1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/RecursiveASTVisitor.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37/// if non-null, check this as if making a call to it with the given
38/// receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41/// actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!");
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!");
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(I: resultClass) ||
91 resultClass->isSuperClassOf(I: receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(Loc: loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110}
111
112/// Issue a warning if the parameter of the overridden method is non-escaping
113/// but the parameter of the overriding method is not.
114static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123}
124
125/// Produce additional diagnostics if a category conforms to a protocol that
126/// defines a method taking a non-escaping parameter.
127static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134}
135
136void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(Val: DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: *this);
220 }
221}
222
223/// Check a method declaration for compatibility with the Objective-C
224/// ARC conventions.
225bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, receiverTypeIfCall: QualType()))
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279 return false;
280}
281
282static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(Val: ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.ends_with(Suffix: "_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325}
326
327/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328/// pool.
329void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(Method: MDecl, impl: true);
337 else
338 AddFactoryMethodToGlobalPool(Method: MDecl, impl: true);
339}
340
341/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342/// has explicit ownership attribute; false otherwise.
343static bool
344HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358}
359
360/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361/// and user declared, in the method definition's AST.
362void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 ImplicitlyRetainedSelfLocs.clear();
364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D);
366
367 PushExpressionEvaluationContext(NewContext: ExprEvalContexts.back().Context);
368
369 // If we don't have a valid method decl, simply return.
370 if (!MDecl)
371 return;
372
373 QualType ResultType = MDecl->getReturnType();
374 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
375 !MDecl->isInvalidDecl() &&
376 RequireCompleteType(MDecl->getLocation(), ResultType,
377 diag::err_func_def_incomplete_result))
378 MDecl->setInvalidDecl();
379
380 // Allow all of Sema to see that we are entering a method definition.
381 PushDeclContext(FnBodyScope, MDecl);
382 PushFunctionScope();
383
384 // Create Decl objects for each parameter, entrring them in the scope for
385 // binding to their use.
386
387 // Insert the invisible arguments, self and _cmd!
388 MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface());
389
390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
392
393 // The ObjC parser requires parameter names so there's no need to check.
394 CheckParmsForFunctionDef(Parameters: MDecl->parameters(),
395 /*CheckParameterNames=*/false);
396
397 // Introduce all of the other parameters into this scope.
398 for (auto *Param : MDecl->parameters()) {
399 if (!Param->isInvalidDecl() &&
400 getLangOpts().ObjCAutoRefCount &&
401 !HasExplicitOwnershipAttr(*this, Param))
402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
403 Param->getType();
404
405 if (Param->getIdentifier())
406 PushOnScopeChains(Param, FnBodyScope);
407 }
408
409 // In ARC, disallow definition of retain/release/autorelease/retainCount
410 if (getLangOpts().ObjCAutoRefCount) {
411 switch (MDecl->getMethodFamily()) {
412 case OMF_retain:
413 case OMF_retainCount:
414 case OMF_release:
415 case OMF_autorelease:
416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
417 << 0 << MDecl->getSelector();
418 break;
419
420 case OMF_None:
421 case OMF_dealloc:
422 case OMF_finalize:
423 case OMF_alloc:
424 case OMF_init:
425 case OMF_mutableCopy:
426 case OMF_copy:
427 case OMF_new:
428 case OMF_self:
429 case OMF_initialize:
430 case OMF_performSelector:
431 break;
432 }
433 }
434
435 // Warn on deprecated methods under -Wdeprecated-implementations,
436 // and prepare for warning on missing super calls.
437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
438 ObjCMethodDecl *IMD =
439 IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod());
440
441 if (IMD) {
442 ObjCImplDecl *ImplDeclOfMethodDef =
443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
444 ObjCContainerDecl *ContDeclOfMethodDecl =
445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl))
448 ImplDeclOfMethodDecl = OID->getImplementation();
449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) {
450 if (CD->IsClassExtension()) {
451 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
452 ImplDeclOfMethodDecl = OID->getImplementation();
453 } else
454 ImplDeclOfMethodDecl = CD->getImplementation();
455 }
456 // No need to issue deprecated warning if deprecated mehod in class/category
457 // is being implemented in its own implementation (no overriding is involved).
458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
460 }
461
462 if (MDecl->getMethodFamily() == OMF_init) {
463 if (MDecl->isDesignatedInitializerForTheInterface()) {
464 getCurFunction()->ObjCIsDesignatedInit = true;
465 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
466 IC->getSuperClass() != nullptr;
467 } else if (IC->hasDesignatedInitializers()) {
468 getCurFunction()->ObjCIsSecondaryInit = true;
469 getCurFunction()->ObjCWarnForNoInitDelegation = true;
470 }
471 }
472
473 // If this is "dealloc" or "finalize", set some bit here.
474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
476 // Only do this if the current class actually has a superclass.
477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
478 ObjCMethodFamily Family = MDecl->getMethodFamily();
479 if (Family == OMF_dealloc) {
480 if (!(getLangOpts().ObjCAutoRefCount ||
481 getLangOpts().getGC() == LangOptions::GCOnly))
482 getCurFunction()->ObjCShouldCallSuper = true;
483
484 } else if (Family == OMF_finalize) {
485 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486 getCurFunction()->ObjCShouldCallSuper = true;
487
488 } else {
489 const ObjCMethodDecl *SuperMethod =
490 SuperClass->lookupMethod(Sel: MDecl->getSelector(),
491 isInstance: MDecl->isInstanceMethod());
492 getCurFunction()->ObjCShouldCallSuper =
493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
494 }
495 }
496 }
497}
498
499namespace {
500
501// Callback to only accept typo corrections that are Objective-C classes.
502// If an ObjCInterfaceDecl* is given to the constructor, then the validation
503// function will reject corrections to that class.
504class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
505 public:
506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
508 : CurrentIDecl(IDecl) {}
509
510 bool ValidateCandidate(const TypoCorrection &candidate) override {
511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
512 return ID && !declaresSameEntity(ID, CurrentIDecl);
513 }
514
515 std::unique_ptr<CorrectionCandidateCallback> clone() override {
516 return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this);
517 }
518
519 private:
520 ObjCInterfaceDecl *CurrentIDecl;
521};
522
523} // end anonymous namespace
524
525static void diagnoseUseOfProtocols(Sema &TheSema,
526 ObjCContainerDecl *CD,
527 ObjCProtocolDecl *const *ProtoRefs,
528 unsigned NumProtoRefs,
529 const SourceLocation *ProtoLocs) {
530 assert(ProtoRefs);
531 // Diagnose availability in the context of the ObjC container.
532 Sema::ContextRAII SavedContext(TheSema, CD);
533 for (unsigned i = 0; i < NumProtoRefs; ++i) {
534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
535 /*UnknownObjCClass=*/nullptr,
536 /*ObjCPropertyAccess=*/false,
537 /*AvoidPartialAvailabilityChecks=*/true);
538 }
539}
540
541void Sema::
542ActOnSuperClassOfClassInterface(Scope *S,
543 SourceLocation AtInterfaceLoc,
544 ObjCInterfaceDecl *IDecl,
545 IdentifierInfo *ClassName,
546 SourceLocation ClassLoc,
547 IdentifierInfo *SuperName,
548 SourceLocation SuperLoc,
549 ArrayRef<ParsedType> SuperTypeArgs,
550 SourceRange SuperTypeArgsRange) {
551 // Check if a different kind of symbol declared in this scope.
552 NamedDecl *PrevDecl = LookupSingleName(S: TUScope, Name: SuperName, Loc: SuperLoc,
553 NameKind: LookupOrdinaryName);
554
555 if (!PrevDecl) {
556 // Try to correct for a typo in the superclass name without correcting
557 // to the class we're defining.
558 ObjCInterfaceValidatorCCC CCC(IDecl);
559 if (TypoCorrection Corrected = CorrectTypo(
560 Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: LookupOrdinaryName,
561 S: TUScope, SS: nullptr, CCC, Mode: CTK_ErrorRecovery)) {
562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
563 << SuperName << ClassName);
564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
565 }
566 }
567
568 if (declaresSameEntity(PrevDecl, IDecl)) {
569 Diag(SuperLoc, diag::err_recursive_superclass)
570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
571 IDecl->setEndOfDefinitionLoc(ClassLoc);
572 } else {
573 ObjCInterfaceDecl *SuperClassDecl =
574 dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
575 QualType SuperClassType;
576
577 // Diagnose classes that inherit from deprecated classes.
578 if (SuperClassDecl) {
579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
580 SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl);
581 }
582
583 if (PrevDecl && !SuperClassDecl) {
584 // The previous declaration was not a class decl. Check if we have a
585 // typedef. If we do, get the underlying class type.
586 if (const TypedefNameDecl *TDecl =
587 dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) {
588 QualType T = TDecl->getUnderlyingType();
589 if (T->isObjCObjectType()) {
590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl);
592 SuperClassType = Context.getTypeDeclType(TDecl);
593
594 // This handles the following case:
595 // @interface NewI @end
596 // typedef NewI DeprI __attribute__((deprecated("blah")))
597 // @interface SI : DeprI /* warn here */ @end
598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
599 }
600 }
601 }
602
603 // This handles the following case:
604 //
605 // typedef int SuperClass;
606 // @interface MyClass : SuperClass {} @end
607 //
608 if (!SuperClassDecl) {
609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
610 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
611 }
612 }
613
614 if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) {
615 if (!SuperClassDecl)
616 Diag(SuperLoc, diag::err_undef_superclass)
617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
618 else if (RequireCompleteType(SuperLoc,
619 SuperClassType,
620 diag::err_forward_superclass,
621 SuperClassDecl->getDeclName(),
622 ClassName,
623 SourceRange(AtInterfaceLoc, ClassLoc))) {
624 SuperClassDecl = nullptr;
625 SuperClassType = QualType();
626 }
627 }
628
629 if (SuperClassType.isNull()) {
630 assert(!SuperClassDecl && "Failed to set SuperClassType?");
631 return;
632 }
633
634 // Handle type arguments on the superclass.
635 TypeSourceInfo *SuperClassTInfo = nullptr;
636 if (!SuperTypeArgs.empty()) {
637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
638 S,
639 Loc: SuperLoc,
640 BaseType: CreateParsedType(T: SuperClassType,
641 TInfo: nullptr),
642 TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(),
643 TypeArgs: SuperTypeArgs,
644 TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(),
645 ProtocolLAngleLoc: SourceLocation(),
646 Protocols: { },
647 ProtocolLocs: { },
648 ProtocolRAngleLoc: SourceLocation());
649 if (!fullSuperClassType.isUsable())
650 return;
651
652 SuperClassType = GetTypeFromParser(Ty: fullSuperClassType.get(),
653 TInfo: &SuperClassTInfo);
654 }
655
656 if (!SuperClassTInfo) {
657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType,
658 Loc: SuperLoc);
659 }
660
661 IDecl->setSuperClass(SuperClassTInfo);
662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663 }
664}
665
666DeclResult Sema::actOnObjCTypeParam(Scope *S,
667 ObjCTypeParamVariance variance,
668 SourceLocation varianceLoc,
669 unsigned index,
670 IdentifierInfo *paramName,
671 SourceLocation paramLoc,
672 SourceLocation colonLoc,
673 ParsedType parsedTypeBound) {
674 // If there was an explicitly-provided type bound, check it.
675 TypeSourceInfo *typeBoundInfo = nullptr;
676 if (parsedTypeBound) {
677 // The type bound can be any Objective-C pointer type.
678 QualType typeBound = GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo);
679 if (typeBound->isObjCObjectPointerType()) {
680 // okay
681 } else if (typeBound->isObjCObjectType()) {
682 // The user forgot the * on an Objective-C pointer type, e.g.,
683 // "T : NSView".
684 SourceLocation starLoc = getLocForEndOfToken(
685 Loc: typeBoundInfo->getTypeLoc().getEndLoc());
686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
687 diag::err_objc_type_param_bound_missing_pointer)
688 << typeBound << paramName
689 << FixItHint::CreateInsertion(starLoc, " *");
690
691 // Create a new type location builder so we can update the type
692 // location information we have.
693 TypeLocBuilder builder;
694 builder.pushFullCopy(L: typeBoundInfo->getTypeLoc());
695
696 // Create the Objective-C pointer type.
697 typeBound = Context.getObjCObjectPointerType(OIT: typeBound);
698 ObjCObjectPointerTypeLoc newT
699 = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound);
700 newT.setStarLoc(starLoc);
701
702 // Form the new type source information.
703 typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound);
704 } else {
705 // Not a valid type bound.
706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
707 diag::err_objc_type_param_bound_nonobject)
708 << typeBound << paramName;
709
710 // Forget the bound; we'll default to id later.
711 typeBoundInfo = nullptr;
712 }
713
714 // Type bounds cannot have qualifiers (even indirectly) or explicit
715 // nullability.
716 if (typeBoundInfo) {
717 QualType typeBound = typeBoundInfo->getType();
718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
719 if (qual || typeBound.hasQualifiers()) {
720 bool diagnosed = false;
721 SourceRange rangeToRemove;
722 if (qual) {
723 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
724 rangeToRemove = attr.getLocalSourceRange();
725 if (attr.getTypePtr()->getImmediateNullability()) {
726 Diag(attr.getBeginLoc(),
727 diag::err_objc_type_param_bound_explicit_nullability)
728 << paramName << typeBound
729 << FixItHint::CreateRemoval(rangeToRemove);
730 diagnosed = true;
731 }
732 }
733 }
734
735 if (!diagnosed) {
736 Diag(qual ? qual.getBeginLoc()
737 : typeBoundInfo->getTypeLoc().getBeginLoc(),
738 diag::err_objc_type_param_bound_qualified)
739 << paramName << typeBound
740 << typeBound.getQualifiers().getAsString()
741 << FixItHint::CreateRemoval(rangeToRemove);
742 }
743
744 // If the type bound has qualifiers other than CVR, we need to strip
745 // them or we'll probably assert later when trying to apply new
746 // qualifiers.
747 Qualifiers quals = typeBound.getQualifiers();
748 quals.removeCVRQualifiers();
749 if (!quals.empty()) {
750 typeBoundInfo =
751 Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType());
752 }
753 }
754 }
755 }
756
757 // If there was no explicit type bound (or we removed it due to an error),
758 // use 'id' instead.
759 if (!typeBoundInfo) {
760 colonLoc = SourceLocation();
761 typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType());
762 }
763
764 // Create the type parameter.
765 return ObjCTypeParamDecl::Create(ctx&: Context, dc: CurContext, variance, varianceLoc,
766 index, nameLoc: paramLoc, name: paramName, colonLoc,
767 boundInfo: typeBoundInfo);
768}
769
770ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
771 SourceLocation lAngleLoc,
772 ArrayRef<Decl *> typeParamsIn,
773 SourceLocation rAngleLoc) {
774 // We know that the array only contains Objective-C type parameters.
775 ArrayRef<ObjCTypeParamDecl *>
776 typeParams(
777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778 typeParamsIn.size());
779
780 // Diagnose redeclarations of type parameters.
781 // We do this now because Objective-C type parameters aren't pushed into
782 // scope until later (after the instance variable block), but we want the
783 // diagnostics to occur right after we parse the type parameter list.
784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785 for (auto *typeParam : typeParams) {
786 auto known = knownParams.find(typeParam->getIdentifier());
787 if (known != knownParams.end()) {
788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
789 << typeParam->getIdentifier()
790 << SourceRange(known->second->getLocation());
791
792 typeParam->setInvalidDecl();
793 } else {
794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
795
796 // Push the type parameter into scope.
797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
798 }
799 }
800
801 // Create the parameter list.
802 return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc);
803}
804
805void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
806 for (auto *typeParam : *typeParamList) {
807 if (!typeParam->isInvalidDecl()) {
808 S->RemoveDecl(typeParam);
809 IdResolver.RemoveDecl(typeParam);
810 }
811 }
812}
813
814namespace {
815 /// The context in which an Objective-C type parameter list occurs, for use
816 /// in diagnostics.
817 enum class TypeParamListContext {
818 ForwardDeclaration,
819 Definition,
820 Category,
821 Extension
822 };
823} // end anonymous namespace
824
825/// Check consistency between two Objective-C type parameter lists, e.g.,
826/// between a category/extension and an \@interface or between an \@class and an
827/// \@interface.
828static bool checkTypeParamListConsistency(Sema &S,
829 ObjCTypeParamList *prevTypeParams,
830 ObjCTypeParamList *newTypeParams,
831 TypeParamListContext newContext) {
832 // If the sizes don't match, complain about that.
833 if (prevTypeParams->size() != newTypeParams->size()) {
834 SourceLocation diagLoc;
835 if (newTypeParams->size() > prevTypeParams->size()) {
836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837 } else {
838 diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc());
839 }
840
841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842 << static_cast<unsigned>(newContext)
843 << (newTypeParams->size() > prevTypeParams->size())
844 << prevTypeParams->size()
845 << newTypeParams->size();
846
847 return true;
848 }
849
850 // Match up the type parameters.
851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855 // Check for consistency of the variance.
856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858 newContext != TypeParamListContext::Definition) {
859 // When the new type parameter is invariant and is not part
860 // of the definition, just propagate the variance.
861 newTypeParam->setVariance(prevTypeParam->getVariance());
862 } else if (prevTypeParam->getVariance()
863 == ObjCTypeParamVariance::Invariant &&
864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866 ->getDefinition() == prevTypeParam->getDeclContext())) {
867 // When the old parameter is invariant and was not part of the
868 // definition, just ignore the difference because it doesn't
869 // matter.
870 } else {
871 {
872 // Diagnose the conflict and update the second declaration.
873 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874 if (diagLoc.isInvalid())
875 diagLoc = newTypeParam->getBeginLoc();
876
877 auto diag = S.Diag(diagLoc,
878 diag::err_objc_type_param_variance_conflict)
879 << static_cast<unsigned>(newTypeParam->getVariance())
880 << newTypeParam->getDeclName()
881 << static_cast<unsigned>(prevTypeParam->getVariance())
882 << prevTypeParam->getDeclName();
883 switch (prevTypeParam->getVariance()) {
884 case ObjCTypeParamVariance::Invariant:
885 diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc());
886 break;
887
888 case ObjCTypeParamVariance::Covariant:
889 case ObjCTypeParamVariance::Contravariant: {
890 StringRef newVarianceStr
891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892 ? "__covariant"
893 : "__contravariant";
894 if (newTypeParam->getVariance()
895 == ObjCTypeParamVariance::Invariant) {
896 diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(),
897 Code: (newVarianceStr + " ").str());
898 } else {
899 diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(),
900 Code: newVarianceStr);
901 }
902 }
903 }
904 }
905
906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907 << prevTypeParam->getDeclName();
908
909 // Override the variance.
910 newTypeParam->setVariance(prevTypeParam->getVariance());
911 }
912 }
913
914 // If the bound types match, there's nothing to do.
915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916 newTypeParam->getUnderlyingType()))
917 continue;
918
919 // If the new type parameter's bound was explicit, complain about it being
920 // different from the original.
921 if (newTypeParam->hasExplicitBound()) {
922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923 ->getTypeLoc().getSourceRange();
924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925 << newTypeParam->getUnderlyingType()
926 << newTypeParam->getDeclName()
927 << prevTypeParam->hasExplicitBound()
928 << prevTypeParam->getUnderlyingType()
929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930 << prevTypeParam->getDeclName()
931 << FixItHint::CreateReplacement(
932 newBoundRange,
933 prevTypeParam->getUnderlyingType().getAsString(
934 S.Context.getPrintingPolicy()));
935
936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937 << prevTypeParam->getDeclName();
938
939 // Override the new type parameter's bound type with the previous type,
940 // so that it's consistent.
941 S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam);
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(Loc: newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam);
969 }
970
971 return false;
972}
973
974ObjCInterfaceDecl *Sema::ActOnStartClassInterface(
975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977 IdentifierInfo *SuperName, SourceLocation SuperLoc,
978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979 Decl *const *ProtoRefs, unsigned NumProtoRefs,
980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982 assert(ClassName && "Missing class identifier");
983
984 // Check for another declaration kind with the same name.
985 NamedDecl *PrevDecl =
986 LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLoc, NameKind: LookupOrdinaryName,
987 Redecl: forRedeclarationInCurContext());
988
989 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992 }
993
994 // Create a declaration to describe this @interface.
995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
996
997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998 // A previous decl with a different name is because of
999 // @compatibility_alias, for example:
1000 // \code
1001 // @class NewImage;
1002 // @compatibility_alias OldImage NewImage;
1003 // \endcode
1004 // A lookup for 'OldImage' will return the 'NewImage' decl.
1005 //
1006 // In such a case use the real declaration name, instead of the alias one,
1007 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009 // has been aliased.
1010 ClassName = PrevIDecl->getIdentifier();
1011 }
1012
1013 // If there was a forward declaration with type parameters, check
1014 // for consistency.
1015 if (PrevIDecl) {
1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017 if (typeParamList) {
1018 // Both have type parameter lists; check for consistency.
