1//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ lambda expressions.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/Sema/SemaLambda.h"
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/Basic/TargetInfo.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ScopeInfo.h"
22#include "clang/Sema/SemaCUDA.h"
23#include "clang/Sema/SemaInternal.h"
24#include "clang/Sema/SemaOpenMP.h"
25#include "clang/Sema/Template.h"
26#include "llvm/ADT/STLExtras.h"
27#include <optional>
28using namespace clang;
29using namespace sema;
30
31/// Examines the FunctionScopeInfo stack to determine the nearest
32/// enclosing lambda (to the current lambda) that is 'capture-ready' for
33/// the variable referenced in the current lambda (i.e. \p VarToCapture).
34/// If successful, returns the index into Sema's FunctionScopeInfo stack
35/// of the capture-ready lambda's LambdaScopeInfo.
36///
37/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
38/// lambda - is on top) to determine the index of the nearest enclosing/outer
39/// lambda that is ready to capture the \p VarToCapture being referenced in
40/// the current lambda.
41/// As we climb down the stack, we want the index of the first such lambda -
42/// that is the lambda with the highest index that is 'capture-ready'.
43///
44/// A lambda 'L' is capture-ready for 'V' (var or this) if:
45/// - its enclosing context is non-dependent
46/// - and if the chain of lambdas between L and the lambda in which
47/// V is potentially used (i.e. the lambda at the top of the scope info
48/// stack), can all capture or have already captured V.
49/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
50///
51/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
52/// for whether it is 'capture-capable' (see
53/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
54/// capture.
55///
56/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
57/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
58/// is at the top of the stack and has the highest index.
59/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
60///
61/// \returns An std::optional<unsigned> Index that if evaluates to 'true'
62/// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
63/// lambda which is capture-ready. If the return value evaluates to 'false'
64/// then no lambda is capture-ready for \p VarToCapture.
65
66static inline std::optional<unsigned>
67getStackIndexOfNearestEnclosingCaptureReadyLambda(
68 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
69 ValueDecl *VarToCapture) {
70 // Label failure to capture.
71 const std::optional<unsigned> NoLambdaIsCaptureReady;
72
73 // Ignore all inner captured regions.
74 unsigned CurScopeIndex = FunctionScopes.size() - 1;
75 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
76 Val: FunctionScopes[CurScopeIndex]))
77 --CurScopeIndex;
78 assert(
79 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
80 "The function on the top of sema's function-info stack must be a lambda");
81
82 // If VarToCapture is null, we are attempting to capture 'this'.
83 const bool IsCapturingThis = !VarToCapture;
84 const bool IsCapturingVariable = !IsCapturingThis;
85
86 // Start with the current lambda at the top of the stack (highest index).
87 DeclContext *EnclosingDC =
88 cast<sema::LambdaScopeInfo>(Val: FunctionScopes[CurScopeIndex])->CallOperator;
89
90 do {
91 const clang::sema::LambdaScopeInfo *LSI =
92 cast<sema::LambdaScopeInfo>(Val: FunctionScopes[CurScopeIndex]);
93 // IF we have climbed down to an intervening enclosing lambda that contains
94 // the variable declaration - it obviously can/must not capture the
95 // variable.
96 // Since its enclosing DC is dependent, all the lambdas between it and the
97 // innermost nested lambda are dependent (otherwise we wouldn't have
98 // arrived here) - so we don't yet have a lambda that can capture the
99 // variable.
100 if (IsCapturingVariable &&
101 VarToCapture->getDeclContext()->Equals(EnclosingDC))
102 return NoLambdaIsCaptureReady;
103
104 // For an enclosing lambda to be capture ready for an entity, all
105 // intervening lambda's have to be able to capture that entity. If even
106 // one of the intervening lambda's is not capable of capturing the entity
107 // then no enclosing lambda can ever capture that entity.
108 // For e.g.
109 // const int x = 10;
110 // [=](auto a) { #1
111 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
112 // [=](auto c) { #3
113 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
114 // }; }; };
115 // If they do not have a default implicit capture, check to see
116 // if the entity has already been explicitly captured.
117 // If even a single dependent enclosing lambda lacks the capability
118 // to ever capture this variable, there is no further enclosing
119 // non-dependent lambda that can capture this variable.
120 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
121 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
122 return NoLambdaIsCaptureReady;
123 if (IsCapturingThis && !LSI->isCXXThisCaptured())
124 return NoLambdaIsCaptureReady;
125 }
126 EnclosingDC = getLambdaAwareParentOfDeclContext(DC: EnclosingDC);
127
128 assert(CurScopeIndex);
129 --CurScopeIndex;
130 } while (!EnclosingDC->isTranslationUnit() &&
131 EnclosingDC->isDependentContext() &&
132 isLambdaCallOperator(DC: EnclosingDC));
133
134 assert(CurScopeIndex < (FunctionScopes.size() - 1));
135 // If the enclosingDC is not dependent, then the immediately nested lambda
136 // (one index above) is capture-ready.
137 if (!EnclosingDC->isDependentContext())
138 return CurScopeIndex + 1;
139 return NoLambdaIsCaptureReady;
140}
141
142/// Examines the FunctionScopeInfo stack to determine the nearest
143/// enclosing lambda (to the current lambda) that is 'capture-capable' for
144/// the variable referenced in the current lambda (i.e. \p VarToCapture).
145/// If successful, returns the index into Sema's FunctionScopeInfo stack
146/// of the capture-capable lambda's LambdaScopeInfo.
147///
148/// Given the current stack of lambdas being processed by Sema and
149/// the variable of interest, to identify the nearest enclosing lambda (to the
150/// current lambda at the top of the stack) that can truly capture
151/// a variable, it has to have the following two properties:
152/// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
153/// - climb down the stack (i.e. starting from the innermost and examining
154/// each outer lambda step by step) checking if each enclosing
155/// lambda can either implicitly or explicitly capture the variable.
156/// Record the first such lambda that is enclosed in a non-dependent
157/// context. If no such lambda currently exists return failure.
158/// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
159/// capture the variable by checking all its enclosing lambdas:
160/// - check if all outer lambdas enclosing the 'capture-ready' lambda
161/// identified above in 'a' can also capture the variable (this is done
162/// via tryCaptureVariable for variables and CheckCXXThisCapture for
163/// 'this' by passing in the index of the Lambda identified in step 'a')
164///
165/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
166/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
167/// is at the top of the stack.
168///
169/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
170///
171///
172/// \returns An std::optional<unsigned> Index that if evaluates to 'true'
173/// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
174/// lambda which is capture-capable. If the return value evaluates to 'false'
175/// then no lambda is capture-capable for \p VarToCapture.
176
177std::optional<unsigned>
178clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
179 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
180 ValueDecl *VarToCapture, Sema &S) {
181
182 const std::optional<unsigned> NoLambdaIsCaptureCapable;
183
184 const std::optional<unsigned> OptionalStackIndex =
185 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
186 VarToCapture);
187 if (!OptionalStackIndex)
188 return NoLambdaIsCaptureCapable;
189
190 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex;
191 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
192 S.getCurGenericLambda()) &&
193 "The capture ready lambda for a potential capture can only be the "
194 "current lambda if it is a generic lambda");
195
196 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
197 cast<sema::LambdaScopeInfo>(Val: FunctionScopes[IndexOfCaptureReadyLambda]);
198
199 // If VarToCapture is null, we are attempting to capture 'this'
200 const bool IsCapturingThis = !VarToCapture;
201 const bool IsCapturingVariable = !IsCapturingThis;
202
203 if (IsCapturingVariable) {
204 // Check if the capture-ready lambda can truly capture the variable, by
205 // checking whether all enclosing lambdas of the capture-ready lambda allow
206 // the capture - i.e. make sure it is capture-capable.
207 QualType CaptureType, DeclRefType;
208 const bool CanCaptureVariable =
209 !S.tryCaptureVariable(Var: VarToCapture,
210 /*ExprVarIsUsedInLoc*/ Loc: SourceLocation(),
211 Kind: clang::Sema::TryCapture_Implicit,
212 /*EllipsisLoc*/ SourceLocation(),
213 /*BuildAndDiagnose*/ false, CaptureType,
214 DeclRefType, FunctionScopeIndexToStopAt: &IndexOfCaptureReadyLambda);
215 if (!CanCaptureVariable)
216 return NoLambdaIsCaptureCapable;
217 } else {
218 // Check if the capture-ready lambda can truly capture 'this' by checking
219 // whether all enclosing lambdas of the capture-ready lambda can capture
220 // 'this'.
221 const bool CanCaptureThis =
222 !S.CheckCXXThisCapture(
223 Loc: CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
224 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
225 FunctionScopeIndexToStopAt: &IndexOfCaptureReadyLambda);
226 if (!CanCaptureThis)
227 return NoLambdaIsCaptureCapable;
228 }
229 return IndexOfCaptureReadyLambda;
230}
231
232static inline TemplateParameterList *
233getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
234 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
235 LSI->GLTemplateParameterList = TemplateParameterList::Create(
236 C: SemaRef.Context,
237 /*Template kw loc*/ TemplateLoc: SourceLocation(),
238 /*L angle loc*/ LAngleLoc: LSI->ExplicitTemplateParamsRange.getBegin(),
239 Params: LSI->TemplateParams,
240 /*R angle loc*/RAngleLoc: LSI->ExplicitTemplateParamsRange.getEnd(),
241 RequiresClause: LSI->RequiresClause.get());
242 }
243 return LSI->GLTemplateParameterList;
244}
245
246CXXRecordDecl *
247Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info,
248 unsigned LambdaDependencyKind,
249 LambdaCaptureDefault CaptureDefault) {
250 DeclContext *DC = CurContext;
251 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
252 DC = DC->getParent();
253
254 bool IsGenericLambda =
255 Info && getGenericLambdaTemplateParameterList(LSI: getCurLambda(), SemaRef&: *this);
256 // Start constructing the lambda class.
257 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(
258 C: Context, DC, Info, Loc: IntroducerRange.getBegin(), DependencyKind: LambdaDependencyKind,
259 IsGeneric: IsGenericLambda, CaptureDefault);
260 DC->addDecl(Class);
261
262 return Class;
263}
264
265/// Determine whether the given context is or is enclosed in an inline
266/// function.
267static bool isInInlineFunction(const DeclContext *DC) {
268 while (!DC->isFileContext()) {
269 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: DC))
270 if (FD->isInlined())
271 return true;
272
273 DC = DC->getLexicalParent();
274 }
275
276 return false;
277}
278
279std::tuple<MangleNumberingContext *, Decl *>
280Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
281 // Compute the context for allocating mangling numbers in the current
282 // expression, if the ABI requires them.
283 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
284
285 enum ContextKind {
286 Normal,
287 DefaultArgument,
288 DataMember,
289 InlineVariable,
290 TemplatedVariable,
291 Concept
292 } Kind = Normal;
293
294 bool IsInNonspecializedTemplate =
295 inTemplateInstantiation() || CurContext->isDependentContext();
296
297 // Default arguments of member function parameters that appear in a class
298 // definition, as well as the initializers of data members, receive special
299 // treatment. Identify them.
