |
287 | StringRef RealizedPlatform; |
288 | AvailabilityResult Availability = ND->getAvailability( |
289 | /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), |
290 | &RealizedPlatform); |
291 | if (Availability != AR_Deprecated) { |
292 | if (isa<ObjCMethodDecl>(Val: ND)) { |
293 | if (Availability != AR_Unavailable) |
294 | return; |
295 | if (RealizedPlatform.empty()) |
296 | RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); |
297 | // Warn about implementing unavailable methods, unless the unavailable |
298 | // is for an app extension. |
299 | if (RealizedPlatform.ends_with(Suffix: "_app_extension" )) |
300 | return; |
301 | S.Diag(ImplLoc, diag::warn_unavailable_def); |
302 | S.Diag(ND->getLocation(), diag::note_method_declared_at) |
303 | << ND->getDeclName(); |
304 | return; |
305 | } |
306 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) { |
307 | if (!CD->getClassInterface()->isDeprecated()) |
308 | return; |
309 | ND = CD->getClassInterface(); |
310 | IsCategory = true; |
311 | } else |
312 | return; |
313 | } |
314 | S.Diag(ImplLoc, diag::warn_deprecated_def) |
315 | << (isa<ObjCMethodDecl>(ND) |
316 | ? /*Method*/ 0 |
317 | : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 |
318 | : /*Class*/ 1); |
319 | if (isa<ObjCMethodDecl>(ND)) |
320 | S.Diag(ND->getLocation(), diag::note_method_declared_at) |
321 | << ND->getDeclName(); |
322 | else |
323 | S.Diag(ND->getLocation(), diag::note_previous_decl) |
324 | << (isa<ObjCCategoryDecl>(ND) ? "category" : "class" ); |
325 | } |
326 | |
327 | /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global |
328 | /// pool. |
329 | void Sema::AddAnyMethodToGlobalPool(Decl *D) { |
330 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
331 | |
332 | // If we don't have a valid method decl, simply return. |
333 | if (!MDecl) |
334 | return; |
335 | if (MDecl->isInstanceMethod()) |
336 | AddInstanceMethodToGlobalPool(Method: MDecl, impl: true); |
337 | else |
338 | AddFactoryMethodToGlobalPool(Method: MDecl, impl: true); |
339 | } |
340 | |
341 | /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer |
342 | /// has explicit ownership attribute; false otherwise. |
343 | static bool |
344 | HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { |
345 | QualType T = Param->getType(); |
346 | |
347 | if (const PointerType *PT = T->getAs<PointerType>()) { |
348 | T = PT->getPointeeType(); |
349 | } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { |
350 | T = RT->getPointeeType(); |
351 | } else { |
352 | return true; |
353 | } |
354 | |
355 | // If we have a lifetime qualifier, but it's local, we must have |
356 | // inferred it. So, it is implicit. |
357 | return !T.getLocalQualifiers().hasObjCLifetime(); |
358 | } |
359 | |
360 | /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible |
361 | /// and user declared, in the method definition's AST. |
362 | void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { |
363 | ImplicitlyRetainedSelfLocs.clear(); |
364 | assert((getCurMethodDecl() == nullptr) && "Methodparsing confused" ); |
365 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
366 | |
367 | PushExpressionEvaluationContext(NewContext: ExprEvalContexts.back().Context); |
368 | |
369 | // If we don't have a valid method decl, simply return. |
370 | if (!MDecl) |
371 | return; |
372 | |
373 | QualType ResultType = MDecl->getReturnType(); |
374 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
375 | !MDecl->isInvalidDecl() && |
376 | RequireCompleteType(MDecl->getLocation(), ResultType, |
377 | diag::err_func_def_incomplete_result)) |
378 | MDecl->setInvalidDecl(); |
379 | |
380 | // Allow all of Sema to see that we are entering a method definition. |
381 | PushDeclContext(FnBodyScope, MDecl); |
382 | PushFunctionScope(); |
383 | |
384 | // Create Decl objects for each parameter, entrring them in the scope for |
385 | // binding to their use. |
386 | |
387 | // Insert the invisible arguments, self and _cmd! |
388 | MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface()); |
389 | |
390 | PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); |
391 | PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); |
392 | |
393 | // The ObjC parser requires parameter names so there's no need to check. |
394 | CheckParmsForFunctionDef(Parameters: MDecl->parameters(), |
395 | /*CheckParameterNames=*/false); |
396 | |
397 | // Introduce all of the other parameters into this scope. |
398 | for (auto *Param : MDecl->parameters()) { |
399 | if (!Param->isInvalidDecl() && |
400 | getLangOpts().ObjCAutoRefCount && |
401 | !HasExplicitOwnershipAttr(*this, Param)) |
402 | Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << |
403 | Param->getType(); |
404 | |
405 | if (Param->getIdentifier()) |
406 | PushOnScopeChains(Param, FnBodyScope); |
407 | } |
408 | |
409 | // In ARC, disallow definition of retain/release/autorelease/retainCount |
410 | if (getLangOpts().ObjCAutoRefCount) { |
411 | switch (MDecl->getMethodFamily()) { |
412 | case OMF_retain: |
413 | case OMF_retainCount: |
414 | case OMF_release: |
415 | case OMF_autorelease: |
416 | Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) |
417 | << 0 << MDecl->getSelector(); |
418 | break; |
419 | |
420 | case OMF_None: |
421 | case OMF_dealloc: |
422 | case OMF_finalize: |
423 | case OMF_alloc: |
424 | case OMF_init: |
425 | case OMF_mutableCopy: |
426 | case OMF_copy: |
427 | case OMF_new: |
428 | case OMF_self: |
429 | case OMF_initialize: |
430 | case OMF_performSelector: |
431 | break; |
432 | } |
433 | } |
434 | |
435 | // Warn on deprecated methods under -Wdeprecated-implementations, |
436 | // and prepare for warning on missing super calls. |
437 | if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { |
438 | ObjCMethodDecl *IMD = |
439 | IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod()); |
440 | |
441 | if (IMD) { |
442 | ObjCImplDecl *ImplDeclOfMethodDef = |
443 | dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); |
444 | ObjCContainerDecl *ContDeclOfMethodDecl = |
445 | dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); |
446 | ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; |
447 | if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl)) |
448 | ImplDeclOfMethodDecl = OID->getImplementation(); |
449 | else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) { |
450 | if (CD->IsClassExtension()) { |
451 | if (ObjCInterfaceDecl *OID = CD->getClassInterface()) |
452 | ImplDeclOfMethodDecl = OID->getImplementation(); |
453 | } else |
454 | ImplDeclOfMethodDecl = CD->getImplementation(); |
455 | } |
456 | // No need to issue deprecated warning if deprecated mehod in class/category |
457 | // is being implemented in its own implementation (no overriding is involved). |
458 | if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) |
459 | DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation()); |
460 | } |
461 | |
462 | if (MDecl->getMethodFamily() == OMF_init) { |
463 | if (MDecl->isDesignatedInitializerForTheInterface()) { |
464 | getCurFunction()->ObjCIsDesignatedInit = true; |
465 | getCurFunction()->ObjCWarnForNoDesignatedInitChain = |
466 | IC->getSuperClass() != nullptr; |
467 | } else if (IC->hasDesignatedInitializers()) { |
468 | getCurFunction()->ObjCIsSecondaryInit = true; |
469 | getCurFunction()->ObjCWarnForNoInitDelegation = true; |
470 | } |
471 | } |
472 | |
473 | // If this is "dealloc" or "finalize", set some bit here. |
474 | // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. |
475 | // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. |
476 | // Only do this if the current class actually has a superclass. |
477 | if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { |
478 | ObjCMethodFamily Family = MDecl->getMethodFamily(); |
479 | if (Family == OMF_dealloc) { |
480 | if (!(getLangOpts().ObjCAutoRefCount || |
481 | getLangOpts().getGC() == LangOptions::GCOnly)) |
482 | getCurFunction()->ObjCShouldCallSuper = true; |
483 | |
484 | } else if (Family == OMF_finalize) { |
485 | if (Context.getLangOpts().getGC() != LangOptions::NonGC) |
486 | getCurFunction()->ObjCShouldCallSuper = true; |
487 | |
488 | } else { |
489 | const ObjCMethodDecl *SuperMethod = |
490 | SuperClass->lookupMethod(Sel: MDecl->getSelector(), |
491 | isInstance: MDecl->isInstanceMethod()); |
492 | getCurFunction()->ObjCShouldCallSuper = |
493 | (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); |
494 | } |
495 | } |
496 | } |
497 | |
498 | // Some function attributes (like OptimizeNoneAttr) need actions before |
499 | // parsing body started. |
500 | applyFunctionAttributesBeforeParsingBody(FD: D); |
501 | } |
502 | |
503 | namespace { |
504 | |
505 | // Callback to only accept typo corrections that are Objective-C classes. |
506 | // If an ObjCInterfaceDecl* is given to the constructor, then the validation |
507 | // function will reject corrections to that class. |
508 | class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { |
509 | public: |
510 | ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} |
511 | explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) |
512 | : CurrentIDecl(IDecl) {} |
513 | |
514 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
515 | ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
516 | return ID && !declaresSameEntity(ID, CurrentIDecl); |
517 | } |
518 | |
519 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
520 | return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this); |
521 | } |
522 | |
523 | private: |
524 | ObjCInterfaceDecl *CurrentIDecl; |
525 | }; |
526 | |
527 | } // end anonymous namespace |
528 | |
529 | static void diagnoseUseOfProtocols(Sema &TheSema, |
530 | ObjCContainerDecl *CD, |
531 | ObjCProtocolDecl *const *ProtoRefs, |
532 | unsigned NumProtoRefs, |
533 | const SourceLocation *ProtoLocs) { |
534 | assert(ProtoRefs); |
535 | // Diagnose availability in the context of the ObjC container. |
536 | Sema::ContextRAII SavedContext(TheSema, CD); |
537 | for (unsigned i = 0; i < NumProtoRefs; ++i) { |
538 | (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], |
539 | /*UnknownObjCClass=*/nullptr, |
540 | /*ObjCPropertyAccess=*/false, |
541 | /*AvoidPartialAvailabilityChecks=*/true); |
542 | } |
543 | } |
544 | |
545 | void Sema:: |
546 | ActOnSuperClassOfClassInterface(Scope *S, |
547 | SourceLocation AtInterfaceLoc, |
548 | ObjCInterfaceDecl *IDecl, |
549 | IdentifierInfo *ClassName, |
550 | SourceLocation ClassLoc, |
551 | IdentifierInfo *SuperName, |
552 | SourceLocation SuperLoc, |
553 | ArrayRef<ParsedType> SuperTypeArgs, |
554 | SourceRange SuperTypeArgsRange) { |
555 | // Check if a different kind of symbol declared in this scope. |
556 | NamedDecl *PrevDecl = LookupSingleName(S: TUScope, Name: SuperName, Loc: SuperLoc, |
557 | NameKind: LookupOrdinaryName); |
558 | |
559 | if (!PrevDecl) { |
560 | // Try to correct for a typo in the superclass name without correcting |
561 | // to the class we're defining. |
562 | ObjCInterfaceValidatorCCC CCC(IDecl); |
563 | if (TypoCorrection Corrected = CorrectTypo( |
564 | Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: LookupOrdinaryName, |
565 | S: TUScope, SS: nullptr, CCC, Mode: CTK_ErrorRecovery)) { |
566 | diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) |
567 | << SuperName << ClassName); |
568 | PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
569 | } |
570 | } |
571 | |
572 | if (declaresSameEntity(PrevDecl, IDecl)) { |
573 | Diag(SuperLoc, diag::err_recursive_superclass) |
574 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
575 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
576 | } else { |
577 | ObjCInterfaceDecl *SuperClassDecl = |
578 | dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
579 | QualType SuperClassType; |
580 | |
581 | // Diagnose classes that inherit from deprecated classes. |
582 | if (SuperClassDecl) { |
583 | (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); |
584 | SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl); |
585 | } |
586 | |
587 | if (PrevDecl && !SuperClassDecl) { |
588 | // The previous declaration was not a class decl. Check if we have a |
589 | // typedef. If we do, get the underlying class type. |
590 | if (const TypedefNameDecl *TDecl = |
591 | dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) { |
592 | QualType T = TDecl->getUnderlyingType(); |
593 | if (T->isObjCObjectType()) { |
594 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
595 | SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl); |
596 | SuperClassType = Context.getTypeDeclType(TDecl); |
597 | |
598 | // This handles the following case: |
599 | // @interface NewI @end |
600 | // typedef NewI DeprI __attribute__((deprecated("blah"))) |
601 | // @interface SI : DeprI /* warn here */ @end |
602 | (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); |
603 | } |
604 | } |
605 | } |
606 | |
607 | // This handles the following case: |
608 | // |
609 | // typedef int SuperClass; |
610 | // @interface MyClass : SuperClass {} @end |
611 | // |
612 | if (!SuperClassDecl) { |
613 | Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; |
614 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
615 | } |
616 | } |
617 | |
618 | if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) { |
619 | if (!SuperClassDecl) |
620 | Diag(SuperLoc, diag::err_undef_superclass) |
621 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
622 | else if (RequireCompleteType(SuperLoc, |
623 | SuperClassType, |
624 | diag::err_forward_superclass, |
625 | SuperClassDecl->getDeclName(), |
626 | ClassName, |
627 | SourceRange(AtInterfaceLoc, ClassLoc))) { |
628 | SuperClassDecl = nullptr; |
629 | SuperClassType = QualType(); |
630 | } |
631 | } |
632 | |
633 | if (SuperClassType.isNull()) { |
634 | assert(!SuperClassDecl && "Failed to set SuperClassType?" ); |
635 | return; |
636 | } |
637 | |
638 | // Handle type arguments on the superclass. |
639 | TypeSourceInfo *SuperClassTInfo = nullptr; |
640 | if (!SuperTypeArgs.empty()) { |
641 | TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( |
642 | S, |
643 | Loc: SuperLoc, |
644 | BaseType: CreateParsedType(T: SuperClassType, |
645 | TInfo: nullptr), |
646 | TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(), |
647 | TypeArgs: SuperTypeArgs, |
648 | TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(), |
649 | ProtocolLAngleLoc: SourceLocation(), |
650 | Protocols: { }, |
651 | ProtocolLocs: { }, |
652 | ProtocolRAngleLoc: SourceLocation()); |
653 | if (!fullSuperClassType.isUsable()) |
654 | return; |
655 | |
656 | SuperClassType = GetTypeFromParser(Ty: fullSuperClassType.get(), |
657 | TInfo: &SuperClassTInfo); |
658 | } |
659 | |
660 | if (!SuperClassTInfo) { |
661 | SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType, |
662 | Loc: SuperLoc); |
663 | } |
664 | |
665 | IDecl->setSuperClass(SuperClassTInfo); |
666 | IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); |
667 | } |
668 | } |
669 | |
670 | DeclResult Sema::actOnObjCTypeParam(Scope *S, |
671 | ObjCTypeParamVariance variance, |
672 | SourceLocation varianceLoc, |
673 | unsigned index, |
674 | IdentifierInfo *paramName, |
675 | SourceLocation paramLoc, |
676 | SourceLocation colonLoc, |
677 | ParsedType parsedTypeBound) { |
678 | // If there was an explicitly-provided type bound, check it. |
679 | TypeSourceInfo *typeBoundInfo = nullptr; |
680 | if (parsedTypeBound) { |
681 | // The type bound can be any Objective-C pointer type. |
682 | QualType typeBound = GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo); |
683 | if (typeBound->isObjCObjectPointerType()) { |
684 | // okay |
685 | } else if (typeBound->isObjCObjectType()) { |
686 | // The user forgot the * on an Objective-C pointer type, e.g., |
687 | // "T : NSView". |
688 | SourceLocation starLoc = getLocForEndOfToken( |
689 | Loc: typeBoundInfo->getTypeLoc().getEndLoc()); |
690 | Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), |
691 | diag::err_objc_type_param_bound_missing_pointer) |
692 | << typeBound << paramName |
693 | << FixItHint::CreateInsertion(starLoc, " *" ); |
694 | |
695 | // Create a new type location builder so we can update the type |
696 | // location information we have. |
697 | TypeLocBuilder builder; |
698 | builder.pushFullCopy(L: typeBoundInfo->getTypeLoc()); |
699 | |
700 | // Create the Objective-C pointer type. |
701 | typeBound = Context.getObjCObjectPointerType(OIT: typeBound); |
702 | ObjCObjectPointerTypeLoc newT |
703 | = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound); |
704 | newT.setStarLoc(starLoc); |
705 | |
706 | // Form the new type source information. |
707 | typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound); |
708 | } else { |
709 | // Not a valid type bound. |
710 | Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), |
711 | diag::err_objc_type_param_bound_nonobject) |
712 | << typeBound << paramName; |
713 | |
714 | // Forget the bound; we'll default to id later. |
715 | typeBoundInfo = nullptr; |
716 | } |
717 | |
718 | // Type bounds cannot have qualifiers (even indirectly) or explicit |
719 | // nullability. |
720 | if (typeBoundInfo) { |
721 | QualType typeBound = typeBoundInfo->getType(); |
722 | TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); |
723 | if (qual || typeBound.hasQualifiers()) { |
724 | bool diagnosed = false; |
725 | SourceRange rangeToRemove; |
726 | if (qual) { |
727 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { |
728 | rangeToRemove = attr.getLocalSourceRange(); |
729 | if (attr.getTypePtr()->getImmediateNullability()) { |
730 | Diag(attr.getBeginLoc(), |
731 | diag::err_objc_type_param_bound_explicit_nullability) |
732 | << paramName << typeBound |
733 | << FixItHint::CreateRemoval(rangeToRemove); |
734 | diagnosed = true; |
735 | } |
736 | } |
737 | } |
738 | |
739 | if (!diagnosed) { |
740 | Diag(qual ? qual.getBeginLoc() |
741 | : typeBoundInfo->getTypeLoc().getBeginLoc(), |
742 | diag::err_objc_type_param_bound_qualified) |
743 | << paramName << typeBound |
744 | << typeBound.getQualifiers().getAsString() |
745 | << FixItHint::CreateRemoval(rangeToRemove); |
746 | } |
747 | |
748 | // If the type bound has qualifiers other than CVR, we need to strip |
749 | // them or we'll probably assert later when trying to apply new |
750 | // qualifiers. |
751 | Qualifiers quals = typeBound.getQualifiers(); |
752 | quals.removeCVRQualifiers(); |
753 | if (!quals.empty()) { |
754 | typeBoundInfo = |
755 | Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType()); |
756 | } |
757 | } |
758 | } |
759 | } |
760 | |
761 | // If there was no explicit type bound (or we removed it due to an error), |
762 | // use 'id' instead. |
763 | if (!typeBoundInfo) { |
764 | colonLoc = SourceLocation(); |
765 | typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType()); |
766 | } |
767 | |
768 | // Create the type parameter. |
769 | return ObjCTypeParamDecl::Create(ctx&: Context, dc: CurContext, variance, varianceLoc, |
770 | index, nameLoc: paramLoc, name: paramName, colonLoc, |
771 | boundInfo: typeBoundInfo); |
772 | } |
773 | |
774 | ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S, |
775 | SourceLocation lAngleLoc, |
776 | ArrayRef<Decl *> typeParamsIn, |
777 | SourceLocation rAngleLoc) { |
778 | // We know that the array only contains Objective-C type parameters. |
779 | ArrayRef<ObjCTypeParamDecl *> |
780 | typeParams( |
781 | reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), |
782 | typeParamsIn.size()); |
783 | |
784 | // Diagnose redeclarations of type parameters. |
785 | // We do this now because Objective-C type parameters aren't pushed into |
786 | // scope until later (after the instance variable block), but we want the |
787 | // diagnostics to occur right after we parse the type parameter list. |
788 | llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; |
789 | for (auto *typeParam : typeParams) { |
790 | auto known = knownParams.find(typeParam->getIdentifier()); |
791 | if (known != knownParams.end()) { |
792 | Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) |
793 | << typeParam->getIdentifier() |
794 | << SourceRange(known->second->getLocation()); |
795 | |
796 | typeParam->setInvalidDecl(); |
797 | } else { |
798 | knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); |
799 | |
800 | // Push the type parameter into scope. |
801 | PushOnScopeChains(typeParam, S, /*AddToContext=*/false); |
802 | } |
803 | } |
804 | |
805 | // Create the parameter list. |
806 | return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc); |
807 | } |
808 | |
809 | void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) { |
810 | for (auto *typeParam : *typeParamList) { |
811 | if (!typeParam->isInvalidDecl()) { |
812 | S->RemoveDecl(typeParam); |
813 | IdResolver.RemoveDecl(typeParam); |
814 | } |
815 | } |
816 | } |
817 | |
818 | namespace { |
819 | /// The context in which an Objective-C type parameter list occurs, for use |
820 | /// in diagnostics. |
821 | enum class TypeParamListContext { |
822 | ForwardDeclaration, |
823 | Definition, |
824 | Category, |
825 | Extension |
826 | }; |
827 | } // end anonymous namespace |
828 | |
829 | /// Check consistency between two Objective-C type parameter lists, e.g., |
830 | /// between a category/extension and an \@interface or between an \@class and an |
831 | /// \@interface. |
832 | static bool checkTypeParamListConsistency(Sema &S, |
833 | ObjCTypeParamList *prevTypeParams, |
834 | ObjCTypeParamList *newTypeParams, |
835 | TypeParamListContext newContext) { |
836 | // If the sizes don't match, complain about that. |
837 | if (prevTypeParams->size() != newTypeParams->size()) { |
838 | SourceLocation diagLoc; |
839 | if (newTypeParams->size() > prevTypeParams->size()) { |
840 | diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); |
841 | } else { |
842 | diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc()); |
843 | } |
844 | |
845 | S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) |
846 | << static_cast<unsigned>(newContext) |
847 | << (newTypeParams->size() > prevTypeParams->size()) |
848 | << prevTypeParams->size() |
849 | << newTypeParams->size(); |
850 | |
851 | return true; |
852 | } |
853 | |
854 | // Match up the type parameters. |
855 | for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { |
856 | ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; |
857 | ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; |
858 | |
859 | // Check for consistency of the variance. |
860 | if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { |
861 | if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && |
862 | newContext != TypeParamListContext::Definition) { |
863 | // When the new type parameter is invariant and is not part |
864 | // of the definition, just propagate the variance. |
865 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
866 | } else if (prevTypeParam->getVariance() |
867 | == ObjCTypeParamVariance::Invariant && |
868 | !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && |
869 | cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) |
870 | ->getDefinition() == prevTypeParam->getDeclContext())) { |
871 | // When the old parameter is invariant and was not part of the |
872 | // definition, just ignore the difference because it doesn't |
873 | // matter. |
874 | } else { |
875 | { |
876 | // Diagnose the conflict and update the second declaration. |
877 | SourceLocation diagLoc = newTypeParam->getVarianceLoc(); |
878 | if (diagLoc.isInvalid()) |
879 | diagLoc = newTypeParam->getBeginLoc(); |
880 | |
881 | auto diag = S.Diag(diagLoc, |
882 | diag::err_objc_type_param_variance_conflict) |
883 | << static_cast<unsigned>(newTypeParam->getVariance()) |
884 | << newTypeParam->getDeclName() |
885 | << static_cast<unsigned>(prevTypeParam->getVariance()) |
886 | << prevTypeParam->getDeclName(); |
887 | switch (prevTypeParam->getVariance()) { |
888 | case ObjCTypeParamVariance::Invariant: |
889 | diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc()); |
890 | break; |
891 | |
892 | case ObjCTypeParamVariance::Covariant: |
893 | case ObjCTypeParamVariance::Contravariant: { |
894 | StringRef newVarianceStr |
895 | = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant |
896 | ? "__covariant" |
897 | : "__contravariant" ; |
898 | if (newTypeParam->getVariance() |
899 | == ObjCTypeParamVariance::Invariant) { |
900 | diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(), |
901 | Code: (newVarianceStr + " " ).str()); |
902 | } else { |
903 | diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(), |
904 | Code: newVarianceStr); |
905 | } |
906 | } |
907 | } |
908 | } |
909 | |
910 | S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
911 | << prevTypeParam->getDeclName(); |
912 | |
913 | // Override the variance. |
914 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
915 | } |
916 | } |
917 | |
918 | // If the bound types match, there's nothing to do. |
919 | if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), |
920 | newTypeParam->getUnderlyingType())) |
921 | continue; |
922 | |
923 | // If the new type parameter's bound was explicit, complain about it being |
924 | // different from the original. |
925 | if (newTypeParam->hasExplicitBound()) { |
926 | SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() |
927 | ->getTypeLoc().getSourceRange(); |
928 | S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) |
929 | << newTypeParam->getUnderlyingType() |
930 | << newTypeParam->getDeclName() |
931 | << prevTypeParam->hasExplicitBound() |
932 | << prevTypeParam->getUnderlyingType() |
933 | << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) |
934 | << prevTypeParam->getDeclName() |
935 | << FixItHint::CreateReplacement( |
936 | newBoundRange, |
937 | prevTypeParam->getUnderlyingType().getAsString( |
938 | S.Context.getPrintingPolicy())); |
939 | |
940 | S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
941 | << prevTypeParam->getDeclName(); |
942 | |
943 | // Override the new type parameter's bound type with the previous type, |
944 | // so that it's consistent. |
945 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
946 | continue; |
947 | } |
948 | |
949 | // The new type parameter got the implicit bound of 'id'. That's okay for |
950 | // categories and extensions (overwrite it later), but not for forward |
951 | // declarations and @interfaces, because those must be standalone. |
952 | if (newContext == TypeParamListContext::ForwardDeclaration || |
953 | newContext == TypeParamListContext::Definition) { |
954 | // Diagnose this problem for forward declarations and definitions. |
955 | SourceLocation insertionLoc |
956 | = S.getLocForEndOfToken(Loc: newTypeParam->getLocation()); |
957 | std::string newCode |
958 | = " : " + prevTypeParam->getUnderlyingType().getAsString( |
