1 | //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for Objective C declarations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "TypeLocBuilder.h" |
14 | #include "clang/AST/ASTConsumer.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/DeclObjC.h" |
18 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
19 | #include "clang/AST/Expr.h" |
20 | #include "clang/AST/ExprObjC.h" |
21 | #include "clang/Basic/SourceManager.h" |
22 | #include "clang/Basic/TargetInfo.h" |
23 | #include "clang/Sema/DeclSpec.h" |
24 | #include "clang/Sema/DelayedDiagnostic.h" |
25 | #include "clang/Sema/Initialization.h" |
26 | #include "clang/Sema/Lookup.h" |
27 | #include "clang/Sema/Scope.h" |
28 | #include "clang/Sema/ScopeInfo.h" |
29 | #include "clang/Sema/SemaObjC.h" |
30 | #include "llvm/ADT/DenseMap.h" |
31 | #include "llvm/ADT/DenseSet.h" |
32 | |
33 | using namespace clang; |
34 | |
35 | /// Check whether the given method, which must be in the 'init' |
36 | /// family, is a valid member of that family. |
37 | /// |
38 | /// \param receiverTypeIfCall - if null, check this as if declaring it; |
39 | /// if non-null, check this as if making a call to it with the given |
40 | /// receiver type |
41 | /// |
42 | /// \return true to indicate that there was an error and appropriate |
43 | /// actions were taken |
44 | bool SemaObjC::checkInitMethod(ObjCMethodDecl *method, |
45 | QualType receiverTypeIfCall) { |
46 | ASTContext &Context = getASTContext(); |
47 | if (method->isInvalidDecl()) return true; |
48 | |
49 | // This castAs is safe: methods that don't return an object |
50 | // pointer won't be inferred as inits and will reject an explicit |
51 | // objc_method_family(init). |
52 | |
53 | // We ignore protocols here. Should we? What about Class? |
54 | |
55 | const ObjCObjectType *result = |
56 | method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); |
57 | |
58 | if (result->isObjCId()) { |
59 | return false; |
60 | } else if (result->isObjCClass()) { |
61 | // fall through: always an error |
62 | } else { |
63 | ObjCInterfaceDecl *resultClass = result->getInterface(); |
64 | assert(resultClass && "unexpected object type!"); |
65 | |
66 | // It's okay for the result type to still be a forward declaration |
67 | // if we're checking an interface declaration. |
68 | if (!resultClass->hasDefinition()) { |
69 | if (receiverTypeIfCall.isNull() && |
70 | !isa<ObjCImplementationDecl>(method->getDeclContext())) |
71 | return false; |
72 | |
73 | // Otherwise, we try to compare class types. |
74 | } else { |
75 | // If this method was declared in a protocol, we can't check |
76 | // anything unless we have a receiver type that's an interface. |
77 | const ObjCInterfaceDecl *receiverClass = nullptr; |
78 | if (isa<ObjCProtocolDecl>(method->getDeclContext())) { |
79 | if (receiverTypeIfCall.isNull()) |
80 | return false; |
81 | |
82 | receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() |
83 | ->getInterfaceDecl(); |
84 | |
85 | // This can be null for calls to e.g. id<Foo>. |
86 | if (!receiverClass) return false; |
87 | } else { |
88 | receiverClass = method->getClassInterface(); |
89 | assert(receiverClass && "method not associated with a class!"); |
90 | } |
91 | |
92 | // If either class is a subclass of the other, it's fine. |
93 | if (receiverClass->isSuperClassOf(I: resultClass) || |
94 | resultClass->isSuperClassOf(I: receiverClass)) |
95 | return false; |
96 | } |
97 | } |
98 | |
99 | SourceLocation loc = method->getLocation(); |
100 | |
101 | // If we're in a system header, and this is not a call, just make |
102 | // the method unusable. |
103 | if (receiverTypeIfCall.isNull() && |
104 | SemaRef.getSourceManager().isInSystemHeader(Loc: loc)) { |
105 | method->addAttr(UnavailableAttr::CreateImplicit(Context, "", |
106 | UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); |
107 | return true; |
108 | } |
109 | |
110 | // Otherwise, it's an error. |
111 | Diag(loc, diag::err_arc_init_method_unrelated_result_type); |
112 | method->setInvalidDecl(); |
113 | return true; |
114 | } |
115 | |
116 | /// Issue a warning if the parameter of the overridden method is non-escaping |
117 | /// but the parameter of the overriding method is not. |
118 | static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
119 | Sema &S) { |
120 | if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { |
121 | S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); |
122 | S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); |
123 | return false; |
124 | } |
125 | |
126 | return true; |
127 | } |
128 | |
129 | /// Produce additional diagnostics if a category conforms to a protocol that |
130 | /// defines a method taking a non-escaping parameter. |
131 | static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
132 | const ObjCCategoryDecl *CD, |
133 | const ObjCProtocolDecl *PD, Sema &S) { |
134 | if (!diagnoseNoescape(NewD, OldD, S)) |
135 | S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) |
136 | << CD->IsClassExtension() << PD |
137 | << cast<ObjCMethodDecl>(NewD->getDeclContext()); |
138 | } |
139 | |
140 | void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, |
141 | const ObjCMethodDecl *Overridden) { |
142 | ASTContext &Context = getASTContext(); |
143 | if (Overridden->hasRelatedResultType() && |
144 | !NewMethod->hasRelatedResultType()) { |
145 | // This can only happen when the method follows a naming convention that |
146 | // implies a related result type, and the original (overridden) method has |
147 | // a suitable return type, but the new (overriding) method does not have |
148 | // a suitable return type. |
149 | QualType ResultType = NewMethod->getReturnType(); |
150 | SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); |
151 | |
152 | // Figure out which class this method is part of, if any. |
153 | ObjCInterfaceDecl *CurrentClass |
154 | = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); |
155 | if (!CurrentClass) { |
156 | DeclContext *DC = NewMethod->getDeclContext(); |
157 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC)) |
158 | CurrentClass = Cat->getClassInterface(); |
159 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC)) |
160 | CurrentClass = Impl->getClassInterface(); |
161 | else if (ObjCCategoryImplDecl *CatImpl |
162 | = dyn_cast<ObjCCategoryImplDecl>(Val: DC)) |
163 | CurrentClass = CatImpl->getClassInterface(); |
164 | } |
165 | |
166 | if (CurrentClass) { |
167 | Diag(NewMethod->getLocation(), |
168 | diag::warn_related_result_type_compatibility_class) |
169 | << Context.getObjCInterfaceType(CurrentClass) |
170 | << ResultType |
171 | << ResultTypeRange; |
172 | } else { |
173 | Diag(NewMethod->getLocation(), |
174 | diag::warn_related_result_type_compatibility_protocol) |
175 | << ResultType |
176 | << ResultTypeRange; |
177 | } |
178 | |
179 | if (ObjCMethodFamily Family = Overridden->getMethodFamily()) |
180 | Diag(Overridden->getLocation(), |
181 | diag::note_related_result_type_family) |
182 | << /*overridden method*/ 0 |
183 | << Family; |
184 | else |
185 | Diag(Overridden->getLocation(), |
186 | diag::note_related_result_type_overridden); |
187 | } |
188 | |
189 | if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != |
190 | Overridden->hasAttr<NSReturnsRetainedAttr>())) { |
191 | Diag(NewMethod->getLocation(), |
192 | getLangOpts().ObjCAutoRefCount |
193 | ? diag::err_nsreturns_retained_attribute_mismatch |
194 | : diag::warn_nsreturns_retained_attribute_mismatch) |
195 | << 1; |
196 | Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; |
197 | } |
198 | if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != |
199 | Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { |
200 | Diag(NewMethod->getLocation(), |
201 | getLangOpts().ObjCAutoRefCount |
202 | ? diag::err_nsreturns_retained_attribute_mismatch |
203 | : diag::warn_nsreturns_retained_attribute_mismatch) |
204 | << 0; |
205 | Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; |
206 | } |
207 | |
208 | ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), |
209 | oe = Overridden->param_end(); |
210 | for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), |
211 | ne = NewMethod->param_end(); |
212 | ni != ne && oi != oe; ++ni, ++oi) { |
213 | const ParmVarDecl *oldDecl = (*oi); |
214 | ParmVarDecl *newDecl = (*ni); |
215 | if (newDecl->hasAttr<NSConsumedAttr>() != |
216 | oldDecl->hasAttr<NSConsumedAttr>()) { |
217 | Diag(newDecl->getLocation(), |
218 | getLangOpts().ObjCAutoRefCount |
219 | ? diag::err_nsconsumed_attribute_mismatch |
220 | : diag::warn_nsconsumed_attribute_mismatch); |
221 | Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; |
222 | } |
223 | |
224 | diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: SemaRef); |
225 | } |
226 | } |
227 | |
228 | /// Check a method declaration for compatibility with the Objective-C |
229 | /// ARC conventions. |
230 | bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) { |
231 | ASTContext &Context = getASTContext(); |
232 | ObjCMethodFamily family = method->getMethodFamily(); |
233 | switch (family) { |
234 | case OMF_None: |
235 | case OMF_finalize: |
236 | case OMF_retain: |
237 | case OMF_release: |
238 | case OMF_autorelease: |
239 | case OMF_retainCount: |
240 | case OMF_self: |
241 | case OMF_initialize: |
242 | case OMF_performSelector: |
243 | return false; |
244 | |
245 | case OMF_dealloc: |
246 | if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { |
247 | SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); |
248 | if (ResultTypeRange.isInvalid()) |
249 | Diag(method->getLocation(), diag::err_dealloc_bad_result_type) |
250 | << method->getReturnType() |
251 | << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); |
252 | else |
253 | Diag(method->getLocation(), diag::err_dealloc_bad_result_type) |
254 | << method->getReturnType() |
255 | << FixItHint::CreateReplacement(ResultTypeRange, "void"); |
256 | return true; |
257 | } |
258 | return false; |
259 | |
260 | case OMF_init: |
261 | // If the method doesn't obey the init rules, don't bother annotating it. |
262 | if (checkInitMethod(method, receiverTypeIfCall: QualType())) |
263 | return true; |
264 | |
265 | method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); |
266 | |
267 | // Don't add a second copy of this attribute, but otherwise don't |
268 | // let it be suppressed. |
269 | if (method->hasAttr<NSReturnsRetainedAttr>()) |
270 | return false; |
271 | break; |
272 | |
273 | case OMF_alloc: |
274 | case OMF_copy: |
275 | case OMF_mutableCopy: |
276 | case OMF_new: |
277 | if (method->hasAttr<NSReturnsRetainedAttr>() || |
278 | method->hasAttr<NSReturnsNotRetainedAttr>() || |
279 | method->hasAttr<NSReturnsAutoreleasedAttr>()) |
280 | return false; |
281 | break; |
282 | } |
283 | |
284 | method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); |
285 | return false; |
286 | } |
287 | |
288 | static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, |
289 | SourceLocation ImplLoc) { |
290 | if (!ND) |
291 | return; |
292 | bool IsCategory = false; |
293 | StringRef RealizedPlatform; |
294 | AvailabilityResult Availability = ND->getAvailability( |
295 | /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), |
296 | &RealizedPlatform); |
297 | if (Availability != AR_Deprecated) { |
298 | if (isa<ObjCMethodDecl>(Val: ND)) { |
299 | if (Availability != AR_Unavailable) |
300 | return; |
301 | if (RealizedPlatform.empty()) |
302 | RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); |
303 | // Warn about implementing unavailable methods, unless the unavailable |
304 | // is for an app extension. |
305 | if (RealizedPlatform.ends_with(Suffix: "_app_extension")) |
306 | return; |
307 | S.Diag(ImplLoc, diag::warn_unavailable_def); |
308 | S.Diag(ND->getLocation(), diag::note_method_declared_at) |
309 | << ND->getDeclName(); |
310 | return; |
311 | } |
312 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) { |
313 | if (!CD->getClassInterface()->isDeprecated()) |
314 | return; |
315 | ND = CD->getClassInterface(); |
316 | IsCategory = true; |
317 | } else |
318 | return; |
319 | } |
320 | S.Diag(ImplLoc, diag::warn_deprecated_def) |
321 | << (isa<ObjCMethodDecl>(ND) |
322 | ? /*Method*/ 0 |
323 | : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 |
324 | : /*Class*/ 1); |
325 | if (isa<ObjCMethodDecl>(ND)) |
326 | S.Diag(ND->getLocation(), diag::note_method_declared_at) |
327 | << ND->getDeclName(); |
328 | else |
329 | S.Diag(ND->getLocation(), diag::note_previous_decl) |
330 | << (isa<ObjCCategoryDecl>(ND) ? "category": "class"); |
331 | } |
332 | |
333 | /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global |
334 | /// pool. |
335 | void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) { |
336 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
337 | |
338 | // If we don't have a valid method decl, simply return. |
339 | if (!MDecl) |
340 | return; |
341 | if (MDecl->isInstanceMethod()) |
342 | AddInstanceMethodToGlobalPool(Method: MDecl, impl: true); |
343 | else |
344 | AddFactoryMethodToGlobalPool(Method: MDecl, impl: true); |
345 | } |
346 | |
347 | /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer |
348 | /// has explicit ownership attribute; false otherwise. |
349 | static bool |
350 | HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { |
351 | QualType T = Param->getType(); |
352 | |
353 | if (const PointerType *PT = T->getAs<PointerType>()) { |
354 | T = PT->getPointeeType(); |
355 | } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { |
356 | T = RT->getPointeeType(); |
357 | } else { |
358 | return true; |
359 | } |
360 | |
361 | // If we have a lifetime qualifier, but it's local, we must have |
362 | // inferred it. So, it is implicit. |
363 | return !T.getLocalQualifiers().hasObjCLifetime(); |
364 | } |
365 | |
366 | /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible |
367 | /// and user declared, in the method definition's AST. |
368 | void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { |
369 | ASTContext &Context = getASTContext(); |
370 | SemaRef.ImplicitlyRetainedSelfLocs.clear(); |
371 | assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused"); |
372 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
373 | |
374 | SemaRef.PushExpressionEvaluationContext( |
375 | NewContext: SemaRef.ExprEvalContexts.back().Context); |
376 | |
377 | // If we don't have a valid method decl, simply return. |
378 | if (!MDecl) |
379 | return; |
380 | |
381 | QualType ResultType = MDecl->getReturnType(); |
382 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
383 | !MDecl->isInvalidDecl() && |
384 | SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType, |
385 | diag::err_func_def_incomplete_result)) |
386 | MDecl->setInvalidDecl(); |
387 | |
388 | // Allow all of Sema to see that we are entering a method definition. |
389 | SemaRef.PushDeclContext(FnBodyScope, MDecl); |
390 | SemaRef.PushFunctionScope(); |
391 | |
392 | // Create Decl objects for each parameter, entrring them in the scope for |
393 | // binding to their use. |
394 | |
395 | // Insert the invisible arguments, self and _cmd! |
396 | MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface()); |
397 | |
398 | SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); |
399 | SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); |
400 | |
401 | // The ObjC parser requires parameter names so there's no need to check. |
402 | SemaRef.CheckParmsForFunctionDef(Parameters: MDecl->parameters(), |
403 | /*CheckParameterNames=*/false); |
404 | |
405 | // Introduce all of the other parameters into this scope. |
406 | for (auto *Param : MDecl->parameters()) { |
407 | if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount && |
408 | !HasExplicitOwnershipAttr(SemaRef, Param)) |
409 | Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << |
410 | Param->getType(); |
411 | |
412 | if (Param->getIdentifier()) |
413 | SemaRef.PushOnScopeChains(Param, FnBodyScope); |
414 | } |
415 | |
416 | // In ARC, disallow definition of retain/release/autorelease/retainCount |
417 | if (getLangOpts().ObjCAutoRefCount) { |
418 | switch (MDecl->getMethodFamily()) { |
419 | case OMF_retain: |
420 | case OMF_retainCount: |
421 | case OMF_release: |
422 | case OMF_autorelease: |
423 | Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) |
424 | << 0 << MDecl->getSelector(); |
425 | break; |
426 | |
427 | case OMF_None: |
428 | case OMF_dealloc: |
429 | case OMF_finalize: |
430 | case OMF_alloc: |
431 | case OMF_init: |
432 | case OMF_mutableCopy: |
433 | case OMF_copy: |
434 | case OMF_new: |
435 | case OMF_self: |
436 | case OMF_initialize: |
437 | case OMF_performSelector: |
438 | break; |
439 | } |
440 | } |
441 | |
442 | // Warn on deprecated methods under -Wdeprecated-implementations, |
443 | // and prepare for warning on missing super calls. |
444 | if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { |
445 | ObjCMethodDecl *IMD = |
446 | IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod()); |
447 | |
448 | if (IMD) { |
449 | ObjCImplDecl *ImplDeclOfMethodDef = |
450 | dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); |
451 | ObjCContainerDecl *ContDeclOfMethodDecl = |
452 | dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); |
453 | ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; |
454 | if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl)) |
455 | ImplDeclOfMethodDecl = OID->getImplementation(); |
456 | else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) { |
457 | if (CD->IsClassExtension()) { |
458 | if (ObjCInterfaceDecl *OID = CD->getClassInterface()) |
459 | ImplDeclOfMethodDecl = OID->getImplementation(); |
460 | } else |
461 | ImplDeclOfMethodDecl = CD->getImplementation(); |
462 | } |
463 | // No need to issue deprecated warning if deprecated mehod in class/category |
464 | // is being implemented in its own implementation (no overriding is involved). |
465 | if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) |
466 | DiagnoseObjCImplementedDeprecations(SemaRef, IMD, MDecl->getLocation()); |
467 | } |
468 | |
469 | if (MDecl->getMethodFamily() == OMF_init) { |
470 | if (MDecl->isDesignatedInitializerForTheInterface()) { |
471 | SemaRef.getCurFunction()->ObjCIsDesignatedInit = true; |
472 | SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain = |
473 | IC->getSuperClass() != nullptr; |
474 | } else if (IC->hasDesignatedInitializers()) { |
475 | SemaRef.getCurFunction()->ObjCIsSecondaryInit = true; |
476 | SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true; |
477 | } |
478 | } |
479 | |
480 | // If this is "dealloc" or "finalize", set some bit here. |
481 | // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. |
482 | // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. |
483 | // Only do this if the current class actually has a superclass. |
484 | if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { |
485 | ObjCMethodFamily Family = MDecl->getMethodFamily(); |
486 | if (Family == OMF_dealloc) { |
487 | if (!(getLangOpts().ObjCAutoRefCount || |
488 | getLangOpts().getGC() == LangOptions::GCOnly)) |
489 | SemaRef.getCurFunction()->ObjCShouldCallSuper = true; |
490 | |
491 | } else if (Family == OMF_finalize) { |
492 | if (Context.getLangOpts().getGC() != LangOptions::NonGC) |
493 | SemaRef.getCurFunction()->ObjCShouldCallSuper = true; |
494 | |
495 | } else { |
496 | const ObjCMethodDecl *SuperMethod = |
497 | SuperClass->lookupMethod(Sel: MDecl->getSelector(), |
498 | isInstance: MDecl->isInstanceMethod()); |
499 | SemaRef.getCurFunction()->ObjCShouldCallSuper = |
500 | (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); |
501 | } |
502 | } |
503 | } |
504 | |
505 | // Some function attributes (like OptimizeNoneAttr) need actions before |
506 | // parsing body started. |
507 | SemaRef.applyFunctionAttributesBeforeParsingBody(FD: D); |
508 | } |
509 | |
510 | namespace { |
511 | |
512 | // Callback to only accept typo corrections that are Objective-C classes. |
513 | // If an ObjCInterfaceDecl* is given to the constructor, then the validation |
514 | // function will reject corrections to that class. |
515 | class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { |
516 | public: |
517 | ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} |
518 | explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) |
519 | : CurrentIDecl(IDecl) {} |
520 | |
521 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
522 | ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
523 | return ID && !declaresSameEntity(ID, CurrentIDecl); |
524 | } |
525 | |
526 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
527 | return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this); |
528 | } |
529 | |
530 | private: |
531 | ObjCInterfaceDecl *CurrentIDecl; |
532 | }; |
533 | |
534 | } // end anonymous namespace |
535 | |
536 | static void diagnoseUseOfProtocols(Sema &TheSema, |
537 | ObjCContainerDecl *CD, |
538 | ObjCProtocolDecl *const *ProtoRefs, |
539 | unsigned NumProtoRefs, |
540 | const SourceLocation *ProtoLocs) { |
541 | assert(ProtoRefs); |
542 | // Diagnose availability in the context of the ObjC container. |
543 | Sema::ContextRAII SavedContext(TheSema, CD); |
544 | for (unsigned i = 0; i < NumProtoRefs; ++i) { |
545 | (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], |
546 | /*UnknownObjCClass=*/nullptr, |
547 | /*ObjCPropertyAccess=*/false, |
548 | /*AvoidPartialAvailabilityChecks=*/true); |
549 | } |
550 | } |
551 | |
552 | void SemaObjC::ActOnSuperClassOfClassInterface( |
553 | Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, |
554 | IdentifierInfo *ClassName, SourceLocation ClassLoc, |
555 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
556 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) { |
557 | ASTContext &Context = getASTContext(); |
558 | // Check if a different kind of symbol declared in this scope. |
559 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
560 | S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName); |
561 | |
562 | if (!PrevDecl) { |
563 | // Try to correct for a typo in the superclass name without correcting |
564 | // to the class we're defining. |
565 | ObjCInterfaceValidatorCCC CCC(IDecl); |
566 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
567 | Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: Sema::LookupOrdinaryName, |
568 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) { |
569 | SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) |
570 | << SuperName << ClassName); |
571 | PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
572 | } |
573 | } |
574 | |
575 | if (declaresSameEntity(PrevDecl, IDecl)) { |
576 | Diag(SuperLoc, diag::err_recursive_superclass) |
577 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
578 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
579 | } else { |
580 | ObjCInterfaceDecl *SuperClassDecl = |
581 | dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
582 | QualType SuperClassType; |
583 | |
584 | // Diagnose classes that inherit from deprecated classes. |
585 | if (SuperClassDecl) { |
586 | (void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); |
587 | SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl); |
588 | } |
589 | |
590 | if (PrevDecl && !SuperClassDecl) { |
591 | // The previous declaration was not a class decl. Check if we have a |
592 | // typedef. If we do, get the underlying class type. |
593 | if (const TypedefNameDecl *TDecl = |
594 | dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) { |
595 | QualType T = TDecl->getUnderlyingType(); |
596 | if (T->isObjCObjectType()) { |
597 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
598 | SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl); |
599 | SuperClassType = Context.getTypeDeclType(TDecl); |
600 | |
601 | // This handles the following case: |
602 | // @interface NewI @end |
603 | // typedef NewI DeprI __attribute__((deprecated("blah"))) |
604 | // @interface SI : DeprI /* warn here */ @end |
605 | (void)SemaRef.DiagnoseUseOfDecl( |
606 | const_cast<TypedefNameDecl *>(TDecl), SuperLoc); |
607 | } |
608 | } |
609 | } |
610 | |
611 | // This handles the following case: |
612 | // |
613 | // typedef int SuperClass; |
614 | // @interface MyClass : SuperClass {} @end |
615 | // |
616 | if (!SuperClassDecl) { |
617 | Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; |
618 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
619 | } |
620 | } |
621 | |
622 | if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) { |
623 | if (!SuperClassDecl) |
624 | Diag(SuperLoc, diag::err_undef_superclass) |
625 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
626 | else if (SemaRef.RequireCompleteType( |
627 | SuperLoc, SuperClassType, diag::err_forward_superclass, |
628 | SuperClassDecl->getDeclName(), ClassName, |
629 | SourceRange(AtInterfaceLoc, ClassLoc))) { |
630 | SuperClassDecl = nullptr; |
631 | SuperClassType = QualType(); |
632 | } |
633 | } |
634 | |
635 | if (SuperClassType.isNull()) { |
636 | assert(!SuperClassDecl && "Failed to set SuperClassType?"); |
637 | return; |
638 | } |
639 | |
640 | // Handle type arguments on the superclass. |
641 | TypeSourceInfo *SuperClassTInfo = nullptr; |
642 | if (!SuperTypeArgs.empty()) { |
643 | TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( |
644 | S, Loc: SuperLoc, BaseType: SemaRef.CreateParsedType(T: SuperClassType, TInfo: nullptr), |
645 | TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(), TypeArgs: SuperTypeArgs, |
646 | TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(), ProtocolLAngleLoc: SourceLocation(), Protocols: {}, ProtocolLocs: {}, |
647 | ProtocolRAngleLoc: SourceLocation()); |
648 | if (!fullSuperClassType.isUsable()) |
649 | return; |
650 | |
651 | SuperClassType = |
652 | SemaRef.GetTypeFromParser(Ty: fullSuperClassType.get(), TInfo: &SuperClassTInfo); |
653 | } |
654 | |
655 | if (!SuperClassTInfo) { |
656 | SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType, |
657 | Loc: SuperLoc); |
658 | } |
659 | |
660 | IDecl->setSuperClass(SuperClassTInfo); |
661 | IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); |
662 | getASTContext().addObjCSubClass(IDecl->getSuperClass(), IDecl); |
663 | } |
664 | } |
665 | |
666 | DeclResult SemaObjC::actOnObjCTypeParam( |
667 | Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, |
668 | unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, |
669 | SourceLocation colonLoc, ParsedType parsedTypeBound) { |
670 | ASTContext &Context = getASTContext(); |
671 | // If there was an explicitly-provided type bound, check it. |
672 | TypeSourceInfo *typeBoundInfo = nullptr; |
673 | if (parsedTypeBound) { |
674 | // The type bound can be any Objective-C pointer type. |
675 | QualType typeBound = |
676 | SemaRef.GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo); |
677 | if (typeBound->isObjCObjectPointerType()) { |
678 | // okay |
679 | } else if (typeBound->isObjCObjectType()) { |
680 | // The user forgot the * on an Objective-C pointer type, e.g., |
681 | // "T : NSView". |
682 | SourceLocation starLoc = |
683 | SemaRef.getLocForEndOfToken(Loc: typeBoundInfo->getTypeLoc().getEndLoc()); |
684 | Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), |
685 | diag::err_objc_type_param_bound_missing_pointer) |
686 | << typeBound << paramName |
687 | << FixItHint::CreateInsertion(starLoc, " *"); |
688 | |
689 | // Create a new type location builder so we can update the type |
690 | // location information we have. |
691 | TypeLocBuilder builder; |
692 | builder.pushFullCopy(L: typeBoundInfo->getTypeLoc()); |
693 | |
694 | // Create the Objective-C pointer type. |
695 | typeBound = Context.getObjCObjectPointerType(OIT: typeBound); |
696 | ObjCObjectPointerTypeLoc newT |
697 | = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound); |
698 | newT.setStarLoc(starLoc); |
699 | |
700 | // Form the new type source information. |
701 | typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound); |
702 | } else { |
703 | // Not a valid type bound. |
704 | Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), |
705 | diag::err_objc_type_param_bound_nonobject) |
706 | << typeBound << paramName; |
707 | |
708 | // Forget the bound; we'll default to id later. |
709 | typeBoundInfo = nullptr; |
710 | } |
711 | |
712 | // Type bounds cannot have qualifiers (even indirectly) or explicit |
713 | // nullability. |
714 | if (typeBoundInfo) { |
715 | QualType typeBound = typeBoundInfo->getType(); |
716 | TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); |
717 | if (qual || typeBound.hasQualifiers()) { |
718 | bool diagnosed = false; |
719 | SourceRange rangeToRemove; |
720 | if (qual) { |
721 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { |
722 | rangeToRemove = attr.getLocalSourceRange(); |
723 | if (attr.getTypePtr()->getImmediateNullability()) { |
724 | Diag(attr.getBeginLoc(), |
725 | diag::err_objc_type_param_bound_explicit_nullability) |
726 | << paramName << typeBound |
727 | << FixItHint::CreateRemoval(rangeToRemove); |
728 | diagnosed = true; |
729 | } |
730 | } |
731 | } |
732 | |
733 | if (!diagnosed) { |
734 | Diag(qual ? qual.getBeginLoc() |
735 | : typeBoundInfo->getTypeLoc().getBeginLoc(), |
736 | diag::err_objc_type_param_bound_qualified) |
737 | << paramName << typeBound |
738 | << typeBound.getQualifiers().getAsString() |
739 | << FixItHint::CreateRemoval(rangeToRemove); |
740 | } |
741 | |
742 | // If the type bound has qualifiers other than CVR, we need to strip |
743 | // them or we'll probably assert later when trying to apply new |
744 | // qualifiers. |
745 | Qualifiers quals = typeBound.getQualifiers(); |
746 | quals.removeCVRQualifiers(); |
747 | if (!quals.empty()) { |
748 | typeBoundInfo = |
749 | Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType()); |
750 | } |
751 | } |
752 | } |
753 | } |
754 | |
755 | // If there was no explicit type bound (or we removed it due to an error), |
756 | // use 'id' instead. |
757 | if (!typeBoundInfo) { |
758 | colonLoc = SourceLocation(); |
759 | typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType()); |
760 | } |
761 | |
762 | // Create the type parameter. |
763 | return ObjCTypeParamDecl::Create(ctx&: Context, dc: SemaRef.CurContext, variance, |
764 | varianceLoc, index, nameLoc: paramLoc, name: paramName, |
765 | colonLoc, boundInfo: typeBoundInfo); |
766 | } |
767 | |
768 | ObjCTypeParamList * |
769 | SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, |
770 | ArrayRef<Decl *> typeParamsIn, |