300 if (ManglingContextDecl) {
301 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Val: ManglingContextDecl)) {
302 if (const DeclContext *LexicalDC
303 = Param->getDeclContext()->getLexicalParent())
304 if (LexicalDC->isRecord())
305 Kind = DefaultArgument;
306 } else if (VarDecl *Var = dyn_cast<VarDecl>(Val: ManglingContextDecl)) {
307 if (Var->getMostRecentDecl()->isInline())
308 Kind = InlineVariable;
309 else if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate)
310 Kind = TemplatedVariable;
311 else if (Var->getDescribedVarTemplate())
312 Kind = TemplatedVariable;
313 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Val: Var)) {
314 if (!VTS->isExplicitSpecialization())
315 Kind = TemplatedVariable;
316 }
317 } else if (isa<FieldDecl>(Val: ManglingContextDecl)) {
318 Kind = DataMember;
319 } else if (isa<ImplicitConceptSpecializationDecl>(Val: ManglingContextDecl)) {
320 Kind = Concept;
321 }
322 }
323
324 // Itanium ABI [5.1.7]:
325 // In the following contexts [...] the one-definition rule requires closure
326 // types in different translation units to "correspond":
327 switch (Kind) {
328 case Normal: {
329 // -- the bodies of inline or templated functions
330 if ((IsInNonspecializedTemplate &&
331 !(ManglingContextDecl && isa<ParmVarDecl>(Val: ManglingContextDecl))) ||
332 isInInlineFunction(DC: CurContext)) {
333 while (auto *CD = dyn_cast<CapturedDecl>(Val: DC))
334 DC = CD->getParent();
335 return std::make_tuple(args: &Context.getManglingNumberContext(DC), args: nullptr);
336 }
337
338 return std::make_tuple(args: nullptr, args: nullptr);
339 }
340
341 case Concept:
342 // Concept definitions aren't code generated and thus aren't mangled,
343 // however the ManglingContextDecl is important for the purposes of
344 // re-forming the template argument list of the lambda for constraint
345 // evaluation.
346 case DataMember:
347 // -- default member initializers
348 case DefaultArgument:
349 // -- default arguments appearing in class definitions
350 case InlineVariable:
351 case TemplatedVariable:
352 // -- the initializers of inline or templated variables
353 return std::make_tuple(
354 args: &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
355 D: ManglingContextDecl),
356 args&: ManglingContextDecl);
357 }
358
359 llvm_unreachable("unexpected context");
360}
361
362static QualType
363buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class,
364 TemplateParameterList *TemplateParams,
365 TypeSourceInfo *MethodTypeInfo) {
366 assert(MethodTypeInfo && "expected a non null type");
367
368 QualType MethodType = MethodTypeInfo->getType();
369 // If a lambda appears in a dependent context or is a generic lambda (has
370 // template parameters) and has an 'auto' return type, deduce it to a
371 // dependent type.
372 if (Class->isDependentContext() || TemplateParams) {
373 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374 QualType Result = FPT->getReturnType();
375 if (Result->isUndeducedType()) {
376 Result = S.SubstAutoTypeDependent(TypeWithAuto: Result);
377 MethodType = S.Context.getFunctionType(ResultTy: Result, Args: FPT->getParamTypes(),
378 EPI: FPT->getExtProtoInfo());
379 }
380 }
381 return MethodType;
382}
383
384// [C++2b] [expr.prim.lambda.closure] p4
385// Given a lambda with a lambda-capture, the type of the explicit object
386// parameter, if any, of the lambda's function call operator (possibly
387// instantiated from a function call operator template) shall be either:
388// - the closure type,
389// - class type derived from the closure type, or
390// - a reference to a possibly cv-qualified such type.
391void Sema::DiagnoseInvalidExplicitObjectParameterInLambda(
392 CXXMethodDecl *Method) {
393 if (!isLambdaCallWithExplicitObjectParameter(Method))
394 return;
395 CXXRecordDecl *RD = Method->getParent();
396 if (Method->getType()->isDependentType())
397 return;
398 if (RD->isCapturelessLambda())
399 return;
400 QualType ExplicitObjectParameterType = Method->getParamDecl(0)
401 ->getType()
402 .getNonReferenceType()
403 .getUnqualifiedType()
404 .getDesugaredType(getASTContext());
405 QualType LambdaType = getASTContext().getRecordType(RD);
406 if (LambdaType == ExplicitObjectParameterType)
407 return;
408 if (IsDerivedFrom(RD->getLocation(), ExplicitObjectParameterType, LambdaType))
409 return;
410 Diag(Method->getParamDecl(0)->getLocation(),
411 diag::err_invalid_explicit_object_type_in_lambda)
412 << ExplicitObjectParameterType;
413}
414
415void Sema::handleLambdaNumbering(
416 CXXRecordDecl *Class, CXXMethodDecl *Method,
417 std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) {
418 if (NumberingOverride) {
419 Class->setLambdaNumbering(*NumberingOverride);
420 return;
421 }
422
423 ContextRAII ManglingContext(*this, Class->getDeclContext());
424
425 auto getMangleNumberingContext =
426 [this](CXXRecordDecl *Class,
427 Decl *ManglingContextDecl) -> MangleNumberingContext * {
428 // Get mangle numbering context if there's any extra decl context.
429 if (ManglingContextDecl)
430 return &Context.getManglingNumberContext(
431 ASTContext::NeedExtraManglingDecl, D: ManglingContextDecl);
432 // Otherwise, from that lambda's decl context.
433 auto DC = Class->getDeclContext();
434 while (auto *CD = dyn_cast<CapturedDecl>(DC))
435 DC = CD->getParent();
436 return &Context.getManglingNumberContext(DC);
437 };
438
439 CXXRecordDecl::LambdaNumbering Numbering;
440 MangleNumberingContext *MCtx;
441 std::tie(args&: MCtx, args&: Numbering.ContextDecl) =
442 getCurrentMangleNumberContext(DC: Class->getDeclContext());
443 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
444 getLangOpts().SYCLIsHost)) {
445 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
446 // ODR. Both device- and host-compilation need to have a consistent naming
447 // on kernel functions. As lambdas are potential part of these `__global__`
448 // function names, they needs numbering following ODR.
449 // Also force for SYCL, since we need this for the
450 // __builtin_sycl_unique_stable_name implementation, which depends on lambda
451 // mangling.
452 MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl);
453 assert(MCtx && "Retrieving mangle numbering context failed!");
454 Numbering.HasKnownInternalLinkage = true;
455 }
456 if (MCtx) {
457 Numbering.IndexInContext = MCtx->getNextLambdaIndex();
458 Numbering.ManglingNumber = MCtx->getManglingNumber(CallOperator: Method);
459 Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method);
460 Class->setLambdaNumbering(Numbering);
461
462 if (auto *Source =
463 dyn_cast_or_null<ExternalSemaSource>(Val: Context.getExternalSource()))
464 Source->AssignedLambdaNumbering(Lambda: Class);
465 }
466}
467
468static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI,
469 CXXMethodDecl *CallOperator,
470 bool ExplicitResultType) {
471 if (ExplicitResultType) {
472 LSI->HasImplicitReturnType = false;
473 LSI->ReturnType = CallOperator->getReturnType();
474 if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType())
475 S.RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
476 diag::err_lambda_incomplete_result);
477 } else {
478 LSI->HasImplicitReturnType = true;
479 }
480}
481
482void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator,
483 SourceRange IntroducerRange,
484 LambdaCaptureDefault CaptureDefault,
485 SourceLocation CaptureDefaultLoc,
486 bool ExplicitParams, bool Mutable) {
487 LSI->CallOperator = CallOperator;
488 CXXRecordDecl *LambdaClass = CallOperator->getParent();
489 LSI->Lambda = LambdaClass;
490 if (CaptureDefault == LCD_ByCopy)
491 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
492 else if (CaptureDefault == LCD_ByRef)
493 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
494 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
495 LSI->IntroducerRange = IntroducerRange;
496 LSI->ExplicitParams = ExplicitParams;
497 LSI->Mutable = Mutable;
498}
499
500void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
501 LSI->finishedExplicitCaptures();
502}
503
504void Sema::ActOnLambdaExplicitTemplateParameterList(
505 LambdaIntroducer &Intro, SourceLocation LAngleLoc,
506 ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc,
507 ExprResult RequiresClause) {
508 LambdaScopeInfo *LSI = getCurLambda();
509 assert(LSI && "Expected a lambda scope");
510 assert(LSI->NumExplicitTemplateParams == 0 &&
511 "Already acted on explicit template parameters");
512 assert(LSI->TemplateParams.empty() &&
513 "Explicit template parameters should come "
514 "before invented (auto) ones");
515 assert(!TParams.empty() &&
516 "No template parameters to act on");
517 LSI->TemplateParams.append(in_start: TParams.begin(), in_end: TParams.end());
518 LSI->NumExplicitTemplateParams = TParams.size();
519 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
520 LSI->RequiresClause = RequiresClause;
521}
522
523/// If this expression is an enumerator-like expression of some type
524/// T, return the type T; otherwise, return null.
525///
526/// Pointer comparisons on the result here should always work because
527/// it's derived from either the parent of an EnumConstantDecl
528/// (i.e. the definition) or the declaration returned by
529/// EnumType::getDecl() (i.e. the definition).
530static EnumDecl *findEnumForBlockReturn(Expr *E) {
531 // An expression is an enumerator-like expression of type T if,
532 // ignoring parens and parens-like expressions:
533 E = E->IgnoreParens();
534
535 // - it is an enumerator whose enum type is T or
536 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
537 if (EnumConstantDecl *D
538 = dyn_cast<EnumConstantDecl>(Val: DRE->getDecl())) {
539 return cast<EnumDecl>(D->getDeclContext());
540 }
541 return nullptr;
542 }
543
544 // - it is a comma expression whose RHS is an enumerator-like
545 // expression of type T or
546 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
547 if (BO->getOpcode() == BO_Comma)
548 return findEnumForBlockReturn(E: BO->getRHS());
549 return nullptr;
550 }
551
552 // - it is a statement-expression whose value expression is an
553 // enumerator-like expression of type T or
554 if (StmtExpr *SE = dyn_cast<StmtExpr>(Val: E)) {
555 if (Expr *last = dyn_cast_or_null<Expr>(Val: SE->getSubStmt()->body_back()))
556 return findEnumForBlockReturn(E: last);
557 return nullptr;
558 }
559
560 // - it is a ternary conditional operator (not the GNU ?:
561 // extension) whose second and third operands are
562 // enumerator-like expressions of type T or
563 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) {
564 if (EnumDecl *ED = findEnumForBlockReturn(E: CO->getTrueExpr()))
565 if (ED == findEnumForBlockReturn(E: CO->getFalseExpr()))
566 return ED;
567 return nullptr;
568 }
569
570 // (implicitly:)
571 // - it is an implicit integral conversion applied to an
572 // enumerator-like expression of type T or
573 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
574 // We can sometimes see integral conversions in valid
575 // enumerator-like expressions.
576 if (ICE->getCastKind() == CK_IntegralCast)
577 return findEnumForBlockReturn(ICE->getSubExpr());
578
579 // Otherwise, just rely on the type.
580 }
581
582 // - it is an expression of that formal enum type.
583 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
584 return ET->getDecl();
585 }
586
587 // Otherwise, nope.
588 return nullptr;
589}
590
591/// Attempt to find a type T for which the returned expression of the
592/// given statement is an enumerator-like expression of that type.
593static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
594 if (Expr *retValue = ret->getRetValue())
595 return findEnumForBlockReturn(E: retValue);
596 return nullptr;
597}
598
599/// Attempt to find a common type T for which all of the returned
600/// expressions in a block are enumerator-like expressions of that
601/// type.
602static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
603 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
604
605 // Try to find one for the first return.
606 EnumDecl *ED = findEnumForBlockReturn(ret: *i);
607 if (!ED) return nullptr;
608
609 // Check that the rest of the returns have the same enum.
610 for (++i; i != e; ++i) {
611 if (findEnumForBlockReturn(ret: *i) != ED)
612 return nullptr;
613 }
614
615 // Never infer an anonymous enum type.
616 if (!ED->hasNameForLinkage()) return nullptr;
617
618 return ED;
619}
620
621/// Adjust the given return statements so that they formally return
622/// the given type. It should require, at most, an IntegralCast.
623static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
624 QualType returnType) {
625 for (ArrayRef<ReturnStmt*>::iterator
626 i = returns.begin(), e = returns.end(); i != e; ++i) {
627 ReturnStmt *ret = *i;
628 Expr *retValue = ret->getRetValue();
629 if (S.Context.hasSameType(T1: retValue->getType(), T2: returnType))
630 continue;
631
632 // Right now we only support integral fixup casts.