959 | S.Context.getPrintingPolicy()); |
960 | S.Diag(newTypeParam->getLocation(), |
961 | diag::err_objc_type_param_bound_missing) |
962 | << prevTypeParam->getUnderlyingType() |
963 | << newTypeParam->getDeclName() |
964 | << (newContext == TypeParamListContext::ForwardDeclaration) |
965 | << FixItHint::CreateInsertion(insertionLoc, newCode); |
966 | |
967 | S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
968 | << prevTypeParam->getDeclName(); |
969 | } |
970 | |
971 | // Update the new type parameter's bound to match the previous one. |
972 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
973 | } |
974 | |
975 | return false; |
976 | } |
977 | |
978 | ObjCInterfaceDecl *Sema::ActOnStartClassInterface( |
979 | Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, |
980 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
981 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
982 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, |
983 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
984 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
985 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
986 | assert(ClassName && "Missing class identifier" ); |
987 | |
988 | // Check for another declaration kind with the same name. |
989 | NamedDecl *PrevDecl = |
990 | LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLoc, NameKind: LookupOrdinaryName, |
991 | Redecl: forRedeclarationInCurContext()); |
992 | |
993 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
994 | Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
995 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
996 | } |
997 | |
998 | // Create a declaration to describe this @interface. |
999 | ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
1000 | |
1001 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
1002 | // A previous decl with a different name is because of |
1003 | // @compatibility_alias, for example: |
1004 | // \code |
1005 | // @class NewImage; |
1006 | // @compatibility_alias OldImage NewImage; |
1007 | // \endcode |
1008 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
1009 | // |
1010 | // In such a case use the real declaration name, instead of the alias one, |
1011 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
1012 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
1013 | // has been aliased. |
1014 | ClassName = PrevIDecl->getIdentifier(); |
1015 | } |
1016 | |
1017 | // If there was a forward declaration with type parameters, check |
1018 | // for consistency. |
1019 | if (PrevIDecl) { |
1020 | if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { |
1021 | if (typeParamList) { |
1022 | // Both have type parameter lists; check for consistency. |
1023 | if (checkTypeParamListConsistency(S&: *this, prevTypeParams: prevTypeParamList, |
1024 | newTypeParams: typeParamList, |
1025 | newContext: TypeParamListContext::Definition)) { |
1026 | typeParamList = nullptr; |
1027 | } |
1028 | } else { |
1029 | Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) |
1030 | << ClassName; |
1031 | Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) |
1032 | << ClassName; |
1033 | |
1034 | // Clone the type parameter list. |
1035 | SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; |
1036 | for (auto *typeParam : *prevTypeParamList) { |
1037 | clonedTypeParams.push_back( |
1038 | Elt: ObjCTypeParamDecl::Create( |
1039 | ctx&: Context, |
1040 | dc: CurContext, |
1041 | variance: typeParam->getVariance(), |
1042 | varianceLoc: SourceLocation(), |
1043 | index: typeParam->getIndex(), |
1044 | nameLoc: SourceLocation(), |
1045 | name: typeParam->getIdentifier(), |
1046 | colonLoc: SourceLocation(), |
1047 | boundInfo: Context.getTrivialTypeSourceInfo(T: typeParam->getUnderlyingType()))); |
1048 | } |
1049 | |
1050 | typeParamList = ObjCTypeParamList::create(ctx&: Context, |
1051 | lAngleLoc: SourceLocation(), |
1052 | typeParams: clonedTypeParams, |
1053 | rAngleLoc: SourceLocation()); |
1054 | } |
1055 | } |
1056 | } |
1057 | |
1058 | ObjCInterfaceDecl *IDecl |
1059 | = ObjCInterfaceDecl::Create(C: Context, DC: CurContext, atLoc: AtInterfaceLoc, Id: ClassName, |
1060 | typeParamList, PrevDecl: PrevIDecl, ClassLoc); |
1061 | if (PrevIDecl) { |
1062 | // Class already seen. Was it a definition? |
1063 | if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
1064 | if (SkipBody && !hasVisibleDefinition(Def)) { |
1065 | SkipBody->CheckSameAsPrevious = true; |
1066 | SkipBody->New = IDecl; |
1067 | SkipBody->Previous = Def; |
1068 | } else { |
1069 | Diag(AtInterfaceLoc, diag::err_duplicate_class_def) |
1070 | << PrevIDecl->getDeclName(); |
1071 | Diag(Def->getLocation(), diag::note_previous_definition); |
1072 | IDecl->setInvalidDecl(); |
1073 | } |
1074 | } |
1075 | } |
1076 | |
1077 | ProcessDeclAttributeList(TUScope, IDecl, AttrList); |
1078 | AddPragmaAttributes(TUScope, IDecl); |
1079 | ProcessAPINotes(IDecl); |
1080 | |
1081 | // Merge attributes from previous declarations. |
1082 | if (PrevIDecl) |
1083 | mergeDeclAttributes(IDecl, PrevIDecl); |
1084 | |
1085 | PushOnScopeChains(IDecl, TUScope); |
1086 | |
1087 | // Start the definition of this class. If we're in a redefinition case, there |
1088 | // may already be a definition, so we'll end up adding to it. |
1089 | if (SkipBody && SkipBody->CheckSameAsPrevious) |
1090 | IDecl->startDuplicateDefinitionForComparison(); |
1091 | else if (!IDecl->hasDefinition()) |
1092 | IDecl->startDefinition(); |
1093 | |
1094 | if (SuperName) { |
1095 | // Diagnose availability in the context of the @interface. |
1096 | ContextRAII SavedContext(*this, IDecl); |
1097 | |
1098 | ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, |
1099 | ClassName, ClassLoc, |
1100 | SuperName, SuperLoc, SuperTypeArgs, |
1101 | SuperTypeArgsRange); |
1102 | } else { // we have a root class. |
1103 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
1104 | } |
1105 | |
1106 | // Check then save referenced protocols. |
1107 | if (NumProtoRefs) { |
1108 | diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs, |
1109 | NumProtoRefs, ProtoLocs); |
1110 | IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1111 | Locs: ProtoLocs, C&: Context); |
1112 | IDecl->setEndOfDefinitionLoc(EndProtoLoc); |
1113 | } |
1114 | |
1115 | CheckObjCDeclScope(IDecl); |
1116 | ActOnObjCContainerStartDefinition(IDecl); |
1117 | return IDecl; |
1118 | } |
1119 | |
1120 | /// ActOnTypedefedProtocols - this action finds protocol list as part of the |
1121 | /// typedef'ed use for a qualified super class and adds them to the list |
1122 | /// of the protocols. |
1123 | void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, |
1124 | SmallVectorImpl<SourceLocation> &ProtocolLocs, |
1125 | IdentifierInfo *SuperName, |
1126 | SourceLocation SuperLoc) { |
1127 | if (!SuperName) |
1128 | return; |
1129 | NamedDecl* IDecl = LookupSingleName(S: TUScope, Name: SuperName, Loc: SuperLoc, |
1130 | NameKind: LookupOrdinaryName); |
1131 | if (!IDecl) |
1132 | return; |
1133 | |
1134 | if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) { |
1135 | QualType T = TDecl->getUnderlyingType(); |
1136 | if (T->isObjCObjectType()) |
1137 | if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { |
1138 | ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); |
1139 | // FIXME: Consider whether this should be an invalid loc since the loc |
1140 | // is not actually pointing to a protocol name reference but to the |
1141 | // typedef reference. Note that the base class name loc is also pointing |
1142 | // at the typedef. |
1143 | ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); |
1144 | } |
1145 | } |
1146 | } |
1147 | |
1148 | /// ActOnCompatibilityAlias - this action is called after complete parsing of |
1149 | /// a \@compatibility_alias declaration. It sets up the alias relationships. |
1150 | Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, |
1151 | IdentifierInfo *AliasName, |
1152 | SourceLocation AliasLocation, |
1153 | IdentifierInfo *ClassName, |
1154 | SourceLocation ClassLocation) { |
1155 | // Look for previous declaration of alias name |
1156 | NamedDecl *ADecl = |
1157 | LookupSingleName(S: TUScope, Name: AliasName, Loc: AliasLocation, NameKind: LookupOrdinaryName, |
1158 | Redecl: forRedeclarationInCurContext()); |
1159 | if (ADecl) { |
1160 | Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; |
1161 | Diag(ADecl->getLocation(), diag::note_previous_declaration); |
1162 | return nullptr; |
1163 | } |
1164 | // Check for class declaration |
1165 | NamedDecl *CDeclU = |
1166 | LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLocation, NameKind: LookupOrdinaryName, |
1167 | Redecl: forRedeclarationInCurContext()); |
1168 | if (const TypedefNameDecl *TDecl = |
1169 | dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) { |
1170 | QualType T = TDecl->getUnderlyingType(); |
1171 | if (T->isObjCObjectType()) { |
1172 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
1173 | ClassName = IDecl->getIdentifier(); |
1174 | CDeclU = LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLocation, |
1175 | NameKind: LookupOrdinaryName, |
1176 | Redecl: forRedeclarationInCurContext()); |
1177 | } |
1178 | } |
1179 | } |
1180 | ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU); |
1181 | if (!CDecl) { |
1182 | Diag(ClassLocation, diag::warn_undef_interface) << ClassName; |
1183 | if (CDeclU) |
1184 | Diag(CDeclU->getLocation(), diag::note_previous_declaration); |
1185 | return nullptr; |
1186 | } |
1187 | |
1188 | // Everything checked out, instantiate a new alias declaration AST. |
1189 | ObjCCompatibleAliasDecl *AliasDecl = |
1190 | ObjCCompatibleAliasDecl::Create(C&: Context, DC: CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl); |
1191 | |
1192 | if (!CheckObjCDeclScope(AliasDecl)) |
1193 | PushOnScopeChains(AliasDecl, TUScope); |
1194 | |
1195 | return AliasDecl; |
1196 | } |
1197 | |
1198 | bool Sema::CheckForwardProtocolDeclarationForCircularDependency( |
1199 | IdentifierInfo *PName, |
1200 | SourceLocation &Ploc, SourceLocation PrevLoc, |
1201 | const ObjCList<ObjCProtocolDecl> &PList) { |
1202 | |
1203 | bool res = false; |
1204 | for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), |
1205 | E = PList.end(); I != E; ++I) { |
1206 | if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(), |
1207 | IdLoc: Ploc)) { |
1208 | if (PDecl->getIdentifier() == PName) { |
1209 | Diag(Ploc, diag::err_protocol_has_circular_dependency); |
1210 | Diag(PrevLoc, diag::note_previous_definition); |
1211 | res = true; |
1212 | } |
1213 | |
1214 | if (!PDecl->hasDefinition()) |
1215 | continue; |
1216 | |
1217 | if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, |
1218 | PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols())) |
1219 | res = true; |
1220 | } |
1221 | } |
1222 | return res; |
1223 | } |
1224 | |
1225 | ObjCProtocolDecl *Sema::ActOnStartProtocolInterface( |
1226 | SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, |
1227 | SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, |
1228 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
1229 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
1230 | bool err = false; |
1231 | // FIXME: Deal with AttrList. |
1232 | assert(ProtocolName && "Missing protocol identifier" ); |
1233 | ObjCProtocolDecl *PrevDecl = LookupProtocol(II: ProtocolName, IdLoc: ProtocolLoc, |
1234 | Redecl: forRedeclarationInCurContext()); |
1235 | ObjCProtocolDecl *PDecl = nullptr; |
1236 | if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { |
1237 | // Create a new protocol that is completely distinct from previous |
1238 | // declarations, and do not make this protocol available for name lookup. |
1239 | // That way, we'll end up completely ignoring the duplicate. |
1240 | // FIXME: Can we turn this into an error? |
1241 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: CurContext, Id: ProtocolName, |
1242 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
1243 | /*PrevDecl=*/Def); |
1244 | |
1245 | if (SkipBody && !hasVisibleDefinition(Def)) { |
1246 | SkipBody->CheckSameAsPrevious = true; |
1247 | SkipBody->New = PDecl; |
1248 | SkipBody->Previous = Def; |
1249 | } else { |
1250 | // If we already have a definition, complain. |
1251 | Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; |
1252 | Diag(Def->getLocation(), diag::note_previous_definition); |
1253 | } |
1254 | |
1255 | // If we are using modules, add the decl to the context in order to |
1256 | // serialize something meaningful. |
1257 | if (getLangOpts().Modules) |
1258 | PushOnScopeChains(PDecl, TUScope); |
1259 | PDecl->startDuplicateDefinitionForComparison(); |
1260 | } else { |
1261 | if (PrevDecl) { |
1262 | // Check for circular dependencies among protocol declarations. This can |
1263 | // only happen if this protocol was forward-declared. |
1264 | ObjCList<ObjCProtocolDecl> PList; |
1265 | PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context); |
1266 | err = CheckForwardProtocolDeclarationForCircularDependency( |
1267 | PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList); |
1268 | } |
1269 | |
1270 | // Create the new declaration. |
1271 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: CurContext, Id: ProtocolName, |
1272 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
1273 | /*PrevDecl=*/PrevDecl); |
1274 | |
1275 | PushOnScopeChains(PDecl, TUScope); |
1276 | PDecl->startDefinition(); |
1277 | } |
1278 | |
1279 | ProcessDeclAttributeList(TUScope, PDecl, AttrList); |
1280 | AddPragmaAttributes(TUScope, PDecl); |
1281 | ProcessAPINotes(PDecl); |
1282 | |
1283 | // Merge attributes from previous declarations. |
1284 | if (PrevDecl) |
1285 | mergeDeclAttributes(PDecl, PrevDecl); |
1286 | |
1287 | if (!err && NumProtoRefs ) { |
1288 | /// Check then save referenced protocols. |
1289 | diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs, |
1290 | NumProtoRefs, ProtoLocs); |
1291 | PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1292 | Locs: ProtoLocs, C&: Context); |
1293 | } |
1294 | |
1295 | CheckObjCDeclScope(PDecl); |
1296 | ActOnObjCContainerStartDefinition(PDecl); |
1297 | return PDecl; |
1298 | } |
1299 | |
1300 | static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, |
1301 | ObjCProtocolDecl *&UndefinedProtocol) { |
1302 | if (!PDecl->hasDefinition() || |
1303 | !PDecl->getDefinition()->isUnconditionallyVisible()) { |
1304 | UndefinedProtocol = PDecl; |
1305 | return true; |
1306 | } |
1307 | |
1308 | for (auto *PI : PDecl->protocols()) |
1309 | if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) { |
1310 | UndefinedProtocol = PI; |
1311 | return true; |
1312 | } |
1313 | return false; |
1314 | } |
1315 | |
1316 | /// FindProtocolDeclaration - This routine looks up protocols and |
1317 | /// issues an error if they are not declared. It returns list of |
1318 | /// protocol declarations in its 'Protocols' argument. |
1319 | void |
1320 | Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, |
1321 | ArrayRef<IdentifierLocPair> ProtocolId, |
1322 | SmallVectorImpl<Decl *> &Protocols) { |
1323 | for (const IdentifierLocPair &Pair : ProtocolId) { |
1324 | ObjCProtocolDecl *PDecl = LookupProtocol(II: Pair.first, IdLoc: Pair.second); |
1325 | if (!PDecl) { |
1326 | DeclFilterCCC<ObjCProtocolDecl> CCC{}; |
1327 | TypoCorrection Corrected = CorrectTypo( |
1328 | Typo: DeclarationNameInfo(Pair.first, Pair.second), LookupKind: LookupObjCProtocolName, |
1329 | S: TUScope, SS: nullptr, CCC, Mode: CTK_ErrorRecovery); |
1330 | if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) |
1331 | diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) |
1332 | << Pair.first); |
1333 | } |
1334 | |
1335 | if (!PDecl) { |
1336 | Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first; |
1337 | continue; |
1338 | } |
1339 | // If this is a forward protocol declaration, get its definition. |
1340 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
1341 | PDecl = PDecl->getDefinition(); |
1342 | |
1343 | // For an objc container, delay protocol reference checking until after we |
1344 | // can set the objc decl as the availability context, otherwise check now. |
1345 | if (!ForObjCContainer) { |
1346 | (void)DiagnoseUseOfDecl(PDecl, Pair.second); |
1347 | } |
1348 | |
1349 | // If this is a forward declaration and we are supposed to warn in this |
1350 | // case, do it. |
1351 | // FIXME: Recover nicely in the hidden case. |
1352 | ObjCProtocolDecl *UndefinedProtocol; |
1353 | |
1354 | if (WarnOnDeclarations && |
1355 | NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { |
1356 | Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first; |
1357 | Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) |
1358 | << UndefinedProtocol; |
1359 | } |
1360 | Protocols.push_back(PDecl); |
1361 | } |
1362 | } |
1363 | |
1364 | namespace { |
1365 | // Callback to only accept typo corrections that are either |
1366 | // Objective-C protocols or valid Objective-C type arguments. |
1367 | class ObjCTypeArgOrProtocolValidatorCCC final |
1368 | : public CorrectionCandidateCallback { |
1369 | ASTContext &Context; |
1370 | Sema::LookupNameKind LookupKind; |
1371 | public: |
1372 | ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, |
1373 | Sema::LookupNameKind lookupKind) |
1374 | : Context(context), LookupKind(lookupKind) { } |
1375 | |
1376 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
1377 | // If we're allowed to find protocols and we have a protocol, accept it. |
1378 | if (LookupKind != Sema::LookupOrdinaryName) { |
1379 | if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) |
1380 | return true; |
1381 | } |
1382 | |
1383 | // If we're allowed to find type names and we have one, accept it. |
1384 | if (LookupKind != Sema::LookupObjCProtocolName) { |
1385 | // If we have a type declaration, we might accept this result. |
1386 | if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { |
1387 | // If we found a tag declaration outside of C++, skip it. This |
1388 | // can happy because we look for any name when there is no |
1389 | // bias to protocol or type names. |
1390 | if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus) |
1391 | return false; |
1392 | |
1393 | // Make sure the type is something we would accept as a type |
1394 | // argument. |
1395 | auto type = Context.getTypeDeclType(Decl: typeDecl); |
1396 | if (type->isObjCObjectPointerType() || |
1397 | type->isBlockPointerType() || |
1398 | type->isDependentType() || |
1399 | type->isObjCObjectType()) |
1400 | return true; |
1401 | |
1402 | return false; |
1403 | } |
1404 | |
1405 | // If we have an Objective-C class type, accept it; there will |
1406 | // be another fix to add the '*'. |
1407 | if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) |
1408 | return true; |
1409 | |
1410 | return false; |
1411 | } |
1412 | |
1413 | return false; |
1414 | } |
1415 | |
1416 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
1417 | return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this); |
1418 | } |
1419 | }; |
1420 | } // end anonymous namespace |
1421 | |
1422 | void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, |
1423 | SourceLocation ProtocolLoc, |
1424 | IdentifierInfo *TypeArgId, |
1425 | SourceLocation TypeArgLoc, |
1426 | bool SelectProtocolFirst) { |
1427 | Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) |
1428 | << SelectProtocolFirst << TypeArgId << ProtocolId |
1429 | << SourceRange(ProtocolLoc); |
1430 | } |
1431 | |
1432 | void Sema::actOnObjCTypeArgsOrProtocolQualifiers( |
1433 | Scope *S, |
1434 | ParsedType baseType, |
1435 | SourceLocation lAngleLoc, |
1436 | ArrayRef<IdentifierInfo *> identifiers, |
1437 | ArrayRef<SourceLocation> identifierLocs, |
1438 | SourceLocation rAngleLoc, |
1439 | SourceLocation &typeArgsLAngleLoc, |
1440 | SmallVectorImpl<ParsedType> &typeArgs, |
1441 | SourceLocation &typeArgsRAngleLoc, |
1442 | SourceLocation &protocolLAngleLoc, |
1443 | SmallVectorImpl<Decl *> &protocols, |
1444 | SourceLocation &protocolRAngleLoc, |
1445 | bool warnOnIncompleteProtocols) { |
1446 | // Local function that updates the declaration specifiers with |
1447 | // protocol information. |
1448 | unsigned numProtocolsResolved = 0; |
1449 | auto resolvedAsProtocols = [&] { |
1450 | assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols" ); |
1451 | |
1452 | // Determine whether the base type is a parameterized class, in |
1453 | // which case we want to warn about typos such as |
1454 | // "NSArray<NSObject>" (that should be NSArray<NSObject *>). |
1455 | ObjCInterfaceDecl *baseClass = nullptr; |
1456 | QualType base = GetTypeFromParser(Ty: baseType, TInfo: nullptr); |
1457 | bool allAreTypeNames = false; |
1458 | SourceLocation firstClassNameLoc; |
1459 | if (!base.isNull()) { |
1460 | if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { |
1461 | baseClass = objcObjectType->getInterface(); |
1462 | if (baseClass) { |
1463 | if (auto typeParams = baseClass->getTypeParamList()) { |
1464 | if (typeParams->size() == numProtocolsResolved) { |
1465 | // Note that we should be looking for type names, too. |
1466 | allAreTypeNames = true; |
1467 | } |
1468 | } |
1469 | } |
1470 | } |
1471 | } |
1472 | |
1473 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) { |
1474 | ObjCProtocolDecl *&proto |
1475 | = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); |
1476 | // For an objc container, delay protocol reference checking until after we |
1477 | // can set the objc decl as the availability context, otherwise check now. |
1478 | if (!warnOnIncompleteProtocols) { |
1479 | (void)DiagnoseUseOfDecl(proto, identifierLocs[i]); |
1480 | } |
1481 | |
1482 | // If this is a forward protocol declaration, get its definition. |
1483 | if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) |
1484 | proto = proto->getDefinition(); |
1485 | |
1486 | // If this is a forward declaration and we are supposed to warn in this |
1487 | // case, do it. |
1488 | // FIXME: Recover nicely in the hidden case. |
1489 | ObjCProtocolDecl *forwardDecl = nullptr; |
1490 | if (warnOnIncompleteProtocols && |
1491 | NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) { |
1492 | Diag(identifierLocs[i], diag::warn_undef_protocolref) |
1493 | << proto->getDeclName(); |
1494 | Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) |
1495 | << forwardDecl; |
1496 | } |
1497 | |
1498 | // If everything this far has been a type name (and we care |
1499 | // about such things), check whether this name refers to a type |
1500 | // as well. |
1501 | if (allAreTypeNames) { |
1502 | if (auto *decl = LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i], |
1503 | NameKind: LookupOrdinaryName)) { |
1504 | if (isa<ObjCInterfaceDecl>(Val: decl)) { |
1505 | if (firstClassNameLoc.isInvalid()) |
1506 | firstClassNameLoc = identifierLocs[i]; |
1507 | } else if (!isa<TypeDecl>(Val: decl)) { |
1508 | // Not a type. |
1509 | allAreTypeNames = false; |
1510 | } |
1511 | } else { |
1512 | allAreTypeNames = false; |
1513 | } |
1514 | } |
1515 | } |
1516 | |
1517 | // All of the protocols listed also have type names, and at least |
1518 | // one is an Objective-C class name. Check whether all of the |
1519 | // protocol conformances are declared by the base class itself, in |
1520 | // which case we warn. |
1521 | if (allAreTypeNames && firstClassNameLoc.isValid()) { |
1522 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; |
1523 | Context.CollectInheritedProtocols(baseClass, knownProtocols); |
1524 | bool allProtocolsDeclared = true; |
1525 | for (auto *proto : protocols) { |
1526 | if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) { |
1527 | allProtocolsDeclared = false; |
1528 | break; |
1529 | } |
1530 | } |
1531 | |
1532 | if (allProtocolsDeclared) { |
1533 | Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) |
1534 | << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) |
1535 | << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc), |
1536 | " *" ); |
1537 | } |
1538 | } |
1539 | |
1540 | protocolLAngleLoc = lAngleLoc; |
1541 | protocolRAngleLoc = rAngleLoc; |
1542 | assert(protocols.size() == identifierLocs.size()); |
1543 | }; |
1544 | |
1545 | // Attempt to resolve all of the identifiers as protocols. |
1546 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1547 | ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]); |
1548 | protocols.push_back(proto); |
1549 | if (proto) |
1550 | ++numProtocolsResolved; |
1551 | } |
1552 | |
1553 | // If all of the names were protocols, these were protocol qualifiers. |
1554 | if (numProtocolsResolved == identifiers.size()) |
1555 | return resolvedAsProtocols(); |
1556 | |
1557 | // Attempt to resolve all of the identifiers as type names or |
1558 | // Objective-C class names. The latter is technically ill-formed, |
1559 | // but is probably something like \c NSArray<NSView *> missing the |
1560 | // \c*. |
1561 | typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; |
1562 | SmallVector<TypeOrClassDecl, 4> typeDecls; |
1563 | unsigned numTypeDeclsResolved = 0; |
1564 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1565 | NamedDecl *decl = LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i], |
1566 | NameKind: LookupOrdinaryName); |
1567 | if (!decl) { |
1568 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
1569 | continue; |
1570 | } |
1571 | |
1572 | if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) { |
1573 | typeDecls.push_back(Elt: typeDecl); |
1574 | ++numTypeDeclsResolved; |
1575 | continue; |
1576 | } |
1577 | |
1578 | if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) { |
1579 | typeDecls.push_back(Elt: objcClass); |
1580 | ++numTypeDeclsResolved; |
1581 | continue; |
1582 | } |
1583 | |
1584 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
1585 | } |
1586 | |
1587 | AttributeFactory attrFactory; |
1588 | |
1589 | // Local function that forms a reference to the given type or |
1590 | // Objective-C class declaration. |
1591 | auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) |
1592 | -> TypeResult { |
1593 | // Form declaration specifiers. They simply refer to the type. |
1594 | DeclSpec DS(attrFactory); |
1595 | const char* prevSpec; // unused |
1596 | unsigned diagID; // unused |
1597 | QualType type; |
1598 | if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) |
1599 | type = Context.getTypeDeclType(Decl: actualTypeDecl); |
1600 | else |
1601 | type = Context.getObjCInterfaceType(Decl: typeDecl.get<ObjCInterfaceDecl *>()); |
1602 | TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc); |
1603 | ParsedType parsedType = CreateParsedType(T: type, TInfo: parsedTSInfo); |
1604 | DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID, |
1605 | Rep: parsedType, Policy: Context.getPrintingPolicy()); |
1606 | // Use the identifier location for the type source range. |
1607 | DS.SetRangeStart(loc); |
