1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DynamicRecursiveASTVisitor.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/DelayedDiagnostic.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/Scope.h"
28#include "clang/Sema/ScopeInfo.h"
29#include "clang/Sema/SemaObjC.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/DenseSet.h"
32
33using namespace clang;
34
35/// Check whether the given method, which must be in the 'init'
36/// family, is a valid member of that family.
37///
38/// \param receiverTypeIfCall - if null, check this as if declaring it;
39/// if non-null, check this as if making a call to it with the given
40/// receiver type
41///
42/// \return true to indicate that there was an error and appropriate
43/// actions were taken
44bool SemaObjC::checkInitMethod(ObjCMethodDecl *method,
45 QualType receiverTypeIfCall) {
46 ASTContext &Context = getASTContext();
47 if (method->isInvalidDecl()) return true;
48
49 // This castAs is safe: methods that don't return an object
50 // pointer won't be inferred as inits and will reject an explicit
51 // objc_method_family(init).
52
53 // We ignore protocols here. Should we? What about Class?
54
55 const ObjCObjectType *result =
56 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
57
58 if (result->isObjCId()) {
59 return false;
60 } else if (result->isObjCClass()) {
61 // fall through: always an error
62 } else {
63 ObjCInterfaceDecl *resultClass = result->getInterface();
64 assert(resultClass && "unexpected object type!");
65
66 // It's okay for the result type to still be a forward declaration
67 // if we're checking an interface declaration.
68 if (!resultClass->hasDefinition()) {
69 if (receiverTypeIfCall.isNull() &&
70 !isa<ObjCImplementationDecl>(method->getDeclContext()))
71 return false;
72
73 // Otherwise, we try to compare class types.
74 } else {
75 // If this method was declared in a protocol, we can't check
76 // anything unless we have a receiver type that's an interface.
77 const ObjCInterfaceDecl *receiverClass = nullptr;
78 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
79 if (receiverTypeIfCall.isNull())
80 return false;
81
82 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
83 ->getInterfaceDecl();
84
85 // This can be null for calls to e.g. id<Foo>.
86 if (!receiverClass) return false;
87 } else {
88 receiverClass = method->getClassInterface();
89 assert(receiverClass && "method not associated with a class!");
90 }
91
92 // If either class is a subclass of the other, it's fine.
93 if (receiverClass->isSuperClassOf(I: resultClass) ||
94 resultClass->isSuperClassOf(I: receiverClass))
95 return false;
96 }
97 }
98
99 SourceLocation loc = method->getLocation();
100
101 // If we're in a system header, and this is not a call, just make
102 // the method unusable.
103 if (receiverTypeIfCall.isNull() &&
104 SemaRef.getSourceManager().isInSystemHeader(Loc: loc)) {
105 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
106 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
107 return true;
108 }
109
110 // Otherwise, it's an error.
111 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
112 method->setInvalidDecl();
113 return true;
114}
115
116/// Issue a warning if the parameter of the overridden method is non-escaping
117/// but the parameter of the overriding method is not.
118static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
119 Sema &S) {
120 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
121 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
122 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
123 return false;
124 }
125
126 return true;
127}
128
129/// Produce additional diagnostics if a category conforms to a protocol that
130/// defines a method taking a non-escaping parameter.
131static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
132 const ObjCCategoryDecl *CD,
133 const ObjCProtocolDecl *PD, Sema &S) {
134 if (!diagnoseNoescape(NewD, OldD, S))
135 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
136 << CD->IsClassExtension() << PD
137 << cast<ObjCMethodDecl>(NewD->getDeclContext());
138}
139
140void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
141 const ObjCMethodDecl *Overridden) {
142 ASTContext &Context = getASTContext();
143 if (Overridden->hasRelatedResultType() &&
144 !NewMethod->hasRelatedResultType()) {
145 // This can only happen when the method follows a naming convention that
146 // implies a related result type, and the original (overridden) method has
147 // a suitable return type, but the new (overriding) method does not have
148 // a suitable return type.
149 QualType ResultType = NewMethod->getReturnType();
150 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
151
152 // Figure out which class this method is part of, if any.
153 ObjCInterfaceDecl *CurrentClass
154 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
155 if (!CurrentClass) {
156 DeclContext *DC = NewMethod->getDeclContext();
157 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC))
158 CurrentClass = Cat->getClassInterface();
159 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC))
160 CurrentClass = Impl->getClassInterface();
161 else if (ObjCCategoryImplDecl *CatImpl
162 = dyn_cast<ObjCCategoryImplDecl>(Val: DC))
163 CurrentClass = CatImpl->getClassInterface();
164 }
165
166 if (CurrentClass) {
167 Diag(NewMethod->getLocation(),
168 diag::warn_related_result_type_compatibility_class)
169 << Context.getObjCInterfaceType(CurrentClass)
170 << ResultType
171 << ResultTypeRange;
172 } else {
173 Diag(NewMethod->getLocation(),
174 diag::warn_related_result_type_compatibility_protocol)
175 << ResultType
176 << ResultTypeRange;
177 }
178
179 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_family)
182 << /*overridden method*/ 0
183 << Family;
184 else
185 Diag(Overridden->getLocation(),
186 diag::note_related_result_type_overridden);
187 }
188
189 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
190 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
191 Diag(NewMethod->getLocation(),
192 getLangOpts().ObjCAutoRefCount
193 ? diag::err_nsreturns_retained_attribute_mismatch
194 : diag::warn_nsreturns_retained_attribute_mismatch)
195 << 1;
196 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
197 }
198 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
199 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
200 Diag(NewMethod->getLocation(),
201 getLangOpts().ObjCAutoRefCount
202 ? diag::err_nsreturns_retained_attribute_mismatch
203 : diag::warn_nsreturns_retained_attribute_mismatch)
204 << 0;
205 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
206 }
207
208 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
209 oe = Overridden->param_end();
210 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
211 ne = NewMethod->param_end();
212 ni != ne && oi != oe; ++ni, ++oi) {
213 const ParmVarDecl *oldDecl = (*oi);
214 ParmVarDecl *newDecl = (*ni);
215 if (newDecl->hasAttr<NSConsumedAttr>() !=
216 oldDecl->hasAttr<NSConsumedAttr>()) {
217 Diag(newDecl->getLocation(),
218 getLangOpts().ObjCAutoRefCount
219 ? diag::err_nsconsumed_attribute_mismatch
220 : diag::warn_nsconsumed_attribute_mismatch);
221 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
222 }
223
224 diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: SemaRef);
225 }
226}
227
228/// Check a method declaration for compatibility with the Objective-C
229/// ARC conventions.
230bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) {
231 ASTContext &Context = getASTContext();
232 ObjCMethodFamily family = method->getMethodFamily();
233 switch (family) {
234 case OMF_None:
235 case OMF_finalize:
236 case OMF_retain:
237 case OMF_release:
238 case OMF_autorelease:
239 case OMF_retainCount:
240 case OMF_self:
241 case OMF_initialize:
242 case OMF_performSelector:
243 return false;
244
245 case OMF_dealloc:
246 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
247 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
248 if (ResultTypeRange.isInvalid())
249 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
250 << method->getReturnType()
251 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
252 else
253 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
254 << method->getReturnType()
255 << FixItHint::CreateReplacement(ResultTypeRange, "void");
256 return true;
257 }
258 return false;
259
260 case OMF_init:
261 // If the method doesn't obey the init rules, don't bother annotating it.
262 if (checkInitMethod(method, receiverTypeIfCall: QualType()))
263 return true;
264
265 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
266
267 // Don't add a second copy of this attribute, but otherwise don't
268 // let it be suppressed.
269 if (method->hasAttr<NSReturnsRetainedAttr>())
270 return false;
271 break;
272
273 case OMF_alloc:
274 case OMF_copy:
275 case OMF_mutableCopy:
276 case OMF_new:
277 if (method->hasAttr<NSReturnsRetainedAttr>() ||
278 method->hasAttr<NSReturnsNotRetainedAttr>() ||
279 method->hasAttr<NSReturnsAutoreleasedAttr>())
280 return false;
281 break;
282 }
283
284 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
285 return false;
286}
287
288static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
289 SourceLocation ImplLoc) {
290 if (!ND)
291 return;
292 bool IsCategory = false;
293 StringRef RealizedPlatform;
294 AvailabilityResult Availability = ND->getAvailability(
295 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
296 &RealizedPlatform);
297 if (Availability != AR_Deprecated) {
298 if (isa<ObjCMethodDecl>(Val: ND)) {
299 if (Availability != AR_Unavailable)
300 return;
301 if (RealizedPlatform.empty())
302 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
303 // Warn about implementing unavailable methods, unless the unavailable
304 // is for an app extension.
305 if (RealizedPlatform.ends_with(Suffix: "_app_extension"))
306 return;
307 S.Diag(ImplLoc, diag::warn_unavailable_def);
308 S.Diag(ND->getLocation(), diag::note_method_declared_at)
309 << ND->getDeclName();
310 return;
311 }
312 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) {
313 if (!CD->getClassInterface()->isDeprecated())
314 return;
315 ND = CD->getClassInterface();
316 IsCategory = true;
317 } else
318 return;
319 }
320 S.Diag(ImplLoc, diag::warn_deprecated_def)
321 << (isa<ObjCMethodDecl>(ND)
322 ? /*Method*/ 0
323 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
324 : /*Class*/ 1);
325 if (isa<ObjCMethodDecl>(ND))
326 S.Diag(ND->getLocation(), diag::note_method_declared_at)
327 << ND->getDeclName();
328 else
329 S.Diag(ND->getLocation(), diag::note_previous_decl)
330 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
331}
332
333/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
334/// pool.
335void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) {
336 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D);
337
338 // If we don't have a valid method decl, simply return.
339 if (!MDecl)
340 return;
341 if (MDecl->isInstanceMethod())
342 AddInstanceMethodToGlobalPool(Method: MDecl, impl: true);
343 else
344 AddFactoryMethodToGlobalPool(Method: MDecl, impl: true);
345}
346
347/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
348/// has explicit ownership attribute; false otherwise.
349static bool
350HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
351 QualType T = Param->getType();
352
353 if (const PointerType *PT = T->getAs<PointerType>()) {
354 T = PT->getPointeeType();
355 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
356 T = RT->getPointeeType();
357 } else {
358 return true;
359 }
360
361 // If we have a lifetime qualifier, but it's local, we must have
362 // inferred it. So, it is implicit.
363 return !T.getLocalQualifiers().hasObjCLifetime();
364}
365
366/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
367/// and user declared, in the method definition's AST.
368void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
369 ASTContext &Context = getASTContext();
370 SemaRef.ImplicitlyRetainedSelfLocs.clear();
371 assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
372 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D);
373
374 SemaRef.PushExpressionEvaluationContext(
375 NewContext: SemaRef.ExprEvalContexts.back().Context);
376
377 // If we don't have a valid method decl, simply return.
378 if (!MDecl)
379 return;
380
381 QualType ResultType = MDecl->getReturnType();
382 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
383 !MDecl->isInvalidDecl() &&
384 SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType,
385 diag::err_func_def_incomplete_result))
386 MDecl->setInvalidDecl();
387
388 // Allow all of Sema to see that we are entering a method definition.
389 SemaRef.PushDeclContext(FnBodyScope, MDecl);
390 SemaRef.PushFunctionScope();
391
392 // Create Decl objects for each parameter, entrring them in the scope for
393 // binding to their use.
394
395 // Insert the invisible arguments, self and _cmd!
396 MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface());
397
398 SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
399 SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
400
401 // The ObjC parser requires parameter names so there's no need to check.
402 SemaRef.CheckParmsForFunctionDef(Parameters: MDecl->parameters(),
403 /*CheckParameterNames=*/false);
404
405 // Introduce all of the other parameters into this scope.
406 for (auto *Param : MDecl->parameters()) {
407 if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
408 !HasExplicitOwnershipAttr(SemaRef, Param))
409 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
410 Param->getType();
411
412 if (Param->getIdentifier())
413 SemaRef.PushOnScopeChains(Param, FnBodyScope);
414 }
415
416 // In ARC, disallow definition of retain/release/autorelease/retainCount
417 if (getLangOpts().ObjCAutoRefCount) {
418 switch (MDecl->getMethodFamily()) {
419 case OMF_retain:
420 case OMF_retainCount:
421 case OMF_release:
422 case OMF_autorelease:
423 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
424 << 0 << MDecl->getSelector();
425 break;
426
427 case OMF_None:
428 case OMF_dealloc:
429 case OMF_finalize:
430 case OMF_alloc:
431 case OMF_init:
432 case OMF_mutableCopy:
433 case OMF_copy:
434 case OMF_new:
435 case OMF_self:
436 case OMF_initialize:
437 case OMF_performSelector:
438 break;
439 }
440 }
441
442 // Warn on deprecated methods under -Wdeprecated-implementations,
443 // and prepare for warning on missing super calls.
444 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
445 ObjCMethodDecl *IMD =
446 IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod());
447
448 if (IMD) {
449 ObjCImplDecl *ImplDeclOfMethodDef =
450 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
451 ObjCContainerDecl *ContDeclOfMethodDecl =
452 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
453 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
454 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl))
455 ImplDeclOfMethodDecl = OID->getImplementation();
456 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) {
457 if (CD->IsClassExtension()) {
458 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
459 ImplDeclOfMethodDecl = OID->getImplementation();
460 } else
461 ImplDeclOfMethodDecl = CD->getImplementation();
462 }
463 // No need to issue deprecated warning if deprecated mehod in class/category
464 // is being implemented in its own implementation (no overriding is involved).
465 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
466 DiagnoseObjCImplementedDeprecations(SemaRef, IMD, MDecl->getLocation());
467 }
468
469 if (MDecl->getMethodFamily() == OMF_init) {
470 if (MDecl->isDesignatedInitializerForTheInterface()) {
471 SemaRef.getCurFunction()->ObjCIsDesignatedInit = true;
472 SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain =
473 IC->getSuperClass() != nullptr;
474 } else if (IC->hasDesignatedInitializers()) {
475 SemaRef.getCurFunction()->ObjCIsSecondaryInit = true;
476 SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true;
477 }
478 }
479
480 // If this is "dealloc" or "finalize", set some bit here.
481 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
482 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
483 // Only do this if the current class actually has a superclass.
484 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
485 ObjCMethodFamily Family = MDecl->getMethodFamily();
486 if (Family == OMF_dealloc) {
487 if (!(getLangOpts().ObjCAutoRefCount ||
488 getLangOpts().getGC() == LangOptions::GCOnly))
489 SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
490
491 } else if (Family == OMF_finalize) {
492 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
493 SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
494
495 } else {
496 const ObjCMethodDecl *SuperMethod =
497 SuperClass->lookupMethod(Sel: MDecl->getSelector(),
498 isInstance: MDecl->isInstanceMethod());
499 SemaRef.getCurFunction()->ObjCShouldCallSuper =
500 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
501 }
502 }
503 }
504
505 // Some function attributes (like OptimizeNoneAttr) need actions before
506 // parsing body started.
507 SemaRef.applyFunctionAttributesBeforeParsingBody(FD: D);
508}
509
510namespace {
511
512// Callback to only accept typo corrections that are Objective-C classes.
513// If an ObjCInterfaceDecl* is given to the constructor, then the validation
514// function will reject corrections to that class.
515class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
516 public:
517 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
518 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
519 : CurrentIDecl(IDecl) {}
520
521 bool ValidateCandidate(const TypoCorrection &candidate) override {
522 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
523 return ID && !declaresSameEntity(ID, CurrentIDecl);
524 }
525
526 std::unique_ptr<CorrectionCandidateCallback> clone() override {
527 return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this);
528 }
529
530 private:
531 ObjCInterfaceDecl *CurrentIDecl;
532};
533
534} // end anonymous namespace
535
536static void diagnoseUseOfProtocols(Sema &TheSema,
537 ObjCContainerDecl *CD,
538 ObjCProtocolDecl *const *ProtoRefs,
539 unsigned NumProtoRefs,
540 const SourceLocation *ProtoLocs) {
541 assert(ProtoRefs);
542 // Diagnose availability in the context of the ObjC container.
543 Sema::ContextRAII SavedContext(TheSema, CD);
544 for (unsigned i = 0; i < NumProtoRefs; ++i) {
545 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
546 /*UnknownObjCClass=*/nullptr,
547 /*ObjCPropertyAccess=*/false,
548 /*AvoidPartialAvailabilityChecks=*/true);
549 }
550}
551
552void SemaObjC::ActOnSuperClassOfClassInterface(
553 Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
554 IdentifierInfo *ClassName, SourceLocation ClassLoc,
555 IdentifierInfo *SuperName, SourceLocation SuperLoc,
556 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
557 ASTContext &Context = getASTContext();
558 // Check if a different kind of symbol declared in this scope.
559 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
560 S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName);
561
562 if (!PrevDecl) {
563 // Try to correct for a typo in the superclass name without correcting
564 // to the class we're defining.
565 ObjCInterfaceValidatorCCC CCC(IDecl);
566 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
567 Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: Sema::LookupOrdinaryName,
568 S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) {
569 SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
570 << SuperName << ClassName);
571 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
572 }
573 }
574
575 if (declaresSameEntity(PrevDecl, IDecl)) {
576 Diag(SuperLoc, diag::err_recursive_superclass)
577 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
578 IDecl->setEndOfDefinitionLoc(ClassLoc);
579 } else {
580 ObjCInterfaceDecl *SuperClassDecl =
581 dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
582 QualType SuperClassType;
583
584 // Diagnose classes that inherit from deprecated classes.
585 if (SuperClassDecl) {
586 (void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
587 SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl);
588 }
589
590 if (PrevDecl && !SuperClassDecl) {
591 // The previous declaration was not a class decl. Check if we have a
592 // typedef. If we do, get the underlying class type.
593 if (const TypedefNameDecl *TDecl =
594 dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) {
595 QualType T = TDecl->getUnderlyingType();
596 if (T->isObjCObjectType()) {
597 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
598 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl);
599 SuperClassType = Context.getTypeDeclType(TDecl);
600
601 // This handles the following case:
602 // @interface NewI @end
603 // typedef NewI DeprI __attribute__((deprecated("blah")))
604 // @interface SI : DeprI /* warn here */ @end
605 (void)SemaRef.DiagnoseUseOfDecl(
606 const_cast<TypedefNameDecl *>(TDecl), SuperLoc);
607 }
608 }
609 }
610
611 // This handles the following case:
612 //
613 // typedef int SuperClass;
614 // @interface MyClass : SuperClass {} @end
615 //
616 if (!SuperClassDecl) {
617 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
618 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
619 }
620 }
621
622 if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) {
623 if (!SuperClassDecl)
624 Diag(SuperLoc, diag::err_undef_superclass)
625 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
626 else if (SemaRef.RequireCompleteType(
627 SuperLoc, SuperClassType, diag::err_forward_superclass,
628 SuperClassDecl->getDeclName(), ClassName,
629 SourceRange(AtInterfaceLoc, ClassLoc))) {
630 SuperClassDecl = nullptr;
631 SuperClassType = QualType();
632 }
633 }
634
635 if (SuperClassType.isNull()) {
636 assert(!SuperClassDecl && "Failed to set SuperClassType?");
637 return;
638 }
639
640 // Handle type arguments on the superclass.
641 TypeSourceInfo *SuperClassTInfo = nullptr;
642 if (!SuperTypeArgs.empty()) {
643 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
644 S, Loc: SuperLoc, BaseType: SemaRef.CreateParsedType(T: SuperClassType, TInfo: nullptr),
645 TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(), TypeArgs: SuperTypeArgs,
646 TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(), ProtocolLAngleLoc: SourceLocation(), Protocols: {}, ProtocolLocs: {},
647 ProtocolRAngleLoc: SourceLocation());
648 if (!fullSuperClassType.isUsable())
649 return;
650
651 SuperClassType =
652 SemaRef.GetTypeFromParser(Ty: fullSuperClassType.get(), TInfo: &SuperClassTInfo);
653 }
654
655 if (!SuperClassTInfo) {
656 SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType,
657 Loc: SuperLoc);
658 }
659
660 IDecl->setSuperClass(SuperClassTInfo);
661 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662 getASTContext().addObjCSubClass(IDecl->getSuperClass(), IDecl);
663 }
664}
665
666DeclResult SemaObjC::actOnObjCTypeParam(
667 Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
668 unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
669 SourceLocation colonLoc, ParsedType parsedTypeBound) {
670 ASTContext &Context = getASTContext();
671 // If there was an explicitly-provided type bound, check it.
672 TypeSourceInfo *typeBoundInfo = nullptr;
673 if (parsedTypeBound) {
674 // The type bound can be any Objective-C pointer type.
675 QualType typeBound =
676 SemaRef.GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo);
677 if (typeBound->isObjCObjectPointerType()) {
678 // okay
679 } else if (typeBound->isObjCObjectType()) {
680 // The user forgot the * on an Objective-C pointer type, e.g.,
681 // "T : NSView".
682 SourceLocation starLoc =
683 SemaRef.getLocForEndOfToken(Loc: typeBoundInfo->getTypeLoc().getEndLoc());
684 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
685 diag::err_objc_type_param_bound_missing_pointer)
686 << typeBound << paramName
687 << FixItHint::CreateInsertion(starLoc, " *");
688
689 // Create a new type location builder so we can update the type
690 // location information we have.
691 TypeLocBuilder builder;
692 builder.pushFullCopy(L: typeBoundInfo->getTypeLoc());
693
694 // Create the Objective-C pointer type.
695 typeBound = Context.getObjCObjectPointerType(OIT: typeBound);
696 ObjCObjectPointerTypeLoc newT
697 = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound);
698 newT.setStarLoc(starLoc);
699
700 // Form the new type source information.
701 typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound);
702 } else {
703 // Not a valid type bound.
704 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
705 diag::err_objc_type_param_bound_nonobject)
706 << typeBound << paramName;
707
708 // Forget the bound; we'll default to id later.
709 typeBoundInfo = nullptr;
710 }
711
712 // Type bounds cannot have qualifiers (even indirectly) or explicit
713 // nullability.
714 if (typeBoundInfo) {
715 QualType typeBound = typeBoundInfo->getType();
716 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
717 if (qual || typeBound.hasQualifiers()) {
718 bool diagnosed = false;
719 SourceRange rangeToRemove;
720 if (qual) {
721 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
722 rangeToRemove = attr.getLocalSourceRange();
723 if (attr.getTypePtr()->getImmediateNullability()) {
724 Diag(attr.getBeginLoc(),
725 diag::err_objc_type_param_bound_explicit_nullability)
726 << paramName << typeBound
727 << FixItHint::CreateRemoval(rangeToRemove);
728 diagnosed = true;
729 }
730 }
731 }
732
733 if (!diagnosed) {
734 Diag(qual ? qual.getBeginLoc()
735 : typeBoundInfo->getTypeLoc().getBeginLoc(),
736 diag::err_objc_type_param_bound_qualified)
737 << paramName << typeBound
738 << typeBound.getQualifiers().getAsString()
739 << FixItHint::CreateRemoval(rangeToRemove);
740 }
741
742 // If the type bound has qualifiers other than CVR, we need to strip
743 // them or we'll probably assert later when trying to apply new
744 // qualifiers.
745 Qualifiers quals = typeBound.getQualifiers();
746 quals.removeCVRQualifiers();
747 if (!quals.empty()) {
748 typeBoundInfo =
749 Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType());
750 }
751 }
752 }
753 }
754
755 // If there was no explicit type bound (or we removed it due to an error),
756 // use 'id' instead.