633 assert(returnType->isIntegralOrUnscopedEnumerationType());
634 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
635
636 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: retValue);
637
638 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
639 E = ImplicitCastExpr::Create(Context: S.Context, T: returnType, Kind: CK_IntegralCast, Operand: E,
640 /*base path*/ BasePath: nullptr, Cat: VK_PRValue,
641 FPO: FPOptionsOverride());
642 if (cleanups) {
643 cleanups->setSubExpr(E);
644 } else {
645 ret->setRetValue(E);
646 }
647 }
648}
649
650void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
651 assert(CSI.HasImplicitReturnType);
652 // If it was ever a placeholder, it had to been deduced to DependentTy.
653 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
654 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
655 "lambda expressions use auto deduction in C++14 onwards");
656
657 // C++ core issue 975:
658 // If a lambda-expression does not include a trailing-return-type,
659 // it is as if the trailing-return-type denotes the following type:
660 // - if there are no return statements in the compound-statement,
661 // or all return statements return either an expression of type
662 // void or no expression or braced-init-list, the type void;
663 // - otherwise, if all return statements return an expression
664 // and the types of the returned expressions after
665 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
666 // array-to-pointer conversion (4.2 [conv.array]), and
667 // function-to-pointer conversion (4.3 [conv.func]) are the
668 // same, that common type;
669 // - otherwise, the program is ill-formed.
670 //
671 // C++ core issue 1048 additionally removes top-level cv-qualifiers
672 // from the types of returned expressions to match the C++14 auto
673 // deduction rules.
674 //
675 // In addition, in blocks in non-C++ modes, if all of the return
676 // statements are enumerator-like expressions of some type T, where
677 // T has a name for linkage, then we infer the return type of the
678 // block to be that type.
679
680 // First case: no return statements, implicit void return type.
681 ASTContext &Ctx = getASTContext();
682 if (CSI.Returns.empty()) {
683 // It's possible there were simply no /valid/ return statements.
684 // In this case, the first one we found may have at least given us a type.
685 if (CSI.ReturnType.isNull())
686 CSI.ReturnType = Ctx.VoidTy;
687 return;
688 }
689
690 // Second case: at least one return statement has dependent type.
691 // Delay type checking until instantiation.
692 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
693 if (CSI.ReturnType->isDependentType())
694 return;
695
696 // Try to apply the enum-fuzz rule.
697 if (!getLangOpts().CPlusPlus) {
698 assert(isa<BlockScopeInfo>(CSI));
699 const EnumDecl *ED = findCommonEnumForBlockReturns(returns: CSI.Returns);
700 if (ED) {
701 CSI.ReturnType = Context.getTypeDeclType(ED);
702 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
703 return;
704 }
705 }
706
707 // Third case: only one return statement. Don't bother doing extra work!
708 if (CSI.Returns.size() == 1)
709 return;
710
711 // General case: many return statements.
712 // Check that they all have compatible return types.
713
714 // We require the return types to strictly match here.
715 // Note that we've already done the required promotions as part of
716 // processing the return statement.
717 for (const ReturnStmt *RS : CSI.Returns) {
718 const Expr *RetE = RS->getRetValue();
719
720 QualType ReturnType =
721 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
722 if (Context.getCanonicalFunctionResultType(ResultType: ReturnType) ==
723 Context.getCanonicalFunctionResultType(ResultType: CSI.ReturnType)) {
724 // Use the return type with the strictest possible nullability annotation.
725 auto RetTyNullability = ReturnType->getNullability();
726 auto BlockNullability = CSI.ReturnType->getNullability();
727 if (BlockNullability &&
728 (!RetTyNullability ||
729 hasWeakerNullability(*RetTyNullability, *BlockNullability)))
730 CSI.ReturnType = ReturnType;
731 continue;
732 }
733
734 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
735 // TODO: It's possible that the *first* return is the divergent one.
736 Diag(RS->getBeginLoc(),
737 diag::err_typecheck_missing_return_type_incompatible)
738 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
739 // Continue iterating so that we keep emitting diagnostics.
740 }
741}
742
743QualType Sema::buildLambdaInitCaptureInitialization(
744 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
745 std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
746 bool IsDirectInit, Expr *&Init) {
747 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
748 // deduce against.
749 QualType DeductType = Context.getAutoDeductType();
750 TypeLocBuilder TLB;
751 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(T: DeductType);
752 TL.setNameLoc(Loc);
753 if (ByRef) {
754 DeductType = BuildReferenceType(T: DeductType, LValueRef: true, Loc, Entity: Id);
755 assert(!DeductType.isNull() && "can't build reference to auto");
756 TLB.push<ReferenceTypeLoc>(T: DeductType).setSigilLoc(Loc);
757 }
758 if (EllipsisLoc.isValid()) {
759 if (Init->containsUnexpandedParameterPack()) {
760 Diag(EllipsisLoc, getLangOpts().CPlusPlus20
761 ? diag::warn_cxx17_compat_init_capture_pack
762 : diag::ext_init_capture_pack);
763 DeductType = Context.getPackExpansionType(Pattern: DeductType, NumExpansions,
764 /*ExpectPackInType=*/false);
765 TLB.push<PackExpansionTypeLoc>(T: DeductType).setEllipsisLoc(EllipsisLoc);
766 } else {
767 // Just ignore the ellipsis for now and form a non-pack variable. We'll
768 // diagnose this later when we try to capture it.
769 }
770 }
771 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, T: DeductType);
772
773 // Deduce the type of the init capture.
774 QualType DeducedType = deduceVarTypeFromInitializer(
775 /*VarDecl*/VDecl: nullptr, Name: DeclarationName(Id), Type: DeductType, TSI,
776 Range: SourceRange(Loc, Loc), DirectInit: IsDirectInit, Init);
777 if (DeducedType.isNull())
778 return QualType();
779
780 // Are we a non-list direct initialization?
781 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Val: Init);
782
783 // Perform initialization analysis and ensure any implicit conversions
784 // (such as lvalue-to-rvalue) are enforced.
785 InitializedEntity Entity =
786 InitializedEntity::InitializeLambdaCapture(VarID: Id, FieldType: DeducedType, Loc);
787 InitializationKind Kind =
788 IsDirectInit
789 ? (CXXDirectInit ? InitializationKind::CreateDirect(
790 InitLoc: Loc, LParenLoc: Init->getBeginLoc(), RParenLoc: Init->getEndLoc())
791 : InitializationKind::CreateDirectList(InitLoc: Loc))
792 : InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Init->getBeginLoc());
793
794 MultiExprArg Args = Init;
795 if (CXXDirectInit)
796 Args =
797 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
798 QualType DclT;
799 InitializationSequence InitSeq(*this, Entity, Kind, Args);
800 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args, ResultType: &DclT);
801
802 if (Result.isInvalid())
803 return QualType();
804
805 Init = Result.getAs<Expr>();
806 return DeducedType;
807}
808
809VarDecl *Sema::createLambdaInitCaptureVarDecl(
810 SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc,
811 IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) {
812 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
813 // rather than reconstructing it here.
814 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(T: InitCaptureType, Loc);
815 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
816 PETL.setEllipsisLoc(EllipsisLoc);
817
818 // Create a dummy variable representing the init-capture. This is not actually
819 // used as a variable, and only exists as a way to name and refer to the
820 // init-capture.
821 // FIXME: Pass in separate source locations for '&' and identifier.
822 VarDecl *NewVD = VarDecl::Create(C&: Context, DC: DeclCtx, StartLoc: Loc, IdLoc: Loc, Id,
823 T: InitCaptureType, TInfo: TSI, S: SC_Auto);
824 NewVD->setInitCapture(true);
825 NewVD->setReferenced(true);
826 // FIXME: Pass in a VarDecl::InitializationStyle.
827 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
828 NewVD->markUsed(Context);
829 NewVD->setInit(Init);
830 if (NewVD->isParameterPack())
831 getCurLambda()->LocalPacks.push_back(NewVD);
832 return NewVD;
833}
834
835void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) {
836 assert(Var->isInitCapture() && "init capture flag should be set");
837 LSI->addCapture(Var, /*isBlock=*/false, isByref: ByRef,
838 /*isNested=*/false, Loc: Var->getLocation(), EllipsisLoc: SourceLocation(),
839 CaptureType: Var->getType(), /*Invalid=*/false);
840}
841
842// Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't
843// check that the current lambda is in a consistent or fully constructed state.
844static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) {
845 assert(!S.FunctionScopes.empty());
846 return cast<LambdaScopeInfo>(Val: S.FunctionScopes[S.FunctionScopes.size() - 1]);
847}
848
849static TypeSourceInfo *
850getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) {
851 // C++11 [expr.prim.lambda]p4:
852 // If a lambda-expression does not include a lambda-declarator, it is as
853 // if the lambda-declarator were ().
854 FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention(
855 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
856 EPI.HasTrailingReturn = true;
857 EPI.TypeQuals.addConst();
858 LangAS AS = S.getDefaultCXXMethodAddrSpace();
859 if (AS != LangAS::Default)
860 EPI.TypeQuals.addAddressSpace(space: AS);
861
862 // C++1y [expr.prim.lambda]:
863 // The lambda return type is 'auto', which is replaced by the
864 // trailing-return type if provided and/or deduced from 'return'
865 // statements
866 // We don't do this before C++1y, because we don't support deduced return
867 // types there.
868 QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14
869 ? S.Context.getAutoDeductType()
870 : S.Context.DependentTy;
871 QualType MethodTy = S.Context.getFunctionType(ResultTy: DefaultTypeForNoTrailingReturn,
872 Args: std::nullopt, EPI);
873 return S.Context.getTrivialTypeSourceInfo(T: MethodTy, Loc);
874}
875
876static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro,
877 Declarator &ParamInfo, Scope *CurScope,
878 SourceLocation Loc,
879 bool &ExplicitResultType) {
880
881 ExplicitResultType = false;
882
883 assert(
884 (ParamInfo.getDeclSpec().getStorageClassSpec() ==
885 DeclSpec::SCS_unspecified ||
886 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) &&
887 "Unexpected storage specifier");
888 bool IsLambdaStatic =
889 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
890
891 TypeSourceInfo *MethodTyInfo;
892
893 if (ParamInfo.getNumTypeObjects() == 0) {
894 MethodTyInfo = getDummyLambdaType(S, Loc);
895 } else {
896 // Check explicit parameters
897 S.CheckExplicitObjectLambda(D&: ParamInfo);
898
899 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
900
901 bool HasExplicitObjectParameter =
902 ParamInfo.isExplicitObjectMemberFunction();
903
904 ExplicitResultType = FTI.hasTrailingReturnType();
905 if (!FTI.hasMutableQualifier() && !IsLambdaStatic &&
906 !HasExplicitObjectParameter)
907 FTI.getOrCreateMethodQualifiers().SetTypeQual(T: DeclSpec::TQ_const, Loc);
908
909 if (ExplicitResultType && S.getLangOpts().HLSL) {
910 QualType RetTy = FTI.getTrailingReturnType().get();
911 if (!RetTy.isNull()) {
912 // HLSL does not support specifying an address space on a lambda return
913 // type.
914 LangAS AddressSpace = RetTy.getAddressSpace();
915 if (AddressSpace != LangAS::Default)
916 S.Diag(FTI.getTrailingReturnTypeLoc(),
917 diag::err_return_value_with_address_space);
918 }
919 }
920
921 MethodTyInfo = S.GetTypeForDeclarator(D&: ParamInfo);
922 assert(MethodTyInfo && "no type from lambda-declarator");
923
924 // Check for unexpanded parameter packs in the method type.