1608 | DS.SetRangeEnd(loc); |
1609 | |
1610 | // Form the declarator. |
1611 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
1612 | |
1613 | // If we have a typedef of an Objective-C class type that is missing a '*', |
1614 | // add the '*'. |
1615 | if (type->getAs<ObjCInterfaceType>()) { |
1616 | SourceLocation starLoc = getLocForEndOfToken(Loc: loc); |
1617 | D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc, |
1618 | ConstQualLoc: SourceLocation(), |
1619 | VolatileQualLoc: SourceLocation(), |
1620 | RestrictQualLoc: SourceLocation(), |
1621 | AtomicQualLoc: SourceLocation(), |
1622 | UnalignedQualLoc: SourceLocation()), |
1623 | EndLoc: starLoc); |
1624 | |
1625 | // Diagnose the missing '*'. |
1626 | Diag(loc, diag::err_objc_type_arg_missing_star) |
1627 | << type |
1628 | << FixItHint::CreateInsertion(starLoc, " *" ); |
1629 | } |
1630 | |
1631 | // Convert this to a type. |
1632 | return ActOnTypeName(D); |
1633 | }; |
1634 | |
1635 | // Local function that updates the declaration specifiers with |
1636 | // type argument information. |
1637 | auto resolvedAsTypeDecls = [&] { |
1638 | // We did not resolve these as protocols. |
1639 | protocols.clear(); |
1640 | |
1641 | assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl" ); |
1642 | // Map type declarations to type arguments. |
1643 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1644 | // Map type reference to a type. |
1645 | TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); |
1646 | if (!type.isUsable()) { |
1647 | typeArgs.clear(); |
1648 | return; |
1649 | } |
1650 | |
1651 | typeArgs.push_back(Elt: type.get()); |
1652 | } |
1653 | |
1654 | typeArgsLAngleLoc = lAngleLoc; |
1655 | typeArgsRAngleLoc = rAngleLoc; |
1656 | }; |
1657 | |
1658 | // If all of the identifiers can be resolved as type names or |
1659 | // Objective-C class names, we have type arguments. |
1660 | if (numTypeDeclsResolved == identifiers.size()) |
1661 | return resolvedAsTypeDecls(); |
1662 | |
1663 | // Error recovery: some names weren't found, or we have a mix of |
1664 | // type and protocol names. Go resolve all of the unresolved names |
1665 | // and complain if we can't find a consistent answer. |
1666 | LookupNameKind lookupKind = LookupAnyName; |
1667 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1668 | // If we already have a protocol or type. Check whether it is the |
1669 | // right thing. |
1670 | if (protocols[i] || typeDecls[i]) { |
1671 | // If we haven't figured out whether we want types or protocols |
1672 | // yet, try to figure it out from this name. |
1673 | if (lookupKind == LookupAnyName) { |
1674 | // If this name refers to both a protocol and a type (e.g., \c |
1675 | // NSObject), don't conclude anything yet. |
1676 | if (protocols[i] && typeDecls[i]) |
1677 | continue; |
1678 | |
1679 | // Otherwise, let this name decide whether we'll be correcting |
1680 | // toward types or protocols. |
1681 | lookupKind = protocols[i] ? LookupObjCProtocolName |
1682 | : LookupOrdinaryName; |
1683 | continue; |
1684 | } |
1685 | |
1686 | // If we want protocols and we have a protocol, there's nothing |
1687 | // more to do. |
1688 | if (lookupKind == LookupObjCProtocolName && protocols[i]) |
1689 | continue; |
1690 | |
1691 | // If we want types and we have a type declaration, there's |
1692 | // nothing more to do. |
1693 | if (lookupKind == LookupOrdinaryName && typeDecls[i]) |
1694 | continue; |
1695 | |
1696 | // We have a conflict: some names refer to protocols and others |
1697 | // refer to types. |
1698 | DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0], |
1699 | TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i], |
1700 | SelectProtocolFirst: protocols[i] != nullptr); |
1701 | |
1702 | protocols.clear(); |
1703 | typeArgs.clear(); |
1704 | return; |
1705 | } |
1706 | |
1707 | // Perform typo correction on the name. |
1708 | ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); |
1709 | TypoCorrection corrected = |
1710 | CorrectTypo(Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]), |
1711 | LookupKind: lookupKind, S, SS: nullptr, CCC, Mode: CTK_ErrorRecovery); |
1712 | if (corrected) { |
1713 | // Did we find a protocol? |
1714 | if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { |
1715 | diagnoseTypo(corrected, |
1716 | PDiag(diag::err_undeclared_protocol_suggest) |
1717 | << identifiers[i]); |
1718 | lookupKind = LookupObjCProtocolName; |
1719 | protocols[i] = proto; |
1720 | ++numProtocolsResolved; |
1721 | continue; |
1722 | } |
1723 | |
1724 | // Did we find a type? |
1725 | if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { |
1726 | diagnoseTypo(corrected, |
1727 | PDiag(diag::err_unknown_typename_suggest) |
1728 | << identifiers[i]); |
1729 | lookupKind = LookupOrdinaryName; |
1730 | typeDecls[i] = typeDecl; |
1731 | ++numTypeDeclsResolved; |
1732 | continue; |
1733 | } |
1734 | |
1735 | // Did we find an Objective-C class? |
1736 | if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
1737 | diagnoseTypo(corrected, |
1738 | PDiag(diag::err_unknown_type_or_class_name_suggest) |
1739 | << identifiers[i] << true); |
1740 | lookupKind = LookupOrdinaryName; |
1741 | typeDecls[i] = objcClass; |
1742 | ++numTypeDeclsResolved; |
1743 | continue; |
1744 | } |
1745 | } |
1746 | |
1747 | // We couldn't find anything. |
1748 | Diag(identifierLocs[i], |
1749 | (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing |
1750 | : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol |
1751 | : diag::err_unknown_typename)) |
1752 | << identifiers[i]; |
1753 | protocols.clear(); |
1754 | typeArgs.clear(); |
1755 | return; |
1756 | } |
1757 | |
1758 | // If all of the names were (corrected to) protocols, these were |
1759 | // protocol qualifiers. |
1760 | if (numProtocolsResolved == identifiers.size()) |
1761 | return resolvedAsProtocols(); |
1762 | |
1763 | // Otherwise, all of the names were (corrected to) types. |
1764 | assert(numTypeDeclsResolved == identifiers.size() && "Not all types?" ); |
1765 | return resolvedAsTypeDecls(); |
1766 | } |
1767 | |
1768 | /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of |
1769 | /// a class method in its extension. |
1770 | /// |
1771 | void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, |
1772 | ObjCInterfaceDecl *ID) { |
1773 | if (!ID) |
1774 | return; // Possibly due to previous error |
1775 | |
1776 | llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; |
1777 | for (auto *MD : ID->methods()) |
1778 | MethodMap[MD->getSelector()] = MD; |
1779 | |
1780 | if (MethodMap.empty()) |
1781 | return; |
1782 | for (const auto *Method : CAT->methods()) { |
1783 | const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; |
1784 | if (PrevMethod && |
1785 | (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && |
1786 | !MatchTwoMethodDeclarations(Method, PrevMethod)) { |
1787 | Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
1788 | << Method->getDeclName(); |
1789 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
1790 | } |
1791 | } |
1792 | } |
1793 | |
1794 | /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; |
1795 | Sema::DeclGroupPtrTy |
1796 | Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, |
1797 | ArrayRef<IdentifierLocPair> IdentList, |
1798 | const ParsedAttributesView &attrList) { |
1799 | SmallVector<Decl *, 8> DeclsInGroup; |
1800 | for (const IdentifierLocPair &IdentPair : IdentList) { |
1801 | IdentifierInfo *Ident = IdentPair.first; |
1802 | ObjCProtocolDecl *PrevDecl = LookupProtocol(II: Ident, IdLoc: IdentPair.second, |
1803 | Redecl: forRedeclarationInCurContext()); |
1804 | ObjCProtocolDecl *PDecl |
1805 | = ObjCProtocolDecl::Create(C&: Context, DC: CurContext, Id: Ident, |
1806 | nameLoc: IdentPair.second, atStartLoc: AtProtocolLoc, |
1807 | PrevDecl); |
1808 | |
1809 | PushOnScopeChains(PDecl, TUScope); |
1810 | CheckObjCDeclScope(PDecl); |
1811 | |
1812 | ProcessDeclAttributeList(TUScope, PDecl, attrList); |
1813 | AddPragmaAttributes(TUScope, PDecl); |
1814 | |
1815 | if (PrevDecl) |
1816 | mergeDeclAttributes(PDecl, PrevDecl); |
1817 | |
1818 | DeclsInGroup.push_back(PDecl); |
1819 | } |
1820 | |
1821 | return BuildDeclaratorGroup(Group: DeclsInGroup); |
1822 | } |
1823 | |
1824 | ObjCCategoryDecl *Sema::ActOnStartCategoryInterface( |
1825 | SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName, |
1826 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
1827 | const IdentifierInfo *CategoryName, SourceLocation CategoryLoc, |
1828 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
1829 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
1830 | const ParsedAttributesView &AttrList) { |
1831 | ObjCCategoryDecl *CDecl; |
1832 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
1833 | |
1834 | /// Check that class of this category is already completely declared. |
1835 | |
1836 | if (!IDecl |
1837 | || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
1838 | diag::err_category_forward_interface, |
1839 | CategoryName == nullptr)) { |
1840 | // Create an invalid ObjCCategoryDecl to serve as context for |
1841 | // the enclosing method declarations. We mark the decl invalid |
1842 | // to make it clear that this isn't a valid AST. |
1843 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: CurContext, AtLoc: AtInterfaceLoc, |
1844 | ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, |
1845 | IDecl, typeParamList); |
1846 | CDecl->setInvalidDecl(); |
1847 | CurContext->addDecl(CDecl); |
1848 | |
1849 | if (!IDecl) |
1850 | Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
1851 | ActOnObjCContainerStartDefinition(CDecl); |
1852 | return CDecl; |
1853 | } |
1854 | |
1855 | if (!CategoryName && IDecl->getImplementation()) { |
1856 | Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; |
1857 | Diag(IDecl->getImplementation()->getLocation(), |
1858 | diag::note_implementation_declared); |
1859 | } |
1860 | |
1861 | if (CategoryName) { |
1862 | /// Check for duplicate interface declaration for this category |
1863 | if (ObjCCategoryDecl *Previous |
1864 | = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) { |
1865 | // Class extensions can be declared multiple times, categories cannot. |
1866 | Diag(CategoryLoc, diag::warn_dup_category_def) |
1867 | << ClassName << CategoryName; |
1868 | Diag(Previous->getLocation(), diag::note_previous_definition); |
1869 | } |
1870 | } |
1871 | |
1872 | // If we have a type parameter list, check it. |
1873 | if (typeParamList) { |
1874 | if (auto prevTypeParamList = IDecl->getTypeParamList()) { |
1875 | if (checkTypeParamListConsistency(S&: *this, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList, |
1876 | newContext: CategoryName |
1877 | ? TypeParamListContext::Category |
1878 | : TypeParamListContext::Extension)) |
1879 | typeParamList = nullptr; |
1880 | } else { |
1881 | Diag(typeParamList->getLAngleLoc(), |
1882 | diag::err_objc_parameterized_category_nonclass) |
1883 | << (CategoryName != nullptr) |
1884 | << ClassName |
1885 | << typeParamList->getSourceRange(); |
1886 | |
1887 | typeParamList = nullptr; |
1888 | } |
1889 | } |
1890 | |
1891 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: CurContext, AtLoc: AtInterfaceLoc, |
1892 | ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl, |
1893 | typeParamList); |
1894 | // FIXME: PushOnScopeChains? |
1895 | CurContext->addDecl(CDecl); |
1896 | |
1897 | // Process the attributes before looking at protocols to ensure that the |
1898 | // availability attribute is attached to the category to provide availability |
1899 | // checking for protocol uses. |
1900 | ProcessDeclAttributeList(TUScope, CDecl, AttrList); |
1901 | AddPragmaAttributes(TUScope, CDecl); |
1902 | |
1903 | if (NumProtoRefs) { |
1904 | diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs, |
1905 | NumProtoRefs, ProtoLocs); |
1906 | CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1907 | Locs: ProtoLocs, C&: Context); |
1908 | // Protocols in the class extension belong to the class. |
1909 | if (CDecl->IsClassExtension()) |
1910 | IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, |
1911 | Num: NumProtoRefs, C&: Context); |
1912 | } |
1913 | |
1914 | CheckObjCDeclScope(CDecl); |
1915 | ActOnObjCContainerStartDefinition(CDecl); |
1916 | return CDecl; |
1917 | } |
1918 | |
1919 | /// ActOnStartCategoryImplementation - Perform semantic checks on the |
1920 | /// category implementation declaration and build an ObjCCategoryImplDecl |
1921 | /// object. |
1922 | ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation( |
1923 | SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName, |
1924 | SourceLocation ClassLoc, const IdentifierInfo *CatName, |
1925 | SourceLocation CatLoc, const ParsedAttributesView &Attrs) { |
1926 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
1927 | ObjCCategoryDecl *CatIDecl = nullptr; |
1928 | if (IDecl && IDecl->hasDefinition()) { |
1929 | CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName); |
1930 | if (!CatIDecl) { |
1931 | // Category @implementation with no corresponding @interface. |
1932 | // Create and install one. |
1933 | CatIDecl = ObjCCategoryDecl::Create(C&: Context, DC: CurContext, AtLoc: AtCatImplLoc, |
1934 | ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc, |
1935 | Id: CatName, IDecl, |
1936 | /*typeParamList=*/nullptr); |
1937 | CatIDecl->setImplicit(); |
1938 | } |
1939 | } |
1940 | |
1941 | ObjCCategoryImplDecl *CDecl = |
1942 | ObjCCategoryImplDecl::Create(C&: Context, DC: CurContext, Id: CatName, classInterface: IDecl, |
1943 | nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc); |
1944 | /// Check that class of this category is already completely declared. |
1945 | if (!IDecl) { |
1946 | Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
1947 | CDecl->setInvalidDecl(); |
1948 | } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
1949 | diag::err_undef_interface)) { |
1950 | CDecl->setInvalidDecl(); |
1951 | } |
1952 | |
1953 | ProcessDeclAttributeList(TUScope, CDecl, Attrs); |
1954 | AddPragmaAttributes(TUScope, CDecl); |
1955 | |
1956 | // FIXME: PushOnScopeChains? |
1957 | CurContext->addDecl(CDecl); |
1958 | |
1959 | // If the interface has the objc_runtime_visible attribute, we |
1960 | // cannot implement a category for it. |
1961 | if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { |
1962 | Diag(ClassLoc, diag::err_objc_runtime_visible_category) |
1963 | << IDecl->getDeclName(); |
1964 | } |
1965 | |
1966 | /// Check that CatName, category name, is not used in another implementation. |
1967 | if (CatIDecl) { |
1968 | if (CatIDecl->getImplementation()) { |
1969 | Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName |
1970 | << CatName; |
1971 | Diag(CatIDecl->getImplementation()->getLocation(), |
1972 | diag::note_previous_definition); |
1973 | CDecl->setInvalidDecl(); |
1974 | } else { |
1975 | CatIDecl->setImplementation(CDecl); |
1976 | // Warn on implementating category of deprecated class under |
1977 | // -Wdeprecated-implementations flag. |
1978 | DiagnoseObjCImplementedDeprecations(*this, CatIDecl, |
1979 | CDecl->getLocation()); |
1980 | } |
1981 | } |
1982 | |
1983 | CheckObjCDeclScope(CDecl); |
1984 | ActOnObjCContainerStartDefinition(CDecl); |
1985 | return CDecl; |
1986 | } |
1987 | |
1988 | ObjCImplementationDecl *Sema::ActOnStartClassImplementation( |
1989 | SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName, |
1990 | SourceLocation ClassLoc, const IdentifierInfo *SuperClassname, |
1991 | SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) { |
1992 | ObjCInterfaceDecl *IDecl = nullptr; |
1993 | // Check for another declaration kind with the same name. |
1994 | NamedDecl *PrevDecl |
1995 | = LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLoc, NameKind: LookupOrdinaryName, |
1996 | Redecl: forRedeclarationInCurContext()); |
1997 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
1998 | Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
1999 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
2000 | } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) { |
2001 | // FIXME: This will produce an error if the definition of the interface has |
2002 | // been imported from a module but is not visible. |
2003 | RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
2004 | diag::warn_undef_interface); |
2005 | } else { |
2006 | // We did not find anything with the name ClassName; try to correct for |
2007 | // typos in the class name. |
2008 | ObjCInterfaceValidatorCCC CCC{}; |
2009 | TypoCorrection Corrected = |
2010 | CorrectTypo(Typo: DeclarationNameInfo(ClassName, ClassLoc), |
2011 | LookupKind: LookupOrdinaryName, S: TUScope, SS: nullptr, CCC, Mode: CTK_NonError); |
2012 | if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
2013 | // Suggest the (potentially) correct interface name. Don't provide a |
2014 | // code-modification hint or use the typo name for recovery, because |
2015 | // this is just a warning. The program may actually be correct. |
2016 | diagnoseTypo(Corrected, |
2017 | PDiag(diag::warn_undef_interface_suggest) << ClassName, |
2018 | /*ErrorRecovery*/false); |
2019 | } else { |
2020 | Diag(ClassLoc, diag::warn_undef_interface) << ClassName; |
2021 | } |
2022 | } |
2023 | |
2024 | // Check that super class name is valid class name |
2025 | ObjCInterfaceDecl *SDecl = nullptr; |
2026 | if (SuperClassname) { |
2027 | // Check if a different kind of symbol declared in this scope. |
2028 | PrevDecl = LookupSingleName(S: TUScope, Name: SuperClassname, Loc: SuperClassLoc, |
2029 | NameKind: LookupOrdinaryName); |
2030 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
2031 | Diag(SuperClassLoc, diag::err_redefinition_different_kind) |
2032 | << SuperClassname; |
2033 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
2034 | } else { |
2035 | SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
2036 | if (SDecl && !SDecl->hasDefinition()) |
2037 | SDecl = nullptr; |
2038 | if (!SDecl) |
2039 | Diag(SuperClassLoc, diag::err_undef_superclass) |
2040 | << SuperClassname << ClassName; |
2041 | else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { |
2042 | // This implementation and its interface do not have the same |
2043 | // super class. |
2044 | Diag(SuperClassLoc, diag::err_conflicting_super_class) |
2045 | << SDecl->getDeclName(); |
2046 | Diag(SDecl->getLocation(), diag::note_previous_definition); |
2047 | } |
2048 | } |
2049 | } |
2050 | |
2051 | if (!IDecl) { |
2052 | // Legacy case of @implementation with no corresponding @interface. |
2053 | // Build, chain & install the interface decl into the identifier. |
2054 | |
2055 | // FIXME: Do we support attributes on the @implementation? If so we should |
2056 | // copy them over. |
2057 | IDecl = ObjCInterfaceDecl::Create(C: Context, DC: CurContext, atLoc: AtClassImplLoc, |
2058 | Id: ClassName, /*typeParamList=*/nullptr, |
2059 | /*PrevDecl=*/nullptr, ClassLoc, |
2060 | isInternal: true); |
2061 | AddPragmaAttributes(TUScope, IDecl); |
2062 | IDecl->startDefinition(); |
2063 | if (SDecl) { |
2064 | IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( |
2065 | T: Context.getObjCInterfaceType(Decl: SDecl), |
2066 | Loc: SuperClassLoc)); |
2067 | IDecl->setEndOfDefinitionLoc(SuperClassLoc); |
2068 | } else { |
2069 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
2070 | } |
2071 | |
2072 | PushOnScopeChains(IDecl, TUScope); |
2073 | } else { |
2074 | // Mark the interface as being completed, even if it was just as |
2075 | // @class ....; |
2076 | // declaration; the user cannot reopen it. |
2077 | if (!IDecl->hasDefinition()) |
2078 | IDecl->startDefinition(); |
2079 | } |
2080 | |
2081 | ObjCImplementationDecl* IMPDecl = |
2082 | ObjCImplementationDecl::Create(C&: Context, DC: CurContext, classInterface: IDecl, superDecl: SDecl, |
2083 | nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc); |
2084 | |
2085 | ProcessDeclAttributeList(TUScope, IMPDecl, Attrs); |
2086 | AddPragmaAttributes(TUScope, IMPDecl); |
2087 | |
2088 | if (CheckObjCDeclScope(IMPDecl)) { |
2089 | ActOnObjCContainerStartDefinition(IMPDecl); |
2090 | return IMPDecl; |
2091 | } |
2092 | |
2093 | // Check that there is no duplicate implementation of this class. |
2094 | if (IDecl->getImplementation()) { |
2095 | // FIXME: Don't leak everything! |
2096 | Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; |
2097 | Diag(IDecl->getImplementation()->getLocation(), |
2098 | diag::note_previous_definition); |
2099 | IMPDecl->setInvalidDecl(); |
2100 | } else { // add it to the list. |
2101 | IDecl->setImplementation(IMPDecl); |
2102 | PushOnScopeChains(IMPDecl, TUScope); |
2103 | // Warn on implementating deprecated class under |
2104 | // -Wdeprecated-implementations flag. |
2105 | DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation()); |
2106 | } |
2107 | |
2108 | // If the superclass has the objc_runtime_visible attribute, we |
2109 | // cannot implement a subclass of it. |
2110 | if (IDecl->getSuperClass() && |
2111 | IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { |
2112 | Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) |
2113 | << IDecl->getDeclName() |
2114 | << IDecl->getSuperClass()->getDeclName(); |
2115 | } |
2116 | |
2117 | ActOnObjCContainerStartDefinition(IMPDecl); |
2118 | return IMPDecl; |
2119 | } |
2120 | |
2121 | Sema::DeclGroupPtrTy |
2122 | Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { |
2123 | SmallVector<Decl *, 64> DeclsInGroup; |
2124 | DeclsInGroup.reserve(N: Decls.size() + 1); |
2125 | |
2126 | for (unsigned i = 0, e = Decls.size(); i != e; ++i) { |
2127 | Decl *Dcl = Decls[i]; |
2128 | if (!Dcl) |
2129 | continue; |
2130 | if (Dcl->getDeclContext()->isFileContext()) |
2131 | Dcl->setTopLevelDeclInObjCContainer(); |
2132 | DeclsInGroup.push_back(Elt: Dcl); |
2133 | } |
2134 | |
2135 | DeclsInGroup.push_back(Elt: ObjCImpDecl); |
2136 | |
2137 | return BuildDeclaratorGroup(Group: DeclsInGroup); |
2138 | } |
2139 | |
2140 | void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, |
2141 | ObjCIvarDecl **ivars, unsigned numIvars, |
2142 | SourceLocation RBrace) { |
2143 | assert(ImpDecl && "missing implementation decl" ); |
2144 | ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); |
2145 | if (!IDecl) |
2146 | return; |
2147 | /// Check case of non-existing \@interface decl. |
2148 | /// (legacy objective-c \@implementation decl without an \@interface decl). |
2149 | /// Add implementations's ivar to the synthesize class's ivar list. |
2150 | if (IDecl->isImplicitInterfaceDecl()) { |
2151 | IDecl->setEndOfDefinitionLoc(RBrace); |
2152 | // Add ivar's to class's DeclContext. |
2153 | for (unsigned i = 0, e = numIvars; i != e; ++i) { |
2154 | ivars[i]->setLexicalDeclContext(ImpDecl); |
2155 | // In a 'fragile' runtime the ivar was added to the implicit |
2156 | // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is |
2157 | // only in the ObjCImplementationDecl. In the non-fragile case the ivar |
2158 | // therefore also needs to be propagated to the ObjCInterfaceDecl. |
2159 | if (!LangOpts.ObjCRuntime.isFragile()) |
2160 | IDecl->makeDeclVisibleInContext(ivars[i]); |
2161 | ImpDecl->addDecl(ivars[i]); |
2162 | } |
2163 | |
2164 | return; |
2165 | } |
2166 | // If implementation has empty ivar list, just return. |
2167 | if (numIvars == 0) |
2168 | return; |
2169 | |
2170 | assert(ivars && "missing @implementation ivars" ); |
2171 | if (LangOpts.ObjCRuntime.isNonFragile()) { |
2172 | if (ImpDecl->getSuperClass()) |
2173 | Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); |
2174 | for (unsigned i = 0; i < numIvars; i++) { |
2175 | ObjCIvarDecl* ImplIvar = ivars[i]; |
2176 | if (const ObjCIvarDecl *ClsIvar = |
2177 | IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) { |
2178 | Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
2179 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
2180 | continue; |
2181 | } |
2182 | // Check class extensions (unnamed categories) for duplicate ivars. |
2183 | for (const auto *CDecl : IDecl->visible_extensions()) { |
2184 | if (const ObjCIvarDecl *ClsExtIvar = |
2185 | CDecl->getIvarDecl(ImplIvar->getIdentifier())) { |
2186 | Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
2187 | Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); |
2188 | continue; |
2189 | } |
2190 | } |
2191 | // Instance ivar to Implementation's DeclContext. |
2192 | ImplIvar->setLexicalDeclContext(ImpDecl); |
2193 | IDecl->makeDeclVisibleInContext(ImplIvar); |
2194 | ImpDecl->addDecl(ImplIvar); |
2195 | } |
2196 | return; |
2197 | } |
2198 | // Check interface's Ivar list against those in the implementation. |
2199 | // names and types must match. |
2200 | // |
2201 | unsigned j = 0; |
2202 | ObjCInterfaceDecl::ivar_iterator |
2203 | IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); |
2204 | for (; numIvars > 0 && IVI != IVE; ++IVI) { |
2205 | ObjCIvarDecl* ImplIvar = ivars[j++]; |
2206 | ObjCIvarDecl* ClsIvar = *IVI; |
2207 | assert (ImplIvar && "missing implementation ivar" ); |
2208 | assert (ClsIvar && "missing class ivar" ); |
2209 | |
2210 | // First, make sure the types match. |
2211 | if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { |
2212 | Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) |
2213 | << ImplIvar->getIdentifier() |
2214 | << ImplIvar->getType() << ClsIvar->getType(); |
2215 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
2216 | } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && |
2217 | ImplIvar->getBitWidthValue(Context) != |
2218 | ClsIvar->getBitWidthValue(Context)) { |
2219 | Diag(ImplIvar->getBitWidth()->getBeginLoc(), |
2220 | diag::err_conflicting_ivar_bitwidth) |
2221 | << ImplIvar->getIdentifier(); |
2222 | Diag(ClsIvar->getBitWidth()->getBeginLoc(), |
2223 | diag::note_previous_definition); |
2224 | } |
2225 | // Make sure the names are identical. |
2226 | if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
2227 | Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) |
2228 | << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); |
2229 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
2230 | } |
2231 | --numIvars; |
2232 | } |
2233 | |
2234 | if (numIvars > 0) |
2235 | Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); |
2236 | else if (IVI != IVE) |
2237 | Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); |
2238 | } |
2239 | |
2240 | static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) { |
2241 | // No point warning no definition of method which is 'unavailable'. |
2242 | return M->getAvailability() != AR_Unavailable; |
2243 | } |
2244 | |
2245 | static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl, |
2246 | ObjCMethodDecl *method, bool &IncompleteImpl, |
2247 | unsigned DiagID, |
2248 | NamedDecl *NeededFor = nullptr) { |
2249 | if (!shouldWarnUndefinedMethod(M: method)) |
2250 | return; |
2251 | |