771 | SourceLocation rAngleLoc) { |
772 | ASTContext &Context = getASTContext(); |
773 | // We know that the array only contains Objective-C type parameters. |
774 | ArrayRef<ObjCTypeParamDecl *> |
775 | typeParams( |
776 | reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), |
777 | typeParamsIn.size()); |
778 | |
779 | // Diagnose redeclarations of type parameters. |
780 | // We do this now because Objective-C type parameters aren't pushed into |
781 | // scope until later (after the instance variable block), but we want the |
782 | // diagnostics to occur right after we parse the type parameter list. |
783 | llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; |
784 | for (auto *typeParam : typeParams) { |
785 | auto known = knownParams.find(typeParam->getIdentifier()); |
786 | if (known != knownParams.end()) { |
787 | Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) |
788 | << typeParam->getIdentifier() |
789 | << SourceRange(known->second->getLocation()); |
790 | |
791 | typeParam->setInvalidDecl(); |
792 | } else { |
793 | knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); |
794 | |
795 | // Push the type parameter into scope. |
796 | SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false); |
797 | } |
798 | } |
799 | |
800 | // Create the parameter list. |
801 | return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc); |
802 | } |
803 | |
804 | void SemaObjC::popObjCTypeParamList(Scope *S, |
805 | ObjCTypeParamList *typeParamList) { |
806 | for (auto *typeParam : *typeParamList) { |
807 | if (!typeParam->isInvalidDecl()) { |
808 | S->RemoveDecl(typeParam); |
809 | SemaRef.IdResolver.RemoveDecl(typeParam); |
810 | } |
811 | } |
812 | } |
813 | |
814 | namespace { |
815 | /// The context in which an Objective-C type parameter list occurs, for use |
816 | /// in diagnostics. |
817 | enum class TypeParamListContext { |
818 | ForwardDeclaration, |
819 | Definition, |
820 | Category, |
821 | Extension |
822 | }; |
823 | } // end anonymous namespace |
824 | |
825 | /// Check consistency between two Objective-C type parameter lists, e.g., |
826 | /// between a category/extension and an \@interface or between an \@class and an |
827 | /// \@interface. |
828 | static bool checkTypeParamListConsistency(Sema &S, |
829 | ObjCTypeParamList *prevTypeParams, |
830 | ObjCTypeParamList *newTypeParams, |
831 | TypeParamListContext newContext) { |
832 | // If the sizes don't match, complain about that. |
833 | if (prevTypeParams->size() != newTypeParams->size()) { |
834 | SourceLocation diagLoc; |
835 | if (newTypeParams->size() > prevTypeParams->size()) { |
836 | diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); |
837 | } else { |
838 | diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc()); |
839 | } |
840 | |
841 | S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) |
842 | << static_cast<unsigned>(newContext) |
843 | << (newTypeParams->size() > prevTypeParams->size()) |
844 | << prevTypeParams->size() |
845 | << newTypeParams->size(); |
846 | |
847 | return true; |
848 | } |
849 | |
850 | // Match up the type parameters. |
851 | for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { |
852 | ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; |
853 | ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; |
854 | |
855 | // Check for consistency of the variance. |
856 | if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { |
857 | if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && |
858 | newContext != TypeParamListContext::Definition) { |
859 | // When the new type parameter is invariant and is not part |
860 | // of the definition, just propagate the variance. |
861 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
862 | } else if (prevTypeParam->getVariance() |
863 | == ObjCTypeParamVariance::Invariant && |
864 | !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && |
865 | cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) |
866 | ->getDefinition() == prevTypeParam->getDeclContext())) { |
867 | // When the old parameter is invariant and was not part of the |
868 | // definition, just ignore the difference because it doesn't |
869 | // matter. |
870 | } else { |
871 | { |
872 | // Diagnose the conflict and update the second declaration. |
873 | SourceLocation diagLoc = newTypeParam->getVarianceLoc(); |
874 | if (diagLoc.isInvalid()) |
875 | diagLoc = newTypeParam->getBeginLoc(); |
876 | |
877 | auto diag = S.Diag(diagLoc, |
878 | diag::err_objc_type_param_variance_conflict) |
879 | << static_cast<unsigned>(newTypeParam->getVariance()) |
880 | << newTypeParam->getDeclName() |
881 | << static_cast<unsigned>(prevTypeParam->getVariance()) |
882 | << prevTypeParam->getDeclName(); |
883 | switch (prevTypeParam->getVariance()) { |
884 | case ObjCTypeParamVariance::Invariant: |
885 | diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc()); |
886 | break; |
887 | |
888 | case ObjCTypeParamVariance::Covariant: |
889 | case ObjCTypeParamVariance::Contravariant: { |
890 | StringRef newVarianceStr |
891 | = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant |
892 | ? "__covariant" |
893 | : "__contravariant"; |
894 | if (newTypeParam->getVariance() |
895 | == ObjCTypeParamVariance::Invariant) { |
896 | diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(), |
897 | Code: (newVarianceStr + " ").str()); |
898 | } else { |
899 | diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(), |
900 | Code: newVarianceStr); |
901 | } |
902 | } |
903 | } |
904 | } |
905 | |
906 | S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
907 | << prevTypeParam->getDeclName(); |
908 | |
909 | // Override the variance. |
910 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
911 | } |
912 | } |
913 | |
914 | // If the bound types match, there's nothing to do. |
915 | if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), |
916 | newTypeParam->getUnderlyingType())) |
917 | continue; |
918 | |
919 | // If the new type parameter's bound was explicit, complain about it being |
920 | // different from the original. |
921 | if (newTypeParam->hasExplicitBound()) { |
922 | SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() |
923 | ->getTypeLoc().getSourceRange(); |
924 | S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) |
925 | << newTypeParam->getUnderlyingType() |
926 | << newTypeParam->getDeclName() |
927 | << prevTypeParam->hasExplicitBound() |
928 | << prevTypeParam->getUnderlyingType() |
929 | << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) |
930 | << prevTypeParam->getDeclName() |
931 | << FixItHint::CreateReplacement( |
932 | newBoundRange, |
933 | prevTypeParam->getUnderlyingType().getAsString( |
934 | S.Context.getPrintingPolicy())); |
935 | |
936 | S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
937 | << prevTypeParam->getDeclName(); |
938 | |
939 | // Override the new type parameter's bound type with the previous type, |
940 | // so that it's consistent. |
941 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
942 | continue; |
943 | } |
944 | |
945 | // The new type parameter got the implicit bound of 'id'. That's okay for |
946 | // categories and extensions (overwrite it later), but not for forward |
947 | // declarations and @interfaces, because those must be standalone. |
948 | if (newContext == TypeParamListContext::ForwardDeclaration || |
949 | newContext == TypeParamListContext::Definition) { |
950 | // Diagnose this problem for forward declarations and definitions. |
951 | SourceLocation insertionLoc |
952 | = S.getLocForEndOfToken(Loc: newTypeParam->getLocation()); |
953 | std::string newCode |
954 | = " : "+ prevTypeParam->getUnderlyingType().getAsString( |
955 | S.Context.getPrintingPolicy()); |
956 | S.Diag(newTypeParam->getLocation(), |
957 | diag::err_objc_type_param_bound_missing) |
958 | << prevTypeParam->getUnderlyingType() |
959 | << newTypeParam->getDeclName() |
960 | << (newContext == TypeParamListContext::ForwardDeclaration) |
961 | << FixItHint::CreateInsertion(insertionLoc, newCode); |
962 | |
963 | S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
964 | << prevTypeParam->getDeclName(); |
965 | } |
966 | |
967 | // Update the new type parameter's bound to match the previous one. |
968 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
969 | } |
970 | |
971 | return false; |
972 | } |
973 | |
974 | ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface( |
975 | Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, |
976 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
977 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
978 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, |
979 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
980 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
981 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
982 | assert(ClassName && "Missing class identifier"); |
983 | |
984 | ASTContext &Context = getASTContext(); |
985 | // Check for another declaration kind with the same name. |
986 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
987 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName, |
988 | Redecl: SemaRef.forRedeclarationInCurContext()); |
989 | |
990 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
991 | Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
992 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
993 | } |
994 | |
995 | // Create a declaration to describe this @interface. |
996 | ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
997 | |
998 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
999 | // A previous decl with a different name is because of |
1000 | // @compatibility_alias, for example: |
1001 | // \code |
1002 | // @class NewImage; |
1003 | // @compatibility_alias OldImage NewImage; |
1004 | // \endcode |
1005 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
1006 | // |
1007 | // In such a case use the real declaration name, instead of the alias one, |
1008 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
1009 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
1010 | // has been aliased. |
1011 | ClassName = PrevIDecl->getIdentifier(); |
1012 | } |
1013 | |
1014 | // If there was a forward declaration with type parameters, check |
1015 | // for consistency. |
1016 | if (PrevIDecl) { |
1017 | if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { |
1018 | if (typeParamList) { |
1019 | // Both have type parameter lists; check for consistency. |
1020 | if (checkTypeParamListConsistency(S&: SemaRef, prevTypeParams: prevTypeParamList, |
1021 | newTypeParams: typeParamList, |
1022 | newContext: TypeParamListContext::Definition)) { |
1023 | typeParamList = nullptr; |
1024 | } |
1025 | } else { |
1026 | Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) |
1027 | << ClassName; |
1028 | Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) |
1029 | << ClassName; |
1030 | |
1031 | // Clone the type parameter list. |
1032 | SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; |
1033 | for (auto *typeParam : *prevTypeParamList) { |
1034 | clonedTypeParams.push_back(Elt: ObjCTypeParamDecl::Create( |
1035 | ctx&: Context, dc: SemaRef.CurContext, variance: typeParam->getVariance(), |
1036 | varianceLoc: SourceLocation(), index: typeParam->getIndex(), nameLoc: SourceLocation(), |
1037 | name: typeParam->getIdentifier(), colonLoc: SourceLocation(), |
1038 | boundInfo: Context.getTrivialTypeSourceInfo( |
1039 | T: typeParam->getUnderlyingType()))); |
1040 | } |
1041 | |
1042 | typeParamList = ObjCTypeParamList::create(ctx&: Context, |
1043 | lAngleLoc: SourceLocation(), |
1044 | typeParams: clonedTypeParams, |
1045 | rAngleLoc: SourceLocation()); |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | ObjCInterfaceDecl *IDecl = |
1051 | ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtInterfaceLoc, |
1052 | Id: ClassName, typeParamList, PrevDecl: PrevIDecl, ClassLoc); |
1053 | if (PrevIDecl) { |
1054 | // Class already seen. Was it a definition? |
1055 | if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
1056 | if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) { |
1057 | SkipBody->CheckSameAsPrevious = true; |
1058 | SkipBody->New = IDecl; |
1059 | SkipBody->Previous = Def; |
1060 | } else { |
1061 | Diag(AtInterfaceLoc, diag::err_duplicate_class_def) |
1062 | << PrevIDecl->getDeclName(); |
1063 | Diag(Def->getLocation(), diag::note_previous_definition); |
1064 | IDecl->setInvalidDecl(); |
1065 | } |
1066 | } |
1067 | } |
1068 | |
1069 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IDecl, AttrList); |
1070 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl); |
1071 | SemaRef.ProcessAPINotes(IDecl); |
1072 | |
1073 | // Merge attributes from previous declarations. |
1074 | if (PrevIDecl) |
1075 | SemaRef.mergeDeclAttributes(IDecl, PrevIDecl); |
1076 | |
1077 | SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope); |
1078 | |
1079 | // Start the definition of this class. If we're in a redefinition case, there |
1080 | // may already be a definition, so we'll end up adding to it. |
1081 | if (SkipBody && SkipBody->CheckSameAsPrevious) |
1082 | IDecl->startDuplicateDefinitionForComparison(); |
1083 | else if (!IDecl->hasDefinition()) |
1084 | IDecl->startDefinition(); |
1085 | |
1086 | if (SuperName) { |
1087 | // Diagnose availability in the context of the @interface. |
1088 | Sema::ContextRAII SavedContext(SemaRef, IDecl); |
1089 | |
1090 | ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, |
1091 | ClassName, ClassLoc, |
1092 | SuperName, SuperLoc, SuperTypeArgs, |
1093 | SuperTypeArgsRange); |
1094 | } else { // we have a root class. |
1095 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
1096 | } |
1097 | |
1098 | // Check then save referenced protocols. |
1099 | if (NumProtoRefs) { |
1100 | diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs, |
1101 | NumProtoRefs, ProtoLocs); |
1102 | IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1103 | Locs: ProtoLocs, C&: Context); |
1104 | IDecl->setEndOfDefinitionLoc(EndProtoLoc); |
1105 | } |
1106 | |
1107 | CheckObjCDeclScope(IDecl); |
1108 | ActOnObjCContainerStartDefinition(IDecl); |
1109 | return IDecl; |
1110 | } |
1111 | |
1112 | /// ActOnTypedefedProtocols - this action finds protocol list as part of the |
1113 | /// typedef'ed use for a qualified super class and adds them to the list |
1114 | /// of the protocols. |
1115 | void SemaObjC::ActOnTypedefedProtocols( |
1116 | SmallVectorImpl<Decl *> &ProtocolRefs, |
1117 | SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName, |
1118 | SourceLocation SuperLoc) { |
1119 | if (!SuperName) |
1120 | return; |
1121 | NamedDecl *IDecl = SemaRef.LookupSingleName( |
1122 | S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName); |
1123 | if (!IDecl) |
1124 | return; |
1125 | |
1126 | if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) { |
1127 | QualType T = TDecl->getUnderlyingType(); |
1128 | if (T->isObjCObjectType()) |
1129 | if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { |
1130 | ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); |
1131 | // FIXME: Consider whether this should be an invalid loc since the loc |
1132 | // is not actually pointing to a protocol name reference but to the |
1133 | // typedef reference. Note that the base class name loc is also pointing |
1134 | // at the typedef. |
1135 | ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); |
1136 | } |
1137 | } |
1138 | } |
1139 | |
1140 | /// ActOnCompatibilityAlias - this action is called after complete parsing of |
1141 | /// a \@compatibility_alias declaration. It sets up the alias relationships. |
1142 | Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc, |
1143 | IdentifierInfo *AliasName, |
1144 | SourceLocation AliasLocation, |
1145 | IdentifierInfo *ClassName, |
1146 | SourceLocation ClassLocation) { |
1147 | ASTContext &Context = getASTContext(); |
1148 | // Look for previous declaration of alias name |
1149 | NamedDecl *ADecl = SemaRef.LookupSingleName( |
1150 | S: SemaRef.TUScope, Name: AliasName, Loc: AliasLocation, NameKind: Sema::LookupOrdinaryName, |
1151 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1152 | if (ADecl) { |
1153 | Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; |
1154 | Diag(ADecl->getLocation(), diag::note_previous_declaration); |
1155 | return nullptr; |
1156 | } |
1157 | // Check for class declaration |
1158 | NamedDecl *CDeclU = SemaRef.LookupSingleName( |
1159 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName, |
1160 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1161 | if (const TypedefNameDecl *TDecl = |
1162 | dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) { |
1163 | QualType T = TDecl->getUnderlyingType(); |
1164 | if (T->isObjCObjectType()) { |
1165 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
1166 | ClassName = IDecl->getIdentifier(); |
1167 | CDeclU = SemaRef.LookupSingleName( |
1168 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName, |
1169 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1170 | } |
1171 | } |
1172 | } |
1173 | ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU); |
1174 | if (!CDecl) { |
1175 | Diag(ClassLocation, diag::warn_undef_interface) << ClassName; |
1176 | if (CDeclU) |
1177 | Diag(CDeclU->getLocation(), diag::note_previous_declaration); |
1178 | return nullptr; |
1179 | } |
1180 | |
1181 | // Everything checked out, instantiate a new alias declaration AST. |
1182 | ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create( |
1183 | C&: Context, DC: SemaRef.CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl); |
1184 | |
1185 | if (!CheckObjCDeclScope(AliasDecl)) |
1186 | SemaRef.PushOnScopeChains(AliasDecl, SemaRef.TUScope); |
1187 | |
1188 | return AliasDecl; |
1189 | } |
1190 | |
1191 | bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency( |
1192 | IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc, |
1193 | const ObjCList<ObjCProtocolDecl> &PList) { |
1194 | |
1195 | bool res = false; |
1196 | for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), |
1197 | E = PList.end(); I != E; ++I) { |
1198 | if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(), IdLoc: Ploc)) { |
1199 | if (PDecl->getIdentifier() == PName) { |
1200 | Diag(Ploc, diag::err_protocol_has_circular_dependency); |
1201 | Diag(PrevLoc, diag::note_previous_definition); |
1202 | res = true; |
1203 | } |
1204 | |
1205 | if (!PDecl->hasDefinition()) |
1206 | continue; |
1207 | |
1208 | if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, |
1209 | PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols())) |
1210 | res = true; |
1211 | } |
1212 | } |
1213 | return res; |
1214 | } |
1215 | |
1216 | ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface( |
1217 | SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, |
1218 | SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, |
1219 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
1220 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
1221 | ASTContext &Context = getASTContext(); |
1222 | bool err = false; |
1223 | // FIXME: Deal with AttrList. |
1224 | assert(ProtocolName && "Missing protocol identifier"); |
1225 | ObjCProtocolDecl *PrevDecl = LookupProtocol( |
1226 | II: ProtocolName, IdLoc: ProtocolLoc, Redecl: SemaRef.forRedeclarationInCurContext()); |
1227 | ObjCProtocolDecl *PDecl = nullptr; |
1228 | if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { |
1229 | // Create a new protocol that is completely distinct from previous |
1230 | // declarations, and do not make this protocol available for name lookup. |
1231 | // That way, we'll end up completely ignoring the duplicate. |
1232 | // FIXME: Can we turn this into an error? |
1233 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName, |
1234 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
1235 | /*PrevDecl=*/Def); |
1236 | |
1237 | if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) { |
1238 | SkipBody->CheckSameAsPrevious = true; |
1239 | SkipBody->New = PDecl; |
1240 | SkipBody->Previous = Def; |
1241 | } else { |
1242 | // If we already have a definition, complain. |
1243 | Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; |
1244 | Diag(Def->getLocation(), diag::note_previous_definition); |
1245 | } |
1246 | |
1247 | // If we are using modules, add the decl to the context in order to |
1248 | // serialize something meaningful. |
1249 | if (getLangOpts().Modules) |
1250 | SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope); |
1251 | PDecl->startDuplicateDefinitionForComparison(); |
1252 | } else { |
1253 | if (PrevDecl) { |
1254 | // Check for circular dependencies among protocol declarations. This can |
1255 | // only happen if this protocol was forward-declared. |
1256 | ObjCList<ObjCProtocolDecl> PList; |
1257 | PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context); |
1258 | err = CheckForwardProtocolDeclarationForCircularDependency( |
1259 | PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList); |
1260 | } |
1261 | |
1262 | // Create the new declaration. |
1263 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName, |
1264 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
1265 | /*PrevDecl=*/PrevDecl); |
1266 | |
1267 | SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope); |
1268 | PDecl->startDefinition(); |
1269 | } |
1270 | |
1271 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, AttrList); |
1272 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl); |
1273 | SemaRef.ProcessAPINotes(PDecl); |
1274 | |
1275 | // Merge attributes from previous declarations. |
1276 | if (PrevDecl) |
1277 | SemaRef.mergeDeclAttributes(PDecl, PrevDecl); |
1278 | |
1279 | if (!err && NumProtoRefs ) { |
1280 | /// Check then save referenced protocols. |
1281 | diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs, |
1282 | NumProtoRefs, ProtoLocs); |
1283 | PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1284 | Locs: ProtoLocs, C&: Context); |
1285 | } |
1286 | |
1287 | CheckObjCDeclScope(PDecl); |
1288 | ActOnObjCContainerStartDefinition(PDecl); |
1289 | return PDecl; |
1290 | } |
1291 | |
1292 | static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, |
1293 | ObjCProtocolDecl *&UndefinedProtocol) { |
1294 | if (!PDecl->hasDefinition() || |
1295 | !PDecl->getDefinition()->isUnconditionallyVisible()) { |
1296 | UndefinedProtocol = PDecl; |
1297 | return true; |
1298 | } |
1299 | |
1300 | for (auto *PI : PDecl->protocols()) |
1301 | if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) { |
1302 | UndefinedProtocol = PI; |
1303 | return true; |
1304 | } |
1305 | return false; |
1306 | } |
1307 | |
1308 | /// FindProtocolDeclaration - This routine looks up protocols and |
1309 | /// issues an error if they are not declared. It returns list of |
1310 | /// protocol declarations in its 'Protocols' argument. |
1311 | void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations, |
1312 | bool ForObjCContainer, |
1313 | ArrayRef<IdentifierLoc> ProtocolId, |
1314 | SmallVectorImpl<Decl *> &Protocols) { |
1315 | for (const IdentifierLoc &Pair : ProtocolId) { |
1316 | ObjCProtocolDecl *PDecl = |
1317 | LookupProtocol(II: Pair.getIdentifierInfo(), IdLoc: Pair.getLoc()); |
1318 | if (!PDecl) { |
1319 | DeclFilterCCC<ObjCProtocolDecl> CCC{}; |
1320 | TypoCorrection Corrected = SemaRef.CorrectTypo( |
1321 | Typo: DeclarationNameInfo(Pair.getIdentifierInfo(), Pair.getLoc()), |
1322 | LookupKind: Sema::LookupObjCProtocolName, S: SemaRef.TUScope, SS: nullptr, CCC, |
1323 | Mode: CorrectTypoKind::ErrorRecovery); |
1324 | if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) |
1325 | SemaRef.diagnoseTypo(Corrected, |
1326 | PDiag(diag::err_undeclared_protocol_suggest) |
1327 | << Pair.getIdentifierInfo()); |
1328 | } |
1329 | |
1330 | if (!PDecl) { |
1331 | Diag(Pair.getLoc(), diag::err_undeclared_protocol) |
1332 | << Pair.getIdentifierInfo(); |
1333 | continue; |
1334 | } |
1335 | // If this is a forward protocol declaration, get its definition. |
1336 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
1337 | PDecl = PDecl->getDefinition(); |
1338 | |
1339 | // For an objc container, delay protocol reference checking until after we |
1340 | // can set the objc decl as the availability context, otherwise check now. |
1341 | if (!ForObjCContainer) { |
1342 | (void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.getLoc()); |
1343 | } |
1344 | |
1345 | // If this is a forward declaration and we are supposed to warn in this |
1346 | // case, do it. |
1347 | // FIXME: Recover nicely in the hidden case. |
1348 | ObjCProtocolDecl *UndefinedProtocol; |
1349 | |
1350 | if (WarnOnDeclarations && |
1351 | NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { |
1352 | Diag(Pair.getLoc(), diag::warn_undef_protocolref) |
1353 | << Pair.getIdentifierInfo(); |
1354 | Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) |
1355 | << UndefinedProtocol; |
1356 | } |
1357 | Protocols.push_back(PDecl); |
1358 | } |
1359 | } |
1360 | |
1361 | namespace { |
1362 | // Callback to only accept typo corrections that are either |
1363 | // Objective-C protocols or valid Objective-C type arguments. |
1364 | class ObjCTypeArgOrProtocolValidatorCCC final |
1365 | : public CorrectionCandidateCallback { |
1366 | ASTContext &Context; |
1367 | Sema::LookupNameKind LookupKind; |
1368 | public: |
1369 | ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, |
1370 | Sema::LookupNameKind lookupKind) |
1371 | : Context(context), LookupKind(lookupKind) { } |
1372 | |
1373 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
1374 | // If we're allowed to find protocols and we have a protocol, accept it. |
1375 | if (LookupKind != Sema::LookupOrdinaryName) { |
1376 | if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) |
1377 | return true; |
1378 | } |
1379 | |
1380 | // If we're allowed to find type names and we have one, accept it. |
1381 | if (LookupKind != Sema::LookupObjCProtocolName) { |
1382 | // If we have a type declaration, we might accept this result. |
1383 | if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { |
1384 | // If we found a tag declaration outside of C++, skip it. This |
1385 | // can happy because we look for any name when there is no |
1386 | // bias to protocol or type names. |
1387 | if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus) |
1388 | return false; |
1389 | |
1390 | // Make sure the type is something we would accept as a type |
1391 | // argument. |
1392 | auto type = Context.getTypeDeclType(Decl: typeDecl); |
1393 | if (type->isObjCObjectPointerType() || |
1394 | type->isBlockPointerType() || |
1395 | type->isDependentType() || |
1396 | type->isObjCObjectType()) |
1397 | return true; |
1398 | |
1399 | return false; |
1400 | } |
1401 | |
1402 | // If we have an Objective-C class type, accept it; there will |
1403 | // be another fix to add the '*'. |
1404 | if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) |
1405 | return true; |
1406 | |
1407 | return false; |
1408 | } |
1409 | |
1410 | return false; |
1411 | } |
1412 | |
1413 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
1414 | return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this); |
1415 | } |
1416 | }; |
1417 | } // end anonymous namespace |
1418 | |
1419 | void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, |
1420 | SourceLocation ProtocolLoc, |
1421 | IdentifierInfo *TypeArgId, |
1422 | SourceLocation TypeArgLoc, |
1423 | bool SelectProtocolFirst) { |
1424 | Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) |
1425 | << SelectProtocolFirst << TypeArgId << ProtocolId |
1426 | << SourceRange(ProtocolLoc); |
1427 | } |
1428 | |
1429 | void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers( |
1430 | Scope *S, ParsedType baseType, SourceLocation lAngleLoc, |
1431 | ArrayRef<IdentifierInfo *> identifiers, |
1432 | ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc, |
1433 | SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs, |
1434 | SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, |
1435 | SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc, |
1436 | bool warnOnIncompleteProtocols) { |
1437 | ASTContext &Context = getASTContext(); |
1438 | // Local function that updates the declaration specifiers with |
1439 | // protocol information. |
1440 | unsigned numProtocolsResolved = 0; |
1441 | auto resolvedAsProtocols = [&] { |
1442 | assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols"); |
1443 | |
1444 | // Determine whether the base type is a parameterized class, in |
1445 | // which case we want to warn about typos such as |
1446 | // "NSArray<NSObject>" (that should be NSArray<NSObject *>). |
1447 | ObjCInterfaceDecl *baseClass = nullptr; |
1448 | QualType base = SemaRef.GetTypeFromParser(Ty: baseType, TInfo: nullptr); |
1449 | bool allAreTypeNames = false; |
1450 | SourceLocation firstClassNameLoc; |
1451 | if (!base.isNull()) { |
1452 | if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { |
1453 | baseClass = objcObjectType->getInterface(); |
1454 | if (baseClass) { |
1455 | if (auto typeParams = baseClass->getTypeParamList()) { |
1456 | if (typeParams->size() == numProtocolsResolved) { |
1457 | // Note that we should be looking for type names, too. |
1458 | allAreTypeNames = true; |
1459 | } |
1460 | } |
1461 | } |
1462 | } |
1463 | } |
1464 | |
1465 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) { |
1466 | ObjCProtocolDecl *&proto |
1467 | = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); |
1468 | // For an objc container, delay protocol reference checking until after we |
1469 | // can set the objc decl as the availability context, otherwise check now. |
1470 | if (!warnOnIncompleteProtocols) { |
1471 | (void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]); |
1472 | } |
1473 | |
1474 | // If this is a forward protocol declaration, get its definition. |
1475 | if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) |
1476 | proto = proto->getDefinition(); |
1477 | |
1478 | // If this is a forward declaration and we are supposed to warn in this |
1479 | // case, do it. |
1480 | // FIXME: Recover nicely in the hidden case. |
1481 | ObjCProtocolDecl *forwardDecl = nullptr; |
1482 | if (warnOnIncompleteProtocols && |
1483 | NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) { |
1484 | Diag(identifierLocs[i], diag::warn_undef_protocolref) |
1485 | << proto->getDeclName(); |
1486 | Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) |
1487 | << forwardDecl; |
1488 | } |
1489 | |