925 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
926 S.DiagnoseUnexpandedParameterPack(Loc: Intro.Range.getBegin(), T: MethodTyInfo,
927 UPPC: S.UPPC_DeclarationType);
928 }
929 return MethodTyInfo;
930}
931
932CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange,
933 CXXRecordDecl *Class) {
934
935 // C++20 [expr.prim.lambda.closure]p3:
936 // The closure type for a lambda-expression has a public inline function
937 // call operator (for a non-generic lambda) or function call operator
938 // template (for a generic lambda) whose parameters and return type are
939 // described by the lambda-expression's parameter-declaration-clause
940 // and trailing-return-type respectively.
941 DeclarationName MethodName =
942 Context.DeclarationNames.getCXXOperatorName(Op: OO_Call);
943 DeclarationNameLoc MethodNameLoc =
944 DeclarationNameLoc::makeCXXOperatorNameLoc(Range: IntroducerRange.getBegin());
945 CXXMethodDecl *Method = CXXMethodDecl::Create(
946 C&: Context, RD: Class, StartLoc: SourceLocation(),
947 NameInfo: DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
948 MethodNameLoc),
949 T: QualType(), /*Tinfo=*/TInfo: nullptr, SC: SC_None,
950 UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
951 /*isInline=*/true, ConstexprKind: ConstexprSpecKind::Unspecified, EndLocation: SourceLocation(),
952 /*TrailingRequiresClause=*/nullptr);
953 Method->setAccess(AS_public);
954 return Method;
955}
956
957void Sema::AddTemplateParametersToLambdaCallOperator(
958 CXXMethodDecl *CallOperator, CXXRecordDecl *Class,
959 TemplateParameterList *TemplateParams) {
960 assert(TemplateParams && "no template parameters");
961 FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create(
962 C&: Context, DC: Class, L: CallOperator->getLocation(), Name: CallOperator->getDeclName(),
963 Params: TemplateParams, Decl: CallOperator);
964 TemplateMethod->setAccess(AS_public);
965 CallOperator->setDescribedFunctionTemplate(TemplateMethod);
966}
967
968void Sema::CompleteLambdaCallOperator(
969 CXXMethodDecl *Method, SourceLocation LambdaLoc,
970 SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause,
971 TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind,
972 StorageClass SC, ArrayRef<ParmVarDecl *> Params,
973 bool HasExplicitResultType) {
974
975 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this);
976
977 if (TrailingRequiresClause)
978 Method->setTrailingRequiresClause(TrailingRequiresClause);
979
980 TemplateParameterList *TemplateParams =
981 getGenericLambdaTemplateParameterList(LSI, SemaRef&: *this);
982
983 DeclContext *DC = Method->getLexicalDeclContext();
984 Method->setLexicalDeclContext(LSI->Lambda);
985 if (TemplateParams) {
986 FunctionTemplateDecl *TemplateMethod =
987 Method->getDescribedFunctionTemplate();
988 assert(TemplateMethod &&
989 "AddTemplateParametersToLambdaCallOperator should have been called");
990
991 LSI->Lambda->addDecl(TemplateMethod);
992 TemplateMethod->setLexicalDeclContext(DC);
993 } else {
994 LSI->Lambda->addDecl(Method);
995 }
996 LSI->Lambda->setLambdaIsGeneric(TemplateParams);
997 LSI->Lambda->setLambdaTypeInfo(MethodTyInfo);
998
999 Method->setLexicalDeclContext(DC);
1000 Method->setLocation(LambdaLoc);
1001 Method->setInnerLocStart(CallOperatorLoc);
1002 Method->setTypeSourceInfo(MethodTyInfo);
1003 Method->setType(buildTypeForLambdaCallOperator(S&: *this, Class: LSI->Lambda,
1004 TemplateParams, MethodTypeInfo: MethodTyInfo));
1005 Method->setConstexprKind(ConstexprKind);
1006 Method->setStorageClass(SC);
1007 if (!Params.empty()) {
1008 CheckParmsForFunctionDef(Parameters: Params, /*CheckParameterNames=*/false);
1009 Method->setParams(Params);
1010 for (auto P : Method->parameters()) {
1011 assert(P && "null in a parameter list");
1012 P->setOwningFunction(Method);
1013 }
1014 }
1015
1016 buildLambdaScopeReturnType(S&: *this, LSI, CallOperator: Method, ExplicitResultType: HasExplicitResultType);
1017}
1018
1019void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro,
1020 Scope *CurrentScope) {
1021
1022 LambdaScopeInfo *LSI = getCurLambda();
1023 assert(LSI && "LambdaScopeInfo should be on stack!");
1024
1025 if (Intro.Default == LCD_ByCopy)
1026 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
1027 else if (Intro.Default == LCD_ByRef)
1028 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
1029 LSI->CaptureDefaultLoc = Intro.DefaultLoc;
1030 LSI->IntroducerRange = Intro.Range;
1031 LSI->AfterParameterList = false;
1032
1033 assert(LSI->NumExplicitTemplateParams == 0);
1034
1035 // Determine if we're within a context where we know that the lambda will
1036 // be dependent, because there are template parameters in scope.
1037 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind =
1038 CXXRecordDecl::LDK_Unknown;
1039 if (LSI->NumExplicitTemplateParams > 0) {
1040 Scope *TemplateParamScope = CurScope->getTemplateParamParent();
1041 assert(TemplateParamScope &&
1042 "Lambda with explicit template param list should establish a "
1043 "template param scope");
1044 assert(TemplateParamScope->getParent());
1045 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr)
1046 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
1047 } else if (CurScope->getTemplateParamParent() != nullptr) {
1048 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
1049 }
1050
1051 CXXRecordDecl *Class = createLambdaClosureType(
1052 IntroducerRange: Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, CaptureDefault: Intro.Default);
1053 LSI->Lambda = Class;
1054
1055 CXXMethodDecl *Method = CreateLambdaCallOperator(IntroducerRange: Intro.Range, Class);
1056 LSI->CallOperator = Method;
1057 Method->setLexicalDeclContext(CurContext);
1058
1059 PushDeclContext(CurScope, Method);
1060
1061 bool ContainsUnexpandedParameterPack = false;
1062
1063 // Distinct capture names, for diagnostics.
1064 llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames;
1065
1066 // Handle explicit captures.
1067 SourceLocation PrevCaptureLoc =
1068 Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc;
1069 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1070 PrevCaptureLoc = C->Loc, ++C) {
1071 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1072 if (C->Kind == LCK_StarThis)
1073 Diag(C->Loc, !getLangOpts().CPlusPlus17
1074 ? diag::ext_star_this_lambda_capture_cxx17
1075 : diag::warn_cxx14_compat_star_this_lambda_capture);
1076
1077 // C++11 [expr.prim.lambda]p8:
1078 // An identifier or this shall not appear more than once in a
1079 // lambda-capture.
1080 if (LSI->isCXXThisCaptured()) {
1081 Diag(C->Loc, diag::err_capture_more_than_once)
1082 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1083 << FixItHint::CreateRemoval(
1084 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1085 continue;
1086 }
1087
1088 // C++20 [expr.prim.lambda]p8:
1089 // If a lambda-capture includes a capture-default that is =,
1090 // each simple-capture of that lambda-capture shall be of the form
1091 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1092 // redundant but accepted for compatibility with ISO C++14. --end note ]
1093 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1094 Diag(C->Loc, !getLangOpts().CPlusPlus20
1095 ? diag::ext_equals_this_lambda_capture_cxx20
1096 : diag::warn_cxx17_compat_equals_this_lambda_capture);
1097
1098 // C++11 [expr.prim.lambda]p12:
1099 // If this is captured by a local lambda expression, its nearest
1100 // enclosing function shall be a non-static member function.
1101 QualType ThisCaptureType = getCurrentThisType();
1102 if (ThisCaptureType.isNull()) {
1103 Diag(C->Loc, diag::err_this_capture) << true;
1104 continue;
1105 }
1106
1107 CheckCXXThisCapture(Loc: C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1108 /*FunctionScopeIndexToStopAtPtr*/ FunctionScopeIndexToStopAt: nullptr,
1109 ByCopy: C->Kind == LCK_StarThis);
1110 if (!LSI->Captures.empty())
1111 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1112 continue;
1113 }
1114
1115 assert(C->Id && "missing identifier for capture");
1116
1117 if (C->Init.isInvalid())
1118 continue;
1119
1120 ValueDecl *Var = nullptr;
1121 if (C->Init.isUsable()) {
1122 Diag(C->Loc, getLangOpts().CPlusPlus14
1123 ? diag::warn_cxx11_compat_init_capture
1124 : diag::ext_init_capture);
1125
1126 // If the initializer expression is usable, but the InitCaptureType
1127 // is not, then an error has occurred - so ignore the capture for now.
1128 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1129 // FIXME: we should create the init capture variable and mark it invalid
1130 // in this case.
1131 if (C->InitCaptureType.get().isNull())
1132 continue;
1133
1134 if (C->Init.get()->containsUnexpandedParameterPack() &&
1135 !C->InitCaptureType.get()->getAs<PackExpansionType>())
1136 DiagnoseUnexpandedParameterPack(E: C->Init.get(), UPPC: UPPC_Initializer);
1137
1138 unsigned InitStyle;
1139 switch (C->InitKind) {
1140 case LambdaCaptureInitKind::NoInit:
1141 llvm_unreachable("not an init-capture?");
1142 case LambdaCaptureInitKind::CopyInit:
1143 InitStyle = VarDecl::CInit;
1144 break;
1145 case LambdaCaptureInitKind::DirectInit:
1146 InitStyle = VarDecl::CallInit;
1147 break;
1148 case LambdaCaptureInitKind::ListInit:
1149 InitStyle = VarDecl::ListInit;
1150 break;
1151 }
1152 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1153 C->EllipsisLoc, C->Id, InitStyle,
1154 C->Init.get(), Method);
1155 assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?");
1156 if (auto *V = dyn_cast<VarDecl>(Val: Var))
1157 CheckShadow(S: CurrentScope, D: V);
1158 PushOnScopeChains(Var, CurrentScope, false);
1159 } else {
1160 assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1161 "init capture has valid but null init?");
1162
1163 // C++11 [expr.prim.lambda]p8:
1164 // If a lambda-capture includes a capture-default that is &, the
1165 // identifiers in the lambda-capture shall not be preceded by &.
1166 // If a lambda-capture includes a capture-default that is =, [...]
1167 // each identifier it contains shall be preceded by &.
1168 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1169 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1170 << FixItHint::CreateRemoval(
1171 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1172 continue;
1173 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1174 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1175 << FixItHint::CreateRemoval(
1176 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1177 continue;
1178 }
1179
1180 // C++11 [expr.prim.lambda]p10:
1181 // The identifiers in a capture-list are looked up using the usual
1182 // rules for unqualified name lookup (3.4.1)
1183 DeclarationNameInfo Name(C->Id, C->Loc);
1184 LookupResult R(*this, Name, LookupOrdinaryName);
1185 LookupName(R, S: CurScope);
1186 if (R.isAmbiguous())
1187 continue;
1188 if (R.empty()) {
1189 // FIXME: Disable corrections that would add qualification?
1190 CXXScopeSpec ScopeSpec;
1191 DeclFilterCCC<VarDecl> Validator{};
1192 if (DiagnoseEmptyLookup(S: CurScope, SS&: ScopeSpec, R, CCC&: Validator))
1193 continue;
1194 }
1195
1196 if (auto *BD = R.getAsSingle<BindingDecl>())
1197 Var = BD;
1198 else
1199 Var = R.getAsSingle<VarDecl>();
1200 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1201 continue;
1202 }
1203
1204 // C++11 [expr.prim.lambda]p10:
1205 // [...] each such lookup shall find a variable with automatic storage
1206 // duration declared in the reaching scope of the local lambda expression.
1207 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1208 if (!Var) {
1209 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1210 continue;
1211 }
1212
1213 // C++11 [expr.prim.lambda]p8:
1214 // An identifier or this shall not appear more than once in a
1215 // lambda-capture.