2252 | // FIXME: For now ignore 'IncompleteImpl'. |
2253 | // Previously we grouped all unimplemented methods under a single |
2254 | // warning, but some users strongly voiced that they would prefer |
2255 | // separate warnings. We will give that approach a try, as that |
2256 | // matches what we do with protocols. |
2257 | { |
2258 | const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID); |
2259 | B << method; |
2260 | if (NeededFor) |
2261 | B << NeededFor; |
2262 | |
2263 | // Add an empty definition at the end of the @implementation. |
2264 | std::string FixItStr; |
2265 | llvm::raw_string_ostream Out(FixItStr); |
2266 | method->print(Out, Impl->getASTContext().getPrintingPolicy()); |
2267 | Out << " {\n}\n\n" ; |
2268 | |
2269 | SourceLocation Loc = Impl->getAtEndRange().getBegin(); |
2270 | B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr); |
2271 | } |
2272 | |
2273 | // Issue a note to the original declaration. |
2274 | SourceLocation MethodLoc = method->getBeginLoc(); |
2275 | if (MethodLoc.isValid()) |
2276 | S.Diag(MethodLoc, diag::note_method_declared_at) << method; |
2277 | } |
2278 | |
2279 | /// Determines if type B can be substituted for type A. Returns true if we can |
2280 | /// guarantee that anything that the user will do to an object of type A can |
2281 | /// also be done to an object of type B. This is trivially true if the two |
2282 | /// types are the same, or if B is a subclass of A. It becomes more complex |
2283 | /// in cases where protocols are involved. |
2284 | /// |
2285 | /// Object types in Objective-C describe the minimum requirements for an |
2286 | /// object, rather than providing a complete description of a type. For |
2287 | /// example, if A is a subclass of B, then B* may refer to an instance of A. |
2288 | /// The principle of substitutability means that we may use an instance of A |
2289 | /// anywhere that we may use an instance of B - it will implement all of the |
2290 | /// ivars of B and all of the methods of B. |
2291 | /// |
2292 | /// This substitutability is important when type checking methods, because |
2293 | /// the implementation may have stricter type definitions than the interface. |
2294 | /// The interface specifies minimum requirements, but the implementation may |
2295 | /// have more accurate ones. For example, a method may privately accept |
2296 | /// instances of B, but only publish that it accepts instances of A. Any |
2297 | /// object passed to it will be type checked against B, and so will implicitly |
2298 | /// by a valid A*. Similarly, a method may return a subclass of the class that |
2299 | /// it is declared as returning. |
2300 | /// |
2301 | /// This is most important when considering subclassing. A method in a |
2302 | /// subclass must accept any object as an argument that its superclass's |
2303 | /// implementation accepts. It may, however, accept a more general type |
2304 | /// without breaking substitutability (i.e. you can still use the subclass |
2305 | /// anywhere that you can use the superclass, but not vice versa). The |
2306 | /// converse requirement applies to return types: the return type for a |
2307 | /// subclass method must be a valid object of the kind that the superclass |
2308 | /// advertises, but it may be specified more accurately. This avoids the need |
2309 | /// for explicit down-casting by callers. |
2310 | /// |
2311 | /// Note: This is a stricter requirement than for assignment. |
2312 | static bool isObjCTypeSubstitutable(ASTContext &Context, |
2313 | const ObjCObjectPointerType *A, |
2314 | const ObjCObjectPointerType *B, |
2315 | bool rejectId) { |
2316 | // Reject a protocol-unqualified id. |
2317 | if (rejectId && B->isObjCIdType()) return false; |
2318 | |
2319 | // If B is a qualified id, then A must also be a qualified id and it must |
2320 | // implement all of the protocols in B. It may not be a qualified class. |
2321 | // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a |
2322 | // stricter definition so it is not substitutable for id<A>. |
2323 | if (B->isObjCQualifiedIdType()) { |
2324 | return A->isObjCQualifiedIdType() && |
2325 | Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false); |
2326 | } |
2327 | |
2328 | /* |
2329 | // id is a special type that bypasses type checking completely. We want a |
2330 | // warning when it is used in one place but not another. |
2331 | if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; |
2332 | |
2333 | |
2334 | // If B is a qualified id, then A must also be a qualified id (which it isn't |
2335 | // if we've got this far) |
2336 | if (B->isObjCQualifiedIdType()) return false; |
2337 | */ |
2338 | |
2339 | // Now we know that A and B are (potentially-qualified) class types. The |
2340 | // normal rules for assignment apply. |
2341 | return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B); |
2342 | } |
2343 | |
2344 | static SourceRange getTypeRange(TypeSourceInfo *TSI) { |
2345 | return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); |
2346 | } |
2347 | |
2348 | /// Determine whether two set of Objective-C declaration qualifiers conflict. |
2349 | static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, |
2350 | Decl::ObjCDeclQualifier y) { |
2351 | return (x & ~Decl::OBJC_TQ_CSNullability) != |
2352 | (y & ~Decl::OBJC_TQ_CSNullability); |
2353 | } |
2354 | |
2355 | static bool CheckMethodOverrideReturn(Sema &S, |
2356 | ObjCMethodDecl *MethodImpl, |
2357 | ObjCMethodDecl *MethodDecl, |
2358 | bool IsProtocolMethodDecl, |
2359 | bool IsOverridingMode, |
2360 | bool Warn) { |
2361 | if (IsProtocolMethodDecl && |
2362 | objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(), |
2363 | y: MethodImpl->getObjCDeclQualifier())) { |
2364 | if (Warn) { |
2365 | S.Diag(MethodImpl->getLocation(), |
2366 | (IsOverridingMode |
2367 | ? diag::warn_conflicting_overriding_ret_type_modifiers |
2368 | : diag::warn_conflicting_ret_type_modifiers)) |
2369 | << MethodImpl->getDeclName() |
2370 | << MethodImpl->getReturnTypeSourceRange(); |
2371 | S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) |
2372 | << MethodDecl->getReturnTypeSourceRange(); |
2373 | } |
2374 | else |
2375 | return false; |
2376 | } |
2377 | if (Warn && IsOverridingMode && |
2378 | !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && |
2379 | !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(), |
2380 | SuperT: MethodDecl->getReturnType(), |
2381 | IsParam: false)) { |
2382 | auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability(); |
2383 | auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability(); |
2384 | S.Diag(MethodImpl->getLocation(), |
2385 | diag::warn_conflicting_nullability_attr_overriding_ret_types) |
2386 | << DiagNullabilityKind(nullabilityMethodImpl, |
2387 | ((MethodImpl->getObjCDeclQualifier() & |
2388 | Decl::OBJC_TQ_CSNullability) != 0)) |
2389 | << DiagNullabilityKind(nullabilityMethodDecl, |
2390 | ((MethodDecl->getObjCDeclQualifier() & |
2391 | Decl::OBJC_TQ_CSNullability) != 0)); |
2392 | S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
2393 | } |
2394 | |
2395 | if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(), |
2396 | T2: MethodDecl->getReturnType())) |
2397 | return true; |
2398 | if (!Warn) |
2399 | return false; |
2400 | |
2401 | unsigned DiagID = |
2402 | IsOverridingMode ? diag::warn_conflicting_overriding_ret_types |
2403 | : diag::warn_conflicting_ret_types; |
2404 | |
2405 | // Mismatches between ObjC pointers go into a different warning |
2406 | // category, and sometimes they're even completely explicitly allowed. |
2407 | if (const ObjCObjectPointerType *ImplPtrTy = |
2408 | MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
2409 | if (const ObjCObjectPointerType *IfacePtrTy = |
2410 | MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
2411 | // Allow non-matching return types as long as they don't violate |
2412 | // the principle of substitutability. Specifically, we permit |
2413 | // return types that are subclasses of the declared return type, |
2414 | // or that are more-qualified versions of the declared type. |
2415 | if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false)) |
2416 | return false; |
2417 | |
2418 | DiagID = |
2419 | IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types |
2420 | : diag::warn_non_covariant_ret_types; |
2421 | } |
2422 | } |
2423 | |
2424 | S.Diag(MethodImpl->getLocation(), DiagID) |
2425 | << MethodImpl->getDeclName() << MethodDecl->getReturnType() |
2426 | << MethodImpl->getReturnType() |
2427 | << MethodImpl->getReturnTypeSourceRange(); |
2428 | S.Diag(MethodDecl->getLocation(), IsOverridingMode |
2429 | ? diag::note_previous_declaration |
2430 | : diag::note_previous_definition) |
2431 | << MethodDecl->getReturnTypeSourceRange(); |
2432 | return false; |
2433 | } |
2434 | |
2435 | static bool CheckMethodOverrideParam(Sema &S, |
2436 | ObjCMethodDecl *MethodImpl, |
2437 | ObjCMethodDecl *MethodDecl, |
2438 | ParmVarDecl *ImplVar, |
2439 | ParmVarDecl *IfaceVar, |
2440 | bool IsProtocolMethodDecl, |
2441 | bool IsOverridingMode, |
2442 | bool Warn) { |
2443 | if (IsProtocolMethodDecl && |
2444 | objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(), |
2445 | y: IfaceVar->getObjCDeclQualifier())) { |
2446 | if (Warn) { |
2447 | if (IsOverridingMode) |
2448 | S.Diag(ImplVar->getLocation(), |
2449 | diag::warn_conflicting_overriding_param_modifiers) |
2450 | << getTypeRange(ImplVar->getTypeSourceInfo()) |
2451 | << MethodImpl->getDeclName(); |
2452 | else S.Diag(ImplVar->getLocation(), |
2453 | diag::warn_conflicting_param_modifiers) |
2454 | << getTypeRange(ImplVar->getTypeSourceInfo()) |
2455 | << MethodImpl->getDeclName(); |
2456 | S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) |
2457 | << getTypeRange(IfaceVar->getTypeSourceInfo()); |
2458 | } |
2459 | else |
2460 | return false; |
2461 | } |
2462 | |
2463 | QualType ImplTy = ImplVar->getType(); |
2464 | QualType IfaceTy = IfaceVar->getType(); |
2465 | if (Warn && IsOverridingMode && |
2466 | !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && |
2467 | !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) { |
2468 | S.Diag(ImplVar->getLocation(), |
2469 | diag::warn_conflicting_nullability_attr_overriding_param_types) |
2470 | << DiagNullabilityKind(*ImplTy->getNullability(), |
2471 | ((ImplVar->getObjCDeclQualifier() & |
2472 | Decl::OBJC_TQ_CSNullability) != 0)) |
2473 | << DiagNullabilityKind(*IfaceTy->getNullability(), |
2474 | ((IfaceVar->getObjCDeclQualifier() & |
2475 | Decl::OBJC_TQ_CSNullability) != 0)); |
2476 | S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); |
2477 | } |
2478 | if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy)) |
2479 | return true; |
2480 | |
2481 | if (!Warn) |
2482 | return false; |
2483 | unsigned DiagID = |
2484 | IsOverridingMode ? diag::warn_conflicting_overriding_param_types |
2485 | : diag::warn_conflicting_param_types; |
2486 | |
2487 | // Mismatches between ObjC pointers go into a different warning |
2488 | // category, and sometimes they're even completely explicitly allowed.. |
2489 | if (const ObjCObjectPointerType *ImplPtrTy = |
2490 | ImplTy->getAs<ObjCObjectPointerType>()) { |
2491 | if (const ObjCObjectPointerType *IfacePtrTy = |
2492 | IfaceTy->getAs<ObjCObjectPointerType>()) { |
2493 | // Allow non-matching argument types as long as they don't |
2494 | // violate the principle of substitutability. Specifically, the |
2495 | // implementation must accept any objects that the superclass |
2496 | // accepts, however it may also accept others. |
2497 | if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true)) |
2498 | return false; |
2499 | |
2500 | DiagID = |
2501 | IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types |
2502 | : diag::warn_non_contravariant_param_types; |
2503 | } |
2504 | } |
2505 | |
2506 | S.Diag(ImplVar->getLocation(), DiagID) |
2507 | << getTypeRange(ImplVar->getTypeSourceInfo()) |
2508 | << MethodImpl->getDeclName() << IfaceTy << ImplTy; |
2509 | S.Diag(IfaceVar->getLocation(), |
2510 | (IsOverridingMode ? diag::note_previous_declaration |
2511 | : diag::note_previous_definition)) |
2512 | << getTypeRange(IfaceVar->getTypeSourceInfo()); |
2513 | return false; |
2514 | } |
2515 | |
2516 | /// In ARC, check whether the conventional meanings of the two methods |
2517 | /// match. If they don't, it's a hard error. |
2518 | static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, |
2519 | ObjCMethodDecl *decl) { |
2520 | ObjCMethodFamily implFamily = impl->getMethodFamily(); |
2521 | ObjCMethodFamily declFamily = decl->getMethodFamily(); |
2522 | if (implFamily == declFamily) return false; |
2523 | |
2524 | // Since conventions are sorted by selector, the only possibility is |
2525 | // that the types differ enough to cause one selector or the other |
2526 | // to fall out of the family. |
2527 | assert(implFamily == OMF_None || declFamily == OMF_None); |
2528 | |
2529 | // No further diagnostics required on invalid declarations. |
2530 | if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; |
2531 | |
2532 | const ObjCMethodDecl *unmatched = impl; |
2533 | ObjCMethodFamily family = declFamily; |
2534 | unsigned errorID = diag::err_arc_lost_method_convention; |
2535 | unsigned noteID = diag::note_arc_lost_method_convention; |
2536 | if (declFamily == OMF_None) { |
2537 | unmatched = decl; |
2538 | family = implFamily; |
2539 | errorID = diag::err_arc_gained_method_convention; |
2540 | noteID = diag::note_arc_gained_method_convention; |
2541 | } |
2542 | |
2543 | // Indexes into a %select clause in the diagnostic. |
2544 | enum FamilySelector { |
2545 | F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new |
2546 | }; |
2547 | FamilySelector familySelector = FamilySelector(); |
2548 | |
2549 | switch (family) { |
2550 | case OMF_None: llvm_unreachable("logic error, no method convention" ); |
2551 | case OMF_retain: |
2552 | case OMF_release: |
2553 | case OMF_autorelease: |
2554 | case OMF_dealloc: |
2555 | case OMF_finalize: |
2556 | case OMF_retainCount: |
2557 | case OMF_self: |
2558 | case OMF_initialize: |
2559 | case OMF_performSelector: |
2560 | // Mismatches for these methods don't change ownership |
2561 | // conventions, so we don't care. |
2562 | return false; |
2563 | |
2564 | case OMF_init: familySelector = F_init; break; |
2565 | case OMF_alloc: familySelector = F_alloc; break; |
2566 | case OMF_copy: familySelector = F_copy; break; |
2567 | case OMF_mutableCopy: familySelector = F_mutableCopy; break; |
2568 | case OMF_new: familySelector = F_new; break; |
2569 | } |
2570 | |
2571 | enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; |
2572 | ReasonSelector reasonSelector; |
2573 | |
2574 | // The only reason these methods don't fall within their families is |
2575 | // due to unusual result types. |
2576 | if (unmatched->getReturnType()->isObjCObjectPointerType()) { |
2577 | reasonSelector = R_UnrelatedReturn; |
2578 | } else { |
2579 | reasonSelector = R_NonObjectReturn; |
2580 | } |
2581 | |
2582 | S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); |
2583 | S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); |
2584 | |
2585 | return true; |
2586 | } |
2587 | |
2588 | void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
2589 | ObjCMethodDecl *MethodDecl, |
2590 | bool IsProtocolMethodDecl) { |
2591 | if (getLangOpts().ObjCAutoRefCount && |
2592 | checkMethodFamilyMismatch(S&: *this, impl: ImpMethodDecl, decl: MethodDecl)) |
2593 | return; |
2594 | |
2595 | CheckMethodOverrideReturn(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl, |
2596 | IsProtocolMethodDecl, IsOverridingMode: false, |
2597 | Warn: true); |
2598 | |
2599 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
2600 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
2601 | EF = MethodDecl->param_end(); |
2602 | IM != EM && IF != EF; ++IM, ++IF) { |
2603 | CheckMethodOverrideParam(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF, |
2604 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
2605 | } |
2606 | |
2607 | if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { |
2608 | Diag(ImpMethodDecl->getLocation(), |
2609 | diag::warn_conflicting_variadic); |
2610 | Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
2611 | } |
2612 | } |
2613 | |
2614 | void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, |
2615 | ObjCMethodDecl *Overridden, |
2616 | bool IsProtocolMethodDecl) { |
2617 | |
2618 | CheckMethodOverrideReturn(S&: *this, MethodImpl: Method, MethodDecl: Overridden, |
2619 | IsProtocolMethodDecl, IsOverridingMode: true, |
2620 | Warn: true); |
2621 | |
2622 | for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), |
2623 | IF = Overridden->param_begin(), EM = Method->param_end(), |
2624 | EF = Overridden->param_end(); |
2625 | IM != EM && IF != EF; ++IM, ++IF) { |
2626 | CheckMethodOverrideParam(S&: *this, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF, |
2627 | IsProtocolMethodDecl, IsOverridingMode: true, Warn: true); |
2628 | } |
2629 | |
2630 | if (Method->isVariadic() != Overridden->isVariadic()) { |
2631 | Diag(Method->getLocation(), |
2632 | diag::warn_conflicting_overriding_variadic); |
2633 | Diag(Overridden->getLocation(), diag::note_previous_declaration); |
2634 | } |
2635 | } |
2636 | |
2637 | /// WarnExactTypedMethods - This routine issues a warning if method |
2638 | /// implementation declaration matches exactly that of its declaration. |
2639 | void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
2640 | ObjCMethodDecl *MethodDecl, |
2641 | bool IsProtocolMethodDecl) { |
2642 | // don't issue warning when protocol method is optional because primary |
2643 | // class is not required to implement it and it is safe for protocol |
2644 | // to implement it. |
2645 | if (MethodDecl->getImplementationControl() == |
2646 | ObjCImplementationControl::Optional) |
2647 | return; |
2648 | // don't issue warning when primary class's method is |
2649 | // deprecated/unavailable. |
2650 | if (MethodDecl->hasAttr<UnavailableAttr>() || |
2651 | MethodDecl->hasAttr<DeprecatedAttr>()) |
2652 | return; |
2653 | |
2654 | bool match = CheckMethodOverrideReturn(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl, |
2655 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
2656 | if (match) |
2657 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
2658 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
2659 | EF = MethodDecl->param_end(); |
2660 | IM != EM && IF != EF; ++IM, ++IF) { |
2661 | match = CheckMethodOverrideParam(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl, |
2662 | ImplVar: *IM, IfaceVar: *IF, |
2663 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
2664 | if (!match) |
2665 | break; |
2666 | } |
2667 | if (match) |
2668 | match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); |
2669 | if (match) |
2670 | match = !(MethodDecl->isClassMethod() && |
2671 | MethodDecl->getSelector() == GetNullarySelector(name: "load" , Ctx&: Context)); |
2672 | |
2673 | if (match) { |
2674 | Diag(ImpMethodDecl->getLocation(), |
2675 | diag::warn_category_method_impl_match); |
2676 | Diag(MethodDecl->getLocation(), diag::note_method_declared_at) |
2677 | << MethodDecl->getDeclName(); |
2678 | } |
2679 | } |
2680 | |
2681 | /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely |
2682 | /// improve the efficiency of selector lookups and type checking by associating |
2683 | /// with each protocol / interface / category the flattened instance tables. If |
2684 | /// we used an immutable set to keep the table then it wouldn't add significant |
2685 | /// memory cost and it would be handy for lookups. |
2686 | |
2687 | typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; |
2688 | typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; |
2689 | |
2690 | static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, |
2691 | ProtocolNameSet &PNS) { |
2692 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) |
2693 | PNS.insert(PDecl->getIdentifier()); |
2694 | for (const auto *PI : PDecl->protocols()) |
2695 | findProtocolsWithExplicitImpls(PDecl: PI, PNS); |
2696 | } |
2697 | |
2698 | /// Recursively populates a set with all conformed protocols in a class |
2699 | /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' |
2700 | /// attribute. |
2701 | static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, |
2702 | ProtocolNameSet &PNS) { |
2703 | if (!Super) |
2704 | return; |
2705 | |
2706 | for (const auto *I : Super->all_referenced_protocols()) |
2707 | findProtocolsWithExplicitImpls(PDecl: I, PNS); |
2708 | |
2709 | findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS); |
2710 | } |
2711 | |
2712 | /// CheckProtocolMethodDefs - This routine checks unimplemented methods |
2713 | /// Declared in protocol, and those referenced by it. |
2714 | static void CheckProtocolMethodDefs( |
2715 | Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl, |
2716 | const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap, |
2717 | ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) { |
2718 | ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl); |
2719 | ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() |
2720 | : dyn_cast<ObjCInterfaceDecl>(Val: CDecl); |
2721 | assert (IDecl && "CheckProtocolMethodDefs - IDecl is null" ); |
2722 | |
2723 | ObjCInterfaceDecl *Super = IDecl->getSuperClass(); |
2724 | ObjCInterfaceDecl *NSIDecl = nullptr; |
2725 | |
2726 | // If this protocol is marked 'objc_protocol_requires_explicit_implementation' |
2727 | // then we should check if any class in the super class hierarchy also |
2728 | // conforms to this protocol, either directly or via protocol inheritance. |
2729 | // If so, we can skip checking this protocol completely because we |
2730 | // know that a parent class already satisfies this protocol. |
2731 | // |
2732 | // Note: we could generalize this logic for all protocols, and merely |
2733 | // add the limit on looking at the super class chain for just |
2734 | // specially marked protocols. This may be a good optimization. This |
2735 | // change is restricted to 'objc_protocol_requires_explicit_implementation' |
2736 | // protocols for now for controlled evaluation. |
2737 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { |
2738 | if (!ProtocolsExplictImpl) { |
2739 | ProtocolsExplictImpl.reset(p: new ProtocolNameSet); |
2740 | findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl); |
2741 | } |
2742 | if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier())) |
2743 | return; |
2744 | |
2745 | // If no super class conforms to the protocol, we should not search |
2746 | // for methods in the super class to implicitly satisfy the protocol. |
2747 | Super = nullptr; |
2748 | } |
2749 | |
2750 | if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { |
2751 | // check to see if class implements forwardInvocation method and objects |
2752 | // of this class are derived from 'NSProxy' so that to forward requests |
2753 | // from one object to another. |
2754 | // Under such conditions, which means that every method possible is |
2755 | // implemented in the class, we should not issue "Method definition not |
2756 | // found" warnings. |
2757 | // FIXME: Use a general GetUnarySelector method for this. |
2758 | const IdentifierInfo *II = &S.Context.Idents.get(Name: "forwardInvocation" ); |
2759 | Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II); |
2760 | if (InsMap.count(Ptr: fISelector)) |
2761 | // Is IDecl derived from 'NSProxy'? If so, no instance methods |
2762 | // need be implemented in the implementation. |
2763 | NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy" )); |
2764 | } |
2765 | |
2766 | // If this is a forward protocol declaration, get its definition. |
2767 | if (!PDecl->isThisDeclarationADefinition() && |
2768 | PDecl->getDefinition()) |
2769 | PDecl = PDecl->getDefinition(); |
2770 | |
2771 | // If a method lookup fails locally we still need to look and see if |
2772 | // the method was implemented by a base class or an inherited |
2773 | // protocol. This lookup is slow, but occurs rarely in correct code |
2774 | // and otherwise would terminate in a warning. |
2775 | |
2776 | // check unimplemented instance methods. |
2777 | if (!NSIDecl) |
2778 | for (auto *method : PDecl->instance_methods()) { |
2779 | if (method->getImplementationControl() != |
2780 | ObjCImplementationControl::Optional && |
2781 | !method->isPropertyAccessor() && |
2782 | !InsMap.count(method->getSelector()) && |
2783 | (!Super || !Super->lookupMethod( |
2784 | method->getSelector(), true /* instance */, |
2785 | false /* shallowCategory */, true /* followsSuper */, |
2786 | nullptr /* category */))) { |
2787 | // If a method is not implemented in the category implementation but |
2788 | // has been declared in its primary class, superclass, |
2789 | // or in one of their protocols, no need to issue the warning. |
2790 | // This is because method will be implemented in the primary class |
2791 | // or one of its super class implementation. |
2792 | |
2793 | // Ugly, but necessary. Method declared in protocol might have |
2794 | // have been synthesized due to a property declared in the class which |
2795 | // uses the protocol. |
2796 | if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod( |
2797 | method->getSelector(), true /* instance */, |
2798 | true /* shallowCategoryLookup */, false /* followSuper */)) |
2799 | if (C || MethodInClass->isPropertyAccessor()) |
2800 | continue; |
2801 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
2802 | if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) { |
2803 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl); |
2804 | } |
2805 | } |
2806 | } |
2807 | // check unimplemented class methods |
2808 | for (auto *method : PDecl->class_methods()) { |
2809 | if (method->getImplementationControl() != |
2810 | ObjCImplementationControl::Optional && |
2811 | !ClsMap.count(method->getSelector()) && |
2812 | (!Super || !Super->lookupMethod( |
2813 | method->getSelector(), false /* class method */, |
2814 | false /* shallowCategoryLookup */, |
2815 | true /* followSuper */, nullptr /* category */))) { |
2816 | // See above comment for instance method lookups. |
2817 | if (C && IDecl->lookupMethod(method->getSelector(), |
2818 | false /* class */, |
2819 | true /* shallowCategoryLookup */, |
2820 | false /* followSuper */)) |
2821 | continue; |
2822 | |
2823 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
2824 | if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) { |
2825 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl); |
2826 | } |
2827 | } |
2828 | } |
2829 | // Check on this protocols's referenced protocols, recursively. |
2830 | for (auto *PI : PDecl->protocols()) |
2831 | CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl, |