1019 if (checkTypeParamListConsistency(S&: *this, prevTypeParams: prevTypeParamList,
1020 newTypeParams: typeParamList,
1021 newContext: TypeParamListContext::Definition)) {
1022 typeParamList = nullptr;
1023 }
1024 } else {
1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026 << ClassName;
1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028 << ClassName;
1029
1030 // Clone the type parameter list.
1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032 for (auto *typeParam : *prevTypeParamList) {
1033 clonedTypeParams.push_back(
1034 Elt: ObjCTypeParamDecl::Create(
1035 ctx&: Context,
1036 dc: CurContext,
1037 variance: typeParam->getVariance(),
1038 varianceLoc: SourceLocation(),
1039 index: typeParam->getIndex(),
1040 nameLoc: SourceLocation(),
1041 name: typeParam->getIdentifier(),
1042 colonLoc: SourceLocation(),
1043 boundInfo: Context.getTrivialTypeSourceInfo(T: typeParam->getUnderlyingType())));
1044 }
1045
1046 typeParamList = ObjCTypeParamList::create(ctx&: Context,
1047 lAngleLoc: SourceLocation(),
1048 typeParams: clonedTypeParams,
1049 rAngleLoc: SourceLocation());
1050 }
1051 }
1052 }
1053
1054 ObjCInterfaceDecl *IDecl
1055 = ObjCInterfaceDecl::Create(C: Context, DC: CurContext, atLoc: AtInterfaceLoc, Id: ClassName,
1056 typeParamList, PrevDecl: PrevIDecl, ClassLoc);
1057 if (PrevIDecl) {
1058 // Class already seen. Was it a definition?
1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1060 if (SkipBody && !hasVisibleDefinition(Def)) {
1061 SkipBody->CheckSameAsPrevious = true;
1062 SkipBody->New = IDecl;
1063 SkipBody->Previous = Def;
1064 } else {
1065 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1066 << PrevIDecl->getDeclName();
1067 Diag(Def->getLocation(), diag::note_previous_definition);
1068 IDecl->setInvalidDecl();
1069 }
1070 }
1071 }
1072
1073 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1074 AddPragmaAttributes(TUScope, IDecl);
1075
1076 // Merge attributes from previous declarations.
1077 if (PrevIDecl)
1078 mergeDeclAttributes(IDecl, PrevIDecl);
1079
1080 PushOnScopeChains(IDecl, TUScope);
1081
1082 // Start the definition of this class. If we're in a redefinition case, there
1083 // may already be a definition, so we'll end up adding to it.
1084 if (SkipBody && SkipBody->CheckSameAsPrevious)
1085 IDecl->startDuplicateDefinitionForComparison();
1086 else if (!IDecl->hasDefinition())
1087 IDecl->startDefinition();
1088
1089 if (SuperName) {
1090 // Diagnose availability in the context of the @interface.
1091 ContextRAII SavedContext(*this, IDecl);
1092
1093 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1094 ClassName, ClassLoc,
1095 SuperName, SuperLoc, SuperTypeArgs,
1096 SuperTypeArgsRange);
1097 } else { // we have a root class.
1098 IDecl->setEndOfDefinitionLoc(ClassLoc);
1099 }
1100
1101 // Check then save referenced protocols.
1102 if (NumProtoRefs) {
1103 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1104 NumProtoRefs, ProtoLocs);
1105 IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1106 Locs: ProtoLocs, C&: Context);
1107 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1108 }
1109
1110 CheckObjCDeclScope(IDecl);
1111 ActOnObjCContainerStartDefinition(IDecl);
1112 return IDecl;
1113}
1114
1115/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1116/// typedef'ed use for a qualified super class and adds them to the list
1117/// of the protocols.
1118void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1119 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1120 IdentifierInfo *SuperName,
1121 SourceLocation SuperLoc) {
1122 if (!SuperName)
1123 return;
1124 NamedDecl* IDecl = LookupSingleName(S: TUScope, Name: SuperName, Loc: SuperLoc,
1125 NameKind: LookupOrdinaryName);
1126 if (!IDecl)
1127 return;
1128
1129 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) {
1130 QualType T = TDecl->getUnderlyingType();
1131 if (T->isObjCObjectType())
1132 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1133 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1134 // FIXME: Consider whether this should be an invalid loc since the loc
1135 // is not actually pointing to a protocol name reference but to the
1136 // typedef reference. Note that the base class name loc is also pointing
1137 // at the typedef.
1138 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1139 }
1140 }
1141}
1142
1143/// ActOnCompatibilityAlias - this action is called after complete parsing of
1144/// a \@compatibility_alias declaration. It sets up the alias relationships.
1145Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1146 IdentifierInfo *AliasName,
1147 SourceLocation AliasLocation,
1148 IdentifierInfo *ClassName,
1149 SourceLocation ClassLocation) {
1150 // Look for previous declaration of alias name
1151 NamedDecl *ADecl =
1152 LookupSingleName(S: TUScope, Name: AliasName, Loc: AliasLocation, NameKind: LookupOrdinaryName,
1153 Redecl: forRedeclarationInCurContext());
1154 if (ADecl) {
1155 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1156 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1157 return nullptr;
1158 }
1159 // Check for class declaration
1160 NamedDecl *CDeclU =
1161 LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLocation, NameKind: LookupOrdinaryName,
1162 Redecl: forRedeclarationInCurContext());
1163 if (const TypedefNameDecl *TDecl =
1164 dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) {
1165 QualType T = TDecl->getUnderlyingType();
1166 if (T->isObjCObjectType()) {
1167 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1168 ClassName = IDecl->getIdentifier();
1169 CDeclU = LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLocation,
1170 NameKind: LookupOrdinaryName,
1171 Redecl: forRedeclarationInCurContext());
1172 }
1173 }
1174 }
1175 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU);
1176 if (!CDecl) {
1177 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1178 if (CDeclU)
1179 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1180 return nullptr;
1181 }
1182
1183 // Everything checked out, instantiate a new alias declaration AST.
1184 ObjCCompatibleAliasDecl *AliasDecl =
1185 ObjCCompatibleAliasDecl::Create(C&: Context, DC: CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl);
1186
1187 if (!CheckObjCDeclScope(AliasDecl))
1188 PushOnScopeChains(AliasDecl, TUScope);
1189
1190 return AliasDecl;
1191}
1192
1193bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1194 IdentifierInfo *PName,
1195 SourceLocation &Ploc, SourceLocation PrevLoc,
1196 const ObjCList<ObjCProtocolDecl> &PList) {
1197
1198 bool res = false;
1199 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1200 E = PList.end(); I != E; ++I) {
1201 if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(),
1202 IdLoc: Ploc)) {
1203 if (PDecl->getIdentifier() == PName) {
1204 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1205 Diag(PrevLoc, diag::note_previous_definition);
1206 res = true;
1207 }
1208
1209 if (!PDecl->hasDefinition())
1210 continue;
1211
1212 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1213 PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols()))
1214 res = true;
1215 }
1216 }
1217 return res;
1218}
1219
1220ObjCProtocolDecl *Sema::ActOnStartProtocolInterface(
1221 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1222 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1223 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1224 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1225 bool err = false;
1226 // FIXME: Deal with AttrList.
1227 assert(ProtocolName && "Missing protocol identifier");
1228 ObjCProtocolDecl *PrevDecl = LookupProtocol(II: ProtocolName, IdLoc: ProtocolLoc,
1229 Redecl: forRedeclarationInCurContext());
1230 ObjCProtocolDecl *PDecl = nullptr;
1231 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1232 // Create a new protocol that is completely distinct from previous
1233 // declarations, and do not make this protocol available for name lookup.
1234 // That way, we'll end up completely ignoring the duplicate.
1235 // FIXME: Can we turn this into an error?
1236 PDecl = ObjCProtocolDecl::Create(C&: Context, DC: CurContext, Id: ProtocolName,
1237 nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc,
1238 /*PrevDecl=*/Def);
1239
1240 if (SkipBody && !hasVisibleDefinition(Def)) {
1241 SkipBody->CheckSameAsPrevious = true;
1242 SkipBody->New = PDecl;
1243 SkipBody->Previous = Def;
1244 } else {
1245 // If we already have a definition, complain.
1246 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1247 Diag(Def->getLocation(), diag::note_previous_definition);
1248 }
1249
1250 // If we are using modules, add the decl to the context in order to
1251 // serialize something meaningful.
1252 if (getLangOpts().Modules)
1253 PushOnScopeChains(PDecl, TUScope);
1254 PDecl->startDuplicateDefinitionForComparison();
1255 } else {
1256 if (PrevDecl) {
1257 // Check for circular dependencies among protocol declarations. This can
1258 // only happen if this protocol was forward-declared.
1259 ObjCList<ObjCProtocolDecl> PList;
1260 PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context);
1261 err = CheckForwardProtocolDeclarationForCircularDependency(
1262 PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList);
1263 }
1264
1265 // Create the new declaration.
1266 PDecl = ObjCProtocolDecl::Create(C&: Context, DC: CurContext, Id: ProtocolName,
1267 nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc,
1268 /*PrevDecl=*/PrevDecl);
1269
1270 PushOnScopeChains(PDecl, TUScope);
1271 PDecl->startDefinition();
1272 }
1273
1274 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1275 AddPragmaAttributes(TUScope, PDecl);
1276
1277 // Merge attributes from previous declarations.
1278 if (PrevDecl)
1279 mergeDeclAttributes(PDecl, PrevDecl);
1280
1281 if (!err && NumProtoRefs ) {
1282 /// Check then save referenced protocols.
1283 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1284 NumProtoRefs, ProtoLocs);
1285 PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1286 Locs: ProtoLocs, C&: Context);
1287 }
1288
1289 CheckObjCDeclScope(PDecl);
1290 ActOnObjCContainerStartDefinition(PDecl);
1291 return PDecl;
1292}
1293
1294static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1295 ObjCProtocolDecl *&UndefinedProtocol) {
1296 if (!PDecl->hasDefinition() ||
1297 !PDecl->getDefinition()->isUnconditionallyVisible()) {
1298 UndefinedProtocol = PDecl;
1299 return true;
1300 }
1301
1302 for (auto *PI : PDecl->protocols())
1303 if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) {
1304 UndefinedProtocol = PI;
1305 return true;
1306 }
1307 return false;
1308}
1309
1310/// FindProtocolDeclaration - This routine looks up protocols and
1311/// issues an error if they are not declared. It returns list of
1312/// protocol declarations in its 'Protocols' argument.
1313void
1314Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1315 ArrayRef<IdentifierLocPair> ProtocolId,
1316 SmallVectorImpl<Decl *> &Protocols) {
1317 for (const IdentifierLocPair &Pair : ProtocolId) {
1318 ObjCProtocolDecl *PDecl = LookupProtocol(II: Pair.first, IdLoc: Pair.second);
1319 if (!PDecl) {
1320 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1321 TypoCorrection Corrected = CorrectTypo(
1322 Typo: DeclarationNameInfo(Pair.first, Pair.second), LookupKind: LookupObjCProtocolName,
1323 S: TUScope, SS: nullptr, CCC, Mode: CTK_ErrorRecovery);
1324 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1325 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1326 << Pair.first);
1327 }
1328
1329 if (!PDecl) {
1330 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1331 continue;
1332 }
1333 // If this is a forward protocol declaration, get its definition.
1334 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1335 PDecl = PDecl->getDefinition();
1336
1337 // For an objc container, delay protocol reference checking until after we
1338 // can set the objc decl as the availability context, otherwise check now.
1339 if (!ForObjCContainer) {
1340 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1341 }
1342
1343 // If this is a forward declaration and we are supposed to warn in this
1344 // case, do it.
1345 // FIXME: Recover nicely in the hidden case.
1346 ObjCProtocolDecl *UndefinedProtocol;
1347
1348 if (WarnOnDeclarations &&
1349 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1350 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1351 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1352 << UndefinedProtocol;
1353 }
1354 Protocols.push_back(PDecl);
1355 }
1356}
1357
1358namespace {
1359// Callback to only accept typo corrections that are either
1360// Objective-C protocols or valid Objective-C type arguments.
1361class ObjCTypeArgOrProtocolValidatorCCC final
1362 : public CorrectionCandidateCallback {
1363 ASTContext &Context;
1364 Sema::LookupNameKind LookupKind;
1365 public:
1366 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1367 Sema::LookupNameKind lookupKind)
1368 : Context(context), LookupKind(lookupKind) { }
1369
1370 bool ValidateCandidate(const TypoCorrection &candidate) override {
1371 // If we're allowed to find protocols and we have a protocol, accept it.
1372 if (LookupKind != Sema::LookupOrdinaryName) {
1373 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1374 return true;
1375 }
1376
1377 // If we're allowed to find type names and we have one, accept it.
1378 if (LookupKind != Sema::LookupObjCProtocolName) {
1379 // If we have a type declaration, we might accept this result.
1380 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1381 // If we found a tag declaration outside of C++, skip it. This
1382 // can happy because we look for any name when there is no
1383 // bias to protocol or type names.
1384 if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus)
1385 return false;
1386
1387 // Make sure the type is something we would accept as a type
1388 // argument.
1389 auto type = Context.getTypeDeclType(Decl: typeDecl);
1390 if (type->isObjCObjectPointerType() ||
1391 type->isBlockPointerType() ||
1392 type->isDependentType() ||
1393 type->isObjCObjectType())
1394 return true;
1395
1396 return false;
1397 }
1398
1399 // If we have an Objective-C class type, accept it; there will
1400 // be another fix to add the '*'.
1401 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1402 return true;
1403
1404 return false;
1405 }
1406
1407 return false;
1408 }
1409
1410 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1411 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this);
1412 }
1413};
1414} // end anonymous namespace
1415
1416void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1417 SourceLocation ProtocolLoc,
1418 IdentifierInfo *TypeArgId,
1419 SourceLocation TypeArgLoc,
1420 bool SelectProtocolFirst) {
1421 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1422 << SelectProtocolFirst << TypeArgId << ProtocolId
1423 << SourceRange(ProtocolLoc);
1424}
1425
1426void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1427 Scope *S,
1428 ParsedType baseType,
1429 SourceLocation lAngleLoc,
1430 ArrayRef<IdentifierInfo *> identifiers,
1431 ArrayRef<SourceLocation> identifierLocs,
1432 SourceLocation rAngleLoc,
1433 SourceLocation &typeArgsLAngleLoc,
1434 SmallVectorImpl<ParsedType> &typeArgs,
1435 SourceLocation &typeArgsRAngleLoc,
1436 SourceLocation &protocolLAngleLoc,
1437 SmallVectorImpl<Decl *> &protocols,
1438 SourceLocation &protocolRAngleLoc,
1439 bool warnOnIncompleteProtocols) {
1440 // Local function that updates the declaration specifiers with
1441 // protocol information.
1442 unsigned numProtocolsResolved = 0;
1443 auto resolvedAsProtocols = [&] {
1444 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1445
1446 // Determine whether the base type is a parameterized class, in
1447 // which case we want to warn about typos such as
1448 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1449 ObjCInterfaceDecl *baseClass = nullptr;
1450 QualType base = GetTypeFromParser(Ty: baseType, TInfo: nullptr);
1451 bool allAreTypeNames = false;
1452 SourceLocation firstClassNameLoc;
1453 if (!base.isNull()) {
1454 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1455 baseClass = objcObjectType->getInterface();
1456 if (baseClass) {
1457 if (auto typeParams = baseClass->getTypeParamList()) {
1458 if (typeParams->size() == numProtocolsResolved) {
1459 // Note that we should be looking for type names, too.
1460 allAreTypeNames = true;
1461 }
1462 }
1463 }
1464 }
1465 }
1466
1467 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1468 ObjCProtocolDecl *&proto
1469 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1470 // For an objc container, delay protocol reference checking until after we
1471 // can set the objc decl as the availability context, otherwise check now.
1472 if (!warnOnIncompleteProtocols) {
1473 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1474 }
1475
1476 // If this is a forward protocol declaration, get its definition.
1477 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1478 proto = proto->getDefinition();
1479
1480 // If this is a forward declaration and we are supposed to warn in this
1481 // case, do it.
1482 // FIXME: Recover nicely in the hidden case.
1483 ObjCProtocolDecl *forwardDecl = nullptr;
1484 if (warnOnIncompleteProtocols &&
1485 NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) {
1486 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1487 << proto->getDeclName();
1488 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1489 << forwardDecl;
1490 }
1491
1492 // If everything this far has been a type name (and we care
1493 // about such things), check whether this name refers to a type
1494 // as well.
1495 if (allAreTypeNames) {
1496 if (auto *decl = LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i],
1497 NameKind: LookupOrdinaryName)) {
1498 if (isa<ObjCInterfaceDecl>(Val: decl)) {
1499 if (firstClassNameLoc.isInvalid())
1500 firstClassNameLoc = identifierLocs[i];
1501 } else if (!isa<TypeDecl>(Val: decl)) {
1502 // Not a type.
1503 allAreTypeNames = false;
1504 }
1505 } else {
1506 allAreTypeNames = false;
1507 }
1508 }
1509 }
1510
1511 // All of the protocols listed also have type names, and at least
1512 // one is an Objective-C class name. Check whether all of the
1513 // protocol conformances are declared by the base class itself, in
1514 // which case we warn.
1515 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1516 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1517 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1518 bool allProtocolsDeclared = true;
1519 for (auto *proto : protocols) {
1520 if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1521 allProtocolsDeclared = false;
1522 break;
1523 }
1524 }
1525
1526 if (allProtocolsDeclared) {
1527 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1528 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1529 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1530 " *");
1531 }
1532 }
1533
1534 protocolLAngleLoc = lAngleLoc;
1535 protocolRAngleLoc = rAngleLoc;
1536 assert(protocols.size() == identifierLocs.size());
1537 };
1538
1539 // Attempt to resolve all of the identifiers as protocols.
1540 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1541 ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]);
1542 protocols.push_back(proto);
1543 if (proto)
1544 ++numProtocolsResolved;
1545 }
1546
1547 // If all of the names were protocols, these were protocol qualifiers.
1548 if (numProtocolsResolved == identifiers.size())
1549 return resolvedAsProtocols();
1550
1551 // Attempt to resolve all of the identifiers as type names or
1552 // Objective-C class names. The latter is technically ill-formed,
1553 // but is probably something like \c NSArray<NSView *> missing the
1554 // \c*.
1555 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1556 SmallVector<TypeOrClassDecl, 4> typeDecls;
1557 unsigned numTypeDeclsResolved = 0;
1558 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1559 NamedDecl *decl = LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i],
1560 NameKind: LookupOrdinaryName);
1561 if (!decl) {
1562 typeDecls.push_back(Elt: TypeOrClassDecl());
1563 continue;
1564 }
1565
1566 if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) {
1567 typeDecls.push_back(Elt: typeDecl);
1568 ++numTypeDeclsResolved;
1569 continue;
1570 }
1571
1572 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) {
1573 typeDecls.push_back(Elt: objcClass);
1574 ++numTypeDeclsResolved;
1575 continue;
1576 }
1577
1578 typeDecls.push_back(Elt: TypeOrClassDecl());
1579 }
1580
1581 AttributeFactory attrFactory;
1582
1583 // Local function that forms a reference to the given type or
1584 // Objective-C class declaration.
1585 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1586 -> TypeResult {
1587 // Form declaration specifiers. They simply refer to the type.
1588 DeclSpec DS(attrFactory);
1589 const char* prevSpec; // unused
1590 unsigned diagID; // unused
1591 QualType type;
1592 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1593 type = Context.getTypeDeclType(Decl: actualTypeDecl);
1594 else
1595 type = Context.getObjCInterfaceType(Decl: typeDecl.get<ObjCInterfaceDecl *>());
1596 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc);
1597 ParsedType parsedType = CreateParsedType(T: type, TInfo: parsedTSInfo);
1598 DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID,
1599 Rep: parsedType, Policy: Context.getPrintingPolicy());
1600 // Use the identifier location for the type source range.
1601 DS.SetRangeStart(loc);
1602 DS.SetRangeEnd(loc);
1603
1604 // Form the declarator.
1605 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1606
1607 // If we have a typedef of an Objective-C class type that is missing a '*',
1608 // add the '*'.
1609 if (type->getAs<ObjCInterfaceType>()) {
1610 SourceLocation starLoc = getLocForEndOfToken(Loc: loc);
1611 D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc,
1612 ConstQualLoc: SourceLocation(),
1613 VolatileQualLoc: SourceLocation(),
1614 RestrictQualLoc: SourceLocation(),
1615 AtomicQualLoc: SourceLocation(),
1616 UnalignedQualLoc: SourceLocation()),
1617 EndLoc: starLoc);
1618
1619 // Diagnose the missing '*'.
1620 Diag(loc, diag::err_objc_type_arg_missing_star)
1621 << type
1622 << FixItHint::CreateInsertion(starLoc, " *");
1623 }
1624
1625 // Convert this to a type.
1626 return ActOnTypeName(D);
1627 };
1628
1629 // Local function that updates the declaration specifiers with
1630 // type argument information.