1216 if (auto [It, Inserted] = CaptureNames.insert(KV: std::pair{C->Id, Var});
1217 !Inserted) {
1218 if (C->InitKind == LambdaCaptureInitKind::NoInit &&
1219 !Var->isInitCapture()) {
1220 Diag(C->Loc, diag::err_capture_more_than_once)
1221 << C->Id << It->second->getBeginLoc()
1222 << FixItHint::CreateRemoval(
1223 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1224 Var->setInvalidDecl();
1225 } else if (Var && Var->isPlaceholderVar(getLangOpts())) {
1226 DiagPlaceholderVariableDefinition(Loc: C->Loc);
1227 } else {
1228 // Previous capture captured something different (one or both was
1229 // an init-capture): no fixit.
1230 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1231 continue;
1232 }
1233 }
1234
1235 // Ignore invalid decls; they'll just confuse the code later.
1236 if (Var->isInvalidDecl())
1237 continue;
1238
1239 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
1240
1241 if (!Underlying->hasLocalStorage()) {
1242 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1243 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1244 continue;
1245 }
1246
1247 // C++11 [expr.prim.lambda]p23:
1248 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1249 SourceLocation EllipsisLoc;
1250 if (C->EllipsisLoc.isValid()) {
1251 if (Var->isParameterPack()) {
1252 EllipsisLoc = C->EllipsisLoc;
1253 } else {
1254 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1255 << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1256 : SourceRange(C->Loc));
1257
1258 // Just ignore the ellipsis.
1259 }
1260 } else if (Var->isParameterPack()) {
1261 ContainsUnexpandedParameterPack = true;
1262 }
1263
1264 if (C->Init.isUsable()) {
1265 addInitCapture(LSI, Var: cast<VarDecl>(Val: Var), ByRef: C->Kind == LCK_ByRef);
1266 PushOnScopeChains(Var, CurScope, false);
1267 } else {
1268 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef
1269 : TryCapture_ExplicitByVal;
1270 tryCaptureVariable(Var, Loc: C->Loc, Kind, EllipsisLoc);
1271 }
1272 if (!LSI->Captures.empty())
1273 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1274 }
1275 finishLambdaExplicitCaptures(LSI);
1276 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1277 PopDeclContext();
1278}
1279
1280void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro,
1281 SourceLocation MutableLoc) {
1282
1283 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this);
1284 LSI->Mutable = MutableLoc.isValid();
1285 ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false);
1286
1287 // C++11 [expr.prim.lambda]p9:
1288 // A lambda-expression whose smallest enclosing scope is a block scope is a
1289 // local lambda expression; any other lambda expression shall not have a
1290 // capture-default or simple-capture in its lambda-introducer.
1291 //
1292 // For simple-captures, this is covered by the check below that any named
1293 // entity is a variable that can be captured.
1294 //
1295 // For DR1632, we also allow a capture-default in any context where we can
1296 // odr-use 'this' (in particular, in a default initializer for a non-static
1297 // data member).
1298 if (Intro.Default != LCD_None &&
1299 !LSI->Lambda->getParent()->isFunctionOrMethod() &&
1300 (getCurrentThisType().isNull() ||
1301 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true,
1302 /*BuildAndDiagnose=*/false)))
1303 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1304}
1305
1306void Sema::ActOnLambdaClosureParameters(
1307 Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) {
1308 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this);
1309 PushDeclContext(LambdaScope, LSI->CallOperator);
1310
1311 for (const DeclaratorChunk::ParamInfo &P : Params) {
1312 auto *Param = cast<ParmVarDecl>(Val: P.Param);
1313 Param->setOwningFunction(LSI->CallOperator);
1314 if (Param->getIdentifier())
1315 PushOnScopeChains(Param, LambdaScope, false);
1316 }
1317
1318 // After the parameter list, we may parse a noexcept/requires/trailing return
1319 // type which need to know whether the call operator constiture a dependent
1320 // context, so we need to setup the FunctionTemplateDecl of generic lambdas
1321 // now.
1322 TemplateParameterList *TemplateParams =
1323 getGenericLambdaTemplateParameterList(LSI, SemaRef&: *this);
1324 if (TemplateParams) {
1325 AddTemplateParametersToLambdaCallOperator(CallOperator: LSI->CallOperator, Class: LSI->Lambda,
1326 TemplateParams);
1327 LSI->Lambda->setLambdaIsGeneric(true);
1328 }
1329 LSI->AfterParameterList = true;
1330}
1331
1332void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
1333 Declarator &ParamInfo,
1334 const DeclSpec &DS) {
1335
1336 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this);
1337 LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier());
1338
1339 SmallVector<ParmVarDecl *, 8> Params;
1340 bool ExplicitResultType;
1341
1342 SourceLocation TypeLoc, CallOperatorLoc;
1343 if (ParamInfo.getNumTypeObjects() == 0) {
1344 CallOperatorLoc = TypeLoc = Intro.Range.getEnd();
1345 } else {
1346 unsigned Index;
1347 ParamInfo.isFunctionDeclarator(idx&: Index);
1348 const auto &Object = ParamInfo.getTypeObject(i: Index);
1349 TypeLoc =
1350 Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd();
1351 CallOperatorLoc = ParamInfo.getSourceRange().getEnd();
1352 }
1353
1354 CXXRecordDecl *Class = LSI->Lambda;
1355 CXXMethodDecl *Method = LSI->CallOperator;
1356
1357 TypeSourceInfo *MethodTyInfo = getLambdaType(
1358 S&: *this, Intro, ParamInfo, CurScope: getCurScope(), Loc: TypeLoc, ExplicitResultType);
1359
1360 LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0;
1361
1362 if (ParamInfo.isFunctionDeclarator() != 0 &&
1363 !FTIHasSingleVoidParameter(FTI: ParamInfo.getFunctionTypeInfo())) {
1364 const auto &FTI = ParamInfo.getFunctionTypeInfo();
1365 Params.reserve(N: Params.size());
1366 for (unsigned I = 0; I < FTI.NumParams; ++I) {
1367 auto *Param = cast<ParmVarDecl>(Val: FTI.Params[I].Param);
1368 Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size());
1369 Params.push_back(Elt: Param);
1370 }
1371 }
1372
1373 bool IsLambdaStatic =
1374 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
1375
1376 CompleteLambdaCallOperator(
1377 Method, LambdaLoc: Intro.Range.getBegin(), CallOperatorLoc,
1378 TrailingRequiresClause: ParamInfo.getTrailingRequiresClause(), MethodTyInfo,
1379 ConstexprKind: ParamInfo.getDeclSpec().getConstexprSpecifier(),
1380 SC: IsLambdaStatic ? SC_Static : SC_None, Params, HasExplicitResultType: ExplicitResultType);
1381
1382 CheckCXXDefaultArguments(Method);
1383
1384 // This represents the function body for the lambda function, check if we
1385 // have to apply optnone due to a pragma.
1386 AddRangeBasedOptnone(Method);
1387
1388 // code_seg attribute on lambda apply to the method.
1389 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(
1390 Method, /*IsDefinition=*/true))
1391 Method->addAttr(A);
1392
1393 // Attributes on the lambda apply to the method.
1394 ProcessDeclAttributes(CurScope, Method, ParamInfo);
1395
1396 // CUDA lambdas get implicit host and device attributes.
1397 if (getLangOpts().CUDA)
1398 CUDA().SetLambdaAttrs(Method);
1399
1400 // OpenMP lambdas might get assumumption attributes.
1401 if (LangOpts.OpenMP)
1402 OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1403
1404 handleLambdaNumbering(Class, Method);
1405
1406 for (auto &&C : LSI->Captures) {
1407 if (!C.isVariableCapture())
1408 continue;
1409 ValueDecl *Var = C.getVariable();
1410 if (Var && Var->isInitCapture()) {
1411 PushOnScopeChains(Var, CurScope, false);
1412 }
1413 }
1414
1415 auto CheckRedefinition = [&](ParmVarDecl *Param) {
1416 for (const auto &Capture : Intro.Captures) {
1417 if (Capture.Id == Param->getIdentifier()) {
1418 Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
1419 Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
1420 << Capture.Id << true;
1421 return false;
1422 }
1423 }
1424 return true;
1425 };
1426
1427 for (ParmVarDecl *P : Params) {
1428 if (!P->getIdentifier())
1429 continue;
1430 if (CheckRedefinition(P))
1431 CheckShadow(CurScope, P);
1432 PushOnScopeChains(P, CurScope);
1433 }
1434
1435 // C++23 [expr.prim.lambda.capture]p5:
1436 // If an identifier in a capture appears as the declarator-id of a parameter
1437 // of the lambda-declarator's parameter-declaration-clause or as the name of a
1438 // template parameter of the lambda-expression's template-parameter-list, the
1439 // program is ill-formed.
1440 TemplateParameterList *TemplateParams =
1441 getGenericLambdaTemplateParameterList(LSI, SemaRef&: *this);
1442 if (TemplateParams) {
1443 for (const auto *TP : TemplateParams->asArray()) {
1444 if (!TP->getIdentifier())
1445 continue;
1446 for (const auto &Capture : Intro.Captures) {
1447 if (Capture.Id == TP->getIdentifier()) {
1448 Diag(Capture.Loc, diag::err_template_param_shadow) << Capture.Id;
1449 NoteTemplateParameterLocation(Decl: *TP);
1450 }
1451 }
1452 }
1453 }
1454
1455 // C++20: dcl.decl.general p4:
1456 // The optional requires-clause ([temp.pre]) in an init-declarator or
1457 // member-declarator shall be present only if the declarator declares a
1458 // templated function ([dcl.fct]).
1459 if (Expr *TRC = Method->getTrailingRequiresClause()) {
1460 // [temp.pre]/8:
1461 // An entity is templated if it is
1462 // - a template,
1463 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
1464 // templated entity,
1465 // - a member of a templated entity,
1466 // - an enumerator for an enumeration that is a templated entity, or
1467 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
1468 // appearing in the declaration of a templated entity. [Note 6: A local
1469 // class, a local or block variable, or a friend function defined in a
1470 // templated entity is a templated entity. — end note]
1471 //
1472 // A templated function is a function template or a function that is
1473 // templated. A templated class is a class template or a class that is
1474 // templated. A templated variable is a variable template or a variable
1475 // that is templated.
1476
1477 // Note: we only have to check if this is defined in a template entity, OR
1478 // if we are a template, since the rest don't apply. The requires clause
1479 // applies to the call operator, which we already know is a member function,
1480 // AND defined.
1481 if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) {
1482 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
1483 }
1484 }
1485
1486 // Enter a new evaluation context to insulate the lambda from any
1487 // cleanups from the enclosing full-expression.
1488 PushExpressionEvaluationContext(
1489 LSI->CallOperator->isConsteval()
1490 ? ExpressionEvaluationContext::ImmediateFunctionContext
1491 : ExpressionEvaluationContext::PotentiallyEvaluated);
1492 ExprEvalContexts.back().InImmediateFunctionContext =
1493 LSI->CallOperator->isConsteval();
1494 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
1495 getLangOpts().CPlusPlus20 && LSI->CallOperator->isImmediateEscalating();
1496}
1497
1498void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1499 bool IsInstantiation) {
1500 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: FunctionScopes.back());
1501
1502 // Leave the expression-evaluation context.
1503 DiscardCleanupsInEvaluationContext();
1504 PopExpressionEvaluationContext();
1505
1506 // Leave the context of the lambda.
1507 if (!IsInstantiation)
1508 PopDeclContext();
1509
1510 // Finalize the lambda.