2832 | ProtocolsExplictImpl); |
2833 | } |
2834 | |
2835 | /// MatchAllMethodDeclarations - Check methods declared in interface |
2836 | /// or protocol against those declared in their implementations. |
2837 | /// |
2838 | void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, |
2839 | const SelectorSet &ClsMap, |
2840 | SelectorSet &InsMapSeen, |
2841 | SelectorSet &ClsMapSeen, |
2842 | ObjCImplDecl* IMPDecl, |
2843 | ObjCContainerDecl* CDecl, |
2844 | bool &IncompleteImpl, |
2845 | bool ImmediateClass, |
2846 | bool WarnCategoryMethodImpl) { |
2847 | // Check and see if instance methods in class interface have been |
2848 | // implemented in the implementation class. If so, their types match. |
2849 | for (auto *I : CDecl->instance_methods()) { |
2850 | if (!InsMapSeen.insert(Ptr: I->getSelector()).second) |
2851 | continue; |
2852 | if (!I->isPropertyAccessor() && |
2853 | !InsMap.count(Ptr: I->getSelector())) { |
2854 | if (ImmediateClass) |
2855 | WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl, |
2856 | diag::warn_undef_method_impl); |
2857 | continue; |
2858 | } else { |
2859 | ObjCMethodDecl *ImpMethodDecl = |
2860 | IMPDecl->getInstanceMethod(I->getSelector()); |
2861 | assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && |
2862 | "Expected to find the method through lookup as well" ); |
2863 | // ImpMethodDecl may be null as in a @dynamic property. |
2864 | if (ImpMethodDecl) { |
2865 | // Skip property accessor function stubs. |
2866 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
2867 | continue; |
2868 | if (!WarnCategoryMethodImpl) |
2869 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
2870 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2871 | else if (!I->isPropertyAccessor()) |
2872 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2873 | } |
2874 | } |
2875 | } |
2876 | |
2877 | // Check and see if class methods in class interface have been |
2878 | // implemented in the implementation class. If so, their types match. |
2879 | for (auto *I : CDecl->class_methods()) { |
2880 | if (!ClsMapSeen.insert(Ptr: I->getSelector()).second) |
2881 | continue; |
2882 | if (!I->isPropertyAccessor() && |
2883 | !ClsMap.count(Ptr: I->getSelector())) { |
2884 | if (ImmediateClass) |
2885 | WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl, |
2886 | diag::warn_undef_method_impl); |
2887 | } else { |
2888 | ObjCMethodDecl *ImpMethodDecl = |
2889 | IMPDecl->getClassMethod(I->getSelector()); |
2890 | assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && |
2891 | "Expected to find the method through lookup as well" ); |
2892 | // ImpMethodDecl may be null as in a @dynamic property. |
2893 | if (ImpMethodDecl) { |
2894 | // Skip property accessor function stubs. |
2895 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
2896 | continue; |
2897 | if (!WarnCategoryMethodImpl) |
2898 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
2899 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2900 | else if (!I->isPropertyAccessor()) |
2901 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2902 | } |
2903 | } |
2904 | } |
2905 | |
2906 | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) { |
2907 | // Also, check for methods declared in protocols inherited by |
2908 | // this protocol. |
2909 | for (auto *PI : PD->protocols()) |
2910 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2911 | IMPDecl, PI, IncompleteImpl, false, |
2912 | WarnCategoryMethodImpl); |
2913 | } |
2914 | |
2915 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
2916 | // when checking that methods in implementation match their declaration, |
2917 | // i.e. when WarnCategoryMethodImpl is false, check declarations in class |
2918 | // extension; as well as those in categories. |
2919 | if (!WarnCategoryMethodImpl) { |
2920 | for (auto *Cat : I->visible_categories()) |
2921 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2922 | IMPDecl, Cat, IncompleteImpl, |
2923 | ImmediateClass && Cat->IsClassExtension(), |
2924 | WarnCategoryMethodImpl); |
2925 | } else { |
2926 | // Also methods in class extensions need be looked at next. |
2927 | for (auto *Ext : I->visible_extensions()) |
2928 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2929 | IMPDecl, Ext, IncompleteImpl, false, |
2930 | WarnCategoryMethodImpl); |
2931 | } |
2932 | |
2933 | // Check for any implementation of a methods declared in protocol. |
2934 | for (auto *PI : I->all_referenced_protocols()) |
2935 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2936 | IMPDecl, PI, IncompleteImpl, false, |
2937 | WarnCategoryMethodImpl); |
2938 | |
2939 | // FIXME. For now, we are not checking for exact match of methods |
2940 | // in category implementation and its primary class's super class. |
2941 | if (!WarnCategoryMethodImpl && I->getSuperClass()) |
2942 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2943 | IMPDecl, |
2944 | I->getSuperClass(), IncompleteImpl, false); |
2945 | } |
2946 | } |
2947 | |
2948 | /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in |
2949 | /// category matches with those implemented in its primary class and |
2950 | /// warns each time an exact match is found. |
2951 | void Sema::CheckCategoryVsClassMethodMatches( |
2952 | ObjCCategoryImplDecl *CatIMPDecl) { |
2953 | // Get category's primary class. |
2954 | ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); |
2955 | if (!CatDecl) |
2956 | return; |
2957 | ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); |
2958 | if (!IDecl) |
2959 | return; |
2960 | ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); |
2961 | SelectorSet InsMap, ClsMap; |
2962 | |
2963 | for (const auto *I : CatIMPDecl->instance_methods()) { |
2964 | Selector Sel = I->getSelector(); |
2965 | // When checking for methods implemented in the category, skip over |
2966 | // those declared in category class's super class. This is because |
2967 | // the super class must implement the method. |
2968 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) |
2969 | continue; |
2970 | InsMap.insert(Sel); |
2971 | } |
2972 | |
2973 | for (const auto *I : CatIMPDecl->class_methods()) { |
2974 | Selector Sel = I->getSelector(); |
2975 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) |
2976 | continue; |
2977 | ClsMap.insert(Sel); |
2978 | } |
2979 | if (InsMap.empty() && ClsMap.empty()) |
2980 | return; |
2981 | |
2982 | SelectorSet InsMapSeen, ClsMapSeen; |
2983 | bool IncompleteImpl = false; |
2984 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2985 | CatIMPDecl, IDecl, |
2986 | IncompleteImpl, false, |
2987 | true /*WarnCategoryMethodImpl*/); |
2988 | } |
2989 | |
2990 | void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, |
2991 | ObjCContainerDecl* CDecl, |
2992 | bool IncompleteImpl) { |
2993 | SelectorSet InsMap; |
2994 | // Check and see if instance methods in class interface have been |
2995 | // implemented in the implementation class. |
2996 | for (const auto *I : IMPDecl->instance_methods()) |
2997 | InsMap.insert(I->getSelector()); |
2998 | |
2999 | // Add the selectors for getters/setters of @dynamic properties. |
3000 | for (const auto *PImpl : IMPDecl->property_impls()) { |
3001 | // We only care about @dynamic implementations. |
3002 | if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) |
3003 | continue; |
3004 | |
3005 | const auto *P = PImpl->getPropertyDecl(); |
3006 | if (!P) continue; |
3007 | |
3008 | InsMap.insert(Ptr: P->getGetterName()); |
3009 | if (!P->getSetterName().isNull()) |
3010 | InsMap.insert(Ptr: P->getSetterName()); |
3011 | } |
3012 | |
3013 | // Check and see if properties declared in the interface have either 1) |
3014 | // an implementation or 2) there is a @synthesize/@dynamic implementation |
3015 | // of the property in the @implementation. |
3016 | if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
3017 | bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && |
3018 | LangOpts.ObjCRuntime.isNonFragile() && |
3019 | !IDecl->isObjCRequiresPropertyDefs(); |
3020 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); |
3021 | } |
3022 | |
3023 | // Diagnose null-resettable synthesized setters. |
3024 | diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl); |
3025 | |
3026 | SelectorSet ClsMap; |
3027 | for (const auto *I : IMPDecl->class_methods()) |
3028 | ClsMap.insert(I->getSelector()); |
3029 | |
3030 | // Check for type conflict of methods declared in a class/protocol and |
3031 | // its implementation; if any. |
3032 | SelectorSet InsMapSeen, ClsMapSeen; |
3033 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
3034 | IMPDecl, CDecl, |
3035 | IncompleteImpl, ImmediateClass: true); |
3036 | |
3037 | // check all methods implemented in category against those declared |
3038 | // in its primary class. |
3039 | if (ObjCCategoryImplDecl *CatDecl = |
3040 | dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl)) |
3041 | CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl); |
3042 | |
3043 | // Check the protocol list for unimplemented methods in the @implementation |
3044 | // class. |
3045 | // Check and see if class methods in class interface have been |
3046 | // implemented in the implementation class. |
3047 | |
3048 | LazyProtocolNameSet ExplicitImplProtocols; |
3049 | |
3050 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
3051 | for (auto *PI : I->all_referenced_protocols()) |
3052 | CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap, |
3053 | ClsMap, I, ExplicitImplProtocols); |
3054 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
3055 | // For extended class, unimplemented methods in its protocols will |
3056 | // be reported in the primary class. |
3057 | if (!C->IsClassExtension()) { |
3058 | for (auto *P : C->protocols()) |
3059 | CheckProtocolMethodDefs(S&: *this, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap, |
3060 | ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols); |
3061 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, |
3062 | /*SynthesizeProperties=*/false); |
3063 | } |
3064 | } else |
3065 | llvm_unreachable("invalid ObjCContainerDecl type." ); |
3066 | } |
3067 | |
3068 | Sema::DeclGroupPtrTy |
3069 | Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, |
3070 | IdentifierInfo **IdentList, |
3071 | SourceLocation *IdentLocs, |
3072 | ArrayRef<ObjCTypeParamList *> TypeParamLists, |
3073 | unsigned NumElts) { |
3074 | SmallVector<Decl *, 8> DeclsInGroup; |
3075 | for (unsigned i = 0; i != NumElts; ++i) { |
3076 | // Check for another declaration kind with the same name. |
3077 | NamedDecl *PrevDecl |
3078 | = LookupSingleName(S: TUScope, Name: IdentList[i], Loc: IdentLocs[i], |
3079 | NameKind: LookupOrdinaryName, Redecl: forRedeclarationInCurContext()); |
3080 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
3081 | // GCC apparently allows the following idiom: |
3082 | // |
3083 | // typedef NSObject < XCElementTogglerP > XCElementToggler; |
3084 | // @class XCElementToggler; |
3085 | // |
3086 | // Here we have chosen to ignore the forward class declaration |
3087 | // with a warning. Since this is the implied behavior. |
3088 | TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl); |
3089 | if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { |
3090 | Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; |
3091 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
3092 | } else { |
3093 | // a forward class declaration matching a typedef name of a class refers |
3094 | // to the underlying class. Just ignore the forward class with a warning |
3095 | // as this will force the intended behavior which is to lookup the |
3096 | // typedef name. |
3097 | if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) { |
3098 | Diag(AtClassLoc, diag::warn_forward_class_redefinition) |
3099 | << IdentList[i]; |
3100 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
3101 | continue; |
3102 | } |
3103 | } |
3104 | } |
3105 | |
3106 | // Create a declaration to describe this forward declaration. |
3107 | ObjCInterfaceDecl *PrevIDecl |
3108 | = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
3109 | |
3110 | IdentifierInfo *ClassName = IdentList[i]; |
3111 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
3112 | // A previous decl with a different name is because of |
3113 | // @compatibility_alias, for example: |
3114 | // \code |
3115 | // @class NewImage; |
3116 | // @compatibility_alias OldImage NewImage; |
3117 | // \endcode |
3118 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
3119 | // |
3120 | // In such a case use the real declaration name, instead of the alias one, |
3121 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
3122 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
3123 | // has been aliased. |
3124 | ClassName = PrevIDecl->getIdentifier(); |
3125 | } |
3126 | |
3127 | // If this forward declaration has type parameters, compare them with the |
3128 | // type parameters of the previous declaration. |
3129 | ObjCTypeParamList *TypeParams = TypeParamLists[i]; |
3130 | if (PrevIDecl && TypeParams) { |
3131 | if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { |
3132 | // Check for consistency with the previous declaration. |
3133 | if (checkTypeParamListConsistency( |
3134 | S&: *this, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams, |
3135 | newContext: TypeParamListContext::ForwardDeclaration)) { |
3136 | TypeParams = nullptr; |
3137 | } |
3138 | } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
3139 | // The @interface does not have type parameters. Complain. |
3140 | Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) |
3141 | << ClassName |
3142 | << TypeParams->getSourceRange(); |
3143 | Diag(Def->getLocation(), diag::note_defined_here) |
3144 | << ClassName; |
3145 | |
3146 | TypeParams = nullptr; |
3147 | } |
3148 | } |
3149 | |
3150 | ObjCInterfaceDecl *IDecl |
3151 | = ObjCInterfaceDecl::Create(C: Context, DC: CurContext, atLoc: AtClassLoc, |
3152 | Id: ClassName, typeParamList: TypeParams, PrevDecl: PrevIDecl, |
3153 | ClassLoc: IdentLocs[i]); |
3154 | IDecl->setAtEndRange(IdentLocs[i]); |
3155 | |
3156 | if (PrevIDecl) |
3157 | mergeDeclAttributes(IDecl, PrevIDecl); |
3158 | |
3159 | PushOnScopeChains(IDecl, TUScope); |
3160 | CheckObjCDeclScope(IDecl); |
3161 | DeclsInGroup.push_back(IDecl); |
3162 | } |
3163 | |
3164 | return BuildDeclaratorGroup(Group: DeclsInGroup); |
3165 | } |
3166 | |
3167 | static bool tryMatchRecordTypes(ASTContext &Context, |
3168 | Sema::MethodMatchStrategy strategy, |
3169 | const Type *left, const Type *right); |
3170 | |
3171 | static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, |
3172 | QualType leftQT, QualType rightQT) { |
3173 | const Type *left = |
3174 | Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr(); |
3175 | const Type *right = |
3176 | Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr(); |
3177 | |
3178 | if (left == right) return true; |
3179 | |
3180 | // If we're doing a strict match, the types have to match exactly. |
3181 | if (strategy == Sema::MMS_strict) return false; |
3182 | |
3183 | if (left->isIncompleteType() || right->isIncompleteType()) return false; |
3184 | |
3185 | // Otherwise, use this absurdly complicated algorithm to try to |
3186 | // validate the basic, low-level compatibility of the two types. |
3187 | |
3188 | // As a minimum, require the sizes and alignments to match. |
3189 | TypeInfo LeftTI = Context.getTypeInfo(T: left); |
3190 | TypeInfo RightTI = Context.getTypeInfo(T: right); |
3191 | if (LeftTI.Width != RightTI.Width) |
3192 | return false; |
3193 | |
3194 | if (LeftTI.Align != RightTI.Align) |
3195 | return false; |
3196 | |
3197 | // Consider all the kinds of non-dependent canonical types: |
3198 | // - functions and arrays aren't possible as return and parameter types |
3199 | |
3200 | // - vector types of equal size can be arbitrarily mixed |
3201 | if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right); |
3202 | if (isa<VectorType>(Val: right)) return false; |
3203 | |
3204 | // - references should only match references of identical type |
3205 | // - structs, unions, and Objective-C objects must match more-or-less |
3206 | // exactly |
3207 | // - everything else should be a scalar |
3208 | if (!left->isScalarType() || !right->isScalarType()) |
3209 | return tryMatchRecordTypes(Context, strategy, left, right); |
3210 | |
3211 | // Make scalars agree in kind, except count bools as chars, and group |
3212 | // all non-member pointers together. |
3213 | Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); |
3214 | Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); |
3215 | if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; |
3216 | if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; |
3217 | if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) |
3218 | leftSK = Type::STK_ObjCObjectPointer; |
3219 | if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) |
3220 | rightSK = Type::STK_ObjCObjectPointer; |
3221 | |
3222 | // Note that data member pointers and function member pointers don't |
3223 | // intermix because of the size differences. |
3224 | |
3225 | return (leftSK == rightSK); |
3226 | } |
3227 | |
3228 | static bool tryMatchRecordTypes(ASTContext &Context, |
3229 | Sema::MethodMatchStrategy strategy, |
3230 | const Type *lt, const Type *rt) { |
3231 | assert(lt && rt && lt != rt); |
3232 | |
3233 | if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false; |
3234 | RecordDecl *left = cast<RecordType>(Val: lt)->getDecl(); |
3235 | RecordDecl *right = cast<RecordType>(Val: rt)->getDecl(); |
3236 | |
3237 | // Require union-hood to match. |
3238 | if (left->isUnion() != right->isUnion()) return false; |
3239 | |
3240 | // Require an exact match if either is non-POD. |
3241 | if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) || |
3242 | (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD())) |
3243 | return false; |
3244 | |
3245 | // Require size and alignment to match. |
3246 | TypeInfo LeftTI = Context.getTypeInfo(T: lt); |
3247 | TypeInfo RightTI = Context.getTypeInfo(T: rt); |
3248 | if (LeftTI.Width != RightTI.Width) |
3249 | return false; |
3250 | |
3251 | if (LeftTI.Align != RightTI.Align) |
3252 | return false; |
3253 | |
3254 | // Require fields to match. |
3255 | RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); |
3256 | RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); |
3257 | for (; li != le && ri != re; ++li, ++ri) { |
3258 | if (!matchTypes(Context, strategy, li->getType(), ri->getType())) |
3259 | return false; |
3260 | } |
3261 | return (li == le && ri == re); |
3262 | } |
3263 | |
3264 | /// MatchTwoMethodDeclarations - Checks that two methods have matching type and |
3265 | /// returns true, or false, accordingly. |
3266 | /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons |
3267 | bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, |
3268 | const ObjCMethodDecl *right, |
3269 | MethodMatchStrategy strategy) { |
3270 | if (!matchTypes(Context, strategy, leftQT: left->getReturnType(), |
3271 | rightQT: right->getReturnType())) |
3272 | return false; |
3273 | |
3274 | // If either is hidden, it is not considered to match. |
3275 | if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) |
3276 | return false; |
3277 | |
3278 | if (left->isDirectMethod() != right->isDirectMethod()) |
3279 | return false; |
3280 | |
3281 | if (getLangOpts().ObjCAutoRefCount && |
3282 | (left->hasAttr<NSReturnsRetainedAttr>() |
3283 | != right->hasAttr<NSReturnsRetainedAttr>() || |
3284 | left->hasAttr<NSConsumesSelfAttr>() |
3285 | != right->hasAttr<NSConsumesSelfAttr>())) |
3286 | return false; |
3287 | |
3288 | ObjCMethodDecl::param_const_iterator |
3289 | li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), |
3290 | re = right->param_end(); |
3291 | |
3292 | for (; li != le && ri != re; ++li, ++ri) { |
3293 | assert(ri != right->param_end() && "Param mismatch" ); |
3294 | const ParmVarDecl *lparm = *li, *rparm = *ri; |
3295 | |
3296 | if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) |
3297 | return false; |
3298 | |
3299 | if (getLangOpts().ObjCAutoRefCount && |
3300 | lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) |
3301 | return false; |
3302 | } |
3303 | return true; |
3304 | } |
3305 | |
3306 | static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, |
3307 | ObjCMethodDecl *MethodInList) { |
3308 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); |
3309 | auto *MethodInListProtocol = |
3310 | dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); |
3311 | // If this method belongs to a protocol but the method in list does not, or |
3312 | // vice versa, we say the context is not the same. |
3313 | if ((MethodProtocol && !MethodInListProtocol) || |
3314 | (!MethodProtocol && MethodInListProtocol)) |
3315 | return false; |
3316 | |
3317 | if (MethodProtocol && MethodInListProtocol) |
3318 | return true; |
3319 | |
3320 | ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); |
3321 | ObjCInterfaceDecl *MethodInListInterface = |
3322 | MethodInList->getClassInterface(); |
3323 | return MethodInterface == MethodInListInterface; |
3324 | } |
3325 | |
3326 | void Sema::addMethodToGlobalList(ObjCMethodList *List, |
3327 | ObjCMethodDecl *Method) { |
3328 | // Record at the head of the list whether there were 0, 1, or >= 2 methods |
3329 | // inside categories. |
3330 | if (ObjCCategoryDecl *CD = |
3331 | dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) |
3332 | if (!CD->IsClassExtension() && List->getBits() < 2) |
3333 | List->setBits(List->getBits() + 1); |
3334 | |
3335 | // If the list is empty, make it a singleton list. |
3336 | if (List->getMethod() == nullptr) { |
3337 | List->setMethod(Method); |
3338 | List->setNext(nullptr); |
3339 | return; |
3340 | } |
3341 | |
3342 | // We've seen a method with this name, see if we have already seen this type |
3343 | // signature. |
3344 | ObjCMethodList *Previous = List; |
3345 | ObjCMethodList *ListWithSameDeclaration = nullptr; |
3346 | for (; List; Previous = List, List = List->getNext()) { |
3347 | // If we are building a module, keep all of the methods. |
3348 | if (getLangOpts().isCompilingModule()) |
3349 | continue; |
3350 | |
3351 | bool SameDeclaration = MatchTwoMethodDeclarations(left: Method, |
3352 | right: List->getMethod()); |
3353 | // Looking for method with a type bound requires the correct context exists. |
3354 | // We need to insert a method into the list if the context is different. |
3355 | // If the method's declaration matches the list |
3356 | // a> the method belongs to a different context: we need to insert it, in |
3357 | // order to emit the availability message, we need to prioritize over |
3358 | // availability among the methods with the same declaration. |
3359 | // b> the method belongs to the same context: there is no need to insert a |
3360 | // new entry. |
3361 | // If the method's declaration does not match the list, we insert it to the |
3362 | // end. |
3363 | if (!SameDeclaration || |
3364 | !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) { |
3365 | // Even if two method types do not match, we would like to say |
3366 | // there is more than one declaration so unavailability/deprecated |
3367 | // warning is not too noisy. |
3368 | if (!Method->isDefined()) |
3369 | List->setHasMoreThanOneDecl(true); |
3370 | |
3371 | // For methods with the same declaration, the one that is deprecated |
3372 | // should be put in the front for better diagnostics. |
3373 | if (Method->isDeprecated() && SameDeclaration && |
3374 | !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) |
3375 | ListWithSameDeclaration = List; |
3376 | |
3377 | if (Method->isUnavailable() && SameDeclaration && |
3378 | !ListWithSameDeclaration && |
3379 | List->getMethod()->getAvailability() < AR_Deprecated) |
3380 | ListWithSameDeclaration = List; |
3381 | continue; |
3382 | } |
3383 | |
3384 | ObjCMethodDecl *PrevObjCMethod = List->getMethod(); |
3385 | |
3386 | // Propagate the 'defined' bit. |
3387 | if (Method->isDefined()) |
3388 | PrevObjCMethod->setDefined(true); |
3389 | else { |
3390 | // Objective-C doesn't allow an @interface for a class after its |
3391 | // @implementation. So if Method is not defined and there already is |
3392 | // an entry for this type signature, Method has to be for a different |
3393 | // class than PrevObjCMethod. |
3394 | List->setHasMoreThanOneDecl(true); |
3395 | } |
3396 | |
3397 | // If a method is deprecated, push it in the global pool. |
3398 | // This is used for better diagnostics. |
3399 | if (Method->isDeprecated()) { |
3400 | if (!PrevObjCMethod->isDeprecated()) |
3401 | List->setMethod(Method); |
3402 | } |
3403 | // If the new method is unavailable, push it into global pool |
3404 | // unless previous one is deprecated. |
3405 | if (Method->isUnavailable()) { |
3406 | if (PrevObjCMethod->getAvailability() < AR_Deprecated) |
3407 | List->setMethod(Method); |
3408 | } |
3409 | |
3410 | return; |
3411 | } |
3412 | |
3413 | // We have a new signature for an existing method - add it. |
3414 | // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". |
3415 | ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); |
3416 | |
3417 | // We insert it right before ListWithSameDeclaration. |
3418 | if (ListWithSameDeclaration) { |
3419 | auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); |
3420 | // FIXME: should we clear the other bits in ListWithSameDeclaration? |
3421 | ListWithSameDeclaration->setMethod(Method); |
3422 | ListWithSameDeclaration->setNext(List); |
3423 | return; |
3424 | } |
3425 | |
3426 | Previous->setNext(new (Mem) ObjCMethodList(Method)); |
3427 | } |
3428 | |
3429 | /// Read the contents of the method pool for a given selector from |
3430 | /// external storage. |
3431 | void Sema::ReadMethodPool(Selector Sel) { |
3432 | assert(ExternalSource && "We need an external AST source" ); |
3433 | ExternalSource->ReadMethodPool(Sel); |
3434 | } |
3435 | |
3436 | void Sema::updateOutOfDateSelector(Selector Sel) { |
3437 | if (!ExternalSource) |
3438 | return; |
3439 | ExternalSource->updateOutOfDateSelector(Sel); |
3440 | } |
3441 | |
3442 | void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, |
3443 | bool instance) { |
3444 | // Ignore methods of invalid containers. |
3445 | if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) |
3446 | return; |
3447 | |
3448 | if (ExternalSource) |
3449 | ReadMethodPool(Sel: Method->getSelector()); |
3450 | |
3451 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel: Method->getSelector()); |
3452 | if (Pos == MethodPool.end()) |
3453 | Pos = MethodPool |
3454 | .insert(Val: std::make_pair(x: Method->getSelector(), |
3455 | y: GlobalMethodPool::Lists())) |
3456 | .first; |
3457 | |
3458 | Method->setDefined(impl); |
3459 | |