1490 | // If everything this far has been a type name (and we care |
1491 | // about such things), check whether this name refers to a type |
1492 | // as well. |
1493 | if (allAreTypeNames) { |
1494 | if (auto *decl = |
1495 | SemaRef.LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i], |
1496 | NameKind: Sema::LookupOrdinaryName)) { |
1497 | if (isa<ObjCInterfaceDecl>(Val: decl)) { |
1498 | if (firstClassNameLoc.isInvalid()) |
1499 | firstClassNameLoc = identifierLocs[i]; |
1500 | } else if (!isa<TypeDecl>(Val: decl)) { |
1501 | // Not a type. |
1502 | allAreTypeNames = false; |
1503 | } |
1504 | } else { |
1505 | allAreTypeNames = false; |
1506 | } |
1507 | } |
1508 | } |
1509 | |
1510 | // All of the protocols listed also have type names, and at least |
1511 | // one is an Objective-C class name. Check whether all of the |
1512 | // protocol conformances are declared by the base class itself, in |
1513 | // which case we warn. |
1514 | if (allAreTypeNames && firstClassNameLoc.isValid()) { |
1515 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; |
1516 | Context.CollectInheritedProtocols(baseClass, knownProtocols); |
1517 | bool allProtocolsDeclared = true; |
1518 | for (auto *proto : protocols) { |
1519 | if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) { |
1520 | allProtocolsDeclared = false; |
1521 | break; |
1522 | } |
1523 | } |
1524 | |
1525 | if (allProtocolsDeclared) { |
1526 | Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) |
1527 | << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) |
1528 | << FixItHint::CreateInsertion( |
1529 | SemaRef.getLocForEndOfToken(firstClassNameLoc), " *"); |
1530 | } |
1531 | } |
1532 | |
1533 | protocolLAngleLoc = lAngleLoc; |
1534 | protocolRAngleLoc = rAngleLoc; |
1535 | assert(protocols.size() == identifierLocs.size()); |
1536 | }; |
1537 | |
1538 | // Attempt to resolve all of the identifiers as protocols. |
1539 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1540 | ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]); |
1541 | protocols.push_back(proto); |
1542 | if (proto) |
1543 | ++numProtocolsResolved; |
1544 | } |
1545 | |
1546 | // If all of the names were protocols, these were protocol qualifiers. |
1547 | if (numProtocolsResolved == identifiers.size()) |
1548 | return resolvedAsProtocols(); |
1549 | |
1550 | // Attempt to resolve all of the identifiers as type names or |
1551 | // Objective-C class names. The latter is technically ill-formed, |
1552 | // but is probably something like \c NSArray<NSView *> missing the |
1553 | // \c*. |
1554 | typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; |
1555 | SmallVector<TypeOrClassDecl, 4> typeDecls; |
1556 | unsigned numTypeDeclsResolved = 0; |
1557 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1558 | NamedDecl *decl = SemaRef.LookupSingleName( |
1559 | S, Name: identifiers[i], Loc: identifierLocs[i], NameKind: Sema::LookupOrdinaryName); |
1560 | if (!decl) { |
1561 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
1562 | continue; |
1563 | } |
1564 | |
1565 | if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) { |
1566 | typeDecls.push_back(Elt: typeDecl); |
1567 | ++numTypeDeclsResolved; |
1568 | continue; |
1569 | } |
1570 | |
1571 | if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) { |
1572 | typeDecls.push_back(Elt: objcClass); |
1573 | ++numTypeDeclsResolved; |
1574 | continue; |
1575 | } |
1576 | |
1577 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
1578 | } |
1579 | |
1580 | AttributeFactory attrFactory; |
1581 | |
1582 | // Local function that forms a reference to the given type or |
1583 | // Objective-C class declaration. |
1584 | auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) |
1585 | -> TypeResult { |
1586 | // Form declaration specifiers. They simply refer to the type. |
1587 | DeclSpec DS(attrFactory); |
1588 | const char* prevSpec; // unused |
1589 | unsigned diagID; // unused |
1590 | QualType type; |
1591 | if (auto *actualTypeDecl = dyn_cast<TypeDecl *>(Val&: typeDecl)) |
1592 | type = Context.getTypeDeclType(Decl: actualTypeDecl); |
1593 | else |
1594 | type = Context.getObjCInterfaceType(Decl: cast<ObjCInterfaceDecl *>(Val&: typeDecl)); |
1595 | TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc); |
1596 | ParsedType parsedType = SemaRef.CreateParsedType(T: type, TInfo: parsedTSInfo); |
1597 | DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID, |
1598 | Rep: parsedType, Policy: Context.getPrintingPolicy()); |
1599 | // Use the identifier location for the type source range. |
1600 | DS.SetRangeStart(loc); |
1601 | DS.SetRangeEnd(loc); |
1602 | |
1603 | // Form the declarator. |
1604 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
1605 | |
1606 | // If we have a typedef of an Objective-C class type that is missing a '*', |
1607 | // add the '*'. |
1608 | if (type->getAs<ObjCInterfaceType>()) { |
1609 | SourceLocation starLoc = SemaRef.getLocForEndOfToken(Loc: loc); |
1610 | D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc, |
1611 | ConstQualLoc: SourceLocation(), |
1612 | VolatileQualLoc: SourceLocation(), |
1613 | RestrictQualLoc: SourceLocation(), |
1614 | AtomicQualLoc: SourceLocation(), |
1615 | UnalignedQualLoc: SourceLocation()), |
1616 | EndLoc: starLoc); |
1617 | |
1618 | // Diagnose the missing '*'. |
1619 | Diag(loc, diag::err_objc_type_arg_missing_star) |
1620 | << type |
1621 | << FixItHint::CreateInsertion(starLoc, " *"); |
1622 | } |
1623 | |
1624 | // Convert this to a type. |
1625 | return SemaRef.ActOnTypeName(D); |
1626 | }; |
1627 | |
1628 | // Local function that updates the declaration specifiers with |
1629 | // type argument information. |
1630 | auto resolvedAsTypeDecls = [&] { |
1631 | // We did not resolve these as protocols. |
1632 | protocols.clear(); |
1633 | |
1634 | assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"); |
1635 | // Map type declarations to type arguments. |
1636 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1637 | // Map type reference to a type. |
1638 | TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); |
1639 | if (!type.isUsable()) { |
1640 | typeArgs.clear(); |
1641 | return; |
1642 | } |
1643 | |
1644 | typeArgs.push_back(Elt: type.get()); |
1645 | } |
1646 | |
1647 | typeArgsLAngleLoc = lAngleLoc; |
1648 | typeArgsRAngleLoc = rAngleLoc; |
1649 | }; |
1650 | |
1651 | // If all of the identifiers can be resolved as type names or |
1652 | // Objective-C class names, we have type arguments. |
1653 | if (numTypeDeclsResolved == identifiers.size()) |
1654 | return resolvedAsTypeDecls(); |
1655 | |
1656 | // Error recovery: some names weren't found, or we have a mix of |
1657 | // type and protocol names. Go resolve all of the unresolved names |
1658 | // and complain if we can't find a consistent answer. |
1659 | Sema::LookupNameKind lookupKind = Sema::LookupAnyName; |
1660 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1661 | // If we already have a protocol or type. Check whether it is the |
1662 | // right thing. |
1663 | if (protocols[i] || typeDecls[i]) { |
1664 | // If we haven't figured out whether we want types or protocols |
1665 | // yet, try to figure it out from this name. |
1666 | if (lookupKind == Sema::LookupAnyName) { |
1667 | // If this name refers to both a protocol and a type (e.g., \c |
1668 | // NSObject), don't conclude anything yet. |
1669 | if (protocols[i] && typeDecls[i]) |
1670 | continue; |
1671 | |
1672 | // Otherwise, let this name decide whether we'll be correcting |
1673 | // toward types or protocols. |
1674 | lookupKind = protocols[i] ? Sema::LookupObjCProtocolName |
1675 | : Sema::LookupOrdinaryName; |
1676 | continue; |
1677 | } |
1678 | |
1679 | // If we want protocols and we have a protocol, there's nothing |
1680 | // more to do. |
1681 | if (lookupKind == Sema::LookupObjCProtocolName && protocols[i]) |
1682 | continue; |
1683 | |
1684 | // If we want types and we have a type declaration, there's |
1685 | // nothing more to do. |
1686 | if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i]) |
1687 | continue; |
1688 | |
1689 | // We have a conflict: some names refer to protocols and others |
1690 | // refer to types. |
1691 | DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0], |
1692 | TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i], |
1693 | SelectProtocolFirst: protocols[i] != nullptr); |
1694 | |
1695 | protocols.clear(); |
1696 | typeArgs.clear(); |
1697 | return; |
1698 | } |
1699 | |
1700 | // Perform typo correction on the name. |
1701 | ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); |
1702 | TypoCorrection corrected = SemaRef.CorrectTypo( |
1703 | Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]), LookupKind: lookupKind, S, |
1704 | SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery); |
1705 | if (corrected) { |
1706 | // Did we find a protocol? |
1707 | if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { |
1708 | SemaRef.diagnoseTypo(corrected, |
1709 | PDiag(diag::err_undeclared_protocol_suggest) |
1710 | << identifiers[i]); |
1711 | lookupKind = Sema::LookupObjCProtocolName; |
1712 | protocols[i] = proto; |
1713 | ++numProtocolsResolved; |
1714 | continue; |
1715 | } |
1716 | |
1717 | // Did we find a type? |
1718 | if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { |
1719 | SemaRef.diagnoseTypo(corrected, |
1720 | PDiag(diag::err_unknown_typename_suggest) |
1721 | << identifiers[i]); |
1722 | lookupKind = Sema::LookupOrdinaryName; |
1723 | typeDecls[i] = typeDecl; |
1724 | ++numTypeDeclsResolved; |
1725 | continue; |
1726 | } |
1727 | |
1728 | // Did we find an Objective-C class? |
1729 | if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
1730 | SemaRef.diagnoseTypo(corrected, |
1731 | PDiag(diag::err_unknown_type_or_class_name_suggest) |
1732 | << identifiers[i] << true); |
1733 | lookupKind = Sema::LookupOrdinaryName; |
1734 | typeDecls[i] = objcClass; |
1735 | ++numTypeDeclsResolved; |
1736 | continue; |
1737 | } |
1738 | } |
1739 | |
1740 | // We couldn't find anything. |
1741 | Diag(identifierLocs[i], |
1742 | (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing |
1743 | : lookupKind == Sema::LookupObjCProtocolName |
1744 | ? diag::err_undeclared_protocol |
1745 | : diag::err_unknown_typename)) |
1746 | << identifiers[i]; |
1747 | protocols.clear(); |
1748 | typeArgs.clear(); |
1749 | return; |
1750 | } |
1751 | |
1752 | // If all of the names were (corrected to) protocols, these were |
1753 | // protocol qualifiers. |
1754 | if (numProtocolsResolved == identifiers.size()) |
1755 | return resolvedAsProtocols(); |
1756 | |
1757 | // Otherwise, all of the names were (corrected to) types. |
1758 | assert(numTypeDeclsResolved == identifiers.size() && "Not all types?"); |
1759 | return resolvedAsTypeDecls(); |
1760 | } |
1761 | |
1762 | /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of |
1763 | /// a class method in its extension. |
1764 | /// |
1765 | void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, |
1766 | ObjCInterfaceDecl *ID) { |
1767 | if (!ID) |
1768 | return; // Possibly due to previous error |
1769 | |
1770 | llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; |
1771 | for (auto *MD : ID->methods()) |
1772 | MethodMap[MD->getSelector()] = MD; |
1773 | |
1774 | if (MethodMap.empty()) |
1775 | return; |
1776 | for (const auto *Method : CAT->methods()) { |
1777 | const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; |
1778 | if (PrevMethod && |
1779 | (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && |
1780 | !MatchTwoMethodDeclarations(Method, PrevMethod)) { |
1781 | Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
1782 | << Method->getDeclName(); |
1783 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
1784 | } |
1785 | } |
1786 | } |
1787 | |
1788 | /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; |
1789 | SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration( |
1790 | SourceLocation AtProtocolLoc, ArrayRef<IdentifierLoc> IdentList, |
1791 | const ParsedAttributesView &attrList) { |
1792 | ASTContext &Context = getASTContext(); |
1793 | SmallVector<Decl *, 8> DeclsInGroup; |
1794 | for (const IdentifierLoc &IdentPair : IdentList) { |
1795 | IdentifierInfo *Ident = IdentPair.getIdentifierInfo(); |
1796 | ObjCProtocolDecl *PrevDecl = LookupProtocol( |
1797 | II: Ident, IdLoc: IdentPair.getLoc(), Redecl: SemaRef.forRedeclarationInCurContext()); |
1798 | ObjCProtocolDecl *PDecl = |
1799 | ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: Ident, |
1800 | nameLoc: IdentPair.getLoc(), atStartLoc: AtProtocolLoc, PrevDecl); |
1801 | |
1802 | SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope); |
1803 | CheckObjCDeclScope(PDecl); |
1804 | |
1805 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, attrList); |
1806 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl); |
1807 | |
1808 | if (PrevDecl) |
1809 | SemaRef.mergeDeclAttributes(PDecl, PrevDecl); |
1810 | |
1811 | DeclsInGroup.push_back(PDecl); |
1812 | } |
1813 | |
1814 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
1815 | } |
1816 | |
1817 | ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface( |
1818 | SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName, |
1819 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
1820 | const IdentifierInfo *CategoryName, SourceLocation CategoryLoc, |
1821 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
1822 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
1823 | const ParsedAttributesView &AttrList) { |
1824 | ASTContext &Context = getASTContext(); |
1825 | ObjCCategoryDecl *CDecl; |
1826 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
1827 | |
1828 | /// Check that class of this category is already completely declared. |
1829 | |
1830 | if (!IDecl || |
1831 | SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
1832 | diag::err_category_forward_interface, |
1833 | CategoryName == nullptr)) { |
1834 | // Create an invalid ObjCCategoryDecl to serve as context for |
1835 | // the enclosing method declarations. We mark the decl invalid |
1836 | // to make it clear that this isn't a valid AST. |
1837 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, |
1838 | AtLoc: AtInterfaceLoc, ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, |
1839 | Id: CategoryName, IDecl, typeParamList); |
1840 | CDecl->setInvalidDecl(); |
1841 | SemaRef.CurContext->addDecl(CDecl); |
1842 | |
1843 | if (!IDecl) |
1844 | Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
1845 | ActOnObjCContainerStartDefinition(CDecl); |
1846 | return CDecl; |
1847 | } |
1848 | |
1849 | if (!CategoryName && IDecl->getImplementation()) { |
1850 | Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; |
1851 | Diag(IDecl->getImplementation()->getLocation(), |
1852 | diag::note_implementation_declared); |
1853 | } |
1854 | |
1855 | if (CategoryName) { |
1856 | /// Check for duplicate interface declaration for this category |
1857 | if (ObjCCategoryDecl *Previous |
1858 | = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) { |
1859 | // Class extensions can be declared multiple times, categories cannot. |
1860 | Diag(CategoryLoc, diag::warn_dup_category_def) |
1861 | << ClassName << CategoryName; |
1862 | Diag(Previous->getLocation(), diag::note_previous_definition); |
1863 | } |
1864 | } |
1865 | |
1866 | // If we have a type parameter list, check it. |
1867 | if (typeParamList) { |
1868 | if (auto prevTypeParamList = IDecl->getTypeParamList()) { |
1869 | if (checkTypeParamListConsistency( |
1870 | S&: SemaRef, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList, |
1871 | newContext: CategoryName ? TypeParamListContext::Category |
1872 | : TypeParamListContext::Extension)) |
1873 | typeParamList = nullptr; |
1874 | } else { |
1875 | Diag(typeParamList->getLAngleLoc(), |
1876 | diag::err_objc_parameterized_category_nonclass) |
1877 | << (CategoryName != nullptr) |
1878 | << ClassName |
1879 | << typeParamList->getSourceRange(); |
1880 | |
1881 | typeParamList = nullptr; |
1882 | } |
1883 | } |
1884 | |
1885 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtInterfaceLoc, |
1886 | ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl, |
1887 | typeParamList); |
1888 | // FIXME: PushOnScopeChains? |
1889 | SemaRef.CurContext->addDecl(CDecl); |
1890 | |
1891 | // Process the attributes before looking at protocols to ensure that the |
1892 | // availability attribute is attached to the category to provide availability |
1893 | // checking for protocol uses. |
1894 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, AttrList); |
1895 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl); |
1896 | |
1897 | if (NumProtoRefs) { |
1898 | diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs, |
1899 | NumProtoRefs, ProtoLocs); |
1900 | CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1901 | Locs: ProtoLocs, C&: Context); |
1902 | // Protocols in the class extension belong to the class. |
1903 | if (CDecl->IsClassExtension()) |
1904 | IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, |
1905 | Num: NumProtoRefs, C&: Context); |
1906 | } |
1907 | |
1908 | CheckObjCDeclScope(CDecl); |
1909 | ActOnObjCContainerStartDefinition(CDecl); |
1910 | return CDecl; |
1911 | } |
1912 | |
1913 | /// ActOnStartCategoryImplementation - Perform semantic checks on the |
1914 | /// category implementation declaration and build an ObjCCategoryImplDecl |
1915 | /// object. |
1916 | ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation( |
1917 | SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName, |
1918 | SourceLocation ClassLoc, const IdentifierInfo *CatName, |
1919 | SourceLocation CatLoc, const ParsedAttributesView &Attrs) { |
1920 | ASTContext &Context = getASTContext(); |
1921 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
1922 | ObjCCategoryDecl *CatIDecl = nullptr; |
1923 | if (IDecl && IDecl->hasDefinition()) { |
1924 | CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName); |
1925 | if (!CatIDecl) { |
1926 | // Category @implementation with no corresponding @interface. |
1927 | // Create and install one. |
1928 | CatIDecl = |
1929 | ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtCatImplLoc, |
1930 | ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc, Id: CatName, IDecl, |
1931 | /*typeParamList=*/nullptr); |
1932 | CatIDecl->setImplicit(); |
1933 | } |
1934 | } |
1935 | |
1936 | ObjCCategoryImplDecl *CDecl = |
1937 | ObjCCategoryImplDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: CatName, classInterface: IDecl, |
1938 | nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc); |
1939 | /// Check that class of this category is already completely declared. |
1940 | if (!IDecl) { |
1941 | Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
1942 | CDecl->setInvalidDecl(); |
1943 | } else if (SemaRef.RequireCompleteType(ClassLoc, |
1944 | Context.getObjCInterfaceType(IDecl), |
1945 | diag::err_undef_interface)) { |
1946 | CDecl->setInvalidDecl(); |
1947 | } |
1948 | |
1949 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, Attrs); |
1950 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl); |
1951 | |
1952 | // FIXME: PushOnScopeChains? |
1953 | SemaRef.CurContext->addDecl(CDecl); |
1954 | |
1955 | // If the interface has the objc_runtime_visible attribute, we |
1956 | // cannot implement a category for it. |
1957 | if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { |
1958 | Diag(ClassLoc, diag::err_objc_runtime_visible_category) |
1959 | << IDecl->getDeclName(); |
1960 | } |
1961 | |
1962 | /// Check that CatName, category name, is not used in another implementation. |
1963 | if (CatIDecl) { |
1964 | if (CatIDecl->getImplementation()) { |
1965 | Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName |
1966 | << CatName; |
1967 | Diag(CatIDecl->getImplementation()->getLocation(), |
1968 | diag::note_previous_definition); |
1969 | CDecl->setInvalidDecl(); |
1970 | } else { |
1971 | CatIDecl->setImplementation(CDecl); |
1972 | // Warn on implementating category of deprecated class under |
1973 | // -Wdeprecated-implementations flag. |
1974 | DiagnoseObjCImplementedDeprecations(SemaRef, CatIDecl, |
1975 | CDecl->getLocation()); |
1976 | } |
1977 | } |
1978 | |
1979 | CheckObjCDeclScope(CDecl); |
1980 | ActOnObjCContainerStartDefinition(CDecl); |
1981 | return CDecl; |
1982 | } |
1983 | |
1984 | ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation( |
1985 | SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName, |
1986 | SourceLocation ClassLoc, const IdentifierInfo *SuperClassname, |
1987 | SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) { |
1988 | ASTContext &Context = getASTContext(); |
1989 | ObjCInterfaceDecl *IDecl = nullptr; |
1990 | // Check for another declaration kind with the same name. |
1991 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
1992 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName, |
1993 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1994 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
1995 | Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
1996 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
1997 | } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) { |
1998 | // FIXME: This will produce an error if the definition of the interface has |
1999 | // been imported from a module but is not visible. |
2000 | SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
2001 | diag::warn_undef_interface); |
2002 | } else { |
2003 | // We did not find anything with the name ClassName; try to correct for |
2004 | // typos in the class name. |
2005 | ObjCInterfaceValidatorCCC CCC{}; |
2006 | TypoCorrection Corrected = SemaRef.CorrectTypo( |
2007 | Typo: DeclarationNameInfo(ClassName, ClassLoc), LookupKind: Sema::LookupOrdinaryName, |
2008 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::NonError); |
2009 | if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
2010 | // Suggest the (potentially) correct interface name. Don't provide a |
2011 | // code-modification hint or use the typo name for recovery, because |
2012 | // this is just a warning. The program may actually be correct. |
2013 | SemaRef.diagnoseTypo( |
2014 | Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName, |
2015 | /*ErrorRecovery*/ false); |
2016 | } else { |
2017 | Diag(ClassLoc, diag::warn_undef_interface) << ClassName; |
2018 | } |
2019 | } |
2020 | |
2021 | // Check that super class name is valid class name |
2022 | ObjCInterfaceDecl *SDecl = nullptr; |
2023 | if (SuperClassname) { |
2024 | // Check if a different kind of symbol declared in this scope. |
2025 | PrevDecl = |
2026 | SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: SuperClassname, Loc: SuperClassLoc, |
2027 | NameKind: Sema::LookupOrdinaryName); |
2028 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
2029 | Diag(SuperClassLoc, diag::err_redefinition_different_kind) |
2030 | << SuperClassname; |
2031 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
2032 | } else { |
2033 | SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
2034 | if (SDecl && !SDecl->hasDefinition()) |
2035 | SDecl = nullptr; |
2036 | if (!SDecl) |
2037 | Diag(SuperClassLoc, diag::err_undef_superclass) |
2038 | << SuperClassname << ClassName; |
2039 | else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { |
2040 | // This implementation and its interface do not have the same |
2041 | // super class. |
2042 | Diag(SuperClassLoc, diag::err_conflicting_super_class) |
2043 | << SDecl->getDeclName(); |
2044 | Diag(SDecl->getLocation(), diag::note_previous_definition); |
2045 | } |
2046 | } |
2047 | } |
2048 | |
2049 | if (!IDecl) { |
2050 | // Legacy case of @implementation with no corresponding @interface. |
2051 | // Build, chain & install the interface decl into the identifier. |
2052 | |
2053 | // FIXME: Do we support attributes on the @implementation? If so we should |
2054 | // copy them over. |
2055 | IDecl = |
2056 | ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtClassImplLoc, |
2057 | Id: ClassName, /*typeParamList=*/nullptr, |
2058 | /*PrevDecl=*/nullptr, ClassLoc, isInternal: true); |
2059 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl); |
2060 | IDecl->startDefinition(); |
2061 | if (SDecl) { |
2062 | IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( |
2063 | T: Context.getObjCInterfaceType(Decl: SDecl), |
2064 | Loc: SuperClassLoc)); |
2065 | IDecl->setEndOfDefinitionLoc(SuperClassLoc); |
2066 | } else { |
2067 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
2068 | } |
2069 | |
2070 | SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope); |
2071 | } else { |
2072 | // Mark the interface as being completed, even if it was just as |
2073 | // @class ....; |
2074 | // declaration; the user cannot reopen it. |
2075 | if (!IDecl->hasDefinition()) |
2076 | IDecl->startDefinition(); |
2077 | } |
2078 | |
2079 | ObjCImplementationDecl *IMPDecl = |
2080 | ObjCImplementationDecl::Create(C&: Context, DC: SemaRef.CurContext, classInterface: IDecl, superDecl: SDecl, |
2081 | nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc); |
2082 | |
2083 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IMPDecl, Attrs); |
2084 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, IMPDecl); |
2085 | |
2086 | if (CheckObjCDeclScope(IMPDecl)) { |
2087 | ActOnObjCContainerStartDefinition(IMPDecl); |
2088 | return IMPDecl; |
2089 | } |
2090 | |
2091 | // Check that there is no duplicate implementation of this class. |
2092 | if (IDecl->getImplementation()) { |
2093 | // FIXME: Don't leak everything! |
2094 | Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; |
2095 | Diag(IDecl->getImplementation()->getLocation(), |
2096 | diag::note_previous_definition); |
2097 | IMPDecl->setInvalidDecl(); |
2098 | } else { // add it to the list. |
2099 | IDecl->setImplementation(IMPDecl); |
2100 | SemaRef.PushOnScopeChains(IMPDecl, SemaRef.TUScope); |
2101 | // Warn on implementating deprecated class under |
2102 | // -Wdeprecated-implementations flag. |
2103 | DiagnoseObjCImplementedDeprecations(SemaRef, IDecl, IMPDecl->getLocation()); |
2104 | } |
2105 | |
2106 | // If the superclass has the objc_runtime_visible attribute, we |
2107 | // cannot implement a subclass of it. |
2108 | if (IDecl->getSuperClass() && |
2109 | IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { |
2110 | Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) |
2111 | << IDecl->getDeclName() |
2112 | << IDecl->getSuperClass()->getDeclName(); |
2113 | } |
2114 | |
2115 | ActOnObjCContainerStartDefinition(IMPDecl); |
2116 | return IMPDecl; |
2117 | } |
2118 | |
2119 | SemaObjC::DeclGroupPtrTy |
2120 | SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, |
2121 | ArrayRef<Decl *> Decls) { |
2122 | SmallVector<Decl *, 64> DeclsInGroup; |
2123 | DeclsInGroup.reserve(N: Decls.size() + 1); |
2124 | |
2125 | for (unsigned i = 0, e = Decls.size(); i != e; ++i) { |
2126 | Decl *Dcl = Decls[i]; |
2127 | if (!Dcl) |
2128 | continue; |
2129 | if (Dcl->getDeclContext()->isFileContext()) |
2130 | Dcl->setTopLevelDeclInObjCContainer(); |
2131 | DeclsInGroup.push_back(Elt: Dcl); |
2132 | } |
2133 | |
2134 | DeclsInGroup.push_back(Elt: ObjCImpDecl); |
2135 | |
2136 | // Reset the cached layout if there are any ivars added to |
2137 | // the implementation. |
2138 | if (auto *ImplD = dyn_cast<ObjCImplementationDecl>(Val: ObjCImpDecl)) |
2139 | if (!ImplD->ivar_empty()) |
2140 | getASTContext().ResetObjCLayout(ImplD->getClassInterface()); |
2141 | |
2142 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
2143 | } |
2144 | |
2145 | void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, |
2146 | ObjCIvarDecl **ivars, unsigned numIvars, |
2147 | SourceLocation RBrace) { |
2148 | assert(ImpDecl && "missing implementation decl"); |
2149 | ASTContext &Context = getASTContext(); |
2150 | ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); |
2151 | if (!IDecl) |
2152 | return; |
2153 | /// Check case of non-existing \@interface decl. |
2154 | /// (legacy objective-c \@implementation decl without an \@interface decl). |
2155 | /// Add implementations's ivar to the synthesize class's ivar list. |
2156 | if (IDecl->isImplicitInterfaceDecl()) { |
2157 | IDecl->setEndOfDefinitionLoc(RBrace); |
2158 | // Add ivar's to class's DeclContext. |
2159 | for (unsigned i = 0, e = numIvars; i != e; ++i) { |
2160 | ivars[i]->setLexicalDeclContext(ImpDecl); |
2161 | // In a 'fragile' runtime the ivar was added to the implicit |
2162 | // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is |
2163 | // only in the ObjCImplementationDecl. In the non-fragile case the ivar |
2164 | // therefore also needs to be propagated to the ObjCInterfaceDecl. |
2165 | if (!getLangOpts().ObjCRuntime.isFragile()) |
2166 | IDecl->makeDeclVisibleInContext(ivars[i]); |
2167 | ImpDecl->addDecl(ivars[i]); |
2168 | } |
2169 | |
2170 | return; |
2171 | } |
2172 | // If implementation has empty ivar list, just return. |
2173 | if (numIvars == 0) |
2174 | return; |
2175 | |
2176 | assert(ivars && "missing @implementation ivars"); |
2177 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
2178 | if (ImpDecl->getSuperClass()) |
2179 | Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); |
2180 | for (unsigned i = 0; i < numIvars; i++) { |
2181 | ObjCIvarDecl* ImplIvar = ivars[i]; |
2182 | if (const ObjCIvarDecl *ClsIvar = |
2183 | IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) { |
2184 | Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
2185 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
2186 | continue; |
2187 | } |
2188 | // Check class extensions (unnamed categories) for duplicate ivars. |
2189 | for (const auto *CDecl : IDecl->visible_extensions()) { |
2190 | if (const ObjCIvarDecl *ClsExtIvar = |
2191 | CDecl->getIvarDecl(ImplIvar->getIdentifier())) { |
2192 | Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
2193 | Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); |
2194 | continue; |
2195 | } |
2196 | } |
2197 | // Instance ivar to Implementation's DeclContext. |
2198 | ImplIvar->setLexicalDeclContext(ImpDecl); |
2199 | IDecl->makeDeclVisibleInContext(ImplIvar); |
2200 | ImpDecl->addDecl(ImplIvar); |
2201 | } |
2202 | return; |
2203 | } |
2204 | // Check interface's Ivar list against those in the implementation. |
2205 | // names and types must match. |
2206 | // |
2207 | unsigned j = 0; |
2208 | ObjCInterfaceDecl::ivar_iterator |
2209 | IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); |
2210 | for (; numIvars > 0 && IVI != IVE; ++IVI) { |