1511 CXXRecordDecl *Class = LSI->Lambda;
1512 Class->setInvalidDecl();
1513 SmallVector<Decl*, 4> Fields(Class->fields());
1514 ActOnFields(S: nullptr, RecLoc: Class->getLocation(), TagDecl: Class, Fields, LBrac: SourceLocation(),
1515 RBrac: SourceLocation(), AttrList: ParsedAttributesView());
1516 CheckCompletedCXXClass(S: nullptr, Record: Class);
1517
1518 PopFunctionScopeInfo();
1519}
1520
1521template <typename Func>
1522static void repeatForLambdaConversionFunctionCallingConvs(
1523 Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1524 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1525 IsVariadic: CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1526 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1527 IsVariadic: CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1528 CallingConv CallOpCC = CallOpProto.getCallConv();
1529
1530 /// Implement emitting a version of the operator for many of the calling
1531 /// conventions for MSVC, as described here:
1532 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1533 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1534 /// vectorcall are generated by MSVC when it is supported by the target.
1535 /// Additionally, we are ensuring that the default-free/default-member and
1536 /// call-operator calling convention are generated as well.
1537 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1538 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1539 /// that someone who intentionally places 'thiscall' on the lambda call
1540 /// operator will still get that overload, since we don't have the a way of
1541 /// detecting the attribute by the time we get here.
1542 if (S.getLangOpts().MSVCCompat) {
1543 CallingConv Convs[] = {
1544 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1545 DefaultFree, DefaultMember, CallOpCC};
1546 llvm::sort(C&: Convs);
1547 llvm::iterator_range<CallingConv *> Range(
1548 std::begin(arr&: Convs), std::unique(first: std::begin(arr&: Convs), last: std::end(arr&: Convs)));
1549 const TargetInfo &TI = S.getASTContext().getTargetInfo();
1550
1551 for (CallingConv C : Range) {
1552 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1553 F(C);
1554 }
1555 return;
1556 }
1557
1558 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1559 F(DefaultFree);
1560 F(DefaultMember);
1561 } else {
1562 F(CallOpCC);
1563 }
1564}
1565
1566// Returns the 'standard' calling convention to be used for the lambda
1567// conversion function, that is, the 'free' function calling convention unless
1568// it is overridden by a non-default calling convention attribute.
1569static CallingConv
1570getLambdaConversionFunctionCallConv(Sema &S,
1571 const FunctionProtoType *CallOpProto) {
1572 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1573 IsVariadic: CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1574 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1575 IsVariadic: CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1576 CallingConv CallOpCC = CallOpProto->getCallConv();
1577
1578 // If the call-operator hasn't been changed, return both the 'free' and
1579 // 'member' function calling convention.
1580 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1581 return DefaultFree;
1582 return CallOpCC;
1583}
1584
1585QualType Sema::getLambdaConversionFunctionResultType(
1586 const FunctionProtoType *CallOpProto, CallingConv CC) {
1587 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1588 CallOpProto->getExtProtoInfo();
1589 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1590 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(cc: CC);
1591 InvokerExtInfo.TypeQuals = Qualifiers();
1592 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1593 "Lambda's call operator should not have a reference qualifier");
1594 return Context.getFunctionType(ResultTy: CallOpProto->getReturnType(),
1595 Args: CallOpProto->getParamTypes(), EPI: InvokerExtInfo);
1596}
1597
1598/// Add a lambda's conversion to function pointer, as described in
1599/// C++11 [expr.prim.lambda]p6.
1600static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1601 CXXRecordDecl *Class,
1602 CXXMethodDecl *CallOperator,
1603 QualType InvokerFunctionTy) {
1604 // This conversion is explicitly disabled if the lambda's function has
1605 // pass_object_size attributes on any of its parameters.
1606 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1607 return P->hasAttr<PassObjectSizeAttr>();
1608 };
1609 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1610 return;
1611
1612 // Add the conversion to function pointer.
1613 QualType PtrToFunctionTy = S.Context.getPointerType(T: InvokerFunctionTy);
1614
1615 // Create the type of the conversion function.
1616 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1617 S.Context.getDefaultCallingConvention(
1618 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1619 // The conversion function is always const and noexcept.
1620 ConvExtInfo.TypeQuals = Qualifiers();
1621 ConvExtInfo.TypeQuals.addConst();
1622 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1623 QualType ConvTy =
1624 S.Context.getFunctionType(ResultTy: PtrToFunctionTy, Args: std::nullopt, EPI: ConvExtInfo);
1625
1626 SourceLocation Loc = IntroducerRange.getBegin();
1627 DeclarationName ConversionName
1628 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1629 Ty: S.Context.getCanonicalType(T: PtrToFunctionTy));
1630 // Construct a TypeSourceInfo for the conversion function, and wire
1631 // all the parameters appropriately for the FunctionProtoTypeLoc
1632 // so that everything works during transformation/instantiation of
1633 // generic lambdas.
1634 // The main reason for wiring up the parameters of the conversion
1635 // function with that of the call operator is so that constructs
1636 // like the following work:
1637 // auto L = [](auto b) { <-- 1
1638 // return [](auto a) -> decltype(a) { <-- 2
1639 // return a;
1640 // };
1641 // };
1642 // int (*fp)(int) = L(5);
1643 // Because the trailing return type can contain DeclRefExprs that refer
1644 // to the original call operator's variables, we hijack the call
1645 // operators ParmVarDecls below.
1646 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1647 S.Context.getTrivialTypeSourceInfo(T: PtrToFunctionTy, Loc);
1648 DeclarationNameLoc ConvNameLoc =
1649 DeclarationNameLoc::makeNamedTypeLoc(TInfo: ConvNamePtrToFunctionTSI);
1650
1651 // The conversion function is a conversion to a pointer-to-function.
1652 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(T: ConvTy, Loc);
1653 FunctionProtoTypeLoc ConvTL =
1654 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1655 // Get the result of the conversion function which is a pointer-to-function.
1656 PointerTypeLoc PtrToFunctionTL =
1657 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1658 // Do the same for the TypeSourceInfo that is used to name the conversion
1659 // operator.
1660 PointerTypeLoc ConvNamePtrToFunctionTL =
1661 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1662
1663 // Get the underlying function types that the conversion function will
1664 // be converting to (should match the type of the call operator).
1665 FunctionProtoTypeLoc CallOpConvTL =
1666 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1667 FunctionProtoTypeLoc CallOpConvNameTL =
1668 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1669
1670 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1671 // These parameter's are essentially used to transform the name and
1672 // the type of the conversion operator. By using the same parameters
1673 // as the call operator's we don't have to fix any back references that
1674 // the trailing return type of the call operator's uses (such as
1675 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1676 // - we can simply use the return type of the call operator, and
1677 // everything should work.
1678 SmallVector<ParmVarDecl *, 4> InvokerParams;
1679 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1680 ParmVarDecl *From = CallOperator->getParamDecl(I);
1681
1682 InvokerParams.push_back(Elt: ParmVarDecl::Create(
1683 C&: S.Context,
1684 // Temporarily add to the TU. This is set to the invoker below.
1685 DC: S.Context.getTranslationUnitDecl(), StartLoc: From->getBeginLoc(),
1686 IdLoc: From->getLocation(), Id: From->getIdentifier(), T: From->getType(),
1687 TInfo: From->getTypeSourceInfo(), S: From->getStorageClass(),
1688 /*DefArg=*/nullptr));
1689 CallOpConvTL.setParam(I, From);
1690 CallOpConvNameTL.setParam(I, From);
1691 }
1692
1693 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1694 C&: S.Context, RD: Class, StartLoc: Loc,
1695 NameInfo: DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), T: ConvTy, TInfo: ConvTSI,
1696 UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(),
1697 /*isInline=*/true, ES: ExplicitSpecifier(),
1698 ConstexprKind: S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1699 : ConstexprSpecKind::Unspecified,
1700 EndLocation: CallOperator->getBody()->getEndLoc());
1701 Conversion->setAccess(AS_public);
1702 Conversion->setImplicit(true);
1703
1704 // A non-generic lambda may still be a templated entity. We need to preserve
1705 // constraints when converting the lambda to a function pointer. See GH63181.
1706 if (Expr *Requires = CallOperator->getTrailingRequiresClause())
1707 Conversion->setTrailingRequiresClause(Requires);
1708
1709 if (Class->isGenericLambda()) {
1710 // Create a template version of the conversion operator, using the template
1711 // parameter list of the function call operator.
1712 FunctionTemplateDecl *TemplateCallOperator =
1713 CallOperator->getDescribedFunctionTemplate();
1714 FunctionTemplateDecl *ConversionTemplate =
1715 FunctionTemplateDecl::Create(C&: S.Context, DC: Class,
1716 L: Loc, Name: ConversionName,
1717 Params: TemplateCallOperator->getTemplateParameters(),
1718 Decl: Conversion);
1719 ConversionTemplate->setAccess(AS_public);
1720 ConversionTemplate->setImplicit(true);
1721 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1722 Class->addDecl(ConversionTemplate);
1723 } else
1724 Class->addDecl(Conversion);
1725
1726 // If the lambda is not static, we need to add a static member
1727 // function that will be the result of the conversion with a
1728 // certain unique ID.
1729 // When it is static we just return the static call operator instead.
1730 if (CallOperator->isImplicitObjectMemberFunction()) {
1731 DeclarationName InvokerName =
1732 &S.Context.Idents.get(Name: getLambdaStaticInvokerName());
1733 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1734 // we should get a prebuilt TrivialTypeSourceInfo from Context
1735 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1736 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1737 // loop below and then use its Params to set Invoke->setParams(...) below.
1738 // This would avoid the 'const' qualifier of the calloperator from
1739 // contaminating the type of the invoker, which is currently adjusted
1740 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1741 // trailing return type of the invoker would require a visitor to rebuild
1742 // the trailing return type and adjusting all back DeclRefExpr's to refer
1743 // to the new static invoker parameters - not the call operator's.
1744 CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1745 C&: S.Context, RD: Class, StartLoc: Loc, NameInfo: DeclarationNameInfo(InvokerName, Loc),
1746 T: InvokerFunctionTy, TInfo: CallOperator->getTypeSourceInfo(), SC: SC_Static,
1747 UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(),
1748 /*isInline=*/true, ConstexprKind: CallOperator->getConstexprKind(),
1749 EndLocation: CallOperator->getBody()->getEndLoc());
1750 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1751 InvokerParams[I]->setOwningFunction(Invoke);
1752 Invoke->setParams(InvokerParams);
1753 Invoke->setAccess(AS_private);
1754 Invoke->setImplicit(true);
1755 if (Class->isGenericLambda()) {
1756 FunctionTemplateDecl *TemplateCallOperator =
1757 CallOperator->getDescribedFunctionTemplate();
1758 FunctionTemplateDecl *StaticInvokerTemplate =
1759 FunctionTemplateDecl::Create(
1760 C&: S.Context, DC: Class, L: Loc, Name: InvokerName,
1761 Params: TemplateCallOperator->getTemplateParameters(), Decl: Invoke);
1762 StaticInvokerTemplate->setAccess(AS_private);
1763 StaticInvokerTemplate->setImplicit(true);
1764 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1765 Class->addDecl(StaticInvokerTemplate);
1766 } else
1767 Class->addDecl(Invoke);
1768 }
1769}
1770
1771/// Add a lambda's conversion to function pointers, as described in
1772/// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1773/// single pointer conversion. In the event that the default calling convention
1774/// for free and member functions is different, it will emit both conventions.
1775static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1776 CXXRecordDecl *Class,
1777 CXXMethodDecl *CallOperator) {
1778 const FunctionProtoType *CallOpProto =
1779 CallOperator->getType()->castAs<FunctionProtoType>();
1780
1781 repeatForLambdaConversionFunctionCallingConvs(
1782 S, CallOpProto: *CallOpProto, F: [&](CallingConv CC) {
1783 QualType InvokerFunctionTy =
1784 S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1785 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1786 InvokerFunctionTy);
1787 });
1788}
1789
1790/// Add a lambda's conversion to block pointer.