3460 | ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; |
3461 | addMethodToGlobalList(List: &Entry, Method); |
3462 | } |
3463 | |
3464 | /// Determines if this is an "acceptable" loose mismatch in the global |
3465 | /// method pool. This exists mostly as a hack to get around certain |
3466 | /// global mismatches which we can't afford to make warnings / errors. |
3467 | /// Really, what we want is a way to take a method out of the global |
3468 | /// method pool. |
3469 | static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, |
3470 | ObjCMethodDecl *other) { |
3471 | if (!chosen->isInstanceMethod()) |
3472 | return false; |
3473 | |
3474 | if (chosen->isDirectMethod() != other->isDirectMethod()) |
3475 | return false; |
3476 | |
3477 | Selector sel = chosen->getSelector(); |
3478 | if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length" ) |
3479 | return false; |
3480 | |
3481 | // Don't complain about mismatches for -length if the method we |
3482 | // chose has an integral result type. |
3483 | return (chosen->getReturnType()->isIntegerType()); |
3484 | } |
3485 | |
3486 | /// Return true if the given method is wthin the type bound. |
3487 | static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, |
3488 | const ObjCObjectType *TypeBound) { |
3489 | if (!TypeBound) |
3490 | return true; |
3491 | |
3492 | if (TypeBound->isObjCId()) |
3493 | // FIXME: should we handle the case of bounding to id<A, B> differently? |
3494 | return true; |
3495 | |
3496 | auto *BoundInterface = TypeBound->getInterface(); |
3497 | assert(BoundInterface && "unexpected object type!" ); |
3498 | |
3499 | // Check if the Method belongs to a protocol. We should allow any method |
3500 | // defined in any protocol, because any subclass could adopt the protocol. |
3501 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); |
3502 | if (MethodProtocol) { |
3503 | return true; |
3504 | } |
3505 | |
3506 | // If the Method belongs to a class, check if it belongs to the class |
3507 | // hierarchy of the class bound. |
3508 | if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { |
3509 | // We allow methods declared within classes that are part of the hierarchy |
3510 | // of the class bound (superclass of, subclass of, or the same as the class |
3511 | // bound). |
3512 | return MethodInterface == BoundInterface || |
3513 | MethodInterface->isSuperClassOf(I: BoundInterface) || |
3514 | BoundInterface->isSuperClassOf(I: MethodInterface); |
3515 | } |
3516 | llvm_unreachable("unknown method context" ); |
3517 | } |
3518 | |
3519 | /// We first select the type of the method: Instance or Factory, then collect |
3520 | /// all methods with that type. |
3521 | bool Sema::CollectMultipleMethodsInGlobalPool( |
3522 | Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, |
3523 | bool InstanceFirst, bool CheckTheOther, |
3524 | const ObjCObjectType *TypeBound) { |
3525 | if (ExternalSource) |
3526 | ReadMethodPool(Sel); |
3527 | |
3528 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3529 | if (Pos == MethodPool.end()) |
3530 | return false; |
3531 | |
3532 | // Gather the non-hidden methods. |
3533 | ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : |
3534 | Pos->second.second; |
3535 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) |
3536 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
3537 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
3538 | Methods.push_back(Elt: M->getMethod()); |
3539 | } |
3540 | |
3541 | // Return if we find any method with the desired kind. |
3542 | if (!Methods.empty()) |
3543 | return Methods.size() > 1; |
3544 | |
3545 | if (!CheckTheOther) |
3546 | return false; |
3547 | |
3548 | // Gather the other kind. |
3549 | ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : |
3550 | Pos->second.first; |
3551 | for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) |
3552 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
3553 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
3554 | Methods.push_back(Elt: M->getMethod()); |
3555 | } |
3556 | |
3557 | return Methods.size() > 1; |
3558 | } |
3559 | |
3560 | bool Sema::AreMultipleMethodsInGlobalPool( |
3561 | Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, |
3562 | bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
3563 | // Diagnose finding more than one method in global pool. |
3564 | SmallVector<ObjCMethodDecl *, 4> FilteredMethods; |
3565 | FilteredMethods.push_back(Elt: BestMethod); |
3566 | |
3567 | for (auto *M : Methods) |
3568 | if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) |
3569 | FilteredMethods.push_back(Elt: M); |
3570 | |
3571 | if (FilteredMethods.size() > 1) |
3572 | DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R, |
3573 | receiverIdOrClass); |
3574 | |
3575 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3576 | // Test for no method in the pool which should not trigger any warning by |
3577 | // caller. |
3578 | if (Pos == MethodPool.end()) |
3579 | return true; |
3580 | ObjCMethodList &MethList = |
3581 | BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; |
3582 | return MethList.hasMoreThanOneDecl(); |
3583 | } |
3584 | |
3585 | ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, |
3586 | bool receiverIdOrClass, |
3587 | bool instance) { |
3588 | if (ExternalSource) |
3589 | ReadMethodPool(Sel); |
3590 | |
3591 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3592 | if (Pos == MethodPool.end()) |
3593 | return nullptr; |
3594 | |
3595 | // Gather the non-hidden methods. |
3596 | ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; |
3597 | SmallVector<ObjCMethodDecl *, 4> Methods; |
3598 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { |
3599 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) |
3600 | return M->getMethod(); |
3601 | } |
3602 | return nullptr; |
3603 | } |
3604 | |
3605 | void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, |
3606 | Selector Sel, SourceRange R, |
3607 | bool receiverIdOrClass) { |
3608 | // We found multiple methods, so we may have to complain. |
3609 | bool issueDiagnostic = false, issueError = false; |
3610 | |
3611 | // We support a warning which complains about *any* difference in |
3612 | // method signature. |
3613 | bool strictSelectorMatch = |
3614 | receiverIdOrClass && |
3615 | !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); |
3616 | if (strictSelectorMatch) { |
3617 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3618 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) { |
3619 | issueDiagnostic = true; |
3620 | break; |
3621 | } |
3622 | } |
3623 | } |
3624 | |
3625 | // If we didn't see any strict differences, we won't see any loose |
3626 | // differences. In ARC, however, we also need to check for loose |
3627 | // mismatches, because most of them are errors. |
3628 | if (!strictSelectorMatch || |
3629 | (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) |
3630 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3631 | // This checks if the methods differ in type mismatch. |
3632 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) && |
3633 | !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) { |
3634 | issueDiagnostic = true; |
3635 | if (getLangOpts().ObjCAutoRefCount) |
3636 | issueError = true; |
3637 | break; |
3638 | } |
3639 | } |
3640 | |
3641 | if (issueDiagnostic) { |
3642 | if (issueError) |
3643 | Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; |
3644 | else if (strictSelectorMatch) |
3645 | Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; |
3646 | else |
3647 | Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; |
3648 | |
3649 | Diag(Methods[0]->getBeginLoc(), |
3650 | issueError ? diag::note_possibility : diag::note_using) |
3651 | << Methods[0]->getSourceRange(); |
3652 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3653 | Diag(Methods[I]->getBeginLoc(), diag::note_also_found) |
3654 | << Methods[I]->getSourceRange(); |
3655 | } |
3656 | } |
3657 | } |
3658 | |
3659 | ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { |
3660 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3661 | if (Pos == MethodPool.end()) |
3662 | return nullptr; |
3663 | |
3664 | GlobalMethodPool::Lists &Methods = Pos->second; |
3665 | for (const ObjCMethodList *Method = &Methods.first; Method; |
3666 | Method = Method->getNext()) |
3667 | if (Method->getMethod() && |
3668 | (Method->getMethod()->isDefined() || |
3669 | Method->getMethod()->isPropertyAccessor())) |
3670 | return Method->getMethod(); |
3671 | |
3672 | for (const ObjCMethodList *Method = &Methods.second; Method; |
3673 | Method = Method->getNext()) |
3674 | if (Method->getMethod() && |
3675 | (Method->getMethod()->isDefined() || |
3676 | Method->getMethod()->isPropertyAccessor())) |
3677 | return Method->getMethod(); |
3678 | return nullptr; |
3679 | } |
3680 | |
3681 | static void |
3682 | HelperSelectorsForTypoCorrection( |
3683 | SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, |
3684 | StringRef Typo, const ObjCMethodDecl * Method) { |
3685 | const unsigned MaxEditDistance = 1; |
3686 | unsigned BestEditDistance = MaxEditDistance + 1; |
3687 | std::string MethodName = Method->getSelector().getAsString(); |
3688 | |
3689 | unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size()); |
3690 | if (MinPossibleEditDistance > 0 && |
3691 | Typo.size() / MinPossibleEditDistance < 1) |
3692 | return; |
3693 | unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance); |
3694 | if (EditDistance > MaxEditDistance) |
3695 | return; |
3696 | if (EditDistance == BestEditDistance) |
3697 | BestMethod.push_back(Elt: Method); |
3698 | else if (EditDistance < BestEditDistance) { |
3699 | BestMethod.clear(); |
3700 | BestMethod.push_back(Elt: Method); |
3701 | } |
3702 | } |
3703 | |
3704 | static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, |
3705 | QualType ObjectType) { |
3706 | if (ObjectType.isNull()) |
3707 | return true; |
3708 | if (S.LookupMethodInObjectType(Sel, Ty: ObjectType, IsInstance: true/*Instance method*/)) |
3709 | return true; |
3710 | return S.LookupMethodInObjectType(Sel, Ty: ObjectType, IsInstance: false/*Class method*/) != |
3711 | nullptr; |
3712 | } |
3713 | |
3714 | const ObjCMethodDecl * |
3715 | Sema::SelectorsForTypoCorrection(Selector Sel, |
3716 | QualType ObjectType) { |
3717 | unsigned NumArgs = Sel.getNumArgs(); |
3718 | SmallVector<const ObjCMethodDecl *, 8> Methods; |
3719 | bool ObjectIsId = true, ObjectIsClass = true; |
3720 | if (ObjectType.isNull()) |
3721 | ObjectIsId = ObjectIsClass = false; |
3722 | else if (!ObjectType->isObjCObjectPointerType()) |
3723 | return nullptr; |
3724 | else if (const ObjCObjectPointerType *ObjCPtr = |
3725 | ObjectType->getAsObjCInterfacePointerType()) { |
3726 | ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); |
3727 | ObjectIsId = ObjectIsClass = false; |
3728 | } |
3729 | else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) |
3730 | ObjectIsClass = false; |
3731 | else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) |
3732 | ObjectIsId = false; |
3733 | else |
3734 | return nullptr; |
3735 | |
3736 | for (GlobalMethodPool::iterator b = MethodPool.begin(), |
3737 | e = MethodPool.end(); b != e; b++) { |
3738 | // instance methods |
3739 | for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) |
3740 | if (M->getMethod() && |
3741 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
3742 | (M->getMethod()->getSelector() != Sel)) { |
3743 | if (ObjectIsId) |
3744 | Methods.push_back(Elt: M->getMethod()); |
3745 | else if (!ObjectIsClass && |
3746 | HelperIsMethodInObjCType(S&: *this, Sel: M->getMethod()->getSelector(), |
3747 | ObjectType)) |
3748 | Methods.push_back(Elt: M->getMethod()); |
3749 | } |
3750 | // class methods |
3751 | for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) |
3752 | if (M->getMethod() && |
3753 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
3754 | (M->getMethod()->getSelector() != Sel)) { |
3755 | if (ObjectIsClass) |
3756 | Methods.push_back(Elt: M->getMethod()); |
3757 | else if (!ObjectIsId && |
3758 | HelperIsMethodInObjCType(S&: *this, Sel: M->getMethod()->getSelector(), |
3759 | ObjectType)) |
3760 | Methods.push_back(Elt: M->getMethod()); |
3761 | } |
3762 | } |
3763 | |
3764 | SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; |
3765 | for (unsigned i = 0, e = Methods.size(); i < e; i++) { |
3766 | HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods, |
3767 | Typo: Sel.getAsString(), Method: Methods[i]); |
3768 | } |
3769 | return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; |
3770 | } |
3771 | |
3772 | /// DiagnoseDuplicateIvars - |
3773 | /// Check for duplicate ivars in the entire class at the start of |
3774 | /// \@implementation. This becomes necessary because class extension can |
3775 | /// add ivars to a class in random order which will not be known until |
3776 | /// class's \@implementation is seen. |
3777 | void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, |
3778 | ObjCInterfaceDecl *SID) { |
3779 | for (auto *Ivar : ID->ivars()) { |
3780 | if (Ivar->isInvalidDecl()) |
3781 | continue; |
3782 | if (IdentifierInfo *II = Ivar->getIdentifier()) { |
3783 | ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II); |
3784 | if (prevIvar) { |
3785 | Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; |
3786 | Diag(prevIvar->getLocation(), diag::note_previous_declaration); |
3787 | Ivar->setInvalidDecl(); |
3788 | } |
3789 | } |
3790 | } |
3791 | } |
3792 | |
3793 | /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. |
3794 | static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { |
3795 | if (S.getLangOpts().ObjCWeak) return; |
3796 | |
3797 | for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); |
3798 | ivar; ivar = ivar->getNextIvar()) { |
3799 | if (ivar->isInvalidDecl()) continue; |
3800 | if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
3801 | if (S.getLangOpts().ObjCWeakRuntime) { |
3802 | S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); |
3803 | } else { |
3804 | S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); |
3805 | } |
3806 | } |
3807 | } |
3808 | } |
3809 | |
3810 | /// Diagnose attempts to use flexible array member with retainable object type. |
3811 | static void DiagnoseRetainableFlexibleArrayMember(Sema &S, |
3812 | ObjCInterfaceDecl *ID) { |
3813 | if (!S.getLangOpts().ObjCAutoRefCount) |
3814 | return; |
3815 | |
3816 | for (auto ivar = ID->all_declared_ivar_begin(); ivar; |
3817 | ivar = ivar->getNextIvar()) { |
3818 | if (ivar->isInvalidDecl()) |
3819 | continue; |
3820 | QualType IvarTy = ivar->getType(); |
3821 | if (IvarTy->isIncompleteArrayType() && |
3822 | (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && |
3823 | IvarTy->isObjCLifetimeType()) { |
3824 | S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); |
3825 | ivar->setInvalidDecl(); |
3826 | } |
3827 | } |
3828 | } |
3829 | |
3830 | Sema::ObjCContainerKind Sema::getObjCContainerKind() const { |
3831 | switch (CurContext->getDeclKind()) { |
3832 | case Decl::ObjCInterface: |
3833 | return Sema::OCK_Interface; |
3834 | case Decl::ObjCProtocol: |
3835 | return Sema::OCK_Protocol; |
3836 | case Decl::ObjCCategory: |
3837 | if (cast<ObjCCategoryDecl>(Val: CurContext)->IsClassExtension()) |
3838 | return Sema::OCK_ClassExtension; |
3839 | return Sema::OCK_Category; |
3840 | case Decl::ObjCImplementation: |
3841 | return Sema::OCK_Implementation; |
3842 | case Decl::ObjCCategoryImpl: |
3843 | return Sema::OCK_CategoryImplementation; |
3844 | |
3845 | default: |
3846 | return Sema::OCK_None; |
3847 | } |
3848 | } |
3849 | |
3850 | static bool IsVariableSizedType(QualType T) { |
3851 | if (T->isIncompleteArrayType()) |
3852 | return true; |
3853 | const auto *RecordTy = T->getAs<RecordType>(); |
3854 | return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); |
3855 | } |
3856 | |
3857 | static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { |
3858 | ObjCInterfaceDecl *IntfDecl = nullptr; |
3859 | ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( |
3860 | x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator()); |
3861 | if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) { |
3862 | Ivars = IntfDecl->ivars(); |
3863 | } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) { |
3864 | IntfDecl = ImplDecl->getClassInterface(); |
3865 | Ivars = ImplDecl->ivars(); |
3866 | } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) { |
3867 | if (CategoryDecl->IsClassExtension()) { |
3868 | IntfDecl = CategoryDecl->getClassInterface(); |
3869 | Ivars = CategoryDecl->ivars(); |
3870 | } |
3871 | } |
3872 | |
3873 | // Check if variable sized ivar is in interface and visible to subclasses. |
3874 | if (!isa<ObjCInterfaceDecl>(Val: OCD)) { |
3875 | for (auto *ivar : Ivars) { |
3876 | if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { |
3877 | S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) |
3878 | << ivar->getDeclName() << ivar->getType(); |
3879 | } |
3880 | } |
3881 | } |
3882 | |
3883 | // Subsequent checks require interface decl. |
3884 | if (!IntfDecl) |
3885 | return; |
3886 | |
3887 | // Check if variable sized ivar is followed by another ivar. |
3888 | for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; |
3889 | ivar = ivar->getNextIvar()) { |
3890 | if (ivar->isInvalidDecl() || !ivar->getNextIvar()) |
3891 | continue; |
3892 | QualType IvarTy = ivar->getType(); |
3893 | bool IsInvalidIvar = false; |
3894 | if (IvarTy->isIncompleteArrayType()) { |
3895 | S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) |
3896 | << ivar->getDeclName() << IvarTy |
3897 | << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C. |
3898 | IsInvalidIvar = true; |
3899 | } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { |
3900 | if (RecordTy->getDecl()->hasFlexibleArrayMember()) { |
3901 | S.Diag(ivar->getLocation(), |
3902 | diag::err_objc_variable_sized_type_not_at_end) |
3903 | << ivar->getDeclName() << IvarTy; |
3904 | IsInvalidIvar = true; |
3905 | } |
3906 | } |
3907 | if (IsInvalidIvar) { |
3908 | S.Diag(ivar->getNextIvar()->getLocation(), |
3909 | diag::note_next_ivar_declaration) |
3910 | << ivar->getNextIvar()->getSynthesize(); |
3911 | ivar->setInvalidDecl(); |
3912 | } |
3913 | } |
3914 | |
3915 | // Check if ObjC container adds ivars after variable sized ivar in superclass. |
3916 | // Perform the check only if OCD is the first container to declare ivars to |
3917 | // avoid multiple warnings for the same ivar. |
3918 | ObjCIvarDecl *FirstIvar = |
3919 | (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); |
3920 | if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { |
3921 | const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); |
3922 | while (SuperClass && SuperClass->ivar_empty()) |
3923 | SuperClass = SuperClass->getSuperClass(); |
3924 | if (SuperClass) { |
3925 | auto IvarIter = SuperClass->ivar_begin(); |
3926 | std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1); |
3927 | const ObjCIvarDecl *LastIvar = *IvarIter; |
3928 | if (IsVariableSizedType(LastIvar->getType())) { |
3929 | S.Diag(FirstIvar->getLocation(), |
3930 | diag::warn_superclass_variable_sized_type_not_at_end) |
3931 | << FirstIvar->getDeclName() << LastIvar->getDeclName() |
3932 | << LastIvar->getType() << SuperClass->getDeclName(); |
3933 | S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) |
3934 | << LastIvar->getDeclName(); |
3935 | } |
3936 | } |
3937 | } |
3938 | } |
3939 | |
3940 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3941 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); |
3942 | |
3943 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3944 | Sema &S, ObjCCategoryDecl *CDecl, |
3945 | const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { |
3946 | for (auto *PI : Protocols) |
3947 | DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl); |
3948 | } |
3949 | |
3950 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3951 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { |
3952 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
3953 | PDecl = PDecl->getDefinition(); |
3954 | |
3955 | llvm::SmallVector<const Decl *, 4> DirectMembers; |
3956 | const auto *IDecl = CDecl->getClassInterface(); |
3957 | for (auto *MD : PDecl->methods()) { |
3958 | if (!MD->isPropertyAccessor()) { |
3959 | if (const auto *CMD = |
3960 | IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) { |
3961 | if (CMD->isDirectMethod()) |
3962 | DirectMembers.push_back(CMD); |
3963 | } |
3964 | } |
3965 | } |
3966 | for (auto *PD : PDecl->properties()) { |
3967 | if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( |
3968 | PD->getIdentifier(), |
3969 | PD->isClassProperty() |
3970 | ? ObjCPropertyQueryKind::OBJC_PR_query_class |
3971 | : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
3972 | if (CPD->isDirectProperty()) |
3973 | DirectMembers.push_back(CPD); |
3974 | } |
3975 | } |
3976 | if (!DirectMembers.empty()) { |
3977 | S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance) |
3978 | << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; |
3979 | for (const auto *MD : DirectMembers) |
3980 | S.Diag(MD->getLocation(), diag::note_direct_member_here); |
3981 | return; |
3982 | } |
3983 | |
3984 | // Check on this protocols's referenced protocols, recursively. |
3985 | DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, |
3986 | Protocols: PDecl->protocols()); |
3987 | } |
3988 | |
3989 | // Note: For class/category implementations, allMethods is always null. |
3990 | Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, |
3991 | ArrayRef<DeclGroupPtrTy> allTUVars) { |
3992 | if (getObjCContainerKind() == Sema::OCK_None) |
3993 | return nullptr; |
3994 | |
3995 | assert(AtEnd.isValid() && "Invalid location for '@end'" ); |
3996 | |
3997 | auto *OCD = cast<ObjCContainerDecl>(Val: CurContext); |
3998 | Decl *ClassDecl = OCD; |
3999 | |
4000 | bool isInterfaceDeclKind = |
4001 | isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl) |
4002 | || isa<ObjCProtocolDecl>(Val: ClassDecl); |
4003 | bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl); |
4004 | |
4005 | // Make synthesized accessor stub functions visible. |
4006 | // ActOnPropertyImplDecl() creates them as not visible in case |
4007 | // they are overridden by an explicit method that is encountered |
4008 | // later. |
4009 | if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: CurContext)) { |
4010 | for (auto *PropImpl : OID->property_impls()) { |
4011 | if (auto *Getter = PropImpl->getGetterMethodDecl()) |
4012 | if (Getter->isSynthesizedAccessorStub()) |
4013 | OID->addDecl(Getter); |
4014 | if (auto *Setter = PropImpl->getSetterMethodDecl()) |
4015 | if (Setter->isSynthesizedAccessorStub()) |
4016 | OID->addDecl(Setter); |
4017 | } |
4018 | } |
4019 | |
4020 | // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. |
4021 | llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; |
4022 | llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; |
4023 | |
4024 | for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { |
4025 | ObjCMethodDecl *Method = |
4026 | cast_or_null<ObjCMethodDecl>(Val: allMethods[i]); |
4027 | |
4028 | if (!Method) continue; // Already issued a diagnostic. |
4029 | if (Method->isInstanceMethod()) { |
4030 | /// Check for instance method of the same name with incompatible types |
4031 | const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; |
4032 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
4033 | : false; |
4034 | if ((isInterfaceDeclKind && PrevMethod && !match) |
4035 | || (checkIdenticalMethods && match)) { |
4036 | Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
4037 | << Method->getDeclName(); |
4038 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4039 | Method->setInvalidDecl(); |
4040 | } else { |
4041 | if (PrevMethod) { |
4042 | Method->setAsRedeclaration(PrevMethod); |
4043 | if (!Context.getSourceManager().isInSystemHeader( |
4044 | Method->getLocation())) |
4045 | Diag(Method->getLocation(), diag::warn_duplicate_method_decl) |
4046 | << Method->getDeclName(); |
4047 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4048 | } |
4049 | InsMap[Method->getSelector()] = Method; |
4050 | /// The following allows us to typecheck messages to "id". |
4051 | AddInstanceMethodToGlobalPool(Method); |
4052 | } |
4053 | } else { |
4054 | /// Check for class method of the same name with incompatible types |
4055 | const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; |
4056 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
4057 | : false; |
4058 | if ((isInterfaceDeclKind && PrevMethod && !match) |
4059 | || (checkIdenticalMethods && match)) { |
4060 | Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
4061 | << Method->getDeclName(); |
4062 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4063 | Method->setInvalidDecl(); |
4064 | } else { |
4065 | if (PrevMethod) { |
4066 | Method->setAsRedeclaration(PrevMethod); |
4067 | if (!Context.getSourceManager().isInSystemHeader( |
4068 | Method->getLocation())) |
4069 | Diag(Method->getLocation(), diag::warn_duplicate_method_decl) |
4070 | << Method->getDeclName(); |
4071 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4072 | } |
4073 | ClsMap[Method->getSelector()] = Method; |
4074 | AddFactoryMethodToGlobalPool(Method); |
4075 | } |
4076 | } |
4077 | } |
4078 | if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) { |
4079 | // Nothing to do here. |
4080 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) { |
4081 | // Categories are used to extend the class by declaring new methods. |
4082 | // By the same token, they are also used to add new properties. No |
4083 | // need to compare the added property to those in the class. |
4084 | |
4085 | if (C->IsClassExtension()) { |
4086 | ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); |
4087 | DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary); |
4088 | } |
4089 | |
4090 | DiagnoseCategoryDirectMembersProtocolConformance(S&: *this, CDecl: C, Protocols: C->protocols()); |
4091 | } |
4092 | if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) { |
4093 | if (CDecl->getIdentifier()) |
4094 | // ProcessPropertyDecl is responsible for diagnosing conflicts with any |
4095 | // user-defined setter/getter. It also synthesizes setter/getter methods |
4096 | // and adds them to the DeclContext and global method pools. |
4097 | for (auto *I : CDecl->properties()) |
4098 | ProcessPropertyDecl(I); |
4099 | CDecl->setAtEndRange(AtEnd); |
4100 | } |
4101 | if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) { |
4102 | IC->setAtEndRange(AtEnd); |
4103 | if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { |
4104 | // Any property declared in a class extension might have user |
4105 | // declared setter or getter in current class extension or one |