2211 | ObjCIvarDecl* ImplIvar = ivars[j++]; |
2212 | ObjCIvarDecl* ClsIvar = *IVI; |
2213 | assert (ImplIvar && "missing implementation ivar"); |
2214 | assert (ClsIvar && "missing class ivar"); |
2215 | |
2216 | // First, make sure the types match. |
2217 | if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { |
2218 | Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) |
2219 | << ImplIvar->getIdentifier() |
2220 | << ImplIvar->getType() << ClsIvar->getType(); |
2221 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
2222 | } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && |
2223 | ImplIvar->getBitWidthValue() != ClsIvar->getBitWidthValue()) { |
2224 | Diag(ImplIvar->getBitWidth()->getBeginLoc(), |
2225 | diag::err_conflicting_ivar_bitwidth) |
2226 | << ImplIvar->getIdentifier(); |
2227 | Diag(ClsIvar->getBitWidth()->getBeginLoc(), |
2228 | diag::note_previous_definition); |
2229 | } |
2230 | // Make sure the names are identical. |
2231 | if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
2232 | Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) |
2233 | << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); |
2234 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
2235 | } |
2236 | --numIvars; |
2237 | } |
2238 | |
2239 | if (numIvars > 0) |
2240 | Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); |
2241 | else if (IVI != IVE) |
2242 | Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); |
2243 | } |
2244 | |
2245 | static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) { |
2246 | // No point warning no definition of method which is 'unavailable'. |
2247 | return M->getAvailability() != AR_Unavailable; |
2248 | } |
2249 | |
2250 | static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl, |
2251 | ObjCMethodDecl *method, bool &IncompleteImpl, |
2252 | unsigned DiagID, |
2253 | NamedDecl *NeededFor = nullptr) { |
2254 | if (!shouldWarnUndefinedMethod(M: method)) |
2255 | return; |
2256 | |
2257 | // FIXME: For now ignore 'IncompleteImpl'. |
2258 | // Previously we grouped all unimplemented methods under a single |
2259 | // warning, but some users strongly voiced that they would prefer |
2260 | // separate warnings. We will give that approach a try, as that |
2261 | // matches what we do with protocols. |
2262 | { |
2263 | const SemaBase::SemaDiagnosticBuilder &B = |
2264 | S.Diag(Impl->getLocation(), DiagID); |
2265 | B << method; |
2266 | if (NeededFor) |
2267 | B << NeededFor; |
2268 | |
2269 | // Add an empty definition at the end of the @implementation. |
2270 | std::string FixItStr; |
2271 | llvm::raw_string_ostream Out(FixItStr); |
2272 | method->print(Out, Impl->getASTContext().getPrintingPolicy()); |
2273 | Out << " {\n}\n\n"; |
2274 | |
2275 | SourceLocation Loc = Impl->getAtEndRange().getBegin(); |
2276 | B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr); |
2277 | } |
2278 | |
2279 | // Issue a note to the original declaration. |
2280 | SourceLocation MethodLoc = method->getBeginLoc(); |
2281 | if (MethodLoc.isValid()) |
2282 | S.Diag(MethodLoc, diag::note_method_declared_at) << method; |
2283 | } |
2284 | |
2285 | /// Determines if type B can be substituted for type A. Returns true if we can |
2286 | /// guarantee that anything that the user will do to an object of type A can |
2287 | /// also be done to an object of type B. This is trivially true if the two |
2288 | /// types are the same, or if B is a subclass of A. It becomes more complex |
2289 | /// in cases where protocols are involved. |
2290 | /// |
2291 | /// Object types in Objective-C describe the minimum requirements for an |
2292 | /// object, rather than providing a complete description of a type. For |
2293 | /// example, if A is a subclass of B, then B* may refer to an instance of A. |
2294 | /// The principle of substitutability means that we may use an instance of A |
2295 | /// anywhere that we may use an instance of B - it will implement all of the |
2296 | /// ivars of B and all of the methods of B. |
2297 | /// |
2298 | /// This substitutability is important when type checking methods, because |
2299 | /// the implementation may have stricter type definitions than the interface. |
2300 | /// The interface specifies minimum requirements, but the implementation may |
2301 | /// have more accurate ones. For example, a method may privately accept |
2302 | /// instances of B, but only publish that it accepts instances of A. Any |
2303 | /// object passed to it will be type checked against B, and so will implicitly |
2304 | /// by a valid A*. Similarly, a method may return a subclass of the class that |
2305 | /// it is declared as returning. |
2306 | /// |
2307 | /// This is most important when considering subclassing. A method in a |
2308 | /// subclass must accept any object as an argument that its superclass's |
2309 | /// implementation accepts. It may, however, accept a more general type |
2310 | /// without breaking substitutability (i.e. you can still use the subclass |
2311 | /// anywhere that you can use the superclass, but not vice versa). The |
2312 | /// converse requirement applies to return types: the return type for a |
2313 | /// subclass method must be a valid object of the kind that the superclass |
2314 | /// advertises, but it may be specified more accurately. This avoids the need |
2315 | /// for explicit down-casting by callers. |
2316 | /// |
2317 | /// Note: This is a stricter requirement than for assignment. |
2318 | static bool isObjCTypeSubstitutable(ASTContext &Context, |
2319 | const ObjCObjectPointerType *A, |
2320 | const ObjCObjectPointerType *B, |
2321 | bool rejectId) { |
2322 | // Reject a protocol-unqualified id. |
2323 | if (rejectId && B->isObjCIdType()) return false; |
2324 | |
2325 | // If B is a qualified id, then A must also be a qualified id and it must |
2326 | // implement all of the protocols in B. It may not be a qualified class. |
2327 | // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a |
2328 | // stricter definition so it is not substitutable for id<A>. |
2329 | if (B->isObjCQualifiedIdType()) { |
2330 | return A->isObjCQualifiedIdType() && |
2331 | Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false); |
2332 | } |
2333 | |
2334 | /* |
2335 | // id is a special type that bypasses type checking completely. We want a |
2336 | // warning when it is used in one place but not another. |
2337 | if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; |
2338 | |
2339 | |
2340 | // If B is a qualified id, then A must also be a qualified id (which it isn't |
2341 | // if we've got this far) |
2342 | if (B->isObjCQualifiedIdType()) return false; |
2343 | */ |
2344 | |
2345 | // Now we know that A and B are (potentially-qualified) class types. The |
2346 | // normal rules for assignment apply. |
2347 | return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B); |
2348 | } |
2349 | |
2350 | static SourceRange getTypeRange(TypeSourceInfo *TSI) { |
2351 | return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); |
2352 | } |
2353 | |
2354 | /// Determine whether two set of Objective-C declaration qualifiers conflict. |
2355 | static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, |
2356 | Decl::ObjCDeclQualifier y) { |
2357 | return (x & ~Decl::OBJC_TQ_CSNullability) != |
2358 | (y & ~Decl::OBJC_TQ_CSNullability); |
2359 | } |
2360 | |
2361 | static bool CheckMethodOverrideReturn(Sema &S, |
2362 | ObjCMethodDecl *MethodImpl, |
2363 | ObjCMethodDecl *MethodDecl, |
2364 | bool IsProtocolMethodDecl, |
2365 | bool IsOverridingMode, |
2366 | bool Warn) { |
2367 | if (IsProtocolMethodDecl && |
2368 | objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(), |
2369 | y: MethodImpl->getObjCDeclQualifier())) { |
2370 | if (Warn) { |
2371 | S.Diag(MethodImpl->getLocation(), |
2372 | (IsOverridingMode |
2373 | ? diag::warn_conflicting_overriding_ret_type_modifiers |
2374 | : diag::warn_conflicting_ret_type_modifiers)) |
2375 | << MethodImpl->getDeclName() |
2376 | << MethodImpl->getReturnTypeSourceRange(); |
2377 | S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) |
2378 | << MethodDecl->getReturnTypeSourceRange(); |
2379 | } |
2380 | else |
2381 | return false; |
2382 | } |
2383 | if (Warn && IsOverridingMode && |
2384 | !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && |
2385 | !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(), |
2386 | SuperT: MethodDecl->getReturnType(), |
2387 | IsParam: false)) { |
2388 | auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability(); |
2389 | auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability(); |
2390 | S.Diag(MethodImpl->getLocation(), |
2391 | diag::warn_conflicting_nullability_attr_overriding_ret_types) |
2392 | << DiagNullabilityKind(nullabilityMethodImpl, |
2393 | ((MethodImpl->getObjCDeclQualifier() & |
2394 | Decl::OBJC_TQ_CSNullability) != 0)) |
2395 | << DiagNullabilityKind(nullabilityMethodDecl, |
2396 | ((MethodDecl->getObjCDeclQualifier() & |
2397 | Decl::OBJC_TQ_CSNullability) != 0)); |
2398 | S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
2399 | } |
2400 | |
2401 | if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(), |
2402 | T2: MethodDecl->getReturnType())) |
2403 | return true; |
2404 | if (!Warn) |
2405 | return false; |
2406 | |
2407 | unsigned DiagID = |
2408 | IsOverridingMode ? diag::warn_conflicting_overriding_ret_types |
2409 | : diag::warn_conflicting_ret_types; |
2410 | |
2411 | // Mismatches between ObjC pointers go into a different warning |
2412 | // category, and sometimes they're even completely explicitly allowed. |
2413 | if (const ObjCObjectPointerType *ImplPtrTy = |
2414 | MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
2415 | if (const ObjCObjectPointerType *IfacePtrTy = |
2416 | MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
2417 | // Allow non-matching return types as long as they don't violate |
2418 | // the principle of substitutability. Specifically, we permit |
2419 | // return types that are subclasses of the declared return type, |
2420 | // or that are more-qualified versions of the declared type. |
2421 | if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false)) |
2422 | return false; |
2423 | |
2424 | DiagID = |
2425 | IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types |
2426 | : diag::warn_non_covariant_ret_types; |
2427 | } |
2428 | } |
2429 | |
2430 | S.Diag(MethodImpl->getLocation(), DiagID) |
2431 | << MethodImpl->getDeclName() << MethodDecl->getReturnType() |
2432 | << MethodImpl->getReturnType() |
2433 | << MethodImpl->getReturnTypeSourceRange(); |
2434 | S.Diag(MethodDecl->getLocation(), IsOverridingMode |
2435 | ? diag::note_previous_declaration |
2436 | : diag::note_previous_definition) |
2437 | << MethodDecl->getReturnTypeSourceRange(); |
2438 | return false; |
2439 | } |
2440 | |
2441 | static bool CheckMethodOverrideParam(Sema &S, |
2442 | ObjCMethodDecl *MethodImpl, |
2443 | ObjCMethodDecl *MethodDecl, |
2444 | ParmVarDecl *ImplVar, |
2445 | ParmVarDecl *IfaceVar, |
2446 | bool IsProtocolMethodDecl, |
2447 | bool IsOverridingMode, |
2448 | bool Warn) { |
2449 | if (IsProtocolMethodDecl && |
2450 | objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(), |
2451 | y: IfaceVar->getObjCDeclQualifier())) { |
2452 | if (Warn) { |
2453 | if (IsOverridingMode) |
2454 | S.Diag(ImplVar->getLocation(), |
2455 | diag::warn_conflicting_overriding_param_modifiers) |
2456 | << getTypeRange(ImplVar->getTypeSourceInfo()) |
2457 | << MethodImpl->getDeclName(); |
2458 | else S.Diag(ImplVar->getLocation(), |
2459 | diag::warn_conflicting_param_modifiers) |
2460 | << getTypeRange(ImplVar->getTypeSourceInfo()) |
2461 | << MethodImpl->getDeclName(); |
2462 | S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) |
2463 | << getTypeRange(IfaceVar->getTypeSourceInfo()); |
2464 | } |
2465 | else |
2466 | return false; |
2467 | } |
2468 | |
2469 | QualType ImplTy = ImplVar->getType(); |
2470 | QualType IfaceTy = IfaceVar->getType(); |
2471 | if (Warn && IsOverridingMode && |
2472 | !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && |
2473 | !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) { |
2474 | S.Diag(ImplVar->getLocation(), |
2475 | diag::warn_conflicting_nullability_attr_overriding_param_types) |
2476 | << DiagNullabilityKind(*ImplTy->getNullability(), |
2477 | ((ImplVar->getObjCDeclQualifier() & |
2478 | Decl::OBJC_TQ_CSNullability) != 0)) |
2479 | << DiagNullabilityKind(*IfaceTy->getNullability(), |
2480 | ((IfaceVar->getObjCDeclQualifier() & |
2481 | Decl::OBJC_TQ_CSNullability) != 0)); |
2482 | S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); |
2483 | } |
2484 | if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy)) |
2485 | return true; |
2486 | |
2487 | if (!Warn) |
2488 | return false; |
2489 | unsigned DiagID = |
2490 | IsOverridingMode ? diag::warn_conflicting_overriding_param_types |
2491 | : diag::warn_conflicting_param_types; |
2492 | |
2493 | // Mismatches between ObjC pointers go into a different warning |
2494 | // category, and sometimes they're even completely explicitly allowed.. |
2495 | if (const ObjCObjectPointerType *ImplPtrTy = |
2496 | ImplTy->getAs<ObjCObjectPointerType>()) { |
2497 | if (const ObjCObjectPointerType *IfacePtrTy = |
2498 | IfaceTy->getAs<ObjCObjectPointerType>()) { |
2499 | // Allow non-matching argument types as long as they don't |
2500 | // violate the principle of substitutability. Specifically, the |
2501 | // implementation must accept any objects that the superclass |
2502 | // accepts, however it may also accept others. |
2503 | if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true)) |
2504 | return false; |
2505 | |
2506 | DiagID = |
2507 | IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types |
2508 | : diag::warn_non_contravariant_param_types; |
2509 | } |
2510 | } |
2511 | |
2512 | S.Diag(ImplVar->getLocation(), DiagID) |
2513 | << getTypeRange(ImplVar->getTypeSourceInfo()) |
2514 | << MethodImpl->getDeclName() << IfaceTy << ImplTy; |
2515 | S.Diag(IfaceVar->getLocation(), |
2516 | (IsOverridingMode ? diag::note_previous_declaration |
2517 | : diag::note_previous_definition)) |
2518 | << getTypeRange(IfaceVar->getTypeSourceInfo()); |
2519 | return false; |
2520 | } |
2521 | |
2522 | /// In ARC, check whether the conventional meanings of the two methods |
2523 | /// match. If they don't, it's a hard error. |
2524 | static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, |
2525 | ObjCMethodDecl *decl) { |
2526 | ObjCMethodFamily implFamily = impl->getMethodFamily(); |
2527 | ObjCMethodFamily declFamily = decl->getMethodFamily(); |
2528 | if (implFamily == declFamily) return false; |
2529 | |
2530 | // Since conventions are sorted by selector, the only possibility is |
2531 | // that the types differ enough to cause one selector or the other |
2532 | // to fall out of the family. |
2533 | assert(implFamily == OMF_None || declFamily == OMF_None); |
2534 | |
2535 | // No further diagnostics required on invalid declarations. |
2536 | if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; |
2537 | |
2538 | const ObjCMethodDecl *unmatched = impl; |
2539 | ObjCMethodFamily family = declFamily; |
2540 | unsigned errorID = diag::err_arc_lost_method_convention; |
2541 | unsigned noteID = diag::note_arc_lost_method_convention; |
2542 | if (declFamily == OMF_None) { |
2543 | unmatched = decl; |
2544 | family = implFamily; |
2545 | errorID = diag::err_arc_gained_method_convention; |
2546 | noteID = diag::note_arc_gained_method_convention; |
2547 | } |
2548 | |
2549 | // Indexes into a %select clause in the diagnostic. |
2550 | enum FamilySelector { |
2551 | F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new |
2552 | }; |
2553 | FamilySelector familySelector = FamilySelector(); |
2554 | |
2555 | switch (family) { |
2556 | case OMF_None: llvm_unreachable("logic error, no method convention"); |
2557 | case OMF_retain: |
2558 | case OMF_release: |
2559 | case OMF_autorelease: |
2560 | case OMF_dealloc: |
2561 | case OMF_finalize: |
2562 | case OMF_retainCount: |
2563 | case OMF_self: |
2564 | case OMF_initialize: |
2565 | case OMF_performSelector: |
2566 | // Mismatches for these methods don't change ownership |
2567 | // conventions, so we don't care. |
2568 | return false; |
2569 | |
2570 | case OMF_init: familySelector = F_init; break; |
2571 | case OMF_alloc: familySelector = F_alloc; break; |
2572 | case OMF_copy: familySelector = F_copy; break; |
2573 | case OMF_mutableCopy: familySelector = F_mutableCopy; break; |
2574 | case OMF_new: familySelector = F_new; break; |
2575 | } |
2576 | |
2577 | enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; |
2578 | ReasonSelector reasonSelector; |
2579 | |
2580 | // The only reason these methods don't fall within their families is |
2581 | // due to unusual result types. |
2582 | if (unmatched->getReturnType()->isObjCObjectPointerType()) { |
2583 | reasonSelector = R_UnrelatedReturn; |
2584 | } else { |
2585 | reasonSelector = R_NonObjectReturn; |
2586 | } |
2587 | |
2588 | S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); |
2589 | S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); |
2590 | |
2591 | return true; |
2592 | } |
2593 | |
2594 | void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
2595 | ObjCMethodDecl *MethodDecl, |
2596 | bool IsProtocolMethodDecl) { |
2597 | if (getLangOpts().ObjCAutoRefCount && |
2598 | checkMethodFamilyMismatch(S&: SemaRef, impl: ImpMethodDecl, decl: MethodDecl)) |
2599 | return; |
2600 | |
2601 | CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, |
2602 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
2603 | |
2604 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
2605 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
2606 | EF = MethodDecl->param_end(); |
2607 | IM != EM && IF != EF; ++IM, ++IF) { |
2608 | CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF, |
2609 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
2610 | } |
2611 | |
2612 | if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { |
2613 | Diag(ImpMethodDecl->getLocation(), |
2614 | diag::warn_conflicting_variadic); |
2615 | Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
2616 | } |
2617 | } |
2618 | |
2619 | void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, |
2620 | ObjCMethodDecl *Overridden, |
2621 | bool IsProtocolMethodDecl) { |
2622 | |
2623 | CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, IsProtocolMethodDecl, |
2624 | IsOverridingMode: true, Warn: true); |
2625 | |
2626 | for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), |
2627 | IF = Overridden->param_begin(), EM = Method->param_end(), |
2628 | EF = Overridden->param_end(); |
2629 | IM != EM && IF != EF; ++IM, ++IF) { |
2630 | CheckMethodOverrideParam(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF, |
2631 | IsProtocolMethodDecl, IsOverridingMode: true, Warn: true); |
2632 | } |
2633 | |
2634 | if (Method->isVariadic() != Overridden->isVariadic()) { |
2635 | Diag(Method->getLocation(), |
2636 | diag::warn_conflicting_overriding_variadic); |
2637 | Diag(Overridden->getLocation(), diag::note_previous_declaration); |
2638 | } |
2639 | } |
2640 | |
2641 | /// WarnExactTypedMethods - This routine issues a warning if method |
2642 | /// implementation declaration matches exactly that of its declaration. |
2643 | void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
2644 | ObjCMethodDecl *MethodDecl, |
2645 | bool IsProtocolMethodDecl) { |
2646 | ASTContext &Context = getASTContext(); |
2647 | // don't issue warning when protocol method is optional because primary |
2648 | // class is not required to implement it and it is safe for protocol |
2649 | // to implement it. |
2650 | if (MethodDecl->getImplementationControl() == |
2651 | ObjCImplementationControl::Optional) |
2652 | return; |
2653 | // don't issue warning when primary class's method is |
2654 | // deprecated/unavailable. |
2655 | if (MethodDecl->hasAttr<UnavailableAttr>() || |
2656 | MethodDecl->hasAttr<DeprecatedAttr>()) |
2657 | return; |
2658 | |
2659 | bool match = CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, |
2660 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
2661 | if (match) |
2662 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
2663 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
2664 | EF = MethodDecl->param_end(); |
2665 | IM != EM && IF != EF; ++IM, ++IF) { |
2666 | match = CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, |
2667 | IfaceVar: *IF, IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
2668 | if (!match) |
2669 | break; |
2670 | } |
2671 | if (match) |
2672 | match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); |
2673 | if (match) |
2674 | match = !(MethodDecl->isClassMethod() && |
2675 | MethodDecl->getSelector() == GetNullarySelector(name: "load", Ctx&: Context)); |
2676 | |
2677 | if (match) { |
2678 | Diag(ImpMethodDecl->getLocation(), |
2679 | diag::warn_category_method_impl_match); |
2680 | Diag(MethodDecl->getLocation(), diag::note_method_declared_at) |
2681 | << MethodDecl->getDeclName(); |
2682 | } |
2683 | } |
2684 | |
2685 | /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely |
2686 | /// improve the efficiency of selector lookups and type checking by associating |
2687 | /// with each protocol / interface / category the flattened instance tables. If |
2688 | /// we used an immutable set to keep the table then it wouldn't add significant |
2689 | /// memory cost and it would be handy for lookups. |
2690 | |
2691 | typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; |
2692 | typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; |
2693 | |
2694 | static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, |
2695 | ProtocolNameSet &PNS) { |
2696 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) |
2697 | PNS.insert(PDecl->getIdentifier()); |
2698 | for (const auto *PI : PDecl->protocols()) |
2699 | findProtocolsWithExplicitImpls(PDecl: PI, PNS); |
2700 | } |
2701 | |
2702 | /// Recursively populates a set with all conformed protocols in a class |
2703 | /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' |
2704 | /// attribute. |
2705 | static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, |
2706 | ProtocolNameSet &PNS) { |
2707 | if (!Super) |
2708 | return; |
2709 | |
2710 | for (const auto *I : Super->all_referenced_protocols()) |
2711 | findProtocolsWithExplicitImpls(PDecl: I, PNS); |
2712 | |
2713 | findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS); |
2714 | } |
2715 | |
2716 | /// CheckProtocolMethodDefs - This routine checks unimplemented methods |
2717 | /// Declared in protocol, and those referenced by it. |
2718 | static void CheckProtocolMethodDefs( |
2719 | Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl, |
2720 | const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap, |
2721 | ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) { |
2722 | ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl); |
2723 | ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() |
2724 | : dyn_cast<ObjCInterfaceDecl>(Val: CDecl); |
2725 | assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); |
2726 | |
2727 | ObjCInterfaceDecl *Super = IDecl->getSuperClass(); |
2728 | ObjCInterfaceDecl *NSIDecl = nullptr; |
2729 | |
2730 | // If this protocol is marked 'objc_protocol_requires_explicit_implementation' |
2731 | // then we should check if any class in the super class hierarchy also |
2732 | // conforms to this protocol, either directly or via protocol inheritance. |
2733 | // If so, we can skip checking this protocol completely because we |
2734 | // know that a parent class already satisfies this protocol. |
2735 | // |
2736 | // Note: we could generalize this logic for all protocols, and merely |
2737 | // add the limit on looking at the super class chain for just |
2738 | // specially marked protocols. This may be a good optimization. This |
2739 | // change is restricted to 'objc_protocol_requires_explicit_implementation' |
2740 | // protocols for now for controlled evaluation. |
2741 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { |
2742 | if (!ProtocolsExplictImpl) { |
2743 | ProtocolsExplictImpl.reset(p: new ProtocolNameSet); |
2744 | findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl); |
2745 | } |
2746 | if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier())) |
2747 | return; |
2748 | |
2749 | // If no super class conforms to the protocol, we should not search |
2750 | // for methods in the super class to implicitly satisfy the protocol. |
2751 | Super = nullptr; |
2752 | } |
2753 | |
2754 | if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { |
2755 | // check to see if class implements forwardInvocation method and objects |
2756 | // of this class are derived from 'NSProxy' so that to forward requests |
2757 | // from one object to another. |
2758 | // Under such conditions, which means that every method possible is |
2759 | // implemented in the class, we should not issue "Method definition not |
2760 | // found" warnings. |
2761 | // FIXME: Use a general GetUnarySelector method for this. |
2762 | const IdentifierInfo *II = &S.Context.Idents.get(Name: "forwardInvocation"); |
2763 | Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II); |
2764 | if (InsMap.count(Ptr: fISelector)) |
2765 | // Is IDecl derived from 'NSProxy'? If so, no instance methods |
2766 | // need be implemented in the implementation. |
2767 | NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy")); |
2768 | } |
2769 | |
2770 | // If this is a forward protocol declaration, get its definition. |
2771 | if (!PDecl->isThisDeclarationADefinition() && |
2772 | PDecl->getDefinition()) |
2773 | PDecl = PDecl->getDefinition(); |
2774 | |
2775 | // If a method lookup fails locally we still need to look and see if |
2776 | // the method was implemented by a base class or an inherited |
2777 | // protocol. This lookup is slow, but occurs rarely in correct code |
2778 | // and otherwise would terminate in a warning. |
2779 | |
2780 | // check unimplemented instance methods. |
2781 | if (!NSIDecl) |
2782 | for (auto *method : PDecl->instance_methods()) { |
2783 | if (method->getImplementationControl() != |
2784 | ObjCImplementationControl::Optional && |
2785 | !method->isPropertyAccessor() && |
2786 | !InsMap.count(method->getSelector()) && |
2787 | (!Super || !Super->lookupMethod( |
2788 | method->getSelector(), true /* instance */, |
2789 | false /* shallowCategory */, true /* followsSuper */, |
2790 | nullptr /* category */))) { |
2791 | // If a method is not implemented in the category implementation but |
2792 | // has been declared in its primary class, superclass, |
2793 | // or in one of their protocols, no need to issue the warning. |
2794 | // This is because method will be implemented in the primary class |
2795 | // or one of its super class implementation. |
2796 | |
2797 | // Ugly, but necessary. Method declared in protocol might have |
2798 | // have been synthesized due to a property declared in the class which |
2799 | // uses the protocol. |
2800 | if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod( |
2801 | method->getSelector(), true /* instance */, |
2802 | true /* shallowCategoryLookup */, false /* followSuper */)) |
2803 | if (C || MethodInClass->isPropertyAccessor()) |
2804 | continue; |
2805 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
2806 | if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) { |
2807 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl); |
2808 | } |
2809 | } |
2810 | } |
2811 | // check unimplemented class methods |
2812 | for (auto *method : PDecl->class_methods()) { |
2813 | if (method->getImplementationControl() != |
2814 | ObjCImplementationControl::Optional && |
2815 | !ClsMap.count(method->getSelector()) && |
2816 | (!Super || !Super->lookupMethod( |
2817 | method->getSelector(), false /* class method */, |
2818 | false /* shallowCategoryLookup */, |
2819 | true /* followSuper */, nullptr /* category */))) { |
2820 | // See above comment for instance method lookups. |
2821 | if (C && IDecl->lookupMethod(method->getSelector(), |
2822 | false /* class */, |
2823 | true /* shallowCategoryLookup */, |
2824 | false /* followSuper */)) |
2825 | continue; |
2826 | |
2827 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
2828 | if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) { |
2829 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl); |
2830 | } |
2831 | } |
2832 | } |
2833 | // Check on this protocols's referenced protocols, recursively. |
2834 | for (auto *PI : PDecl->protocols()) |
2835 | CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl, |
2836 | ProtocolsExplictImpl); |
2837 | } |
2838 | |
2839 | /// MatchAllMethodDeclarations - Check methods declared in interface |
2840 | /// or protocol against those declared in their implementations. |
2841 | /// |
2842 | void SemaObjC::MatchAllMethodDeclarations( |
2843 | const SelectorSet &InsMap, const SelectorSet &ClsMap, |
2844 | SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, |
2845 | ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass, |
2846 | bool WarnCategoryMethodImpl) { |
2847 | // Check and see if instance methods in class interface have been |
2848 | // implemented in the implementation class. If so, their types match. |
2849 | for (auto *I : CDecl->instance_methods()) { |
2850 | if (!InsMapSeen.insert(Ptr: I->getSelector()).second) |
2851 | continue; |
2852 | if (!I->isPropertyAccessor() && |
2853 | !InsMap.count(Ptr: I->getSelector())) { |
2854 | if (ImmediateClass) |
2855 | WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl, |
2856 | diag::warn_undef_method_impl); |
2857 | continue; |
2858 | } else { |
2859 | ObjCMethodDecl *ImpMethodDecl = |
2860 | IMPDecl->getInstanceMethod(I->getSelector()); |
2861 | assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && |
2862 | "Expected to find the method through lookup as well"); |
2863 | // ImpMethodDecl may be null as in a @dynamic property. |
2864 | if (ImpMethodDecl) { |
2865 | // Skip property accessor function stubs. |
2866 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
2867 | continue; |
2868 | if (!WarnCategoryMethodImpl) |
2869 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
2870 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2871 | else if (!I->isPropertyAccessor()) |
2872 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2873 | } |
2874 | } |
2875 | } |
2876 | |