1631 auto resolvedAsTypeDecls = [&] {
1632 // We did not resolve these as protocols.
1633 protocols.clear();
1634
1635 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1636 // Map type declarations to type arguments.
1637 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1638 // Map type reference to a type.
1639 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1640 if (!type.isUsable()) {
1641 typeArgs.clear();
1642 return;
1643 }
1644
1645 typeArgs.push_back(Elt: type.get());
1646 }
1647
1648 typeArgsLAngleLoc = lAngleLoc;
1649 typeArgsRAngleLoc = rAngleLoc;
1650 };
1651
1652 // If all of the identifiers can be resolved as type names or
1653 // Objective-C class names, we have type arguments.
1654 if (numTypeDeclsResolved == identifiers.size())
1655 return resolvedAsTypeDecls();
1656
1657 // Error recovery: some names weren't found, or we have a mix of
1658 // type and protocol names. Go resolve all of the unresolved names
1659 // and complain if we can't find a consistent answer.
1660 LookupNameKind lookupKind = LookupAnyName;
1661 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1662 // If we already have a protocol or type. Check whether it is the
1663 // right thing.
1664 if (protocols[i] || typeDecls[i]) {
1665 // If we haven't figured out whether we want types or protocols
1666 // yet, try to figure it out from this name.
1667 if (lookupKind == LookupAnyName) {
1668 // If this name refers to both a protocol and a type (e.g., \c
1669 // NSObject), don't conclude anything yet.
1670 if (protocols[i] && typeDecls[i])
1671 continue;
1672
1673 // Otherwise, let this name decide whether we'll be correcting
1674 // toward types or protocols.
1675 lookupKind = protocols[i] ? LookupObjCProtocolName
1676 : LookupOrdinaryName;
1677 continue;
1678 }
1679
1680 // If we want protocols and we have a protocol, there's nothing
1681 // more to do.
1682 if (lookupKind == LookupObjCProtocolName && protocols[i])
1683 continue;
1684
1685 // If we want types and we have a type declaration, there's
1686 // nothing more to do.
1687 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1688 continue;
1689
1690 // We have a conflict: some names refer to protocols and others
1691 // refer to types.
1692 DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0],
1693 TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i],
1694 SelectProtocolFirst: protocols[i] != nullptr);
1695
1696 protocols.clear();
1697 typeArgs.clear();
1698 return;
1699 }
1700
1701 // Perform typo correction on the name.
1702 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1703 TypoCorrection corrected =
1704 CorrectTypo(Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1705 LookupKind: lookupKind, S, SS: nullptr, CCC, Mode: CTK_ErrorRecovery);
1706 if (corrected) {
1707 // Did we find a protocol?
1708 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1709 diagnoseTypo(corrected,
1710 PDiag(diag::err_undeclared_protocol_suggest)
1711 << identifiers[i]);
1712 lookupKind = LookupObjCProtocolName;
1713 protocols[i] = proto;
1714 ++numProtocolsResolved;
1715 continue;
1716 }
1717
1718 // Did we find a type?
1719 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1720 diagnoseTypo(corrected,
1721 PDiag(diag::err_unknown_typename_suggest)
1722 << identifiers[i]);
1723 lookupKind = LookupOrdinaryName;
1724 typeDecls[i] = typeDecl;
1725 ++numTypeDeclsResolved;
1726 continue;
1727 }
1728
1729 // Did we find an Objective-C class?
1730 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1731 diagnoseTypo(corrected,
1732 PDiag(diag::err_unknown_type_or_class_name_suggest)
1733 << identifiers[i] << true);
1734 lookupKind = LookupOrdinaryName;
1735 typeDecls[i] = objcClass;
1736 ++numTypeDeclsResolved;
1737 continue;
1738 }
1739 }
1740
1741 // We couldn't find anything.
1742 Diag(identifierLocs[i],
1743 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1744 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1745 : diag::err_unknown_typename))
1746 << identifiers[i];
1747 protocols.clear();
1748 typeArgs.clear();
1749 return;
1750 }
1751
1752 // If all of the names were (corrected to) protocols, these were
1753 // protocol qualifiers.
1754 if (numProtocolsResolved == identifiers.size())
1755 return resolvedAsProtocols();
1756
1757 // Otherwise, all of the names were (corrected to) types.
1758 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1759 return resolvedAsTypeDecls();
1760}
1761
1762/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1763/// a class method in its extension.
1764///
1765void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1766 ObjCInterfaceDecl *ID) {
1767 if (!ID)
1768 return; // Possibly due to previous error
1769
1770 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1771 for (auto *MD : ID->methods())
1772 MethodMap[MD->getSelector()] = MD;
1773
1774 if (MethodMap.empty())
1775 return;
1776 for (const auto *Method : CAT->methods()) {
1777 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1778 if (PrevMethod &&
1779 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1780 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1781 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1782 << Method->getDeclName();
1783 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1784 }
1785 }
1786}
1787
1788/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1789Sema::DeclGroupPtrTy
1790Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1791 ArrayRef<IdentifierLocPair> IdentList,
1792 const ParsedAttributesView &attrList) {
1793 SmallVector<Decl *, 8> DeclsInGroup;
1794 for (const IdentifierLocPair &IdentPair : IdentList) {
1795 IdentifierInfo *Ident = IdentPair.first;
1796 ObjCProtocolDecl *PrevDecl = LookupProtocol(II: Ident, IdLoc: IdentPair.second,
1797 Redecl: forRedeclarationInCurContext());
1798 ObjCProtocolDecl *PDecl
1799 = ObjCProtocolDecl::Create(C&: Context, DC: CurContext, Id: Ident,
1800 nameLoc: IdentPair.second, atStartLoc: AtProtocolLoc,
1801 PrevDecl);
1802
1803 PushOnScopeChains(PDecl, TUScope);
1804 CheckObjCDeclScope(PDecl);
1805
1806 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1807 AddPragmaAttributes(TUScope, PDecl);
1808
1809 if (PrevDecl)
1810 mergeDeclAttributes(PDecl, PrevDecl);
1811
1812 DeclsInGroup.push_back(PDecl);
1813 }
1814
1815 return BuildDeclaratorGroup(Group: DeclsInGroup);
1816}
1817
1818ObjCCategoryDecl *Sema::ActOnStartCategoryInterface(
1819 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1820 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1821 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1822 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1823 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1824 const ParsedAttributesView &AttrList) {
1825 ObjCCategoryDecl *CDecl;
1826 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true);
1827
1828 /// Check that class of this category is already completely declared.
1829
1830 if (!IDecl
1831 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1832 diag::err_category_forward_interface,
1833 CategoryName == nullptr)) {
1834 // Create an invalid ObjCCategoryDecl to serve as context for
1835 // the enclosing method declarations. We mark the decl invalid
1836 // to make it clear that this isn't a valid AST.
1837 CDecl = ObjCCategoryDecl::Create(C&: Context, DC: CurContext, AtLoc: AtInterfaceLoc,
1838 ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName,
1839 IDecl, typeParamList);
1840 CDecl->setInvalidDecl();
1841 CurContext->addDecl(CDecl);
1842
1843 if (!IDecl)
1844 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1845 ActOnObjCContainerStartDefinition(CDecl);
1846 return CDecl;
1847 }
1848
1849 if (!CategoryName && IDecl->getImplementation()) {
1850 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1851 Diag(IDecl->getImplementation()->getLocation(),
1852 diag::note_implementation_declared);
1853 }
1854
1855 if (CategoryName) {
1856 /// Check for duplicate interface declaration for this category
1857 if (ObjCCategoryDecl *Previous
1858 = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) {
1859 // Class extensions can be declared multiple times, categories cannot.
1860 Diag(CategoryLoc, diag::warn_dup_category_def)
1861 << ClassName << CategoryName;
1862 Diag(Previous->getLocation(), diag::note_previous_definition);
1863 }
1864 }
1865
1866 // If we have a type parameter list, check it.
1867 if (typeParamList) {
1868 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1869 if (checkTypeParamListConsistency(S&: *this, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList,
1870 newContext: CategoryName
1871 ? TypeParamListContext::Category
1872 : TypeParamListContext::Extension))
1873 typeParamList = nullptr;
1874 } else {
1875 Diag(typeParamList->getLAngleLoc(),
1876 diag::err_objc_parameterized_category_nonclass)
1877 << (CategoryName != nullptr)
1878 << ClassName
1879 << typeParamList->getSourceRange();
1880
1881 typeParamList = nullptr;
1882 }
1883 }
1884
1885 CDecl = ObjCCategoryDecl::Create(C&: Context, DC: CurContext, AtLoc: AtInterfaceLoc,
1886 ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl,
1887 typeParamList);
1888 // FIXME: PushOnScopeChains?
1889 CurContext->addDecl(CDecl);
1890
1891 // Process the attributes before looking at protocols to ensure that the
1892 // availability attribute is attached to the category to provide availability
1893 // checking for protocol uses.
1894 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1895 AddPragmaAttributes(TUScope, CDecl);
1896
1897 if (NumProtoRefs) {
1898 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1899 NumProtoRefs, ProtoLocs);
1900 CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs,
1901 Locs: ProtoLocs, C&: Context);
1902 // Protocols in the class extension belong to the class.
1903 if (CDecl->IsClassExtension())
1904 IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs,
1905 Num: NumProtoRefs, C&: Context);
1906 }
1907
1908 CheckObjCDeclScope(CDecl);
1909 ActOnObjCContainerStartDefinition(CDecl);
1910 return CDecl;
1911}
1912
1913/// ActOnStartCategoryImplementation - Perform semantic checks on the
1914/// category implementation declaration and build an ObjCCategoryImplDecl
1915/// object.
1916ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation(
1917 SourceLocation AtCatImplLoc, IdentifierInfo *ClassName,
1918 SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc,
1919 const ParsedAttributesView &Attrs) {
1920 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true);
1921 ObjCCategoryDecl *CatIDecl = nullptr;
1922 if (IDecl && IDecl->hasDefinition()) {
1923 CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName);
1924 if (!CatIDecl) {
1925 // Category @implementation with no corresponding @interface.
1926 // Create and install one.
1927 CatIDecl = ObjCCategoryDecl::Create(C&: Context, DC: CurContext, AtLoc: AtCatImplLoc,
1928 ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc,
1929 Id: CatName, IDecl,
1930 /*typeParamList=*/nullptr);
1931 CatIDecl->setImplicit();
1932 }
1933 }
1934
1935 ObjCCategoryImplDecl *CDecl =
1936 ObjCCategoryImplDecl::Create(C&: Context, DC: CurContext, Id: CatName, classInterface: IDecl,
1937 nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc);
1938 /// Check that class of this category is already completely declared.
1939 if (!IDecl) {
1940 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1941 CDecl->setInvalidDecl();
1942 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1943 diag::err_undef_interface)) {
1944 CDecl->setInvalidDecl();
1945 }
1946
1947 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1948 AddPragmaAttributes(TUScope, CDecl);
1949
1950 // FIXME: PushOnScopeChains?
1951 CurContext->addDecl(CDecl);
1952
1953 // If the interface has the objc_runtime_visible attribute, we
1954 // cannot implement a category for it.
1955 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1956 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1957 << IDecl->getDeclName();
1958 }
1959
1960 /// Check that CatName, category name, is not used in another implementation.
1961 if (CatIDecl) {
1962 if (CatIDecl->getImplementation()) {
1963 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1964 << CatName;
1965 Diag(CatIDecl->getImplementation()->getLocation(),
1966 diag::note_previous_definition);
1967 CDecl->setInvalidDecl();
1968 } else {
1969 CatIDecl->setImplementation(CDecl);
1970 // Warn on implementating category of deprecated class under
1971 // -Wdeprecated-implementations flag.
1972 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1973 CDecl->getLocation());
1974 }
1975 }
1976
1977 CheckObjCDeclScope(CDecl);
1978 ActOnObjCContainerStartDefinition(CDecl);
1979 return CDecl;
1980}
1981
1982ObjCImplementationDecl *Sema::ActOnStartClassImplementation(
1983 SourceLocation AtClassImplLoc, IdentifierInfo *ClassName,
1984 SourceLocation ClassLoc, IdentifierInfo *SuperClassname,
1985 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1986 ObjCInterfaceDecl *IDecl = nullptr;
1987 // Check for another declaration kind with the same name.
1988 NamedDecl *PrevDecl
1989 = LookupSingleName(S: TUScope, Name: ClassName, Loc: ClassLoc, NameKind: LookupOrdinaryName,
1990 Redecl: forRedeclarationInCurContext());
1991 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
1992 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1993 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) {
1995 // FIXME: This will produce an error if the definition of the interface has
1996 // been imported from a module but is not visible.
1997 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1998 diag::warn_undef_interface);
1999 } else {
2000 // We did not find anything with the name ClassName; try to correct for
2001 // typos in the class name.
2002 ObjCInterfaceValidatorCCC CCC{};
2003 TypoCorrection Corrected =
2004 CorrectTypo(Typo: DeclarationNameInfo(ClassName, ClassLoc),
2005 LookupKind: LookupOrdinaryName, S: TUScope, SS: nullptr, CCC, Mode: CTK_NonError);
2006 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2007 // Suggest the (potentially) correct interface name. Don't provide a
2008 // code-modification hint or use the typo name for recovery, because
2009 // this is just a warning. The program may actually be correct.
2010 diagnoseTypo(Corrected,
2011 PDiag(diag::warn_undef_interface_suggest) << ClassName,
2012 /*ErrorRecovery*/false);
2013 } else {
2014 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2015 }
2016 }
2017
2018 // Check that super class name is valid class name
2019 ObjCInterfaceDecl *SDecl = nullptr;
2020 if (SuperClassname) {
2021 // Check if a different kind of symbol declared in this scope.
2022 PrevDecl = LookupSingleName(S: TUScope, Name: SuperClassname, Loc: SuperClassLoc,
2023 NameKind: LookupOrdinaryName);
2024 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
2025 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2026 << SuperClassname;
2027 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2028 } else {
2029 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
2030 if (SDecl && !SDecl->hasDefinition())
2031 SDecl = nullptr;
2032 if (!SDecl)
2033 Diag(SuperClassLoc, diag::err_undef_superclass)
2034 << SuperClassname << ClassName;
2035 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2036 // This implementation and its interface do not have the same
2037 // super class.
2038 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2039 << SDecl->getDeclName();
2040 Diag(SDecl->getLocation(), diag::note_previous_definition);
2041 }
2042 }
2043 }
2044
2045 if (!IDecl) {
2046 // Legacy case of @implementation with no corresponding @interface.
2047 // Build, chain & install the interface decl into the identifier.
2048
2049 // FIXME: Do we support attributes on the @implementation? If so we should
2050 // copy them over.
2051 IDecl = ObjCInterfaceDecl::Create(C: Context, DC: CurContext, atLoc: AtClassImplLoc,
2052 Id: ClassName, /*typeParamList=*/nullptr,
2053 /*PrevDecl=*/nullptr, ClassLoc,
2054 isInternal: true);
2055 AddPragmaAttributes(TUScope, IDecl);
2056 IDecl->startDefinition();
2057 if (SDecl) {
2058 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2059 T: Context.getObjCInterfaceType(Decl: SDecl),
2060 Loc: SuperClassLoc));
2061 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2062 } else {
2063 IDecl->setEndOfDefinitionLoc(ClassLoc);
2064 }
2065
2066 PushOnScopeChains(IDecl, TUScope);
2067 } else {
2068 // Mark the interface as being completed, even if it was just as
2069 // @class ....;
2070 // declaration; the user cannot reopen it.
2071 if (!IDecl->hasDefinition())
2072 IDecl->startDefinition();
2073 }
2074
2075 ObjCImplementationDecl* IMPDecl =
2076 ObjCImplementationDecl::Create(C&: Context, DC: CurContext, classInterface: IDecl, superDecl: SDecl,
2077 nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc);
2078
2079 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2080 AddPragmaAttributes(TUScope, IMPDecl);
2081
2082 if (CheckObjCDeclScope(IMPDecl)) {
2083 ActOnObjCContainerStartDefinition(IMPDecl);
2084 return IMPDecl;
2085 }
2086
2087 // Check that there is no duplicate implementation of this class.
2088 if (IDecl->getImplementation()) {
2089 // FIXME: Don't leak everything!
2090 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2091 Diag(IDecl->getImplementation()->getLocation(),
2092 diag::note_previous_definition);
2093 IMPDecl->setInvalidDecl();
2094 } else { // add it to the list.
2095 IDecl->setImplementation(IMPDecl);
2096 PushOnScopeChains(IMPDecl, TUScope);
2097 // Warn on implementating deprecated class under
2098 // -Wdeprecated-implementations flag.
2099 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2100 }
2101
2102 // If the superclass has the objc_runtime_visible attribute, we
2103 // cannot implement a subclass of it.
2104 if (IDecl->getSuperClass() &&
2105 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2106 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2107 << IDecl->getDeclName()
2108 << IDecl->getSuperClass()->getDeclName();
2109 }
2110
2111 ActOnObjCContainerStartDefinition(IMPDecl);
2112 return IMPDecl;
2113}
2114
2115Sema::DeclGroupPtrTy
2116Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2117 SmallVector<Decl *, 64> DeclsInGroup;
2118 DeclsInGroup.reserve(N: Decls.size() + 1);
2119
2120 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2121 Decl *Dcl = Decls[i];
2122 if (!Dcl)
2123 continue;
2124 if (Dcl->getDeclContext()->isFileContext())
2125 Dcl->setTopLevelDeclInObjCContainer();
2126 DeclsInGroup.push_back(Elt: Dcl);
2127 }
2128
2129 DeclsInGroup.push_back(Elt: ObjCImpDecl);
2130
2131 return BuildDeclaratorGroup(Group: DeclsInGroup);
2132}
2133
2134void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2135 ObjCIvarDecl **ivars, unsigned numIvars,
2136 SourceLocation RBrace) {
2137 assert(ImpDecl && "missing implementation decl");
2138 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2139 if (!IDecl)
2140 return;
2141 /// Check case of non-existing \@interface decl.
2142 /// (legacy objective-c \@implementation decl without an \@interface decl).
2143 /// Add implementations's ivar to the synthesize class's ivar list.
2144 if (IDecl->isImplicitInterfaceDecl()) {
2145 IDecl->setEndOfDefinitionLoc(RBrace);
2146 // Add ivar's to class's DeclContext.
2147 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2148 ivars[i]->setLexicalDeclContext(ImpDecl);
2149 // In a 'fragile' runtime the ivar was added to the implicit
2150 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2151 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2152 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2153 if (!LangOpts.ObjCRuntime.isFragile())
2154 IDecl->makeDeclVisibleInContext(ivars[i]);
2155 ImpDecl->addDecl(ivars[i]);
2156 }
2157
2158 return;
2159 }
2160 // If implementation has empty ivar list, just return.
2161 if (numIvars == 0)
2162 return;
2163
2164 assert(ivars && "missing @implementation ivars");
2165 if (LangOpts.ObjCRuntime.isNonFragile()) {
2166 if (ImpDecl->getSuperClass())
2167 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2168 for (unsigned i = 0; i < numIvars; i++) {
2169 ObjCIvarDecl* ImplIvar = ivars[i];
2170 if (const ObjCIvarDecl *ClsIvar =
2171 IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) {
2172 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2173 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2174 continue;
2175 }
2176 // Check class extensions (unnamed categories) for duplicate ivars.
2177 for (const auto *CDecl : IDecl->visible_extensions()) {
2178 if (const ObjCIvarDecl *ClsExtIvar =
2179 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2180 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2181 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2182 continue;
2183 }
2184 }
2185 // Instance ivar to Implementation's DeclContext.
2186 ImplIvar->setLexicalDeclContext(ImpDecl);
2187 IDecl->makeDeclVisibleInContext(ImplIvar);
2188 ImpDecl->addDecl(ImplIvar);
2189 }
2190 return;
2191 }
2192 // Check interface's Ivar list against those in the implementation.
2193 // names and types must match.
2194 //
2195 unsigned j = 0;
2196 ObjCInterfaceDecl::ivar_iterator
2197 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2198 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2199 ObjCIvarDecl* ImplIvar = ivars[j++];
2200 ObjCIvarDecl* ClsIvar = *IVI;
2201 assert (ImplIvar && "missing implementation ivar");
2202 assert (ClsIvar && "missing class ivar");
2203
2204 // First, make sure the types match.
2205 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2206 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2207 << ImplIvar->getIdentifier()
2208 << ImplIvar->getType() << ClsIvar->getType();
2209 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2210 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2211 ImplIvar->getBitWidthValue(Context) !=
2212 ClsIvar->getBitWidthValue(Context)) {
2213 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2214 diag::err_conflicting_ivar_bitwidth)
2215 << ImplIvar->getIdentifier();
2216 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2217 diag::note_previous_definition);
2218 }
2219 // Make sure the names are identical.