757 if (!typeBoundInfo) {
758 colonLoc = SourceLocation();
759 typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType());
760 }
761
762 // Create the type parameter.
763 return ObjCTypeParamDecl::Create(ctx&: Context, dc: SemaRef.CurContext, variance,
764 varianceLoc, index, nameLoc: paramLoc, name: paramName,
765 colonLoc, boundInfo: typeBoundInfo);
766}
767
768ObjCTypeParamList *
769SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
770 ArrayRef<Decl *> typeParamsIn,
771 SourceLocation rAngleLoc) {
772 ASTContext &Context = getASTContext();
773 // We know that the array only contains Objective-C type parameters.
774 ArrayRef<ObjCTypeParamDecl *>
775 typeParams(
776 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777 typeParamsIn.size());
778
779 // Diagnose redeclarations of type parameters.
780 // We do this now because Objective-C type parameters aren't pushed into
781 // scope until later (after the instance variable block), but we want the
782 // diagnostics to occur right after we parse the type parameter list.
783 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784 for (auto *typeParam : typeParams) {
785 auto known = knownParams.find(typeParam->getIdentifier());
786 if (known != knownParams.end()) {
787 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788 << typeParam->getIdentifier()
789 << SourceRange(known->second->getLocation());
790
791 typeParam->setInvalidDecl();
792 } else {
793 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794
795 // Push the type parameter into scope.
796 SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797 }
798 }
799
800 // Create the parameter list.
801 return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc);
802}
803
804void SemaObjC::popObjCTypeParamList(Scope *S,
805 ObjCTypeParamList *typeParamList) {
806 for (auto *typeParam : *typeParamList) {
807 if (!typeParam->isInvalidDecl()) {
808 S->RemoveDecl(typeParam);
809 SemaRef.IdResolver.RemoveDecl(typeParam);
810 }
811 }
812}
813
814namespace {
815 /// The context in which an Objective-C type parameter list occurs, for use
816 /// in diagnostics.
817 enum class TypeParamListContext {
818 ForwardDeclaration,
819 Definition,
820 Category,
821 Extension
822 };
823} // end anonymous namespace
824
825/// Check consistency between two Objective-C type parameter lists, e.g.,
826/// between a category/extension and an \@interface or between an \@class and an
827/// \@interface.
828static bool checkTypeParamListConsistency(Sema &S,
829 ObjCTypeParamList *prevTypeParams,
830 ObjCTypeParamList *newTypeParams,
831 TypeParamListContext newContext) {
832 // If the sizes don't match, complain about that.
833 if (prevTypeParams->size() != newTypeParams->size()) {
834 SourceLocation diagLoc;
835 if (newTypeParams->size() > prevTypeParams->size()) {
836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837 } else {
838 diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc());
839 }
840
841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842 << static_cast<unsigned>(newContext)
843 << (newTypeParams->size() > prevTypeParams->size())
844 << prevTypeParams->size()
845 << newTypeParams->size();
846
847 return true;
848 }
849
850 // Match up the type parameters.
851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855 // Check for consistency of the variance.
856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858 newContext != TypeParamListContext::Definition) {
859 // When the new type parameter is invariant and is not part
860 // of the definition, just propagate the variance.
861 newTypeParam->setVariance(prevTypeParam->getVariance());
862 } else if (prevTypeParam->getVariance()
863 == ObjCTypeParamVariance::Invariant &&
864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866 ->getDefinition() == prevTypeParam->getDeclContext())) {
867 // When the old parameter is invariant and was not part of the
868 // definition, just ignore the difference because it doesn't
869 // matter.
870 } else {
871 {
872 // Diagnose the conflict and update the second declaration.
873 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874 if (diagLoc.isInvalid())
875 diagLoc = newTypeParam->getBeginLoc();
876
877 auto diag = S.Diag(diagLoc,
878 diag::err_objc_type_param_variance_conflict)
879 << static_cast<unsigned>(newTypeParam->getVariance())
880 << newTypeParam->getDeclName()
881 << static_cast<unsigned>(prevTypeParam->getVariance())
882 << prevTypeParam->getDeclName();
883 switch (prevTypeParam->getVariance()) {
884 case ObjCTypeParamVariance::Invariant:
885 diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc());
886 break;
887
888 case ObjCTypeParamVariance::Covariant:
889 case ObjCTypeParamVariance::Contravariant: {
890 StringRef newVarianceStr
891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892 ? "__covariant"
893 : "__contravariant";
894 if (newTypeParam->getVariance()
895 == ObjCTypeParamVariance::Invariant) {
896 diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(),
897 Code: (newVarianceStr + " ").str());
898 } else {
899 diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(),
900 Code: newVarianceStr);
901 }
902 }
903 }
904 }
905
906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907 << prevTypeParam->getDeclName();
908
909 // Override the variance.
910 newTypeParam->setVariance(prevTypeParam->getVariance());
911 }
912 }
913
914 // If the bound types match, there's nothing to do.
915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916 newTypeParam->getUnderlyingType()))
917 continue;
918
919 // If the new type parameter's bound was explicit, complain about it being
920 // different from the original.
921 if (newTypeParam->hasExplicitBound()) {
922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923 ->getTypeLoc().getSourceRange();
924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925 << newTypeParam->getUnderlyingType()
926 << newTypeParam->getDeclName()
927 << prevTypeParam->hasExplicitBound()
928 << prevTypeParam->getUnderlyingType()
929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930 << prevTypeParam->getDeclName()
931 << FixItHint::CreateReplacement(
932 newBoundRange,
933 prevTypeParam->getUnderlyingType().getAsString(
934 S.Context.getPrintingPolicy()));
935
936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937 << prevTypeParam->getDeclName();
938
939 // Override the new type parameter's bound type with the previous type,
940 // so that it's consistent.
941 S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam);
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(Loc: newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam);
969 }
970
971 return false;
972}
973
974ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface(
975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977 IdentifierInfo *SuperName, SourceLocation SuperLoc,
978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979 Decl *const *ProtoRefs, unsigned NumProtoRefs,
980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982 assert(ClassName && "Missing class identifier");
983
984 ASTContext &Context = getASTContext();
985 // Check for another declaration kind with the same name.
986 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
987 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName,
988 Redecl: SemaRef.forRedeclarationInCurContext());
989
990 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
991 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993 }
994
995 // Create a declaration to describe this @interface.
996 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
997
998 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999 // A previous decl with a different name is because of
1000 // @compatibility_alias, for example:
1001 // \code
1002 // @class NewImage;
1003 // @compatibility_alias OldImage NewImage;
1004 // \endcode
1005 // A lookup for 'OldImage' will return the 'NewImage' decl.
1006 //
1007 // In such a case use the real declaration name, instead of the alias one,
1008 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010 // has been aliased.
1011 ClassName = PrevIDecl->getIdentifier();
1012 }
1013
1014 // If there was a forward declaration with type parameters, check
1015 // for consistency.
1016 if (PrevIDecl) {
1017 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018 if (typeParamList) {
1019 // Both have type parameter lists; check for consistency.
1020 if (checkTypeParamListConsistency(S&: SemaRef, prevTypeParams: prevTypeParamList,
1021 newTypeParams: typeParamList,
1022 newContext: TypeParamListContext::Definition)) {
1023 typeParamList = nullptr;
1024 }
1025 } else {
1026 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027 << ClassName;
1028 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029 << ClassName;
1030
1031 // Clone the type parameter list.
1032 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033 for (auto *typeParam : *prevTypeParamList) {
1034 clonedTypeParams.push_back(Elt: ObjCTypeParamDecl::Create(
1035 ctx&: Context, dc: SemaRef.CurContext, variance: typeParam->getVariance(),
1036 varianceLoc: SourceLocation(), index: typeParam->getIndex(), nameLoc: SourceLocation(),
1037 name: typeParam->getIdentifier(), colonLoc: SourceLocation(),
1038 boundInfo: Context.getTrivialTypeSourceInfo(
1039 T: typeParam->getUnderlyingType())));
1040 }
1041
1042 typeParamList = ObjCTypeParamList::create(ctx&: Context,
1043 lAngleLoc: SourceLocation(),
1044 typeParams: clonedTypeParams,
1045 rAngleLoc: SourceLocation());
1046 }
1047 }
1048 }
1049
1050 ObjCInterfaceDecl *IDecl =
1051 ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtInterfaceLoc,
1052 Id: ClassName, typeParamList, PrevDecl: PrevIDecl, ClassLoc);
1053 if (PrevIDecl) {
1054 // Class already seen. Was it a definition?
1055 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1056 if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1057 SkipBody->CheckSameAsPrevious = true;
1058 SkipBody->New = IDecl;
1059 SkipBody->Previous = Def;
1060 } else {
1061 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062 << PrevIDecl->getDeclName();
1063 Diag(Def->getLocation(), diag::note_previous_definition);
1064 IDecl->setInvalidDecl();
1065 }
1066 }
1067 }
1068
1069 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IDecl, AttrList);
1070 SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
1071 SemaRef.ProcessAPINotes(IDecl);
1072
1073 // Merge attributes from previous declarations.
1074 if (PrevIDecl)
1075 SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
1076
1077 SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
1078
1079 // Start the definition of this class. If we're in a redefinition case, there
1080 // may already be a definition, so we'll end up adding to it.
1081 if (SkipBody && SkipBody->CheckSameAsPrevious)
1082 IDecl->startDuplicateDefinitionForComparison();
1083 else if (!IDecl->hasDefinition())
1084 IDecl->startDefinition();
1085
1086 if (SuperName) {
1087 // Diagnose availability in the context of the @interface.
1088 Sema::ContextRAII SavedContext(SemaRef, IDecl);
1089
1090 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1091 ClassName, ClassLoc,
1092 SuperName, SuperLoc, SuperTypeArgs,
1093 SuperTypeArgsRange);
1094 } else { // we have a root class.
1095 IDecl->setEndOfDefinitionLoc(ClassLoc);
1096 }
1097
1098 // Check then save referenced protocols.
1099 if (NumProtoRefs) {
1100 diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1101 NumProtoRefs, ProtoLocs);
1102 IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1103 Locs: ProtoLocs, C&: Context);
1104 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1105 }
1106
1107 CheckObjCDeclScope(IDecl);
1108 ActOnObjCContainerStartDefinition(IDecl);
1109 return IDecl;
1110}
1111
1112/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1113/// typedef'ed use for a qualified super class and adds them to the list
1114/// of the protocols.
1115void SemaObjC::ActOnTypedefedProtocols(
1116 SmallVectorImpl<Decl *> &ProtocolRefs,
1117 SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1118 SourceLocation SuperLoc) {
1119 if (!SuperName)
1120 return;
1121 NamedDecl *IDecl = SemaRef.LookupSingleName(
1122 S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName);
1123 if (!IDecl)
1124 return;
1125
1126 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) {
1127 QualType T = TDecl->getUnderlyingType();
1128 if (T->isObjCObjectType())
1129 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1130 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1131 // FIXME: Consider whether this should be an invalid loc since the loc
1132 // is not actually pointing to a protocol name reference but to the
1133 // typedef reference. Note that the base class name loc is also pointing
1134 // at the typedef.
1135 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1136 }
1137 }
1138}
1139
1140/// ActOnCompatibilityAlias - this action is called after complete parsing of
1141/// a \@compatibility_alias declaration. It sets up the alias relationships.
1142Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc,
1143 IdentifierInfo *AliasName,
1144 SourceLocation AliasLocation,
1145 IdentifierInfo *ClassName,
1146 SourceLocation ClassLocation) {
1147 ASTContext &Context = getASTContext();
1148 // Look for previous declaration of alias name
1149 NamedDecl *ADecl = SemaRef.LookupSingleName(
1150 S: SemaRef.TUScope, Name: AliasName, Loc: AliasLocation, NameKind: Sema::LookupOrdinaryName,
1151 Redecl: SemaRef.forRedeclarationInCurContext());
1152 if (ADecl) {
1153 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1154 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1155 return nullptr;
1156 }
1157 // Check for class declaration
1158 NamedDecl *CDeclU = SemaRef.LookupSingleName(
1159 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName,
1160 Redecl: SemaRef.forRedeclarationInCurContext());
1161 if (const TypedefNameDecl *TDecl =
1162 dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) {
1163 QualType T = TDecl->getUnderlyingType();
1164 if (T->isObjCObjectType()) {
1165 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1166 ClassName = IDecl->getIdentifier();
1167 CDeclU = SemaRef.LookupSingleName(
1168 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName,
1169 Redecl: SemaRef.forRedeclarationInCurContext());
1170 }
1171 }
1172 }
1173 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU);
1174 if (!CDecl) {
1175 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1176 if (CDeclU)
1177 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1178 return nullptr;
1179 }
1180
1181 // Everything checked out, instantiate a new alias declaration AST.
1182 ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create(
1183 C&: Context, DC: SemaRef.CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl);
1184
1185 if (!CheckObjCDeclScope(AliasDecl))
1186 SemaRef.PushOnScopeChains(AliasDecl, SemaRef.TUScope);
1187
1188 return AliasDecl;
1189}
1190
1191bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency(
1192 IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1193 const ObjCList<ObjCProtocolDecl> &PList) {
1194
1195 bool res = false;
1196 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1197 E = PList.end(); I != E; ++I) {
1198 if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(), IdLoc: Ploc)) {
1199 if (PDecl->getIdentifier() == PName) {
1200 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1201 Diag(PrevLoc, diag::note_previous_definition);
1202 res = true;
1203 }
1204
1205 if (!PDecl->hasDefinition())
1206 continue;
1207
1208 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1209 PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols()))
1210 res = true;
1211 }
1212 }
1213 return res;
1214}
1215
1216ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface(
1217 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1218 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1219 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1220 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1221 ASTContext &Context = getASTContext();
1222 bool err = false;
1223 // FIXME: Deal with AttrList.
1224 assert(ProtocolName && "Missing protocol identifier");
1225 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1226 II: ProtocolName, IdLoc: ProtocolLoc, Redecl: SemaRef.forRedeclarationInCurContext());
1227 ObjCProtocolDecl *PDecl = nullptr;
1228 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1229 // Create a new protocol that is completely distinct from previous
1230 // declarations, and do not make this protocol available for name lookup.
1231 // That way, we'll end up completely ignoring the duplicate.
1232 // FIXME: Can we turn this into an error?
1233 PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName,
1234 nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc,
1235 /*PrevDecl=*/Def);
1236
1237 if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1238 SkipBody->CheckSameAsPrevious = true;
1239 SkipBody->New = PDecl;
1240 SkipBody->Previous = Def;
1241 } else {
1242 // If we already have a definition, complain.
1243 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1244 Diag(Def->getLocation(), diag::note_previous_definition);
1245 }
1246
1247 // If we are using modules, add the decl to the context in order to
1248 // serialize something meaningful.
1249 if (getLangOpts().Modules)
1250 SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1251 PDecl->startDuplicateDefinitionForComparison();
1252 } else {
1253 if (PrevDecl) {
1254 // Check for circular dependencies among protocol declarations. This can
1255 // only happen if this protocol was forward-declared.
1256 ObjCList<ObjCProtocolDecl> PList;
1257 PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context);
1258 err = CheckForwardProtocolDeclarationForCircularDependency(
1259 PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList);
1260 }
1261
1262 // Create the new declaration.
1263 PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName,
1264 nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc,
1265 /*PrevDecl=*/PrevDecl);
1266
1267 SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1268 PDecl->startDefinition();
1269 }
1270
1271 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, AttrList);
1272 SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1273 SemaRef.ProcessAPINotes(PDecl);
1274
1275 // Merge attributes from previous declarations.
1276 if (PrevDecl)
1277 SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1278
1279 if (!err && NumProtoRefs ) {
1280 /// Check then save referenced protocols.
1281 diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1282 NumProtoRefs, ProtoLocs);
1283 PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1284 Locs: ProtoLocs, C&: Context);
1285 }
1286
1287 CheckObjCDeclScope(PDecl);
1288 ActOnObjCContainerStartDefinition(PDecl);
1289 return PDecl;
1290}
1291
1292static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1293 ObjCProtocolDecl *&UndefinedProtocol) {
1294 if (!PDecl->hasDefinition() ||
1295 !PDecl->getDefinition()->isUnconditionallyVisible()) {
1296 UndefinedProtocol = PDecl;
1297 return true;
1298 }
1299
1300 for (auto *PI : PDecl->protocols())
1301 if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) {
1302 UndefinedProtocol = PI;
1303 return true;
1304 }
1305 return false;
1306}
1307
1308/// FindProtocolDeclaration - This routine looks up protocols and
1309/// issues an error if they are not declared. It returns list of
1310/// protocol declarations in its 'Protocols' argument.
1311void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1312 bool ForObjCContainer,
1313 ArrayRef<IdentifierLoc> ProtocolId,
1314 SmallVectorImpl<Decl *> &Protocols) {
1315 for (const IdentifierLoc &Pair : ProtocolId) {
1316 ObjCProtocolDecl *PDecl =
1317 LookupProtocol(II: Pair.getIdentifierInfo(), IdLoc: Pair.getLoc());
1318 if (!PDecl) {
1319 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1320 TypoCorrection Corrected = SemaRef.CorrectTypo(
1321 Typo: DeclarationNameInfo(Pair.getIdentifierInfo(), Pair.getLoc()),
1322 LookupKind: Sema::LookupObjCProtocolName, S: SemaRef.TUScope, SS: nullptr, CCC,
1323 Mode: CorrectTypoKind::ErrorRecovery);
1324 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1325 SemaRef.diagnoseTypo(Corrected,
1326 PDiag(diag::err_undeclared_protocol_suggest)
1327 << Pair.getIdentifierInfo());
1328 }
1329
1330 if (!PDecl) {
1331 Diag(Pair.getLoc(), diag::err_undeclared_protocol)
1332 << Pair.getIdentifierInfo();
1333 continue;
1334 }
1335 // If this is a forward protocol declaration, get its definition.
1336 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1337 PDecl = PDecl->getDefinition();
1338
1339 // For an objc container, delay protocol reference checking until after we
1340 // can set the objc decl as the availability context, otherwise check now.
1341 if (!ForObjCContainer) {
1342 (void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.getLoc());
1343 }
1344
1345 // If this is a forward declaration and we are supposed to warn in this
1346 // case, do it.
1347 // FIXME: Recover nicely in the hidden case.
1348 ObjCProtocolDecl *UndefinedProtocol;
1349
1350 if (WarnOnDeclarations &&
1351 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1352 Diag(Pair.getLoc(), diag::warn_undef_protocolref)
1353 << Pair.getIdentifierInfo();
1354 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1355 << UndefinedProtocol;
1356 }
1357 Protocols.push_back(PDecl);
1358 }
1359}
1360
1361namespace {
1362// Callback to only accept typo corrections that are either
1363// Objective-C protocols or valid Objective-C type arguments.
1364class ObjCTypeArgOrProtocolValidatorCCC final
1365 : public CorrectionCandidateCallback {
1366 ASTContext &Context;
1367 Sema::LookupNameKind LookupKind;
1368 public:
1369 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1370 Sema::LookupNameKind lookupKind)
1371 : Context(context), LookupKind(lookupKind) { }
1372
1373 bool ValidateCandidate(const TypoCorrection &candidate) override {
1374 // If we're allowed to find protocols and we have a protocol, accept it.
1375 if (LookupKind != Sema::LookupOrdinaryName) {
1376 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1377 return true;
1378 }
1379
1380 // If we're allowed to find type names and we have one, accept it.
1381 if (LookupKind != Sema::LookupObjCProtocolName) {
1382 // If we have a type declaration, we might accept this result.
1383 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1384 // If we found a tag declaration outside of C++, skip it. This
1385 // can happy because we look for any name when there is no
1386 // bias to protocol or type names.
1387 if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus)
1388 return false;
1389
1390 // Make sure the type is something we would accept as a type
1391 // argument.
1392 auto type = Context.getTypeDeclType(Decl: typeDecl);
1393 if (type->isObjCObjectPointerType() ||
1394 type->isBlockPointerType() ||
1395 type->isDependentType() ||
1396 type->isObjCObjectType())
1397 return true;
1398
1399 return false;
1400 }
1401
1402 // If we have an Objective-C class type, accept it; there will
1403 // be another fix to add the '*'.
1404 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1405 return true;
1406
1407 return false;
1408 }
1409
1410 return false;
1411 }
1412
1413 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1414 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this);
1415 }
1416};
1417} // end anonymous namespace
1418
1419void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1420 SourceLocation ProtocolLoc,
1421 IdentifierInfo *TypeArgId,
1422 SourceLocation TypeArgLoc,
1423 bool SelectProtocolFirst) {
1424 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1425 << SelectProtocolFirst << TypeArgId << ProtocolId
1426 << SourceRange(ProtocolLoc);
1427}
1428
1429void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers(
1430 Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1431 ArrayRef<IdentifierInfo *> identifiers,
1432 ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1433 SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1434 SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1435 SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1436 bool warnOnIncompleteProtocols) {
1437 ASTContext &Context = getASTContext();
1438 // Local function that updates the declaration specifiers with
1439 // protocol information.
1440 unsigned numProtocolsResolved = 0;
1441 auto resolvedAsProtocols = [&] {
1442 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1443
1444 // Determine whether the base type is a parameterized class, in
1445 // which case we want to warn about typos such as
1446 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1447 ObjCInterfaceDecl *baseClass = nullptr;
1448 QualType base = SemaRef.GetTypeFromParser(Ty: baseType, TInfo: nullptr);
1449 bool allAreTypeNames = false;
1450 SourceLocation firstClassNameLoc;
1451 if (!base.isNull()) {
1452 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1453 baseClass = objcObjectType->getInterface();
1454 if (baseClass) {
1455 if (auto typeParams = baseClass->getTypeParamList()) {
1456 if (typeParams->size() == numProtocolsResolved) {
1457 // Note that we should be looking for type names, too.
1458 allAreTypeNames = true;
1459 }
1460 }
1461 }
1462 }
1463 }
1464
1465 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1466 ObjCProtocolDecl *&proto
1467 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1468 // For an objc container, delay protocol reference checking until after we
1469 // can set the objc decl as the availability context, otherwise check now.
1470 if (!warnOnIncompleteProtocols) {
1471 (void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]);
1472 }
1473
1474 // If this is a forward protocol declaration, get its definition.
1475 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1476 proto = proto->getDefinition();
1477
1478 // If this is a forward declaration and we are supposed to warn in this
1479 // case, do it.
1480 // FIXME: Recover nicely in the hidden case.
1481 ObjCProtocolDecl *forwardDecl = nullptr;
1482 if (warnOnIncompleteProtocols &&
1483 NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) {
1484 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1485 << proto->getDeclName();
1486 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1487 << forwardDecl;
1488 }
1489
1490 // If everything this far has been a type name (and we care
1491 // about such things), check whether this name refers to a type
1492 // as well.
1493 if (allAreTypeNames) {
1494 if (auto *decl =
1495 SemaRef.LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i],
1496 NameKind: Sema::LookupOrdinaryName)) {
1497 if (isa<ObjCInterfaceDecl>(Val: decl)) {
1498 if (firstClassNameLoc.isInvalid())
1499 firstClassNameLoc = identifierLocs[i];
1500 } else if (!isa<TypeDecl>(Val: decl)) {
1501 // Not a type.
1502 allAreTypeNames = false;
1503 }
1504 } else {
1505 allAreTypeNames = false;
1506 }
1507 }
1508 }
1509
1510 // All of the protocols listed also have type names, and at least
1511 // one is an Objective-C class name. Check whether all of the
1512 // protocol conformances are declared by the base class itself, in
1513 // which case we warn.