2877 | // Check and see if class methods in class interface have been |
2878 | // implemented in the implementation class. If so, their types match. |
2879 | for (auto *I : CDecl->class_methods()) { |
2880 | if (!ClsMapSeen.insert(Ptr: I->getSelector()).second) |
2881 | continue; |
2882 | if (!I->isPropertyAccessor() && |
2883 | !ClsMap.count(Ptr: I->getSelector())) { |
2884 | if (ImmediateClass) |
2885 | WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl, |
2886 | diag::warn_undef_method_impl); |
2887 | } else { |
2888 | ObjCMethodDecl *ImpMethodDecl = |
2889 | IMPDecl->getClassMethod(I->getSelector()); |
2890 | assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && |
2891 | "Expected to find the method through lookup as well"); |
2892 | // ImpMethodDecl may be null as in a @dynamic property. |
2893 | if (ImpMethodDecl) { |
2894 | // Skip property accessor function stubs. |
2895 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
2896 | continue; |
2897 | if (!WarnCategoryMethodImpl) |
2898 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
2899 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2900 | else if (!I->isPropertyAccessor()) |
2901 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2902 | } |
2903 | } |
2904 | } |
2905 | |
2906 | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) { |
2907 | // Also, check for methods declared in protocols inherited by |
2908 | // this protocol. |
2909 | for (auto *PI : PD->protocols()) |
2910 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2911 | IMPDecl, PI, IncompleteImpl, false, |
2912 | WarnCategoryMethodImpl); |
2913 | } |
2914 | |
2915 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
2916 | // when checking that methods in implementation match their declaration, |
2917 | // i.e. when WarnCategoryMethodImpl is false, check declarations in class |
2918 | // extension; as well as those in categories. |
2919 | if (!WarnCategoryMethodImpl) { |
2920 | for (auto *Cat : I->visible_categories()) |
2921 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2922 | IMPDecl, Cat, IncompleteImpl, |
2923 | ImmediateClass && Cat->IsClassExtension(), |
2924 | WarnCategoryMethodImpl); |
2925 | } else { |
2926 | // Also methods in class extensions need be looked at next. |
2927 | for (auto *Ext : I->visible_extensions()) |
2928 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2929 | IMPDecl, Ext, IncompleteImpl, false, |
2930 | WarnCategoryMethodImpl); |
2931 | } |
2932 | |
2933 | // Check for any implementation of a methods declared in protocol. |
2934 | for (auto *PI : I->all_referenced_protocols()) |
2935 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2936 | IMPDecl, PI, IncompleteImpl, false, |
2937 | WarnCategoryMethodImpl); |
2938 | |
2939 | // FIXME. For now, we are not checking for exact match of methods |
2940 | // in category implementation and its primary class's super class. |
2941 | if (!WarnCategoryMethodImpl && I->getSuperClass()) |
2942 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2943 | IMPDecl, |
2944 | I->getSuperClass(), IncompleteImpl, false); |
2945 | } |
2946 | } |
2947 | |
2948 | /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in |
2949 | /// category matches with those implemented in its primary class and |
2950 | /// warns each time an exact match is found. |
2951 | void SemaObjC::CheckCategoryVsClassMethodMatches( |
2952 | ObjCCategoryImplDecl *CatIMPDecl) { |
2953 | // Get category's primary class. |
2954 | ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); |
2955 | if (!CatDecl) |
2956 | return; |
2957 | ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); |
2958 | if (!IDecl) |
2959 | return; |
2960 | ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); |
2961 | SelectorSet InsMap, ClsMap; |
2962 | |
2963 | for (const auto *I : CatIMPDecl->instance_methods()) { |
2964 | Selector Sel = I->getSelector(); |
2965 | // When checking for methods implemented in the category, skip over |
2966 | // those declared in category class's super class. This is because |
2967 | // the super class must implement the method. |
2968 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) |
2969 | continue; |
2970 | InsMap.insert(Sel); |
2971 | } |
2972 | |
2973 | for (const auto *I : CatIMPDecl->class_methods()) { |
2974 | Selector Sel = I->getSelector(); |
2975 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) |
2976 | continue; |
2977 | ClsMap.insert(Sel); |
2978 | } |
2979 | if (InsMap.empty() && ClsMap.empty()) |
2980 | return; |
2981 | |
2982 | SelectorSet InsMapSeen, ClsMapSeen; |
2983 | bool IncompleteImpl = false; |
2984 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2985 | CatIMPDecl, IDecl, |
2986 | IncompleteImpl, false, |
2987 | true /*WarnCategoryMethodImpl*/); |
2988 | } |
2989 | |
2990 | void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl, |
2991 | ObjCContainerDecl *CDecl, |
2992 | bool IncompleteImpl) { |
2993 | SelectorSet InsMap; |
2994 | // Check and see if instance methods in class interface have been |
2995 | // implemented in the implementation class. |
2996 | for (const auto *I : IMPDecl->instance_methods()) |
2997 | InsMap.insert(I->getSelector()); |
2998 | |
2999 | // Add the selectors for getters/setters of @dynamic properties. |
3000 | for (const auto *PImpl : IMPDecl->property_impls()) { |
3001 | // We only care about @dynamic implementations. |
3002 | if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) |
3003 | continue; |
3004 | |
3005 | const auto *P = PImpl->getPropertyDecl(); |
3006 | if (!P) continue; |
3007 | |
3008 | InsMap.insert(Ptr: P->getGetterName()); |
3009 | if (!P->getSetterName().isNull()) |
3010 | InsMap.insert(Ptr: P->getSetterName()); |
3011 | } |
3012 | |
3013 | // Check and see if properties declared in the interface have either 1) |
3014 | // an implementation or 2) there is a @synthesize/@dynamic implementation |
3015 | // of the property in the @implementation. |
3016 | if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
3017 | bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties && |
3018 | getLangOpts().ObjCRuntime.isNonFragile() && |
3019 | !IDecl->isObjCRequiresPropertyDefs(); |
3020 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); |
3021 | } |
3022 | |
3023 | // Diagnose null-resettable synthesized setters. |
3024 | diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl); |
3025 | |
3026 | SelectorSet ClsMap; |
3027 | for (const auto *I : IMPDecl->class_methods()) |
3028 | ClsMap.insert(I->getSelector()); |
3029 | |
3030 | // Check for type conflict of methods declared in a class/protocol and |
3031 | // its implementation; if any. |
3032 | SelectorSet InsMapSeen, ClsMapSeen; |
3033 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
3034 | IMPDecl, CDecl, |
3035 | IncompleteImpl, ImmediateClass: true); |
3036 | |
3037 | // check all methods implemented in category against those declared |
3038 | // in its primary class. |
3039 | if (ObjCCategoryImplDecl *CatDecl = |
3040 | dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl)) |
3041 | CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl); |
3042 | |
3043 | // Check the protocol list for unimplemented methods in the @implementation |
3044 | // class. |
3045 | // Check and see if class methods in class interface have been |
3046 | // implemented in the implementation class. |
3047 | |
3048 | LazyProtocolNameSet ExplicitImplProtocols; |
3049 | |
3050 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
3051 | for (auto *PI : I->all_referenced_protocols()) |
3052 | CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap, |
3053 | ClsMap, I, ExplicitImplProtocols); |
3054 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
3055 | // For extended class, unimplemented methods in its protocols will |
3056 | // be reported in the primary class. |
3057 | if (!C->IsClassExtension()) { |
3058 | for (auto *P : C->protocols()) |
3059 | CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap, |
3060 | ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols); |
3061 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, |
3062 | /*SynthesizeProperties=*/false); |
3063 | } |
3064 | } else |
3065 | llvm_unreachable("invalid ObjCContainerDecl type."); |
3066 | } |
3067 | |
3068 | SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration( |
3069 | SourceLocation AtClassLoc, IdentifierInfo **IdentList, |
3070 | SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists, |
3071 | unsigned NumElts) { |
3072 | ASTContext &Context = getASTContext(); |
3073 | SmallVector<Decl *, 8> DeclsInGroup; |
3074 | for (unsigned i = 0; i != NumElts; ++i) { |
3075 | // Check for another declaration kind with the same name. |
3076 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
3077 | S: SemaRef.TUScope, Name: IdentList[i], Loc: IdentLocs[i], NameKind: Sema::LookupOrdinaryName, |
3078 | Redecl: SemaRef.forRedeclarationInCurContext()); |
3079 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
3080 | // GCC apparently allows the following idiom: |
3081 | // |
3082 | // typedef NSObject < XCElementTogglerP > XCElementToggler; |
3083 | // @class XCElementToggler; |
3084 | // |
3085 | // Here we have chosen to ignore the forward class declaration |
3086 | // with a warning. Since this is the implied behavior. |
3087 | TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl); |
3088 | if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { |
3089 | Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; |
3090 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
3091 | } else { |
3092 | // a forward class declaration matching a typedef name of a class refers |
3093 | // to the underlying class. Just ignore the forward class with a warning |
3094 | // as this will force the intended behavior which is to lookup the |
3095 | // typedef name. |
3096 | if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) { |
3097 | Diag(AtClassLoc, diag::warn_forward_class_redefinition) |
3098 | << IdentList[i]; |
3099 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
3100 | continue; |
3101 | } |
3102 | } |
3103 | } |
3104 | |
3105 | // Create a declaration to describe this forward declaration. |
3106 | ObjCInterfaceDecl *PrevIDecl |
3107 | = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
3108 | |
3109 | IdentifierInfo *ClassName = IdentList[i]; |
3110 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
3111 | // A previous decl with a different name is because of |
3112 | // @compatibility_alias, for example: |
3113 | // \code |
3114 | // @class NewImage; |
3115 | // @compatibility_alias OldImage NewImage; |
3116 | // \endcode |
3117 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
3118 | // |
3119 | // In such a case use the real declaration name, instead of the alias one, |
3120 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
3121 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
3122 | // has been aliased. |
3123 | ClassName = PrevIDecl->getIdentifier(); |
3124 | } |
3125 | |
3126 | // If this forward declaration has type parameters, compare them with the |
3127 | // type parameters of the previous declaration. |
3128 | ObjCTypeParamList *TypeParams = TypeParamLists[i]; |
3129 | if (PrevIDecl && TypeParams) { |
3130 | if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { |
3131 | // Check for consistency with the previous declaration. |
3132 | if (checkTypeParamListConsistency( |
3133 | S&: SemaRef, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams, |
3134 | newContext: TypeParamListContext::ForwardDeclaration)) { |
3135 | TypeParams = nullptr; |
3136 | } |
3137 | } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
3138 | // The @interface does not have type parameters. Complain. |
3139 | Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) |
3140 | << ClassName |
3141 | << TypeParams->getSourceRange(); |
3142 | Diag(Def->getLocation(), diag::note_defined_here) |
3143 | << ClassName; |
3144 | |
3145 | TypeParams = nullptr; |
3146 | } |
3147 | } |
3148 | |
3149 | ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create( |
3150 | C: Context, DC: SemaRef.CurContext, atLoc: AtClassLoc, Id: ClassName, typeParamList: TypeParams, |
3151 | PrevDecl: PrevIDecl, ClassLoc: IdentLocs[i]); |
3152 | IDecl->setAtEndRange(IdentLocs[i]); |
3153 | |
3154 | if (PrevIDecl) |
3155 | SemaRef.mergeDeclAttributes(IDecl, PrevIDecl); |
3156 | |
3157 | SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope); |
3158 | CheckObjCDeclScope(IDecl); |
3159 | DeclsInGroup.push_back(IDecl); |
3160 | } |
3161 | |
3162 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
3163 | } |
3164 | |
3165 | static bool tryMatchRecordTypes(ASTContext &Context, |
3166 | SemaObjC::MethodMatchStrategy strategy, |
3167 | const Type *left, const Type *right); |
3168 | |
3169 | static bool matchTypes(ASTContext &Context, |
3170 | SemaObjC::MethodMatchStrategy strategy, QualType leftQT, |
3171 | QualType rightQT) { |
3172 | const Type *left = |
3173 | Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr(); |
3174 | const Type *right = |
3175 | Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr(); |
3176 | |
3177 | if (left == right) return true; |
3178 | |
3179 | // If we're doing a strict match, the types have to match exactly. |
3180 | if (strategy == SemaObjC::MMS_strict) |
3181 | return false; |
3182 | |
3183 | if (left->isIncompleteType() || right->isIncompleteType()) return false; |
3184 | |
3185 | // Otherwise, use this absurdly complicated algorithm to try to |
3186 | // validate the basic, low-level compatibility of the two types. |
3187 | |
3188 | // As a minimum, require the sizes and alignments to match. |
3189 | TypeInfo LeftTI = Context.getTypeInfo(T: left); |
3190 | TypeInfo RightTI = Context.getTypeInfo(T: right); |
3191 | if (LeftTI.Width != RightTI.Width) |
3192 | return false; |
3193 | |
3194 | if (LeftTI.Align != RightTI.Align) |
3195 | return false; |
3196 | |
3197 | // Consider all the kinds of non-dependent canonical types: |
3198 | // - functions and arrays aren't possible as return and parameter types |
3199 | |
3200 | // - vector types of equal size can be arbitrarily mixed |
3201 | if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right); |
3202 | if (isa<VectorType>(Val: right)) return false; |
3203 | |
3204 | // - references should only match references of identical type |
3205 | // - structs, unions, and Objective-C objects must match more-or-less |
3206 | // exactly |
3207 | // - everything else should be a scalar |
3208 | if (!left->isScalarType() || !right->isScalarType()) |
3209 | return tryMatchRecordTypes(Context, strategy, left, right); |
3210 | |
3211 | // Make scalars agree in kind, except count bools as chars, and group |
3212 | // all non-member pointers together. |
3213 | Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); |
3214 | Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); |
3215 | if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; |
3216 | if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; |
3217 | if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) |
3218 | leftSK = Type::STK_ObjCObjectPointer; |
3219 | if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) |
3220 | rightSK = Type::STK_ObjCObjectPointer; |
3221 | |
3222 | // Note that data member pointers and function member pointers don't |
3223 | // intermix because of the size differences. |
3224 | |
3225 | return (leftSK == rightSK); |
3226 | } |
3227 | |
3228 | static bool tryMatchRecordTypes(ASTContext &Context, |
3229 | SemaObjC::MethodMatchStrategy strategy, |
3230 | const Type *lt, const Type *rt) { |
3231 | assert(lt && rt && lt != rt); |
3232 | |
3233 | if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false; |
3234 | RecordDecl *left = cast<RecordType>(Val: lt)->getDecl(); |
3235 | RecordDecl *right = cast<RecordType>(Val: rt)->getDecl(); |
3236 | |
3237 | // Require union-hood to match. |
3238 | if (left->isUnion() != right->isUnion()) return false; |
3239 | |
3240 | // Require an exact match if either is non-POD. |
3241 | if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) || |
3242 | (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD())) |
3243 | return false; |
3244 | |
3245 | // Require size and alignment to match. |
3246 | TypeInfo LeftTI = Context.getTypeInfo(T: lt); |
3247 | TypeInfo RightTI = Context.getTypeInfo(T: rt); |
3248 | if (LeftTI.Width != RightTI.Width) |
3249 | return false; |
3250 | |
3251 | if (LeftTI.Align != RightTI.Align) |
3252 | return false; |
3253 | |
3254 | // Require fields to match. |
3255 | RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); |
3256 | RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); |
3257 | for (; li != le && ri != re; ++li, ++ri) { |
3258 | if (!matchTypes(Context, strategy, li->getType(), ri->getType())) |
3259 | return false; |
3260 | } |
3261 | return (li == le && ri == re); |
3262 | } |
3263 | |
3264 | /// MatchTwoMethodDeclarations - Checks that two methods have matching type and |
3265 | /// returns true, or false, accordingly. |
3266 | /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons |
3267 | bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, |
3268 | const ObjCMethodDecl *right, |
3269 | MethodMatchStrategy strategy) { |
3270 | ASTContext &Context = getASTContext(); |
3271 | if (!matchTypes(Context, strategy, leftQT: left->getReturnType(), |
3272 | rightQT: right->getReturnType())) |
3273 | return false; |
3274 | |
3275 | // If either is hidden, it is not considered to match. |
3276 | if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) |
3277 | return false; |
3278 | |
3279 | if (left->isDirectMethod() != right->isDirectMethod()) |
3280 | return false; |
3281 | |
3282 | if (getLangOpts().ObjCAutoRefCount && |
3283 | (left->hasAttr<NSReturnsRetainedAttr>() |
3284 | != right->hasAttr<NSReturnsRetainedAttr>() || |
3285 | left->hasAttr<NSConsumesSelfAttr>() |
3286 | != right->hasAttr<NSConsumesSelfAttr>())) |
3287 | return false; |
3288 | |
3289 | ObjCMethodDecl::param_const_iterator |
3290 | li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), |
3291 | re = right->param_end(); |
3292 | |
3293 | for (; li != le && ri != re; ++li, ++ri) { |
3294 | assert(ri != right->param_end() && "Param mismatch"); |
3295 | const ParmVarDecl *lparm = *li, *rparm = *ri; |
3296 | |
3297 | if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) |
3298 | return false; |
3299 | |
3300 | if (getLangOpts().ObjCAutoRefCount && |
3301 | lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) |
3302 | return false; |
3303 | } |
3304 | return true; |
3305 | } |
3306 | |
3307 | static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, |
3308 | ObjCMethodDecl *MethodInList) { |
3309 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); |
3310 | auto *MethodInListProtocol = |
3311 | dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); |
3312 | // If this method belongs to a protocol but the method in list does not, or |
3313 | // vice versa, we say the context is not the same. |
3314 | if ((MethodProtocol && !MethodInListProtocol) || |
3315 | (!MethodProtocol && MethodInListProtocol)) |
3316 | return false; |
3317 | |
3318 | if (MethodProtocol && MethodInListProtocol) |
3319 | return true; |
3320 | |
3321 | ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); |
3322 | ObjCInterfaceDecl *MethodInListInterface = |
3323 | MethodInList->getClassInterface(); |
3324 | return MethodInterface == MethodInListInterface; |
3325 | } |
3326 | |
3327 | void SemaObjC::addMethodToGlobalList(ObjCMethodList *List, |
3328 | ObjCMethodDecl *Method) { |
3329 | // Record at the head of the list whether there were 0, 1, or >= 2 methods |
3330 | // inside categories. |
3331 | if (ObjCCategoryDecl *CD = |
3332 | dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) |
3333 | if (!CD->IsClassExtension() && List->getBits() < 2) |
3334 | List->setBits(List->getBits() + 1); |
3335 | |
3336 | // If the list is empty, make it a singleton list. |
3337 | if (List->getMethod() == nullptr) { |
3338 | List->setMethod(Method); |
3339 | List->setNext(nullptr); |
3340 | return; |
3341 | } |
3342 | |
3343 | // We've seen a method with this name, see if we have already seen this type |
3344 | // signature. |
3345 | ObjCMethodList *Previous = List; |
3346 | ObjCMethodList *ListWithSameDeclaration = nullptr; |
3347 | for (; List; Previous = List, List = List->getNext()) { |
3348 | // If we are building a module, keep all of the methods. |
3349 | if (getLangOpts().isCompilingModule()) |
3350 | continue; |
3351 | |
3352 | bool SameDeclaration = MatchTwoMethodDeclarations(left: Method, |
3353 | right: List->getMethod()); |
3354 | // Looking for method with a type bound requires the correct context exists. |
3355 | // We need to insert a method into the list if the context is different. |
3356 | // If the method's declaration matches the list |
3357 | // a> the method belongs to a different context: we need to insert it, in |
3358 | // order to emit the availability message, we need to prioritize over |
3359 | // availability among the methods with the same declaration. |
3360 | // b> the method belongs to the same context: there is no need to insert a |
3361 | // new entry. |
3362 | // If the method's declaration does not match the list, we insert it to the |
3363 | // end. |
3364 | if (!SameDeclaration || |
3365 | !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) { |
3366 | // Even if two method types do not match, we would like to say |
3367 | // there is more than one declaration so unavailability/deprecated |
3368 | // warning is not too noisy. |
3369 | if (!Method->isDefined()) |
3370 | List->setHasMoreThanOneDecl(true); |
3371 | |
3372 | // For methods with the same declaration, the one that is deprecated |
3373 | // should be put in the front for better diagnostics. |
3374 | if (Method->isDeprecated() && SameDeclaration && |
3375 | !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) |
3376 | ListWithSameDeclaration = List; |
3377 | |
3378 | if (Method->isUnavailable() && SameDeclaration && |
3379 | !ListWithSameDeclaration && |
3380 | List->getMethod()->getAvailability() < AR_Deprecated) |
3381 | ListWithSameDeclaration = List; |
3382 | continue; |
3383 | } |
3384 | |
3385 | ObjCMethodDecl *PrevObjCMethod = List->getMethod(); |
3386 | |
3387 | // Propagate the 'defined' bit. |
3388 | if (Method->isDefined()) |
3389 | PrevObjCMethod->setDefined(true); |
3390 | else { |
3391 | // Objective-C doesn't allow an @interface for a class after its |
3392 | // @implementation. So if Method is not defined and there already is |
3393 | // an entry for this type signature, Method has to be for a different |
3394 | // class than PrevObjCMethod. |
3395 | List->setHasMoreThanOneDecl(true); |
3396 | } |
3397 | |
3398 | // If a method is deprecated, push it in the global pool. |
3399 | // This is used for better diagnostics. |
3400 | if (Method->isDeprecated()) { |
3401 | if (!PrevObjCMethod->isDeprecated()) |
3402 | List->setMethod(Method); |
3403 | } |
3404 | // If the new method is unavailable, push it into global pool |
3405 | // unless previous one is deprecated. |
3406 | if (Method->isUnavailable()) { |
3407 | if (PrevObjCMethod->getAvailability() < AR_Deprecated) |
3408 | List->setMethod(Method); |
3409 | } |
3410 | |
3411 | return; |
3412 | } |
3413 | |
3414 | // We have a new signature for an existing method - add it. |
3415 | // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". |
3416 | ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>(); |
3417 | |
3418 | // We insert it right before ListWithSameDeclaration. |
3419 | if (ListWithSameDeclaration) { |
3420 | auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); |
3421 | // FIXME: should we clear the other bits in ListWithSameDeclaration? |
3422 | ListWithSameDeclaration->setMethod(Method); |
3423 | ListWithSameDeclaration->setNext(List); |
3424 | return; |
3425 | } |
3426 | |
3427 | Previous->setNext(new (Mem) ObjCMethodList(Method)); |
3428 | } |
3429 | |
3430 | /// Read the contents of the method pool for a given selector from |
3431 | /// external storage. |
3432 | void SemaObjC::ReadMethodPool(Selector Sel) { |
3433 | assert(SemaRef.ExternalSource && "We need an external AST source"); |
3434 | SemaRef.ExternalSource->ReadMethodPool(Sel); |
3435 | } |
3436 | |
3437 | void SemaObjC::updateOutOfDateSelector(Selector Sel) { |
3438 | if (!SemaRef.ExternalSource) |
3439 | return; |
3440 | SemaRef.ExternalSource->updateOutOfDateSelector(Sel); |
3441 | } |
3442 | |
3443 | void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, |
3444 | bool instance) { |
3445 | // Ignore methods of invalid containers. |
3446 | if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) |
3447 | return; |
3448 | |
3449 | if (SemaRef.ExternalSource) |
3450 | ReadMethodPool(Sel: Method->getSelector()); |
3451 | |
3452 | auto &Lists = MethodPool[Method->getSelector()]; |
3453 | |
3454 | Method->setDefined(impl); |
3455 | |
3456 | ObjCMethodList &Entry = instance ? Lists.first : Lists.second; |
3457 | addMethodToGlobalList(List: &Entry, Method); |
3458 | } |
3459 | |
3460 | /// Determines if this is an "acceptable" loose mismatch in the global |
3461 | /// method pool. This exists mostly as a hack to get around certain |
3462 | /// global mismatches which we can't afford to make warnings / errors. |
3463 | /// Really, what we want is a way to take a method out of the global |
3464 | /// method pool. |
3465 | static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, |
3466 | ObjCMethodDecl *other) { |
3467 | if (!chosen->isInstanceMethod()) |
3468 | return false; |
3469 | |
3470 | if (chosen->isDirectMethod() != other->isDirectMethod()) |
3471 | return false; |
3472 | |
3473 | Selector sel = chosen->getSelector(); |
3474 | if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length") |
3475 | return false; |
3476 | |
3477 | // Don't complain about mismatches for -length if the method we |
3478 | // chose has an integral result type. |
3479 | return (chosen->getReturnType()->isIntegerType()); |
3480 | } |
3481 | |
3482 | /// Return true if the given method is wthin the type bound. |
3483 | static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, |
3484 | const ObjCObjectType *TypeBound) { |
3485 | if (!TypeBound) |
3486 | return true; |
3487 | |
3488 | if (TypeBound->isObjCId()) |
3489 | // FIXME: should we handle the case of bounding to id<A, B> differently? |
3490 | return true; |
3491 | |
3492 | auto *BoundInterface = TypeBound->getInterface(); |
3493 | assert(BoundInterface && "unexpected object type!"); |
3494 | |
3495 | // Check if the Method belongs to a protocol. We should allow any method |
3496 | // defined in any protocol, because any subclass could adopt the protocol. |
3497 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); |
3498 | if (MethodProtocol) { |
3499 | return true; |
3500 | } |
3501 | |
3502 | // If the Method belongs to a class, check if it belongs to the class |
3503 | // hierarchy of the class bound. |
3504 | if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { |
3505 | // We allow methods declared within classes that are part of the hierarchy |
3506 | // of the class bound (superclass of, subclass of, or the same as the class |
3507 | // bound). |
3508 | return MethodInterface == BoundInterface || |
3509 | MethodInterface->isSuperClassOf(I: BoundInterface) || |
3510 | BoundInterface->isSuperClassOf(I: MethodInterface); |
3511 | } |
3512 | llvm_unreachable("unknown method context"); |
3513 | } |
3514 | |
3515 | /// We first select the type of the method: Instance or Factory, then collect |
3516 | /// all methods with that type. |
3517 | bool SemaObjC::CollectMultipleMethodsInGlobalPool( |
3518 | Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, |
3519 | bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) { |
3520 | if (SemaRef.ExternalSource) |
3521 | ReadMethodPool(Sel); |
3522 | |
3523 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
3524 | if (Pos == MethodPool.end()) |
3525 | return false; |
3526 | |
3527 | // Gather the non-hidden methods. |
3528 | ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : |
3529 | Pos->second.second; |
3530 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) |
3531 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
3532 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
3533 | Methods.push_back(Elt: M->getMethod()); |
3534 | } |
3535 | |
3536 | // Return if we find any method with the desired kind. |
3537 | if (!Methods.empty()) |
3538 | return Methods.size() > 1; |
3539 | |
3540 | if (!CheckTheOther) |
3541 | return false; |
3542 | |
3543 | // Gather the other kind. |
3544 | ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : |
3545 | Pos->second.first; |
3546 | for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) |
3547 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
3548 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
3549 | Methods.push_back(Elt: M->getMethod()); |
3550 | } |
3551 | |
3552 | return Methods.size() > 1; |
3553 | } |
3554 | |
3555 | bool SemaObjC::AreMultipleMethodsInGlobalPool( |
3556 | Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, |
3557 | bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
3558 | // Diagnose finding more than one method in global pool. |
3559 | SmallVector<ObjCMethodDecl *, 4> FilteredMethods; |
3560 | FilteredMethods.push_back(Elt: BestMethod); |
3561 | |
3562 | for (auto *M : Methods) |
3563 | if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) |
3564 | FilteredMethods.push_back(Elt: M); |
3565 | |
3566 | if (FilteredMethods.size() > 1) |
3567 | DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R, |
3568 | receiverIdOrClass); |
3569 | |
3570 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
3571 | // Test for no method in the pool which should not trigger any warning by |
3572 | // caller. |
3573 | if (Pos == MethodPool.end()) |
3574 | return true; |
3575 | ObjCMethodList &MethList = |
3576 | BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; |
3577 | return MethList.hasMoreThanOneDecl(); |
3578 | } |
3579 | |
3580 | ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R, |
3581 | bool receiverIdOrClass, |
3582 | bool instance) { |
3583 | if (SemaRef.ExternalSource) |
3584 | ReadMethodPool(Sel); |
3585 | |
3586 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
3587 | if (Pos == MethodPool.end()) |
3588 | return nullptr; |
3589 | |
3590 | // Gather the non-hidden methods. |
3591 | ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; |