2220 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2221 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2222 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2223 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2224 }
2225 --numIvars;
2226 }
2227
2228 if (numIvars > 0)
2229 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2230 else if (IVI != IVE)
2231 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2232}
2233
2234static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2235 ObjCMethodDecl *method, bool &IncompleteImpl,
2236 unsigned DiagID,
2237 NamedDecl *NeededFor = nullptr) {
2238 // No point warning no definition of method which is 'unavailable'.
2239 if (method->getAvailability() == AR_Unavailable)
2240 return;
2241
2242 // FIXME: For now ignore 'IncompleteImpl'.
2243 // Previously we grouped all unimplemented methods under a single
2244 // warning, but some users strongly voiced that they would prefer
2245 // separate warnings. We will give that approach a try, as that
2246 // matches what we do with protocols.
2247 {
2248 const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID);
2249 B << method;
2250 if (NeededFor)
2251 B << NeededFor;
2252
2253 // Add an empty definition at the end of the @implementation.
2254 std::string FixItStr;
2255 llvm::raw_string_ostream Out(FixItStr);
2256 method->print(Out, Impl->getASTContext().getPrintingPolicy());
2257 Out << " {\n}\n\n";
2258
2259 SourceLocation Loc = Impl->getAtEndRange().getBegin();
2260 B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr);
2261 }
2262
2263 // Issue a note to the original declaration.
2264 SourceLocation MethodLoc = method->getBeginLoc();
2265 if (MethodLoc.isValid())
2266 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2267}
2268
2269/// Determines if type B can be substituted for type A. Returns true if we can
2270/// guarantee that anything that the user will do to an object of type A can
2271/// also be done to an object of type B. This is trivially true if the two
2272/// types are the same, or if B is a subclass of A. It becomes more complex
2273/// in cases where protocols are involved.
2274///
2275/// Object types in Objective-C describe the minimum requirements for an
2276/// object, rather than providing a complete description of a type. For
2277/// example, if A is a subclass of B, then B* may refer to an instance of A.
2278/// The principle of substitutability means that we may use an instance of A
2279/// anywhere that we may use an instance of B - it will implement all of the
2280/// ivars of B and all of the methods of B.
2281///
2282/// This substitutability is important when type checking methods, because
2283/// the implementation may have stricter type definitions than the interface.
2284/// The interface specifies minimum requirements, but the implementation may
2285/// have more accurate ones. For example, a method may privately accept
2286/// instances of B, but only publish that it accepts instances of A. Any
2287/// object passed to it will be type checked against B, and so will implicitly
2288/// by a valid A*. Similarly, a method may return a subclass of the class that
2289/// it is declared as returning.
2290///
2291/// This is most important when considering subclassing. A method in a
2292/// subclass must accept any object as an argument that its superclass's
2293/// implementation accepts. It may, however, accept a more general type
2294/// without breaking substitutability (i.e. you can still use the subclass
2295/// anywhere that you can use the superclass, but not vice versa). The
2296/// converse requirement applies to return types: the return type for a
2297/// subclass method must be a valid object of the kind that the superclass
2298/// advertises, but it may be specified more accurately. This avoids the need
2299/// for explicit down-casting by callers.
2300///
2301/// Note: This is a stricter requirement than for assignment.
2302static bool isObjCTypeSubstitutable(ASTContext &Context,
2303 const ObjCObjectPointerType *A,
2304 const ObjCObjectPointerType *B,
2305 bool rejectId) {
2306 // Reject a protocol-unqualified id.
2307 if (rejectId && B->isObjCIdType()) return false;
2308
2309 // If B is a qualified id, then A must also be a qualified id and it must
2310 // implement all of the protocols in B. It may not be a qualified class.
2311 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2312 // stricter definition so it is not substitutable for id<A>.
2313 if (B->isObjCQualifiedIdType()) {
2314 return A->isObjCQualifiedIdType() &&
2315 Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false);
2316 }
2317
2318 /*
2319 // id is a special type that bypasses type checking completely. We want a
2320 // warning when it is used in one place but not another.
2321 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2322
2323
2324 // If B is a qualified id, then A must also be a qualified id (which it isn't
2325 // if we've got this far)
2326 if (B->isObjCQualifiedIdType()) return false;
2327 */
2328
2329 // Now we know that A and B are (potentially-qualified) class types. The
2330 // normal rules for assignment apply.
2331 return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B);
2332}
2333
2334static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2335 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2336}
2337
2338/// Determine whether two set of Objective-C declaration qualifiers conflict.
2339static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2340 Decl::ObjCDeclQualifier y) {
2341 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2342 (y & ~Decl::OBJC_TQ_CSNullability);
2343}
2344
2345static bool CheckMethodOverrideReturn(Sema &S,
2346 ObjCMethodDecl *MethodImpl,
2347 ObjCMethodDecl *MethodDecl,
2348 bool IsProtocolMethodDecl,
2349 bool IsOverridingMode,
2350 bool Warn) {
2351 if (IsProtocolMethodDecl &&
2352 objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(),
2353 y: MethodImpl->getObjCDeclQualifier())) {
2354 if (Warn) {
2355 S.Diag(MethodImpl->getLocation(),
2356 (IsOverridingMode
2357 ? diag::warn_conflicting_overriding_ret_type_modifiers
2358 : diag::warn_conflicting_ret_type_modifiers))
2359 << MethodImpl->getDeclName()
2360 << MethodImpl->getReturnTypeSourceRange();
2361 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2362 << MethodDecl->getReturnTypeSourceRange();
2363 }
2364 else
2365 return false;
2366 }
2367 if (Warn && IsOverridingMode &&
2368 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2369 !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(),
2370 SuperT: MethodDecl->getReturnType(),
2371 IsParam: false)) {
2372 auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2373 auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2374 S.Diag(MethodImpl->getLocation(),
2375 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2376 << DiagNullabilityKind(nullabilityMethodImpl,
2377 ((MethodImpl->getObjCDeclQualifier() &
2378 Decl::OBJC_TQ_CSNullability) != 0))
2379 << DiagNullabilityKind(nullabilityMethodDecl,
2380 ((MethodDecl->getObjCDeclQualifier() &
2381 Decl::OBJC_TQ_CSNullability) != 0));
2382 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2383 }
2384
2385 if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(),
2386 T2: MethodDecl->getReturnType()))
2387 return true;
2388 if (!Warn)
2389 return false;
2390
2391 unsigned DiagID =
2392 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2393 : diag::warn_conflicting_ret_types;
2394
2395 // Mismatches between ObjC pointers go into a different warning
2396 // category, and sometimes they're even completely explicitly allowed.
2397 if (const ObjCObjectPointerType *ImplPtrTy =
2398 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2399 if (const ObjCObjectPointerType *IfacePtrTy =
2400 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2401 // Allow non-matching return types as long as they don't violate
2402 // the principle of substitutability. Specifically, we permit
2403 // return types that are subclasses of the declared return type,
2404 // or that are more-qualified versions of the declared type.
2405 if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false))
2406 return false;
2407
2408 DiagID =
2409 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2410 : diag::warn_non_covariant_ret_types;
2411 }
2412 }
2413
2414 S.Diag(MethodImpl->getLocation(), DiagID)
2415 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2416 << MethodImpl->getReturnType()
2417 << MethodImpl->getReturnTypeSourceRange();
2418 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2419 ? diag::note_previous_declaration
2420 : diag::note_previous_definition)
2421 << MethodDecl->getReturnTypeSourceRange();
2422 return false;
2423}
2424
2425static bool CheckMethodOverrideParam(Sema &S,
2426 ObjCMethodDecl *MethodImpl,
2427 ObjCMethodDecl *MethodDecl,
2428 ParmVarDecl *ImplVar,
2429 ParmVarDecl *IfaceVar,
2430 bool IsProtocolMethodDecl,
2431 bool IsOverridingMode,
2432 bool Warn) {
2433 if (IsProtocolMethodDecl &&
2434 objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(),
2435 y: IfaceVar->getObjCDeclQualifier())) {
2436 if (Warn) {
2437 if (IsOverridingMode)
2438 S.Diag(ImplVar->getLocation(),
2439 diag::warn_conflicting_overriding_param_modifiers)
2440 << getTypeRange(ImplVar->getTypeSourceInfo())
2441 << MethodImpl->getDeclName();
2442 else S.Diag(ImplVar->getLocation(),
2443 diag::warn_conflicting_param_modifiers)
2444 << getTypeRange(ImplVar->getTypeSourceInfo())
2445 << MethodImpl->getDeclName();
2446 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2447 << getTypeRange(IfaceVar->getTypeSourceInfo());
2448 }
2449 else
2450 return false;
2451 }
2452
2453 QualType ImplTy = ImplVar->getType();
2454 QualType IfaceTy = IfaceVar->getType();
2455 if (Warn && IsOverridingMode &&
2456 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2457 !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) {
2458 S.Diag(ImplVar->getLocation(),
2459 diag::warn_conflicting_nullability_attr_overriding_param_types)
2460 << DiagNullabilityKind(*ImplTy->getNullability(),
2461 ((ImplVar->getObjCDeclQualifier() &
2462 Decl::OBJC_TQ_CSNullability) != 0))
2463 << DiagNullabilityKind(*IfaceTy->getNullability(),
2464 ((IfaceVar->getObjCDeclQualifier() &
2465 Decl::OBJC_TQ_CSNullability) != 0));
2466 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2467 }
2468 if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy))
2469 return true;
2470
2471 if (!Warn)
2472 return false;
2473 unsigned DiagID =
2474 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2475 : diag::warn_conflicting_param_types;
2476
2477 // Mismatches between ObjC pointers go into a different warning
2478 // category, and sometimes they're even completely explicitly allowed..
2479 if (const ObjCObjectPointerType *ImplPtrTy =
2480 ImplTy->getAs<ObjCObjectPointerType>()) {
2481 if (const ObjCObjectPointerType *IfacePtrTy =
2482 IfaceTy->getAs<ObjCObjectPointerType>()) {
2483 // Allow non-matching argument types as long as they don't
2484 // violate the principle of substitutability. Specifically, the
2485 // implementation must accept any objects that the superclass
2486 // accepts, however it may also accept others.
2487 if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true))
2488 return false;
2489
2490 DiagID =
2491 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2492 : diag::warn_non_contravariant_param_types;
2493 }
2494 }
2495
2496 S.Diag(ImplVar->getLocation(), DiagID)
2497 << getTypeRange(ImplVar->getTypeSourceInfo())
2498 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2499 S.Diag(IfaceVar->getLocation(),
2500 (IsOverridingMode ? diag::note_previous_declaration
2501 : diag::note_previous_definition))
2502 << getTypeRange(IfaceVar->getTypeSourceInfo());
2503 return false;
2504}
2505
2506/// In ARC, check whether the conventional meanings of the two methods
2507/// match. If they don't, it's a hard error.
2508static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2509 ObjCMethodDecl *decl) {
2510 ObjCMethodFamily implFamily = impl->getMethodFamily();
2511 ObjCMethodFamily declFamily = decl->getMethodFamily();
2512 if (implFamily == declFamily) return false;
2513
2514 // Since conventions are sorted by selector, the only possibility is
2515 // that the types differ enough to cause one selector or the other
2516 // to fall out of the family.
2517 assert(implFamily == OMF_None || declFamily == OMF_None);
2518
2519 // No further diagnostics required on invalid declarations.
2520 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2521
2522 const ObjCMethodDecl *unmatched = impl;
2523 ObjCMethodFamily family = declFamily;
2524 unsigned errorID = diag::err_arc_lost_method_convention;
2525 unsigned noteID = diag::note_arc_lost_method_convention;
2526 if (declFamily == OMF_None) {
2527 unmatched = decl;
2528 family = implFamily;
2529 errorID = diag::err_arc_gained_method_convention;
2530 noteID = diag::note_arc_gained_method_convention;
2531 }
2532
2533 // Indexes into a %select clause in the diagnostic.
2534 enum FamilySelector {
2535 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2536 };
2537 FamilySelector familySelector = FamilySelector();
2538
2539 switch (family) {
2540 case OMF_None: llvm_unreachable("logic error, no method convention");
2541 case OMF_retain:
2542 case OMF_release:
2543 case OMF_autorelease:
2544 case OMF_dealloc:
2545 case OMF_finalize:
2546 case OMF_retainCount:
2547 case OMF_self:
2548 case OMF_initialize:
2549 case OMF_performSelector:
2550 // Mismatches for these methods don't change ownership
2551 // conventions, so we don't care.
2552 return false;
2553
2554 case OMF_init: familySelector = F_init; break;
2555 case OMF_alloc: familySelector = F_alloc; break;
2556 case OMF_copy: familySelector = F_copy; break;
2557 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2558 case OMF_new: familySelector = F_new; break;
2559 }
2560
2561 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2562 ReasonSelector reasonSelector;
2563
2564 // The only reason these methods don't fall within their families is
2565 // due to unusual result types.
2566 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2567 reasonSelector = R_UnrelatedReturn;
2568 } else {
2569 reasonSelector = R_NonObjectReturn;
2570 }
2571
2572 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2573 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2574
2575 return true;
2576}
2577
2578void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2579 ObjCMethodDecl *MethodDecl,
2580 bool IsProtocolMethodDecl) {
2581 if (getLangOpts().ObjCAutoRefCount &&
2582 checkMethodFamilyMismatch(S&: *this, impl: ImpMethodDecl, decl: MethodDecl))
2583 return;
2584
2585 CheckMethodOverrideReturn(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl,
2586 IsProtocolMethodDecl, IsOverridingMode: false,
2587 Warn: true);
2588
2589 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2590 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2591 EF = MethodDecl->param_end();
2592 IM != EM && IF != EF; ++IM, ++IF) {
2593 CheckMethodOverrideParam(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF,
2594 IsProtocolMethodDecl, IsOverridingMode: false, Warn: true);
2595 }
2596
2597 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2598 Diag(ImpMethodDecl->getLocation(),
2599 diag::warn_conflicting_variadic);
2600 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2601 }
2602}
2603
2604void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2605 ObjCMethodDecl *Overridden,
2606 bool IsProtocolMethodDecl) {
2607
2608 CheckMethodOverrideReturn(S&: *this, MethodImpl: Method, MethodDecl: Overridden,
2609 IsProtocolMethodDecl, IsOverridingMode: true,
2610 Warn: true);
2611
2612 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2613 IF = Overridden->param_begin(), EM = Method->param_end(),
2614 EF = Overridden->param_end();
2615 IM != EM && IF != EF; ++IM, ++IF) {
2616 CheckMethodOverrideParam(S&: *this, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF,
2617 IsProtocolMethodDecl, IsOverridingMode: true, Warn: true);
2618 }
2619
2620 if (Method->isVariadic() != Overridden->isVariadic()) {
2621 Diag(Method->getLocation(),
2622 diag::warn_conflicting_overriding_variadic);
2623 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2624 }
2625}
2626
2627/// WarnExactTypedMethods - This routine issues a warning if method
2628/// implementation declaration matches exactly that of its declaration.
2629void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2630 ObjCMethodDecl *MethodDecl,
2631 bool IsProtocolMethodDecl) {
2632 // don't issue warning when protocol method is optional because primary
2633 // class is not required to implement it and it is safe for protocol
2634 // to implement it.
2635 if (MethodDecl->getImplementationControl() ==
2636 ObjCImplementationControl::Optional)
2637 return;
2638 // don't issue warning when primary class's method is
2639 // deprecated/unavailable.
2640 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2641 MethodDecl->hasAttr<DeprecatedAttr>())
2642 return;
2643
2644 bool match = CheckMethodOverrideReturn(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl,
2645 IsProtocolMethodDecl, IsOverridingMode: false, Warn: false);
2646 if (match)
2647 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2648 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2649 EF = MethodDecl->param_end();
2650 IM != EM && IF != EF; ++IM, ++IF) {
2651 match = CheckMethodOverrideParam(S&: *this, MethodImpl: ImpMethodDecl, MethodDecl,
2652 ImplVar: *IM, IfaceVar: *IF,
2653 IsProtocolMethodDecl, IsOverridingMode: false, Warn: false);
2654 if (!match)
2655 break;
2656 }
2657 if (match)
2658 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2659 if (match)
2660 match = !(MethodDecl->isClassMethod() &&
2661 MethodDecl->getSelector() == GetNullarySelector(name: "load", Ctx&: Context));
2662
2663 if (match) {
2664 Diag(ImpMethodDecl->getLocation(),
2665 diag::warn_category_method_impl_match);
2666 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2667 << MethodDecl->getDeclName();
2668 }
2669}
2670
2671/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2672/// improve the efficiency of selector lookups and type checking by associating
2673/// with each protocol / interface / category the flattened instance tables. If
2674/// we used an immutable set to keep the table then it wouldn't add significant
2675/// memory cost and it would be handy for lookups.
2676
2677typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2678typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2679
2680static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2681 ProtocolNameSet &PNS) {
2682 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2683 PNS.insert(PDecl->getIdentifier());
2684 for (const auto *PI : PDecl->protocols())
2685 findProtocolsWithExplicitImpls(PDecl: PI, PNS);
2686}
2687
2688/// Recursively populates a set with all conformed protocols in a class
2689/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2690/// attribute.
2691static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2692 ProtocolNameSet &PNS) {
2693 if (!Super)
2694 return;
2695
2696 for (const auto *I : Super->all_referenced_protocols())
2697 findProtocolsWithExplicitImpls(PDecl: I, PNS);
2698
2699 findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS);
2700}
2701
2702/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2703/// Declared in protocol, and those referenced by it.
2704static void CheckProtocolMethodDefs(
2705 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2706 const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap,
2707 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2708 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl);
2709 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2710 : dyn_cast<ObjCInterfaceDecl>(Val: CDecl);
2711 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2712
2713 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2714 ObjCInterfaceDecl *NSIDecl = nullptr;
2715
2716 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2717 // then we should check if any class in the super class hierarchy also
2718 // conforms to this protocol, either directly or via protocol inheritance.
2719 // If so, we can skip checking this protocol completely because we
2720 // know that a parent class already satisfies this protocol.
2721 //
2722 // Note: we could generalize this logic for all protocols, and merely
2723 // add the limit on looking at the super class chain for just
2724 // specially marked protocols. This may be a good optimization. This
2725 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2726 // protocols for now for controlled evaluation.
2727 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2728 if (!ProtocolsExplictImpl) {
2729 ProtocolsExplictImpl.reset(p: new ProtocolNameSet);
2730 findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl);
2731 }
2732 if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier()))
2733 return;
2734
2735 // If no super class conforms to the protocol, we should not search
2736 // for methods in the super class to implicitly satisfy the protocol.
2737 Super = nullptr;
2738 }
2739
2740 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2741 // check to see if class implements forwardInvocation method and objects
2742 // of this class are derived from 'NSProxy' so that to forward requests
2743 // from one object to another.
2744 // Under such conditions, which means that every method possible is
2745 // implemented in the class, we should not issue "Method definition not
2746 // found" warnings.
2747 // FIXME: Use a general GetUnarySelector method for this.
2748 IdentifierInfo* II = &S.Context.Idents.get(Name: "forwardInvocation");
2749 Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II);
2750 if (InsMap.count(Ptr: fISelector))
2751 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2752 // need be implemented in the implementation.
2753 NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy"));
2754 }
2755
2756 // If this is a forward protocol declaration, get its definition.
2757 if (!PDecl->isThisDeclarationADefinition() &&
2758 PDecl->getDefinition())
2759 PDecl = PDecl->getDefinition();
2760
2761 // If a method lookup fails locally we still need to look and see if
2762 // the method was implemented by a base class or an inherited
2763 // protocol. This lookup is slow, but occurs rarely in correct code
2764 // and otherwise would terminate in a warning.
2765
2766 // check unimplemented instance methods.
2767 if (!NSIDecl)
2768 for (auto *method : PDecl->instance_methods()) {
2769 if (method->getImplementationControl() !=
2770 ObjCImplementationControl::Optional &&
2771 !method->isPropertyAccessor() &&
2772 !InsMap.count(method->getSelector()) &&
2773 (!Super || !Super->lookupMethod(
2774 method->getSelector(), true /* instance */,
2775 false /* shallowCategory */, true /* followsSuper */,
2776 nullptr /* category */))) {
2777 // If a method is not implemented in the category implementation but
2778 // has been declared in its primary class, superclass,
2779 // or in one of their protocols, no need to issue the warning.
2780 // This is because method will be implemented in the primary class
2781 // or one of its super class implementation.
2782
2783 // Ugly, but necessary. Method declared in protocol might have
2784 // have been synthesized due to a property declared in the class which
2785 // uses the protocol.
2786 if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2787 method->getSelector(), true /* instance */,
2788 true /* shallowCategoryLookup */, false /* followSuper */))
2789 if (C || MethodInClass->isPropertyAccessor())
2790 continue;
2791 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2792 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2793 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2794 }
2795 }
2796 }
2797 // check unimplemented class methods
2798 for (auto *method : PDecl->class_methods()) {
2799 if (method->getImplementationControl() !=
2800 ObjCImplementationControl::Optional &&
2801 !ClsMap.count(method->getSelector()) &&
2802 (!Super || !Super->lookupMethod(
2803 method->getSelector(), false /* class method */,
2804 false /* shallowCategoryLookup */,
2805 true /* followSuper */, nullptr /* category */))) {
2806 // See above comment for instance method lookups.