1514 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1515 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1516 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1517 bool allProtocolsDeclared = true;
1518 for (auto *proto : protocols) {
1519 if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1520 allProtocolsDeclared = false;
1521 break;
1522 }
1523 }
1524
1525 if (allProtocolsDeclared) {
1526 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1527 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1528 << FixItHint::CreateInsertion(
1529 SemaRef.getLocForEndOfToken(firstClassNameLoc), " *");
1530 }
1531 }
1532
1533 protocolLAngleLoc = lAngleLoc;
1534 protocolRAngleLoc = rAngleLoc;
1535 assert(protocols.size() == identifierLocs.size());
1536 };
1537
1538 // Attempt to resolve all of the identifiers as protocols.
1539 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1540 ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]);
1541 protocols.push_back(proto);
1542 if (proto)
1543 ++numProtocolsResolved;
1544 }
1545
1546 // If all of the names were protocols, these were protocol qualifiers.
1547 if (numProtocolsResolved == identifiers.size())
1548 return resolvedAsProtocols();
1549
1550 // Attempt to resolve all of the identifiers as type names or
1551 // Objective-C class names. The latter is technically ill-formed,
1552 // but is probably something like \c NSArray<NSView *> missing the
1553 // \c*.
1554 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1555 SmallVector<TypeOrClassDecl, 4> typeDecls;
1556 unsigned numTypeDeclsResolved = 0;
1557 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1558 NamedDecl *decl = SemaRef.LookupSingleName(
1559 S, Name: identifiers[i], Loc: identifierLocs[i], NameKind: Sema::LookupOrdinaryName);
1560 if (!decl) {
1561 typeDecls.push_back(Elt: TypeOrClassDecl());
1562 continue;
1563 }
1564
1565 if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) {
1566 typeDecls.push_back(Elt: typeDecl);
1567 ++numTypeDeclsResolved;
1568 continue;
1569 }
1570
1571 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) {
1572 typeDecls.push_back(Elt: objcClass);
1573 ++numTypeDeclsResolved;
1574 continue;
1575 }
1576
1577 typeDecls.push_back(Elt: TypeOrClassDecl());
1578 }
1579
1580 AttributeFactory attrFactory;
1581
1582 // Local function that forms a reference to the given type or
1583 // Objective-C class declaration.
1584 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1585 -> TypeResult {
1586 // Form declaration specifiers. They simply refer to the type.
1587 DeclSpec DS(attrFactory);
1588 const char* prevSpec; // unused
1589 unsigned diagID; // unused
1590 QualType type;
1591 if (auto *actualTypeDecl = dyn_cast<TypeDecl *>(Val&: typeDecl))
1592 type = Context.getTypeDeclType(Decl: actualTypeDecl);
1593 else
1594 type = Context.getObjCInterfaceType(Decl: cast<ObjCInterfaceDecl *>(Val&: typeDecl));
1595 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc);
1596 ParsedType parsedType = SemaRef.CreateParsedType(T: type, TInfo: parsedTSInfo);
1597 DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID,
1598 Rep: parsedType, Policy: Context.getPrintingPolicy());
1599 // Use the identifier location for the type source range.
1600 DS.SetRangeStart(loc);
1601 DS.SetRangeEnd(loc);
1602
1603 // Form the declarator.
1604 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1605
1606 // If we have a typedef of an Objective-C class type that is missing a '*',
1607 // add the '*'.
1608 if (type->getAs<ObjCInterfaceType>()) {
1609 SourceLocation starLoc = SemaRef.getLocForEndOfToken(Loc: loc);
1610 D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc,
1611 ConstQualLoc: SourceLocation(),
1612 VolatileQualLoc: SourceLocation(),
1613 RestrictQualLoc: SourceLocation(),
1614 AtomicQualLoc: SourceLocation(),
1615 UnalignedQualLoc: SourceLocation()),
1616 EndLoc: starLoc);
1617
1618 // Diagnose the missing '*'.
1619 Diag(loc, diag::err_objc_type_arg_missing_star)
1620 << type
1621 << FixItHint::CreateInsertion(starLoc, " *");
1622 }
1623
1624 // Convert this to a type.
1625 return SemaRef.ActOnTypeName(D);
1626 };
1627
1628 // Local function that updates the declaration specifiers with
1629 // type argument information.
1630 auto resolvedAsTypeDecls = [&] {
1631 // We did not resolve these as protocols.
1632 protocols.clear();
1633
1634 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1635 // Map type declarations to type arguments.
1636 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1637 // Map type reference to a type.
1638 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1639 if (!type.isUsable()) {
1640 typeArgs.clear();
1641 return;
1642 }
1643
1644 typeArgs.push_back(Elt: type.get());
1645 }
1646
1647 typeArgsLAngleLoc = lAngleLoc;
1648 typeArgsRAngleLoc = rAngleLoc;
1649 };
1650
1651 // If all of the identifiers can be resolved as type names or
1652 // Objective-C class names, we have type arguments.
1653 if (numTypeDeclsResolved == identifiers.size())
1654 return resolvedAsTypeDecls();
1655
1656 // Error recovery: some names weren't found, or we have a mix of
1657 // type and protocol names. Go resolve all of the unresolved names
1658 // and complain if we can't find a consistent answer.
1659 Sema::LookupNameKind lookupKind = Sema::LookupAnyName;
1660 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1661 // If we already have a protocol or type. Check whether it is the
1662 // right thing.
1663 if (protocols[i] || typeDecls[i]) {
1664 // If we haven't figured out whether we want types or protocols
1665 // yet, try to figure it out from this name.
1666 if (lookupKind == Sema::LookupAnyName) {
1667 // If this name refers to both a protocol and a type (e.g., \c
1668 // NSObject), don't conclude anything yet.
1669 if (protocols[i] && typeDecls[i])
1670 continue;
1671
1672 // Otherwise, let this name decide whether we'll be correcting
1673 // toward types or protocols.
1674 lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1675 : Sema::LookupOrdinaryName;
1676 continue;
1677 }
1678
1679 // If we want protocols and we have a protocol, there's nothing
1680 // more to do.
1681 if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1682 continue;
1683
1684 // If we want types and we have a type declaration, there's
1685 // nothing more to do.
1686 if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1687 continue;
1688
1689 // We have a conflict: some names refer to protocols and others
1690 // refer to types.
1691 DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0],
1692 TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i],
1693 SelectProtocolFirst: protocols[i] != nullptr);
1694
1695 protocols.clear();
1696 typeArgs.clear();
1697 return;
1698 }
1699
1700 // Perform typo correction on the name.
1701 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1702 TypoCorrection corrected = SemaRef.CorrectTypo(
1703 Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]), LookupKind: lookupKind, S,
1704 SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery);
1705 if (corrected) {
1706 // Did we find a protocol?
1707 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1708 SemaRef.diagnoseTypo(corrected,
1709 PDiag(diag::err_undeclared_protocol_suggest)
1710 << identifiers[i]);
1711 lookupKind = Sema::LookupObjCProtocolName;
1712 protocols[i] = proto;
1713 ++numProtocolsResolved;
1714 continue;
1715 }
1716
1717 // Did we find a type?
1718 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1719 SemaRef.diagnoseTypo(corrected,
1720 PDiag(diag::err_unknown_typename_suggest)
1721 << identifiers[i]);
1722 lookupKind = Sema::LookupOrdinaryName;
1723 typeDecls[i] = typeDecl;
1724 ++numTypeDeclsResolved;
1725 continue;
1726 }
1727
1728 // Did we find an Objective-C class?
1729 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1730 SemaRef.diagnoseTypo(corrected,
1731 PDiag(diag::err_unknown_type_or_class_name_suggest)
1732 << identifiers[i] << true);
1733 lookupKind = Sema::LookupOrdinaryName;
1734 typeDecls[i] = objcClass;
1735 ++numTypeDeclsResolved;
1736 continue;
1737 }
1738 }
1739
1740 // We couldn't find anything.
1741 Diag(identifierLocs[i],
1742 (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1743 : lookupKind == Sema::LookupObjCProtocolName
1744 ? diag::err_undeclared_protocol
1745 : diag::err_unknown_typename))
1746 << identifiers[i];
1747 protocols.clear();
1748 typeArgs.clear();
1749 return;
1750 }
1751
1752 // If all of the names were (corrected to) protocols, these were
1753 // protocol qualifiers.
1754 if (numProtocolsResolved == identifiers.size())
1755 return resolvedAsProtocols();
1756
1757 // Otherwise, all of the names were (corrected to) types.
1758 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1759 return resolvedAsTypeDecls();
1760}
1761
1762/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1763/// a class method in its extension.
1764///
1765void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1766 ObjCInterfaceDecl *ID) {
1767 if (!ID)
1768 return; // Possibly due to previous error
1769
1770 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1771 for (auto *MD : ID->methods())
1772 MethodMap[MD->getSelector()] = MD;
1773
1774 if (MethodMap.empty())
1775 return;
1776 for (const auto *Method : CAT->methods()) {
1777 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1778 if (PrevMethod &&
1779 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1780 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1781 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1782 << Method->getDeclName();
1783 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1784 }
1785 }
1786}
1787
1788/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1789SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration(
1790 SourceLocation AtProtocolLoc, ArrayRef<IdentifierLoc> IdentList,
1791 const ParsedAttributesView &attrList) {
1792 ASTContext &Context = getASTContext();
1793 SmallVector<Decl *, 8> DeclsInGroup;
1794 for (const IdentifierLoc &IdentPair : IdentList) {
1795 IdentifierInfo *Ident = IdentPair.getIdentifierInfo();
1796 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1797 II: Ident, IdLoc: IdentPair.getLoc(), Redecl: SemaRef.forRedeclarationInCurContext());
1798 ObjCProtocolDecl *PDecl =
1799 ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: Ident,
1800 nameLoc: IdentPair.getLoc(), atStartLoc: AtProtocolLoc, PrevDecl);
1801
1802 SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1803 CheckObjCDeclScope(PDecl);
1804
1805 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, attrList);
1806 SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1807
1808 if (PrevDecl)
1809 SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1810
1811 DeclsInGroup.push_back(PDecl);
1812 }
1813
1814 return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup);
1815}
1816
1817ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface(
1818 SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1819 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1820 const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1821 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1822 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1823 const ParsedAttributesView &AttrList) {
1824 ASTContext &Context = getASTContext();
1825 ObjCCategoryDecl *CDecl;
1826 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true);
1827
1828 /// Check that class of this category is already completely declared.
1829
1830 if (!IDecl ||
1831 SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1832 diag::err_category_forward_interface,
1833 CategoryName == nullptr)) {
1834 // Create an invalid ObjCCategoryDecl to serve as context for
1835 // the enclosing method declarations. We mark the decl invalid
1836 // to make it clear that this isn't a valid AST.
1837 CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext,
1838 AtLoc: AtInterfaceLoc, ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc,
1839 Id: CategoryName, IDecl, typeParamList);
1840 CDecl->setInvalidDecl();
1841 SemaRef.CurContext->addDecl(CDecl);
1842
1843 if (!IDecl)
1844 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1845 ActOnObjCContainerStartDefinition(CDecl);
1846 return CDecl;
1847 }
1848
1849 if (!CategoryName && IDecl->getImplementation()) {
1850 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1851 Diag(IDecl->getImplementation()->getLocation(),
1852 diag::note_implementation_declared);
1853 }
1854
1855 if (CategoryName) {
1856 /// Check for duplicate interface declaration for this category
1857 if (ObjCCategoryDecl *Previous
1858 = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) {
1859 // Class extensions can be declared multiple times, categories cannot.
1860 Diag(CategoryLoc, diag::warn_dup_category_def)
1861 << ClassName << CategoryName;
1862 Diag(Previous->getLocation(), diag::note_previous_definition);
1863 }
1864 }
1865
1866 // If we have a type parameter list, check it.
1867 if (typeParamList) {
1868 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1869 if (checkTypeParamListConsistency(
1870 S&: SemaRef, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList,
1871 newContext: CategoryName ? TypeParamListContext::Category
1872 : TypeParamListContext::Extension))
1873 typeParamList = nullptr;
1874 } else {
1875 Diag(typeParamList->getLAngleLoc(),
1876 diag::err_objc_parameterized_category_nonclass)
1877 << (CategoryName != nullptr)
1878 << ClassName
1879 << typeParamList->getSourceRange();
1880
1881 typeParamList = nullptr;
1882 }
1883 }
1884
1885 CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtInterfaceLoc,
1886 ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl,
1887 typeParamList);
1888 // FIXME: PushOnScopeChains?
1889 SemaRef.CurContext->addDecl(CDecl);
1890
1891 // Process the attributes before looking at protocols to ensure that the
1892 // availability attribute is attached to the category to provide availability
1893 // checking for protocol uses.
1894 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, AttrList);
1895 SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1896
1897 if (NumProtoRefs) {
1898 diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1899 NumProtoRefs, ProtoLocs);
1900 CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1901 Locs: ProtoLocs, C&: Context);
1902 // Protocols in the class extension belong to the class.
1903 if (CDecl->IsClassExtension())
1904 IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs,
1905 Num: NumProtoRefs, C&: Context);
1906 }
1907
1908 CheckObjCDeclScope(CDecl);
1909 ActOnObjCContainerStartDefinition(CDecl);
1910 return CDecl;
1911}
1912
1913/// ActOnStartCategoryImplementation - Perform semantic checks on the
1914/// category implementation declaration and build an ObjCCategoryImplDecl
1915/// object.
1916ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation(
1917 SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1918 SourceLocation ClassLoc, const IdentifierInfo *CatName,
1919 SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1920 ASTContext &Context = getASTContext();
1921 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true);
1922 ObjCCategoryDecl *CatIDecl = nullptr;
1923 if (IDecl && IDecl->hasDefinition()) {
1924 CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName);
1925 if (!CatIDecl) {
1926 // Category @implementation with no corresponding @interface.
1927 // Create and install one.
1928 CatIDecl =
1929 ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtCatImplLoc,
1930 ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc, Id: CatName, IDecl,
1931 /*typeParamList=*/nullptr);
1932 CatIDecl->setImplicit();
1933 }
1934 }
1935
1936 ObjCCategoryImplDecl *CDecl =
1937 ObjCCategoryImplDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: CatName, classInterface: IDecl,
1938 nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc);
1939 /// Check that class of this category is already completely declared.
1940 if (!IDecl) {
1941 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1942 CDecl->setInvalidDecl();
1943 } else if (SemaRef.RequireCompleteType(ClassLoc,
1944 Context.getObjCInterfaceType(IDecl),
1945 diag::err_undef_interface)) {
1946 CDecl->setInvalidDecl();
1947 }
1948
1949 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, Attrs);
1950 SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1951
1952 // FIXME: PushOnScopeChains?
1953 SemaRef.CurContext->addDecl(CDecl);
1954
1955 // If the interface has the objc_runtime_visible attribute, we
1956 // cannot implement a category for it.
1957 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1958 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1959 << IDecl->getDeclName();
1960 }
1961
1962 /// Check that CatName, category name, is not used in another implementation.
1963 if (CatIDecl) {
1964 if (CatIDecl->getImplementation()) {
1965 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1966 << CatName;
1967 Diag(CatIDecl->getImplementation()->getLocation(),
1968 diag::note_previous_definition);
1969 CDecl->setInvalidDecl();
1970 } else {
1971 CatIDecl->setImplementation(CDecl);
1972 // Warn on implementating category of deprecated class under
1973 // -Wdeprecated-implementations flag.
1974 DiagnoseObjCImplementedDeprecations(SemaRef, CatIDecl,
1975 CDecl->getLocation());
1976 }
1977 }
1978
1979 CheckObjCDeclScope(CDecl);
1980 ActOnObjCContainerStartDefinition(CDecl);
1981 return CDecl;
1982}
1983
1984ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation(
1985 SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1986 SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1987 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1988 ASTContext &Context = getASTContext();
1989 ObjCInterfaceDecl *IDecl = nullptr;
1990 // Check for another declaration kind with the same name.
1991 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
1992 S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName,
1993 Redecl: SemaRef.forRedeclarationInCurContext());
1994 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
1995 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1996 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1997 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) {
1998 // FIXME: This will produce an error if the definition of the interface has
1999 // been imported from a module but is not visible.
2000 SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
2001 diag::warn_undef_interface);
2002 } else {
2003 // We did not find anything with the name ClassName; try to correct for
2004 // typos in the class name.
2005 ObjCInterfaceValidatorCCC CCC{};
2006 TypoCorrection Corrected = SemaRef.CorrectTypo(
2007 Typo: DeclarationNameInfo(ClassName, ClassLoc), LookupKind: Sema::LookupOrdinaryName,
2008 S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::NonError);
2009 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2010 // Suggest the (potentially) correct interface name. Don't provide a
2011 // code-modification hint or use the typo name for recovery, because
2012 // this is just a warning. The program may actually be correct.
2013 SemaRef.diagnoseTypo(
2014 Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName,
2015 /*ErrorRecovery*/ false);
2016 } else {
2017 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2018 }
2019 }
2020
2021 // Check that super class name is valid class name
2022 ObjCInterfaceDecl *SDecl = nullptr;
2023 if (SuperClassname) {
2024 // Check if a different kind of symbol declared in this scope.
2025 PrevDecl =
2026 SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: SuperClassname, Loc: SuperClassLoc,
2027 NameKind: Sema::LookupOrdinaryName);
2028 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
2029 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2030 << SuperClassname;
2031 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2032 } else {
2033 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
2034 if (SDecl && !SDecl->hasDefinition())
2035 SDecl = nullptr;
2036 if (!SDecl)
2037 Diag(SuperClassLoc, diag::err_undef_superclass)
2038 << SuperClassname << ClassName;
2039 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2040 // This implementation and its interface do not have the same
2041 // super class.
2042 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2043 << SDecl->getDeclName();
2044 Diag(SDecl->getLocation(), diag::note_previous_definition);
2045 }
2046 }
2047 }
2048
2049 if (!IDecl) {
2050 // Legacy case of @implementation with no corresponding @interface.
2051 // Build, chain & install the interface decl into the identifier.
2052
2053 // FIXME: Do we support attributes on the @implementation? If so we should
2054 // copy them over.
2055 IDecl =
2056 ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtClassImplLoc,
2057 Id: ClassName, /*typeParamList=*/nullptr,
2058 /*PrevDecl=*/nullptr, ClassLoc, isInternal: true);
2059 SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
2060 IDecl->startDefinition();
2061 if (SDecl) {
2062 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2063 T: Context.getObjCInterfaceType(Decl: SDecl),
2064 Loc: SuperClassLoc));
2065 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2066 } else {
2067 IDecl->setEndOfDefinitionLoc(ClassLoc);
2068 }
2069
2070 SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
2071 } else {
2072 // Mark the interface as being completed, even if it was just as
2073 // @class ....;
2074 // declaration; the user cannot reopen it.
2075 if (!IDecl->hasDefinition())
2076 IDecl->startDefinition();
2077 }
2078
2079 ObjCImplementationDecl *IMPDecl =
2080 ObjCImplementationDecl::Create(C&: Context, DC: SemaRef.CurContext, classInterface: IDecl, superDecl: SDecl,
2081 nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc);
2082
2083 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IMPDecl, Attrs);
2084 SemaRef.AddPragmaAttributes(SemaRef.TUScope, IMPDecl);
2085
2086 if (CheckObjCDeclScope(IMPDecl)) {
2087 ActOnObjCContainerStartDefinition(IMPDecl);
2088 return IMPDecl;
2089 }
2090
2091 // Check that there is no duplicate implementation of this class.
2092 if (IDecl->getImplementation()) {
2093 // FIXME: Don't leak everything!
2094 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2095 Diag(IDecl->getImplementation()->getLocation(),
2096 diag::note_previous_definition);
2097 IMPDecl->setInvalidDecl();
2098 } else { // add it to the list.
2099 IDecl->setImplementation(IMPDecl);
2100 SemaRef.PushOnScopeChains(IMPDecl, SemaRef.TUScope);
2101 // Warn on implementating deprecated class under
2102 // -Wdeprecated-implementations flag.
2103 DiagnoseObjCImplementedDeprecations(SemaRef, IDecl, IMPDecl->getLocation());
2104 }
2105
2106 // If the superclass has the objc_runtime_visible attribute, we
2107 // cannot implement a subclass of it.
2108 if (IDecl->getSuperClass() &&
2109 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2110 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2111 << IDecl->getDeclName()
2112 << IDecl->getSuperClass()->getDeclName();
2113 }
2114
2115 ActOnObjCContainerStartDefinition(IMPDecl);
2116 return IMPDecl;
2117}
2118
2119SemaObjC::DeclGroupPtrTy
2120SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
2121 ArrayRef<Decl *> Decls) {
2122 SmallVector<Decl *, 64> DeclsInGroup;
2123 DeclsInGroup.reserve(N: Decls.size() + 1);
2124
2125 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2126 Decl *Dcl = Decls[i];
2127 if (!Dcl)
2128 continue;
2129 if (Dcl->getDeclContext()->isFileContext())
2130 Dcl->setTopLevelDeclInObjCContainer();
2131 DeclsInGroup.push_back(Elt: Dcl);
2132 }
2133
2134 DeclsInGroup.push_back(Elt: ObjCImpDecl);
2135
2136 // Reset the cached layout if there are any ivars added to
2137 // the implementation.
2138 if (auto *ImplD = dyn_cast<ObjCImplementationDecl>(Val: ObjCImpDecl))
2139 if (!ImplD->ivar_empty())
2140 getASTContext().ResetObjCLayout(ImplD->getClassInterface());
2141
2142 return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup);
2143}
2144
2145void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2146 ObjCIvarDecl **ivars, unsigned numIvars,
2147 SourceLocation RBrace) {
2148 assert(ImpDecl && "missing implementation decl");
2149 ASTContext &Context = getASTContext();
2150 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2151 if (!IDecl)
2152 return;
2153 /// Check case of non-existing \@interface decl.
2154 /// (legacy objective-c \@implementation decl without an \@interface decl).
2155 /// Add implementations's ivar to the synthesize class's ivar list.
2156 if (IDecl->isImplicitInterfaceDecl()) {
2157 IDecl->setEndOfDefinitionLoc(RBrace);
2158 // Add ivar's to class's DeclContext.
2159 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2160 ivars[i]->setLexicalDeclContext(ImpDecl);
2161 // In a 'fragile' runtime the ivar was added to the implicit
2162 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2163 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2164 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2165 if (!getLangOpts().ObjCRuntime.isFragile())
2166 IDecl->makeDeclVisibleInContext(ivars[i]);
2167 ImpDecl->addDecl(ivars[i]);
2168 }
2169
2170 return;
2171 }
2172 // If implementation has empty ivar list, just return.
2173 if (numIvars == 0)
2174 return;
2175
2176 assert(ivars && "missing @implementation ivars");
2177 if (getLangOpts().ObjCRuntime.isNonFragile()) {
2178 if (ImpDecl->getSuperClass())
2179 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2180 for (unsigned i = 0; i < numIvars; i++) {
2181 ObjCIvarDecl* ImplIvar = ivars[i];
2182 if (const ObjCIvarDecl *ClsIvar =
2183 IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) {
2184 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2185 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2186 continue;
2187 }
2188 // Check class extensions (unnamed categories) for duplicate ivars.
2189 for (const auto *CDecl : IDecl->visible_extensions()) {
2190 if (const ObjCIvarDecl *ClsExtIvar =
2191 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2192 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2193 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2194 continue;
2195 }
2196 }
2197 // Instance ivar to Implementation's DeclContext.