3592 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { |
3593 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) |
3594 | return M->getMethod(); |
3595 | } |
3596 | return nullptr; |
3597 | } |
3598 | |
3599 | void SemaObjC::DiagnoseMultipleMethodInGlobalPool( |
3600 | SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R, |
3601 | bool receiverIdOrClass) { |
3602 | // We found multiple methods, so we may have to complain. |
3603 | bool issueDiagnostic = false, issueError = false; |
3604 | |
3605 | // We support a warning which complains about *any* difference in |
3606 | // method signature. |
3607 | bool strictSelectorMatch = |
3608 | receiverIdOrClass && |
3609 | !getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl, |
3610 | R.getBegin()); |
3611 | if (strictSelectorMatch) { |
3612 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3613 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) { |
3614 | issueDiagnostic = true; |
3615 | break; |
3616 | } |
3617 | } |
3618 | } |
3619 | |
3620 | // If we didn't see any strict differences, we won't see any loose |
3621 | // differences. In ARC, however, we also need to check for loose |
3622 | // mismatches, because most of them are errors. |
3623 | if (!strictSelectorMatch || |
3624 | (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) |
3625 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3626 | // This checks if the methods differ in type mismatch. |
3627 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) && |
3628 | !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) { |
3629 | issueDiagnostic = true; |
3630 | if (getLangOpts().ObjCAutoRefCount) |
3631 | issueError = true; |
3632 | break; |
3633 | } |
3634 | } |
3635 | |
3636 | if (issueDiagnostic) { |
3637 | if (issueError) |
3638 | Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; |
3639 | else if (strictSelectorMatch) |
3640 | Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; |
3641 | else |
3642 | Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; |
3643 | |
3644 | Diag(Methods[0]->getBeginLoc(), |
3645 | issueError ? diag::note_possibility : diag::note_using) |
3646 | << Methods[0]->getSourceRange(); |
3647 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3648 | Diag(Methods[I]->getBeginLoc(), diag::note_also_found) |
3649 | << Methods[I]->getSourceRange(); |
3650 | } |
3651 | } |
3652 | } |
3653 | |
3654 | ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) { |
3655 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
3656 | if (Pos == MethodPool.end()) |
3657 | return nullptr; |
3658 | |
3659 | auto &Methods = Pos->second; |
3660 | for (const ObjCMethodList *Method = &Methods.first; Method; |
3661 | Method = Method->getNext()) |
3662 | if (Method->getMethod() && |
3663 | (Method->getMethod()->isDefined() || |
3664 | Method->getMethod()->isPropertyAccessor())) |
3665 | return Method->getMethod(); |
3666 | |
3667 | for (const ObjCMethodList *Method = &Methods.second; Method; |
3668 | Method = Method->getNext()) |
3669 | if (Method->getMethod() && |
3670 | (Method->getMethod()->isDefined() || |
3671 | Method->getMethod()->isPropertyAccessor())) |
3672 | return Method->getMethod(); |
3673 | return nullptr; |
3674 | } |
3675 | |
3676 | static void |
3677 | HelperSelectorsForTypoCorrection( |
3678 | SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, |
3679 | StringRef Typo, const ObjCMethodDecl * Method) { |
3680 | const unsigned MaxEditDistance = 1; |
3681 | unsigned BestEditDistance = MaxEditDistance + 1; |
3682 | std::string MethodName = Method->getSelector().getAsString(); |
3683 | |
3684 | unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size()); |
3685 | if (MinPossibleEditDistance > 0 && |
3686 | Typo.size() / MinPossibleEditDistance < 1) |
3687 | return; |
3688 | unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance); |
3689 | if (EditDistance > MaxEditDistance) |
3690 | return; |
3691 | if (EditDistance == BestEditDistance) |
3692 | BestMethod.push_back(Elt: Method); |
3693 | else if (EditDistance < BestEditDistance) { |
3694 | BestMethod.clear(); |
3695 | BestMethod.push_back(Elt: Method); |
3696 | } |
3697 | } |
3698 | |
3699 | static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, |
3700 | QualType ObjectType) { |
3701 | if (ObjectType.isNull()) |
3702 | return true; |
3703 | if (S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType, |
3704 | IsInstance: true /*Instance method*/)) |
3705 | return true; |
3706 | return S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType, |
3707 | IsInstance: false /*Class method*/) != nullptr; |
3708 | } |
3709 | |
3710 | const ObjCMethodDecl * |
3711 | SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) { |
3712 | unsigned NumArgs = Sel.getNumArgs(); |
3713 | SmallVector<const ObjCMethodDecl *, 8> Methods; |
3714 | bool ObjectIsId = true, ObjectIsClass = true; |
3715 | if (ObjectType.isNull()) |
3716 | ObjectIsId = ObjectIsClass = false; |
3717 | else if (!ObjectType->isObjCObjectPointerType()) |
3718 | return nullptr; |
3719 | else if (const ObjCObjectPointerType *ObjCPtr = |
3720 | ObjectType->getAsObjCInterfacePointerType()) { |
3721 | ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); |
3722 | ObjectIsId = ObjectIsClass = false; |
3723 | } |
3724 | else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) |
3725 | ObjectIsClass = false; |
3726 | else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) |
3727 | ObjectIsId = false; |
3728 | else |
3729 | return nullptr; |
3730 | |
3731 | for (GlobalMethodPool::iterator b = MethodPool.begin(), |
3732 | e = MethodPool.end(); b != e; b++) { |
3733 | // instance methods |
3734 | for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) |
3735 | if (M->getMethod() && |
3736 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
3737 | (M->getMethod()->getSelector() != Sel)) { |
3738 | if (ObjectIsId) |
3739 | Methods.push_back(Elt: M->getMethod()); |
3740 | else if (!ObjectIsClass && |
3741 | HelperIsMethodInObjCType( |
3742 | S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType)) |
3743 | Methods.push_back(Elt: M->getMethod()); |
3744 | } |
3745 | // class methods |
3746 | for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) |
3747 | if (M->getMethod() && |
3748 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
3749 | (M->getMethod()->getSelector() != Sel)) { |
3750 | if (ObjectIsClass) |
3751 | Methods.push_back(Elt: M->getMethod()); |
3752 | else if (!ObjectIsId && |
3753 | HelperIsMethodInObjCType( |
3754 | S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType)) |
3755 | Methods.push_back(Elt: M->getMethod()); |
3756 | } |
3757 | } |
3758 | |
3759 | SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; |
3760 | for (unsigned i = 0, e = Methods.size(); i < e; i++) { |
3761 | HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods, |
3762 | Typo: Sel.getAsString(), Method: Methods[i]); |
3763 | } |
3764 | return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; |
3765 | } |
3766 | |
3767 | /// DiagnoseDuplicateIvars - |
3768 | /// Check for duplicate ivars in the entire class at the start of |
3769 | /// \@implementation. This becomes necessary because class extension can |
3770 | /// add ivars to a class in random order which will not be known until |
3771 | /// class's \@implementation is seen. |
3772 | void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, |
3773 | ObjCInterfaceDecl *SID) { |
3774 | for (auto *Ivar : ID->ivars()) { |
3775 | if (Ivar->isInvalidDecl()) |
3776 | continue; |
3777 | if (IdentifierInfo *II = Ivar->getIdentifier()) { |
3778 | ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II); |
3779 | if (prevIvar) { |
3780 | Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; |
3781 | Diag(prevIvar->getLocation(), diag::note_previous_declaration); |
3782 | Ivar->setInvalidDecl(); |
3783 | } |
3784 | } |
3785 | } |
3786 | } |
3787 | |
3788 | /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. |
3789 | static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { |
3790 | if (S.getLangOpts().ObjCWeak) return; |
3791 | |
3792 | for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); |
3793 | ivar; ivar = ivar->getNextIvar()) { |
3794 | if (ivar->isInvalidDecl()) continue; |
3795 | if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
3796 | if (S.getLangOpts().ObjCWeakRuntime) { |
3797 | S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); |
3798 | } else { |
3799 | S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); |
3800 | } |
3801 | } |
3802 | } |
3803 | } |
3804 | |
3805 | /// Diagnose attempts to use flexible array member with retainable object type. |
3806 | static void DiagnoseRetainableFlexibleArrayMember(Sema &S, |
3807 | ObjCInterfaceDecl *ID) { |
3808 | if (!S.getLangOpts().ObjCAutoRefCount) |
3809 | return; |
3810 | |
3811 | for (auto ivar = ID->all_declared_ivar_begin(); ivar; |
3812 | ivar = ivar->getNextIvar()) { |
3813 | if (ivar->isInvalidDecl()) |
3814 | continue; |
3815 | QualType IvarTy = ivar->getType(); |
3816 | if (IvarTy->isIncompleteArrayType() && |
3817 | (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && |
3818 | IvarTy->isObjCLifetimeType()) { |
3819 | S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); |
3820 | ivar->setInvalidDecl(); |
3821 | } |
3822 | } |
3823 | } |
3824 | |
3825 | SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const { |
3826 | switch (SemaRef.CurContext->getDeclKind()) { |
3827 | case Decl::ObjCInterface: |
3828 | return SemaObjC::OCK_Interface; |
3829 | case Decl::ObjCProtocol: |
3830 | return SemaObjC::OCK_Protocol; |
3831 | case Decl::ObjCCategory: |
3832 | if (cast<ObjCCategoryDecl>(Val: SemaRef.CurContext)->IsClassExtension()) |
3833 | return SemaObjC::OCK_ClassExtension; |
3834 | return SemaObjC::OCK_Category; |
3835 | case Decl::ObjCImplementation: |
3836 | return SemaObjC::OCK_Implementation; |
3837 | case Decl::ObjCCategoryImpl: |
3838 | return SemaObjC::OCK_CategoryImplementation; |
3839 | |
3840 | default: |
3841 | return SemaObjC::OCK_None; |
3842 | } |
3843 | } |
3844 | |
3845 | static bool IsVariableSizedType(QualType T) { |
3846 | if (T->isIncompleteArrayType()) |
3847 | return true; |
3848 | const auto *RecordTy = T->getAs<RecordType>(); |
3849 | return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); |
3850 | } |
3851 | |
3852 | static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { |
3853 | ObjCInterfaceDecl *IntfDecl = nullptr; |
3854 | ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( |
3855 | x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator()); |
3856 | if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) { |
3857 | Ivars = IntfDecl->ivars(); |
3858 | } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) { |
3859 | IntfDecl = ImplDecl->getClassInterface(); |
3860 | Ivars = ImplDecl->ivars(); |
3861 | } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) { |
3862 | if (CategoryDecl->IsClassExtension()) { |
3863 | IntfDecl = CategoryDecl->getClassInterface(); |
3864 | Ivars = CategoryDecl->ivars(); |
3865 | } |
3866 | } |
3867 | |
3868 | // Check if variable sized ivar is in interface and visible to subclasses. |
3869 | if (!isa<ObjCInterfaceDecl>(Val: OCD)) { |
3870 | for (auto *ivar : Ivars) { |
3871 | if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { |
3872 | S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) |
3873 | << ivar->getDeclName() << ivar->getType(); |
3874 | } |
3875 | } |
3876 | } |
3877 | |
3878 | // Subsequent checks require interface decl. |
3879 | if (!IntfDecl) |
3880 | return; |
3881 | |
3882 | // Check if variable sized ivar is followed by another ivar. |
3883 | for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; |
3884 | ivar = ivar->getNextIvar()) { |
3885 | if (ivar->isInvalidDecl() || !ivar->getNextIvar()) |
3886 | continue; |
3887 | QualType IvarTy = ivar->getType(); |
3888 | bool IsInvalidIvar = false; |
3889 | if (IvarTy->isIncompleteArrayType()) { |
3890 | S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) |
3891 | << ivar->getDeclName() << IvarTy |
3892 | << TagTypeKind::Class; // Use "class" for Obj-C. |
3893 | IsInvalidIvar = true; |
3894 | } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { |
3895 | if (RecordTy->getDecl()->hasFlexibleArrayMember()) { |
3896 | S.Diag(ivar->getLocation(), |
3897 | diag::err_objc_variable_sized_type_not_at_end) |
3898 | << ivar->getDeclName() << IvarTy; |
3899 | IsInvalidIvar = true; |
3900 | } |
3901 | } |
3902 | if (IsInvalidIvar) { |
3903 | S.Diag(ivar->getNextIvar()->getLocation(), |
3904 | diag::note_next_ivar_declaration) |
3905 | << ivar->getNextIvar()->getSynthesize(); |
3906 | ivar->setInvalidDecl(); |
3907 | } |
3908 | } |
3909 | |
3910 | // Check if ObjC container adds ivars after variable sized ivar in superclass. |
3911 | // Perform the check only if OCD is the first container to declare ivars to |
3912 | // avoid multiple warnings for the same ivar. |
3913 | ObjCIvarDecl *FirstIvar = |
3914 | (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); |
3915 | if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { |
3916 | const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); |
3917 | while (SuperClass && SuperClass->ivar_empty()) |
3918 | SuperClass = SuperClass->getSuperClass(); |
3919 | if (SuperClass) { |
3920 | auto IvarIter = SuperClass->ivar_begin(); |
3921 | std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1); |
3922 | const ObjCIvarDecl *LastIvar = *IvarIter; |
3923 | if (IsVariableSizedType(LastIvar->getType())) { |
3924 | S.Diag(FirstIvar->getLocation(), |
3925 | diag::warn_superclass_variable_sized_type_not_at_end) |
3926 | << FirstIvar->getDeclName() << LastIvar->getDeclName() |
3927 | << LastIvar->getType() << SuperClass->getDeclName(); |
3928 | S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) |
3929 | << LastIvar->getDeclName(); |
3930 | } |
3931 | } |
3932 | } |
3933 | } |
3934 | |
3935 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3936 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); |
3937 | |
3938 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3939 | Sema &S, ObjCCategoryDecl *CDecl, |
3940 | const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { |
3941 | for (auto *PI : Protocols) |
3942 | DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl); |
3943 | } |
3944 | |
3945 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3946 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { |
3947 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
3948 | PDecl = PDecl->getDefinition(); |
3949 | |
3950 | llvm::SmallVector<const Decl *, 4> DirectMembers; |
3951 | const auto *IDecl = CDecl->getClassInterface(); |
3952 | for (auto *MD : PDecl->methods()) { |
3953 | if (!MD->isPropertyAccessor()) { |
3954 | if (const auto *CMD = |
3955 | IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) { |
3956 | if (CMD->isDirectMethod()) |
3957 | DirectMembers.push_back(CMD); |
3958 | } |
3959 | } |
3960 | } |
3961 | for (auto *PD : PDecl->properties()) { |
3962 | if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( |
3963 | PD->getIdentifier(), |
3964 | PD->isClassProperty() |
3965 | ? ObjCPropertyQueryKind::OBJC_PR_query_class |
3966 | : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
3967 | if (CPD->isDirectProperty()) |
3968 | DirectMembers.push_back(CPD); |
3969 | } |
3970 | } |
3971 | if (!DirectMembers.empty()) { |
3972 | S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance) |
3973 | << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; |
3974 | for (const auto *MD : DirectMembers) |
3975 | S.Diag(MD->getLocation(), diag::note_direct_member_here); |
3976 | return; |
3977 | } |
3978 | |
3979 | // Check on this protocols's referenced protocols, recursively. |
3980 | DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, |
3981 | Protocols: PDecl->protocols()); |
3982 | } |
3983 | |
3984 | // Note: For class/category implementations, allMethods is always null. |
3985 | Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd, |
3986 | ArrayRef<Decl *> allMethods, |
3987 | ArrayRef<DeclGroupPtrTy> allTUVars) { |
3988 | ASTContext &Context = getASTContext(); |
3989 | if (getObjCContainerKind() == SemaObjC::OCK_None) |
3990 | return nullptr; |
3991 | |
3992 | assert(AtEnd.isValid() && "Invalid location for '@end'"); |
3993 | |
3994 | auto *OCD = cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
3995 | Decl *ClassDecl = OCD; |
3996 | |
3997 | bool isInterfaceDeclKind = |
3998 | isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl) |
3999 | || isa<ObjCProtocolDecl>(Val: ClassDecl); |
4000 | bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl); |
4001 | |
4002 | // Make synthesized accessor stub functions visible. |
4003 | // ActOnPropertyImplDecl() creates them as not visible in case |
4004 | // they are overridden by an explicit method that is encountered |
4005 | // later. |
4006 | if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: SemaRef.CurContext)) { |
4007 | for (auto *PropImpl : OID->property_impls()) { |
4008 | if (auto *Getter = PropImpl->getGetterMethodDecl()) |
4009 | if (Getter->isSynthesizedAccessorStub()) |
4010 | OID->addDecl(Getter); |
4011 | if (auto *Setter = PropImpl->getSetterMethodDecl()) |
4012 | if (Setter->isSynthesizedAccessorStub()) |
4013 | OID->addDecl(Setter); |
4014 | } |
4015 | } |
4016 | |
4017 | // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. |
4018 | llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; |
4019 | llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; |
4020 | |
4021 | for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { |
4022 | ObjCMethodDecl *Method = |
4023 | cast_or_null<ObjCMethodDecl>(Val: allMethods[i]); |
4024 | |
4025 | if (!Method) continue; // Already issued a diagnostic. |
4026 | if (Method->isInstanceMethod()) { |
4027 | /// Check for instance method of the same name with incompatible types |
4028 | const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; |
4029 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
4030 | : false; |
4031 | if ((isInterfaceDeclKind && PrevMethod && !match) |
4032 | || (checkIdenticalMethods && match)) { |
4033 | Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
4034 | << Method->getDeclName(); |
4035 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4036 | Method->setInvalidDecl(); |
4037 | } else { |
4038 | if (PrevMethod) { |
4039 | Method->setAsRedeclaration(PrevMethod); |
4040 | if (!Context.getSourceManager().isInSystemHeader( |
4041 | Method->getLocation())) |
4042 | Diag(Method->getLocation(), diag::warn_duplicate_method_decl) |
4043 | << Method->getDeclName(); |
4044 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4045 | } |
4046 | InsMap[Method->getSelector()] = Method; |
4047 | /// The following allows us to typecheck messages to "id". |
4048 | AddInstanceMethodToGlobalPool(Method); |
4049 | } |
4050 | } else { |
4051 | /// Check for class method of the same name with incompatible types |
4052 | const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; |
4053 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
4054 | : false; |
4055 | if ((isInterfaceDeclKind && PrevMethod && !match) |
4056 | || (checkIdenticalMethods && match)) { |
4057 | Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
4058 | << Method->getDeclName(); |
4059 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4060 | Method->setInvalidDecl(); |
4061 | } else { |
4062 | if (PrevMethod) { |
4063 | Method->setAsRedeclaration(PrevMethod); |
4064 | if (!Context.getSourceManager().isInSystemHeader( |
4065 | Method->getLocation())) |
4066 | Diag(Method->getLocation(), diag::warn_duplicate_method_decl) |
4067 | << Method->getDeclName(); |
4068 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
4069 | } |
4070 | ClsMap[Method->getSelector()] = Method; |
4071 | AddFactoryMethodToGlobalPool(Method); |
4072 | } |
4073 | } |
4074 | } |
4075 | if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) { |
4076 | // Nothing to do here. |
4077 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) { |
4078 | // Categories are used to extend the class by declaring new methods. |
4079 | // By the same token, they are also used to add new properties. No |
4080 | // need to compare the added property to those in the class. |
4081 | |
4082 | if (C->IsClassExtension()) { |
4083 | ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); |
4084 | DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary); |
4085 | } |
4086 | |
4087 | DiagnoseCategoryDirectMembersProtocolConformance(S&: SemaRef, CDecl: C, |
4088 | Protocols: C->protocols()); |
4089 | } |
4090 | if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) { |
4091 | if (CDecl->getIdentifier()) |
4092 | // ProcessPropertyDecl is responsible for diagnosing conflicts with any |
4093 | // user-defined setter/getter. It also synthesizes setter/getter methods |
4094 | // and adds them to the DeclContext and global method pools. |
4095 | for (auto *I : CDecl->properties()) |
4096 | ProcessPropertyDecl(I); |
4097 | CDecl->setAtEndRange(AtEnd); |
4098 | } |
4099 | if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) { |
4100 | IC->setAtEndRange(AtEnd); |
4101 | if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { |
4102 | // Any property declared in a class extension might have user |
4103 | // declared setter or getter in current class extension or one |
4104 | // of the other class extensions. Mark them as synthesized as |
4105 | // property will be synthesized when property with same name is |
4106 | // seen in the @implementation. |
4107 | for (const auto *Ext : IDecl->visible_extensions()) { |
4108 | for (const auto *Property : Ext->instance_properties()) { |
4109 | // Skip over properties declared @dynamic |
4110 | if (const ObjCPropertyImplDecl *PIDecl |
4111 | = IC->FindPropertyImplDecl(Property->getIdentifier(), |
4112 | Property->getQueryKind())) |
4113 | if (PIDecl->getPropertyImplementation() |
4114 | == ObjCPropertyImplDecl::Dynamic) |
4115 | continue; |
4116 | |
4117 | for (const auto *Ext : IDecl->visible_extensions()) { |
4118 | if (ObjCMethodDecl *GetterMethod = |
4119 | Ext->getInstanceMethod(Property->getGetterName())) |
4120 | GetterMethod->setPropertyAccessor(true); |
4121 | if (!Property->isReadOnly()) |
4122 | if (ObjCMethodDecl *SetterMethod |
4123 | = Ext->getInstanceMethod(Property->getSetterName())) |
4124 | SetterMethod->setPropertyAccessor(true); |
4125 | } |
4126 | } |
4127 | } |
4128 | ImplMethodsVsClassMethods(S, IC, IDecl); |
4129 | AtomicPropertySetterGetterRules(IC, IDecl); |
4130 | DiagnoseOwningPropertyGetterSynthesis(D: IC); |
4131 | DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC); |
4132 | if (IDecl->hasDesignatedInitializers()) |
4133 | DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl); |
4134 | DiagnoseWeakIvars(S&: SemaRef, ID: IC); |
4135 | DiagnoseRetainableFlexibleArrayMember(S&: SemaRef, ID: IDecl); |
4136 | |
4137 | bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); |
4138 | if (IDecl->getSuperClass() == nullptr) { |
4139 | // This class has no superclass, so check that it has been marked with |
4140 | // __attribute((objc_root_class)). |
4141 | if (!HasRootClassAttr) { |
4142 | SourceLocation DeclLoc(IDecl->getLocation()); |
4143 | SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(Loc: DeclLoc)); |
4144 | Diag(DeclLoc, diag::warn_objc_root_class_missing) |
4145 | << IDecl->getIdentifier(); |
4146 | // See if NSObject is in the current scope, and if it is, suggest |
4147 | // adding " : NSObject " to the class declaration. |
4148 | NamedDecl *IF = SemaRef.LookupSingleName( |
4149 | S: SemaRef.TUScope, Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject), |
4150 | Loc: DeclLoc, NameKind: Sema::LookupOrdinaryName); |
4151 | ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF); |
4152 | if (NSObjectDecl && NSObjectDecl->getDefinition()) { |
4153 | Diag(SuperClassLoc, diag::note_objc_needs_superclass) |
4154 | << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); |
4155 | } else { |
4156 | Diag(SuperClassLoc, diag::note_objc_needs_superclass); |
4157 | } |
4158 | } |
4159 | } else if (HasRootClassAttr) { |
4160 | // Complain that only root classes may have this attribute. |
4161 | Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); |
4162 | } |
4163 | |
4164 | if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { |
4165 | // An interface can subclass another interface with a |
4166 | // objc_subclassing_restricted attribute when it has that attribute as |
4167 | // well (because of interfaces imported from Swift). Therefore we have |
4168 | // to check if we can subclass in the implementation as well. |
4169 | if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
4170 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
4171 | Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); |
4172 | Diag(Super->getLocation(), diag::note_class_declared); |
4173 | } |
4174 | } |
4175 | |
4176 | if (IDecl->hasAttr<ObjCClassStubAttr>()) |
4177 | Diag(IC->getLocation(), diag::err_implementation_of_class_stub); |
4178 | |
4179 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
4180 | while (IDecl->getSuperClass()) { |
4181 | DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass()); |
4182 | IDecl = IDecl->getSuperClass(); |
4183 | } |
4184 | } |
4185 | } |
4186 | SetIvarInitializers(IC); |
4187 | } else if (ObjCCategoryImplDecl* CatImplClass = |
4188 | dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) { |
4189 | CatImplClass->setAtEndRange(AtEnd); |
4190 | |
4191 | // Find category interface decl and then check that all methods declared |
4192 | // in this interface are implemented in the category @implementation. |
4193 | if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { |
4194 | if (ObjCCategoryDecl *Cat |
4195 | = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) { |
4196 | ImplMethodsVsClassMethods(S, CatImplClass, Cat); |
4197 | } |
4198 | } |
4199 | } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { |
4200 | if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { |
4201 | if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
4202 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
4203 | Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); |
4204 | Diag(Super->getLocation(), diag::note_class_declared); |
4205 | } |
4206 | } |
4207 | |
4208 | if (IntfDecl->hasAttr<ObjCClassStubAttr>() && |
4209 | !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) |
4210 | Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); |
4211 | } |
4212 | DiagnoseVariableSizedIvars(S&: SemaRef, OCD); |
4213 | if (isInterfaceDeclKind) { |
4214 | // Reject invalid vardecls. |
4215 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
4216 | DeclGroupRef DG = allTUVars[i].get(); |
4217 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
4218 | if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) { |
4219 | if (!VDecl->hasExternalStorage()) |
4220 | Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); |
4221 | } |
4222 | } |
4223 | } |
4224 | ActOnObjCContainerFinishDefinition(); |
4225 | |
4226 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
4227 | DeclGroupRef DG = allTUVars[i].get(); |
4228 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
4229 | (*I)->setTopLevelDeclInObjCContainer(); |
4230 | SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(D: DG); |
4231 | } |
4232 | |
4233 | SemaRef.ActOnDocumentableDecl(D: ClassDecl); |
4234 | return ClassDecl; |
4235 | } |
4236 | |
4237 | /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for |
4238 | /// objective-c's type qualifier from the parser version of the same info. |
4239 | static Decl::ObjCDeclQualifier |
4240 | CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { |
4241 | return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; |
4242 | } |
4243 | |
4244 | /// Check whether the declared result type of the given Objective-C |
4245 | /// method declaration is compatible with the method's class. |
4246 | /// |
4247 | static SemaObjC::ResultTypeCompatibilityKind |
4248 | CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, |
4249 | ObjCInterfaceDecl *CurrentClass) { |
4250 | QualType ResultType = Method->getReturnType(); |
4251 | |
4252 | // If an Objective-C method inherits its related result type, then its |
4253 | // declared result type must be compatible with its own class type. The |
4254 | // declared result type is compatible if: |
4255 | if (const ObjCObjectPointerType *ResultObjectType |
4256 | = ResultType->getAs<ObjCObjectPointerType>()) { |
4257 | // - it is id or qualified id, or |
4258 | if (ResultObjectType->isObjCIdType() || |
4259 | ResultObjectType->isObjCQualifiedIdType()) |
4260 | return SemaObjC::RTC_Compatible; |
4261 | |
4262 | if (CurrentClass) { |
4263 | if (ObjCInterfaceDecl *ResultClass |
4264 | = ResultObjectType->getInterfaceDecl()) { |
4265 | // - it is the same as the method's class type, or |
4266 | if (declaresSameEntity(CurrentClass, ResultClass)) |
4267 | return SemaObjC::RTC_Compatible; |
4268 | |
4269 | // - it is a superclass of the method's class type |
4270 | if (ResultClass->isSuperClassOf(I: CurrentClass)) |
4271 | return SemaObjC::RTC_Compatible; |
4272 | } |
4273 | } else { |
4274 | // Any Objective-C pointer type might be acceptable for a protocol |
4275 | // method; we just don't know. |
4276 | return SemaObjC::RTC_Unknown; |
4277 | } |
4278 | } |
4279 | |
4280 | return SemaObjC::RTC_Incompatible; |
4281 | } |
4282 | |
4283 | namespace { |
4284 | /// A helper class for searching for methods which a particular method |
4285 | /// overrides. |
4286 | class OverrideSearch { |
4287 | public: |
4288 | const ObjCMethodDecl *Method; |
4289 | llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; |
4290 | bool Recursive; |
4291 | |
4292 | public: |
4293 | OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { |
4294 | Selector selector = method->getSelector(); |
4295 | |
4296 | // Bypass this search if we've never seen an instance/class method |
4297 | // with this selector before. |
4298 | SemaObjC::GlobalMethodPool::iterator it = |
4299 | S.ObjC().MethodPool.find(Val: selector); |
4300 | if (it == S.ObjC().MethodPool.end()) { |
4301 | if (!S.getExternalSource()) return; |
4302 | S.ObjC().ReadMethodPool(Sel: selector); |
4303 | |
4304 | it = S.ObjC().MethodPool.find(Val: selector); |
4305 | if (it == S.ObjC().MethodPool.end()) |
4306 | return; |
4307 | } |