2807 if (C && IDecl->lookupMethod(method->getSelector(),
2808 false /* class */,
2809 true /* shallowCategoryLookup */,
2810 false /* followSuper */))
2811 continue;
2812
2813 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2814 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2815 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2816 }
2817 }
2818 }
2819 // Check on this protocols's referenced protocols, recursively.
2820 for (auto *PI : PDecl->protocols())
2821 CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2822 ProtocolsExplictImpl);
2823}
2824
2825/// MatchAllMethodDeclarations - Check methods declared in interface
2826/// or protocol against those declared in their implementations.
2827///
2828void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2829 const SelectorSet &ClsMap,
2830 SelectorSet &InsMapSeen,
2831 SelectorSet &ClsMapSeen,
2832 ObjCImplDecl* IMPDecl,
2833 ObjCContainerDecl* CDecl,
2834 bool &IncompleteImpl,
2835 bool ImmediateClass,
2836 bool WarnCategoryMethodImpl) {
2837 // Check and see if instance methods in class interface have been
2838 // implemented in the implementation class. If so, their types match.
2839 for (auto *I : CDecl->instance_methods()) {
2840 if (!InsMapSeen.insert(Ptr: I->getSelector()).second)
2841 continue;
2842 if (!I->isPropertyAccessor() &&
2843 !InsMap.count(Ptr: I->getSelector())) {
2844 if (ImmediateClass)
2845 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2846 diag::warn_undef_method_impl);
2847 continue;
2848 } else {
2849 ObjCMethodDecl *ImpMethodDecl =
2850 IMPDecl->getInstanceMethod(I->getSelector());
2851 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2852 "Expected to find the method through lookup as well");
2853 // ImpMethodDecl may be null as in a @dynamic property.
2854 if (ImpMethodDecl) {
2855 // Skip property accessor function stubs.
2856 if (ImpMethodDecl->isSynthesizedAccessorStub())
2857 continue;
2858 if (!WarnCategoryMethodImpl)
2859 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I,
2860 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2861 else if (!I->isPropertyAccessor())
2862 WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2863 }
2864 }
2865 }
2866
2867 // Check and see if class methods in class interface have been
2868 // implemented in the implementation class. If so, their types match.
2869 for (auto *I : CDecl->class_methods()) {
2870 if (!ClsMapSeen.insert(Ptr: I->getSelector()).second)
2871 continue;
2872 if (!I->isPropertyAccessor() &&
2873 !ClsMap.count(Ptr: I->getSelector())) {
2874 if (ImmediateClass)
2875 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2876 diag::warn_undef_method_impl);
2877 } else {
2878 ObjCMethodDecl *ImpMethodDecl =
2879 IMPDecl->getClassMethod(I->getSelector());
2880 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2881 "Expected to find the method through lookup as well");
2882 // ImpMethodDecl may be null as in a @dynamic property.
2883 if (ImpMethodDecl) {
2884 // Skip property accessor function stubs.
2885 if (ImpMethodDecl->isSynthesizedAccessorStub())
2886 continue;
2887 if (!WarnCategoryMethodImpl)
2888 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I,
2889 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2890 else if (!I->isPropertyAccessor())
2891 WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl));
2892 }
2893 }
2894 }
2895
2896 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) {
2897 // Also, check for methods declared in protocols inherited by
2898 // this protocol.
2899 for (auto *PI : PD->protocols())
2900 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2901 IMPDecl, PI, IncompleteImpl, false,
2902 WarnCategoryMethodImpl);
2903 }
2904
2905 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) {
2906 // when checking that methods in implementation match their declaration,
2907 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2908 // extension; as well as those in categories.
2909 if (!WarnCategoryMethodImpl) {
2910 for (auto *Cat : I->visible_categories())
2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912 IMPDecl, Cat, IncompleteImpl,
2913 ImmediateClass && Cat->IsClassExtension(),
2914 WarnCategoryMethodImpl);
2915 } else {
2916 // Also methods in class extensions need be looked at next.
2917 for (auto *Ext : I->visible_extensions())
2918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2919 IMPDecl, Ext, IncompleteImpl, false,
2920 WarnCategoryMethodImpl);
2921 }
2922
2923 // Check for any implementation of a methods declared in protocol.
2924 for (auto *PI : I->all_referenced_protocols())
2925 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2926 IMPDecl, PI, IncompleteImpl, false,
2927 WarnCategoryMethodImpl);
2928
2929 // FIXME. For now, we are not checking for exact match of methods
2930 // in category implementation and its primary class's super class.
2931 if (!WarnCategoryMethodImpl && I->getSuperClass())
2932 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2933 IMPDecl,
2934 I->getSuperClass(), IncompleteImpl, false);
2935 }
2936}
2937
2938/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2939/// category matches with those implemented in its primary class and
2940/// warns each time an exact match is found.
2941void Sema::CheckCategoryVsClassMethodMatches(
2942 ObjCCategoryImplDecl *CatIMPDecl) {
2943 // Get category's primary class.
2944 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2945 if (!CatDecl)
2946 return;
2947 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2948 if (!IDecl)
2949 return;
2950 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2951 SelectorSet InsMap, ClsMap;
2952
2953 for (const auto *I : CatIMPDecl->instance_methods()) {
2954 Selector Sel = I->getSelector();
2955 // When checking for methods implemented in the category, skip over
2956 // those declared in category class's super class. This is because
2957 // the super class must implement the method.
2958 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2959 continue;
2960 InsMap.insert(Sel);
2961 }
2962
2963 for (const auto *I : CatIMPDecl->class_methods()) {
2964 Selector Sel = I->getSelector();
2965 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2966 continue;
2967 ClsMap.insert(Sel);
2968 }
2969 if (InsMap.empty() && ClsMap.empty())
2970 return;
2971
2972 SelectorSet InsMapSeen, ClsMapSeen;
2973 bool IncompleteImpl = false;
2974 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2975 CatIMPDecl, IDecl,
2976 IncompleteImpl, false,
2977 true /*WarnCategoryMethodImpl*/);
2978}
2979
2980void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2981 ObjCContainerDecl* CDecl,
2982 bool IncompleteImpl) {
2983 SelectorSet InsMap;
2984 // Check and see if instance methods in class interface have been
2985 // implemented in the implementation class.
2986 for (const auto *I : IMPDecl->instance_methods())
2987 InsMap.insert(I->getSelector());
2988
2989 // Add the selectors for getters/setters of @dynamic properties.
2990 for (const auto *PImpl : IMPDecl->property_impls()) {
2991 // We only care about @dynamic implementations.
2992 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2993 continue;
2994
2995 const auto *P = PImpl->getPropertyDecl();
2996 if (!P) continue;
2997
2998 InsMap.insert(Ptr: P->getGetterName());
2999 if (!P->getSetterName().isNull())
3000 InsMap.insert(Ptr: P->getSetterName());
3001 }
3002
3003 // Check and see if properties declared in the interface have either 1)
3004 // an implementation or 2) there is a @synthesize/@dynamic implementation
3005 // of the property in the @implementation.
3006 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) {
3007 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
3008 LangOpts.ObjCRuntime.isNonFragile() &&
3009 !IDecl->isObjCRequiresPropertyDefs();
3010 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3011 }
3012
3013 // Diagnose null-resettable synthesized setters.
3014 diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl);
3015
3016 SelectorSet ClsMap;
3017 for (const auto *I : IMPDecl->class_methods())
3018 ClsMap.insert(I->getSelector());
3019
3020 // Check for type conflict of methods declared in a class/protocol and
3021 // its implementation; if any.
3022 SelectorSet InsMapSeen, ClsMapSeen;
3023 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3024 IMPDecl, CDecl,
3025 IncompleteImpl, ImmediateClass: true);
3026
3027 // check all methods implemented in category against those declared
3028 // in its primary class.
3029 if (ObjCCategoryImplDecl *CatDecl =
3030 dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl))
3031 CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl);
3032
3033 // Check the protocol list for unimplemented methods in the @implementation
3034 // class.
3035 // Check and see if class methods in class interface have been
3036 // implemented in the implementation class.
3037
3038 LazyProtocolNameSet ExplicitImplProtocols;
3039
3040 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) {
3041 for (auto *PI : I->all_referenced_protocols())
3042 CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap,
3043 ClsMap, I, ExplicitImplProtocols);
3044 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) {
3045 // For extended class, unimplemented methods in its protocols will
3046 // be reported in the primary class.
3047 if (!C->IsClassExtension()) {
3048 for (auto *P : C->protocols())
3049 CheckProtocolMethodDefs(S&: *this, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap,
3050 ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols);
3051 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3052 /*SynthesizeProperties=*/false);
3053 }
3054 } else
3055 llvm_unreachable("invalid ObjCContainerDecl type.");
3056}
3057
3058Sema::DeclGroupPtrTy
3059Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3060 IdentifierInfo **IdentList,
3061 SourceLocation *IdentLocs,
3062 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3063 unsigned NumElts) {
3064 SmallVector<Decl *, 8> DeclsInGroup;
3065 for (unsigned i = 0; i != NumElts; ++i) {
3066 // Check for another declaration kind with the same name.
3067 NamedDecl *PrevDecl
3068 = LookupSingleName(S: TUScope, Name: IdentList[i], Loc: IdentLocs[i],
3069 NameKind: LookupOrdinaryName, Redecl: forRedeclarationInCurContext());
3070 if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) {
3071 // GCC apparently allows the following idiom:
3072 //
3073 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3074 // @class XCElementToggler;
3075 //
3076 // Here we have chosen to ignore the forward class declaration
3077 // with a warning. Since this is the implied behavior.
3078 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl);
3079 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3080 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3081 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3082 } else {
3083 // a forward class declaration matching a typedef name of a class refers
3084 // to the underlying class. Just ignore the forward class with a warning
3085 // as this will force the intended behavior which is to lookup the
3086 // typedef name.
3087 if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) {
3088 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3089 << IdentList[i];
3090 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3091 continue;
3092 }
3093 }
3094 }
3095
3096 // Create a declaration to describe this forward declaration.
3097 ObjCInterfaceDecl *PrevIDecl
3098 = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl);
3099
3100 IdentifierInfo *ClassName = IdentList[i];
3101 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3102 // A previous decl with a different name is because of
3103 // @compatibility_alias, for example:
3104 // \code
3105 // @class NewImage;
3106 // @compatibility_alias OldImage NewImage;
3107 // \endcode
3108 // A lookup for 'OldImage' will return the 'NewImage' decl.
3109 //
3110 // In such a case use the real declaration name, instead of the alias one,
3111 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3112 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3113 // has been aliased.
3114 ClassName = PrevIDecl->getIdentifier();
3115 }
3116
3117 // If this forward declaration has type parameters, compare them with the
3118 // type parameters of the previous declaration.
3119 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3120 if (PrevIDecl && TypeParams) {
3121 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3122 // Check for consistency with the previous declaration.
3123 if (checkTypeParamListConsistency(
3124 S&: *this, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams,
3125 newContext: TypeParamListContext::ForwardDeclaration)) {
3126 TypeParams = nullptr;
3127 }
3128 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3129 // The @interface does not have type parameters. Complain.
3130 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3131 << ClassName
3132 << TypeParams->getSourceRange();
3133 Diag(Def->getLocation(), diag::note_defined_here)
3134 << ClassName;
3135
3136 TypeParams = nullptr;
3137 }
3138 }
3139
3140 ObjCInterfaceDecl *IDecl
3141 = ObjCInterfaceDecl::Create(C: Context, DC: CurContext, atLoc: AtClassLoc,
3142 Id: ClassName, typeParamList: TypeParams, PrevDecl: PrevIDecl,
3143 ClassLoc: IdentLocs[i]);
3144 IDecl->setAtEndRange(IdentLocs[i]);
3145
3146 if (PrevIDecl)
3147 mergeDeclAttributes(IDecl, PrevIDecl);
3148
3149 PushOnScopeChains(IDecl, TUScope);
3150 CheckObjCDeclScope(IDecl);
3151 DeclsInGroup.push_back(IDecl);
3152 }
3153
3154 return BuildDeclaratorGroup(Group: DeclsInGroup);
3155}
3156
3157static bool tryMatchRecordTypes(ASTContext &Context,
3158 Sema::MethodMatchStrategy strategy,
3159 const Type *left, const Type *right);
3160
3161static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3162 QualType leftQT, QualType rightQT) {
3163 const Type *left =
3164 Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr();
3165 const Type *right =
3166 Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr();
3167
3168 if (left == right) return true;
3169
3170 // If we're doing a strict match, the types have to match exactly.
3171 if (strategy == Sema::MMS_strict) return false;
3172
3173 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3174
3175 // Otherwise, use this absurdly complicated algorithm to try to
3176 // validate the basic, low-level compatibility of the two types.
3177
3178 // As a minimum, require the sizes and alignments to match.
3179 TypeInfo LeftTI = Context.getTypeInfo(T: left);
3180 TypeInfo RightTI = Context.getTypeInfo(T: right);
3181 if (LeftTI.Width != RightTI.Width)
3182 return false;
3183
3184 if (LeftTI.Align != RightTI.Align)
3185 return false;
3186
3187 // Consider all the kinds of non-dependent canonical types:
3188 // - functions and arrays aren't possible as return and parameter types
3189
3190 // - vector types of equal size can be arbitrarily mixed
3191 if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right);
3192 if (isa<VectorType>(Val: right)) return false;
3193
3194 // - references should only match references of identical type
3195 // - structs, unions, and Objective-C objects must match more-or-less
3196 // exactly
3197 // - everything else should be a scalar
3198 if (!left->isScalarType() || !right->isScalarType())
3199 return tryMatchRecordTypes(Context, strategy, left, right);
3200
3201 // Make scalars agree in kind, except count bools as chars, and group
3202 // all non-member pointers together.
3203 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3204 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3205 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3206 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3207 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3208 leftSK = Type::STK_ObjCObjectPointer;
3209 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3210 rightSK = Type::STK_ObjCObjectPointer;
3211
3212 // Note that data member pointers and function member pointers don't
3213 // intermix because of the size differences.
3214
3215 return (leftSK == rightSK);
3216}
3217
3218static bool tryMatchRecordTypes(ASTContext &Context,
3219 Sema::MethodMatchStrategy strategy,
3220 const Type *lt, const Type *rt) {
3221 assert(lt && rt && lt != rt);
3222
3223 if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false;
3224 RecordDecl *left = cast<RecordType>(Val: lt)->getDecl();
3225 RecordDecl *right = cast<RecordType>(Val: rt)->getDecl();
3226
3227 // Require union-hood to match.
3228 if (left->isUnion() != right->isUnion()) return false;
3229
3230 // Require an exact match if either is non-POD.
3231 if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) ||
3232 (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD()))
3233 return false;
3234
3235 // Require size and alignment to match.
3236 TypeInfo LeftTI = Context.getTypeInfo(T: lt);
3237 TypeInfo RightTI = Context.getTypeInfo(T: rt);
3238 if (LeftTI.Width != RightTI.Width)
3239 return false;
3240
3241 if (LeftTI.Align != RightTI.Align)
3242 return false;
3243
3244 // Require fields to match.
3245 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3246 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3247 for (; li != le && ri != re; ++li, ++ri) {
3248 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3249 return false;
3250 }
3251 return (li == le && ri == re);
3252}
3253
3254/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3255/// returns true, or false, accordingly.
3256/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3257bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3258 const ObjCMethodDecl *right,
3259 MethodMatchStrategy strategy) {
3260 if (!matchTypes(Context, strategy, leftQT: left->getReturnType(),
3261 rightQT: right->getReturnType()))
3262 return false;
3263
3264 // If either is hidden, it is not considered to match.
3265 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3266 return false;
3267
3268 if (left->isDirectMethod() != right->isDirectMethod())
3269 return false;
3270
3271 if (getLangOpts().ObjCAutoRefCount &&
3272 (left->hasAttr<NSReturnsRetainedAttr>()
3273 != right->hasAttr<NSReturnsRetainedAttr>() ||
3274 left->hasAttr<NSConsumesSelfAttr>()
3275 != right->hasAttr<NSConsumesSelfAttr>()))
3276 return false;
3277
3278 ObjCMethodDecl::param_const_iterator
3279 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3280 re = right->param_end();
3281
3282 for (; li != le && ri != re; ++li, ++ri) {
3283 assert(ri != right->param_end() && "Param mismatch");
3284 const ParmVarDecl *lparm = *li, *rparm = *ri;
3285
3286 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3287 return false;
3288
3289 if (getLangOpts().ObjCAutoRefCount &&
3290 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3291 return false;
3292 }
3293 return true;
3294}
3295
3296static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3297 ObjCMethodDecl *MethodInList) {
3298 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3299 auto *MethodInListProtocol =
3300 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3301 // If this method belongs to a protocol but the method in list does not, or
3302 // vice versa, we say the context is not the same.
3303 if ((MethodProtocol && !MethodInListProtocol) ||
3304 (!MethodProtocol && MethodInListProtocol))
3305 return false;
3306
3307 if (MethodProtocol && MethodInListProtocol)
3308 return true;
3309
3310 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3311 ObjCInterfaceDecl *MethodInListInterface =
3312 MethodInList->getClassInterface();
3313 return MethodInterface == MethodInListInterface;
3314}
3315
3316void Sema::addMethodToGlobalList(ObjCMethodList *List,
3317 ObjCMethodDecl *Method) {
3318 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3319 // inside categories.
3320 if (ObjCCategoryDecl *CD =
3321 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3322 if (!CD->IsClassExtension() && List->getBits() < 2)
3323 List->setBits(List->getBits() + 1);
3324
3325 // If the list is empty, make it a singleton list.
3326 if (List->getMethod() == nullptr) {
3327 List->setMethod(Method);
3328 List->setNext(nullptr);
3329 return;
3330 }
3331
3332 // We've seen a method with this name, see if we have already seen this type
3333 // signature.
3334 ObjCMethodList *Previous = List;
3335 ObjCMethodList *ListWithSameDeclaration = nullptr;
3336 for (; List; Previous = List, List = List->getNext()) {
3337 // If we are building a module, keep all of the methods.
3338 if (getLangOpts().isCompilingModule())
3339 continue;
3340
3341 bool SameDeclaration = MatchTwoMethodDeclarations(left: Method,
3342 right: List->getMethod());
3343 // Looking for method with a type bound requires the correct context exists.
3344 // We need to insert a method into the list if the context is different.
3345 // If the method's declaration matches the list
3346 // a> the method belongs to a different context: we need to insert it, in
3347 // order to emit the availability message, we need to prioritize over
3348 // availability among the methods with the same declaration.
3349 // b> the method belongs to the same context: there is no need to insert a
3350 // new entry.
3351 // If the method's declaration does not match the list, we insert it to the
3352 // end.
3353 if (!SameDeclaration ||
3354 !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) {
3355 // Even if two method types do not match, we would like to say
3356 // there is more than one declaration so unavailability/deprecated
3357 // warning is not too noisy.
3358 if (!Method->isDefined())
3359 List->setHasMoreThanOneDecl(true);
3360
3361 // For methods with the same declaration, the one that is deprecated
3362 // should be put in the front for better diagnostics.
3363 if (Method->isDeprecated() && SameDeclaration &&
3364 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3365 ListWithSameDeclaration = List;
3366
3367 if (Method->isUnavailable() && SameDeclaration &&
3368 !ListWithSameDeclaration &&
3369 List->getMethod()->getAvailability() < AR_Deprecated)
3370 ListWithSameDeclaration = List;
3371 continue;
3372 }
3373
3374 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3375
3376 // Propagate the 'defined' bit.
3377 if (Method->isDefined())
3378 PrevObjCMethod->setDefined(true);
3379 else {
3380 // Objective-C doesn't allow an @interface for a class after its
3381 // @implementation. So if Method is not defined and there already is
3382 // an entry for this type signature, Method has to be for a different
3383 // class than PrevObjCMethod.
3384 List->setHasMoreThanOneDecl(true);
3385 }
3386
3387 // If a method is deprecated, push it in the global pool.
3388 // This is used for better diagnostics.
3389 if (Method->isDeprecated()) {
3390 if (!PrevObjCMethod->isDeprecated())
3391 List->setMethod(Method);
3392 }
3393 // If the new method is unavailable, push it into global pool
3394 // unless previous one is deprecated.
3395 if (Method->isUnavailable()) {
3396 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3397 List->setMethod(Method);
3398 }
3399
3400 return;
3401 }
3402
3403 // We have a new signature for an existing method - add it.
3404 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3405 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3406
3407 // We insert it right before ListWithSameDeclaration.
3408 if (ListWithSameDeclaration) {
3409 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3410 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3411 ListWithSameDeclaration->setMethod(Method);
3412 ListWithSameDeclaration->setNext(List);
3413 return;
3414 }
3415
3416 Previous->setNext(new (Mem) ObjCMethodList(Method));
3417}
3418
3419/// Read the contents of the method pool for a given selector from
3420/// external storage.