2198 ImplIvar->setLexicalDeclContext(ImpDecl);
2199 IDecl->makeDeclVisibleInContext(ImplIvar);
2200 ImpDecl->addDecl(ImplIvar);
2201 }
2202 return;
2203 }
2204 // Check interface's Ivar list against those in the implementation.
2205 // names and types must match.
2206 //
2207 unsigned j = 0;
2208 ObjCInterfaceDecl::ivar_iterator
2209 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2210 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2211 ObjCIvarDecl* ImplIvar = ivars[j++];
2212 ObjCIvarDecl* ClsIvar = *IVI;
2213 assert (ImplIvar && "missing implementation ivar");
2214 assert (ClsIvar && "missing class ivar");
2215
2216 // First, make sure the types match.
2217 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2218 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2219 << ImplIvar->getIdentifier()
2220 << ImplIvar->getType() << ClsIvar->getType();
2221 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2222 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2223 ImplIvar->getBitWidthValue() != ClsIvar->getBitWidthValue()) {
2224 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2225 diag::err_conflicting_ivar_bitwidth)
2226 << ImplIvar->getIdentifier();
2227 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2228 diag::note_previous_definition);
2229 }
2230 // Make sure the names are identical.
2231 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2232 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2233 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2234 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2235 }
2236 --numIvars;
2237 }
2238
2239 if (numIvars > 0)
2240 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2241 else if (IVI != IVE)
2242 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2243}
2244
2245static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) {
2246 // No point warning no definition of method which is 'unavailable'.
2247 return M->getAvailability() != AR_Unavailable;
2248}
2249
2250static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2251 ObjCMethodDecl *method, bool &IncompleteImpl,
2252 unsigned DiagID,
2253 NamedDecl *NeededFor = nullptr) {
2254 if (!shouldWarnUndefinedMethod(M: method))
2255 return;
2256
2257 // FIXME: For now ignore 'IncompleteImpl'.
2258 // Previously we grouped all unimplemented methods under a single
2259 // warning, but some users strongly voiced that they would prefer
2260 // separate warnings. We will give that approach a try, as that
2261 // matches what we do with protocols.
2262 {
2263 const SemaBase::SemaDiagnosticBuilder &B =
2264 S.Diag(Impl->getLocation(), DiagID);
2265 B << method;
2266 if (NeededFor)
2267 B << NeededFor;
2268
2269 // Add an empty definition at the end of the @implementation.
2270 std::string FixItStr;
2271 llvm::raw_string_ostream Out(FixItStr);
2272 method->print(Out, Impl->getASTContext().getPrintingPolicy());
2273 Out << " {\n}\n\n";
2274
2275 SourceLocation Loc = Impl->getAtEndRange().getBegin();
2276 B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr);
2277 }
2278
2279 // Issue a note to the original declaration.
2280 SourceLocation MethodLoc = method->getBeginLoc();
2281 if (MethodLoc.isValid())
2282 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2283}
2284
2285/// Determines if type B can be substituted for type A. Returns true if we can
2286/// guarantee that anything that the user will do to an object of type A can
2287/// also be done to an object of type B. This is trivially true if the two
2288/// types are the same, or if B is a subclass of A. It becomes more complex
2289/// in cases where protocols are involved.
2290///
2291/// Object types in Objective-C describe the minimum requirements for an
2292/// object, rather than providing a complete description of a type. For
2293/// example, if A is a subclass of B, then B* may refer to an instance of A.
2294/// The principle of substitutability means that we may use an instance of A
2295/// anywhere that we may use an instance of B - it will implement all of the
2296/// ivars of B and all of the methods of B.
2297///
2298/// This substitutability is important when type checking methods, because
2299/// the implementation may have stricter type definitions than the interface.
2300/// The interface specifies minimum requirements, but the implementation may
2301/// have more accurate ones. For example, a method may privately accept
2302/// instances of B, but only publish that it accepts instances of A. Any
2303/// object passed to it will be type checked against B, and so will implicitly
2304/// by a valid A*. Similarly, a method may return a subclass of the class that
2305/// it is declared as returning.
2306///
2307/// This is most important when considering subclassing. A method in a
2308/// subclass must accept any object as an argument that its superclass's
2309/// implementation accepts. It may, however, accept a more general type
2310/// without breaking substitutability (i.e. you can still use the subclass
2311/// anywhere that you can use the superclass, but not vice versa). The
2312/// converse requirement applies to return types: the return type for a
2313/// subclass method must be a valid object of the kind that the superclass
2314/// advertises, but it may be specified more accurately. This avoids the need
2315/// for explicit down-casting by callers.
2316///
2317/// Note: This is a stricter requirement than for assignment.
2318static bool isObjCTypeSubstitutable(ASTContext &Context,
2319 const ObjCObjectPointerType *A,
2320 const ObjCObjectPointerType *B,
2321 bool rejectId) {
2322 // Reject a protocol-unqualified id.
2323 if (rejectId && B->isObjCIdType()) return false;
2324
2325 // If B is a qualified id, then A must also be a qualified id and it must
2326 // implement all of the protocols in B. It may not be a qualified class.
2327 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2328 // stricter definition so it is not substitutable for id<A>.
2329 if (B->isObjCQualifiedIdType()) {
2330 return A->isObjCQualifiedIdType() &&
2331 Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false);
2332 }
2333
2334 /*
2335 // id is a special type that bypasses type checking completely. We want a
2336 // warning when it is used in one place but not another.
2337 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2338
2339
2340 // If B is a qualified id, then A must also be a qualified id (which it isn't
2341 // if we've got this far)
2342 if (B->isObjCQualifiedIdType()) return false;
2343 */
2344
2345 // Now we know that A and B are (potentially-qualified) class types. The
2346 // normal rules for assignment apply.
2347 return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B);
2348}
2349
2350static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2351 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2352}
2353
2354/// Determine whether two set of Objective-C declaration qualifiers conflict.
2355static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2356 Decl::ObjCDeclQualifier y) {
2357 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2358 (y & ~Decl::OBJC_TQ_CSNullability);
2359}
2360
2361static bool CheckMethodOverrideReturn(Sema &S,
2362 ObjCMethodDecl *MethodImpl,
2363 ObjCMethodDecl *MethodDecl,
2364 bool IsProtocolMethodDecl,
2365 bool IsOverridingMode,
2366 bool Warn) {
2367 if (IsProtocolMethodDecl &&
2368 objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(),
2369 y: MethodImpl->getObjCDeclQualifier())) {
2370 if (Warn) {
2371 S.Diag(MethodImpl->getLocation(),
2372 (IsOverridingMode
2373 ? diag::warn_conflicting_overriding_ret_type_modifiers
2374 : diag::warn_conflicting_ret_type_modifiers))
2375 << MethodImpl->getDeclName()
2376 << MethodImpl->getReturnTypeSourceRange();
2377 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2378 << MethodDecl->getReturnTypeSourceRange();
2379 }
2380 else
2381 return false;
2382 }
2383 if (Warn && IsOverridingMode &&
2384 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2385 !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(),
2386 SuperT: MethodDecl->getReturnType(),
2387 IsParam: false)) {
2388 auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2389 auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2390 S.Diag(MethodImpl->getLocation(),
2391 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2392 << DiagNullabilityKind(nullabilityMethodImpl,
2393 ((MethodImpl->getObjCDeclQualifier() &
2394 Decl::OBJC_TQ_CSNullability) != 0))
2395 << DiagNullabilityKind(nullabilityMethodDecl,
2396 ((MethodDecl->getObjCDeclQualifier() &
2397 Decl::OBJC_TQ_CSNullability) != 0));
2398 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2399 }
2400
2401 if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(),
2402 T2: MethodDecl->getReturnType()))
2403 return true;
2404 if (!Warn)
2405 return false;
2406
2407 unsigned DiagID =
2408 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2409 : diag::warn_conflicting_ret_types;
2410
2411 // Mismatches between ObjC pointers go into a different warning
2412 // category, and sometimes they're even completely explicitly allowed.
2413 if (const ObjCObjectPointerType *ImplPtrTy =
2414 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2415 if (const ObjCObjectPointerType *IfacePtrTy =
2416 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2417 // Allow non-matching return types as long as they don't violate
2418 // the principle of substitutability. Specifically, we permit
2419 // return types that are subclasses of the declared return type,
2420 // or that are more-qualified versions of the declared type.
2421 if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false))
2422 return false;
2423
2424 DiagID =
2425 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2426 : diag::warn_non_covariant_ret_types;
2427 }
2428 }
2429
2430 S.Diag(MethodImpl->getLocation(), DiagID)
2431 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2432 << MethodImpl->getReturnType()
2433 << MethodImpl->getReturnTypeSourceRange();
2434 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2435 ? diag::note_previous_declaration
2436 : diag::note_previous_definition)
2437 << MethodDecl->getReturnTypeSourceRange();
2438 return false;
2439}
2440
2441static bool CheckMethodOverrideParam(Sema &S,
2442 ObjCMethodDecl *MethodImpl,
2443 ObjCMethodDecl *MethodDecl,
2444 ParmVarDecl *ImplVar,
2445 ParmVarDecl *IfaceVar,
2446 bool IsProtocolMethodDecl,
2447 bool IsOverridingMode,
2448 bool Warn) {
2449 if (IsProtocolMethodDecl &&
2450 objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(),
2451 y: IfaceVar->getObjCDeclQualifier())) {
2452 if (Warn) {
2453 if (IsOverridingMode)
2454 S.Diag(ImplVar->getLocation(),
2455 diag::warn_conflicting_overriding_param_modifiers)
2456 << getTypeRange(ImplVar->getTypeSourceInfo())
2457 << MethodImpl->getDeclName();
2458 else S.Diag(ImplVar->getLocation(),
2459 diag::warn_conflicting_param_modifiers)
2460 << getTypeRange(ImplVar->getTypeSourceInfo())
2461 << MethodImpl->getDeclName();
2462 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2463 << getTypeRange(IfaceVar->getTypeSourceInfo());
2464 }
2465 else
2466 return false;
2467 }
2468
2469 QualType ImplTy = ImplVar->getType();
2470 QualType IfaceTy = IfaceVar->getType();
2471 if (Warn && IsOverridingMode &&
2472 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2473 !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) {
2474 S.Diag(ImplVar->getLocation(),
2475 diag::warn_conflicting_nullability_attr_overriding_param_types)
2476 << DiagNullabilityKind(*ImplTy->getNullability(),
2477 ((ImplVar->getObjCDeclQualifier() &
2478 Decl::OBJC_TQ_CSNullability) != 0))
2479 << DiagNullabilityKind(*IfaceTy->getNullability(),
2480 ((IfaceVar->getObjCDeclQualifier() &
2481 Decl::OBJC_TQ_CSNullability) != 0));
2482 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2483 }
2484 if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy))
2485 return true;
2486
2487 if (!Warn)
2488 return false;
2489 unsigned DiagID =
2490 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2491 : diag::warn_conflicting_param_types;
2492
2493 // Mismatches between ObjC pointers go into a different warning
2494 // category, and sometimes they're even completely explicitly allowed..
2495 if (const ObjCObjectPointerType *ImplPtrTy =
2496 ImplTy->getAs<ObjCObjectPointerType>()) {
2497 if (const ObjCObjectPointerType *IfacePtrTy =
2498 IfaceTy->getAs<ObjCObjectPointerType>()) {
2499 // Allow non-matching argument types as long as they don't
2500 // violate the principle of substitutability. Specifically, the
2501 // implementation must accept any objects that the superclass
2502 // accepts, however it may also accept others.
2503 if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true))
2504 return false;
2505
2506 DiagID =
2507 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2508 : diag::warn_non_contravariant_param_types;
2509 }
2510 }
2511
2512 S.Diag(ImplVar->getLocation(), DiagID)
2513 << getTypeRange(ImplVar->getTypeSourceInfo())
2514 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2515 S.Diag(IfaceVar->getLocation(),
2516 (IsOverridingMode ? diag::note_previous_declaration
2517 : diag::note_previous_definition))
2518 << getTypeRange(IfaceVar->getTypeSourceInfo());
2519 return false;
2520}
2521
2522/// In ARC, check whether the conventional meanings of the two methods
2523/// match. If they don't, it's a hard error.
2524static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2525 ObjCMethodDecl *decl) {
2526 ObjCMethodFamily implFamily = impl->getMethodFamily();
2527 ObjCMethodFamily declFamily = decl->getMethodFamily();
2528 if (implFamily == declFamily) return false;
2529
2530 // Since conventions are sorted by selector, the only possibility is
2531 // that the types differ enough to cause one selector or the other
2532 // to fall out of the family.
2533 assert(implFamily == OMF_None || declFamily == OMF_None);
2534
2535 // No further diagnostics required on invalid declarations.
2536 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2537
2538 const ObjCMethodDecl *unmatched = impl;
2539 ObjCMethodFamily family = declFamily;
2540 unsigned errorID = diag::err_arc_lost_method_convention;
2541 unsigned noteID = diag::note_arc_lost_method_convention;
2542 if (declFamily == OMF_None) {
2543 unmatched = decl;
2544 family = implFamily;
2545 errorID = diag::err_arc_gained_method_convention;
2546 noteID = diag::note_arc_gained_method_convention;
2547 }
2548
2549 // Indexes into a %select clause in the diagnostic.
2550 enum FamilySelector {
2551 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2552 };
2553 FamilySelector familySelector = FamilySelector();
2554
2555 switch (family) {
2556 case OMF_None: llvm_unreachable("logic error, no method convention");
2557 case OMF_retain:
2558 case OMF_release:
2559 case OMF_autorelease:
2560 case OMF_dealloc:
2561 case OMF_finalize:
2562 case OMF_retainCount:
2563 case OMF_self:
2564 case OMF_initialize:
2565 case OMF_performSelector:
2566 // Mismatches for these methods don't change ownership
2567 // conventions, so we don't care.
2568 return false;
2569
2570 case OMF_init: familySelector = F_init; break;
2571 case OMF_alloc: familySelector = F_alloc; break;
2572 case OMF_copy: familySelector = F_copy; break;
2573 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2574 case OMF_new: familySelector = F_new; break;
2575 }
2576
2577 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2578 ReasonSelector reasonSelector;
2579
2580 // The only reason these methods don't fall within their families is
2581 // due to unusual result types.
2582 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2583 reasonSelector = R_UnrelatedReturn;
2584 } else {
2585 reasonSelector = R_NonObjectReturn;
2586 }
2587
2588 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2589 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2590
2591 return true;
2592}
2593
2594void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2595 ObjCMethodDecl *MethodDecl,
2596 bool IsProtocolMethodDecl) {
2597 if (getLangOpts().ObjCAutoRefCount &&
2598 checkMethodFamilyMismatch(S&: SemaRef, impl: ImpMethodDecl, decl: MethodDecl))
2599 return;
2600
2601 CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl,
2602 IsProtocolMethodDecl, IsOverridingMode: false, Warn: true);
2603
2604 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2605 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2606 EF = MethodDecl->param_end();
2607 IM != EM && IF != EF; ++IM, ++IF) {
2608 CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF,
2609 IsProtocolMethodDecl, IsOverridingMode: false, Warn: true);
2610 }
2611
2612 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2613 Diag(ImpMethodDecl->getLocation(),
2614 diag::warn_conflicting_variadic);
2615 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2616 }
2617}
2618
2619void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2620 ObjCMethodDecl *Overridden,
2621 bool IsProtocolMethodDecl) {
2622
2623 CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, IsProtocolMethodDecl,
2624 IsOverridingMode: true, Warn: true);
2625
2626 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2627 IF = Overridden->param_begin(), EM = Method->param_end(),
2628 EF = Overridden->param_end();
2629 IM != EM && IF != EF; ++IM, ++IF) {
2630 CheckMethodOverrideParam(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF,
2631 IsProtocolMethodDecl, IsOverridingMode: true, Warn: true);
2632 }
2633
2634 if (Method->isVariadic() != Overridden->isVariadic()) {
2635 Diag(Method->getLocation(),
2636 diag::warn_conflicting_overriding_variadic);
2637 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2638 }
2639}
2640
2641/// WarnExactTypedMethods - This routine issues a warning if method
2642/// implementation declaration matches exactly that of its declaration.
2643void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2644 ObjCMethodDecl *MethodDecl,
2645 bool IsProtocolMethodDecl) {
2646 ASTContext &Context = getASTContext();
2647 // don't issue warning when protocol method is optional because primary
2648 // class is not required to implement it and it is safe for protocol
2649 // to implement it.
2650 if (MethodDecl->getImplementationControl() ==
2651 ObjCImplementationControl::Optional)
2652 return;
2653 // don't issue warning when primary class's method is
2654 // deprecated/unavailable.
2655 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2656 MethodDecl->hasAttr<DeprecatedAttr>())
2657 return;
2658
2659 bool match = CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl,
2660 IsProtocolMethodDecl, IsOverridingMode: false, Warn: false);
2661 if (match)
2662 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2663 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2664 EF = MethodDecl->param_end();
2665 IM != EM && IF != EF; ++IM, ++IF) {
2666 match = CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM,
2667 IfaceVar: *IF, IsProtocolMethodDecl, IsOverridingMode: false, Warn: false);
2668 if (!match)
2669 break;
2670 }
2671 if (match)
2672 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2673 if (match)
2674 match = !(MethodDecl->isClassMethod() &&
2675 MethodDecl->getSelector() == GetNullarySelector(name: "load", Ctx&: Context));
2676
2677 if (match) {
2678 Diag(ImpMethodDecl->getLocation(),
2679 diag::warn_category_method_impl_match);
2680 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2681 << MethodDecl->getDeclName();
2682 }
2683}
2684
2685/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2686/// improve the efficiency of selector lookups and type checking by associating
2687/// with each protocol / interface / category the flattened instance tables. If
2688/// we used an immutable set to keep the table then it wouldn't add significant
2689/// memory cost and it would be handy for lookups.
2690
2691typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2692typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2693
2694static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2695 ProtocolNameSet &PNS) {
2696 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2697 PNS.insert(PDecl->getIdentifier());
2698 for (const auto *PI : PDecl->protocols())
2699 findProtocolsWithExplicitImpls(PDecl: PI, PNS);
2700}
2701
2702/// Recursively populates a set with all conformed protocols in a class
2703/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2704/// attribute.
2705static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2706 ProtocolNameSet &PNS) {
2707 if (!Super)
2708 return;
2709
2710 for (const auto *I : Super->all_referenced_protocols())
2711 findProtocolsWithExplicitImpls(PDecl: I, PNS);
2712
2713 findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS);
2714}
2715
2716/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2717/// Declared in protocol, and those referenced by it.
2718static void CheckProtocolMethodDefs(
2719 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2720 const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2721 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2722 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl);
2723 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2724 : dyn_cast<ObjCInterfaceDecl>(Val: CDecl);
2725 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2726
2727 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2728 ObjCInterfaceDecl *NSIDecl = nullptr;
2729
2730 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2731 // then we should check if any class in the super class hierarchy also
2732 // conforms to this protocol, either directly or via protocol inheritance.
2733 // If so, we can skip checking this protocol completely because we
2734 // know that a parent class already satisfies this protocol.
2735 //
2736 // Note: we could generalize this logic for all protocols, and merely
2737 // add the limit on looking at the super class chain for just
2738 // specially marked protocols. This may be a good optimization. This
2739 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2740 // protocols for now for controlled evaluation.
2741 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2742 if (!ProtocolsExplictImpl) {
2743 ProtocolsExplictImpl.reset(p: new ProtocolNameSet);
2744 findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl);
2745 }
2746 if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier()))
2747 return;
2748
2749 // If no super class conforms to the protocol, we should not search
2750 // for methods in the super class to implicitly satisfy the protocol.
2751 Super = nullptr;
2752 }
2753
2754 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2755 // check to see if class implements forwardInvocation method and objects
2756 // of this class are derived from 'NSProxy' so that to forward requests
2757 // from one object to another.
2758 // Under such conditions, which means that every method possible is
2759 // implemented in the class, we should not issue "Method definition not
2760 // found" warnings.
2761 // FIXME: Use a general GetUnarySelector method for this.
2762 const IdentifierInfo *II = &S.Context.Idents.get(Name: "forwardInvocation");
2763 Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II);
2764 if (InsMap.count(Ptr: fISelector))
2765 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2766 // need be implemented in the implementation.
2767 NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy"));
2768 }
2769
2770 // If this is a forward protocol declaration, get its definition.
2771 if (!PDecl->isThisDeclarationADefinition() &&
2772 PDecl->getDefinition())
2773 PDecl = PDecl->getDefinition();
2774
2775 // If a method lookup fails locally we still need to look and see if
2776 // the method was implemented by a base class or an inherited
2777 // protocol. This lookup is slow, but occurs rarely in correct code
2778 // and otherwise would terminate in a warning.
2779
2780 // check unimplemented instance methods.
2781 if (!NSIDecl)
2782 for (auto *method : PDecl->instance_methods()) {
2783 if (method->getImplementationControl() !=
2784 ObjCImplementationControl::Optional &&
2785 !method->isPropertyAccessor() &&
2786 !InsMap.count(method->getSelector()) &&
2787 (!Super || !Super->lookupMethod(
2788 method->getSelector(), true /* instance */,
2789 false /* shallowCategory */, true /* followsSuper */,
2790 nullptr /* category */))) {
2791 // If a method is not implemented in the category implementation but
2792 // has been declared in its primary class, superclass,
2793 // or in one of their protocols, no need to issue the warning.
2794 // This is because method will be implemented in the primary class
2795 // or one of its super class implementation.
2796
2797 // Ugly, but necessary. Method declared in protocol might have
2798 // have been synthesized due to a property declared in the class which
2799 // uses the protocol.
2800 if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2801 method->getSelector(), true /* instance */,
2802 true /* shallowCategoryLookup */, false /* followSuper */))
2803 if (C || MethodInClass->isPropertyAccessor())
2804 continue;
2805 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2806 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2807 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2808 }
2809 }
2810 }
2811 // check unimplemented class methods
2812 for (auto *method : PDecl->class_methods()) {
2813 if (method->getImplementationControl() !=
2814 ObjCImplementationControl::Optional &&
2815 !ClsMap.count(method->getSelector()) &&
2816 (!Super || !Super->lookupMethod(
2817 method->getSelector(), false /* class method */,
2818 false /* shallowCategoryLookup */,
2819 true /* followSuper */, nullptr /* category */))) {
2820 // See above comment for instance method lookups.
2821 if (C && IDecl->lookupMethod(method->getSelector(),
2822 false /* class */,
2823 true /* shallowCategoryLookup */,
2824 false /* followSuper */))
2825 continue;
2826
2827 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2828 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2829 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2830 }
2831 }
2832 }
2833 // Check on this protocols's referenced protocols, recursively.
2834 for (auto *PI : PDecl->protocols())
2835 CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2836 ProtocolsExplictImpl);
2837}
2838
2839/// MatchAllMethodDeclarations - Check methods declared in interface
2840/// or protocol against those declared in their implementations.
2841///
2842void SemaObjC::MatchAllMethodDeclarations(
2843 const SelectorSet &InsMap, const SelectorSet &ClsMap,
2844 SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2845 ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2846 bool WarnCategoryMethodImpl) {
2847 // Check and see if instance methods in class interface have been
2848 // implemented in the implementation class. If so, their types match.
2849 for (auto *I : CDecl->instance_methods()) {
2850 if (!InsMapSeen.insert(Ptr: I->getSelector()).second)
2851 continue;
2852 if (!I->isPropertyAccessor() &&
2853 !InsMap.count(Ptr: I->getSelector())) {
2854 if (ImmediateClass)
2855 WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2856 diag::warn_undef_method_impl);
2857 continue;
2858 } else {
2859 ObjCMethodDecl *ImpMethodDecl =
2860 IMPDecl->getInstanceMethod(I->getSelector());
2861 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2862 "Expected to find the method through lookup as well");
2863 // ImpMethodDecl may be null as in a @dynamic property.