4308 | const ObjCMethodList &list = |
4309 | method->isInstanceMethod() ? it->second.first : it->second.second; |
4310 | if (!list.getMethod()) return; |
4311 | |
4312 | const ObjCContainerDecl *container |
4313 | = cast<ObjCContainerDecl>(method->getDeclContext()); |
4314 | |
4315 | // Prevent the search from reaching this container again. This is |
4316 | // important with categories, which override methods from the |
4317 | // interface and each other. |
4318 | if (const ObjCCategoryDecl *Category = |
4319 | dyn_cast<ObjCCategoryDecl>(container)) { |
4320 | searchFromContainer(container); |
4321 | if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) |
4322 | searchFromContainer(Interface); |
4323 | } else { |
4324 | searchFromContainer(container); |
4325 | } |
4326 | } |
4327 | |
4328 | typedef decltype(Overridden)::iterator iterator; |
4329 | iterator begin() const { return Overridden.begin(); } |
4330 | iterator end() const { return Overridden.end(); } |
4331 | |
4332 | private: |
4333 | void searchFromContainer(const ObjCContainerDecl *container) { |
4334 | if (container->isInvalidDecl()) return; |
4335 | |
4336 | switch (container->getDeclKind()) { |
4337 | #define OBJCCONTAINER(type, base) \ |
4338 | case Decl::type: \ |
4339 | searchFrom(cast<type##Decl>(container)); \ |
4340 | break; |
4341 | #define ABSTRACT_DECL(expansion) |
4342 | #define DECL(type, base) \ |
4343 | case Decl::type: |
4344 | #include "clang/AST/DeclNodes.inc" |
4345 | llvm_unreachable("not an ObjC container!"); |
4346 | } |
4347 | } |
4348 | |
4349 | void searchFrom(const ObjCProtocolDecl *protocol) { |
4350 | if (!protocol->hasDefinition()) |
4351 | return; |
4352 | |
4353 | // A method in a protocol declaration overrides declarations from |
4354 | // referenced ("parent") protocols. |
4355 | search(protocols: protocol->getReferencedProtocols()); |
4356 | } |
4357 | |
4358 | void searchFrom(const ObjCCategoryDecl *category) { |
4359 | // A method in a category declaration overrides declarations from |
4360 | // the main class and from protocols the category references. |
4361 | // The main class is handled in the constructor. |
4362 | search(protocols: category->getReferencedProtocols()); |
4363 | } |
4364 | |
4365 | void searchFrom(const ObjCCategoryImplDecl *impl) { |
4366 | // A method in a category definition that has a category |
4367 | // declaration overrides declarations from the category |
4368 | // declaration. |
4369 | if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { |
4370 | search(category); |
4371 | if (ObjCInterfaceDecl *Interface = category->getClassInterface()) |
4372 | search(Interface); |
4373 | |
4374 | // Otherwise it overrides declarations from the class. |
4375 | } else if (const auto *Interface = impl->getClassInterface()) { |
4376 | search(Interface); |
4377 | } |
4378 | } |
4379 | |
4380 | void searchFrom(const ObjCInterfaceDecl *iface) { |
4381 | // A method in a class declaration overrides declarations from |
4382 | if (!iface->hasDefinition()) |
4383 | return; |
4384 | |
4385 | // - categories, |
4386 | for (auto *Cat : iface->known_categories()) |
4387 | search(Cat); |
4388 | |
4389 | // - the super class, and |
4390 | if (ObjCInterfaceDecl *super = iface->getSuperClass()) |
4391 | search(super); |
4392 | |
4393 | // - any referenced protocols. |
4394 | search(protocols: iface->getReferencedProtocols()); |
4395 | } |
4396 | |
4397 | void searchFrom(const ObjCImplementationDecl *impl) { |
4398 | // A method in a class implementation overrides declarations from |
4399 | // the class interface. |
4400 | if (const auto *Interface = impl->getClassInterface()) |
4401 | search(Interface); |
4402 | } |
4403 | |
4404 | void search(const ObjCProtocolList &protocols) { |
4405 | for (const auto *Proto : protocols) |
4406 | search(Proto); |
4407 | } |
4408 | |
4409 | void search(const ObjCContainerDecl *container) { |
4410 | // Check for a method in this container which matches this selector. |
4411 | ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(), |
4412 | isInstance: Method->isInstanceMethod(), |
4413 | /*AllowHidden=*/true); |
4414 | |
4415 | // If we find one, record it and bail out. |
4416 | if (meth) { |
4417 | Overridden.insert(X: meth); |
4418 | return; |
4419 | } |
4420 | |
4421 | // Otherwise, search for methods that a hypothetical method here |
4422 | // would have overridden. |
4423 | |
4424 | // Note that we're now in a recursive case. |
4425 | Recursive = true; |
4426 | |
4427 | searchFromContainer(container); |
4428 | } |
4429 | }; |
4430 | } // end anonymous namespace |
4431 | |
4432 | void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, |
4433 | ObjCMethodDecl *overridden) { |
4434 | if (overridden->isDirectMethod()) { |
4435 | const auto *attr = overridden->getAttr<ObjCDirectAttr>(); |
4436 | Diag(method->getLocation(), diag::err_objc_override_direct_method); |
4437 | Diag(attr->getLocation(), diag::note_previous_declaration); |
4438 | } else if (method->isDirectMethod()) { |
4439 | const auto *attr = method->getAttr<ObjCDirectAttr>(); |
4440 | Diag(attr->getLocation(), diag::err_objc_direct_on_override) |
4441 | << isa<ObjCProtocolDecl>(overridden->getDeclContext()); |
4442 | Diag(overridden->getLocation(), diag::note_previous_declaration); |
4443 | } |
4444 | } |
4445 | |
4446 | void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, |
4447 | ObjCInterfaceDecl *CurrentClass, |
4448 | ResultTypeCompatibilityKind RTC) { |
4449 | ASTContext &Context = getASTContext(); |
4450 | if (!ObjCMethod) |
4451 | return; |
4452 | auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) { |
4453 | // Checking canonical decl works across modules. |
4454 | return M->getClassInterface()->getCanonicalDecl() == |
4455 | CurrentClass->getCanonicalDecl(); |
4456 | }; |
4457 | // Search for overridden methods and merge information down from them. |
4458 | OverrideSearch overrides(SemaRef, ObjCMethod); |
4459 | // Keep track if the method overrides any method in the class's base classes, |
4460 | // its protocols, or its categories' protocols; we will keep that info |
4461 | // in the ObjCMethodDecl. |
4462 | // For this info, a method in an implementation is not considered as |
4463 | // overriding the same method in the interface or its categories. |
4464 | bool hasOverriddenMethodsInBaseOrProtocol = false; |
4465 | for (ObjCMethodDecl *overridden : overrides) { |
4466 | if (!hasOverriddenMethodsInBaseOrProtocol) { |
4467 | if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || |
4468 | !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) { |
4469 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden); |
4470 | hasOverriddenMethodsInBaseOrProtocol = true; |
4471 | } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { |
4472 | // OverrideSearch will return as "overridden" the same method in the |
4473 | // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to |
4474 | // check whether a category of a base class introduced a method with the |
4475 | // same selector, after the interface method declaration. |
4476 | // To avoid unnecessary lookups in the majority of cases, we use the |
4477 | // extra info bits in GlobalMethodPool to check whether there were any |
4478 | // category methods with this selector. |
4479 | GlobalMethodPool::iterator It = |
4480 | MethodPool.find(Val: ObjCMethod->getSelector()); |
4481 | if (It != MethodPool.end()) { |
4482 | ObjCMethodList &List = |
4483 | ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; |
4484 | unsigned CategCount = List.getBits(); |
4485 | if (CategCount > 0) { |
4486 | // If the method is in a category we'll do lookup if there were at |
4487 | // least 2 category methods recorded, otherwise only one will do. |
4488 | if (CategCount > 1 || |
4489 | !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { |
4490 | OverrideSearch overrides(SemaRef, overridden); |
4491 | for (ObjCMethodDecl *SuperOverridden : overrides) { |
4492 | if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || |
4493 | !IsMethodInCurrentClass(SuperOverridden)) { |
4494 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden); |
4495 | hasOverriddenMethodsInBaseOrProtocol = true; |
4496 | overridden->setOverriding(true); |
4497 | break; |
4498 | } |
4499 | } |
4500 | } |
4501 | } |
4502 | } |
4503 | } |
4504 | } |
4505 | |
4506 | // Propagate down the 'related result type' bit from overridden methods. |
4507 | if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType()) |
4508 | ObjCMethod->setRelatedResultType(); |
4509 | |
4510 | // Then merge the declarations. |
4511 | SemaRef.mergeObjCMethodDecls(New: ObjCMethod, Old: overridden); |
4512 | |
4513 | if (ObjCMethod->isImplicit() && overridden->isImplicit()) |
4514 | continue; // Conflicting properties are detected elsewhere. |
4515 | |
4516 | // Check for overriding methods |
4517 | if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || |
4518 | isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) |
4519 | CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden, |
4520 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(overridden->getDeclContext())); |
4521 | |
4522 | if (CurrentClass && overridden->getDeclContext() != CurrentClass && |
4523 | isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && |
4524 | !overridden->isImplicit() /* not meant for properties */) { |
4525 | ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), |
4526 | E = ObjCMethod->param_end(); |
4527 | ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), |
4528 | PrevE = overridden->param_end(); |
4529 | for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { |
4530 | assert(PrevI != overridden->param_end() && "Param mismatch"); |
4531 | QualType T1 = Context.getCanonicalType((*ParamI)->getType()); |
4532 | QualType T2 = Context.getCanonicalType((*PrevI)->getType()); |
4533 | // If type of argument of method in this class does not match its |
4534 | // respective argument type in the super class method, issue warning; |
4535 | if (!Context.typesAreCompatible(T1, T2)) { |
4536 | Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) |
4537 | << T1 << T2; |
4538 | Diag(overridden->getLocation(), diag::note_previous_declaration); |
4539 | break; |
4540 | } |
4541 | } |
4542 | } |
4543 | } |
4544 | |
4545 | ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); |
4546 | } |
4547 | |
4548 | /// Merge type nullability from for a redeclaration of the same entity, |
4549 | /// producing the updated type of the redeclared entity. |
4550 | static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, |
4551 | QualType type, |
4552 | bool usesCSKeyword, |
4553 | SourceLocation prevLoc, |
4554 | QualType prevType, |
4555 | bool prevUsesCSKeyword) { |
4556 | // Determine the nullability of both types. |
4557 | auto nullability = type->getNullability(); |
4558 | auto prevNullability = prevType->getNullability(); |
4559 | |
4560 | // Easy case: both have nullability. |
4561 | if (nullability.has_value() == prevNullability.has_value()) { |
4562 | // Neither has nullability; continue. |
4563 | if (!nullability) |
4564 | return type; |
4565 | |
4566 | // The nullabilities are equivalent; do nothing. |
4567 | if (*nullability == *prevNullability) |
4568 | return type; |
4569 | |
4570 | // Complain about mismatched nullability. |
4571 | S.Diag(loc, diag::err_nullability_conflicting) |
4572 | << DiagNullabilityKind(*nullability, usesCSKeyword) |
4573 | << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); |
4574 | return type; |
4575 | } |
4576 | |
4577 | // If it's the redeclaration that has nullability, don't change anything. |
4578 | if (nullability) |
4579 | return type; |
4580 | |
4581 | // Otherwise, provide the result with the same nullability. |
4582 | return S.Context.getAttributedType(nullability: *prevNullability, modifiedType: type, equivalentType: type); |
4583 | } |
4584 | |
4585 | /// Merge information from the declaration of a method in the \@interface |
4586 | /// (or a category/extension) into the corresponding method in the |
4587 | /// @implementation (for a class or category). |
4588 | static void mergeInterfaceMethodToImpl(Sema &S, |
4589 | ObjCMethodDecl *method, |
4590 | ObjCMethodDecl *prevMethod) { |
4591 | // Merge the objc_requires_super attribute. |
4592 | if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && |
4593 | !method->hasAttr<ObjCRequiresSuperAttr>()) { |
4594 | // merge the attribute into implementation. |
4595 | method->addAttr( |
4596 | ObjCRequiresSuperAttr::CreateImplicit(S.Context, |
4597 | method->getLocation())); |
4598 | } |
4599 | |
4600 | // Merge nullability of the result type. |
4601 | QualType newReturnType |
4602 | = mergeTypeNullabilityForRedecl( |
4603 | S, loc: method->getReturnTypeSourceRange().getBegin(), |
4604 | type: method->getReturnType(), |
4605 | usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
4606 | prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(), |
4607 | prevType: prevMethod->getReturnType(), |
4608 | prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
4609 | method->setReturnType(newReturnType); |
4610 | |
4611 | // Handle each of the parameters. |
4612 | unsigned numParams = method->param_size(); |
4613 | unsigned numPrevParams = prevMethod->param_size(); |
4614 | for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) { |
4615 | ParmVarDecl *param = method->param_begin()[i]; |
4616 | ParmVarDecl *prevParam = prevMethod->param_begin()[i]; |
4617 | |
4618 | // Merge nullability. |
4619 | QualType newParamType |
4620 | = mergeTypeNullabilityForRedecl( |
4621 | S, param->getLocation(), param->getType(), |
4622 | param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
4623 | prevParam->getLocation(), prevParam->getType(), |
4624 | prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
4625 | param->setType(newParamType); |
4626 | } |
4627 | } |
4628 | |
4629 | /// Verify that the method parameters/return value have types that are supported |
4630 | /// by the x86 target. |
4631 | static void checkObjCMethodX86VectorTypes(Sema &SemaRef, |
4632 | const ObjCMethodDecl *Method) { |
4633 | assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == |
4634 | llvm::Triple::x86 && |
4635 | "x86-specific check invoked for a different target"); |
4636 | SourceLocation Loc; |
4637 | QualType T; |
4638 | for (const ParmVarDecl *P : Method->parameters()) { |
4639 | if (P->getType()->isVectorType()) { |
4640 | Loc = P->getBeginLoc(); |
4641 | T = P->getType(); |
4642 | break; |
4643 | } |
4644 | } |
4645 | if (Loc.isInvalid()) { |
4646 | if (Method->getReturnType()->isVectorType()) { |
4647 | Loc = Method->getReturnTypeSourceRange().getBegin(); |
4648 | T = Method->getReturnType(); |
4649 | } else |
4650 | return; |
4651 | } |
4652 | |
4653 | // Vector parameters/return values are not supported by objc_msgSend on x86 in |
4654 | // iOS < 9 and macOS < 10.11. |
4655 | const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); |
4656 | VersionTuple AcceptedInVersion; |
4657 | if (Triple.getOS() == llvm::Triple::IOS) |
4658 | AcceptedInVersion = VersionTuple(/*Major=*/9); |
4659 | else if (Triple.isMacOSX()) |
4660 | AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); |
4661 | else |
4662 | return; |
4663 | if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= |
4664 | AcceptedInVersion) |
4665 | return; |
4666 | SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) |
4667 | << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 |
4668 | : /*parameter*/ 0) |
4669 | << (Triple.isMacOSX() ? "macOS 10.11": "iOS 9"); |
4670 | } |
4671 | |
4672 | static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { |
4673 | if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && |
4674 | CD->hasAttr<ObjCDirectMembersAttr>()) { |
4675 | Method->addAttr( |
4676 | ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation())); |
4677 | } |
4678 | } |
4679 | |
4680 | static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, |
4681 | ObjCMethodDecl *Method, |
4682 | ObjCImplDecl *ImpDecl = nullptr) { |
4683 | auto Sel = Method->getSelector(); |
4684 | bool isInstance = Method->isInstanceMethod(); |
4685 | bool diagnosed = false; |
4686 | |
4687 | auto diagClash = [&](const ObjCMethodDecl *IMD) { |
4688 | if (diagnosed || IMD->isImplicit()) |
4689 | return; |
4690 | if (Method->isDirectMethod() || IMD->isDirectMethod()) { |
4691 | S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl) |
4692 | << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() |
4693 | << Method->getDeclName(); |
4694 | S.Diag(IMD->getLocation(), diag::note_previous_declaration); |
4695 | diagnosed = true; |
4696 | } |
4697 | }; |
4698 | |
4699 | // Look for any other declaration of this method anywhere we can see in this |
4700 | // compilation unit. |
4701 | // |
4702 | // We do not use IDecl->lookupMethod() because we have specific needs: |
4703 | // |
4704 | // - we absolutely do not need to walk protocols, because |
4705 | // diag::err_objc_direct_on_protocol has already been emitted |
4706 | // during parsing if there's a conflict, |
4707 | // |
4708 | // - when we do not find a match in a given @interface container, |
4709 | // we need to attempt looking it up in the @implementation block if the |
4710 | // translation unit sees it to find more clashes. |
4711 | |
4712 | if (auto *IMD = IDecl->getMethod(Sel, isInstance)) |
4713 | diagClash(IMD); |
4714 | else if (auto *Impl = IDecl->getImplementation()) |
4715 | if (Impl != ImpDecl) |
4716 | if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) |
4717 | diagClash(IMD); |
4718 | |
4719 | for (const auto *Cat : IDecl->visible_categories()) |
4720 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
4721 | diagClash(IMD); |
4722 | else if (auto CatImpl = Cat->getImplementation()) |
4723 | if (CatImpl != ImpDecl) |
4724 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
4725 | diagClash(IMD); |
4726 | } |
4727 | |
4728 | ParmVarDecl *SemaObjC::ActOnMethodParmDeclaration(Scope *S, |
4729 | ObjCArgInfo &ArgInfo, |
4730 | int ParamIndex, |
4731 | bool MethodDefinition) { |
4732 | ASTContext &Context = getASTContext(); |
4733 | QualType ArgType; |
4734 | TypeSourceInfo *DI; |
4735 | |
4736 | if (!ArgInfo.Type) { |
4737 | ArgType = Context.getObjCIdType(); |
4738 | DI = nullptr; |
4739 | } else { |
4740 | ArgType = SemaRef.GetTypeFromParser(Ty: ArgInfo.Type, TInfo: &DI); |
4741 | } |
4742 | LookupResult R(SemaRef, ArgInfo.Name, ArgInfo.NameLoc, |
4743 | Sema::LookupOrdinaryName, |
4744 | SemaRef.forRedeclarationInCurContext()); |
4745 | SemaRef.LookupName(R, S); |
4746 | if (R.isSingleResult()) { |
4747 | NamedDecl *PrevDecl = R.getFoundDecl(); |
4748 | if (S->isDeclScope(PrevDecl)) { |
4749 | Diag(ArgInfo.NameLoc, |
4750 | (MethodDefinition ? diag::warn_method_param_redefinition |
4751 | : diag::warn_method_param_declaration)) |
4752 | << ArgInfo.Name; |
4753 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
4754 | } |
4755 | } |
4756 | SourceLocation StartLoc = |
4757 | DI ? DI->getTypeLoc().getBeginLoc() : ArgInfo.NameLoc; |
4758 | |
4759 | // Temporarily put parameter variables in the translation unit. This is what |
4760 | // ActOnParamDeclarator does in the case of C arguments to the Objective-C |
4761 | // method too. |
4762 | ParmVarDecl *Param = SemaRef.CheckParameter( |
4763 | Context.getTranslationUnitDecl(), StartLoc, ArgInfo.NameLoc, ArgInfo.Name, |
4764 | ArgType, DI, SC_None); |
4765 | Param->setObjCMethodScopeInfo(ParamIndex); |
4766 | Param->setObjCDeclQualifier( |
4767 | CvtQTToAstBitMask(PQTVal: ArgInfo.DeclSpec.getObjCDeclQualifier())); |
4768 | |
4769 | // Apply the attributes to the parameter. |
4770 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, Param, ArgInfo.ArgAttrs); |
4771 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, Param); |
4772 | if (Param->hasAttr<BlocksAttr>()) { |
4773 | Diag(Param->getLocation(), diag::err_block_on_nonlocal); |
4774 | Param->setInvalidDecl(); |
4775 | } |
4776 | |
4777 | S->AddDecl(Param); |
4778 | SemaRef.IdResolver.AddDecl(Param); |
4779 | return Param; |
4780 | } |
4781 | |
4782 | Decl *SemaObjC::ActOnMethodDeclaration( |
4783 | Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, |
4784 | tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, |
4785 | ArrayRef<SourceLocation> SelectorLocs, Selector Sel, |
4786 | // optional arguments. The number of types/arguments is obtained |
4787 | // from the Sel.getNumArgs(). |
4788 | ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, |
4789 | unsigned CNumArgs, // c-style args |
4790 | const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, |
4791 | bool isVariadic, bool MethodDefinition) { |
4792 | ASTContext &Context = getASTContext(); |
4793 | // Make sure we can establish a context for the method. |
4794 | if (!SemaRef.CurContext->isObjCContainer()) { |
4795 | Diag(MethodLoc, diag::err_missing_method_context); |
4796 | return nullptr; |
4797 | } |
4798 | |
4799 | Decl *ClassDecl = cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
4800 | QualType resultDeclType; |
4801 | |
4802 | bool HasRelatedResultType = false; |
4803 | TypeSourceInfo *ReturnTInfo = nullptr; |
4804 | if (ReturnType) { |
4805 | resultDeclType = SemaRef.GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo); |
4806 | |
4807 | if (SemaRef.CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc)) |
4808 | return nullptr; |
4809 | |
4810 | QualType bareResultType = resultDeclType; |
4811 | (void)AttributedType::stripOuterNullability(T&: bareResultType); |
4812 | HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); |
4813 | } else { // get the type for "id". |
4814 | resultDeclType = Context.getObjCIdType(); |
4815 | Diag(MethodLoc, diag::warn_missing_method_return_type) |
4816 | << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); |
4817 | } |
4818 | |
4819 | ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( |
4820 | C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo, |
4821 | contextDecl: SemaRef.CurContext, isInstance: MethodType == tok::minus, isVariadic, |
4822 | /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, |
4823 | /*isImplicitlyDeclared=*/false, /*isDefined=*/false, |
4824 | impControl: MethodDeclKind == tok::objc_optional |
4825 | ? ObjCImplementationControl::Optional |
4826 | : ObjCImplementationControl::Required, |
4827 | HasRelatedResultType); |
4828 | |
4829 | SmallVector<ParmVarDecl*, 16> Params; |
4830 | for (unsigned I = 0; I < Sel.getNumArgs(); ++I) { |
4831 | ParmVarDecl *Param = ArgInfo[I]; |
4832 | Param->setDeclContext(ObjCMethod); |
4833 | SemaRef.ProcessAPINotes(Param); |
4834 | Params.push_back(Elt: Param); |
4835 | } |
4836 | |
4837 | for (unsigned i = 0, e = CNumArgs; i != e; ++i) { |
4838 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param); |
4839 | QualType ArgType = Param->getType(); |
4840 | if (ArgType.isNull()) |
4841 | ArgType = Context.getObjCIdType(); |
4842 | else |
4843 | // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
4844 | ArgType = Context.getAdjustedParameterType(T: ArgType); |
4845 | |
4846 | Param->setDeclContext(ObjCMethod); |
4847 | Params.push_back(Elt: Param); |
4848 | } |
4849 | |
4850 | ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs); |
4851 | ObjCMethod->setObjCDeclQualifier( |
4852 | CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier())); |
4853 | |
4854 | SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList); |
4855 | SemaRef.AddPragmaAttributes(SemaRef.TUScope, ObjCMethod); |
4856 | SemaRef.ProcessAPINotes(ObjCMethod); |
4857 | |
4858 | // Add the method now. |
4859 | const ObjCMethodDecl *PrevMethod = nullptr; |
4860 | if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) { |
4861 | if (MethodType == tok::minus) { |
4862 | PrevMethod = ImpDecl->getInstanceMethod(Sel); |
4863 | ImpDecl->addInstanceMethod(method: ObjCMethod); |
4864 | } else { |
4865 | PrevMethod = ImpDecl->getClassMethod(Sel); |
4866 | ImpDecl->addClassMethod(method: ObjCMethod); |
4867 | } |
4868 | |
4869 | // If this method overrides a previous @synthesize declaration, |
4870 | // register it with the property. Linear search through all |
4871 | // properties here, because the autosynthesized stub hasn't been |
4872 | // made visible yet, so it can be overridden by a later |
4873 | // user-specified implementation. |
4874 | for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { |
4875 | if (auto *Setter = PropertyImpl->getSetterMethodDecl()) |
4876 | if (Setter->getSelector() == Sel && |
4877 | Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
4878 | assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected"); |
4879 | PropertyImpl->setSetterMethodDecl(ObjCMethod); |
4880 | } |
4881 | if (auto *Getter = PropertyImpl->getGetterMethodDecl()) |
4882 | if (Getter->getSelector() == Sel && |
4883 | Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
4884 | assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected"); |
4885 | PropertyImpl->setGetterMethodDecl(ObjCMethod); |
4886 | break; |
4887 | } |
4888 | } |
4889 | |
4890 | // A method is either tagged direct explicitly, or inherits it from its |
4891 | // canonical declaration. |
4892 | // |
4893 | // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() |
4894 | // because IDecl->lookupMethod() returns more possible matches than just |
4895 | // the canonical declaration. |
4896 | if (!ObjCMethod->isDirectMethod()) { |
4897 | const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); |
4898 | if (CanonicalMD->isDirectMethod()) { |
4899 | const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>(); |
4900 | ObjCMethod->addAttr( |
4901 | ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); |
4902 | } |
4903 | } |
4904 | |
4905 | // Merge information from the @interface declaration into the |
4906 | // @implementation. |
4907 | if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { |
4908 | if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), |
4909 | ObjCMethod->isInstanceMethod())) { |
4910 | mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD); |
4911 | |
4912 | // The Idecl->lookupMethod() above will find declarations for ObjCMethod |
4913 | // in one of these places: |
4914 | // |
4915 | // (1) the canonical declaration in an @interface container paired |
4916 | // with the ImplDecl, |
4917 | // (2) non canonical declarations in @interface not paired with the |
4918 | // ImplDecl for the same Class, |
4919 | // (3) any superclass container. |
4920 | // |
4921 | // Direct methods only allow for canonical declarations in the matching |
4922 | // container (case 1). |
4923 | // |
4924 | // Direct methods overriding a superclass declaration (case 3) is |
4925 | // handled during overrides checks in CheckObjCMethodOverrides(). |
4926 | // |
4927 | // We deal with same-class container mismatches (Case 2) here. |
4928 | if (IDecl == IMD->getClassInterface()) { |
4929 | auto diagContainerMismatch = [&] { |
4930 | int decl = 0, impl = 0; |
4931 | |
4932 | if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext())) |
4933 | decl = Cat->IsClassExtension() ? 1 : 2; |
4934 | |
4935 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl)) |
4936 | impl = 1 + (decl != 0); |
4937 | |
4938 | Diag(ObjCMethod->getLocation(), |
4939 | diag::err_objc_direct_impl_decl_mismatch) |
4940 | << decl << impl; |
4941 | Diag(IMD->getLocation(), diag::note_previous_declaration); |
4942 | }; |
4943 | |
4944 | if (ObjCMethod->isDirectMethod()) { |
4945 | const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>(); |
4946 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
4947 | diagContainerMismatch(); |
4948 | } else if (!IMD->isDirectMethod()) { |
4949 | Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl); |
4950 | Diag(IMD->getLocation(), diag::note_previous_declaration); |
4951 | } |
4952 | } else if (IMD->isDirectMethod()) { |
4953 | const auto *attr = IMD->getAttr<ObjCDirectAttr>(); |
4954 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
4955 | diagContainerMismatch(); |
4956 | } else { |
4957 | ObjCMethod->addAttr( |
4958 | ObjCDirectAttr::CreateImplicit(Context, attr->getLocation())); |
4959 | } |
4960 | } |
4961 | } |
4962 | |
4963 | // Warn about defining -dealloc in a category. |
4964 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() && |
4965 | ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { |
4966 | Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) |
4967 | << ObjCMethod->getDeclName(); |
4968 | } |
4969 | } else { |
4970 | mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod); |
4971 | checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod, ImpDecl); |
4972 | } |
4973 | |
4974 | // Warn if a method declared in a protocol to which a category or |
4975 | // extension conforms is non-escaping and the implementation's method is |
4976 | // escaping. |
4977 | for (auto *C : IDecl->visible_categories()) |
4978 | for (auto &P : C->protocols()) |
4979 | if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), |
4980 | ObjCMethod->isInstanceMethod())) { |
4981 | assert(ObjCMethod->parameters().size() == |
4982 | IMD->parameters().size() && |
4983 | "Methods have different number of parameters"); |
4984 | auto OI = IMD->param_begin(), OE = IMD->param_end(); |
4985 | auto NI = ObjCMethod->param_begin(); |
4986 | for (; OI != OE; ++OI, ++NI) |
4987 | diagnoseNoescape(*NI, *OI, C, P, SemaRef); |
4988 | } |
4989 | } |
4990 | } else { |
4991 | if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) { |
4992 | mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod); |
4993 | |
4994 | ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
4995 | if (!IDecl) |
4996 | IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface(); |
4997 | // For valid code, we should always know the primary interface |
4998 | // declaration by now, however for invalid code we'll keep parsing |
4999 | // but we won't find the primary interface and IDecl will be nil. |
5000 | if (IDecl) |
5001 | checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod); |
5002 | } |
5003 | |
5004 | cast<DeclContext>(Val: ClassDecl)->addDecl(ObjCMethod); |
5005 | } |
5006 | |
5007 | if (PrevMethod) { |
5008 | // You can never have two method definitions with the same name. |
5009 | Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) |
5010 | << ObjCMethod->getDeclName(); |
5011 | Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
5012 | ObjCMethod->setInvalidDecl(); |
5013 | return ObjCMethod; |
5014 | } |
5015 | |
5016 | // If this Objective-C method does not have a related result type, but we |
