1//===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains two checkers. One helps the static analyzer core to track
10// types, the other does type inference on Obj-C generics and report type
11// errors.
12//
13// Dynamic Type Propagation:
14// This checker defines the rules for dynamic type gathering and propagation.
15//
16// Generics Checker for Objective-C:
17// This checker tries to find type errors that the compiler is not able to catch
18// due to the implicit conversions that were introduced for backward
19// compatibility.
20//
21//===----------------------------------------------------------------------===//
22
23#include "clang/AST/DynamicRecursiveASTVisitor.h"
24#include "clang/AST/ParentMap.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28#include "clang/StaticAnalyzer/Core/Checker.h"
29#include "clang/StaticAnalyzer/Core/CheckerManager.h"
30#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
31#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
32#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
33#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
34#include "llvm/ADT/STLExtras.h"
35#include <optional>
36
37using namespace clang;
38using namespace ento;
39
40// ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
41// an auxiliary map that tracks more information about generic types, because in
42// some cases the most derived type is not the most informative one about the
43// type parameters. This types that are stored for each symbol in this map must
44// be specialized.
45// TODO: In some case the type stored in this map is exactly the same that is
46// stored in DynamicTypeMap. We should no store duplicated information in those
47// cases.
48REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
49 const ObjCObjectPointerType *)
50
51namespace {
52class DynamicTypePropagation:
53 public Checker< check::PreCall,
54 check::PostCall,
55 check::DeadSymbols,
56 check::PostStmt<CastExpr>,
57 check::PostStmt<CXXNewExpr>,
58 check::PreObjCMessage,
59 check::PostObjCMessage > {
60
61 /// Return a better dynamic type if one can be derived from the cast.
62 const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
63 CheckerContext &C) const;
64
65 ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
66 ProgramStateRef &State,
67 CheckerContext &C) const;
68
69 mutable std::unique_ptr<BugType> ObjCGenericsBugType;
70 void initBugType() const {
71 if (!ObjCGenericsBugType)
72 ObjCGenericsBugType.reset(p: new BugType(
73 GenericCheckName, "Generics", categories::CoreFoundationObjectiveC));
74 }
75
76 class GenericsBugVisitor : public BugReporterVisitor {
77 public:
78 GenericsBugVisitor(SymbolRef S) : Sym(S) {}
79
80 void Profile(llvm::FoldingSetNodeID &ID) const override {
81 static int X = 0;
82 ID.AddPointer(Ptr: &X);
83 ID.AddPointer(Ptr: Sym);
84 }
85
86 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
87 BugReporterContext &BRC,
88 PathSensitiveBugReport &BR) override;
89
90 private:
91 // The tracked symbol.
92 SymbolRef Sym;
93 };
94
95 void reportGenericsBug(const ObjCObjectPointerType *From,
96 const ObjCObjectPointerType *To, ExplodedNode *N,
97 SymbolRef Sym, CheckerContext &C,
98 const Stmt *ReportedNode = nullptr) const;
99
100public:
101 void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
102 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
103 void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
104 void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
105 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
106 void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
107 void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
108
109 /// This value is set to true, when the Generics checker is turned on.
110 bool CheckGenerics = false;
111 CheckerNameRef GenericCheckName;
112};
113
114bool isObjCClassType(QualType Type) {
115 if (const auto *PointerType = dyn_cast<ObjCObjectPointerType>(Val&: Type)) {
116 return PointerType->getObjectType()->isObjCClass();
117 }
118 return false;
119}
120
121struct RuntimeType {
122 const ObjCObjectType *Type = nullptr;
123 bool Precise = false;
124
125 operator bool() const { return Type != nullptr; }
126};
127
128RuntimeType inferReceiverType(const ObjCMethodCall &Message,
129 CheckerContext &C) {
130 const ObjCMessageExpr *MessageExpr = Message.getOriginExpr();
131
132 // Check if we can statically infer the actual type precisely.
133 //
134 // 1. Class is written directly in the message:
135 // \code
136 // [ActualClass classMethod];
137 // \endcode
138 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
139 return {.Type: MessageExpr->getClassReceiver()->getAs<ObjCObjectType>(),
140 /*Precise=*/true};
141 }
142
143 // 2. Receiver is 'super' from a class method (a.k.a 'super' is a
144 // class object).
145 // \code
146 // [super classMethod];
147 // \endcode
148 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperClass) {
149 return {.Type: MessageExpr->getSuperType()->getAs<ObjCObjectType>(),
150 /*Precise=*/true};
151 }
152
153 // 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
154 // instance of a super class).