2864 if (ImpMethodDecl) {
2865 // Skip property accessor function stubs.
2866 if (ImpMethodDecl->isSynthesizedAccessorStub())
2867 continue;
2868 if (!WarnCategoryMethodImpl)
2869 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I,
2870 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2871 else if (!I->isPropertyAccessor())
2872 WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2873 }
2874 }
2875 }
2876
2877 // Check and see if class methods in class interface have been
2878 // implemented in the implementation class. If so, their types match.
2879 for (auto *I : CDecl->class_methods()) {
2880 if (!ClsMapSeen.insert(Ptr: I->getSelector()).second)
2881 continue;
2882 if (!I->isPropertyAccessor() &&
2883 !ClsMap.count(Ptr: I->getSelector())) {
2884 if (ImmediateClass)
2885 WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2886 diag::warn_undef_method_impl);
2887 } else {
2888 ObjCMethodDecl *ImpMethodDecl =
2889 IMPDecl->getClassMethod(I->getSelector());
2890 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2891 "Expected to find the method through lookup as well");
2892 // ImpMethodDecl may be null as in a @dynamic property.
2893 if (ImpMethodDecl) {
2894 // Skip property accessor function stubs.
2895 if (ImpMethodDecl->isSynthesizedAccessorStub())
2896 continue;
2897 if (!WarnCategoryMethodImpl)
2898 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I,
2899 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2900 else if (!I->isPropertyAccessor())
2901 WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2902 }
2903 }
2904 }
2905
2906 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) {
2907 // Also, check for methods declared in protocols inherited by
2908 // this protocol.
2909 for (auto *PI : PD->protocols())
2910 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2911 IMPDecl, PI, IncompleteImpl, false,
2912 WarnCategoryMethodImpl);
2913 }
2914
2915 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) {
2916 // when checking that methods in implementation match their declaration,
2917 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2918 // extension; as well as those in categories.
2919 if (!WarnCategoryMethodImpl) {
2920 for (auto *Cat : I->visible_categories())
2921 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2922 IMPDecl, Cat, IncompleteImpl,
2923 ImmediateClass && Cat->IsClassExtension(),
2924 WarnCategoryMethodImpl);
2925 } else {
2926 // Also methods in class extensions need be looked at next.
2927 for (auto *Ext : I->visible_extensions())
2928 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2929 IMPDecl, Ext, IncompleteImpl, false,
2930 WarnCategoryMethodImpl);
2931 }
2932
2933 // Check for any implementation of a methods declared in protocol.
2934 for (auto *PI : I->all_referenced_protocols())
2935 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2936 IMPDecl, PI, IncompleteImpl, false,
2937 WarnCategoryMethodImpl);
2938
2939 // FIXME. For now, we are not checking for exact match of methods
2940 // in category implementation and its primary class's super class.
2941 if (!WarnCategoryMethodImpl && I->getSuperClass())
2942 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2943 IMPDecl,
2944 I->getSuperClass(), IncompleteImpl, false);
2945 }
2946}
2947
2948/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2949/// category matches with those implemented in its primary class and
2950/// warns each time an exact match is found.
2951void SemaObjC::CheckCategoryVsClassMethodMatches(
2952 ObjCCategoryImplDecl *CatIMPDecl) {
2953 // Get category's primary class.
2954 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2955 if (!CatDecl)
2956 return;
2957 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2958 if (!IDecl)
2959 return;
2960 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2961 SelectorSet InsMap, ClsMap;
2962
2963 for (const auto *I : CatIMPDecl->instance_methods()) {
2964 Selector Sel = I->getSelector();
2965 // When checking for methods implemented in the category, skip over
2966 // those declared in category class's super class. This is because
2967 // the super class must implement the method.
2968 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2969 continue;
2970 InsMap.insert(Sel);
2971 }
2972
2973 for (const auto *I : CatIMPDecl->class_methods()) {
2974 Selector Sel = I->getSelector();
2975 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2976 continue;
2977 ClsMap.insert(Sel);
2978 }
2979 if (InsMap.empty() && ClsMap.empty())
2980 return;
2981
2982 SelectorSet InsMapSeen, ClsMapSeen;
2983 bool IncompleteImpl = false;
2984 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2985 CatIMPDecl, IDecl,
2986 IncompleteImpl, false,
2987 true /*WarnCategoryMethodImpl*/);
2988}
2989
2990void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl,
2991 ObjCContainerDecl *CDecl,
2992 bool IncompleteImpl) {
2993 SelectorSet InsMap;
2994 // Check and see if instance methods in class interface have been
2995 // implemented in the implementation class.
2996 for (const auto *I : IMPDecl->instance_methods())
2997 InsMap.insert(I->getSelector());
2998
2999 // Add the selectors for getters/setters of @dynamic properties.
3000 for (const auto *PImpl : IMPDecl->property_impls()) {
3001 // We only care about @dynamic implementations.
3002 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
3003 continue;
3004
3005 const auto *P = PImpl->getPropertyDecl();
3006 if (!P) continue;
3007
3008 InsMap.insert(Ptr: P->getGetterName());
3009 if (!P->getSetterName().isNull())
3010 InsMap.insert(Ptr: P->getSetterName());
3011 }
3012
3013 // Check and see if properties declared in the interface have either 1)
3014 // an implementation or 2) there is a @synthesize/@dynamic implementation
3015 // of the property in the @implementation.
3016 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) {
3017 bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3018 getLangOpts().ObjCRuntime.isNonFragile() &&
3019 !IDecl->isObjCRequiresPropertyDefs();
3020 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3021 }
3022
3023 // Diagnose null-resettable synthesized setters.
3024 diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl);
3025
3026 SelectorSet ClsMap;
3027 for (const auto *I : IMPDecl->class_methods())
3028 ClsMap.insert(I->getSelector());
3029
3030 // Check for type conflict of methods declared in a class/protocol and
3031 // its implementation; if any.
3032 SelectorSet InsMapSeen, ClsMapSeen;
3033 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3034 IMPDecl, CDecl,
3035 IncompleteImpl, ImmediateClass: true);
3036
3037 // check all methods implemented in category against those declared
3038 // in its primary class.
3039 if (ObjCCategoryImplDecl *CatDecl =
3040 dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl))
3041 CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl);
3042
3043 // Check the protocol list for unimplemented methods in the @implementation
3044 // class.
3045 // Check and see if class methods in class interface have been
3046 // implemented in the implementation class.
3047
3048 LazyProtocolNameSet ExplicitImplProtocols;
3049
3050 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) {
3051 for (auto *PI : I->all_referenced_protocols())
3052 CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap,
3053 ClsMap, I, ExplicitImplProtocols);
3054 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) {
3055 // For extended class, unimplemented methods in its protocols will
3056 // be reported in the primary class.
3057 if (!C->IsClassExtension()) {
3058 for (auto *P : C->protocols())
3059 CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap,
3060 ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols);
3061 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3062 /*SynthesizeProperties=*/false);
3063 }
3064 } else
3065 llvm_unreachable("invalid ObjCContainerDecl type.");
3066}
3067
3068SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration(
3069 SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3070 SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3071 unsigned NumElts) {
3072 ASTContext &Context = getASTContext();
3073 SmallVector<Decl *, 8> DeclsInGroup;
3074 for (unsigned i = 0; i != NumElts; ++i) {
3075 // Check for another declaration kind with the same name.
3076 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
3077 S: SemaRef.TUScope, Name: IdentList[i], Loc: IdentLocs[i], NameKind: Sema::LookupOrdinaryName,
3078 Redecl: SemaRef.forRedeclarationInCurContext());
3079 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
3080 // GCC apparently allows the following idiom:
3081 //
3082 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3083 // @class XCElementToggler;
3084 //
3085 // Here we have chosen to ignore the forward class declaration
3086 // with a warning. Since this is the implied behavior.
3087 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl);
3088 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3089 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3090 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3091 } else {
3092 // a forward class declaration matching a typedef name of a class refers
3093 // to the underlying class. Just ignore the forward class with a warning
3094 // as this will force the intended behavior which is to lookup the
3095 // typedef name.
3096 if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) {
3097 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3098 << IdentList[i];
3099 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3100 continue;
3101 }
3102 }
3103 }
3104
3105 // Create a declaration to describe this forward declaration.
3106 ObjCInterfaceDecl *PrevIDecl
3107 = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
3108
3109 IdentifierInfo *ClassName = IdentList[i];
3110 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3111 // A previous decl with a different name is because of
3112 // @compatibility_alias, for example:
3113 // \code
3114 // @class NewImage;
3115 // @compatibility_alias OldImage NewImage;
3116 // \endcode
3117 // A lookup for 'OldImage' will return the 'NewImage' decl.
3118 //
3119 // In such a case use the real declaration name, instead of the alias one,
3120 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3121 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3122 // has been aliased.
3123 ClassName = PrevIDecl->getIdentifier();
3124 }
3125
3126 // If this forward declaration has type parameters, compare them with the
3127 // type parameters of the previous declaration.
3128 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3129 if (PrevIDecl && TypeParams) {
3130 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3131 // Check for consistency with the previous declaration.
3132 if (checkTypeParamListConsistency(
3133 S&: SemaRef, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams,
3134 newContext: TypeParamListContext::ForwardDeclaration)) {
3135 TypeParams = nullptr;
3136 }
3137 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3138 // The @interface does not have type parameters. Complain.
3139 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3140 << ClassName
3141 << TypeParams->getSourceRange();
3142 Diag(Def->getLocation(), diag::note_defined_here)
3143 << ClassName;
3144
3145 TypeParams = nullptr;
3146 }
3147 }
3148
3149 ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(
3150 C: Context, DC: SemaRef.CurContext, atLoc: AtClassLoc, Id: ClassName, typeParamList: TypeParams,
3151 PrevDecl: PrevIDecl, ClassLoc: IdentLocs[i]);
3152 IDecl->setAtEndRange(IdentLocs[i]);
3153
3154 if (PrevIDecl)
3155 SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
3156
3157 SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
3158 CheckObjCDeclScope(IDecl);
3159 DeclsInGroup.push_back(IDecl);
3160 }
3161
3162 return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup);
3163}
3164
3165static bool tryMatchRecordTypes(ASTContext &Context,
3166 SemaObjC::MethodMatchStrategy strategy,
3167 const Type *left, const Type *right);
3168
3169static bool matchTypes(ASTContext &Context,
3170 SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3171 QualType rightQT) {
3172 const Type *left =
3173 Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr();
3174 const Type *right =
3175 Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr();
3176
3177 if (left == right) return true;
3178
3179 // If we're doing a strict match, the types have to match exactly.
3180 if (strategy == SemaObjC::MMS_strict)
3181 return false;
3182
3183 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3184
3185 // Otherwise, use this absurdly complicated algorithm to try to
3186 // validate the basic, low-level compatibility of the two types.
3187
3188 // As a minimum, require the sizes and alignments to match.
3189 TypeInfo LeftTI = Context.getTypeInfo(T: left);
3190 TypeInfo RightTI = Context.getTypeInfo(T: right);
3191 if (LeftTI.Width != RightTI.Width)
3192 return false;
3193
3194 if (LeftTI.Align != RightTI.Align)
3195 return false;
3196
3197 // Consider all the kinds of non-dependent canonical types:
3198 // - functions and arrays aren't possible as return and parameter types
3199
3200 // - vector types of equal size can be arbitrarily mixed
3201 if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right);
3202 if (isa<VectorType>(Val: right)) return false;
3203
3204 // - references should only match references of identical type
3205 // - structs, unions, and Objective-C objects must match more-or-less
3206 // exactly
3207 // - everything else should be a scalar
3208 if (!left->isScalarType() || !right->isScalarType())
3209 return tryMatchRecordTypes(Context, strategy, left, right);
3210
3211 // Make scalars agree in kind, except count bools as chars, and group
3212 // all non-member pointers together.
3213 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3214 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3215 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3216 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3217 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3218 leftSK = Type::STK_ObjCObjectPointer;
3219 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3220 rightSK = Type::STK_ObjCObjectPointer;
3221
3222 // Note that data member pointers and function member pointers don't
3223 // intermix because of the size differences.
3224
3225 return (leftSK == rightSK);
3226}
3227
3228static bool tryMatchRecordTypes(ASTContext &Context,
3229 SemaObjC::MethodMatchStrategy strategy,
3230 const Type *lt, const Type *rt) {
3231 assert(lt && rt && lt != rt);
3232
3233 if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false;
3234 RecordDecl *left = cast<RecordType>(Val: lt)->getDecl();
3235 RecordDecl *right = cast<RecordType>(Val: rt)->getDecl();
3236
3237 // Require union-hood to match.
3238 if (left->isUnion() != right->isUnion()) return false;
3239
3240 // Require an exact match if either is non-POD.
3241 if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) ||
3242 (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD()))
3243 return false;
3244
3245 // Require size and alignment to match.
3246 TypeInfo LeftTI = Context.getTypeInfo(T: lt);
3247 TypeInfo RightTI = Context.getTypeInfo(T: rt);
3248 if (LeftTI.Width != RightTI.Width)
3249 return false;
3250
3251 if (LeftTI.Align != RightTI.Align)
3252 return false;
3253
3254 // Require fields to match.
3255 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3256 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3257 for (; li != le && ri != re; ++li, ++ri) {
3258 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3259 return false;
3260 }
3261 return (li == le && ri == re);
3262}
3263
3264/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3265/// returns true, or false, accordingly.
3266/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3267bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3268 const ObjCMethodDecl *right,
3269 MethodMatchStrategy strategy) {
3270 ASTContext &Context = getASTContext();
3271 if (!matchTypes(Context, strategy, leftQT: left->getReturnType(),
3272 rightQT: right->getReturnType()))
3273 return false;
3274
3275 // If either is hidden, it is not considered to match.
3276 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3277 return false;
3278
3279 if (left->isDirectMethod() != right->isDirectMethod())
3280 return false;
3281
3282 if (getLangOpts().ObjCAutoRefCount &&
3283 (left->hasAttr<NSReturnsRetainedAttr>()
3284 != right->hasAttr<NSReturnsRetainedAttr>() ||
3285 left->hasAttr<NSConsumesSelfAttr>()
3286 != right->hasAttr<NSConsumesSelfAttr>()))
3287 return false;
3288
3289 ObjCMethodDecl::param_const_iterator
3290 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3291 re = right->param_end();
3292
3293 for (; li != le && ri != re; ++li, ++ri) {
3294 assert(ri != right->param_end() && "Param mismatch");
3295 const ParmVarDecl *lparm = *li, *rparm = *ri;
3296
3297 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3298 return false;
3299
3300 if (getLangOpts().ObjCAutoRefCount &&
3301 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3302 return false;
3303 }
3304 return true;
3305}
3306
3307static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3308 ObjCMethodDecl *MethodInList) {
3309 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3310 auto *MethodInListProtocol =
3311 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3312 // If this method belongs to a protocol but the method in list does not, or
3313 // vice versa, we say the context is not the same.
3314 if ((MethodProtocol && !MethodInListProtocol) ||
3315 (!MethodProtocol && MethodInListProtocol))
3316 return false;
3317
3318 if (MethodProtocol && MethodInListProtocol)
3319 return true;
3320
3321 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3322 ObjCInterfaceDecl *MethodInListInterface =
3323 MethodInList->getClassInterface();
3324 return MethodInterface == MethodInListInterface;
3325}
3326
3327void SemaObjC::addMethodToGlobalList(ObjCMethodList *List,
3328 ObjCMethodDecl *Method) {
3329 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3330 // inside categories.
3331 if (ObjCCategoryDecl *CD =
3332 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3333 if (!CD->IsClassExtension() && List->getBits() < 2)
3334 List->setBits(List->getBits() + 1);
3335
3336 // If the list is empty, make it a singleton list.
3337 if (List->getMethod() == nullptr) {
3338 List->setMethod(Method);
3339 List->setNext(nullptr);
3340 return;
3341 }
3342
3343 // We've seen a method with this name, see if we have already seen this type
3344 // signature.
3345 ObjCMethodList *Previous = List;
3346 ObjCMethodList *ListWithSameDeclaration = nullptr;
3347 for (; List; Previous = List, List = List->getNext()) {
3348 // If we are building a module, keep all of the methods.
3349 if (getLangOpts().isCompilingModule())
3350 continue;
3351
3352 bool SameDeclaration = MatchTwoMethodDeclarations(left: Method,
3353 right: List->getMethod());
3354 // Looking for method with a type bound requires the correct context exists.
3355 // We need to insert a method into the list if the context is different.
3356 // If the method's declaration matches the list
3357 // a> the method belongs to a different context: we need to insert it, in
3358 // order to emit the availability message, we need to prioritize over
3359 // availability among the methods with the same declaration.
3360 // b> the method belongs to the same context: there is no need to insert a
3361 // new entry.
3362 // If the method's declaration does not match the list, we insert it to the
3363 // end.
3364 if (!SameDeclaration ||
3365 !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) {
3366 // Even if two method types do not match, we would like to say
3367 // there is more than one declaration so unavailability/deprecated
3368 // warning is not too noisy.
3369 if (!Method->isDefined())
3370 List->setHasMoreThanOneDecl(true);
3371
3372 // For methods with the same declaration, the one that is deprecated
3373 // should be put in the front for better diagnostics.
3374 if (Method->isDeprecated() && SameDeclaration &&
3375 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3376 ListWithSameDeclaration = List;
3377
3378 if (Method->isUnavailable() && SameDeclaration &&
3379 !ListWithSameDeclaration &&
3380 List->getMethod()->getAvailability() < AR_Deprecated)
3381 ListWithSameDeclaration = List;
3382 continue;
3383 }
3384
3385 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3386
3387 // Propagate the 'defined' bit.
3388 if (Method->isDefined())
3389 PrevObjCMethod->setDefined(true);
3390 else {
3391 // Objective-C doesn't allow an @interface for a class after its
3392 // @implementation. So if Method is not defined and there already is
3393 // an entry for this type signature, Method has to be for a different
3394 // class than PrevObjCMethod.
3395 List->setHasMoreThanOneDecl(true);
3396 }
3397
3398 // If a method is deprecated, push it in the global pool.
3399 // This is used for better diagnostics.
3400 if (Method->isDeprecated()) {
3401 if (!PrevObjCMethod->isDeprecated())
3402 List->setMethod(Method);
3403 }
3404 // If the new method is unavailable, push it into global pool
3405 // unless previous one is deprecated.
3406 if (Method->isUnavailable()) {
3407 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3408 List->setMethod(Method);
3409 }
3410
3411 return;
3412 }
3413
3414 // We have a new signature for an existing method - add it.
3415 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3416 ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>();
3417
3418 // We insert it right before ListWithSameDeclaration.
3419 if (ListWithSameDeclaration) {
3420 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3421 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3422 ListWithSameDeclaration->setMethod(Method);
3423 ListWithSameDeclaration->setNext(List);
3424 return;
3425 }
3426
3427 Previous->setNext(new (Mem) ObjCMethodList(Method));
3428}
3429
3430/// Read the contents of the method pool for a given selector from
3431/// external storage.
3432void SemaObjC::ReadMethodPool(Selector Sel) {
3433 assert(SemaRef.ExternalSource && "We need an external AST source");
3434 SemaRef.ExternalSource->ReadMethodPool(Sel);
3435}
3436
3437void SemaObjC::updateOutOfDateSelector(Selector Sel) {
3438 if (!SemaRef.ExternalSource)
3439 return;
3440 SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3441}
3442
3443void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3444 bool instance) {
3445 // Ignore methods of invalid containers.
3446 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3447 return;
3448
3449 if (SemaRef.ExternalSource)
3450 ReadMethodPool(Sel: Method->getSelector());
3451
3452 auto &Lists = MethodPool[Method->getSelector()];
3453
3454 Method->setDefined(impl);
3455
3456 ObjCMethodList &Entry = instance ? Lists.first : Lists.second;
3457 addMethodToGlobalList(List: &Entry, Method);
3458}
3459
3460/// Determines if this is an "acceptable" loose mismatch in the global
3461/// method pool. This exists mostly as a hack to get around certain
3462/// global mismatches which we can't afford to make warnings / errors.
3463/// Really, what we want is a way to take a method out of the global
3464/// method pool.
3465static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3466 ObjCMethodDecl *other) {
3467 if (!chosen->isInstanceMethod())
3468 return false;
3469
3470 if (chosen->isDirectMethod() != other->isDirectMethod())
3471 return false;
3472
3473 Selector sel = chosen->getSelector();
3474 if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length")
3475 return false;
3476
3477 // Don't complain about mismatches for -length if the method we
3478 // chose has an integral result type.
3479 return (chosen->getReturnType()->isIntegerType());
3480}
3481
3482/// Return true if the given method is wthin the type bound.
3483static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3484 const ObjCObjectType *TypeBound) {
3485 if (!TypeBound)
3486 return true;
3487
3488 if (TypeBound->isObjCId())
3489 // FIXME: should we handle the case of bounding to id<A, B> differently?
3490 return true;
3491
3492 auto *BoundInterface = TypeBound->getInterface();
3493 assert(BoundInterface && "unexpected object type!");
3494
3495 // Check if the Method belongs to a protocol. We should allow any method
3496 // defined in any protocol, because any subclass could adopt the protocol.
3497 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3498 if (MethodProtocol) {
3499 return true;
3500 }
3501
3502 // If the Method belongs to a class, check if it belongs to the class
3503 // hierarchy of the class bound.
3504 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3505 // We allow methods declared within classes that are part of the hierarchy
3506 // of the class bound (superclass of, subclass of, or the same as the class
3507 // bound).
3508 return MethodInterface == BoundInterface ||
3509 MethodInterface->isSuperClassOf(I: BoundInterface) ||
3510 BoundInterface->isSuperClassOf(I: MethodInterface);
3511 }
3512 llvm_unreachable("unknown method context");
3513}
3514
3515/// We first select the type of the method: Instance or Factory, then collect
3516/// all methods with that type.
3517bool SemaObjC::CollectMultipleMethodsInGlobalPool(
3518 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3519 bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3520 if (SemaRef.ExternalSource)
3521 ReadMethodPool(Sel);
3522
3523 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3524 if (Pos == MethodPool.end())
3525 return false;
3526
3527 // Gather the non-hidden methods.
3528 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3529 Pos->second.second;
3530 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3531 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3532 if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound))
3533 Methods.push_back(Elt: M->getMethod());
3534 }
3535
3536 // Return if we find any method with the desired kind.
3537 if (!Methods.empty())
3538 return Methods.size() > 1;
3539
3540 if (!CheckTheOther)
3541 return false;
3542
3543 // Gather the other kind.
3544 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3545 Pos->second.first;
3546 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3547 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3548 if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound))
3549 Methods.push_back(Elt: M->getMethod());
3550 }
3551
3552 return Methods.size() > 1;
3553}
3554
3555bool SemaObjC::AreMultipleMethodsInGlobalPool(
3556 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3557 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3558 // Diagnose finding more than one method in global pool.
3559 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3560 FilteredMethods.push_back(Elt: BestMethod);
3561
3562 for (auto *M : Methods)
3563 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3564 FilteredMethods.push_back(Elt: M);
3565
3566 if (FilteredMethods.size() > 1)
3567 DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R,
3568 receiverIdOrClass);
3569
3570 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3571 // Test for no method in the pool which should not trigger any warning by
3572 // caller.