4106 | // of the other class extensions. Mark them as synthesized as |
4107 | // property will be synthesized when property with same name is |
4108 | // seen in the @implementation. |
4109 | for (const auto *Ext : IDecl->visible_extensions()) { |
4110 | for (const auto *Property : Ext->instance_properties()) { |
4111 | // Skip over properties declared @dynamic |
4112 | if (const ObjCPropertyImplDecl *PIDecl |
4113 | = IC->FindPropertyImplDecl(Property->getIdentifier(), |
4114 | Property->getQueryKind())) |
4115 | if (PIDecl->getPropertyImplementation() |
4116 | == ObjCPropertyImplDecl::Dynamic) |
4117 | continue; |
4118 | |
4119 | for (const auto *Ext : IDecl->visible_extensions()) { |
4120 | if (ObjCMethodDecl *GetterMethod = |
4121 | Ext->getInstanceMethod(Property->getGetterName())) |
4122 | GetterMethod->setPropertyAccessor(true); |
4123 | if (!Property->isReadOnly()) |
4124 | if (ObjCMethodDecl *SetterMethod |
4125 | = Ext->getInstanceMethod(Property->getSetterName())) |
4126 | SetterMethod->setPropertyAccessor(true); |
4127 | } |
4128 | } |
4129 | } |
4130 | ImplMethodsVsClassMethods(S, IC, IDecl); |
4131 | AtomicPropertySetterGetterRules(IC, IDecl); |
4132 | DiagnoseOwningPropertyGetterSynthesis(D: IC); |
4133 | DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC); |
4134 | if (IDecl->hasDesignatedInitializers()) |
4135 | DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl); |
4136 | DiagnoseWeakIvars(S&: *this, ID: IC); |
4137 | DiagnoseRetainableFlexibleArrayMember(S&: *this, ID: IDecl); |
4138 | |
4139 | bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); |
4140 | if (IDecl->getSuperClass() == nullptr) { |
4141 | // This class has no superclass, so check that it has been marked with |
4142 | // __attribute((objc_root_class)). |
4143 | if (!HasRootClassAttr) { |
4144 | SourceLocation DeclLoc(IDecl->getLocation()); |
4145 | SourceLocation SuperClassLoc(getLocForEndOfToken(Loc: DeclLoc)); |
4146 | Diag(DeclLoc, diag::warn_objc_root_class_missing) |
4147 | << IDecl->getIdentifier(); |
4148 | // See if NSObject is in the current scope, and if it is, suggest |
4149 | // adding " : NSObject " to the class declaration. |
4150 | NamedDecl *IF = LookupSingleName(S: TUScope, |
4151 | Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject), |
4152 | Loc: DeclLoc, NameKind: LookupOrdinaryName); |
4153 | ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF); |
4154 | if (NSObjectDecl && NSObjectDecl->getDefinition()) { |
4155 | Diag(SuperClassLoc, diag::note_objc_needs_superclass) |
4156 | << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject " ); |
4157 | } else { |
4158 | Diag(SuperClassLoc, diag::note_objc_needs_superclass); |
4159 | } |
4160 | } |
4161 | } else if (HasRootClassAttr) { |
4162 | // Complain that only root classes may have this attribute. |
4163 | Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); |
4164 | } |
4165 | |
4166 | if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { |
4167 | // An interface can subclass another interface with a |
4168 | // objc_subclassing_restricted attribute when it has that attribute as |
4169 | // well (because of interfaces imported from Swift). Therefore we have |
4170 | // to check if we can subclass in the implementation as well. |
4171 | if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
4172 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
4173 | Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); |
4174 | Diag(Super->getLocation(), diag::note_class_declared); |
4175 | } |
4176 | } |
4177 | |
4178 | if (IDecl->hasAttr<ObjCClassStubAttr>()) |
4179 | Diag(IC->getLocation(), diag::err_implementation_of_class_stub); |
4180 | |
4181 | if (LangOpts.ObjCRuntime.isNonFragile()) { |
4182 | while (IDecl->getSuperClass()) { |
4183 | DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass()); |
4184 | IDecl = IDecl->getSuperClass(); |
4185 | } |
4186 | } |
4187 | } |
4188 | SetIvarInitializers(IC); |
4189 | } else if (ObjCCategoryImplDecl* CatImplClass = |
4190 | dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) { |
4191 | CatImplClass->setAtEndRange(AtEnd); |
4192 | |
4193 | // Find category interface decl and then check that all methods declared |
4194 | // in this interface are implemented in the category @implementation. |
4195 | if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { |
4196 | if (ObjCCategoryDecl *Cat |
4197 | = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) { |
4198 | ImplMethodsVsClassMethods(S, CatImplClass, Cat); |
4199 | } |
4200 | } |
4201 | } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { |
4202 | if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { |
4203 | if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
4204 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
4205 | Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); |
4206 | Diag(Super->getLocation(), diag::note_class_declared); |
4207 | } |
4208 | } |
4209 | |
4210 | if (IntfDecl->hasAttr<ObjCClassStubAttr>() && |
4211 | !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) |
4212 | Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); |
4213 | } |
4214 | DiagnoseVariableSizedIvars(S&: *this, OCD); |
4215 | if (isInterfaceDeclKind) { |
4216 | // Reject invalid vardecls. |
4217 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
4218 | DeclGroupRef DG = allTUVars[i].get(); |
4219 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
4220 | if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) { |
4221 | if (!VDecl->hasExternalStorage()) |
4222 | Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); |
4223 | } |
4224 | } |
4225 | } |
4226 | ActOnObjCContainerFinishDefinition(); |
4227 | |
4228 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
4229 | DeclGroupRef DG = allTUVars[i].get(); |
4230 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
4231 | (*I)->setTopLevelDeclInObjCContainer(); |
4232 | Consumer.HandleTopLevelDeclInObjCContainer(D: DG); |
4233 | } |
4234 | |
4235 | ActOnDocumentableDecl(D: ClassDecl); |
4236 | return ClassDecl; |
4237 | } |
4238 | |
4239 | /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for |
4240 | /// objective-c's type qualifier from the parser version of the same info. |
4241 | static Decl::ObjCDeclQualifier |
4242 | CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { |
4243 | return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; |
4244 | } |
4245 | |
4246 | /// Check whether the declared result type of the given Objective-C |
4247 | /// method declaration is compatible with the method's class. |
4248 | /// |
4249 | static Sema::ResultTypeCompatibilityKind |
4250 | CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, |
4251 | ObjCInterfaceDecl *CurrentClass) { |
4252 | QualType ResultType = Method->getReturnType(); |
4253 | |
4254 | // If an Objective-C method inherits its related result type, then its |
4255 | // declared result type must be compatible with its own class type. The |
4256 | // declared result type is compatible if: |
4257 | if (const ObjCObjectPointerType *ResultObjectType |
4258 | = ResultType->getAs<ObjCObjectPointerType>()) { |
4259 | // - it is id or qualified id, or |
4260 | if (ResultObjectType->isObjCIdType() || |
4261 | ResultObjectType->isObjCQualifiedIdType()) |
4262 | return Sema::RTC_Compatible; |
4263 | |
4264 | if (CurrentClass) { |
4265 | if (ObjCInterfaceDecl *ResultClass |
4266 | = ResultObjectType->getInterfaceDecl()) { |
4267 | // - it is the same as the method's class type, or |
4268 | if (declaresSameEntity(CurrentClass, ResultClass)) |
4269 | return Sema::RTC_Compatible; |
4270 | |
4271 | // - it is a superclass of the method's class type |
4272 | if (ResultClass->isSuperClassOf(I: CurrentClass)) |
4273 | return Sema::RTC_Compatible; |
4274 | } |
4275 | } else { |
4276 | // Any Objective-C pointer type might be acceptable for a protocol |
4277 | // method; we just don't know. |
4278 | return Sema::RTC_Unknown; |
4279 | } |
4280 | } |
4281 | |
4282 | return Sema::RTC_Incompatible; |
4283 | } |
4284 | |
4285 | namespace { |
4286 | /// A helper class for searching for methods which a particular method |
4287 | /// overrides. |
4288 | class OverrideSearch { |
4289 | public: |
4290 | const ObjCMethodDecl *Method; |
4291 | llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; |
4292 | bool Recursive; |
4293 | |
4294 | public: |
4295 | OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { |
4296 | Selector selector = method->getSelector(); |
4297 | |
4298 | // Bypass this search if we've never seen an instance/class method |
4299 | // with this selector before. |
4300 | Sema::GlobalMethodPool::iterator it = S.MethodPool.find(Sel: selector); |
4301 | if (it == S.MethodPool.end()) { |
4302 | if (!S.getExternalSource()) return; |
4303 | S.ReadMethodPool(Sel: selector); |
4304 | |
4305 | it = S.MethodPool.find(Sel: selector); |
4306 | if (it == S.MethodPool.end()) |
4307 | return; |
4308 | } |
4309 | const ObjCMethodList &list = |
4310 | method->isInstanceMethod() ? it->second.first : it->second.second; |
4311 | if (!list.getMethod()) return; |
4312 | |
4313 | const ObjCContainerDecl *container |
4314 | = cast<ObjCContainerDecl>(method->getDeclContext()); |
4315 | |
4316 | // Prevent the search from reaching this container again. This is |
4317 | // important with categories, which override methods from the |
4318 | // interface and each other. |
4319 | if (const ObjCCategoryDecl *Category = |
4320 | dyn_cast<ObjCCategoryDecl>(container)) { |
4321 | searchFromContainer(container); |
4322 | if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) |
4323 | searchFromContainer(Interface); |
4324 | } else { |
4325 | searchFromContainer(container); |
4326 | } |
4327 | } |
4328 | |
4329 | typedef decltype(Overridden)::iterator iterator; |
4330 | iterator begin() const { return Overridden.begin(); } |
4331 | iterator end() const { return Overridden.end(); } |
4332 | |
4333 | private: |
4334 | void searchFromContainer(const ObjCContainerDecl *container) { |
4335 | if (container->isInvalidDecl()) return; |
4336 | |
4337 | switch (container->getDeclKind()) { |
4338 | #define OBJCCONTAINER(type, base) \ |
4339 | case Decl::type: \ |
4340 | searchFrom(cast<type##Decl>(container)); \ |
4341 | break; |
4342 | #define ABSTRACT_DECL(expansion) |
4343 | #define DECL(type, base) \ |
4344 | case Decl::type: |
4345 | #include "clang/AST/DeclNodes.inc" |
4346 | llvm_unreachable("not an ObjC container!" ); |
4347 | } |
4348 | } |
4349 | |
4350 | void searchFrom(const ObjCProtocolDecl *protocol) { |
4351 | if (!protocol->hasDefinition()) |
4352 | return; |
4353 | |
4354 | // A method in a protocol declaration overrides declarations from |
4355 | // referenced ("parent") protocols. |
4356 | search(protocols: protocol->getReferencedProtocols()); |
4357 | } |
4358 | |
4359 | void searchFrom(const ObjCCategoryDecl *category) { |
4360 | // A method in a category declaration overrides declarations from |
4361 | // the main class and from protocols the category references. |
4362 | // The main class is handled in the constructor. |
4363 | search(protocols: category->getReferencedProtocols()); |
4364 | } |
4365 | |
4366 | void searchFrom(const ObjCCategoryImplDecl *impl) { |
4367 | // A method in a category definition that has a category |
4368 | // declaration overrides declarations from the category |
4369 | // declaration. |
4370 | if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { |
4371 | search(category); |
4372 | if (ObjCInterfaceDecl *Interface = category->getClassInterface()) |
4373 | search(Interface); |
4374 | |
4375 | // Otherwise it overrides declarations from the class. |
4376 | } else if (const auto *Interface = impl->getClassInterface()) { |
4377 | search(Interface); |
4378 | } |
4379 | } |
4380 | |
4381 | void searchFrom(const ObjCInterfaceDecl *iface) { |
4382 | // A method in a class declaration overrides declarations from |
4383 | if (!iface->hasDefinition()) |
4384 | return; |
4385 | |
4386 | // - categories, |
4387 | for (auto *Cat : iface->known_categories()) |
4388 | search(Cat); |
4389 | |
4390 | // - the super class, and |
4391 | if (ObjCInterfaceDecl *super = iface->getSuperClass()) |
4392 | search(super); |
4393 | |
4394 | // - any referenced protocols. |
4395 | search(protocols: iface->getReferencedProtocols()); |
4396 | } |
4397 | |
4398 | void searchFrom(const ObjCImplementationDecl *impl) { |
4399 | // A method in a class implementation overrides declarations from |
4400 | // the class interface. |
4401 | if (const auto *Interface = impl->getClassInterface()) |
4402 | search(Interface); |
4403 | } |
4404 | |
4405 | void search(const ObjCProtocolList &protocols) { |
4406 | for (const auto *Proto : protocols) |
4407 | search(Proto); |
4408 | } |
4409 | |
4410 | void search(const ObjCContainerDecl *container) { |
4411 | // Check for a method in this container which matches this selector. |
4412 | ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(), |
4413 | isInstance: Method->isInstanceMethod(), |
4414 | /*AllowHidden=*/true); |
4415 | |
4416 | // If we find one, record it and bail out. |
4417 | if (meth) { |
4418 | Overridden.insert(X: meth); |
4419 | return; |
4420 | } |
4421 | |
4422 | // Otherwise, search for methods that a hypothetical method here |
4423 | // would have overridden. |
4424 | |
4425 | // Note that we're now in a recursive case. |
4426 | Recursive = true; |
4427 | |
4428 | searchFromContainer(container); |
4429 | } |
4430 | }; |
4431 | } // end anonymous namespace |
4432 | |
4433 | void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, |
4434 | ObjCMethodDecl *overridden) { |
4435 | if (overridden->isDirectMethod()) { |
4436 | const auto *attr = overridden->getAttr<ObjCDirectAttr>(); |
4437 | Diag(method->getLocation(), diag::err_objc_override_direct_method); |
4438 | Diag(attr->getLocation(), diag::note_previous_declaration); |
4439 | } else if (method->isDirectMethod()) { |
4440 | const auto *attr = method->getAttr<ObjCDirectAttr>(); |
4441 | Diag(attr->getLocation(), diag::err_objc_direct_on_override) |
4442 | << isa<ObjCProtocolDecl>(overridden->getDeclContext()); |
4443 | Diag(overridden->getLocation(), diag::note_previous_declaration); |
4444 | } |
4445 | } |
4446 | |
4447 | void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, |
4448 | ObjCInterfaceDecl *CurrentClass, |
4449 | ResultTypeCompatibilityKind RTC) { |
4450 | if (!ObjCMethod) |
4451 | return; |
4452 | auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) { |
4453 | // Checking canonical decl works across modules. |
4454 | return M->getClassInterface()->getCanonicalDecl() == |
4455 | CurrentClass->getCanonicalDecl(); |
4456 | }; |
4457 | // Search for overridden methods and merge information down from them. |
4458 | OverrideSearch overrides(*this, ObjCMethod); |
4459 | // Keep track if the method overrides any method in the class's base classes, |
4460 | // its protocols, or its categories' protocols; we will keep that info |
4461 | // in the ObjCMethodDecl. |
4462 | // For this info, a method in an implementation is not considered as |
4463 | // overriding the same method in the interface or its categories. |
4464 | bool hasOverriddenMethodsInBaseOrProtocol = false; |
4465 | for (ObjCMethodDecl *overridden : overrides) { |
4466 | if (!hasOverriddenMethodsInBaseOrProtocol) { |
4467 | if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || |
4468 | !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) { |
4469 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden); |
4470 | hasOverriddenMethodsInBaseOrProtocol = true; |
4471 | } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { |
4472 | // OverrideSearch will return as "overridden" the same method in the |
4473 | // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to |
4474 | // check whether a category of a base class introduced a method with the |
4475 | // same selector, after the interface method declaration. |
4476 | // To avoid unnecessary lookups in the majority of cases, we use the |
4477 | // extra info bits in GlobalMethodPool to check whether there were any |
4478 | // category methods with this selector. |
4479 | GlobalMethodPool::iterator It = |
4480 | MethodPool.find(Sel: ObjCMethod->getSelector()); |
4481 | if (It != MethodPool.end()) { |
4482 | ObjCMethodList &List = |
4483 | ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; |
4484 | unsigned CategCount = List.getBits(); |
4485 | if (CategCount > 0) { |
4486 | // If the method is in a category we'll do lookup if there were at |
4487 | // least 2 category methods recorded, otherwise only one will do. |
4488 | if (CategCount > 1 || |
4489 | !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { |
4490 | OverrideSearch overrides(*this, overridden); |
4491 | for (ObjCMethodDecl *SuperOverridden : overrides) { |
4492 | if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || |
4493 | !IsMethodInCurrentClass(SuperOverridden)) { |
4494 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden); |
4495 | hasOverriddenMethodsInBaseOrProtocol = true; |
4496 | overridden->setOverriding(true); |
4497 | break; |
4498 | } |
4499 | } |
4500 | } |
4501 | } |
4502 | } |
4503 | } |
4504 | } |
4505 | |
4506 | // Propagate down the 'related result type' bit from overridden methods. |
4507 | if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) |
4508 | ObjCMethod->setRelatedResultType(); |
4509 | |
4510 | // Then merge the declarations. |
4511 | mergeObjCMethodDecls(New: ObjCMethod, Old: overridden); |
4512 | |
4513 | if (ObjCMethod->isImplicit() && overridden->isImplicit()) |
4514 | continue; // Conflicting properties are detected elsewhere. |
4515 | |
4516 | // Check for overriding methods |
4517 | if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || |
4518 | isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) |
4519 | CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden, |
4520 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(overridden->getDeclContext())); |
4521 | |
4522 | if (CurrentClass && overridden->getDeclContext() != CurrentClass && |
4523 | isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && |
4524 | !overridden->isImplicit() /* not meant for properties */) { |
4525 | ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), |
4526 | E = ObjCMethod->param_end(); |
4527 | ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), |
4528 | PrevE = overridden->param_end(); |
4529 | for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { |
4530 | assert(PrevI != overridden->param_end() && "Param mismatch" ); |
4531 | QualType T1 = Context.getCanonicalType((*ParamI)->getType()); |
4532 | QualType T2 = Context.getCanonicalType((*PrevI)->getType()); |
4533 | // If type of argument of method in this class does not match its |
4534 | // respective argument type in the super class method, issue warning; |
4535 | if (!Context.typesAreCompatible(T1, T2)) { |
4536 | Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) |
4537 | << T1 << T2; |
4538 | Diag(overridden->getLocation(), diag::note_previous_declaration); |
4539 | break; |
4540 | } |
4541 | } |
4542 | } |
4543 | } |
4544 | |
4545 | ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); |
4546 | } |
4547 | |
4548 | /// Merge type nullability from for a redeclaration of the same entity, |
4549 | /// producing the updated type of the redeclared entity. |
4550 | static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, |
4551 | QualType type, |
4552 | bool usesCSKeyword, |
4553 | SourceLocation prevLoc, |
4554 | QualType prevType, |
4555 | bool prevUsesCSKeyword) { |
4556 | // Determine the nullability of both types. |
4557 | auto nullability = type->getNullability(); |
4558 | auto prevNullability = prevType->getNullability(); |
4559 | |
4560 | // Easy case: both have nullability. |
4561 | if (nullability.has_value() == prevNullability.has_value()) { |
4562 | // Neither has nullability; continue. |
4563 | if (!nullability) |
4564 | return type; |
4565 | |
4566 | // The nullabilities are equivalent; do nothing. |
4567 | if (*nullability == *prevNullability) |
4568 | return type; |
4569 | |
4570 | // Complain about mismatched nullability. |
4571 | S.Diag(loc, diag::err_nullability_conflicting) |
4572 | << DiagNullabilityKind(*nullability, usesCSKeyword) |
4573 | << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); |
4574 | return type; |
4575 | } |
4576 | |
4577 | // If it's the redeclaration that has nullability, don't change anything. |
4578 | if (nullability) |
4579 | return type; |
4580 | |
4581 | // Otherwise, provide the result with the same nullability. |
4582 | return S.Context.getAttributedType( |
4583 | attrKind: AttributedType::getNullabilityAttrKind(kind: *prevNullability), |
4584 | modifiedType: type, equivalentType: type); |
4585 | } |
4586 | |
4587 | /// Merge information from the declaration of a method in the \@interface |
4588 | /// (or a category/extension) into the corresponding method in the |
4589 | /// @implementation (for a class or category). |
4590 | static void mergeInterfaceMethodToImpl(Sema &S, |
4591 | ObjCMethodDecl *method, |
4592 | ObjCMethodDecl *prevMethod) { |
4593 | // Merge the objc_requires_super attribute. |
4594 | if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && |
4595 | !method->hasAttr<ObjCRequiresSuperAttr>()) { |
4596 | // merge the attribute into implementation. |
4597 | method->addAttr( |
4598 | ObjCRequiresSuperAttr::CreateImplicit(S.Context, |
4599 | method->getLocation())); |
4600 | } |
4601 | |
4602 | // Merge nullability of the result type. |
4603 | QualType newReturnType |
4604 | = mergeTypeNullabilityForRedecl( |
4605 | S, loc: method->getReturnTypeSourceRange().getBegin(), |
4606 | type: method->getReturnType(), |
4607 | usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
4608 | prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(), |
4609 | prevType: prevMethod->getReturnType(), |
4610 | prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
4611 | method->setReturnType(newReturnType); |
4612 | |
4613 | // Handle each of the parameters. |
4614 | unsigned numParams = method->param_size(); |
4615 | unsigned numPrevParams = prevMethod->param_size(); |
4616 | for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) { |
4617 | ParmVarDecl *param = method->param_begin()[i]; |
4618 | ParmVarDecl *prevParam = prevMethod->param_begin()[i]; |
4619 | |
4620 | // Merge nullability. |
4621 | QualType newParamType |
4622 | = mergeTypeNullabilityForRedecl( |
4623 | S, param->getLocation(), param->getType(), |
4624 | param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
4625 | prevParam->getLocation(), prevParam->getType(), |
4626 | prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
4627 | param->setType(newParamType); |
4628 | } |
4629 | } |
4630 | |
4631 | /// Verify that the method parameters/return value have types that are supported |
4632 | /// by the x86 target. |
4633 | static void checkObjCMethodX86VectorTypes(Sema &SemaRef, |
4634 | const ObjCMethodDecl *Method) { |
4635 | assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == |
4636 | llvm::Triple::x86 && |
4637 | "x86-specific check invoked for a different target" ); |
4638 | SourceLocation Loc; |
4639 | QualType T; |
4640 | for (const ParmVarDecl *P : Method->parameters()) { |
4641 | if (P->getType()->isVectorType()) { |
4642 | Loc = P->getBeginLoc(); |
4643 | T = P->getType(); |
4644 | break; |
4645 | } |
4646 | } |
4647 | if (Loc.isInvalid()) { |
4648 | if (Method->getReturnType()->isVectorType()) { |
4649 | Loc = Method->getReturnTypeSourceRange().getBegin(); |
4650 | T = Method->getReturnType(); |
4651 | } else |
4652 | return; |
4653 | } |
4654 | |
4655 | // Vector parameters/return values are not supported by objc_msgSend on x86 in |
4656 | // iOS < 9 and macOS < 10.11. |
4657 | const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); |
4658 | VersionTuple AcceptedInVersion; |
4659 | if (Triple.getOS() == llvm::Triple::IOS) |
4660 | AcceptedInVersion = VersionTuple(/*Major=*/9); |
4661 | else if (Triple.isMacOSX()) |
4662 | AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); |
4663 | else |
4664 | return; |
4665 | if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= |
4666 | AcceptedInVersion) |
4667 | return; |
4668 | SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) |
4669 | << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 |
4670 | : /*parameter*/ 0) |
4671 | << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9" ); |
4672 | } |
4673 | |
4674 | static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { |
4675 | if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && |
4676 | CD->hasAttr<ObjCDirectMembersAttr>()) { |
4677 | Method->addAttr( |
4678 | ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation())); |
4679 | } |
4680 | } |
4681 | |
4682 | static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, |
4683 | ObjCMethodDecl *Method, |
4684 | ObjCImplDecl *ImpDecl = nullptr) { |
4685 | auto Sel = Method->getSelector(); |
4686 | bool isInstance = Method->isInstanceMethod(); |
4687 | bool diagnosed = false; |
4688 | |
4689 | auto diagClash = [&](const ObjCMethodDecl *IMD) { |
4690 | if (diagnosed || IMD->isImplicit()) |
4691 | return; |
4692 | if (Method->isDirectMethod() || IMD->isDirectMethod()) { |
4693 | S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl) |
4694 | << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() |
4695 | << Method->getDeclName(); |
4696 | S.Diag(IMD->getLocation(), diag::note_previous_declaration); |
4697 | diagnosed = true; |
4698 | } |
4699 | }; |
4700 | |
4701 | // Look for any other declaration of this method anywhere we can see in this |
4702 | // compilation unit. |
4703 | // |
4704 | // We do not use IDecl->lookupMethod() because we have specific needs: |
4705 | // |
4706 | // - we absolutely do not need to walk protocols, because |
4707 | // diag::err_objc_direct_on_protocol has already been emitted |
4708 | // during parsing if there's a conflict, |
4709 | // |
4710 | // - when we do not find a match in a given @interface container, |
4711 | // we need to attempt looking it up in the @implementation block if the |
4712 | // translation unit sees it to find more clashes. |
4713 | |
4714 | if (auto *IMD = IDecl->getMethod(Sel, isInstance)) |
4715 | diagClash(IMD); |
4716 | else if (auto *Impl = IDecl->getImplementation()) |
4717 | if (Impl != ImpDecl) |
4718 | if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) |
4719 | diagClash(IMD); |
4720 | |
4721 | for (const auto *Cat : IDecl->visible_categories()) |
4722 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
4723 | diagClash(IMD); |
4724 | else if (auto CatImpl = Cat->getImplementation()) |
4725 | if (CatImpl != ImpDecl) |
4726 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
4727 | diagClash(IMD); |