5017 | // are allowed to infer related result types, try to do so based on the |
5018 | // method family. |
5019 | ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
5020 | if (!CurrentClass) { |
5021 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) |
5022 | CurrentClass = Cat->getClassInterface(); |
5023 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) |
5024 | CurrentClass = Impl->getClassInterface(); |
5025 | else if (ObjCCategoryImplDecl *CatImpl |
5026 | = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) |
5027 | CurrentClass = CatImpl->getClassInterface(); |
5028 | } |
5029 | |
5030 | ResultTypeCompatibilityKind RTC = |
5031 | CheckRelatedResultTypeCompatibility(S&: SemaRef, Method: ObjCMethod, CurrentClass); |
5032 | |
5033 | CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); |
5034 | |
5035 | bool ARCError = false; |
5036 | if (getLangOpts().ObjCAutoRefCount) |
5037 | ARCError = CheckARCMethodDecl(method: ObjCMethod); |
5038 | |
5039 | // Infer the related result type when possible. |
5040 | if (!ARCError && RTC == SemaObjC::RTC_Compatible && |
5041 | !ObjCMethod->hasRelatedResultType() && |
5042 | getLangOpts().ObjCInferRelatedResultType) { |
5043 | bool InferRelatedResultType = false; |
5044 | switch (ObjCMethod->getMethodFamily()) { |
5045 | case OMF_None: |
5046 | case OMF_copy: |
5047 | case OMF_dealloc: |
5048 | case OMF_finalize: |
5049 | case OMF_mutableCopy: |
5050 | case OMF_release: |
5051 | case OMF_retainCount: |
5052 | case OMF_initialize: |
5053 | case OMF_performSelector: |
5054 | break; |
5055 | |
5056 | case OMF_alloc: |
5057 | case OMF_new: |
5058 | InferRelatedResultType = ObjCMethod->isClassMethod(); |
5059 | break; |
5060 | |
5061 | case OMF_init: |
5062 | case OMF_autorelease: |
5063 | case OMF_retain: |
5064 | case OMF_self: |
5065 | InferRelatedResultType = ObjCMethod->isInstanceMethod(); |
5066 | break; |
5067 | } |
5068 | |
5069 | if (InferRelatedResultType && |
5070 | !ObjCMethod->getReturnType()->isObjCIndependentClassType()) |
5071 | ObjCMethod->setRelatedResultType(); |
5072 | } |
5073 | |
5074 | if (MethodDefinition && |
5075 | Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
5076 | checkObjCMethodX86VectorTypes(SemaRef, Method: ObjCMethod); |
5077 | |
5078 | // + load method cannot have availability attributes. It get called on |
5079 | // startup, so it has to have the availability of the deployment target. |
5080 | if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { |
5081 | if (ObjCMethod->isClassMethod() && |
5082 | ObjCMethod->getSelector().getAsString() == "load") { |
5083 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
5084 | << 0; |
5085 | ObjCMethod->dropAttr<AvailabilityAttr>(); |
5086 | } |
5087 | } |
5088 | |
5089 | // Insert the invisible arguments, self and _cmd! |
5090 | ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface()); |
5091 | |
5092 | SemaRef.ActOnDocumentableDecl(ObjCMethod); |
5093 | |
5094 | return ObjCMethod; |
5095 | } |
5096 | |
5097 | bool SemaObjC::CheckObjCDeclScope(Decl *D) { |
5098 | // Following is also an error. But it is caused by a missing @end |
5099 | // and diagnostic is issued elsewhere. |
5100 | if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext->getRedeclContext())) |
5101 | return false; |
5102 | |
5103 | // If we switched context to translation unit while we are still lexically in |
5104 | // an objc container, it means the parser missed emitting an error. |
5105 | if (isa<TranslationUnitDecl>( |
5106 | Val: SemaRef.getCurLexicalContext()->getRedeclContext())) |
5107 | return false; |
5108 | |
5109 | Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); |
5110 | D->setInvalidDecl(); |
5111 | |
5112 | return true; |
5113 | } |
5114 | |
5115 | /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the |
5116 | /// instance variables of ClassName into Decls. |
5117 | void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, |
5118 | const IdentifierInfo *ClassName, |
5119 | SmallVectorImpl<Decl *> &Decls) { |
5120 | ASTContext &Context = getASTContext(); |
5121 | // Check that ClassName is a valid class |
5122 | ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart); |
5123 | if (!Class) { |
5124 | Diag(DeclStart, diag::err_undef_interface) << ClassName; |
5125 | return; |
5126 | } |
5127 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
5128 | Diag(DeclStart, diag::err_atdef_nonfragile_interface); |
5129 | return; |
5130 | } |
5131 | |
5132 | // Collect the instance variables |
5133 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
5134 | Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars); |
5135 | // For each ivar, create a fresh ObjCAtDefsFieldDecl. |
5136 | for (unsigned i = 0; i < Ivars.size(); i++) { |
5137 | const FieldDecl* ID = Ivars[i]; |
5138 | RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD); |
5139 | Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record, |
5140 | /*FIXME: StartL=*/StartLoc: ID->getLocation(), |
5141 | IdLoc: ID->getLocation(), |
5142 | Id: ID->getIdentifier(), T: ID->getType(), |
5143 | BW: ID->getBitWidth()); |
5144 | Decls.push_back(Elt: FD); |
5145 | } |
5146 | |
5147 | // Introduce all of these fields into the appropriate scope. |
5148 | for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); |
5149 | D != Decls.end(); ++D) { |
5150 | FieldDecl *FD = cast<FieldDecl>(Val: *D); |
5151 | if (getLangOpts().CPlusPlus) |
5152 | SemaRef.PushOnScopeChains(FD, S); |
5153 | else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD)) |
5154 | Record->addDecl(FD); |
5155 | } |
5156 | } |
5157 | |
5158 | /// Build a type-check a new Objective-C exception variable declaration. |
5159 | VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, |
5160 | SourceLocation StartLoc, |
5161 | SourceLocation IdLoc, |
5162 | const IdentifierInfo *Id, |
5163 | bool Invalid) { |
5164 | ASTContext &Context = getASTContext(); |
5165 | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
5166 | // duration shall not be qualified by an address-space qualifier." |
5167 | // Since all parameters have automatic store duration, they can not have |
5168 | // an address space. |
5169 | if (T.getAddressSpace() != LangAS::Default) { |
5170 | Diag(IdLoc, diag::err_arg_with_address_space); |
5171 | Invalid = true; |
5172 | } |
5173 | |
5174 | // An @catch parameter must be an unqualified object pointer type; |
5175 | // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? |
5176 | if (Invalid) { |
5177 | // Don't do any further checking. |
5178 | } else if (T->isDependentType()) { |
5179 | // Okay: we don't know what this type will instantiate to. |
5180 | } else if (T->isObjCQualifiedIdType()) { |
5181 | Invalid = true; |
5182 | Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); |
5183 | } else if (T->isObjCIdType()) { |
5184 | // Okay: we don't know what this type will instantiate to. |
5185 | } else if (!T->isObjCObjectPointerType()) { |
5186 | Invalid = true; |
5187 | Diag(IdLoc, diag::err_catch_param_not_objc_type); |
5188 | } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { |
5189 | Invalid = true; |
5190 | Diag(IdLoc, diag::err_catch_param_not_objc_type); |
5191 | } |
5192 | |
5193 | VarDecl *New = VarDecl::Create(C&: Context, DC: SemaRef.CurContext, StartLoc, IdLoc, |
5194 | Id, T, TInfo, S: SC_None); |
5195 | New->setExceptionVariable(true); |
5196 | |
5197 | // In ARC, infer 'retaining' for variables of retainable type. |
5198 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) |
5199 | Invalid = true; |
5200 | |
5201 | if (Invalid) |
5202 | New->setInvalidDecl(); |
5203 | return New; |
5204 | } |
5205 | |
5206 | Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { |
5207 | const DeclSpec &DS = D.getDeclSpec(); |
5208 | |
5209 | // We allow the "register" storage class on exception variables because |
5210 | // GCC did, but we drop it completely. Any other storage class is an error. |
5211 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
5212 | Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) |
5213 | << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); |
5214 | } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
5215 | Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) |
5216 | << DeclSpec::getSpecifierName(SCS); |
5217 | } |
5218 | if (DS.isInlineSpecified()) |
5219 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
5220 | << getLangOpts().CPlusPlus17; |
5221 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
5222 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
5223 | diag::err_invalid_thread) |
5224 | << DeclSpec::getSpecifierName(TSCS); |
5225 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
5226 | |
5227 | SemaRef.DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
5228 | |
5229 | // Check that there are no default arguments inside the type of this |
5230 | // exception object (C++ only). |
5231 | if (getLangOpts().CPlusPlus) |
5232 | SemaRef.CheckExtraCXXDefaultArguments(D); |
5233 | |
5234 | TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D); |
5235 | QualType ExceptionType = TInfo->getType(); |
5236 | |
5237 | VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType, |
5238 | StartLoc: D.getSourceRange().getBegin(), |
5239 | IdLoc: D.getIdentifierLoc(), |
5240 | Id: D.getIdentifier(), |
5241 | Invalid: D.isInvalidType()); |
5242 | |
5243 | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
5244 | if (D.getCXXScopeSpec().isSet()) { |
5245 | Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) |
5246 | << D.getCXXScopeSpec().getRange(); |
5247 | New->setInvalidDecl(); |
5248 | } |
5249 | |
5250 | // Add the parameter declaration into this scope. |
5251 | S->AddDecl(New); |
5252 | if (D.getIdentifier()) |
5253 | SemaRef.IdResolver.AddDecl(New); |
5254 | |
5255 | SemaRef.ProcessDeclAttributes(S, New, D); |
5256 | |
5257 | if (New->hasAttr<BlocksAttr>()) |
5258 | Diag(New->getLocation(), diag::err_block_on_nonlocal); |
5259 | return New; |
5260 | } |
5261 | |
5262 | /// CollectIvarsToConstructOrDestruct - Collect those ivars which require |
5263 | /// initialization. |
5264 | void SemaObjC::CollectIvarsToConstructOrDestruct( |
5265 | ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) { |
5266 | ASTContext &Context = getASTContext(); |
5267 | for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; |
5268 | Iv= Iv->getNextIvar()) { |
5269 | QualType QT = Context.getBaseElementType(Iv->getType()); |
5270 | if (QT->isRecordType()) |
5271 | Ivars.push_back(Elt: Iv); |
5272 | } |
5273 | } |
5274 | |
5275 | void SemaObjC::DiagnoseUseOfUnimplementedSelectors() { |
5276 | ASTContext &Context = getASTContext(); |
5277 | // Load referenced selectors from the external source. |
5278 | if (SemaRef.ExternalSource) { |
5279 | SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; |
5280 | SemaRef.ExternalSource->ReadReferencedSelectors(Sels); |
5281 | for (unsigned I = 0, N = Sels.size(); I != N; ++I) |
5282 | ReferencedSelectors[Sels[I].first] = Sels[I].second; |
5283 | } |
5284 | |
5285 | // Warning will be issued only when selector table is |
5286 | // generated (which means there is at lease one implementation |
5287 | // in the TU). This is to match gcc's behavior. |
5288 | if (ReferencedSelectors.empty() || |
5289 | !Context.AnyObjCImplementation()) |
5290 | return; |
5291 | for (auto &SelectorAndLocation : ReferencedSelectors) { |
5292 | Selector Sel = SelectorAndLocation.first; |
5293 | SourceLocation Loc = SelectorAndLocation.second; |
5294 | if (!LookupImplementedMethodInGlobalPool(Sel)) |
5295 | Diag(Loc, diag::warn_unimplemented_selector) << Sel; |
5296 | } |
5297 | } |
5298 | |
5299 | ObjCIvarDecl * |
5300 | SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, |
5301 | const ObjCPropertyDecl *&PDecl) const { |
5302 | if (Method->isClassMethod()) |
5303 | return nullptr; |
5304 | const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); |
5305 | if (!IDecl) |
5306 | return nullptr; |
5307 | Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true, |
5308 | /*shallowCategoryLookup=*/false, |
5309 | /*followSuper=*/false); |
5310 | if (!Method || !Method->isPropertyAccessor()) |
5311 | return nullptr; |
5312 | if ((PDecl = Method->findPropertyDecl())) |
5313 | if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { |
5314 | // property backing ivar must belong to property's class |
5315 | // or be a private ivar in class's implementation. |
5316 | // FIXME. fix the const-ness issue. |
5317 | IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( |
5318 | IV->getIdentifier()); |
5319 | return IV; |
5320 | } |
5321 | return nullptr; |
5322 | } |
5323 | |
5324 | namespace { |
5325 | /// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property |
5326 | /// accessor references the backing ivar. |
5327 | class UnusedBackingIvarChecker : public DynamicRecursiveASTVisitor { |
5328 | public: |
5329 | Sema &S; |
5330 | const ObjCMethodDecl *Method; |
5331 | const ObjCIvarDecl *IvarD; |
5332 | bool AccessedIvar; |
5333 | bool InvokedSelfMethod; |
5334 | |
5335 | UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, |
5336 | const ObjCIvarDecl *IvarD) |
5337 | : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false), |
5338 | InvokedSelfMethod(false) { |
5339 | assert(IvarD); |
5340 | } |
5341 | |
5342 | bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) override { |
5343 | if (E->getDecl() == IvarD) { |
5344 | AccessedIvar = true; |
5345 | return false; |
5346 | } |
5347 | return true; |
5348 | } |
5349 | |
5350 | bool VisitObjCMessageExpr(ObjCMessageExpr *E) override { |
5351 | if (E->getReceiverKind() == ObjCMessageExpr::Instance && |
5352 | S.ObjC().isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) { |
5353 | InvokedSelfMethod = true; |
5354 | } |
5355 | return true; |
5356 | } |
5357 | }; |
5358 | } // end anonymous namespace |
5359 | |
5360 | void SemaObjC::DiagnoseUnusedBackingIvarInAccessor( |
5361 | Scope *S, const ObjCImplementationDecl *ImplD) { |
5362 | if (S->hasUnrecoverableErrorOccurred()) |
5363 | return; |
5364 | |
5365 | for (const auto *CurMethod : ImplD->instance_methods()) { |
5366 | unsigned DIAG = diag::warn_unused_property_backing_ivar; |
5367 | SourceLocation Loc = CurMethod->getLocation(); |
5368 | if (getDiagnostics().isIgnored(DIAG, Loc)) |
5369 | continue; |
5370 | |
5371 | const ObjCPropertyDecl *PDecl; |
5372 | const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); |
5373 | if (!IV) |
5374 | continue; |
5375 | |
5376 | if (CurMethod->isSynthesizedAccessorStub()) |
5377 | continue; |
5378 | |
5379 | UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV); |
5380 | Checker.TraverseStmt(CurMethod->getBody()); |
5381 | if (Checker.AccessedIvar) |
5382 | continue; |
5383 | |
5384 | // Do not issue this warning if backing ivar is used somewhere and accessor |
5385 | // implementation makes a self call. This is to prevent false positive in |
5386 | // cases where the ivar is accessed by another method that the accessor |
5387 | // delegates to. |
5388 | if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { |
5389 | Diag(Loc, DIAG) << IV; |
5390 | Diag(PDecl->getLocation(), diag::note_property_declare); |
5391 | } |
5392 | } |
5393 | } |
5394 | |
5395 | QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount( |
5396 | QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) { |
5397 | ASTContext &Context = getASTContext(); |
5398 | // In ARC, infer a lifetime qualifier for appropriate parameter types. |
5399 | if (!getLangOpts().ObjCAutoRefCount || |
5400 | T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType()) |
5401 | return T; |
5402 | |
5403 | Qualifiers::ObjCLifetime Lifetime; |
5404 | |
5405 | // Special cases for arrays: |
5406 | // - if it's const, use __unsafe_unretained |
5407 | // - otherwise, it's an error |
5408 | if (T->isArrayType()) { |
5409 | if (!T.isConstQualified()) { |
5410 | if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics()) |
5411 | SemaRef.DelayedDiagnostics.add( |
5412 | sema::DelayedDiagnostic::makeForbiddenType( |
5413 | NameLoc, diag::err_arc_array_param_no_ownership, T, false)); |
5414 | else |
5415 | Diag(NameLoc, diag::err_arc_array_param_no_ownership) |
5416 | << TSInfo->getTypeLoc().getSourceRange(); |
5417 | } |
5418 | Lifetime = Qualifiers::OCL_ExplicitNone; |
5419 | } else { |
5420 | Lifetime = T->getObjCARCImplicitLifetime(); |
5421 | } |
5422 | T = Context.getLifetimeQualifiedType(type: T, lifetime: Lifetime); |
5423 | |
5424 | return T; |
5425 | } |
5426 | |
5427 | ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id, |
5428 | SourceLocation IdLoc, |
5429 | bool DoTypoCorrection) { |
5430 | // The third "scope" argument is 0 since we aren't enabling lazy built-in |
5431 | // creation from this context. |
5432 | NamedDecl *IDecl = SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: Id, Loc: IdLoc, |
5433 | NameKind: Sema::LookupOrdinaryName); |
5434 | |
5435 | if (!IDecl && DoTypoCorrection) { |
5436 | // Perform typo correction at the given location, but only if we |
5437 | // find an Objective-C class name. |
5438 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; |
5439 | if (TypoCorrection C = SemaRef.CorrectTypo( |
5440 | Typo: DeclarationNameInfo(Id, IdLoc), LookupKind: Sema::LookupOrdinaryName, |
5441 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) { |
5442 | SemaRef.diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); |
5443 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
5444 | Id = IDecl->getIdentifier(); |
5445 | } |
5446 | } |
5447 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IDecl); |
5448 | // This routine must always return a class definition, if any. |
5449 | if (Def && Def->getDefinition()) |
5450 | Def = Def->getDefinition(); |
5451 | return Def; |
5452 | } |
5453 | |
5454 | bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) { |
5455 | ASTContext &Context = getASTContext(); |
5456 | QualType type = decl->getType(); |
5457 | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); |
5458 | if (lifetime == Qualifiers::OCL_Autoreleasing) { |
5459 | // Various kinds of declaration aren't allowed to be __autoreleasing. |
5460 | unsigned kind = -1U; |
5461 | if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) { |
5462 | if (var->hasAttr<BlocksAttr>()) |
5463 | kind = 0; // __block |
5464 | else if (!var->hasLocalStorage()) |
5465 | kind = 1; // global |
5466 | } else if (isa<ObjCIvarDecl>(Val: decl)) { |
5467 | kind = 3; // ivar |
5468 | } else if (isa<FieldDecl>(Val: decl)) { |
5469 | kind = 2; // field |
5470 | } |
5471 | |
5472 | if (kind != -1U) { |
5473 | Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) << kind; |
5474 | } |
5475 | } else if (lifetime == Qualifiers::OCL_None) { |
5476 | // Try to infer lifetime. |
5477 | if (!type->isObjCLifetimeType()) |
5478 | return false; |
5479 | |
5480 | lifetime = type->getObjCARCImplicitLifetime(); |
5481 | type = Context.getLifetimeQualifiedType(type, lifetime); |
5482 | decl->setType(type); |
5483 | } |
5484 | |
5485 | if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) { |
5486 | // Thread-local variables cannot have lifetime. |
5487 | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && |
5488 | var->getTLSKind()) { |
5489 | Diag(var->getLocation(), diag::err_arc_thread_ownership) |
5490 | << var->getType(); |
5491 | return true; |
5492 | } |
5493 | } |
5494 | |
5495 | return false; |
5496 | } |
5497 | |
5498 | ObjCContainerDecl *SemaObjC::getObjCDeclContext() const { |
5499 | return (dyn_cast_or_null<ObjCContainerDecl>(Val: SemaRef.CurContext)); |
5500 | } |
5501 | |
5502 | void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { |
5503 | if (!getLangOpts().CPlusPlus) |
5504 | return; |
5505 | if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { |
5506 | ASTContext &Context = getASTContext(); |
5507 | SmallVector<ObjCIvarDecl *, 8> ivars; |
5508 | CollectIvarsToConstructOrDestruct(OI: OID, Ivars&: ivars); |
5509 | if (ivars.empty()) |
5510 | return; |
5511 | SmallVector<CXXCtorInitializer *, 32> AllToInit; |
5512 | for (unsigned i = 0; i < ivars.size(); i++) { |
5513 | FieldDecl *Field = ivars[i]; |
5514 | if (Field->isInvalidDecl()) |
5515 | continue; |
5516 | |
5517 | CXXCtorInitializer *Member; |
5518 | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Member: Field); |
5519 | InitializationKind InitKind = |
5520 | InitializationKind::CreateDefault(InitLoc: ObjCImplementation->getLocation()); |
5521 | |
5522 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); |
5523 | ExprResult MemberInit = |
5524 | InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {}); |
5525 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
5526 | // Note, MemberInit could actually come back empty if no initialization |
5527 | // is required (e.g., because it would call a trivial default constructor) |
5528 | if (!MemberInit.get() || MemberInit.isInvalid()) |
5529 | continue; |
5530 | |
5531 | Member = new (Context) |
5532 | CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(), |
5533 | MemberInit.getAs<Expr>(), SourceLocation()); |
5534 | AllToInit.push_back(Elt: Member); |
5535 | |
5536 | // Be sure that the destructor is accessible and is marked as referenced. |
5537 | if (const RecordType *RecordTy = |
5538 | Context.getBaseElementType(Field->getType()) |
5539 | ->getAs<RecordType>()) { |
5540 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
5541 | if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: RD)) { |
5542 | SemaRef.MarkFunctionReferenced(Loc: Field->getLocation(), Func: Destructor); |
5543 | SemaRef.CheckDestructorAccess( |
5544 | Field->getLocation(), Destructor, |
5545 | PDiag(diag::err_access_dtor_ivar) |
5546 | << Context.getBaseElementType(Field->getType())); |
5547 | } |
5548 | } |
5549 | } |
5550 | ObjCImplementation->setIvarInitializers(C&: Context, initializers: AllToInit.data(), |
5551 | numInitializers: AllToInit.size()); |
5552 | } |
5553 | } |
5554 | |
5555 | /// TranslateIvarVisibility - Translate visibility from a token ID to an |
5556 | /// AST enum value. |
5557 | static ObjCIvarDecl::AccessControl |
5558 | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
5559 | switch (ivarVisibility) { |
5560 | default: |
5561 | llvm_unreachable("Unknown visitibility kind"); |
5562 | case tok::objc_private: |
5563 | return ObjCIvarDecl::Private; |
5564 | case tok::objc_public: |
5565 | return ObjCIvarDecl::Public; |
5566 | case tok::objc_protected: |
5567 | return ObjCIvarDecl::Protected; |
5568 | case tok::objc_package: |
5569 | return ObjCIvarDecl::Package; |
5570 | } |
5571 | } |
5572 | |
5573 | /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
5574 | /// in order to create an IvarDecl object for it. |
5575 | Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, |
5576 | Expr *BitWidth, tok::ObjCKeywordKind Visibility) { |
5577 | |
5578 | const IdentifierInfo *II = D.getIdentifier(); |
5579 | SourceLocation Loc = DeclStart; |
5580 | if (II) |
5581 | Loc = D.getIdentifierLoc(); |
5582 | |
5583 | // FIXME: Unnamed fields can be handled in various different ways, for |
5584 | // example, unnamed unions inject all members into the struct namespace! |
5585 | |
5586 | TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D); |
5587 | QualType T = TInfo->getType(); |
5588 | |
5589 | if (BitWidth) { |
5590 | // 6.7.2.1p3, 6.7.2.1p4 |
5591 | BitWidth = |
5592 | SemaRef.VerifyBitField(FieldLoc: Loc, FieldName: II, FieldTy: T, /*IsMsStruct*/ false, BitWidth) |
5593 | .get(); |
5594 | if (!BitWidth) |
5595 | D.setInvalidType(); |
5596 | } else { |
5597 | // Not a bitfield. |
5598 | |
5599 | // validate II. |
5600 | } |
5601 | if (T->isReferenceType()) { |
5602 | Diag(Loc, diag::err_ivar_reference_type); |
5603 | D.setInvalidType(); |
5604 | } |
5605 | // C99 6.7.2.1p8: A member of a structure or union may have any type other |
5606 | // than a variably modified type. |
5607 | else if (T->isVariablyModifiedType()) { |
5608 | if (!SemaRef.tryToFixVariablyModifiedVarType( |
5609 | TInfo, T, Loc, diag::err_typecheck_ivar_variable_size)) |
5610 | D.setInvalidType(); |
5611 | } |
5612 | |
5613 | // Get the visibility (access control) for this ivar. |
5614 | ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword |
5615 | ? TranslateIvarVisibility(ivarVisibility: Visibility) |
5616 | : ObjCIvarDecl::None; |
5617 | // Must set ivar's DeclContext to its enclosing interface. |
5618 | ObjCContainerDecl *EnclosingDecl = |
5619 | cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
5620 | if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) |
5621 | return nullptr; |
5622 | ObjCContainerDecl *EnclosingContext; |
5623 | if (ObjCImplementationDecl *IMPDecl = |
5624 | dyn_cast<ObjCImplementationDecl>(Val: EnclosingDecl)) { |
5625 | if (getLangOpts().ObjCRuntime.isFragile()) { |
5626 | // Case of ivar declared in an implementation. Context is that of its |
5627 | // class. |
5628 | EnclosingContext = IMPDecl->getClassInterface(); |
5629 | assert(EnclosingContext && "Implementation has no class interface!"); |
5630 | } else |
5631 | EnclosingContext = EnclosingDecl; |
5632 | } else { |
5633 | if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(Val: EnclosingDecl)) { |
5634 | if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { |
5635 | Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); |
5636 | return nullptr; |
5637 | } |
5638 | } |
5639 | EnclosingContext = EnclosingDecl; |
5640 | } |
5641 | |
5642 | // Construct the decl. |
5643 | ObjCIvarDecl *NewID = |
5644 | ObjCIvarDecl::Create(C&: getASTContext(), DC: EnclosingContext, StartLoc: DeclStart, IdLoc: Loc, |
5645 | Id: II, T, TInfo, ac, BW: BitWidth); |
5646 | |
5647 | if (T->containsErrors()) |
5648 | NewID->setInvalidDecl(); |
5649 | |
5650 | if (II) { |
5651 | NamedDecl *PrevDecl = |
5652 | SemaRef.LookupSingleName(S, Name: II, Loc, NameKind: Sema::LookupMemberName, |
5653 | Redecl: RedeclarationKind::ForVisibleRedeclaration); |
5654 | if (PrevDecl && SemaRef.isDeclInScope(PrevDecl, EnclosingContext, S) && |
5655 | !isa<TagDecl>(Val: PrevDecl)) { |
5656 | Diag(Loc, diag::err_duplicate_member) << II; |
5657 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
5658 | NewID->setInvalidDecl(); |
5659 | } |
5660 | } |
5661 | |
5662 | // Process attributes attached to the ivar. |
5663 | SemaRef.ProcessDeclAttributes(S, NewID, D); |
5664 | |
5665 | if (D.isInvalidType()) |
5666 | NewID->setInvalidDecl(); |
5667 | |
5668 | // In ARC, infer 'retaining' for ivars of retainable type. |
5669 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) |
5670 | NewID->setInvalidDecl(); |
5671 | |
5672 | if (D.getDeclSpec().isModulePrivateSpecified()) |
5673 | NewID->setModulePrivate(); |
5674 | |
5675 | if (II) { |
5676 | // FIXME: When interfaces are DeclContexts, we'll need to add |
5677 | // these to the interface. |
5678 | S->AddDecl(NewID); |
5679 | SemaRef.IdResolver.AddDecl(NewID); |
5680 | } |
5681 | |
5682 | if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() && |
5683 | isa<ObjCInterfaceDecl>(EnclosingDecl)) |
5684 | Diag(Loc, diag::warn_ivars_in_interface); |
5685 | |
5686 | return NewID; |
5687 | } |
5688 |
Definitions
- checkInitMethod
- diagnoseNoescape
- diagnoseNoescape
- CheckObjCMethodOverride
- CheckARCMethodDecl
- DiagnoseObjCImplementedDeprecations
- AddAnyMethodToGlobalPool
- HasExplicitOwnershipAttr
- ActOnStartOfObjCMethodDef
- ObjCInterfaceValidatorCCC
- ObjCInterfaceValidatorCCC
- ObjCInterfaceValidatorCCC
- ValidateCandidate
- clone
- diagnoseUseOfProtocols
- ActOnSuperClassOfClassInterface
- actOnObjCTypeParam
- actOnObjCTypeParamList
- popObjCTypeParamList
- TypeParamListContext
- checkTypeParamListConsistency
- ActOnStartClassInterface
- ActOnTypedefedProtocols
- ActOnCompatibilityAlias
- CheckForwardProtocolDeclarationForCircularDependency
- ActOnStartProtocolInterface
- NestedProtocolHasNoDefinition
- FindProtocolDeclaration
- ObjCTypeArgOrProtocolValidatorCCC
- ObjCTypeArgOrProtocolValidatorCCC
- ValidateCandidate
- clone
- DiagnoseTypeArgsAndProtocols
- actOnObjCTypeArgsOrProtocolQualifiers
- DiagnoseClassExtensionDupMethods
- ActOnForwardProtocolDeclaration
- ActOnStartCategoryInterface
- ActOnStartCategoryImplementation
- ActOnStartClassImplementation
- ActOnFinishObjCImplementation
- CheckImplementationIvars
- shouldWarnUndefinedMethod
- WarnUndefinedMethod
- isObjCTypeSubstitutable
- getTypeRange
- objcModifiersConflict
- CheckMethodOverrideReturn
- CheckMethodOverrideParam
- checkMethodFamilyMismatch
- WarnConflictingTypedMethods
- CheckConflictingOverridingMethod
- WarnExactTypedMethods
- findProtocolsWithExplicitImpls
- findProtocolsWithExplicitImpls
- CheckProtocolMethodDefs
- MatchAllMethodDeclarations
- CheckCategoryVsClassMethodMatches
- ImplMethodsVsClassMethods
- ActOnForwardClassDeclaration
- matchTypes
- tryMatchRecordTypes
- MatchTwoMethodDeclarations
- isMethodContextSameForKindofLookup
- addMethodToGlobalList
- ReadMethodPool
- updateOutOfDateSelector
- AddMethodToGlobalPool
- isAcceptableMethodMismatch
- FilterMethodsByTypeBound
- CollectMultipleMethodsInGlobalPool
- AreMultipleMethodsInGlobalPool
- LookupMethodInGlobalPool
- DiagnoseMultipleMethodInGlobalPool
- LookupImplementedMethodInGlobalPool
- HelperSelectorsForTypoCorrection
- HelperIsMethodInObjCType
- SelectorsForTypoCorrection
- DiagnoseDuplicateIvars
- DiagnoseWeakIvars
- DiagnoseRetainableFlexibleArrayMember
- getObjCContainerKind
- IsVariableSizedType
- DiagnoseVariableSizedIvars
- DiagnoseCategoryDirectMembersProtocolConformance
- DiagnoseCategoryDirectMembersProtocolConformance
- ActOnAtEnd
- CvtQTToAstBitMask
- CheckRelatedResultTypeCompatibility
- OverrideSearch
- OverrideSearch
- begin
- end
- searchFromContainer
- searchFrom
- searchFrom
- searchFrom
- searchFrom
- searchFrom
- search
- search
- CheckObjCMethodDirectOverrides
- CheckObjCMethodOverrides
- mergeTypeNullabilityForRedecl
- mergeInterfaceMethodToImpl
- checkObjCMethodX86VectorTypes
- mergeObjCDirectMembers
- checkObjCDirectMethodClashes
- ActOnMethodParmDeclaration
- ActOnMethodDeclaration
- CheckObjCDeclScope
- ActOnDefs
- BuildObjCExceptionDecl
- ActOnObjCExceptionDecl
- CollectIvarsToConstructOrDestruct
- DiagnoseUseOfUnimplementedSelectors
- GetIvarBackingPropertyAccessor
- UnusedBackingIvarChecker
- UnusedBackingIvarChecker
- VisitObjCIvarRefExpr
- VisitObjCMessageExpr
- DiagnoseUnusedBackingIvarInAccessor
- AdjustParameterTypeForObjCAutoRefCount
- getObjCInterfaceDecl
- inferObjCARCLifetime
- getObjCDeclContext
- SetIvarInitializers
- TranslateIvarVisibility
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more