155 // \code
156 // [super instanceMethod];
157 // \encode
158 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
159 if (const auto *ObjTy =
160 MessageExpr->getSuperType()->getAs<ObjCObjectPointerType>())
161 return {.Type: ObjTy->getObjectType(), /*Precise=*/true};
162 }
163
164 const Expr *RecE = MessageExpr->getInstanceReceiver();
165
166 if (!RecE)
167 return {};
168
169 // Otherwise, let's try to get type information from our estimations of
170 // runtime types.
171 QualType InferredType;
172 SVal ReceiverSVal = C.getSVal(RecE);
173 ProgramStateRef State = C.getState();
174
175 if (const MemRegion *ReceiverRegion = ReceiverSVal.getAsRegion()) {
176 if (DynamicTypeInfo DTI = getDynamicTypeInfo(State, MR: ReceiverRegion)) {
177 InferredType = DTI.getType().getCanonicalType();
178 }
179 }
180
181 if (SymbolRef ReceiverSymbol = ReceiverSVal.getAsSymbol()) {
182 if (InferredType.isNull()) {
183 InferredType = ReceiverSymbol->getType();
184 }
185
186 // If receiver is a Class object, we want to figure out the type it
187 // represents.
188 if (isObjCClassType(Type: InferredType)) {
189 // We actually might have some info on what type is contained in there.
190 if (DynamicTypeInfo DTI =
191 getClassObjectDynamicTypeInfo(State, Sym: ReceiverSymbol)) {
192
193 // Types in Class objects can be ONLY Objective-C types
194 return {.Type: cast<ObjCObjectType>(Val: DTI.getType()), .Precise: !DTI.canBeASubClass()};
195 }
196
197 SVal SelfSVal = State->getSelfSVal(LC: C.getLocationContext());
198
199 // Another way we can guess what is in Class object, is when it is a
200 // 'self' variable of the current class method.
201 if (ReceiverSVal == SelfSVal) {
202 // In this case, we should return the type of the enclosing class
203 // declaration.
204 if (const ObjCMethodDecl *MD =
205 dyn_cast<ObjCMethodDecl>(Val: C.getStackFrame()->getDecl()))
206 if (const ObjCObjectType *ObjTy = dyn_cast<ObjCObjectType>(
207 Val: MD->getClassInterface()->getTypeForDecl()))
208 return {.Type: ObjTy};
209 }
210 }
211 }
212
213 // Unfortunately, it seems like we have no idea what that type is.
214 if (InferredType.isNull()) {
215 return {};
216 }
217
218 // We can end up here if we got some dynamic type info and the
219 // receiver is not one of the known Class objects.
220 if (const auto *ReceiverInferredType =
221 dyn_cast<ObjCObjectPointerType>(Val&: InferredType)) {
222 return {.Type: ReceiverInferredType->getObjectType()};
223 }
224
225 // Any other type (like 'Class') is not really useful at this point.
226 return {};
227}
228} // end anonymous namespace
229
230void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
231 CheckerContext &C) const {
232 ProgramStateRef State = removeDeadTypes(State: C.getState(), SR);
233 State = removeDeadClassObjectTypes(State, SR);
234
235 MostSpecializedTypeArgsMapTy TyArgMap =
236 State->get<MostSpecializedTypeArgsMap>();
237 for (SymbolRef Sym : llvm::make_first_range(c&: TyArgMap)) {
238 if (SR.isDead(sym: Sym)) {
239 State = State->remove<MostSpecializedTypeArgsMap>(K: Sym);
240 }
241 }
242
243 C.addTransition(State);
244}
245
246static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
247 CheckerContext &C) {
248 assert(Region);
249 assert(MD);
250
251 ASTContext &Ctx = C.getASTContext();
252 QualType Ty = Ctx.getPointerType(T: Ctx.getRecordType(MD->getParent()));
253
254 ProgramStateRef State = C.getState();
255 State = setDynamicTypeInfo(State, MR: Region, NewTy: Ty, /*CanBeSubClassed=*/false);
256 C.addTransition(State);
257}
258
259void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
260 CheckerContext &C) const {
261 if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(Val: &Call)) {
262 // C++11 [class.cdtor]p4: When a virtual function is called directly or
263 // indirectly from a constructor or from a destructor, including during
264 // the construction or destruction of the class's non-static data members,
265 // and the object to which the call applies is the object under
266 // construction or destruction, the function called is the final overrider
267 // in the constructor's or destructor's class and not one overriding it in
268 // a more-derived class.