4728 | } |
4729 | |
4730 | Decl *Sema::ActOnMethodDeclaration( |
4731 | Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, |
4732 | tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, |
4733 | ArrayRef<SourceLocation> SelectorLocs, Selector Sel, |
4734 | // optional arguments. The number of types/arguments is obtained |
4735 | // from the Sel.getNumArgs(). |
4736 | ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, |
4737 | unsigned CNumArgs, // c-style args |
4738 | const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, |
4739 | bool isVariadic, bool MethodDefinition) { |
4740 | // Make sure we can establish a context for the method. |
4741 | if (!CurContext->isObjCContainer()) { |
4742 | Diag(MethodLoc, diag::err_missing_method_context); |
4743 | return nullptr; |
4744 | } |
4745 | |
4746 | Decl *ClassDecl = cast<ObjCContainerDecl>(Val: CurContext); |
4747 | QualType resultDeclType; |
4748 | |
4749 | bool HasRelatedResultType = false; |
4750 | TypeSourceInfo *ReturnTInfo = nullptr; |
4751 | if (ReturnType) { |
4752 | resultDeclType = GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo); |
4753 | |
4754 | if (CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc)) |
4755 | return nullptr; |
4756 | |
4757 | QualType bareResultType = resultDeclType; |
4758 | (void)AttributedType::stripOuterNullability(T&: bareResultType); |
4759 | HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); |
4760 | } else { // get the type for "id". |
4761 | resultDeclType = Context.getObjCIdType(); |
4762 | Diag(MethodLoc, diag::warn_missing_method_return_type) |
4763 | << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)" ); |
4764 | } |
4765 | |
4766 | ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( |
4767 | C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo, contextDecl: CurContext, |
4768 | isInstance: MethodType == tok::minus, isVariadic, |
4769 | /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, |
4770 | /*isImplicitlyDeclared=*/false, /*isDefined=*/false, |
4771 | impControl: MethodDeclKind == tok::objc_optional |
4772 | ? ObjCImplementationControl::Optional |
4773 | : ObjCImplementationControl::Required, |
4774 | HasRelatedResultType); |
4775 | |
4776 | SmallVector<ParmVarDecl*, 16> Params; |
4777 | |
4778 | for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { |
4779 | QualType ArgType; |
4780 | TypeSourceInfo *DI; |
4781 | |
4782 | if (!ArgInfo[i].Type) { |
4783 | ArgType = Context.getObjCIdType(); |
4784 | DI = nullptr; |
4785 | } else { |
4786 | ArgType = GetTypeFromParser(Ty: ArgInfo[i].Type, TInfo: &DI); |
4787 | } |
4788 | |
4789 | LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, |
4790 | LookupOrdinaryName, forRedeclarationInCurContext()); |
4791 | LookupName(R, S); |
4792 | if (R.isSingleResult()) { |
4793 | NamedDecl *PrevDecl = R.getFoundDecl(); |
4794 | if (S->isDeclScope(PrevDecl)) { |
4795 | Diag(ArgInfo[i].NameLoc, |
4796 | (MethodDefinition ? diag::warn_method_param_redefinition |
4797 | : diag::warn_method_param_declaration)) |
4798 | << ArgInfo[i].Name; |
4799 | Diag(PrevDecl->getLocation(), |
4800 | diag::note_previous_declaration); |
4801 | } |
4802 | } |
4803 | |
4804 | SourceLocation StartLoc = DI |
4805 | ? DI->getTypeLoc().getBeginLoc() |
4806 | : ArgInfo[i].NameLoc; |
4807 | |
4808 | ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, |
4809 | ArgInfo[i].NameLoc, ArgInfo[i].Name, |
4810 | ArgType, DI, SC_None); |
4811 | |
4812 | Param->setObjCMethodScopeInfo(i); |
4813 | |
4814 | Param->setObjCDeclQualifier( |
4815 | CvtQTToAstBitMask(PQTVal: ArgInfo[i].DeclSpec.getObjCDeclQualifier())); |
4816 | |
4817 | // Apply the attributes to the parameter. |
4818 | ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); |
4819 | AddPragmaAttributes(TUScope, Param); |
4820 | ProcessAPINotes(Param); |
4821 | |
4822 | if (Param->hasAttr<BlocksAttr>()) { |
4823 | Diag(Param->getLocation(), diag::err_block_on_nonlocal); |
4824 | Param->setInvalidDecl(); |
4825 | } |
4826 | S->AddDecl(Param); |
4827 | IdResolver.AddDecl(Param); |
4828 | |
4829 | Params.push_back(Elt: Param); |
4830 | } |
4831 | |
4832 | for (unsigned i = 0, e = CNumArgs; i != e; ++i) { |
4833 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param); |
4834 | QualType ArgType = Param->getType(); |
4835 | if (ArgType.isNull()) |
4836 | ArgType = Context.getObjCIdType(); |
4837 | else |
4838 | // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
4839 | ArgType = Context.getAdjustedParameterType(T: ArgType); |
4840 | |
4841 | Param->setDeclContext(ObjCMethod); |
4842 | Params.push_back(Elt: Param); |
4843 | } |
4844 | |
4845 | ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs); |
4846 | ObjCMethod->setObjCDeclQualifier( |
4847 | CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier())); |
4848 | |
4849 | ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); |
4850 | AddPragmaAttributes(TUScope, ObjCMethod); |
4851 | ProcessAPINotes(ObjCMethod); |
4852 | |
4853 | // Add the method now. |
4854 | const ObjCMethodDecl *PrevMethod = nullptr; |
4855 | if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) { |
4856 | if (MethodType == tok::minus) { |
4857 | PrevMethod = ImpDecl->getInstanceMethod(Sel); |
4858 | ImpDecl->addInstanceMethod(method: ObjCMethod); |
4859 | } else { |
4860 | PrevMethod = ImpDecl->getClassMethod(Sel); |
4861 | ImpDecl->addClassMethod(method: ObjCMethod); |
4862 | } |
4863 | |
4864 | // If this method overrides a previous @synthesize declaration, |
4865 | // register it with the property. Linear search through all |
4866 | // properties here, because the autosynthesized stub hasn't been |
4867 | // made visible yet, so it can be overridden by a later |
4868 | // user-specified implementation. |
4869 | for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { |
4870 | if (auto *Setter = PropertyImpl->getSetterMethodDecl()) |
4871 | if (Setter->getSelector() == Sel && |
4872 | Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
4873 | assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected" ); |
4874 | PropertyImpl->setSetterMethodDecl(ObjCMethod); |
4875 | } |
4876 | if (auto *Getter = PropertyImpl->getGetterMethodDecl()) |
4877 | if (Getter->getSelector() == Sel && |
4878 | Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
4879 | assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected" ); |
4880 | PropertyImpl->setGetterMethodDecl(ObjCMethod); |
4881 | break; |
4882 | } |
4883 | } |
4884 | |
4885 | // A method is either tagged direct explicitly, or inherits it from its |
4886 | // canonical declaration. |
4887 | // |
4888 | // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() |
4889 | // because IDecl->lookupMethod() returns more possible matches than just |
4890 | // the canonical declaration. |
4891 | if (!ObjCMethod->isDirectMethod()) { |
4892 | const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); |
4893 | if (CanonicalMD->isDirectMethod()) { |
4894 | const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>(); |
4895 | ObjCMethod->addAttr( |
4896 | ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); |
4897 | } |
4898 | } |
4899 | |
4900 | // Merge information from the @interface declaration into the |
4901 | // @implementation. |
4902 | if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { |
4903 | if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), |
4904 | ObjCMethod->isInstanceMethod())) { |
4905 | mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD); |
4906 | |
4907 | // The Idecl->lookupMethod() above will find declarations for ObjCMethod |
4908 | // in one of these places: |
4909 | // |
4910 | // (1) the canonical declaration in an @interface container paired |
4911 | // with the ImplDecl, |
4912 | // (2) non canonical declarations in @interface not paired with the |
4913 | // ImplDecl for the same Class, |
4914 | // (3) any superclass container. |
4915 | // |
4916 | // Direct methods only allow for canonical declarations in the matching |
4917 | // container (case 1). |
4918 | // |
4919 | // Direct methods overriding a superclass declaration (case 3) is |
4920 | // handled during overrides checks in CheckObjCMethodOverrides(). |
4921 | // |
4922 | // We deal with same-class container mismatches (Case 2) here. |
4923 | if (IDecl == IMD->getClassInterface()) { |
4924 | auto diagContainerMismatch = [&] { |
4925 | int decl = 0, impl = 0; |
4926 | |
4927 | if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext())) |
4928 | decl = Cat->IsClassExtension() ? 1 : 2; |
4929 | |
4930 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl)) |
4931 | impl = 1 + (decl != 0); |
4932 | |
4933 | Diag(ObjCMethod->getLocation(), |
4934 | diag::err_objc_direct_impl_decl_mismatch) |
4935 | << decl << impl; |
4936 | Diag(IMD->getLocation(), diag::note_previous_declaration); |
4937 | }; |
4938 | |
4939 | if (ObjCMethod->isDirectMethod()) { |
4940 | const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>(); |
4941 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
4942 | diagContainerMismatch(); |
4943 | } else if (!IMD->isDirectMethod()) { |
4944 | Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl); |
4945 | Diag(IMD->getLocation(), diag::note_previous_declaration); |
4946 | } |
4947 | } else if (IMD->isDirectMethod()) { |
4948 | const auto *attr = IMD->getAttr<ObjCDirectAttr>(); |
4949 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
4950 | diagContainerMismatch(); |
4951 | } else { |
4952 | ObjCMethod->addAttr( |
4953 | ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); |
4954 | } |
4955 | } |
4956 | } |
4957 | |
4958 | // Warn about defining -dealloc in a category. |
4959 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() && |
4960 | ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { |
4961 | Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) |
4962 | << ObjCMethod->getDeclName(); |
4963 | } |
4964 | } else { |
4965 | mergeObjCDirectMembers(S&: *this, CD: ClassDecl, Method: ObjCMethod); |
4966 | checkObjCDirectMethodClashes(S&: *this, IDecl, Method: ObjCMethod, ImpDecl); |
4967 | } |
4968 | |
4969 | // Warn if a method declared in a protocol to which a category or |
4970 | // extension conforms is non-escaping and the implementation's method is |
4971 | // escaping. |
4972 | for (auto *C : IDecl->visible_categories()) |
4973 | for (auto &P : C->protocols()) |
4974 | if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), |
4975 | ObjCMethod->isInstanceMethod())) { |
4976 | assert(ObjCMethod->parameters().size() == |
4977 | IMD->parameters().size() && |
4978 | "Methods have different number of parameters" ); |
4979 | auto OI = IMD->param_begin(), OE = IMD->param_end(); |
4980 | auto NI = ObjCMethod->param_begin(); |
4981 | for (; OI != OE; ++OI, ++NI) |
4982 | diagnoseNoescape(*NI, *OI, C, P, *this); |
4983 | } |
4984 | } |
4985 | } else { |
4986 | if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) { |
4987 | mergeObjCDirectMembers(S&: *this, CD: ClassDecl, Method: ObjCMethod); |
4988 | |
4989 | ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
4990 | if (!IDecl) |
4991 | IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface(); |
4992 | // For valid code, we should always know the primary interface |
4993 | // declaration by now, however for invalid code we'll keep parsing |
4994 | // but we won't find the primary interface and IDecl will be nil. |
4995 | if (IDecl) |
4996 | checkObjCDirectMethodClashes(S&: *this, IDecl, Method: ObjCMethod); |
4997 | } |
4998 | |
4999 | cast<DeclContext>(Val: ClassDecl)->addDecl(ObjCMethod); |
5000 | } |
5001 | |
5002 | if (PrevMethod) { |
5003 | // You can never have two method definitions with the same name. |
5004 | Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) |
5005 | << ObjCMethod->getDeclName(); |
5006 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
5007 | ObjCMethod->setInvalidDecl(); |
5008 | return ObjCMethod; |
5009 | } |
5010 | |
5011 | // If this Objective-C method does not have a related result type, but we |
5012 | // are allowed to infer related result types, try to do so based on the |
5013 | // method family. |
5014 | ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
5015 | if (!CurrentClass) { |
5016 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) |
5017 | CurrentClass = Cat->getClassInterface(); |
5018 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) |
5019 | CurrentClass = Impl->getClassInterface(); |
5020 | else if (ObjCCategoryImplDecl *CatImpl |
5021 | = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) |
5022 | CurrentClass = CatImpl->getClassInterface(); |
5023 | } |
5024 | |
5025 | ResultTypeCompatibilityKind RTC |
5026 | = CheckRelatedResultTypeCompatibility(S&: *this, Method: ObjCMethod, CurrentClass); |
5027 | |
5028 | CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); |
5029 | |
5030 | bool ARCError = false; |
5031 | if (getLangOpts().ObjCAutoRefCount) |
5032 | ARCError = CheckARCMethodDecl(method: ObjCMethod); |
5033 | |
5034 | // Infer the related result type when possible. |
5035 | if (!ARCError && RTC == Sema::RTC_Compatible && |
5036 | !ObjCMethod->hasRelatedResultType() && |
5037 | LangOpts.ObjCInferRelatedResultType) { |
5038 | bool InferRelatedResultType = false; |
5039 | switch (ObjCMethod->getMethodFamily()) { |
5040 | case OMF_None: |
5041 | case OMF_copy: |
5042 | case OMF_dealloc: |
5043 | case OMF_finalize: |
5044 | case OMF_mutableCopy: |
5045 | case OMF_release: |
5046 | case OMF_retainCount: |
5047 | case OMF_initialize: |
5048 | case OMF_performSelector: |
5049 | break; |
5050 | |
5051 | case OMF_alloc: |
5052 | case OMF_new: |
5053 | InferRelatedResultType = ObjCMethod->isClassMethod(); |
5054 | break; |
5055 | |
5056 | case OMF_init: |
5057 | case OMF_autorelease: |
5058 | case OMF_retain: |
5059 | case OMF_self: |
5060 | InferRelatedResultType = ObjCMethod->isInstanceMethod(); |
5061 | break; |
5062 | } |
5063 | |
5064 | if (InferRelatedResultType && |
5065 | !ObjCMethod->getReturnType()->isObjCIndependentClassType()) |
5066 | ObjCMethod->setRelatedResultType(); |
5067 | } |
5068 | |
5069 | if (MethodDefinition && |
5070 | Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
5071 | checkObjCMethodX86VectorTypes(SemaRef&: *this, Method: ObjCMethod); |
5072 | |
5073 | // + load method cannot have availability attributes. It get called on |
5074 | // startup, so it has to have the availability of the deployment target. |
5075 | if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { |
5076 | if (ObjCMethod->isClassMethod() && |
5077 | ObjCMethod->getSelector().getAsString() == "load" ) { |
5078 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
5079 | << 0; |
5080 | ObjCMethod->dropAttr<AvailabilityAttr>(); |
5081 | } |
5082 | } |
5083 | |
5084 | // Insert the invisible arguments, self and _cmd! |
5085 | ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface()); |
5086 | |
5087 | ActOnDocumentableDecl(ObjCMethod); |
5088 | |
5089 | return ObjCMethod; |
5090 | } |
5091 | |
5092 | bool Sema::CheckObjCDeclScope(Decl *D) { |
5093 | // Following is also an error. But it is caused by a missing @end |
5094 | // and diagnostic is issued elsewhere. |
5095 | if (isa<ObjCContainerDecl>(Val: CurContext->getRedeclContext())) |
5096 | return false; |
5097 | |
5098 | // If we switched context to translation unit while we are still lexically in |
5099 | // an objc container, it means the parser missed emitting an error. |
5100 | if (isa<TranslationUnitDecl>(Val: getCurLexicalContext()->getRedeclContext())) |
5101 | return false; |
5102 | |
5103 | Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); |
5104 | D->setInvalidDecl(); |
5105 | |
5106 | return true; |
5107 | } |
5108 | |
5109 | /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the |
5110 | /// instance variables of ClassName into Decls. |
5111 | void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, |
5112 | const IdentifierInfo *ClassName, |
5113 | SmallVectorImpl<Decl *> &Decls) { |
5114 | // Check that ClassName is a valid class |
5115 | ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart); |
5116 | if (!Class) { |
5117 | Diag(DeclStart, diag::err_undef_interface) << ClassName; |
5118 | return; |
5119 | } |
5120 | if (LangOpts.ObjCRuntime.isNonFragile()) { |
5121 | Diag(DeclStart, diag::err_atdef_nonfragile_interface); |
5122 | return; |
5123 | } |
5124 | |
5125 | // Collect the instance variables |
5126 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
5127 | Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars); |
5128 | // For each ivar, create a fresh ObjCAtDefsFieldDecl. |
5129 | for (unsigned i = 0; i < Ivars.size(); i++) { |
5130 | const FieldDecl* ID = Ivars[i]; |
5131 | RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD); |
5132 | Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record, |
5133 | /*FIXME: StartL=*/StartLoc: ID->getLocation(), |
5134 | IdLoc: ID->getLocation(), |
5135 | Id: ID->getIdentifier(), T: ID->getType(), |
5136 | BW: ID->getBitWidth()); |
5137 | Decls.push_back(Elt: FD); |
5138 | } |
5139 | |
5140 | // Introduce all of these fields into the appropriate scope. |
5141 | for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); |
5142 | D != Decls.end(); ++D) { |
5143 | FieldDecl *FD = cast<FieldDecl>(Val: *D); |
5144 | if (getLangOpts().CPlusPlus) |
5145 | PushOnScopeChains(FD, S); |
5146 | else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD)) |
5147 | Record->addDecl(FD); |
5148 | } |
5149 | } |
5150 | |
5151 | /// Build a type-check a new Objective-C exception variable declaration. |
5152 | VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, |
5153 | SourceLocation StartLoc, |
5154 | SourceLocation IdLoc, |
5155 | const IdentifierInfo *Id, bool Invalid) { |
5156 | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
5157 | // duration shall not be qualified by an address-space qualifier." |
5158 | // Since all parameters have automatic store duration, they can not have |
5159 | // an address space. |
5160 | if (T.getAddressSpace() != LangAS::Default) { |
5161 | Diag(IdLoc, diag::err_arg_with_address_space); |
5162 | Invalid = true; |
5163 | } |
5164 | |
5165 | // An @catch parameter must be an unqualified object pointer type; |
5166 | // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? |
5167 | if (Invalid) { |
5168 | // Don't do any further checking. |
5169 | } else if (T->isDependentType()) { |
5170 | // Okay: we don't know what this type will instantiate to. |
5171 | } else if (T->isObjCQualifiedIdType()) { |
5172 | Invalid = true; |
5173 | Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); |
5174 | } else if (T->isObjCIdType()) { |
5175 | // Okay: we don't know what this type will instantiate to. |
5176 | } else if (!T->isObjCObjectPointerType()) { |
5177 | Invalid = true; |
5178 | Diag(IdLoc, diag::err_catch_param_not_objc_type); |
5179 | } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { |
5180 | Invalid = true; |
5181 | Diag(IdLoc, diag::err_catch_param_not_objc_type); |
5182 | } |
5183 | |
5184 | VarDecl *New = VarDecl::Create(C&: Context, DC: CurContext, StartLoc, IdLoc, Id, |
5185 | T, TInfo, S: SC_None); |
5186 | New->setExceptionVariable(true); |
5187 | |
5188 | // In ARC, infer 'retaining' for variables of retainable type. |
5189 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) |
5190 | Invalid = true; |
5191 | |
5192 | if (Invalid) |
5193 | New->setInvalidDecl(); |
5194 | return New; |
5195 | } |
5196 | |
5197 | Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { |
5198 | const DeclSpec &DS = D.getDeclSpec(); |
5199 | |
5200 | // We allow the "register" storage class on exception variables because |
5201 | // GCC did, but we drop it completely. Any other storage class is an error. |
5202 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
5203 | Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) |
5204 | << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); |
5205 | } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
5206 | Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) |
5207 | << DeclSpec::getSpecifierName(SCS); |
5208 | } |
5209 | if (DS.isInlineSpecified()) |
5210 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
5211 | << getLangOpts().CPlusPlus17; |
5212 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
5213 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
5214 | diag::err_invalid_thread) |
5215 | << DeclSpec::getSpecifierName(TSCS); |
5216 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
5217 | |
5218 | DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
5219 | |
5220 | // Check that there are no default arguments inside the type of this |
5221 | // exception object (C++ only). |
5222 | if (getLangOpts().CPlusPlus) |
5223 | CheckExtraCXXDefaultArguments(D); |
5224 | |
5225 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
5226 | QualType ExceptionType = TInfo->getType(); |
5227 | |
5228 | VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType, |
5229 | StartLoc: D.getSourceRange().getBegin(), |
5230 | IdLoc: D.getIdentifierLoc(), |
5231 | Id: D.getIdentifier(), |
5232 | Invalid: D.isInvalidType()); |
5233 | |
5234 | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
5235 | if (D.getCXXScopeSpec().isSet()) { |
5236 | Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) |
5237 | << D.getCXXScopeSpec().getRange(); |
5238 | New->setInvalidDecl(); |
5239 | } |
5240 | |
5241 | // Add the parameter declaration into this scope. |
5242 | S->AddDecl(New); |
5243 | if (D.getIdentifier()) |
5244 | IdResolver.AddDecl(New); |
5245 | |
5246 | ProcessDeclAttributes(S, New, D); |
5247 | |
5248 | if (New->hasAttr<BlocksAttr>()) |
5249 | Diag(New->getLocation(), diag::err_block_on_nonlocal); |
5250 | return New; |
5251 | } |
5252 | |
5253 | /// CollectIvarsToConstructOrDestruct - Collect those ivars which require |
5254 | /// initialization. |
5255 | void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, |
5256 | SmallVectorImpl<ObjCIvarDecl*> &Ivars) { |
5257 | for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; |
5258 | Iv= Iv->getNextIvar()) { |
5259 | QualType QT = Context.getBaseElementType(Iv->getType()); |
5260 | if (QT->isRecordType()) |
5261 | Ivars.push_back(Elt: Iv); |
5262 | } |
5263 | } |
5264 | |
5265 | void Sema::DiagnoseUseOfUnimplementedSelectors() { |
5266 | // Load referenced selectors from the external source. |
5267 | if (ExternalSource) { |
5268 | SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; |
5269 | ExternalSource->ReadReferencedSelectors(Sels); |
5270 | for (unsigned I = 0, N = Sels.size(); I != N; ++I) |
5271 | ReferencedSelectors[Sels[I].first] = Sels[I].second; |
5272 | } |
5273 | |
5274 | // Warning will be issued only when selector table is |
5275 | // generated (which means there is at lease one implementation |
5276 | // in the TU). This is to match gcc's behavior. |
5277 | if (ReferencedSelectors.empty() || |
5278 | !Context.AnyObjCImplementation()) |
5279 | return; |
5280 | for (auto &SelectorAndLocation : ReferencedSelectors) { |
5281 | Selector Sel = SelectorAndLocation.first; |
5282 | SourceLocation Loc = SelectorAndLocation.second; |
5283 | if (!LookupImplementedMethodInGlobalPool(Sel)) |
5284 | Diag(Loc, diag::warn_unimplemented_selector) << Sel; |
5285 | } |
5286 | } |
5287 | |
5288 | ObjCIvarDecl * |
5289 | Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, |
5290 | const ObjCPropertyDecl *&PDecl) const { |
5291 | if (Method->isClassMethod()) |
5292 | return nullptr; |
5293 | const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); |
5294 | if (!IDecl) |
5295 | return nullptr; |
5296 | Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true, |
5297 | /*shallowCategoryLookup=*/false, |
5298 | /*followSuper=*/false); |
5299 | if (!Method || !Method->isPropertyAccessor()) |
5300 | return nullptr; |
5301 | if ((PDecl = Method->findPropertyDecl())) |
5302 | if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { |
5303 | // property backing ivar must belong to property's class |
5304 | // or be a private ivar in class's implementation. |
5305 | // FIXME. fix the const-ness issue. |
5306 | IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( |
5307 | IV->getIdentifier()); |
5308 | return IV; |
5309 | } |
5310 | return nullptr; |
5311 | } |
5312 | |
5313 | namespace { |
5314 | /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property |
5315 | /// accessor references the backing ivar. |
5316 | class UnusedBackingIvarChecker : |
5317 | public RecursiveASTVisitor<UnusedBackingIvarChecker> { |
5318 | public: |
5319 | Sema &S; |
5320 | const ObjCMethodDecl *Method; |
5321 | const ObjCIvarDecl *IvarD; |
5322 | bool AccessedIvar; |
5323 | bool InvokedSelfMethod; |
5324 | |
5325 | UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, |
5326 | const ObjCIvarDecl *IvarD) |
5327 | : S(S), Method(Method), IvarD(IvarD), |
5328 | AccessedIvar(false), InvokedSelfMethod(false) { |
5329 | assert(IvarD); |
5330 | } |
5331 | |
5332 | bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
5333 | if (E->getDecl() == IvarD) { |
5334 | AccessedIvar = true; |
5335 | return false; |
5336 | } |
5337 | return true; |
5338 | } |
5339 | |
5340 | bool VisitObjCMessageExpr(ObjCMessageExpr *E) { |
5341 | if (E->getReceiverKind() == ObjCMessageExpr::Instance && |
5342 | S.isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) { |
5343 | InvokedSelfMethod = true; |
5344 | } |
5345 | return true; |
5346 | } |
5347 | }; |
5348 | } // end anonymous namespace |
5349 | |
5350 | void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, |
5351 | const ObjCImplementationDecl *ImplD) { |
5352 | if (S->hasUnrecoverableErrorOccurred()) |
5353 | return; |
5354 | |
5355 | for (const auto *CurMethod : ImplD->instance_methods()) { |
5356 | unsigned DIAG = diag::warn_unused_property_backing_ivar; |
5357 | SourceLocation Loc = CurMethod->getLocation(); |
5358 | if (Diags.isIgnored(DIAG, Loc)) |
5359 | continue; |
5360 | |
5361 | const ObjCPropertyDecl *PDecl; |
5362 | const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); |
5363 | if (!IV) |
5364 | continue; |
5365 | |
5366 | if (CurMethod->isSynthesizedAccessorStub()) |
5367 | continue; |
5368 | |
5369 | UnusedBackingIvarChecker Checker(*this, CurMethod, IV); |
5370 | Checker.TraverseStmt(CurMethod->getBody()); |
5371 | if (Checker.AccessedIvar) |
5372 | continue; |
5373 | |
5374 | // Do not issue this warning if backing ivar is used somewhere and accessor |
5375 | // implementation makes a self call. This is to prevent false positive in |
5376 | // cases where the ivar is accessed by another method that the accessor |
5377 | // delegates to. |
5378 | if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { |
5379 | Diag(Loc, DIAG) << IV; |
5380 | Diag(PDecl->getLocation(), diag::note_property_declare); |
5381 | } |
5382 | } |
5383 | } |
5384 | |