1791static void addBlockPointerConversion(Sema &S,
1792 SourceRange IntroducerRange,
1793 CXXRecordDecl *Class,
1794 CXXMethodDecl *CallOperator) {
1795 const FunctionProtoType *CallOpProto =
1796 CallOperator->getType()->castAs<FunctionProtoType>();
1797 QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1798 CallOpProto, CC: getLambdaConversionFunctionCallConv(S, CallOpProto));
1799 QualType BlockPtrTy = S.Context.getBlockPointerType(T: FunctionTy);
1800
1801 FunctionProtoType::ExtProtoInfo ConversionEPI(
1802 S.Context.getDefaultCallingConvention(
1803 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1804 ConversionEPI.TypeQuals = Qualifiers();
1805 ConversionEPI.TypeQuals.addConst();
1806 QualType ConvTy =
1807 S.Context.getFunctionType(ResultTy: BlockPtrTy, Args: std::nullopt, EPI: ConversionEPI);
1808
1809 SourceLocation Loc = IntroducerRange.getBegin();
1810 DeclarationName Name
1811 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1812 Ty: S.Context.getCanonicalType(T: BlockPtrTy));
1813 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1814 TInfo: S.Context.getTrivialTypeSourceInfo(T: BlockPtrTy, Loc));
1815 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1816 C&: S.Context, RD: Class, StartLoc: Loc, NameInfo: DeclarationNameInfo(Name, Loc, NameLoc), T: ConvTy,
1817 TInfo: S.Context.getTrivialTypeSourceInfo(T: ConvTy, Loc),
1818 UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(),
1819 /*isInline=*/true, ES: ExplicitSpecifier(), ConstexprKind: ConstexprSpecKind::Unspecified,
1820 EndLocation: CallOperator->getBody()->getEndLoc());
1821 Conversion->setAccess(AS_public);
1822 Conversion->setImplicit(true);
1823 Class->addDecl(Conversion);
1824}
1825
1826ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1827 SourceLocation ImplicitCaptureLoc,
1828 bool IsOpenMPMapping) {
1829 // VLA captures don't have a stored initialization expression.
1830 if (Cap.isVLATypeCapture())
1831 return ExprResult();
1832
1833 // An init-capture is initialized directly from its stored initializer.
1834 if (Cap.isInitCapture())
1835 return cast<VarDecl>(Val: Cap.getVariable())->getInit();
1836
1837 // For anything else, build an initialization expression. For an implicit
1838 // capture, the capture notionally happens at the capture-default, so use
1839 // that location here.
1840 SourceLocation Loc =
1841 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1842
1843 // C++11 [expr.prim.lambda]p21:
1844 // When the lambda-expression is evaluated, the entities that
1845 // are captured by copy are used to direct-initialize each
1846 // corresponding non-static data member of the resulting closure
1847 // object. (For array members, the array elements are
1848 // direct-initialized in increasing subscript order.) These
1849 // initializations are performed in the (unspecified) order in
1850 // which the non-static data members are declared.
1851
1852 // C++ [expr.prim.lambda]p12:
1853 // An entity captured by a lambda-expression is odr-used (3.2) in
1854 // the scope containing the lambda-expression.
1855 ExprResult Init;
1856 IdentifierInfo *Name = nullptr;
1857 if (Cap.isThisCapture()) {
1858 QualType ThisTy = getCurrentThisType();
1859 Expr *This = BuildCXXThisExpr(Loc, Type: ThisTy, IsImplicit: ImplicitCaptureLoc.isValid());
1860 if (Cap.isCopyCapture())
1861 Init = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: This);
1862 else
1863 Init = This;
1864 } else {
1865 assert(Cap.isVariableCapture() && "unknown kind of capture");
1866 ValueDecl *Var = Cap.getVariable();
1867 Name = Var->getIdentifier();
1868 Init = BuildDeclarationNameExpr(
1869 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1870 }
1871
1872 // In OpenMP, the capture kind doesn't actually describe how to capture:
1873 // variables are "mapped" onto the device in a process that does not formally
1874 // make a copy, even for a "copy capture".
1875 if (IsOpenMPMapping)
1876 return Init;
1877
1878 if (Init.isInvalid())
1879 return ExprError();
1880
1881 Expr *InitExpr = Init.get();
1882 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1883 VarID: Name, FieldType: Cap.getCaptureType(), Loc);
1884 InitializationKind InitKind =
1885 InitializationKind::CreateDirect(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc);
1886 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1887 return InitSeq.Perform(S&: *this, Entity, Kind: InitKind, Args: InitExpr);
1888}
1889
1890ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body) {
1891 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(Val: FunctionScopes.back());
1892 ActOnFinishFunctionBody(LSI.CallOperator, Body);
1893 return BuildLambdaExpr(StartLoc, EndLoc: Body->getEndLoc(), LSI: &LSI);
1894}
1895
1896static LambdaCaptureDefault
1897mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1898 switch (ICS) {
1899 case CapturingScopeInfo::ImpCap_None:
1900 return LCD_None;
1901 case CapturingScopeInfo::ImpCap_LambdaByval:
1902 return LCD_ByCopy;
1903 case CapturingScopeInfo::ImpCap_CapturedRegion:
1904 case CapturingScopeInfo::ImpCap_LambdaByref:
1905 return LCD_ByRef;
1906 case CapturingScopeInfo::ImpCap_Block:
1907 llvm_unreachable("block capture in lambda");
1908 }
1909 llvm_unreachable("Unknown implicit capture style");
1910}
1911
1912bool Sema::CaptureHasSideEffects(const Capture &From) {
1913 if (From.isInitCapture()) {
1914 Expr *Init = cast<VarDecl>(Val: From.getVariable())->getInit();
1915 if (Init && Init->HasSideEffects(Ctx: Context))
1916 return true;
1917 }
1918
1919 if (!From.isCopyCapture())
1920 return false;
1921
1922 const QualType T = From.isThisCapture()
1923 ? getCurrentThisType()->getPointeeType()
1924 : From.getCaptureType();
1925
1926 if (T.isVolatileQualified())
1927 return true;
1928
1929 const Type *BaseT = T->getBaseElementTypeUnsafe();
1930 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1931 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1932 !RD->hasTrivialDestructor();
1933
1934 return false;
1935}
1936
1937bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1938 const Capture &From) {
1939 if (CaptureHasSideEffects(From))
1940 return false;
1941
1942 if (From.isVLATypeCapture())
1943 return false;
1944
1945 // FIXME: maybe we should warn on these if we can find a sensible diagnostic
1946 // message
1947 if (From.isInitCapture() &&
1948 From.getVariable()->isPlaceholderVar(getLangOpts()))
1949 return false;
1950
1951 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1952 if (From.isThisCapture())
1953 diag << "'this'";
1954 else
1955 diag << From.getVariable();
1956 diag << From.isNonODRUsed();
1957 diag << FixItHint::CreateRemoval(RemoveRange: CaptureRange);
1958 return true;
1959}
1960
1961/// Create a field within the lambda class or captured statement record for the
1962/// given capture.
1963FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1964 const sema::Capture &Capture) {
1965 SourceLocation Loc = Capture.getLocation();
1966 QualType FieldType = Capture.getCaptureType();
1967
1968 TypeSourceInfo *TSI = nullptr;
1969 if (Capture.isVariableCapture()) {
1970 const auto *Var = dyn_cast_or_null<VarDecl>(Val: Capture.getVariable());
1971 if (Var && Var->isInitCapture())
1972 TSI = Var->getTypeSourceInfo();
1973 }
1974
1975 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1976 // appropriate, at least for an implicit capture.
1977 if (!TSI)
1978 TSI = Context.getTrivialTypeSourceInfo(T: FieldType, Loc);
1979
1980 // Build the non-static data member.
1981 FieldDecl *Field =
1982 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1983 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1984 /*Mutable=*/false, ICIS_NoInit);
1985 // If the variable being captured has an invalid type, mark the class as
1986 // invalid as well.
1987 if (!FieldType->isDependentType()) {
1988 if (RequireCompleteSizedType(Loc, FieldType,
1989 diag::err_field_incomplete_or_sizeless)) {
1990 RD->setInvalidDecl();
1991 Field->setInvalidDecl();
1992 } else {
1993 NamedDecl *Def;
1994 FieldType->isIncompleteType(Def: &Def);
1995 if (Def && Def->isInvalidDecl()) {
1996 RD->setInvalidDecl();
1997 Field->setInvalidDecl();
1998 }
1999 }
2000 }
2001 Field->setImplicit(true);
2002 Field->setAccess(AS_private);
2003 RD->addDecl(Field);
2004
2005 if (Capture.isVLATypeCapture())
2006 Field->setCapturedVLAType(Capture.getCapturedVLAType());
2007
2008 return Field;
2009}
2010
2011ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
2012 LambdaScopeInfo *LSI) {
2013 // Collect information from the lambda scope.
2014 SmallVector<LambdaCapture, 4> Captures;
2015 SmallVector<Expr *, 4> CaptureInits;
2016 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
2017 LambdaCaptureDefault CaptureDefault =
2018 mapImplicitCaptureStyle(ICS: LSI->ImpCaptureStyle);
2019 CXXRecordDecl *Class;
2020 CXXMethodDecl *CallOperator;
2021 SourceRange IntroducerRange;
2022 bool ExplicitParams;
2023 bool ExplicitResultType;
2024 CleanupInfo LambdaCleanup;
2025 bool ContainsUnexpandedParameterPack;
2026 bool IsGenericLambda;
2027 {
2028 CallOperator = LSI->CallOperator;
2029 Class = LSI->Lambda;
2030 IntroducerRange = LSI->IntroducerRange;
2031 ExplicitParams = LSI->ExplicitParams;
2032 ExplicitResultType = !LSI->HasImplicitReturnType;
2033 LambdaCleanup = LSI->Cleanup;
2034 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
2035 IsGenericLambda = Class->isGenericLambda();
2036
2037 CallOperator->setLexicalDeclContext(Class);
2038 Decl *TemplateOrNonTemplateCallOperatorDecl =
2039 CallOperator->getDescribedFunctionTemplate()
2040 ? CallOperator->getDescribedFunctionTemplate()
2041 : cast<Decl>(Val: CallOperator);
2042
2043 // FIXME: Is this really the best choice? Keeping the lexical decl context
2044 // set as CurContext seems more faithful to the source.
2045 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
2046
2047 PopExpressionEvaluationContext();
2048
2049 // True if the current capture has a used capture or default before it.
2050 bool CurHasPreviousCapture = CaptureDefault != LCD_None;
2051 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
2052 CaptureDefaultLoc : IntroducerRange.getBegin();
2053
2054 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
2055 const Capture &From = LSI->Captures[I];
2056
2057 if (From.isInvalid())
2058 return ExprError();
2059
2060 assert(!From.isBlockCapture() && "Cannot capture __block variables");
2061 bool IsImplicit = I >= LSI->NumExplicitCaptures;
2062 SourceLocation ImplicitCaptureLoc =
2063 IsImplicit ? CaptureDefaultLoc : SourceLocation();
2064
2065 // Use source ranges of explicit captures for fixits where available.
2066 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
2067
2068 // Warn about unused explicit captures.
2069 bool IsCaptureUsed = true;
2070 if (!CurContext->isDependentContext() && !IsImplicit &&
2071 !From.isODRUsed()) {
2072 // Initialized captures that are non-ODR used may not be eliminated.
2073 // FIXME: Where did the IsGenericLambda here come from?
2074 bool NonODRUsedInitCapture =
2075 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
2076 if (!NonODRUsedInitCapture) {
2077 bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
2078 SourceRange FixItRange;
2079 if (CaptureRange.isValid()) {
2080 if (!CurHasPreviousCapture && !IsLast) {
2081 // If there are no captures preceding this capture, remove the
2082 // following comma.
2083 FixItRange = SourceRange(CaptureRange.getBegin(),
2084 getLocForEndOfToken(Loc: CaptureRange.getEnd()));
2085 } else {
2086 // Otherwise, remove the comma since the last used capture.