3421void Sema::ReadMethodPool(Selector Sel) {
3422 assert(ExternalSource && "We need an external AST source");
3423 ExternalSource->ReadMethodPool(Sel);
3424}
3425
3426void Sema::updateOutOfDateSelector(Selector Sel) {
3427 if (!ExternalSource)
3428 return;
3429 ExternalSource->updateOutOfDateSelector(Sel);
3430}
3431
3432void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3433 bool instance) {
3434 // Ignore methods of invalid containers.
3435 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3436 return;
3437
3438 if (ExternalSource)
3439 ReadMethodPool(Sel: Method->getSelector());
3440
3441 GlobalMethodPool::iterator Pos = MethodPool.find(Sel: Method->getSelector());
3442 if (Pos == MethodPool.end())
3443 Pos = MethodPool
3444 .insert(Val: std::make_pair(x: Method->getSelector(),
3445 y: GlobalMethodPool::Lists()))
3446 .first;
3447
3448 Method->setDefined(impl);
3449
3450 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3451 addMethodToGlobalList(List: &Entry, Method);
3452}
3453
3454/// Determines if this is an "acceptable" loose mismatch in the global
3455/// method pool. This exists mostly as a hack to get around certain
3456/// global mismatches which we can't afford to make warnings / errors.
3457/// Really, what we want is a way to take a method out of the global
3458/// method pool.
3459static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3460 ObjCMethodDecl *other) {
3461 if (!chosen->isInstanceMethod())
3462 return false;
3463
3464 if (chosen->isDirectMethod() != other->isDirectMethod())
3465 return false;
3466
3467 Selector sel = chosen->getSelector();
3468 if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length")
3469 return false;
3470
3471 // Don't complain about mismatches for -length if the method we
3472 // chose has an integral result type.
3473 return (chosen->getReturnType()->isIntegerType());
3474}
3475
3476/// Return true if the given method is wthin the type bound.
3477static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3478 const ObjCObjectType *TypeBound) {
3479 if (!TypeBound)
3480 return true;
3481
3482 if (TypeBound->isObjCId())
3483 // FIXME: should we handle the case of bounding to id<A, B> differently?
3484 return true;
3485
3486 auto *BoundInterface = TypeBound->getInterface();
3487 assert(BoundInterface && "unexpected object type!");
3488
3489 // Check if the Method belongs to a protocol. We should allow any method
3490 // defined in any protocol, because any subclass could adopt the protocol.
3491 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3492 if (MethodProtocol) {
3493 return true;
3494 }
3495
3496 // If the Method belongs to a class, check if it belongs to the class
3497 // hierarchy of the class bound.
3498 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3499 // We allow methods declared within classes that are part of the hierarchy
3500 // of the class bound (superclass of, subclass of, or the same as the class
3501 // bound).
3502 return MethodInterface == BoundInterface ||
3503 MethodInterface->isSuperClassOf(I: BoundInterface) ||
3504 BoundInterface->isSuperClassOf(I: MethodInterface);
3505 }
3506 llvm_unreachable("unknown method context");
3507}
3508
3509/// We first select the type of the method: Instance or Factory, then collect
3510/// all methods with that type.
3511bool Sema::CollectMultipleMethodsInGlobalPool(
3512 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3513 bool InstanceFirst, bool CheckTheOther,
3514 const ObjCObjectType *TypeBound) {
3515 if (ExternalSource)
3516 ReadMethodPool(Sel);
3517
3518 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3519 if (Pos == MethodPool.end())
3520 return false;
3521
3522 // Gather the non-hidden methods.
3523 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3524 Pos->second.second;
3525 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3526 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3527 if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound))
3528 Methods.push_back(Elt: M->getMethod());
3529 }
3530
3531 // Return if we find any method with the desired kind.
3532 if (!Methods.empty())
3533 return Methods.size() > 1;
3534
3535 if (!CheckTheOther)
3536 return false;
3537
3538 // Gather the other kind.
3539 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3540 Pos->second.first;
3541 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3542 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3543 if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound))
3544 Methods.push_back(Elt: M->getMethod());
3545 }
3546
3547 return Methods.size() > 1;
3548}
3549
3550bool Sema::AreMultipleMethodsInGlobalPool(
3551 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3552 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3553 // Diagnose finding more than one method in global pool.
3554 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3555 FilteredMethods.push_back(Elt: BestMethod);
3556
3557 for (auto *M : Methods)
3558 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3559 FilteredMethods.push_back(Elt: M);
3560
3561 if (FilteredMethods.size() > 1)
3562 DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R,
3563 receiverIdOrClass);
3564
3565 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3566 // Test for no method in the pool which should not trigger any warning by
3567 // caller.
3568 if (Pos == MethodPool.end())
3569 return true;
3570 ObjCMethodList &MethList =
3571 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3572 return MethList.hasMoreThanOneDecl();
3573}
3574
3575ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3576 bool receiverIdOrClass,
3577 bool instance) {
3578 if (ExternalSource)
3579 ReadMethodPool(Sel);
3580
3581 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3582 if (Pos == MethodPool.end())
3583 return nullptr;
3584
3585 // Gather the non-hidden methods.
3586 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3587 SmallVector<ObjCMethodDecl *, 4> Methods;
3588 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3589 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3590 return M->getMethod();
3591 }
3592 return nullptr;
3593}
3594
3595void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3596 Selector Sel, SourceRange R,
3597 bool receiverIdOrClass) {
3598 // We found multiple methods, so we may have to complain.
3599 bool issueDiagnostic = false, issueError = false;
3600
3601 // We support a warning which complains about *any* difference in
3602 // method signature.
3603 bool strictSelectorMatch =
3604 receiverIdOrClass &&
3605 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3606 if (strictSelectorMatch) {
3607 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3608 if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) {
3609 issueDiagnostic = true;
3610 break;
3611 }
3612 }
3613 }
3614
3615 // If we didn't see any strict differences, we won't see any loose
3616 // differences. In ARC, however, we also need to check for loose
3617 // mismatches, because most of them are errors.
3618 if (!strictSelectorMatch ||
3619 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3620 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3621 // This checks if the methods differ in type mismatch.
3622 if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) &&
3623 !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) {
3624 issueDiagnostic = true;
3625 if (getLangOpts().ObjCAutoRefCount)
3626 issueError = true;
3627 break;
3628 }
3629 }
3630
3631 if (issueDiagnostic) {
3632 if (issueError)
3633 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3634 else if (strictSelectorMatch)
3635 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3636 else
3637 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3638
3639 Diag(Methods[0]->getBeginLoc(),
3640 issueError ? diag::note_possibility : diag::note_using)
3641 << Methods[0]->getSourceRange();
3642 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3643 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3644 << Methods[I]->getSourceRange();
3645 }
3646 }
3647}
3648
3649ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3650 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3651 if (Pos == MethodPool.end())
3652 return nullptr;
3653
3654 GlobalMethodPool::Lists &Methods = Pos->second;
3655 for (const ObjCMethodList *Method = &Methods.first; Method;
3656 Method = Method->getNext())
3657 if (Method->getMethod() &&
3658 (Method->getMethod()->isDefined() ||
3659 Method->getMethod()->isPropertyAccessor()))
3660 return Method->getMethod();
3661
3662 for (const ObjCMethodList *Method = &Methods.second; Method;
3663 Method = Method->getNext())
3664 if (Method->getMethod() &&
3665 (Method->getMethod()->isDefined() ||
3666 Method->getMethod()->isPropertyAccessor()))
3667 return Method->getMethod();
3668 return nullptr;
3669}
3670
3671static void
3672HelperSelectorsForTypoCorrection(
3673 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3674 StringRef Typo, const ObjCMethodDecl * Method) {
3675 const unsigned MaxEditDistance = 1;
3676 unsigned BestEditDistance = MaxEditDistance + 1;
3677 std::string MethodName = Method->getSelector().getAsString();
3678
3679 unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size());
3680 if (MinPossibleEditDistance > 0 &&
3681 Typo.size() / MinPossibleEditDistance < 1)
3682 return;
3683 unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance);
3684 if (EditDistance > MaxEditDistance)
3685 return;
3686 if (EditDistance == BestEditDistance)
3687 BestMethod.push_back(Elt: Method);
3688 else if (EditDistance < BestEditDistance) {
3689 BestMethod.clear();
3690 BestMethod.push_back(Elt: Method);
3691 }
3692}
3693
3694static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3695 QualType ObjectType) {
3696 if (ObjectType.isNull())
3697 return true;
3698 if (S.LookupMethodInObjectType(Sel, Ty: ObjectType, IsInstance: true/*Instance method*/))
3699 return true;
3700 return S.LookupMethodInObjectType(Sel, Ty: ObjectType, IsInstance: false/*Class method*/) !=
3701 nullptr;
3702}
3703
3704const ObjCMethodDecl *
3705Sema::SelectorsForTypoCorrection(Selector Sel,
3706 QualType ObjectType) {
3707 unsigned NumArgs = Sel.getNumArgs();
3708 SmallVector<const ObjCMethodDecl *, 8> Methods;
3709 bool ObjectIsId = true, ObjectIsClass = true;
3710 if (ObjectType.isNull())
3711 ObjectIsId = ObjectIsClass = false;
3712 else if (!ObjectType->isObjCObjectPointerType())
3713 return nullptr;
3714 else if (const ObjCObjectPointerType *ObjCPtr =
3715 ObjectType->getAsObjCInterfacePointerType()) {
3716 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3717 ObjectIsId = ObjectIsClass = false;
3718 }
3719 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3720 ObjectIsClass = false;
3721 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3722 ObjectIsId = false;
3723 else
3724 return nullptr;
3725
3726 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3727 e = MethodPool.end(); b != e; b++) {
3728 // instance methods
3729 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3730 if (M->getMethod() &&
3731 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3732 (M->getMethod()->getSelector() != Sel)) {
3733 if (ObjectIsId)
3734 Methods.push_back(Elt: M->getMethod());
3735 else if (!ObjectIsClass &&
3736 HelperIsMethodInObjCType(S&: *this, Sel: M->getMethod()->getSelector(),
3737 ObjectType))
3738 Methods.push_back(Elt: M->getMethod());
3739 }
3740 // class methods
3741 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3742 if (M->getMethod() &&
3743 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3744 (M->getMethod()->getSelector() != Sel)) {
3745 if (ObjectIsClass)
3746 Methods.push_back(Elt: M->getMethod());
3747 else if (!ObjectIsId &&
3748 HelperIsMethodInObjCType(S&: *this, Sel: M->getMethod()->getSelector(),
3749 ObjectType))
3750 Methods.push_back(Elt: M->getMethod());
3751 }
3752 }
3753
3754 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3755 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3756 HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods,
3757 Typo: Sel.getAsString(), Method: Methods[i]);
3758 }
3759 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3760}
3761
3762/// DiagnoseDuplicateIvars -
3763/// Check for duplicate ivars in the entire class at the start of
3764/// \@implementation. This becomes necessary because class extension can
3765/// add ivars to a class in random order which will not be known until
3766/// class's \@implementation is seen.
3767void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3768 ObjCInterfaceDecl *SID) {
3769 for (auto *Ivar : ID->ivars()) {
3770 if (Ivar->isInvalidDecl())
3771 continue;
3772 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3773 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II);
3774 if (prevIvar) {
3775 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3776 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3777 Ivar->setInvalidDecl();
3778 }
3779 }
3780 }
3781}
3782
3783/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3784static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3785 if (S.getLangOpts().ObjCWeak) return;
3786
3787 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3788 ivar; ivar = ivar->getNextIvar()) {
3789 if (ivar->isInvalidDecl()) continue;
3790 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3791 if (S.getLangOpts().ObjCWeakRuntime) {
3792 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3793 } else {
3794 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3795 }
3796 }
3797 }
3798}
3799
3800/// Diagnose attempts to use flexible array member with retainable object type.
3801static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3802 ObjCInterfaceDecl *ID) {
3803 if (!S.getLangOpts().ObjCAutoRefCount)
3804 return;
3805
3806 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3807 ivar = ivar->getNextIvar()) {
3808 if (ivar->isInvalidDecl())
3809 continue;
3810 QualType IvarTy = ivar->getType();
3811 if (IvarTy->isIncompleteArrayType() &&
3812 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3813 IvarTy->isObjCLifetimeType()) {
3814 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3815 ivar->setInvalidDecl();
3816 }
3817 }
3818}
3819
3820Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3821 switch (CurContext->getDeclKind()) {
3822 case Decl::ObjCInterface:
3823 return Sema::OCK_Interface;
3824 case Decl::ObjCProtocol:
3825 return Sema::OCK_Protocol;
3826 case Decl::ObjCCategory:
3827 if (cast<ObjCCategoryDecl>(Val: CurContext)->IsClassExtension())
3828 return Sema::OCK_ClassExtension;
3829 return Sema::OCK_Category;
3830 case Decl::ObjCImplementation:
3831 return Sema::OCK_Implementation;
3832 case Decl::ObjCCategoryImpl:
3833 return Sema::OCK_CategoryImplementation;
3834
3835 default:
3836 return Sema::OCK_None;
3837 }
3838}
3839
3840static bool IsVariableSizedType(QualType T) {
3841 if (T->isIncompleteArrayType())
3842 return true;
3843 const auto *RecordTy = T->getAs<RecordType>();
3844 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3845}
3846
3847static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3848 ObjCInterfaceDecl *IntfDecl = nullptr;
3849 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3850 x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator());
3851 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) {
3852 Ivars = IntfDecl->ivars();
3853 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) {
3854 IntfDecl = ImplDecl->getClassInterface();
3855 Ivars = ImplDecl->ivars();
3856 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) {
3857 if (CategoryDecl->IsClassExtension()) {
3858 IntfDecl = CategoryDecl->getClassInterface();
3859 Ivars = CategoryDecl->ivars();
3860 }
3861 }
3862
3863 // Check if variable sized ivar is in interface and visible to subclasses.
3864 if (!isa<ObjCInterfaceDecl>(Val: OCD)) {
3865 for (auto *ivar : Ivars) {
3866 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3867 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3868 << ivar->getDeclName() << ivar->getType();
3869 }
3870 }
3871 }
3872
3873 // Subsequent checks require interface decl.
3874 if (!IntfDecl)
3875 return;
3876
3877 // Check if variable sized ivar is followed by another ivar.
3878 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3879 ivar = ivar->getNextIvar()) {
3880 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3881 continue;
3882 QualType IvarTy = ivar->getType();
3883 bool IsInvalidIvar = false;
3884 if (IvarTy->isIncompleteArrayType()) {
3885 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3886 << ivar->getDeclName() << IvarTy
3887 << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3888 IsInvalidIvar = true;
3889 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3890 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3891 S.Diag(ivar->getLocation(),
3892 diag::err_objc_variable_sized_type_not_at_end)
3893 << ivar->getDeclName() << IvarTy;
3894 IsInvalidIvar = true;
3895 }
3896 }
3897 if (IsInvalidIvar) {
3898 S.Diag(ivar->getNextIvar()->getLocation(),
3899 diag::note_next_ivar_declaration)
3900 << ivar->getNextIvar()->getSynthesize();
3901 ivar->setInvalidDecl();
3902 }
3903 }
3904
3905 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3906 // Perform the check only if OCD is the first container to declare ivars to
3907 // avoid multiple warnings for the same ivar.
3908 ObjCIvarDecl *FirstIvar =
3909 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3910 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3911 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3912 while (SuperClass && SuperClass->ivar_empty())
3913 SuperClass = SuperClass->getSuperClass();
3914 if (SuperClass) {
3915 auto IvarIter = SuperClass->ivar_begin();
3916 std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1);
3917 const ObjCIvarDecl *LastIvar = *IvarIter;
3918 if (IsVariableSizedType(LastIvar->getType())) {
3919 S.Diag(FirstIvar->getLocation(),
3920 diag::warn_superclass_variable_sized_type_not_at_end)
3921 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3922 << LastIvar->getType() << SuperClass->getDeclName();
3923 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3924 << LastIvar->getDeclName();
3925 }
3926 }
3927 }
3928}
3929
3930static void DiagnoseCategoryDirectMembersProtocolConformance(
3931 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3932
3933static void DiagnoseCategoryDirectMembersProtocolConformance(
3934 Sema &S, ObjCCategoryDecl *CDecl,
3935 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3936 for (auto *PI : Protocols)
3937 DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl);
3938}
3939
3940static void DiagnoseCategoryDirectMembersProtocolConformance(
3941 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3942 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3943 PDecl = PDecl->getDefinition();
3944
3945 llvm::SmallVector<const Decl *, 4> DirectMembers;
3946 const auto *IDecl = CDecl->getClassInterface();
3947 for (auto *MD : PDecl->methods()) {
3948 if (!MD->isPropertyAccessor()) {
3949 if (const auto *CMD =
3950 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3951 if (CMD->isDirectMethod())
3952 DirectMembers.push_back(CMD);
3953 }
3954 }
3955 }
3956 for (auto *PD : PDecl->properties()) {
3957 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3958 PD->getIdentifier(),
3959 PD->isClassProperty()
3960 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3961 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3962 if (CPD->isDirectProperty())
3963 DirectMembers.push_back(CPD);
3964 }
3965 }
3966 if (!DirectMembers.empty()) {
3967 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3968 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3969 for (const auto *MD : DirectMembers)
3970 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3971 return;
3972 }
3973
3974 // Check on this protocols's referenced protocols, recursively.
3975 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3976 Protocols: PDecl->protocols());
3977}
3978
3979// Note: For class/category implementations, allMethods is always null.
3980Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3981 ArrayRef<DeclGroupPtrTy> allTUVars) {
3982 if (getObjCContainerKind() == Sema::OCK_None)
3983 return nullptr;
3984
3985 assert(AtEnd.isValid() && "Invalid location for '@end'");
3986
3987 auto *OCD = cast<ObjCContainerDecl>(Val: CurContext);
3988 Decl *ClassDecl = OCD;
3989
3990 bool isInterfaceDeclKind =
3991 isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl)
3992 || isa<ObjCProtocolDecl>(Val: ClassDecl);
3993 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl);
3994
3995 // Make synthesized accessor stub functions visible.
3996 // ActOnPropertyImplDecl() creates them as not visible in case
3997 // they are overridden by an explicit method that is encountered
3998 // later.
3999 if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: CurContext)) {
4000 for (auto *PropImpl : OID->property_impls()) {
4001 if (auto *Getter = PropImpl->getGetterMethodDecl())
4002 if (Getter->isSynthesizedAccessorStub())
4003 OID->addDecl(Getter);
4004 if (auto *Setter = PropImpl->getSetterMethodDecl())
4005 if (Setter->isSynthesizedAccessorStub())
4006 OID->addDecl(Setter);
4007 }
4008 }
4009
4010 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4011 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4012 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4013
4014 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4015 ObjCMethodDecl *Method =
4016 cast_or_null<ObjCMethodDecl>(Val: allMethods[i]);
4017
4018 if (!Method) continue; // Already issued a diagnostic.
4019 if (Method->isInstanceMethod()) {
4020 /// Check for instance method of the same name with incompatible types
4021 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4022 bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod)
4023 : false;
4024 if ((isInterfaceDeclKind && PrevMethod && !match)
4025 || (checkIdenticalMethods && match)) {
4026 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4027 << Method->getDeclName();
4028 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4029 Method->setInvalidDecl();
4030 } else {
4031 if (PrevMethod) {
4032 Method->setAsRedeclaration(PrevMethod);
4033 if (!Context.getSourceManager().isInSystemHeader(
4034 Method->getLocation()))
4035 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4036 << Method->getDeclName();
4037 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4038 }
4039 InsMap[Method->getSelector()] = Method;
4040 /// The following allows us to typecheck messages to "id".
4041 AddInstanceMethodToGlobalPool(Method);
4042 }
4043 } else {
4044 /// Check for class method of the same name with incompatible types
4045 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4046 bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod)
4047 : false;
4048 if ((isInterfaceDeclKind && PrevMethod && !match)
4049 || (checkIdenticalMethods && match)) {
4050 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4051 << Method->getDeclName();
4052 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4053 Method->setInvalidDecl();
4054 } else {
4055 if (PrevMethod) {
4056 Method->setAsRedeclaration(PrevMethod);
4057 if (!Context.getSourceManager().isInSystemHeader(
4058 Method->getLocation()))
4059 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4060 << Method->getDeclName();
4061 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4062 }
4063 ClsMap[Method->getSelector()] = Method;
4064 AddFactoryMethodToGlobalPool(Method);
4065 }
4066 }
4067 }
4068 if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) {
4069 // Nothing to do here.
4070 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) {
4071 // Categories are used to extend the class by declaring new methods.
4072 // By the same token, they are also used to add new properties. No
4073 // need to compare the added property to those in the class.
4074
4075 if (C->IsClassExtension()) {
4076 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4077 DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary);
4078 }
4079
4080 DiagnoseCategoryDirectMembersProtocolConformance(S&: *this, CDecl: C, Protocols: C->protocols());
4081 }
4082 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) {
4083 if (CDecl->getIdentifier())
4084 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4085 // user-defined setter/getter. It also synthesizes setter/getter methods
4086 // and adds them to the DeclContext and global method pools.