3573 if (Pos == MethodPool.end())
3574 return true;
3575 ObjCMethodList &MethList =
3576 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3577 return MethList.hasMoreThanOneDecl();
3578}
3579
3580ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3581 bool receiverIdOrClass,
3582 bool instance) {
3583 if (SemaRef.ExternalSource)
3584 ReadMethodPool(Sel);
3585
3586 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3587 if (Pos == MethodPool.end())
3588 return nullptr;
3589
3590 // Gather the non-hidden methods.
3591 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3592 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3593 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3594 return M->getMethod();
3595 }
3596 return nullptr;
3597}
3598
3599void SemaObjC::DiagnoseMultipleMethodInGlobalPool(
3600 SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R,
3601 bool receiverIdOrClass) {
3602 // We found multiple methods, so we may have to complain.
3603 bool issueDiagnostic = false, issueError = false;
3604
3605 // We support a warning which complains about *any* difference in
3606 // method signature.
3607 bool strictSelectorMatch =
3608 receiverIdOrClass &&
3609 !getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl,
3610 R.getBegin());
3611 if (strictSelectorMatch) {
3612 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3613 if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) {
3614 issueDiagnostic = true;
3615 break;
3616 }
3617 }
3618 }
3619
3620 // If we didn't see any strict differences, we won't see any loose
3621 // differences. In ARC, however, we also need to check for loose
3622 // mismatches, because most of them are errors.
3623 if (!strictSelectorMatch ||
3624 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3625 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3626 // This checks if the methods differ in type mismatch.
3627 if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) &&
3628 !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) {
3629 issueDiagnostic = true;
3630 if (getLangOpts().ObjCAutoRefCount)
3631 issueError = true;
3632 break;
3633 }
3634 }
3635
3636 if (issueDiagnostic) {
3637 if (issueError)
3638 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3639 else if (strictSelectorMatch)
3640 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3641 else
3642 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3643
3644 Diag(Methods[0]->getBeginLoc(),
3645 issueError ? diag::note_possibility : diag::note_using)
3646 << Methods[0]->getSourceRange();
3647 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3648 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3649 << Methods[I]->getSourceRange();
3650 }
3651 }
3652}
3653
3654ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) {
3655 GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel);
3656 if (Pos == MethodPool.end())
3657 return nullptr;
3658
3659 auto &Methods = Pos->second;
3660 for (const ObjCMethodList *Method = &Methods.first; Method;
3661 Method = Method->getNext())
3662 if (Method->getMethod() &&
3663 (Method->getMethod()->isDefined() ||
3664 Method->getMethod()->isPropertyAccessor()))
3665 return Method->getMethod();
3666
3667 for (const ObjCMethodList *Method = &Methods.second; Method;
3668 Method = Method->getNext())
3669 if (Method->getMethod() &&
3670 (Method->getMethod()->isDefined() ||
3671 Method->getMethod()->isPropertyAccessor()))
3672 return Method->getMethod();
3673 return nullptr;
3674}
3675
3676static void
3677HelperSelectorsForTypoCorrection(
3678 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3679 StringRef Typo, const ObjCMethodDecl * Method) {
3680 const unsigned MaxEditDistance = 1;
3681 unsigned BestEditDistance = MaxEditDistance + 1;
3682 std::string MethodName = Method->getSelector().getAsString();
3683
3684 unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size());
3685 if (MinPossibleEditDistance > 0 &&
3686 Typo.size() / MinPossibleEditDistance < 1)
3687 return;
3688 unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance);
3689 if (EditDistance > MaxEditDistance)
3690 return;
3691 if (EditDistance == BestEditDistance)
3692 BestMethod.push_back(Elt: Method);
3693 else if (EditDistance < BestEditDistance) {
3694 BestMethod.clear();
3695 BestMethod.push_back(Elt: Method);
3696 }
3697}
3698
3699static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3700 QualType ObjectType) {
3701 if (ObjectType.isNull())
3702 return true;
3703 if (S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType,
3704 IsInstance: true /*Instance method*/))
3705 return true;
3706 return S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType,
3707 IsInstance: false /*Class method*/) != nullptr;
3708}
3709
3710const ObjCMethodDecl *
3711SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) {
3712 unsigned NumArgs = Sel.getNumArgs();
3713 SmallVector<const ObjCMethodDecl *, 8> Methods;
3714 bool ObjectIsId = true, ObjectIsClass = true;
3715 if (ObjectType.isNull())
3716 ObjectIsId = ObjectIsClass = false;
3717 else if (!ObjectType->isObjCObjectPointerType())
3718 return nullptr;
3719 else if (const ObjCObjectPointerType *ObjCPtr =
3720 ObjectType->getAsObjCInterfacePointerType()) {
3721 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3722 ObjectIsId = ObjectIsClass = false;
3723 }
3724 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3725 ObjectIsClass = false;
3726 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3727 ObjectIsId = false;
3728 else
3729 return nullptr;
3730
3731 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3732 e = MethodPool.end(); b != e; b++) {
3733 // instance methods
3734 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3735 if (M->getMethod() &&
3736 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3737 (M->getMethod()->getSelector() != Sel)) {
3738 if (ObjectIsId)
3739 Methods.push_back(Elt: M->getMethod());
3740 else if (!ObjectIsClass &&
3741 HelperIsMethodInObjCType(
3742 S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType))
3743 Methods.push_back(Elt: M->getMethod());
3744 }
3745 // class methods
3746 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3747 if (M->getMethod() &&
3748 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3749 (M->getMethod()->getSelector() != Sel)) {
3750 if (ObjectIsClass)
3751 Methods.push_back(Elt: M->getMethod());
3752 else if (!ObjectIsId &&
3753 HelperIsMethodInObjCType(
3754 S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType))
3755 Methods.push_back(Elt: M->getMethod());
3756 }
3757 }
3758
3759 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3760 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3761 HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods,
3762 Typo: Sel.getAsString(), Method: Methods[i]);
3763 }
3764 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3765}
3766
3767/// DiagnoseDuplicateIvars -
3768/// Check for duplicate ivars in the entire class at the start of
3769/// \@implementation. This becomes necessary because class extension can
3770/// add ivars to a class in random order which will not be known until
3771/// class's \@implementation is seen.
3772void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3773 ObjCInterfaceDecl *SID) {
3774 for (auto *Ivar : ID->ivars()) {
3775 if (Ivar->isInvalidDecl())
3776 continue;
3777 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3778 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II);
3779 if (prevIvar) {
3780 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3781 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3782 Ivar->setInvalidDecl();
3783 }
3784 }
3785 }
3786}
3787
3788/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3789static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3790 if (S.getLangOpts().ObjCWeak) return;
3791
3792 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3793 ivar; ivar = ivar->getNextIvar()) {
3794 if (ivar->isInvalidDecl()) continue;
3795 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3796 if (S.getLangOpts().ObjCWeakRuntime) {
3797 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3798 } else {
3799 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3800 }
3801 }
3802 }
3803}
3804
3805/// Diagnose attempts to use flexible array member with retainable object type.
3806static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3807 ObjCInterfaceDecl *ID) {
3808 if (!S.getLangOpts().ObjCAutoRefCount)
3809 return;
3810
3811 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3812 ivar = ivar->getNextIvar()) {
3813 if (ivar->isInvalidDecl())
3814 continue;
3815 QualType IvarTy = ivar->getType();
3816 if (IvarTy->isIncompleteArrayType() &&
3817 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3818 IvarTy->isObjCLifetimeType()) {
3819 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3820 ivar->setInvalidDecl();
3821 }
3822 }
3823}
3824
3825SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const {
3826 switch (SemaRef.CurContext->getDeclKind()) {
3827 case Decl::ObjCInterface:
3828 return SemaObjC::OCK_Interface;
3829 case Decl::ObjCProtocol:
3830 return SemaObjC::OCK_Protocol;
3831 case Decl::ObjCCategory:
3832 if (cast<ObjCCategoryDecl>(Val: SemaRef.CurContext)->IsClassExtension())
3833 return SemaObjC::OCK_ClassExtension;
3834 return SemaObjC::OCK_Category;
3835 case Decl::ObjCImplementation:
3836 return SemaObjC::OCK_Implementation;
3837 case Decl::ObjCCategoryImpl:
3838 return SemaObjC::OCK_CategoryImplementation;
3839
3840 default:
3841 return SemaObjC::OCK_None;
3842 }
3843}
3844
3845static bool IsVariableSizedType(QualType T) {
3846 if (T->isIncompleteArrayType())
3847 return true;
3848 const auto *RecordTy = T->getAs<RecordType>();
3849 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3850}
3851
3852static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3853 ObjCInterfaceDecl *IntfDecl = nullptr;
3854 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3855 x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator());
3856 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) {
3857 Ivars = IntfDecl->ivars();
3858 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) {
3859 IntfDecl = ImplDecl->getClassInterface();
3860 Ivars = ImplDecl->ivars();
3861 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) {
3862 if (CategoryDecl->IsClassExtension()) {
3863 IntfDecl = CategoryDecl->getClassInterface();
3864 Ivars = CategoryDecl->ivars();
3865 }
3866 }
3867
3868 // Check if variable sized ivar is in interface and visible to subclasses.
3869 if (!isa<ObjCInterfaceDecl>(Val: OCD)) {
3870 for (auto *ivar : Ivars) {
3871 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3872 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3873 << ivar->getDeclName() << ivar->getType();
3874 }
3875 }
3876 }
3877
3878 // Subsequent checks require interface decl.
3879 if (!IntfDecl)
3880 return;
3881
3882 // Check if variable sized ivar is followed by another ivar.
3883 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3884 ivar = ivar->getNextIvar()) {
3885 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3886 continue;
3887 QualType IvarTy = ivar->getType();
3888 bool IsInvalidIvar = false;
3889 if (IvarTy->isIncompleteArrayType()) {
3890 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3891 << ivar->getDeclName() << IvarTy
3892 << TagTypeKind::Class; // Use "class" for Obj-C.
3893 IsInvalidIvar = true;
3894 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3895 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3896 S.Diag(ivar->getLocation(),
3897 diag::err_objc_variable_sized_type_not_at_end)
3898 << ivar->getDeclName() << IvarTy;
3899 IsInvalidIvar = true;
3900 }
3901 }
3902 if (IsInvalidIvar) {
3903 S.Diag(ivar->getNextIvar()->getLocation(),
3904 diag::note_next_ivar_declaration)
3905 << ivar->getNextIvar()->getSynthesize();
3906 ivar->setInvalidDecl();
3907 }
3908 }
3909
3910 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3911 // Perform the check only if OCD is the first container to declare ivars to
3912 // avoid multiple warnings for the same ivar.
3913 ObjCIvarDecl *FirstIvar =
3914 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3915 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3916 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3917 while (SuperClass && SuperClass->ivar_empty())
3918 SuperClass = SuperClass->getSuperClass();
3919 if (SuperClass) {
3920 auto IvarIter = SuperClass->ivar_begin();
3921 std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1);
3922 const ObjCIvarDecl *LastIvar = *IvarIter;
3923 if (IsVariableSizedType(LastIvar->getType())) {
3924 S.Diag(FirstIvar->getLocation(),
3925 diag::warn_superclass_variable_sized_type_not_at_end)
3926 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3927 << LastIvar->getType() << SuperClass->getDeclName();
3928 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3929 << LastIvar->getDeclName();
3930 }
3931 }
3932 }
3933}
3934
3935static void DiagnoseCategoryDirectMembersProtocolConformance(
3936 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3937
3938static void DiagnoseCategoryDirectMembersProtocolConformance(
3939 Sema &S, ObjCCategoryDecl *CDecl,
3940 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3941 for (auto *PI : Protocols)
3942 DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl);
3943}
3944
3945static void DiagnoseCategoryDirectMembersProtocolConformance(
3946 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3947 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3948 PDecl = PDecl->getDefinition();
3949
3950 llvm::SmallVector<const Decl *, 4> DirectMembers;
3951 const auto *IDecl = CDecl->getClassInterface();
3952 for (auto *MD : PDecl->methods()) {
3953 if (!MD->isPropertyAccessor()) {
3954 if (const auto *CMD =
3955 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3956 if (CMD->isDirectMethod())
3957 DirectMembers.push_back(CMD);
3958 }
3959 }
3960 }
3961 for (auto *PD : PDecl->properties()) {
3962 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3963 PD->getIdentifier(),
3964 PD->isClassProperty()
3965 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3966 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3967 if (CPD->isDirectProperty())
3968 DirectMembers.push_back(CPD);
3969 }
3970 }
3971 if (!DirectMembers.empty()) {
3972 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3973 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3974 for (const auto *MD : DirectMembers)
3975 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3976 return;
3977 }
3978
3979 // Check on this protocols's referenced protocols, recursively.
3980 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3981 Protocols: PDecl->protocols());
3982}
3983
3984// Note: For class/category implementations, allMethods is always null.
3985Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd,
3986 ArrayRef<Decl *> allMethods,
3987 ArrayRef<DeclGroupPtrTy> allTUVars) {
3988 ASTContext &Context = getASTContext();
3989 if (getObjCContainerKind() == SemaObjC::OCK_None)
3990 return nullptr;
3991
3992 assert(AtEnd.isValid() && "Invalid location for '@end'");
3993
3994 auto *OCD = cast<ObjCContainerDecl>(Val: SemaRef.CurContext);
3995 Decl *ClassDecl = OCD;
3996
3997 bool isInterfaceDeclKind =
3998 isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl)
3999 || isa<ObjCProtocolDecl>(Val: ClassDecl);
4000 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl);
4001
4002 // Make synthesized accessor stub functions visible.
4003 // ActOnPropertyImplDecl() creates them as not visible in case
4004 // they are overridden by an explicit method that is encountered
4005 // later.
4006 if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: SemaRef.CurContext)) {
4007 for (auto *PropImpl : OID->property_impls()) {
4008 if (auto *Getter = PropImpl->getGetterMethodDecl())
4009 if (Getter->isSynthesizedAccessorStub())
4010 OID->addDecl(Getter);
4011 if (auto *Setter = PropImpl->getSetterMethodDecl())
4012 if (Setter->isSynthesizedAccessorStub())
4013 OID->addDecl(Setter);
4014 }
4015 }
4016
4017 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4018 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4019 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4020
4021 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4022 ObjCMethodDecl *Method =
4023 cast_or_null<ObjCMethodDecl>(Val: allMethods[i]);
4024
4025 if (!Method) continue; // Already issued a diagnostic.
4026 if (Method->isInstanceMethod()) {
4027 /// Check for instance method of the same name with incompatible types
4028 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4029 bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod)
4030 : false;
4031 if ((isInterfaceDeclKind && PrevMethod && !match)
4032 || (checkIdenticalMethods && match)) {
4033 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4034 << Method->getDeclName();
4035 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4036 Method->setInvalidDecl();
4037 } else {
4038 if (PrevMethod) {
4039 Method->setAsRedeclaration(PrevMethod);
4040 if (!Context.getSourceManager().isInSystemHeader(
4041 Method->getLocation()))
4042 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4043 << Method->getDeclName();
4044 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4045 }
4046 InsMap[Method->getSelector()] = Method;
4047 /// The following allows us to typecheck messages to "id".
4048 AddInstanceMethodToGlobalPool(Method);
4049 }
4050 } else {
4051 /// Check for class method of the same name with incompatible types
4052 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4053 bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod)
4054 : false;
4055 if ((isInterfaceDeclKind && PrevMethod && !match)
4056 || (checkIdenticalMethods && match)) {
4057 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4058 << Method->getDeclName();
4059 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4060 Method->setInvalidDecl();
4061 } else {
4062 if (PrevMethod) {
4063 Method->setAsRedeclaration(PrevMethod);
4064 if (!Context.getSourceManager().isInSystemHeader(
4065 Method->getLocation()))
4066 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4067 << Method->getDeclName();
4068 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4069 }
4070 ClsMap[Method->getSelector()] = Method;
4071 AddFactoryMethodToGlobalPool(Method);
4072 }
4073 }
4074 }
4075 if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) {
4076 // Nothing to do here.
4077 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) {
4078 // Categories are used to extend the class by declaring new methods.
4079 // By the same token, they are also used to add new properties. No
4080 // need to compare the added property to those in the class.
4081
4082 if (C->IsClassExtension()) {
4083 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4084 DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary);
4085 }
4086
4087 DiagnoseCategoryDirectMembersProtocolConformance(S&: SemaRef, CDecl: C,
4088 Protocols: C->protocols());
4089 }
4090 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) {
4091 if (CDecl->getIdentifier())
4092 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4093 // user-defined setter/getter. It also synthesizes setter/getter methods
4094 // and adds them to the DeclContext and global method pools.
4095 for (auto *I : CDecl->properties())
4096 ProcessPropertyDecl(I);
4097 CDecl->setAtEndRange(AtEnd);
4098 }
4099 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) {
4100 IC->setAtEndRange(AtEnd);
4101 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4102 // Any property declared in a class extension might have user
4103 // declared setter or getter in current class extension or one
4104 // of the other class extensions. Mark them as synthesized as
4105 // property will be synthesized when property with same name is
4106 // seen in the @implementation.
4107 for (const auto *Ext : IDecl->visible_extensions()) {
4108 for (const auto *Property : Ext->instance_properties()) {
4109 // Skip over properties declared @dynamic
4110 if (const ObjCPropertyImplDecl *PIDecl
4111 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4112 Property->getQueryKind()))
4113 if (PIDecl->getPropertyImplementation()
4114 == ObjCPropertyImplDecl::Dynamic)
4115 continue;
4116
4117 for (const auto *Ext : IDecl->visible_extensions()) {
4118 if (ObjCMethodDecl *GetterMethod =
4119 Ext->getInstanceMethod(Property->getGetterName()))
4120 GetterMethod->setPropertyAccessor(true);
4121 if (!Property->isReadOnly())
4122 if (ObjCMethodDecl *SetterMethod
4123 = Ext->getInstanceMethod(Property->getSetterName()))
4124 SetterMethod->setPropertyAccessor(true);
4125 }
4126 }
4127 }
4128 ImplMethodsVsClassMethods(S, IC, IDecl);
4129 AtomicPropertySetterGetterRules(IC, IDecl);
4130 DiagnoseOwningPropertyGetterSynthesis(D: IC);
4131 DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC);
4132 if (IDecl->hasDesignatedInitializers())
4133 DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl);
4134 DiagnoseWeakIvars(S&: SemaRef, ID: IC);
4135 DiagnoseRetainableFlexibleArrayMember(S&: SemaRef, ID: IDecl);
4136
4137 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4138 if (IDecl->getSuperClass() == nullptr) {
4139 // This class has no superclass, so check that it has been marked with
4140 // __attribute((objc_root_class)).
4141 if (!HasRootClassAttr) {
4142 SourceLocation DeclLoc(IDecl->getLocation());
4143 SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(Loc: DeclLoc));
4144 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4145 << IDecl->getIdentifier();
4146 // See if NSObject is in the current scope, and if it is, suggest
4147 // adding " : NSObject " to the class declaration.
4148 NamedDecl *IF = SemaRef.LookupSingleName(
4149 S: SemaRef.TUScope, Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject),
4150 Loc: DeclLoc, NameKind: Sema::LookupOrdinaryName);
4151 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF);
4152 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4153 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4154 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4155 } else {
4156 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4157 }
4158 }
4159 } else if (HasRootClassAttr) {
4160 // Complain that only root classes may have this attribute.
4161 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4162 }
4163
4164 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4165 // An interface can subclass another interface with a
4166 // objc_subclassing_restricted attribute when it has that attribute as
4167 // well (because of interfaces imported from Swift). Therefore we have
4168 // to check if we can subclass in the implementation as well.
4169 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4170 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4171 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4172 Diag(Super->getLocation(), diag::note_class_declared);
4173 }
4174 }
4175
4176 if (IDecl->hasAttr<ObjCClassStubAttr>())
4177 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4178
4179 if (getLangOpts().ObjCRuntime.isNonFragile()) {
4180 while (IDecl->getSuperClass()) {
4181 DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass());
4182 IDecl = IDecl->getSuperClass();
4183 }
4184 }
4185 }
4186 SetIvarInitializers(IC);
4187 } else if (ObjCCategoryImplDecl* CatImplClass =
4188 dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) {
4189 CatImplClass->setAtEndRange(AtEnd);
4190
4191 // Find category interface decl and then check that all methods declared
4192 // in this interface are implemented in the category @implementation.
4193 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4194 if (ObjCCategoryDecl *Cat
4195 = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) {
4196 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4197 }
4198 }
4199 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4200 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4201 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4202 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4203 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4204 Diag(Super->getLocation(), diag::note_class_declared);
4205 }
4206 }
4207
4208 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4209 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4210 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4211 }
4212 DiagnoseVariableSizedIvars(S&: SemaRef, OCD);
4213 if (isInterfaceDeclKind) {
4214 // Reject invalid vardecls.
4215 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4216 DeclGroupRef DG = allTUVars[i].get();
4217 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4218 if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) {
4219 if (!VDecl->hasExternalStorage())
4220 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4221 }
4222 }
4223 }
4224 ActOnObjCContainerFinishDefinition();
4225
4226 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4227 DeclGroupRef DG = allTUVars[i].get();
4228 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4229 (*I)->setTopLevelDeclInObjCContainer();
4230 SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(D: DG);
4231 }
4232
4233 SemaRef.ActOnDocumentableDecl(D: ClassDecl);
4234 return ClassDecl;
4235}
4236
4237/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4238/// objective-c's type qualifier from the parser version of the same info.
4239static Decl::ObjCDeclQualifier
4240CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4241 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4242}
4243
4244/// Check whether the declared result type of the given Objective-C
4245/// method declaration is compatible with the method's class.
4246///
4247static SemaObjC::ResultTypeCompatibilityKind
4248CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4249 ObjCInterfaceDecl *CurrentClass) {
4250 QualType ResultType = Method->getReturnType();
4251
4252 // If an Objective-C method inherits its related result type, then its
4253 // declared result type must be compatible with its own class type. The
4254 // declared result type is compatible if:
4255 if (const ObjCObjectPointerType *ResultObjectType
4256 = ResultType->getAs<ObjCObjectPointerType>()) {
4257 // - it is id or qualified id, or
4258 if (ResultObjectType->isObjCIdType() ||
4259 ResultObjectType->isObjCQualifiedIdType())
4260 return SemaObjC::RTC_Compatible;
4261
4262 if (CurrentClass) {
4263 if (ObjCInterfaceDecl *ResultClass
4264 = ResultObjectType->getInterfaceDecl()) {
4265 // - it is the same as the method's class type, or
4266 if (declaresSameEntity(CurrentClass, ResultClass))
4267 return SemaObjC::RTC_Compatible;
4268
4269 // - it is a superclass of the method's class type
4270 if (ResultClass->isSuperClassOf(I: CurrentClass))
4271 return SemaObjC::RTC_Compatible;
4272 }
4273 } else {
4274 // Any Objective-C pointer type might be acceptable for a protocol
4275 // method; we just don't know.
4276 return SemaObjC::RTC_Unknown;
4277 }
4278 }
4279
4280 return SemaObjC::RTC_Incompatible;
4281}
4282
4283namespace {
4284/// A helper class for searching for methods which a particular method
4285/// overrides.
4286class OverrideSearch {
4287public:
4288 const ObjCMethodDecl *Method;
4289 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4290 bool Recursive;
4291
4292public:
4293 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4294 Selector selector = method->getSelector();
4295
4296 // Bypass this search if we've never seen an instance/class method
4297 // with this selector before.