2087 FixItRange = SourceRange(getLocForEndOfToken(Loc: PrevCaptureLoc),
2088 CaptureRange.getEnd());
2089 }
2090 }
2091
2092 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(CaptureRange: FixItRange, From);
2093 }
2094 }
2095
2096 if (CaptureRange.isValid()) {
2097 CurHasPreviousCapture |= IsCaptureUsed;
2098 PrevCaptureLoc = CaptureRange.getEnd();
2099 }
2100
2101 // Map the capture to our AST representation.
2102 LambdaCapture Capture = [&] {
2103 if (From.isThisCapture()) {
2104 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
2105 // because it results in a reference capture. Don't warn prior to
2106 // C++2a; there's nothing that can be done about it before then.
2107 if (getLangOpts().CPlusPlus20 && IsImplicit &&
2108 CaptureDefault == LCD_ByCopy) {
2109 Diag(From.getLocation(), diag::warn_deprecated_this_capture);
2110 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
2111 << FixItHint::CreateInsertion(
2112 getLocForEndOfToken(CaptureDefaultLoc), ", this");
2113 }
2114 return LambdaCapture(From.getLocation(), IsImplicit,
2115 From.isCopyCapture() ? LCK_StarThis : LCK_This);
2116 } else if (From.isVLATypeCapture()) {
2117 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
2118 } else {
2119 assert(From.isVariableCapture() && "unknown kind of capture");
2120 ValueDecl *Var = From.getVariable();
2121 LambdaCaptureKind Kind =
2122 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
2123 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
2124 From.getEllipsisLoc());
2125 }
2126 }();
2127
2128 // Form the initializer for the capture field.
2129 ExprResult Init = BuildCaptureInit(Cap: From, ImplicitCaptureLoc);
2130
2131 // FIXME: Skip this capture if the capture is not used, the initializer
2132 // has no side-effects, the type of the capture is trivial, and the
2133 // lambda is not externally visible.
2134
2135 // Add a FieldDecl for the capture and form its initializer.
2136 BuildCaptureField(Class, From);
2137 Captures.push_back(Elt: Capture);
2138 CaptureInits.push_back(Elt: Init.get());
2139
2140 if (LangOpts.CUDA)
2141 CUDA().CheckLambdaCapture(D: CallOperator, Capture: From);
2142 }
2143
2144 Class->setCaptures(Context, Captures);
2145
2146 // C++11 [expr.prim.lambda]p6:
2147 // The closure type for a lambda-expression with no lambda-capture
2148 // has a public non-virtual non-explicit const conversion function
2149 // to pointer to function having the same parameter and return
2150 // types as the closure type's function call operator.
2151 if (Captures.empty() && CaptureDefault == LCD_None)
2152 addFunctionPointerConversions(S&: *this, IntroducerRange, Class,
2153 CallOperator);
2154
2155 // Objective-C++:
2156 // The closure type for a lambda-expression has a public non-virtual
2157 // non-explicit const conversion function to a block pointer having the
2158 // same parameter and return types as the closure type's function call
2159 // operator.
2160 // FIXME: Fix generic lambda to block conversions.
2161 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
2162 addBlockPointerConversion(S&: *this, IntroducerRange, Class, CallOperator);
2163
2164 // Finalize the lambda class.
2165 SmallVector<Decl*, 4> Fields(Class->fields());
2166 ActOnFields(S: nullptr, RecLoc: Class->getLocation(), TagDecl: Class, Fields, LBrac: SourceLocation(),
2167 RBrac: SourceLocation(), AttrList: ParsedAttributesView());
2168 CheckCompletedCXXClass(S: nullptr, Record: Class);
2169 }
2170
2171 Cleanup.mergeFrom(Rhs: LambdaCleanup);
2172
2173 LambdaExpr *Lambda = LambdaExpr::Create(C: Context, Class, IntroducerRange,
2174 CaptureDefault, CaptureDefaultLoc,
2175 ExplicitParams, ExplicitResultType,
2176 CaptureInits, ClosingBrace: EndLoc,
2177 ContainsUnexpandedParameterPack);
2178 // If the lambda expression's call operator is not explicitly marked constexpr
2179 // and we are not in a dependent context, analyze the call operator to infer
2180 // its constexpr-ness, suppressing diagnostics while doing so.
2181 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
2182 !CallOperator->isConstexpr() &&
2183 !isa<CoroutineBodyStmt>(Val: CallOperator->getBody()) &&
2184 !Class->getDeclContext()->isDependentContext()) {
2185 CallOperator->setConstexprKind(
2186 CheckConstexprFunctionDefinition(CallOperator,
2187 CheckConstexprKind::CheckValid)
2188 ? ConstexprSpecKind::Constexpr
2189 : ConstexprSpecKind::Unspecified);
2190 }
2191
2192 // Emit delayed shadowing warnings now that the full capture list is known.
2193 DiagnoseShadowingLambdaDecls(LSI);
2194
2195 if (!CurContext->isDependentContext()) {
2196 switch (ExprEvalContexts.back().Context) {
2197 // C++11 [expr.prim.lambda]p2:
2198 // A lambda-expression shall not appear in an unevaluated operand
2199 // (Clause 5).
2200 case ExpressionEvaluationContext::Unevaluated:
2201 case ExpressionEvaluationContext::UnevaluatedList:
2202 case ExpressionEvaluationContext::UnevaluatedAbstract:
2203 // C++1y [expr.const]p2:
2204 // A conditional-expression e is a core constant expression unless the
2205 // evaluation of e, following the rules of the abstract machine, would
2206 // evaluate [...] a lambda-expression.
2207 //
2208 // This is technically incorrect, there are some constant evaluated contexts
2209 // where this should be allowed. We should probably fix this when DR1607 is
2210 // ratified, it lays out the exact set of conditions where we shouldn't
2211 // allow a lambda-expression.
2212 case ExpressionEvaluationContext::ConstantEvaluated:
2213 case ExpressionEvaluationContext::ImmediateFunctionContext:
2214 // We don't actually diagnose this case immediately, because we
2215 // could be within a context where we might find out later that
2216 // the expression is potentially evaluated (e.g., for typeid).
2217 ExprEvalContexts.back().Lambdas.push_back(Elt: Lambda);
2218 break;
2219
2220 case ExpressionEvaluationContext::DiscardedStatement:
2221 case ExpressionEvaluationContext::PotentiallyEvaluated:
2222 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
2223 break;
2224 }
2225 }
2226
2227 return MaybeBindToTemporary(Lambda);
2228}
2229
2230ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
2231 SourceLocation ConvLocation,
2232 CXXConversionDecl *Conv,
2233 Expr *Src) {
2234 // Make sure that the lambda call operator is marked used.
2235 CXXRecordDecl *Lambda = Conv->getParent();
2236 CXXMethodDecl *CallOperator
2237 = cast<CXXMethodDecl>(
2238 Lambda->lookup(
2239 Context.DeclarationNames.getCXXOperatorName(Op: OO_Call)).front());
2240 CallOperator->setReferenced();
2241 CallOperator->markUsed(Context);
2242
2243 ExprResult Init = PerformCopyInitialization(
2244 Entity: InitializedEntity::InitializeLambdaToBlock(BlockVarLoc: ConvLocation, Type: Src->getType()),
2245 EqualLoc: CurrentLocation, Init: Src);
2246 if (!Init.isInvalid())
2247 Init = ActOnFinishFullExpr(Expr: Init.get(), /*DiscardedValue*/ false);
2248
2249 if (Init.isInvalid())
2250 return ExprError();
2251
2252 // Create the new block to be returned.
2253 BlockDecl *Block = BlockDecl::Create(C&: Context, DC: CurContext, L: ConvLocation);
2254
2255 // Set the type information.
2256 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
2257 Block->setIsVariadic(CallOperator->isVariadic());
2258 Block->setBlockMissingReturnType(false);
2259
2260 // Add parameters.
2261 SmallVector<ParmVarDecl *, 4> BlockParams;
2262 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2263 ParmVarDecl *From = CallOperator->getParamDecl(I);
2264 BlockParams.push_back(Elt: ParmVarDecl::Create(
2265 C&: Context, DC: Block, StartLoc: From->getBeginLoc(), IdLoc: From->getLocation(),
2266 Id: From->getIdentifier(), T: From->getType(), TInfo: From->getTypeSourceInfo(),
2267 S: From->getStorageClass(),
2268 /*DefArg=*/nullptr));
2269 }
2270 Block->setParams(BlockParams);
2271
2272 Block->setIsConversionFromLambda(true);
2273
2274 // Add capture. The capture uses a fake variable, which doesn't correspond
2275 // to any actual memory location. However, the initializer copy-initializes
2276 // the lambda object.
2277 TypeSourceInfo *CapVarTSI =
2278 Context.getTrivialTypeSourceInfo(T: Src->getType());
2279 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2280 ConvLocation, nullptr,
2281 Src->getType(), CapVarTSI,
2282 SC_None);
2283 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2284 /*nested=*/false, /*copy=*/Init.get());
2285 Block->setCaptures(Context, Captures: Capture, /*CapturesCXXThis=*/false);
2286
2287 // Add a fake function body to the block. IR generation is responsible
2288 // for filling in the actual body, which cannot be expressed as an AST.
2289 Block->setBody(new (Context) CompoundStmt(ConvLocation));
2290
2291 // Create the block literal expression.
2292 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2293 ExprCleanupObjects.push_back(Elt: Block);
2294 Cleanup.setExprNeedsCleanups(true);
2295
2296 return BuildBlock;
2297}
2298
2299static FunctionDecl *getPatternFunctionDecl(FunctionDecl *FD) {
2300 if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization) {
2301 while (FD->getInstantiatedFromMemberFunction())
2302 FD = FD->getInstantiatedFromMemberFunction();
2303 return FD;
2304 }
2305
2306 if (FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate)
2307 return FD->getInstantiatedFromDecl();
2308
2309 FunctionTemplateDecl *FTD = FD->getPrimaryTemplate();
2310 if (!FTD)
2311 return nullptr;
2312
2313 while (FTD->getInstantiatedFromMemberTemplate())
2314 FTD = FTD->getInstantiatedFromMemberTemplate();
2315
2316 return FTD->getTemplatedDecl();
2317}
2318
2319Sema::LambdaScopeForCallOperatorInstantiationRAII::
2320 LambdaScopeForCallOperatorInstantiationRAII(
2321 Sema &SemaRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL,
2322 LocalInstantiationScope &Scope, bool ShouldAddDeclsFromParentScope)
2323 : FunctionScopeRAII(SemaRef) {
2324 if (!isLambdaCallOperator(FD)) {
2325 FunctionScopeRAII::disable();
2326 return;
2327 }
2328
2329 SemaRef.RebuildLambdaScopeInfo(CallOperator: cast<CXXMethodDecl>(Val: FD));
2330
2331 FunctionDecl *Pattern = getPatternFunctionDecl(FD);
2332 if (Pattern) {
2333 SemaRef.addInstantiatedCapturesToScope(Function: FD, PatternDecl: Pattern, Scope, TemplateArgs: MLTAL);
2334
2335 FunctionDecl *ParentFD = FD;
2336 while (ShouldAddDeclsFromParentScope) {
2337
2338 ParentFD =
2339 dyn_cast<FunctionDecl>(Val: getLambdaAwareParentOfDeclContext(ParentFD));
2340 Pattern =
2341 dyn_cast<FunctionDecl>(Val: getLambdaAwareParentOfDeclContext(Pattern));
2342
2343 if (!FD || !Pattern)
2344 break;
2345
2346 SemaRef.addInstantiatedParametersToScope(Function: ParentFD, PatternDecl: Pattern, Scope, TemplateArgs: MLTAL);
2347 SemaRef.addInstantiatedLocalVarsToScope(Function: ParentFD, PatternDecl: Pattern, Scope);
2348 }
2349 }
2350}
2351

source code of clang/lib/Sema/SemaLambda.cpp