4087 for (auto *I : CDecl->properties())
4088 ProcessPropertyDecl(I);
4089 CDecl->setAtEndRange(AtEnd);
4090 }
4091 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) {
4092 IC->setAtEndRange(AtEnd);
4093 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4094 // Any property declared in a class extension might have user
4095 // declared setter or getter in current class extension or one
4096 // of the other class extensions. Mark them as synthesized as
4097 // property will be synthesized when property with same name is
4098 // seen in the @implementation.
4099 for (const auto *Ext : IDecl->visible_extensions()) {
4100 for (const auto *Property : Ext->instance_properties()) {
4101 // Skip over properties declared @dynamic
4102 if (const ObjCPropertyImplDecl *PIDecl
4103 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4104 Property->getQueryKind()))
4105 if (PIDecl->getPropertyImplementation()
4106 == ObjCPropertyImplDecl::Dynamic)
4107 continue;
4108
4109 for (const auto *Ext : IDecl->visible_extensions()) {
4110 if (ObjCMethodDecl *GetterMethod =
4111 Ext->getInstanceMethod(Property->getGetterName()))
4112 GetterMethod->setPropertyAccessor(true);
4113 if (!Property->isReadOnly())
4114 if (ObjCMethodDecl *SetterMethod
4115 = Ext->getInstanceMethod(Property->getSetterName()))
4116 SetterMethod->setPropertyAccessor(true);
4117 }
4118 }
4119 }
4120 ImplMethodsVsClassMethods(S, IC, IDecl);
4121 AtomicPropertySetterGetterRules(IC, IDecl);
4122 DiagnoseOwningPropertyGetterSynthesis(D: IC);
4123 DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC);
4124 if (IDecl->hasDesignatedInitializers())
4125 DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl);
4126 DiagnoseWeakIvars(S&: *this, ID: IC);
4127 DiagnoseRetainableFlexibleArrayMember(S&: *this, ID: IDecl);
4128
4129 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4130 if (IDecl->getSuperClass() == nullptr) {
4131 // This class has no superclass, so check that it has been marked with
4132 // __attribute((objc_root_class)).
4133 if (!HasRootClassAttr) {
4134 SourceLocation DeclLoc(IDecl->getLocation());
4135 SourceLocation SuperClassLoc(getLocForEndOfToken(Loc: DeclLoc));
4136 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4137 << IDecl->getIdentifier();
4138 // See if NSObject is in the current scope, and if it is, suggest
4139 // adding " : NSObject " to the class declaration.
4140 NamedDecl *IF = LookupSingleName(S: TUScope,
4141 Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject),
4142 Loc: DeclLoc, NameKind: LookupOrdinaryName);
4143 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF);
4144 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4145 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4146 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4147 } else {
4148 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4149 }
4150 }
4151 } else if (HasRootClassAttr) {
4152 // Complain that only root classes may have this attribute.
4153 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4154 }
4155
4156 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4157 // An interface can subclass another interface with a
4158 // objc_subclassing_restricted attribute when it has that attribute as
4159 // well (because of interfaces imported from Swift). Therefore we have
4160 // to check if we can subclass in the implementation as well.
4161 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4162 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4163 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4164 Diag(Super->getLocation(), diag::note_class_declared);
4165 }
4166 }
4167
4168 if (IDecl->hasAttr<ObjCClassStubAttr>())
4169 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4170
4171 if (LangOpts.ObjCRuntime.isNonFragile()) {
4172 while (IDecl->getSuperClass()) {
4173 DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass());
4174 IDecl = IDecl->getSuperClass();
4175 }
4176 }
4177 }
4178 SetIvarInitializers(IC);
4179 } else if (ObjCCategoryImplDecl* CatImplClass =
4180 dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) {
4181 CatImplClass->setAtEndRange(AtEnd);
4182
4183 // Find category interface decl and then check that all methods declared
4184 // in this interface are implemented in the category @implementation.
4185 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4186 if (ObjCCategoryDecl *Cat
4187 = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) {
4188 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4189 }
4190 }
4191 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4192 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4193 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4194 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4195 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4196 Diag(Super->getLocation(), diag::note_class_declared);
4197 }
4198 }
4199
4200 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4201 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4202 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4203 }
4204 DiagnoseVariableSizedIvars(S&: *this, OCD);
4205 if (isInterfaceDeclKind) {
4206 // Reject invalid vardecls.
4207 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4208 DeclGroupRef DG = allTUVars[i].get();
4209 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4210 if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) {
4211 if (!VDecl->hasExternalStorage())
4212 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4213 }
4214 }
4215 }
4216 ActOnObjCContainerFinishDefinition();
4217
4218 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4219 DeclGroupRef DG = allTUVars[i].get();
4220 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4221 (*I)->setTopLevelDeclInObjCContainer();
4222 Consumer.HandleTopLevelDeclInObjCContainer(D: DG);
4223 }
4224
4225 ActOnDocumentableDecl(D: ClassDecl);
4226 return ClassDecl;
4227}
4228
4229/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4230/// objective-c's type qualifier from the parser version of the same info.
4231static Decl::ObjCDeclQualifier
4232CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4233 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4234}
4235
4236/// Check whether the declared result type of the given Objective-C
4237/// method declaration is compatible with the method's class.
4238///
4239static Sema::ResultTypeCompatibilityKind
4240CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4241 ObjCInterfaceDecl *CurrentClass) {
4242 QualType ResultType = Method->getReturnType();
4243
4244 // If an Objective-C method inherits its related result type, then its
4245 // declared result type must be compatible with its own class type. The
4246 // declared result type is compatible if:
4247 if (const ObjCObjectPointerType *ResultObjectType
4248 = ResultType->getAs<ObjCObjectPointerType>()) {
4249 // - it is id or qualified id, or
4250 if (ResultObjectType->isObjCIdType() ||
4251 ResultObjectType->isObjCQualifiedIdType())
4252 return Sema::RTC_Compatible;
4253
4254 if (CurrentClass) {
4255 if (ObjCInterfaceDecl *ResultClass
4256 = ResultObjectType->getInterfaceDecl()) {
4257 // - it is the same as the method's class type, or
4258 if (declaresSameEntity(CurrentClass, ResultClass))
4259 return Sema::RTC_Compatible;
4260
4261 // - it is a superclass of the method's class type
4262 if (ResultClass->isSuperClassOf(I: CurrentClass))
4263 return Sema::RTC_Compatible;
4264 }
4265 } else {
4266 // Any Objective-C pointer type might be acceptable for a protocol
4267 // method; we just don't know.
4268 return Sema::RTC_Unknown;
4269 }
4270 }
4271
4272 return Sema::RTC_Incompatible;
4273}
4274
4275namespace {
4276/// A helper class for searching for methods which a particular method
4277/// overrides.
4278class OverrideSearch {
4279public:
4280 const ObjCMethodDecl *Method;
4281 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4282 bool Recursive;
4283
4284public:
4285 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4286 Selector selector = method->getSelector();
4287
4288 // Bypass this search if we've never seen an instance/class method
4289 // with this selector before.
4290 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(Sel: selector);
4291 if (it == S.MethodPool.end()) {
4292 if (!S.getExternalSource()) return;
4293 S.ReadMethodPool(Sel: selector);
4294
4295 it = S.MethodPool.find(Sel: selector);
4296 if (it == S.MethodPool.end())
4297 return;
4298 }
4299 const ObjCMethodList &list =
4300 method->isInstanceMethod() ? it->second.first : it->second.second;
4301 if (!list.getMethod()) return;
4302
4303 const ObjCContainerDecl *container
4304 = cast<ObjCContainerDecl>(method->getDeclContext());
4305
4306 // Prevent the search from reaching this container again. This is
4307 // important with categories, which override methods from the
4308 // interface and each other.
4309 if (const ObjCCategoryDecl *Category =
4310 dyn_cast<ObjCCategoryDecl>(container)) {
4311 searchFromContainer(container);
4312 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4313 searchFromContainer(Interface);
4314 } else {
4315 searchFromContainer(container);
4316 }
4317 }
4318
4319 typedef decltype(Overridden)::iterator iterator;
4320 iterator begin() const { return Overridden.begin(); }
4321 iterator end() const { return Overridden.end(); }
4322
4323private:
4324 void searchFromContainer(const ObjCContainerDecl *container) {
4325 if (container->isInvalidDecl()) return;
4326
4327 switch (container->getDeclKind()) {
4328#define OBJCCONTAINER(type, base) \
4329 case Decl::type: \
4330 searchFrom(cast<type##Decl>(container)); \
4331 break;
4332#define ABSTRACT_DECL(expansion)
4333#define DECL(type, base) \
4334 case Decl::type:
4335#include "clang/AST/DeclNodes.inc"
4336 llvm_unreachable("not an ObjC container!");
4337 }
4338 }
4339
4340 void searchFrom(const ObjCProtocolDecl *protocol) {
4341 if (!protocol->hasDefinition())
4342 return;
4343
4344 // A method in a protocol declaration overrides declarations from
4345 // referenced ("parent") protocols.
4346 search(protocols: protocol->getReferencedProtocols());
4347 }
4348
4349 void searchFrom(const ObjCCategoryDecl *category) {
4350 // A method in a category declaration overrides declarations from
4351 // the main class and from protocols the category references.
4352 // The main class is handled in the constructor.
4353 search(protocols: category->getReferencedProtocols());
4354 }
4355
4356 void searchFrom(const ObjCCategoryImplDecl *impl) {
4357 // A method in a category definition that has a category
4358 // declaration overrides declarations from the category
4359 // declaration.
4360 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4361 search(category);
4362 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4363 search(Interface);
4364
4365 // Otherwise it overrides declarations from the class.
4366 } else if (const auto *Interface = impl->getClassInterface()) {
4367 search(Interface);
4368 }
4369 }
4370
4371 void searchFrom(const ObjCInterfaceDecl *iface) {
4372 // A method in a class declaration overrides declarations from
4373 if (!iface->hasDefinition())
4374 return;
4375
4376 // - categories,
4377 for (auto *Cat : iface->known_categories())
4378 search(Cat);
4379
4380 // - the super class, and
4381 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4382 search(super);
4383
4384 // - any referenced protocols.
4385 search(protocols: iface->getReferencedProtocols());
4386 }
4387
4388 void searchFrom(const ObjCImplementationDecl *impl) {
4389 // A method in a class implementation overrides declarations from
4390 // the class interface.
4391 if (const auto *Interface = impl->getClassInterface())
4392 search(Interface);
4393 }
4394
4395 void search(const ObjCProtocolList &protocols) {
4396 for (const auto *Proto : protocols)
4397 search(Proto);
4398 }
4399
4400 void search(const ObjCContainerDecl *container) {
4401 // Check for a method in this container which matches this selector.
4402 ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(),
4403 isInstance: Method->isInstanceMethod(),
4404 /*AllowHidden=*/true);
4405
4406 // If we find one, record it and bail out.
4407 if (meth) {
4408 Overridden.insert(X: meth);
4409 return;
4410 }
4411
4412 // Otherwise, search for methods that a hypothetical method here
4413 // would have overridden.
4414
4415 // Note that we're now in a recursive case.
4416 Recursive = true;
4417
4418 searchFromContainer(container);
4419 }
4420};
4421} // end anonymous namespace
4422
4423void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4424 ObjCMethodDecl *overridden) {
4425 if (overridden->isDirectMethod()) {
4426 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4427 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4428 Diag(attr->getLocation(), diag::note_previous_declaration);
4429 } else if (method->isDirectMethod()) {
4430 const auto *attr = method->getAttr<ObjCDirectAttr>();
4431 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4432 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4433 Diag(overridden->getLocation(), diag::note_previous_declaration);
4434 }
4435}
4436
4437void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4438 ObjCInterfaceDecl *CurrentClass,
4439 ResultTypeCompatibilityKind RTC) {
4440 if (!ObjCMethod)
4441 return;
4442 auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4443 // Checking canonical decl works across modules.
4444 return M->getClassInterface()->getCanonicalDecl() ==
4445 CurrentClass->getCanonicalDecl();
4446 };
4447 // Search for overridden methods and merge information down from them.
4448 OverrideSearch overrides(*this, ObjCMethod);
4449 // Keep track if the method overrides any method in the class's base classes,
4450 // its protocols, or its categories' protocols; we will keep that info
4451 // in the ObjCMethodDecl.
4452 // For this info, a method in an implementation is not considered as
4453 // overriding the same method in the interface or its categories.
4454 bool hasOverriddenMethodsInBaseOrProtocol = false;
4455 for (ObjCMethodDecl *overridden : overrides) {
4456 if (!hasOverriddenMethodsInBaseOrProtocol) {
4457 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4458 !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4459 CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden);
4460 hasOverriddenMethodsInBaseOrProtocol = true;
4461 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4462 // OverrideSearch will return as "overridden" the same method in the
4463 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4464 // check whether a category of a base class introduced a method with the
4465 // same selector, after the interface method declaration.
4466 // To avoid unnecessary lookups in the majority of cases, we use the
4467 // extra info bits in GlobalMethodPool to check whether there were any
4468 // category methods with this selector.
4469 GlobalMethodPool::iterator It =
4470 MethodPool.find(Sel: ObjCMethod->getSelector());
4471 if (It != MethodPool.end()) {
4472 ObjCMethodList &List =
4473 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4474 unsigned CategCount = List.getBits();
4475 if (CategCount > 0) {
4476 // If the method is in a category we'll do lookup if there were at
4477 // least 2 category methods recorded, otherwise only one will do.
4478 if (CategCount > 1 ||
4479 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4480 OverrideSearch overrides(*this, overridden);
4481 for (ObjCMethodDecl *SuperOverridden : overrides) {
4482 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4483 !IsMethodInCurrentClass(SuperOverridden)) {
4484 CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden);
4485 hasOverriddenMethodsInBaseOrProtocol = true;
4486 overridden->setOverriding(true);
4487 break;
4488 }
4489 }
4490 }
4491 }
4492 }
4493 }
4494 }
4495
4496 // Propagate down the 'related result type' bit from overridden methods.
4497 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4498 ObjCMethod->setRelatedResultType();
4499
4500 // Then merge the declarations.
4501 mergeObjCMethodDecls(New: ObjCMethod, Old: overridden);
4502
4503 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4504 continue; // Conflicting properties are detected elsewhere.
4505
4506 // Check for overriding methods
4507 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4508 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4509 CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden,
4510 IsProtocolMethodDecl: isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4511
4512 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4513 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4514 !overridden->isImplicit() /* not meant for properties */) {
4515 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4516 E = ObjCMethod->param_end();
4517 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4518 PrevE = overridden->param_end();
4519 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4520 assert(PrevI != overridden->param_end() && "Param mismatch");
4521 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4522 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4523 // If type of argument of method in this class does not match its
4524 // respective argument type in the super class method, issue warning;
4525 if (!Context.typesAreCompatible(T1, T2)) {
4526 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4527 << T1 << T2;
4528 Diag(overridden->getLocation(), diag::note_previous_declaration);
4529 break;
4530 }
4531 }
4532 }
4533 }
4534
4535 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4536}
4537
4538/// Merge type nullability from for a redeclaration of the same entity,
4539/// producing the updated type of the redeclared entity.
4540static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4541 QualType type,
4542 bool usesCSKeyword,
4543 SourceLocation prevLoc,
4544 QualType prevType,
4545 bool prevUsesCSKeyword) {
4546 // Determine the nullability of both types.
4547 auto nullability = type->getNullability();
4548 auto prevNullability = prevType->getNullability();
4549
4550 // Easy case: both have nullability.
4551 if (nullability.has_value() == prevNullability.has_value()) {
4552 // Neither has nullability; continue.
4553 if (!nullability)
4554 return type;
4555
4556 // The nullabilities are equivalent; do nothing.
4557 if (*nullability == *prevNullability)
4558 return type;
4559
4560 // Complain about mismatched nullability.
4561 S.Diag(loc, diag::err_nullability_conflicting)
4562 << DiagNullabilityKind(*nullability, usesCSKeyword)
4563 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4564 return type;
4565 }
4566
4567 // If it's the redeclaration that has nullability, don't change anything.
4568 if (nullability)
4569 return type;
4570
4571 // Otherwise, provide the result with the same nullability.
4572 return S.Context.getAttributedType(
4573 attrKind: AttributedType::getNullabilityAttrKind(kind: *prevNullability),
4574 modifiedType: type, equivalentType: type);
4575}
4576
4577/// Merge information from the declaration of a method in the \@interface
4578/// (or a category/extension) into the corresponding method in the
4579/// @implementation (for a class or category).
4580static void mergeInterfaceMethodToImpl(Sema &S,
4581 ObjCMethodDecl *method,
4582 ObjCMethodDecl *prevMethod) {
4583 // Merge the objc_requires_super attribute.
4584 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4585 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4586 // merge the attribute into implementation.
4587 method->addAttr(
4588 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4589 method->getLocation()));
4590 }
4591
4592 // Merge nullability of the result type.
4593 QualType newReturnType
4594 = mergeTypeNullabilityForRedecl(
4595 S, loc: method->getReturnTypeSourceRange().getBegin(),
4596 type: method->getReturnType(),
4597 usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4598 prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(),
4599 prevType: prevMethod->getReturnType(),
4600 prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4601 method->setReturnType(newReturnType);
4602
4603 // Handle each of the parameters.
4604 unsigned numParams = method->param_size();
4605 unsigned numPrevParams = prevMethod->param_size();
4606 for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) {
4607 ParmVarDecl *param = method->param_begin()[i];
4608 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4609
4610 // Merge nullability.
4611 QualType newParamType
4612 = mergeTypeNullabilityForRedecl(
4613 S, param->getLocation(), param->getType(),
4614 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4615 prevParam->getLocation(), prevParam->getType(),
4616 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4617 param->setType(newParamType);
4618 }
4619}
4620
4621/// Verify that the method parameters/return value have types that are supported
4622/// by the x86 target.
4623static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4624 const ObjCMethodDecl *Method) {
4625 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4626 llvm::Triple::x86 &&
4627 "x86-specific check invoked for a different target");
4628 SourceLocation Loc;
4629 QualType T;
4630 for (const ParmVarDecl *P : Method->parameters()) {
4631 if (P->getType()->isVectorType()) {
4632 Loc = P->getBeginLoc();
4633 T = P->getType();
4634 break;
4635 }
4636 }
4637 if (Loc.isInvalid()) {
4638 if (Method->getReturnType()->isVectorType()) {
4639 Loc = Method->getReturnTypeSourceRange().getBegin();
4640 T = Method->getReturnType();
4641 } else
4642 return;
4643 }
4644
4645 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4646 // iOS < 9 and macOS < 10.11.
4647 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4648 VersionTuple AcceptedInVersion;
4649 if (Triple.getOS() == llvm::Triple::IOS)
4650 AcceptedInVersion = VersionTuple(/*Major=*/9);
4651 else if (Triple.isMacOSX())
4652 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4653 else
4654 return;
4655 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4656 AcceptedInVersion)
4657 return;
4658 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4659 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4660 : /*parameter*/ 0)
4661 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4662}
4663
4664static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4665 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4666 CD->hasAttr<ObjCDirectMembersAttr>()) {
4667 Method->addAttr(
4668 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4669 }
4670}
4671
4672static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4673 ObjCMethodDecl *Method,
4674 ObjCImplDecl *ImpDecl = nullptr) {
4675 auto Sel = Method->getSelector();
4676 bool isInstance = Method->isInstanceMethod();
4677 bool diagnosed = false;
4678
4679 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4680 if (diagnosed || IMD->isImplicit())
4681 return;
4682 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4683 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4684 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4685 << Method->getDeclName();
4686 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4687 diagnosed = true;
4688 }
4689 };
4690
4691 // Look for any other declaration of this method anywhere we can see in this
4692 // compilation unit.
4693 //
4694 // We do not use IDecl->lookupMethod() because we have specific needs:
4695 //
4696 // - we absolutely do not need to walk protocols, because
4697 // diag::err_objc_direct_on_protocol has already been emitted
4698 // during parsing if there's a conflict,
4699 //
4700 // - when we do not find a match in a given @interface container,
4701 // we need to attempt looking it up in the @implementation block if the
4702 // translation unit sees it to find more clashes.
4703
4704 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4705 diagClash(IMD);
4706 else if (auto *Impl = IDecl->getImplementation())
4707 if (Impl != ImpDecl)
4708 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4709 diagClash(IMD);
4710
4711 for (const auto *Cat : IDecl->visible_categories())
4712 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4713 diagClash(IMD);
4714 else if (auto CatImpl = Cat->getImplementation())
4715 if (CatImpl != ImpDecl)
4716 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4717 diagClash(IMD);
4718}
4719
4720Decl *Sema::ActOnMethodDeclaration(
4721 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4722 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4723 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4724 // optional arguments. The number of types/arguments is obtained
4725 // from the Sel.getNumArgs().