4298 SemaObjC::GlobalMethodPool::iterator it =
4299 S.ObjC().MethodPool.find(Val: selector);
4300 if (it == S.ObjC().MethodPool.end()) {
4301 if (!S.getExternalSource()) return;
4302 S.ObjC().ReadMethodPool(Sel: selector);
4303
4304 it = S.ObjC().MethodPool.find(Val: selector);
4305 if (it == S.ObjC().MethodPool.end())
4306 return;
4307 }
4308 const ObjCMethodList &list =
4309 method->isInstanceMethod() ? it->second.first : it->second.second;
4310 if (!list.getMethod()) return;
4311
4312 const ObjCContainerDecl *container
4313 = cast<ObjCContainerDecl>(method->getDeclContext());
4314
4315 // Prevent the search from reaching this container again. This is
4316 // important with categories, which override methods from the
4317 // interface and each other.
4318 if (const ObjCCategoryDecl *Category =
4319 dyn_cast<ObjCCategoryDecl>(container)) {
4320 searchFromContainer(container);
4321 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4322 searchFromContainer(Interface);
4323 } else {
4324 searchFromContainer(container);
4325 }
4326 }
4327
4328 typedef decltype(Overridden)::iterator iterator;
4329 iterator begin() const { return Overridden.begin(); }
4330 iterator end() const { return Overridden.end(); }
4331
4332private:
4333 void searchFromContainer(const ObjCContainerDecl *container) {
4334 if (container->isInvalidDecl()) return;
4335
4336 switch (container->getDeclKind()) {
4337#define OBJCCONTAINER(type, base) \
4338 case Decl::type: \
4339 searchFrom(cast<type##Decl>(container)); \
4340 break;
4341#define ABSTRACT_DECL(expansion)
4342#define DECL(type, base) \
4343 case Decl::type:
4344#include "clang/AST/DeclNodes.inc"
4345 llvm_unreachable("not an ObjC container!");
4346 }
4347 }
4348
4349 void searchFrom(const ObjCProtocolDecl *protocol) {
4350 if (!protocol->hasDefinition())
4351 return;
4352
4353 // A method in a protocol declaration overrides declarations from
4354 // referenced ("parent") protocols.
4355 search(protocols: protocol->getReferencedProtocols());
4356 }
4357
4358 void searchFrom(const ObjCCategoryDecl *category) {
4359 // A method in a category declaration overrides declarations from
4360 // the main class and from protocols the category references.
4361 // The main class is handled in the constructor.
4362 search(protocols: category->getReferencedProtocols());
4363 }
4364
4365 void searchFrom(const ObjCCategoryImplDecl *impl) {
4366 // A method in a category definition that has a category
4367 // declaration overrides declarations from the category
4368 // declaration.
4369 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4370 search(category);
4371 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4372 search(Interface);
4373
4374 // Otherwise it overrides declarations from the class.
4375 } else if (const auto *Interface = impl->getClassInterface()) {
4376 search(Interface);
4377 }
4378 }
4379
4380 void searchFrom(const ObjCInterfaceDecl *iface) {
4381 // A method in a class declaration overrides declarations from
4382 if (!iface->hasDefinition())
4383 return;
4384
4385 // - categories,
4386 for (auto *Cat : iface->known_categories())
4387 search(Cat);
4388
4389 // - the super class, and
4390 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4391 search(super);
4392
4393 // - any referenced protocols.
4394 search(protocols: iface->getReferencedProtocols());
4395 }
4396
4397 void searchFrom(const ObjCImplementationDecl *impl) {
4398 // A method in a class implementation overrides declarations from
4399 // the class interface.
4400 if (const auto *Interface = impl->getClassInterface())
4401 search(Interface);
4402 }
4403
4404 void search(const ObjCProtocolList &protocols) {
4405 for (const auto *Proto : protocols)
4406 search(Proto);
4407 }
4408
4409 void search(const ObjCContainerDecl *container) {
4410 // Check for a method in this container which matches this selector.
4411 ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(),
4412 isInstance: Method->isInstanceMethod(),
4413 /*AllowHidden=*/true);
4414
4415 // If we find one, record it and bail out.
4416 if (meth) {
4417 Overridden.insert(X: meth);
4418 return;
4419 }
4420
4421 // Otherwise, search for methods that a hypothetical method here
4422 // would have overridden.
4423
4424 // Note that we're now in a recursive case.
4425 Recursive = true;
4426
4427 searchFromContainer(container);
4428 }
4429};
4430} // end anonymous namespace
4431
4432void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4433 ObjCMethodDecl *overridden) {
4434 if (overridden->isDirectMethod()) {
4435 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4436 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4437 Diag(attr->getLocation(), diag::note_previous_declaration);
4438 } else if (method->isDirectMethod()) {
4439 const auto *attr = method->getAttr<ObjCDirectAttr>();
4440 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4441 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4442 Diag(overridden->getLocation(), diag::note_previous_declaration);
4443 }
4444}
4445
4446void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4447 ObjCInterfaceDecl *CurrentClass,
4448 ResultTypeCompatibilityKind RTC) {
4449 ASTContext &Context = getASTContext();
4450 if (!ObjCMethod)
4451 return;
4452 auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4453 // Checking canonical decl works across modules.
4454 return M->getClassInterface()->getCanonicalDecl() ==
4455 CurrentClass->getCanonicalDecl();
4456 };
4457 // Search for overridden methods and merge information down from them.
4458 OverrideSearch overrides(SemaRef, ObjCMethod);
4459 // Keep track if the method overrides any method in the class's base classes,
4460 // its protocols, or its categories' protocols; we will keep that info
4461 // in the ObjCMethodDecl.
4462 // For this info, a method in an implementation is not considered as
4463 // overriding the same method in the interface or its categories.
4464 bool hasOverriddenMethodsInBaseOrProtocol = false;
4465 for (ObjCMethodDecl *overridden : overrides) {
4466 if (!hasOverriddenMethodsInBaseOrProtocol) {
4467 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4468 !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4469 CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden);
4470 hasOverriddenMethodsInBaseOrProtocol = true;
4471 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4472 // OverrideSearch will return as "overridden" the same method in the
4473 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4474 // check whether a category of a base class introduced a method with the
4475 // same selector, after the interface method declaration.
4476 // To avoid unnecessary lookups in the majority of cases, we use the
4477 // extra info bits in GlobalMethodPool to check whether there were any
4478 // category methods with this selector.
4479 GlobalMethodPool::iterator It =
4480 MethodPool.find(Val: ObjCMethod->getSelector());
4481 if (It != MethodPool.end()) {
4482 ObjCMethodList &List =
4483 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4484 unsigned CategCount = List.getBits();
4485 if (CategCount > 0) {
4486 // If the method is in a category we'll do lookup if there were at
4487 // least 2 category methods recorded, otherwise only one will do.
4488 if (CategCount > 1 ||
4489 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4490 OverrideSearch overrides(SemaRef, overridden);
4491 for (ObjCMethodDecl *SuperOverridden : overrides) {
4492 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4493 !IsMethodInCurrentClass(SuperOverridden)) {
4494 CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden);
4495 hasOverriddenMethodsInBaseOrProtocol = true;
4496 overridden->setOverriding(true);
4497 break;
4498 }
4499 }
4500 }
4501 }
4502 }
4503 }
4504 }
4505
4506 // Propagate down the 'related result type' bit from overridden methods.
4507 if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4508 ObjCMethod->setRelatedResultType();
4509
4510 // Then merge the declarations.
4511 SemaRef.mergeObjCMethodDecls(New: ObjCMethod, Old: overridden);
4512
4513 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4514 continue; // Conflicting properties are detected elsewhere.
4515
4516 // Check for overriding methods
4517 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4518 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4519 CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden,
4520 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4521
4522 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4523 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4524 !overridden->isImplicit() /* not meant for properties */) {
4525 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4526 E = ObjCMethod->param_end();
4527 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4528 PrevE = overridden->param_end();
4529 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4530 assert(PrevI != overridden->param_end() && "Param mismatch");
4531 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4532 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4533 // If type of argument of method in this class does not match its
4534 // respective argument type in the super class method, issue warning;
4535 if (!Context.typesAreCompatible(T1, T2)) {
4536 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4537 << T1 << T2;
4538 Diag(overridden->getLocation(), diag::note_previous_declaration);
4539 break;
4540 }
4541 }
4542 }
4543 }
4544
4545 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4546}
4547
4548/// Merge type nullability from for a redeclaration of the same entity,
4549/// producing the updated type of the redeclared entity.
4550static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4551 QualType type,
4552 bool usesCSKeyword,
4553 SourceLocation prevLoc,
4554 QualType prevType,
4555 bool prevUsesCSKeyword) {
4556 // Determine the nullability of both types.
4557 auto nullability = type->getNullability();
4558 auto prevNullability = prevType->getNullability();
4559
4560 // Easy case: both have nullability.
4561 if (nullability.has_value() == prevNullability.has_value()) {
4562 // Neither has nullability; continue.
4563 if (!nullability)
4564 return type;
4565
4566 // The nullabilities are equivalent; do nothing.
4567 if (*nullability == *prevNullability)
4568 return type;
4569
4570 // Complain about mismatched nullability.
4571 S.Diag(loc, diag::err_nullability_conflicting)
4572 << DiagNullabilityKind(*nullability, usesCSKeyword)
4573 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4574 return type;
4575 }
4576
4577 // If it's the redeclaration that has nullability, don't change anything.
4578 if (nullability)
4579 return type;
4580
4581 // Otherwise, provide the result with the same nullability.
4582 return S.Context.getAttributedType(nullability: *prevNullability, modifiedType: type, equivalentType: type);
4583}
4584
4585/// Merge information from the declaration of a method in the \@interface
4586/// (or a category/extension) into the corresponding method in the
4587/// @implementation (for a class or category).
4588static void mergeInterfaceMethodToImpl(Sema &S,
4589 ObjCMethodDecl *method,
4590 ObjCMethodDecl *prevMethod) {
4591 // Merge the objc_requires_super attribute.
4592 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4593 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4594 // merge the attribute into implementation.
4595 method->addAttr(
4596 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4597 method->getLocation()));
4598 }
4599
4600 // Merge nullability of the result type.
4601 QualType newReturnType
4602 = mergeTypeNullabilityForRedecl(
4603 S, loc: method->getReturnTypeSourceRange().getBegin(),
4604 type: method->getReturnType(),
4605 usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4606 prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(),
4607 prevType: prevMethod->getReturnType(),
4608 prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4609 method->setReturnType(newReturnType);
4610
4611 // Handle each of the parameters.
4612 unsigned numParams = method->param_size();
4613 unsigned numPrevParams = prevMethod->param_size();
4614 for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) {
4615 ParmVarDecl *param = method->param_begin()[i];
4616 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4617
4618 // Merge nullability.
4619 QualType newParamType
4620 = mergeTypeNullabilityForRedecl(
4621 S, param->getLocation(), param->getType(),
4622 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4623 prevParam->getLocation(), prevParam->getType(),
4624 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4625 param->setType(newParamType);
4626 }
4627}
4628
4629/// Verify that the method parameters/return value have types that are supported
4630/// by the x86 target.
4631static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4632 const ObjCMethodDecl *Method) {
4633 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4634 llvm::Triple::x86 &&
4635 "x86-specific check invoked for a different target");
4636 SourceLocation Loc;
4637 QualType T;
4638 for (const ParmVarDecl *P : Method->parameters()) {
4639 if (P->getType()->isVectorType()) {
4640 Loc = P->getBeginLoc();
4641 T = P->getType();
4642 break;
4643 }
4644 }
4645 if (Loc.isInvalid()) {
4646 if (Method->getReturnType()->isVectorType()) {
4647 Loc = Method->getReturnTypeSourceRange().getBegin();
4648 T = Method->getReturnType();
4649 } else
4650 return;
4651 }
4652
4653 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4654 // iOS < 9 and macOS < 10.11.
4655 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4656 VersionTuple AcceptedInVersion;
4657 if (Triple.getOS() == llvm::Triple::IOS)
4658 AcceptedInVersion = VersionTuple(/*Major=*/9);
4659 else if (Triple.isMacOSX())
4660 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4661 else
4662 return;
4663 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4664 AcceptedInVersion)
4665 return;
4666 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4667 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4668 : /*parameter*/ 0)
4669 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4670}
4671
4672static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4673 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4674 CD->hasAttr<ObjCDirectMembersAttr>()) {
4675 Method->addAttr(
4676 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4677 }
4678}
4679
4680static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4681 ObjCMethodDecl *Method,
4682 ObjCImplDecl *ImpDecl = nullptr) {
4683 auto Sel = Method->getSelector();
4684 bool isInstance = Method->isInstanceMethod();
4685 bool diagnosed = false;
4686
4687 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4688 if (diagnosed || IMD->isImplicit())
4689 return;
4690 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4691 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4692 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4693 << Method->getDeclName();
4694 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4695 diagnosed = true;
4696 }
4697 };
4698
4699 // Look for any other declaration of this method anywhere we can see in this
4700 // compilation unit.
4701 //
4702 // We do not use IDecl->lookupMethod() because we have specific needs:
4703 //
4704 // - we absolutely do not need to walk protocols, because
4705 // diag::err_objc_direct_on_protocol has already been emitted
4706 // during parsing if there's a conflict,
4707 //
4708 // - when we do not find a match in a given @interface container,
4709 // we need to attempt looking it up in the @implementation block if the
4710 // translation unit sees it to find more clashes.
4711
4712 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4713 diagClash(IMD);
4714 else if (auto *Impl = IDecl->getImplementation())
4715 if (Impl != ImpDecl)
4716 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4717 diagClash(IMD);
4718
4719 for (const auto *Cat : IDecl->visible_categories())
4720 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4721 diagClash(IMD);
4722 else if (auto CatImpl = Cat->getImplementation())
4723 if (CatImpl != ImpDecl)
4724 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4725 diagClash(IMD);
4726}
4727
4728ParmVarDecl *SemaObjC::ActOnMethodParmDeclaration(Scope *S,
4729 ObjCArgInfo &ArgInfo,
4730 int ParamIndex,
4731 bool MethodDefinition) {
4732 ASTContext &Context = getASTContext();
4733 QualType ArgType;
4734 TypeSourceInfo *DI;
4735
4736 if (!ArgInfo.Type) {
4737 ArgType = Context.getObjCIdType();
4738 DI = nullptr;
4739 } else {
4740 ArgType = SemaRef.GetTypeFromParser(Ty: ArgInfo.Type, TInfo: &DI);
4741 }
4742 LookupResult R(SemaRef, ArgInfo.Name, ArgInfo.NameLoc,
4743 Sema::LookupOrdinaryName,
4744 SemaRef.forRedeclarationInCurContext());
4745 SemaRef.LookupName(R, S);
4746 if (R.isSingleResult()) {
4747 NamedDecl *PrevDecl = R.getFoundDecl();
4748 if (S->isDeclScope(PrevDecl)) {
4749 Diag(ArgInfo.NameLoc,
4750 (MethodDefinition ? diag::warn_method_param_redefinition
4751 : diag::warn_method_param_declaration))
4752 << ArgInfo.Name;
4753 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4754 }
4755 }
4756 SourceLocation StartLoc =
4757 DI ? DI->getTypeLoc().getBeginLoc() : ArgInfo.NameLoc;
4758
4759 // Temporarily put parameter variables in the translation unit. This is what
4760 // ActOnParamDeclarator does in the case of C arguments to the Objective-C
4761 // method too.
4762 ParmVarDecl *Param = SemaRef.CheckParameter(
4763 Context.getTranslationUnitDecl(), StartLoc, ArgInfo.NameLoc, ArgInfo.Name,
4764 ArgType, DI, SC_None);
4765 Param->setObjCMethodScopeInfo(ParamIndex);
4766 Param->setObjCDeclQualifier(
4767 CvtQTToAstBitMask(PQTVal: ArgInfo.DeclSpec.getObjCDeclQualifier()));
4768
4769 // Apply the attributes to the parameter.
4770 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, Param, ArgInfo.ArgAttrs);
4771 SemaRef.AddPragmaAttributes(SemaRef.TUScope, Param);
4772 if (Param->hasAttr<BlocksAttr>()) {
4773 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4774 Param->setInvalidDecl();
4775 }
4776
4777 S->AddDecl(Param);
4778 SemaRef.IdResolver.AddDecl(Param);
4779 return Param;
4780}
4781
4782Decl *SemaObjC::ActOnMethodDeclaration(
4783 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4784 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4785 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4786 // optional arguments. The number of types/arguments is obtained
4787 // from the Sel.getNumArgs().
4788 ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4789 unsigned CNumArgs, // c-style args
4790 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4791 bool isVariadic, bool MethodDefinition) {
4792 ASTContext &Context = getASTContext();
4793 // Make sure we can establish a context for the method.
4794 if (!SemaRef.CurContext->isObjCContainer()) {
4795 Diag(MethodLoc, diag::err_missing_method_context);
4796 return nullptr;
4797 }
4798
4799 Decl *ClassDecl = cast<ObjCContainerDecl>(Val: SemaRef.CurContext);
4800 QualType resultDeclType;
4801
4802 bool HasRelatedResultType = false;
4803 TypeSourceInfo *ReturnTInfo = nullptr;
4804 if (ReturnType) {
4805 resultDeclType = SemaRef.GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo);
4806
4807 if (SemaRef.CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc))
4808 return nullptr;
4809
4810 QualType bareResultType = resultDeclType;
4811 (void)AttributedType::stripOuterNullability(T&: bareResultType);
4812 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4813 } else { // get the type for "id".
4814 resultDeclType = Context.getObjCIdType();
4815 Diag(MethodLoc, diag::warn_missing_method_return_type)
4816 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4817 }
4818
4819 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4820 C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo,
4821 contextDecl: SemaRef.CurContext, isInstance: MethodType == tok::minus, isVariadic,
4822 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4823 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4824 impControl: MethodDeclKind == tok::objc_optional
4825 ? ObjCImplementationControl::Optional
4826 : ObjCImplementationControl::Required,
4827 HasRelatedResultType);
4828
4829 SmallVector<ParmVarDecl*, 16> Params;
4830 for (unsigned I = 0; I < Sel.getNumArgs(); ++I) {
4831 ParmVarDecl *Param = ArgInfo[I];
4832 Param->setDeclContext(ObjCMethod);
4833 SemaRef.ProcessAPINotes(Param);
4834 Params.push_back(Elt: Param);
4835 }
4836
4837 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4838 ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param);
4839 QualType ArgType = Param->getType();
4840 if (ArgType.isNull())
4841 ArgType = Context.getObjCIdType();
4842 else
4843 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4844 ArgType = Context.getAdjustedParameterType(T: ArgType);
4845
4846 Param->setDeclContext(ObjCMethod);
4847 Params.push_back(Elt: Param);
4848 }
4849
4850 ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs);
4851 ObjCMethod->setObjCDeclQualifier(
4852 CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier()));
4853
4854 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList);
4855 SemaRef.AddPragmaAttributes(SemaRef.TUScope, ObjCMethod);
4856 SemaRef.ProcessAPINotes(ObjCMethod);
4857
4858 // Add the method now.
4859 const ObjCMethodDecl *PrevMethod = nullptr;
4860 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) {
4861 if (MethodType == tok::minus) {
4862 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4863 ImpDecl->addInstanceMethod(method: ObjCMethod);
4864 } else {
4865 PrevMethod = ImpDecl->getClassMethod(Sel);
4866 ImpDecl->addClassMethod(method: ObjCMethod);
4867 }
4868
4869 // If this method overrides a previous @synthesize declaration,
4870 // register it with the property. Linear search through all
4871 // properties here, because the autosynthesized stub hasn't been
4872 // made visible yet, so it can be overridden by a later
4873 // user-specified implementation.
4874 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4875 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4876 if (Setter->getSelector() == Sel &&
4877 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4878 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4879 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4880 }
4881 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4882 if (Getter->getSelector() == Sel &&
4883 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4884 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4885 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4886 break;
4887 }
4888 }
4889
4890 // A method is either tagged direct explicitly, or inherits it from its
4891 // canonical declaration.
4892 //
4893 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4894 // because IDecl->lookupMethod() returns more possible matches than just
4895 // the canonical declaration.
4896 if (!ObjCMethod->isDirectMethod()) {
4897 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4898 if (CanonicalMD->isDirectMethod()) {
4899 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4900 ObjCMethod->addAttr(
4901 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4902 }
4903 }
4904
4905 // Merge information from the @interface declaration into the
4906 // @implementation.
4907 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4908 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4909 ObjCMethod->isInstanceMethod())) {
4910 mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD);
4911
4912 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4913 // in one of these places:
4914 //
4915 // (1) the canonical declaration in an @interface container paired
4916 // with the ImplDecl,
4917 // (2) non canonical declarations in @interface not paired with the
4918 // ImplDecl for the same Class,
4919 // (3) any superclass container.
4920 //
4921 // Direct methods only allow for canonical declarations in the matching
4922 // container (case 1).
4923 //
4924 // Direct methods overriding a superclass declaration (case 3) is
4925 // handled during overrides checks in CheckObjCMethodOverrides().
4926 //
4927 // We deal with same-class container mismatches (Case 2) here.
4928 if (IDecl == IMD->getClassInterface()) {
4929 auto diagContainerMismatch = [&] {
4930 int decl = 0, impl = 0;
4931
4932 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4933 decl = Cat->IsClassExtension() ? 1 : 2;
4934
4935 if (isa<ObjCCategoryImplDecl>(Val: ImpDecl))
4936 impl = 1 + (decl != 0);
4937
4938 Diag(ObjCMethod->getLocation(),
4939 diag::err_objc_direct_impl_decl_mismatch)
4940 << decl << impl;
4941 Diag(IMD->getLocation(), diag::note_previous_declaration);
4942 };
4943
4944 if (ObjCMethod->isDirectMethod()) {
4945 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4946 if (ObjCMethod->getCanonicalDecl() != IMD) {
4947 diagContainerMismatch();
4948 } else if (!IMD->isDirectMethod()) {
4949 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4950 Diag(IMD->getLocation(), diag::note_previous_declaration);
4951 }
4952 } else if (IMD->isDirectMethod()) {
4953 const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4954 if (ObjCMethod->getCanonicalDecl() != IMD) {
4955 diagContainerMismatch();
4956 } else {
4957 ObjCMethod->addAttr(
4958 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4959 }
4960 }
4961 }
4962
4963 // Warn about defining -dealloc in a category.
4964 if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() &&
4965 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4966 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4967 << ObjCMethod->getDeclName();
4968 }
4969 } else {
4970 mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod);
4971 checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod, ImpDecl);
4972 }
4973
4974 // Warn if a method declared in a protocol to which a category or
4975 // extension conforms is non-escaping and the implementation's method is
4976 // escaping.
4977 for (auto *C : IDecl->visible_categories())
4978 for (auto &P : C->protocols())
4979 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4980 ObjCMethod->isInstanceMethod())) {
4981 assert(ObjCMethod->parameters().size() ==
4982 IMD->parameters().size() &&
4983 "Methods have different number of parameters");
4984 auto OI = IMD->param_begin(), OE = IMD->param_end();
4985 auto NI = ObjCMethod->param_begin();
4986 for (; OI != OE; ++OI, ++NI)
4987 diagnoseNoescape(*NI, *OI, C, P, SemaRef);
4988 }
4989 }
4990 } else {
4991 if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) {
4992 mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod);
4993
4994 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl);
4995 if (!IDecl)
4996 IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface();
4997 // For valid code, we should always know the primary interface
4998 // declaration by now, however for invalid code we'll keep parsing
4999 // but we won't find the primary interface and IDecl will be nil.