4726 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4727 unsigned CNumArgs, // c-style args
4728 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4729 bool isVariadic, bool MethodDefinition) {
4730 // Make sure we can establish a context for the method.
4731 if (!CurContext->isObjCContainer()) {
4732 Diag(MethodLoc, diag::err_missing_method_context);
4733 return nullptr;
4734 }
4735
4736 Decl *ClassDecl = cast<ObjCContainerDecl>(Val: CurContext);
4737 QualType resultDeclType;
4738
4739 bool HasRelatedResultType = false;
4740 TypeSourceInfo *ReturnTInfo = nullptr;
4741 if (ReturnType) {
4742 resultDeclType = GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo);
4743
4744 if (CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc))
4745 return nullptr;
4746
4747 QualType bareResultType = resultDeclType;
4748 (void)AttributedType::stripOuterNullability(T&: bareResultType);
4749 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4750 } else { // get the type for "id".
4751 resultDeclType = Context.getObjCIdType();
4752 Diag(MethodLoc, diag::warn_missing_method_return_type)
4753 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4754 }
4755
4756 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4757 C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo, contextDecl: CurContext,
4758 isInstance: MethodType == tok::minus, isVariadic,
4759 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4760 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4761 impControl: MethodDeclKind == tok::objc_optional
4762 ? ObjCImplementationControl::Optional
4763 : ObjCImplementationControl::Required,
4764 HasRelatedResultType);
4765
4766 SmallVector<ParmVarDecl*, 16> Params;
4767
4768 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4769 QualType ArgType;
4770 TypeSourceInfo *DI;
4771
4772 if (!ArgInfo[i].Type) {
4773 ArgType = Context.getObjCIdType();
4774 DI = nullptr;
4775 } else {
4776 ArgType = GetTypeFromParser(Ty: ArgInfo[i].Type, TInfo: &DI);
4777 }
4778
4779 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4780 LookupOrdinaryName, forRedeclarationInCurContext());
4781 LookupName(R, S);
4782 if (R.isSingleResult()) {
4783 NamedDecl *PrevDecl = R.getFoundDecl();
4784 if (S->isDeclScope(PrevDecl)) {
4785 Diag(ArgInfo[i].NameLoc,
4786 (MethodDefinition ? diag::warn_method_param_redefinition
4787 : diag::warn_method_param_declaration))
4788 << ArgInfo[i].Name;
4789 Diag(PrevDecl->getLocation(),
4790 diag::note_previous_declaration);
4791 }
4792 }
4793
4794 SourceLocation StartLoc = DI
4795 ? DI->getTypeLoc().getBeginLoc()
4796 : ArgInfo[i].NameLoc;
4797
4798 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4799 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4800 ArgType, DI, SC_None);
4801
4802 Param->setObjCMethodScopeInfo(i);
4803
4804 Param->setObjCDeclQualifier(
4805 CvtQTToAstBitMask(PQTVal: ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4806
4807 // Apply the attributes to the parameter.
4808 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4809 AddPragmaAttributes(TUScope, Param);
4810
4811 if (Param->hasAttr<BlocksAttr>()) {
4812 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4813 Param->setInvalidDecl();
4814 }
4815 S->AddDecl(Param);
4816 IdResolver.AddDecl(Param);
4817
4818 Params.push_back(Elt: Param);
4819 }
4820
4821 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4822 ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param);
4823 QualType ArgType = Param->getType();
4824 if (ArgType.isNull())
4825 ArgType = Context.getObjCIdType();
4826 else
4827 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4828 ArgType = Context.getAdjustedParameterType(T: ArgType);
4829
4830 Param->setDeclContext(ObjCMethod);
4831 Params.push_back(Elt: Param);
4832 }
4833
4834 ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs);
4835 ObjCMethod->setObjCDeclQualifier(
4836 CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier()));
4837
4838 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4839 AddPragmaAttributes(TUScope, ObjCMethod);
4840
4841 // Add the method now.
4842 const ObjCMethodDecl *PrevMethod = nullptr;
4843 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) {
4844 if (MethodType == tok::minus) {
4845 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4846 ImpDecl->addInstanceMethod(method: ObjCMethod);
4847 } else {
4848 PrevMethod = ImpDecl->getClassMethod(Sel);
4849 ImpDecl->addClassMethod(method: ObjCMethod);
4850 }
4851
4852 // If this method overrides a previous @synthesize declaration,
4853 // register it with the property. Linear search through all
4854 // properties here, because the autosynthesized stub hasn't been
4855 // made visible yet, so it can be overridden by a later
4856 // user-specified implementation.
4857 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4858 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4859 if (Setter->getSelector() == Sel &&
4860 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4861 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4862 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4863 }
4864 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4865 if (Getter->getSelector() == Sel &&
4866 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4867 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4868 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4869 break;
4870 }
4871 }
4872
4873 // A method is either tagged direct explicitly, or inherits it from its
4874 // canonical declaration.
4875 //
4876 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4877 // because IDecl->lookupMethod() returns more possible matches than just
4878 // the canonical declaration.
4879 if (!ObjCMethod->isDirectMethod()) {
4880 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4881 if (CanonicalMD->isDirectMethod()) {
4882 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4883 ObjCMethod->addAttr(
4884 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4885 }
4886 }
4887
4888 // Merge information from the @interface declaration into the
4889 // @implementation.
4890 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4891 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4892 ObjCMethod->isInstanceMethod())) {
4893 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4894
4895 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4896 // in one of these places:
4897 //
4898 // (1) the canonical declaration in an @interface container paired
4899 // with the ImplDecl,
4900 // (2) non canonical declarations in @interface not paired with the
4901 // ImplDecl for the same Class,
4902 // (3) any superclass container.
4903 //
4904 // Direct methods only allow for canonical declarations in the matching
4905 // container (case 1).
4906 //
4907 // Direct methods overriding a superclass declaration (case 3) is
4908 // handled during overrides checks in CheckObjCMethodOverrides().
4909 //
4910 // We deal with same-class container mismatches (Case 2) here.
4911 if (IDecl == IMD->getClassInterface()) {
4912 auto diagContainerMismatch = [&] {
4913 int decl = 0, impl = 0;
4914
4915 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4916 decl = Cat->IsClassExtension() ? 1 : 2;
4917
4918 if (isa<ObjCCategoryImplDecl>(Val: ImpDecl))
4919 impl = 1 + (decl != 0);
4920
4921 Diag(ObjCMethod->getLocation(),
4922 diag::err_objc_direct_impl_decl_mismatch)
4923 << decl << impl;
4924 Diag(IMD->getLocation(), diag::note_previous_declaration);
4925 };
4926
4927 if (ObjCMethod->isDirectMethod()) {
4928 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4929 if (ObjCMethod->getCanonicalDecl() != IMD) {
4930 diagContainerMismatch();
4931 } else if (!IMD->isDirectMethod()) {
4932 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4933 Diag(IMD->getLocation(), diag::note_previous_declaration);
4934 }
4935 } else if (IMD->isDirectMethod()) {
4936 const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4937 if (ObjCMethod->getCanonicalDecl() != IMD) {
4938 diagContainerMismatch();
4939 } else {
4940 ObjCMethod->addAttr(
4941 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4942 }
4943 }
4944 }
4945
4946 // Warn about defining -dealloc in a category.
4947 if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() &&
4948 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4949 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4950 << ObjCMethod->getDeclName();
4951 }
4952 } else {
4953 mergeObjCDirectMembers(S&: *this, CD: ClassDecl, Method: ObjCMethod);
4954 checkObjCDirectMethodClashes(S&: *this, IDecl, Method: ObjCMethod, ImpDecl);
4955 }
4956
4957 // Warn if a method declared in a protocol to which a category or
4958 // extension conforms is non-escaping and the implementation's method is
4959 // escaping.
4960 for (auto *C : IDecl->visible_categories())
4961 for (auto &P : C->protocols())
4962 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4963 ObjCMethod->isInstanceMethod())) {
4964 assert(ObjCMethod->parameters().size() ==
4965 IMD->parameters().size() &&
4966 "Methods have different number of parameters");
4967 auto OI = IMD->param_begin(), OE = IMD->param_end();
4968 auto NI = ObjCMethod->param_begin();
4969 for (; OI != OE; ++OI, ++NI)
4970 diagnoseNoescape(*NI, *OI, C, P, *this);
4971 }
4972 }
4973 } else {
4974 if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) {
4975 mergeObjCDirectMembers(S&: *this, CD: ClassDecl, Method: ObjCMethod);
4976
4977 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl);
4978 if (!IDecl)
4979 IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface();
4980 // For valid code, we should always know the primary interface
4981 // declaration by now, however for invalid code we'll keep parsing
4982 // but we won't find the primary interface and IDecl will be nil.
4983 if (IDecl)
4984 checkObjCDirectMethodClashes(S&: *this, IDecl, Method: ObjCMethod);
4985 }
4986
4987 cast<DeclContext>(Val: ClassDecl)->addDecl(ObjCMethod);
4988 }
4989
4990 if (PrevMethod) {
4991 // You can never have two method definitions with the same name.
4992 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4993 << ObjCMethod->getDeclName();
4994 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4995 ObjCMethod->setInvalidDecl();
4996 return ObjCMethod;
4997 }
4998
4999 // If this Objective-C method does not have a related result type, but we
5000 // are allowed to infer related result types, try to do so based on the
5001 // method family.
5002 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl);
5003 if (!CurrentClass) {
5004 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl))
5005 CurrentClass = Cat->getClassInterface();
5006 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl))
5007 CurrentClass = Impl->getClassInterface();
5008 else if (ObjCCategoryImplDecl *CatImpl
5009 = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl))
5010 CurrentClass = CatImpl->getClassInterface();
5011 }
5012
5013 ResultTypeCompatibilityKind RTC
5014 = CheckRelatedResultTypeCompatibility(S&: *this, Method: ObjCMethod, CurrentClass);
5015
5016 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5017
5018 bool ARCError = false;
5019 if (getLangOpts().ObjCAutoRefCount)
5020 ARCError = CheckARCMethodDecl(method: ObjCMethod);
5021
5022 // Infer the related result type when possible.
5023 if (!ARCError && RTC == Sema::RTC_Compatible &&
5024 !ObjCMethod->hasRelatedResultType() &&
5025 LangOpts.ObjCInferRelatedResultType) {
5026 bool InferRelatedResultType = false;
5027 switch (ObjCMethod->getMethodFamily()) {
5028 case OMF_None:
5029 case OMF_copy:
5030 case OMF_dealloc:
5031 case OMF_finalize:
5032 case OMF_mutableCopy:
5033 case OMF_release:
5034 case OMF_retainCount:
5035 case OMF_initialize:
5036 case OMF_performSelector:
5037 break;
5038
5039 case OMF_alloc:
5040 case OMF_new:
5041 InferRelatedResultType = ObjCMethod->isClassMethod();
5042 break;
5043
5044 case OMF_init:
5045 case OMF_autorelease:
5046 case OMF_retain:
5047 case OMF_self:
5048 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5049 break;
5050 }
5051
5052 if (InferRelatedResultType &&
5053 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5054 ObjCMethod->setRelatedResultType();
5055 }
5056
5057 if (MethodDefinition &&
5058 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5059 checkObjCMethodX86VectorTypes(SemaRef&: *this, Method: ObjCMethod);
5060
5061 // + load method cannot have availability attributes. It get called on
5062 // startup, so it has to have the availability of the deployment target.
5063 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5064 if (ObjCMethod->isClassMethod() &&
5065 ObjCMethod->getSelector().getAsString() == "load") {
5066 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5067 << 0;
5068 ObjCMethod->dropAttr<AvailabilityAttr>();
5069 }
5070 }
5071
5072 // Insert the invisible arguments, self and _cmd!
5073 ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface());
5074
5075 ActOnDocumentableDecl(ObjCMethod);
5076
5077 return ObjCMethod;
5078}
5079
5080bool Sema::CheckObjCDeclScope(Decl *D) {
5081 // Following is also an error. But it is caused by a missing @end
5082 // and diagnostic is issued elsewhere.
5083 if (isa<ObjCContainerDecl>(Val: CurContext->getRedeclContext()))
5084 return false;
5085
5086 // If we switched context to translation unit while we are still lexically in
5087 // an objc container, it means the parser missed emitting an error.
5088 if (isa<TranslationUnitDecl>(Val: getCurLexicalContext()->getRedeclContext()))
5089 return false;
5090
5091 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5092 D->setInvalidDecl();
5093
5094 return true;
5095}
5096
5097/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5098/// instance variables of ClassName into Decls.
5099void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5100 IdentifierInfo *ClassName,
5101 SmallVectorImpl<Decl*> &Decls) {
5102 // Check that ClassName is a valid class
5103 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart);
5104 if (!Class) {
5105 Diag(DeclStart, diag::err_undef_interface) << ClassName;
5106 return;
5107 }
5108 if (LangOpts.ObjCRuntime.isNonFragile()) {
5109 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5110 return;
5111 }
5112
5113 // Collect the instance variables
5114 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5115 Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars);
5116 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5117 for (unsigned i = 0; i < Ivars.size(); i++) {
5118 const FieldDecl* ID = Ivars[i];
5119 RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD);
5120 Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record,
5121 /*FIXME: StartL=*/StartLoc: ID->getLocation(),
5122 IdLoc: ID->getLocation(),
5123 Id: ID->getIdentifier(), T: ID->getType(),
5124 BW: ID->getBitWidth());
5125 Decls.push_back(Elt: FD);
5126 }
5127
5128 // Introduce all of these fields into the appropriate scope.
5129 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5130 D != Decls.end(); ++D) {
5131 FieldDecl *FD = cast<FieldDecl>(Val: *D);
5132 if (getLangOpts().CPlusPlus)
5133 PushOnScopeChains(FD, S);
5134 else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD))
5135 Record->addDecl(FD);
5136 }
5137}
5138
5139/// Build a type-check a new Objective-C exception variable declaration.
5140VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5141 SourceLocation StartLoc,
5142 SourceLocation IdLoc,
5143 IdentifierInfo *Id,
5144 bool Invalid) {
5145 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5146 // duration shall not be qualified by an address-space qualifier."
5147 // Since all parameters have automatic store duration, they can not have
5148 // an address space.
5149 if (T.getAddressSpace() != LangAS::Default) {
5150 Diag(IdLoc, diag::err_arg_with_address_space);
5151 Invalid = true;
5152 }
5153
5154 // An @catch parameter must be an unqualified object pointer type;
5155 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5156 if (Invalid) {
5157 // Don't do any further checking.
5158 } else if (T->isDependentType()) {
5159 // Okay: we don't know what this type will instantiate to.
5160 } else if (T->isObjCQualifiedIdType()) {
5161 Invalid = true;
5162 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5163 } else if (T->isObjCIdType()) {
5164 // Okay: we don't know what this type will instantiate to.
5165 } else if (!T->isObjCObjectPointerType()) {
5166 Invalid = true;
5167 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5168 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5169 Invalid = true;
5170 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5171 }
5172
5173 VarDecl *New = VarDecl::Create(C&: Context, DC: CurContext, StartLoc, IdLoc, Id,
5174 T, TInfo, S: SC_None);
5175 New->setExceptionVariable(true);
5176
5177 // In ARC, infer 'retaining' for variables of retainable type.
5178 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5179 Invalid = true;
5180
5181 if (Invalid)
5182 New->setInvalidDecl();
5183 return New;
5184}
5185
5186Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5187 const DeclSpec &DS = D.getDeclSpec();
5188
5189 // We allow the "register" storage class on exception variables because
5190 // GCC did, but we drop it completely. Any other storage class is an error.
5191 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5192 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5193 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5194 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5195 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5196 << DeclSpec::getSpecifierName(SCS);
5197 }
5198 if (DS.isInlineSpecified())
5199 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5200 << getLangOpts().CPlusPlus17;
5201 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5202 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5203 diag::err_invalid_thread)
5204 << DeclSpec::getSpecifierName(TSCS);
5205 D.getMutableDeclSpec().ClearStorageClassSpecs();
5206
5207 DiagnoseFunctionSpecifiers(DS: D.getDeclSpec());
5208
5209 // Check that there are no default arguments inside the type of this
5210 // exception object (C++ only).
5211 if (getLangOpts().CPlusPlus)
5212 CheckExtraCXXDefaultArguments(D);
5213
5214 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
5215 QualType ExceptionType = TInfo->getType();
5216
5217 VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType,
5218 StartLoc: D.getSourceRange().getBegin(),
5219 IdLoc: D.getIdentifierLoc(),
5220 Id: D.getIdentifier(),
5221 Invalid: D.isInvalidType());
5222
5223 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5224 if (D.getCXXScopeSpec().isSet()) {
5225 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5226 << D.getCXXScopeSpec().getRange();
5227 New->setInvalidDecl();
5228 }
5229
5230 // Add the parameter declaration into this scope.
5231 S->AddDecl(New);
5232 if (D.getIdentifier())
5233 IdResolver.AddDecl(New);
5234
5235 ProcessDeclAttributes(S, New, D);
5236
5237 if (New->hasAttr<BlocksAttr>())
5238 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5239 return New;
5240}
5241
5242/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5243/// initialization.
5244void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
5245 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
5246 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5247 Iv= Iv->getNextIvar()) {
5248 QualType QT = Context.getBaseElementType(Iv->getType());
5249 if (QT->isRecordType())
5250 Ivars.push_back(Elt: Iv);
5251 }
5252}
5253
5254void Sema::DiagnoseUseOfUnimplementedSelectors() {
5255 // Load referenced selectors from the external source.
5256 if (ExternalSource) {
5257 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5258 ExternalSource->ReadReferencedSelectors(Sels);
5259 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5260 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5261 }
5262
5263 // Warning will be issued only when selector table is
5264 // generated (which means there is at lease one implementation
5265 // in the TU). This is to match gcc's behavior.
5266 if (ReferencedSelectors.empty() ||
5267 !Context.AnyObjCImplementation())
5268 return;
5269 for (auto &SelectorAndLocation : ReferencedSelectors) {
5270 Selector Sel = SelectorAndLocation.first;
5271 SourceLocation Loc = SelectorAndLocation.second;
5272 if (!LookupImplementedMethodInGlobalPool(Sel))
5273 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5274 }
5275}
5276
5277ObjCIvarDecl *
5278Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5279 const ObjCPropertyDecl *&PDecl) const {
5280 if (Method->isClassMethod())
5281 return nullptr;
5282 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5283 if (!IDecl)
5284 return nullptr;
5285 Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true,
5286 /*shallowCategoryLookup=*/false,
5287 /*followSuper=*/false);
5288 if (!Method || !Method->isPropertyAccessor())
5289 return nullptr;
5290 if ((PDecl = Method->findPropertyDecl()))
5291 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5292 // property backing ivar must belong to property's class
5293 // or be a private ivar in class's implementation.
5294 // FIXME. fix the const-ness issue.
5295 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5296 IV->getIdentifier());
5297 return IV;
5298 }
5299 return nullptr;
5300}
5301
5302namespace {
5303 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5304 /// accessor references the backing ivar.
5305 class UnusedBackingIvarChecker :
5306 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5307 public:
5308 Sema &S;
5309 const ObjCMethodDecl *Method;
5310 const ObjCIvarDecl *IvarD;
5311 bool AccessedIvar;
5312 bool InvokedSelfMethod;
5313
5314 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5315 const ObjCIvarDecl *IvarD)
5316 : S(S), Method(Method), IvarD(IvarD),
5317 AccessedIvar(false), InvokedSelfMethod(false) {
5318 assert(IvarD);
5319 }
5320
5321 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5322 if (E->getDecl() == IvarD) {
5323 AccessedIvar = true;
5324 return false;
5325 }
5326 return true;
5327 }
5328
5329 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5330 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5331 S.isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) {
5332 InvokedSelfMethod = true;
5333 }
5334 return true;
5335 }
5336 };
5337} // end anonymous namespace
5338
5339void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5340 const ObjCImplementationDecl *ImplD) {
5341 if (S->hasUnrecoverableErrorOccurred())
5342 return;
5343
5344 for (const auto *CurMethod : ImplD->instance_methods()) {
5345 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5346 SourceLocation Loc = CurMethod->getLocation();
5347 if (Diags.isIgnored(DIAG, Loc))
5348 continue;
5349
5350 const ObjCPropertyDecl *PDecl;
5351 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5352 if (!IV)
5353 continue;
5354
5355 if (CurMethod->isSynthesizedAccessorStub())
5356 continue;
5357
5358 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5359 Checker.TraverseStmt(CurMethod->getBody());
5360 if (Checker.AccessedIvar)
5361 continue;
5362
5363 // Do not issue this warning if backing ivar is used somewhere and accessor
5364 // implementation makes a self call. This is to prevent false positive in
5365 // cases where the ivar is accessed by another method that the accessor
5366 // delegates to.
5367 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5368 Diag(Loc, DIAG) << IV;
5369 Diag(PDecl->getLocation(), diag::note_property_declare);
5370 }
5371 }
5372}
5373

source code of clang/lib/Sema/SemaDeclObjC.cpp