5000 if (IDecl)
5001 checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod);
5002 }
5003
5004 cast<DeclContext>(Val: ClassDecl)->addDecl(ObjCMethod);
5005 }
5006
5007 if (PrevMethod) {
5008 // You can never have two method definitions with the same name.
5009 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
5010 << ObjCMethod->getDeclName();
5011 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
5012 ObjCMethod->setInvalidDecl();
5013 return ObjCMethod;
5014 }
5015
5016 // If this Objective-C method does not have a related result type, but we
5017 // are allowed to infer related result types, try to do so based on the
5018 // method family.
5019 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl);
5020 if (!CurrentClass) {
5021 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl))
5022 CurrentClass = Cat->getClassInterface();
5023 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl))
5024 CurrentClass = Impl->getClassInterface();
5025 else if (ObjCCategoryImplDecl *CatImpl
5026 = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl))
5027 CurrentClass = CatImpl->getClassInterface();
5028 }
5029
5030 ResultTypeCompatibilityKind RTC =
5031 CheckRelatedResultTypeCompatibility(S&: SemaRef, Method: ObjCMethod, CurrentClass);
5032
5033 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5034
5035 bool ARCError = false;
5036 if (getLangOpts().ObjCAutoRefCount)
5037 ARCError = CheckARCMethodDecl(method: ObjCMethod);
5038
5039 // Infer the related result type when possible.
5040 if (!ARCError && RTC == SemaObjC::RTC_Compatible &&
5041 !ObjCMethod->hasRelatedResultType() &&
5042 getLangOpts().ObjCInferRelatedResultType) {
5043 bool InferRelatedResultType = false;
5044 switch (ObjCMethod->getMethodFamily()) {
5045 case OMF_None:
5046 case OMF_copy:
5047 case OMF_dealloc:
5048 case OMF_finalize:
5049 case OMF_mutableCopy:
5050 case OMF_release:
5051 case OMF_retainCount:
5052 case OMF_initialize:
5053 case OMF_performSelector:
5054 break;
5055
5056 case OMF_alloc:
5057 case OMF_new:
5058 InferRelatedResultType = ObjCMethod->isClassMethod();
5059 break;
5060
5061 case OMF_init:
5062 case OMF_autorelease:
5063 case OMF_retain:
5064 case OMF_self:
5065 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5066 break;
5067 }
5068
5069 if (InferRelatedResultType &&
5070 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5071 ObjCMethod->setRelatedResultType();
5072 }
5073
5074 if (MethodDefinition &&
5075 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5076 checkObjCMethodX86VectorTypes(SemaRef, Method: ObjCMethod);
5077
5078 // + load method cannot have availability attributes. It get called on
5079 // startup, so it has to have the availability of the deployment target.
5080 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5081 if (ObjCMethod->isClassMethod() &&
5082 ObjCMethod->getSelector().getAsString() == "load") {
5083 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5084 << 0;
5085 ObjCMethod->dropAttr<AvailabilityAttr>();
5086 }
5087 }
5088
5089 // Insert the invisible arguments, self and _cmd!
5090 ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface());
5091
5092 SemaRef.ActOnDocumentableDecl(ObjCMethod);
5093
5094 return ObjCMethod;
5095}
5096
5097bool SemaObjC::CheckObjCDeclScope(Decl *D) {
5098 // Following is also an error. But it is caused by a missing @end
5099 // and diagnostic is issued elsewhere.
5100 if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext->getRedeclContext()))
5101 return false;
5102
5103 // If we switched context to translation unit while we are still lexically in
5104 // an objc container, it means the parser missed emitting an error.
5105 if (isa<TranslationUnitDecl>(
5106 Val: SemaRef.getCurLexicalContext()->getRedeclContext()))
5107 return false;
5108
5109 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5110 D->setInvalidDecl();
5111
5112 return true;
5113}
5114
5115/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5116/// instance variables of ClassName into Decls.
5117void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5118 const IdentifierInfo *ClassName,
5119 SmallVectorImpl<Decl *> &Decls) {
5120 ASTContext &Context = getASTContext();
5121 // Check that ClassName is a valid class
5122 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart);
5123 if (!Class) {
5124 Diag(DeclStart, diag::err_undef_interface) << ClassName;
5125 return;
5126 }
5127 if (getLangOpts().ObjCRuntime.isNonFragile()) {
5128 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5129 return;
5130 }
5131
5132 // Collect the instance variables
5133 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5134 Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars);
5135 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5136 for (unsigned i = 0; i < Ivars.size(); i++) {
5137 const FieldDecl* ID = Ivars[i];
5138 RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD);
5139 Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record,
5140 /*FIXME: StartL=*/StartLoc: ID->getLocation(),
5141 IdLoc: ID->getLocation(),
5142 Id: ID->getIdentifier(), T: ID->getType(),
5143 BW: ID->getBitWidth());
5144 Decls.push_back(Elt: FD);
5145 }
5146
5147 // Introduce all of these fields into the appropriate scope.
5148 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5149 D != Decls.end(); ++D) {
5150 FieldDecl *FD = cast<FieldDecl>(Val: *D);
5151 if (getLangOpts().CPlusPlus)
5152 SemaRef.PushOnScopeChains(FD, S);
5153 else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD))
5154 Record->addDecl(FD);
5155 }
5156}
5157
5158/// Build a type-check a new Objective-C exception variable declaration.
5159VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5160 SourceLocation StartLoc,
5161 SourceLocation IdLoc,
5162 const IdentifierInfo *Id,
5163 bool Invalid) {
5164 ASTContext &Context = getASTContext();
5165 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5166 // duration shall not be qualified by an address-space qualifier."
5167 // Since all parameters have automatic store duration, they can not have
5168 // an address space.
5169 if (T.getAddressSpace() != LangAS::Default) {
5170 Diag(IdLoc, diag::err_arg_with_address_space);
5171 Invalid = true;
5172 }
5173
5174 // An @catch parameter must be an unqualified object pointer type;
5175 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5176 if (Invalid) {
5177 // Don't do any further checking.
5178 } else if (T->isDependentType()) {
5179 // Okay: we don't know what this type will instantiate to.
5180 } else if (T->isObjCQualifiedIdType()) {
5181 Invalid = true;
5182 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5183 } else if (T->isObjCIdType()) {
5184 // Okay: we don't know what this type will instantiate to.
5185 } else if (!T->isObjCObjectPointerType()) {
5186 Invalid = true;
5187 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5188 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5189 Invalid = true;
5190 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5191 }
5192
5193 VarDecl *New = VarDecl::Create(C&: Context, DC: SemaRef.CurContext, StartLoc, IdLoc,
5194 Id, T, TInfo, S: SC_None);
5195 New->setExceptionVariable(true);
5196
5197 // In ARC, infer 'retaining' for variables of retainable type.
5198 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5199 Invalid = true;
5200
5201 if (Invalid)
5202 New->setInvalidDecl();
5203 return New;
5204}
5205
5206Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5207 const DeclSpec &DS = D.getDeclSpec();
5208
5209 // We allow the "register" storage class on exception variables because
5210 // GCC did, but we drop it completely. Any other storage class is an error.
5211 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5212 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5213 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5214 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5215 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5216 << DeclSpec::getSpecifierName(SCS);
5217 }
5218 if (DS.isInlineSpecified())
5219 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5220 << getLangOpts().CPlusPlus17;
5221 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5222 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5223 diag::err_invalid_thread)
5224 << DeclSpec::getSpecifierName(TSCS);
5225 D.getMutableDeclSpec().ClearStorageClassSpecs();
5226
5227 SemaRef.DiagnoseFunctionSpecifiers(DS: D.getDeclSpec());
5228
5229 // Check that there are no default arguments inside the type of this
5230 // exception object (C++ only).
5231 if (getLangOpts().CPlusPlus)
5232 SemaRef.CheckExtraCXXDefaultArguments(D);
5233
5234 TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5235 QualType ExceptionType = TInfo->getType();
5236
5237 VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType,
5238 StartLoc: D.getSourceRange().getBegin(),
5239 IdLoc: D.getIdentifierLoc(),
5240 Id: D.getIdentifier(),
5241 Invalid: D.isInvalidType());
5242
5243 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5244 if (D.getCXXScopeSpec().isSet()) {
5245 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5246 << D.getCXXScopeSpec().getRange();
5247 New->setInvalidDecl();
5248 }
5249
5250 // Add the parameter declaration into this scope.
5251 S->AddDecl(New);
5252 if (D.getIdentifier())
5253 SemaRef.IdResolver.AddDecl(New);
5254
5255 SemaRef.ProcessDeclAttributes(S, New, D);
5256
5257 if (New->hasAttr<BlocksAttr>())
5258 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5259 return New;
5260}
5261
5262/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5263/// initialization.
5264void SemaObjC::CollectIvarsToConstructOrDestruct(
5265 ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) {
5266 ASTContext &Context = getASTContext();
5267 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5268 Iv= Iv->getNextIvar()) {
5269 QualType QT = Context.getBaseElementType(Iv->getType());
5270 if (QT->isRecordType())
5271 Ivars.push_back(Elt: Iv);
5272 }
5273}
5274
5275void SemaObjC::DiagnoseUseOfUnimplementedSelectors() {
5276 ASTContext &Context = getASTContext();
5277 // Load referenced selectors from the external source.
5278 if (SemaRef.ExternalSource) {
5279 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5280 SemaRef.ExternalSource->ReadReferencedSelectors(Sels);
5281 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5282 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5283 }
5284
5285 // Warning will be issued only when selector table is
5286 // generated (which means there is at lease one implementation
5287 // in the TU). This is to match gcc's behavior.
5288 if (ReferencedSelectors.empty() ||
5289 !Context.AnyObjCImplementation())
5290 return;
5291 for (auto &SelectorAndLocation : ReferencedSelectors) {
5292 Selector Sel = SelectorAndLocation.first;
5293 SourceLocation Loc = SelectorAndLocation.second;
5294 if (!LookupImplementedMethodInGlobalPool(Sel))
5295 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5296 }
5297}
5298
5299ObjCIvarDecl *
5300SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5301 const ObjCPropertyDecl *&PDecl) const {
5302 if (Method->isClassMethod())
5303 return nullptr;
5304 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5305 if (!IDecl)
5306 return nullptr;
5307 Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true,
5308 /*shallowCategoryLookup=*/false,
5309 /*followSuper=*/false);
5310 if (!Method || !Method->isPropertyAccessor())
5311 return nullptr;
5312 if ((PDecl = Method->findPropertyDecl()))
5313 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5314 // property backing ivar must belong to property's class
5315 // or be a private ivar in class's implementation.
5316 // FIXME. fix the const-ness issue.
5317 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5318 IV->getIdentifier());
5319 return IV;
5320 }
5321 return nullptr;
5322}
5323
5324namespace {
5325/// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property
5326/// accessor references the backing ivar.
5327class UnusedBackingIvarChecker : public DynamicRecursiveASTVisitor {
5328public:
5329 Sema &S;
5330 const ObjCMethodDecl *Method;
5331 const ObjCIvarDecl *IvarD;
5332 bool AccessedIvar;
5333 bool InvokedSelfMethod;
5334
5335 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5336 const ObjCIvarDecl *IvarD)
5337 : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false),
5338 InvokedSelfMethod(false) {
5339 assert(IvarD);
5340 }
5341
5342 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) override {
5343 if (E->getDecl() == IvarD) {
5344 AccessedIvar = true;
5345 return false;
5346 }
5347 return true;
5348 }
5349
5350 bool VisitObjCMessageExpr(ObjCMessageExpr *E) override {
5351 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5352 S.ObjC().isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) {
5353 InvokedSelfMethod = true;
5354 }
5355 return true;
5356 }
5357};
5358} // end anonymous namespace
5359
5360void SemaObjC::DiagnoseUnusedBackingIvarInAccessor(
5361 Scope *S, const ObjCImplementationDecl *ImplD) {
5362 if (S->hasUnrecoverableErrorOccurred())
5363 return;
5364
5365 for (const auto *CurMethod : ImplD->instance_methods()) {
5366 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5367 SourceLocation Loc = CurMethod->getLocation();
5368 if (getDiagnostics().isIgnored(DIAG, Loc))
5369 continue;
5370
5371 const ObjCPropertyDecl *PDecl;
5372 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5373 if (!IV)
5374 continue;
5375
5376 if (CurMethod->isSynthesizedAccessorStub())
5377 continue;
5378
5379 UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV);
5380 Checker.TraverseStmt(CurMethod->getBody());
5381 if (Checker.AccessedIvar)
5382 continue;
5383
5384 // Do not issue this warning if backing ivar is used somewhere and accessor
5385 // implementation makes a self call. This is to prevent false positive in
5386 // cases where the ivar is accessed by another method that the accessor
5387 // delegates to.
5388 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5389 Diag(Loc, DIAG) << IV;
5390 Diag(PDecl->getLocation(), diag::note_property_declare);
5391 }
5392 }
5393}
5394
5395QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount(
5396 QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) {
5397 ASTContext &Context = getASTContext();
5398 // In ARC, infer a lifetime qualifier for appropriate parameter types.
5399 if (!getLangOpts().ObjCAutoRefCount ||
5400 T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
5401 return T;
5402
5403 Qualifiers::ObjCLifetime Lifetime;
5404
5405 // Special cases for arrays:
5406 // - if it's const, use __unsafe_unretained
5407 // - otherwise, it's an error
5408 if (T->isArrayType()) {
5409 if (!T.isConstQualified()) {
5410 if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics())
5411 SemaRef.DelayedDiagnostics.add(
5412 sema::DelayedDiagnostic::makeForbiddenType(
5413 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
5414 else
5415 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
5416 << TSInfo->getTypeLoc().getSourceRange();
5417 }
5418 Lifetime = Qualifiers::OCL_ExplicitNone;
5419 } else {
5420 Lifetime = T->getObjCARCImplicitLifetime();
5421 }
5422 T = Context.getLifetimeQualifiedType(type: T, lifetime: Lifetime);
5423
5424 return T;
5425}
5426
5427ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id,
5428 SourceLocation IdLoc,
5429 bool DoTypoCorrection) {
5430 // The third "scope" argument is 0 since we aren't enabling lazy built-in
5431 // creation from this context.
5432 NamedDecl *IDecl = SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: Id, Loc: IdLoc,
5433 NameKind: Sema::LookupOrdinaryName);
5434
5435 if (!IDecl && DoTypoCorrection) {
5436 // Perform typo correction at the given location, but only if we
5437 // find an Objective-C class name.
5438 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
5439 if (TypoCorrection C = SemaRef.CorrectTypo(
5440 Typo: DeclarationNameInfo(Id, IdLoc), LookupKind: Sema::LookupOrdinaryName,
5441 S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) {
5442 SemaRef.diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
5443 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
5444 Id = IDecl->getIdentifier();
5445 }
5446 }
5447 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IDecl);
5448 // This routine must always return a class definition, if any.
5449 if (Def && Def->getDefinition())
5450 Def = Def->getDefinition();
5451 return Def;
5452}
5453
5454bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) {
5455 ASTContext &Context = getASTContext();
5456 QualType type = decl->getType();
5457 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5458 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5459 // Various kinds of declaration aren't allowed to be __autoreleasing.
5460 unsigned kind = -1U;
5461 if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) {
5462 if (var->hasAttr<BlocksAttr>())
5463 kind = 0; // __block
5464 else if (!var->hasLocalStorage())
5465 kind = 1; // global
5466 } else if (isa<ObjCIvarDecl>(Val: decl)) {
5467 kind = 3; // ivar
5468 } else if (isa<FieldDecl>(Val: decl)) {
5469 kind = 2; // field
5470 }
5471
5472 if (kind != -1U) {
5473 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) << kind;
5474 }
5475 } else if (lifetime == Qualifiers::OCL_None) {
5476 // Try to infer lifetime.
5477 if (!type->isObjCLifetimeType())
5478 return false;
5479
5480 lifetime = type->getObjCARCImplicitLifetime();
5481 type = Context.getLifetimeQualifiedType(type, lifetime);
5482 decl->setType(type);
5483 }
5484
5485 if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) {
5486 // Thread-local variables cannot have lifetime.
5487 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5488 var->getTLSKind()) {
5489 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5490 << var->getType();
5491 return true;
5492 }
5493 }
5494
5495 return false;
5496}
5497
5498ObjCContainerDecl *SemaObjC::getObjCDeclContext() const {
5499 return (dyn_cast_or_null<ObjCContainerDecl>(Val: SemaRef.CurContext));
5500}
5501
5502void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5503 if (!getLangOpts().CPlusPlus)
5504 return;
5505 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5506 ASTContext &Context = getASTContext();
5507 SmallVector<ObjCIvarDecl *, 8> ivars;
5508 CollectIvarsToConstructOrDestruct(OI: OID, Ivars&: ivars);
5509 if (ivars.empty())
5510 return;
5511 SmallVector<CXXCtorInitializer *, 32> AllToInit;
5512 for (unsigned i = 0; i < ivars.size(); i++) {
5513 FieldDecl *Field = ivars[i];
5514 if (Field->isInvalidDecl())
5515 continue;
5516
5517 CXXCtorInitializer *Member;
5518 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Member: Field);
5519 InitializationKind InitKind =
5520 InitializationKind::CreateDefault(InitLoc: ObjCImplementation->getLocation());
5521
5522 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {});
5523 ExprResult MemberInit =
5524 InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {});
5525 MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit);
5526 // Note, MemberInit could actually come back empty if no initialization
5527 // is required (e.g., because it would call a trivial default constructor)
5528 if (!MemberInit.get() || MemberInit.isInvalid())
5529 continue;
5530
5531 Member = new (Context)
5532 CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(),
5533 MemberInit.getAs<Expr>(), SourceLocation());
5534 AllToInit.push_back(Elt: Member);
5535
5536 // Be sure that the destructor is accessible and is marked as referenced.
5537 if (const RecordType *RecordTy =
5538 Context.getBaseElementType(Field->getType())
5539 ->getAs<RecordType>()) {
5540 CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl());
5541 if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: RD)) {
5542 SemaRef.MarkFunctionReferenced(Loc: Field->getLocation(), Func: Destructor);
5543 SemaRef.CheckDestructorAccess(
5544 Field->getLocation(), Destructor,
5545 PDiag(diag::err_access_dtor_ivar)
5546 << Context.getBaseElementType(Field->getType()));
5547 }
5548 }
5549 }
5550 ObjCImplementation->setIvarInitializers(C&: Context, initializers: AllToInit.data(),
5551 numInitializers: AllToInit.size());
5552 }
5553}
5554
5555/// TranslateIvarVisibility - Translate visibility from a token ID to an
5556/// AST enum value.
5557static ObjCIvarDecl::AccessControl
5558TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5559 switch (ivarVisibility) {
5560 default:
5561 llvm_unreachable("Unknown visitibility kind");
5562 case tok::objc_private:
5563 return ObjCIvarDecl::Private;
5564 case tok::objc_public:
5565 return ObjCIvarDecl::Public;
5566 case tok::objc_protected:
5567 return ObjCIvarDecl::Protected;
5568 case tok::objc_package:
5569 return ObjCIvarDecl::Package;
5570 }
5571}
5572
5573/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5574/// in order to create an IvarDecl object for it.
5575Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
5576 Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
5577
5578 const IdentifierInfo *II = D.getIdentifier();
5579 SourceLocation Loc = DeclStart;
5580 if (II)
5581 Loc = D.getIdentifierLoc();
5582
5583 // FIXME: Unnamed fields can be handled in various different ways, for
5584 // example, unnamed unions inject all members into the struct namespace!
5585
5586 TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5587 QualType T = TInfo->getType();
5588
5589 if (BitWidth) {
5590 // 6.7.2.1p3, 6.7.2.1p4
5591 BitWidth =
5592 SemaRef.VerifyBitField(FieldLoc: Loc, FieldName: II, FieldTy: T, /*IsMsStruct*/ false, BitWidth)
5593 .get();
5594 if (!BitWidth)
5595 D.setInvalidType();
5596 } else {
5597 // Not a bitfield.
5598
5599 // validate II.
5600 }
5601 if (T->isReferenceType()) {
5602 Diag(Loc, diag::err_ivar_reference_type);
5603 D.setInvalidType();
5604 }
5605 // C99 6.7.2.1p8: A member of a structure or union may have any type other
5606 // than a variably modified type.
5607 else if (T->isVariablyModifiedType()) {
5608 if (!SemaRef.tryToFixVariablyModifiedVarType(
5609 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
5610 D.setInvalidType();
5611 }
5612
5613 // Get the visibility (access control) for this ivar.
5614 ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword
5615 ? TranslateIvarVisibility(ivarVisibility: Visibility)
5616 : ObjCIvarDecl::None;
5617 // Must set ivar's DeclContext to its enclosing interface.
5618 ObjCContainerDecl *EnclosingDecl =
5619 cast<ObjCContainerDecl>(Val: SemaRef.CurContext);
5620 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
5621 return nullptr;
5622 ObjCContainerDecl *EnclosingContext;
5623 if (ObjCImplementationDecl *IMPDecl =
5624 dyn_cast<ObjCImplementationDecl>(Val: EnclosingDecl)) {
5625 if (getLangOpts().ObjCRuntime.isFragile()) {
5626 // Case of ivar declared in an implementation. Context is that of its
5627 // class.
5628 EnclosingContext = IMPDecl->getClassInterface();
5629 assert(EnclosingContext && "Implementation has no class interface!");
5630 } else
5631 EnclosingContext = EnclosingDecl;
5632 } else {
5633 if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(Val: EnclosingDecl)) {
5634 if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
5635 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5636 return nullptr;
5637 }
5638 }
5639 EnclosingContext = EnclosingDecl;
5640 }
5641
5642 // Construct the decl.
5643 ObjCIvarDecl *NewID =
5644 ObjCIvarDecl::Create(C&: getASTContext(), DC: EnclosingContext, StartLoc: DeclStart, IdLoc: Loc,
5645 Id: II, T, TInfo, ac, BW: BitWidth);
5646
5647 if (T->containsErrors())
5648 NewID->setInvalidDecl();
5649
5650 if (II) {
5651 NamedDecl *PrevDecl =
5652 SemaRef.LookupSingleName(S, Name: II, Loc, NameKind: Sema::LookupMemberName,
5653 Redecl: RedeclarationKind::ForVisibleRedeclaration);
5654 if (PrevDecl && SemaRef.isDeclInScope(PrevDecl, EnclosingContext, S) &&
5655 !isa<TagDecl>(Val: PrevDecl)) {
5656 Diag(Loc, diag::err_duplicate_member) << II;
5657 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5658 NewID->setInvalidDecl();
5659 }
5660 }
5661
5662 // Process attributes attached to the ivar.
5663 SemaRef.ProcessDeclAttributes(S, NewID, D);
5664
5665 if (D.isInvalidType())
5666 NewID->setInvalidDecl();
5667
5668 // In ARC, infer 'retaining' for ivars of retainable type.
5669 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
5670 NewID->setInvalidDecl();
5671
5672 if (D.getDeclSpec().isModulePrivateSpecified())
5673 NewID->setModulePrivate();
5674
5675 if (II) {
5676 // FIXME: When interfaces are DeclContexts, we'll need to add
5677 // these to the interface.
5678 S->AddDecl(NewID);
5679 SemaRef.IdResolver.AddDecl(NewID);
5680 }
5681
5682 if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() &&
5683 isa<ObjCInterfaceDecl>(EnclosingDecl))
5684 Diag(Loc, diag::warn_ivars_in_interface);
5685
5686 return NewID;
5687}
5688

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of clang/lib/Sema/SemaDeclObjC.cpp