269
270 switch (Ctor->getOriginExpr()->getConstructionKind()) {
271 case CXXConstructionKind::Complete:
272 case CXXConstructionKind::Delegating:
273 // No additional type info necessary.
274 return;
275 case CXXConstructionKind::NonVirtualBase:
276 case CXXConstructionKind::VirtualBase:
277 if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
278 recordFixedType(Target, Ctor->getDecl(), C);
279 return;
280 }
281
282 return;
283 }
284
285 if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(Val: &Call)) {
286 // C++11 [class.cdtor]p4 (see above)
287 if (!Dtor->isBaseDestructor())
288 return;
289
290 const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
291 if (!Target)
292 return;
293
294 const Decl *D = Dtor->getDecl();
295 if (!D)
296 return;
297
298 recordFixedType(Target, cast<CXXDestructorDecl>(Val: D), C);
299 return;
300 }
301}
302
303void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
304 CheckerContext &C) const {
305 // We can obtain perfect type info for return values from some calls.
306 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Val: &Call)) {
307
308 // Get the returned value if it's a region.
309 const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
310 if (!RetReg)
311 return;
312
313 ProgramStateRef State = C.getState();
314 const ObjCMethodDecl *D = Msg->getDecl();
315
316 if (D && D->hasRelatedResultType()) {
317 switch (Msg->getMethodFamily()) {
318 default:
319 break;
320
321 // We assume that the type of the object returned by alloc and new are the
322 // pointer to the object of the class specified in the receiver of the
323 // message.
324 case OMF_alloc:
325 case OMF_new: {
326 // Get the type of object that will get created.
327 RuntimeType ObjTy = inferReceiverType(Message: *Msg, C);
328
329 if (!ObjTy)
330 return;
331
332 QualType DynResTy =
333 C.getASTContext().getObjCObjectPointerType(OIT: QualType(ObjTy.Type, 0));
334 // We used to assume that whatever type we got from inferring the
335 // type is actually precise (and it is not exactly correct).
336 // A big portion of the existing behavior depends on that assumption
337 // (e.g. certain inlining won't take place). For this reason, we don't
338 // use ObjTy.Precise flag here.
339 //
340 // TODO: We should mitigate this problem some time in the future
341 // and replace hardcoded 'false' with '!ObjTy.Precise'.
342 C.addTransition(State: setDynamicTypeInfo(State, MR: RetReg, NewTy: DynResTy, CanBeSubClassed: false));
343 break;
344 }
345 case OMF_init: {
346 // Assume, the result of the init method has the same dynamic type as
347 // the receiver and propagate the dynamic type info.
348 const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
349 if (!RecReg)
350 return;
351 DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, MR: RecReg);
352 C.addTransition(State: setDynamicTypeInfo(State, MR: RetReg, NewTy: RecDynType));
353 break;
354 }
355 }
356 }
357 return;
358 }
359
360 if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(Val: &Call)) {
361 // We may need to undo the effects of our pre-call check.
362 switch (Ctor->getOriginExpr()->getConstructionKind()) {
363 case CXXConstructionKind::Complete:
364 case CXXConstructionKind::Delegating:
365 // No additional work necessary.
366 // Note: This will leave behind the actual type of the object for
367 // complete constructors, but arguably that's a good thing, since it
368 // means the dynamic type info will be correct even for objects
369 // constructed with operator new.
370 return;
371 case CXXConstructionKind::NonVirtualBase:
372 case CXXConstructionKind::VirtualBase:
373 if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
374 // We just finished a base constructor. Now we can use the subclass's
375 // type when resolving virtual calls.
376 const LocationContext *LCtx = C.getLocationContext();
377
378 // FIXME: In C++17 classes with non-virtual bases may be treated as
379 // aggregates, and in such case no top-frame constructor will be called.
380 // Figure out if we need to do anything in this case.
381 // FIXME: Instead of relying on the ParentMap, we should have the
382 // trigger-statement (InitListExpr or CXXParenListInitExpr in this case)
383 // available in this callback, ideally as part of CallEvent.
384 if (isa_and_nonnull<InitListExpr, CXXParenListInitExpr>(
385 LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
386 return;
387
388 recordFixedType(Target, cast<CXXConstructorDecl>(Val: LCtx->getDecl()), C);
389 }
390 return;
391 }
392 }
393}
394
395/// TODO: Handle explicit casts.
396/// Handle C++ casts.
397///
398/// Precondition: the cast is between ObjCObjectPointers.
399ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
400 const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
401 // We only track type info for regions.
402 const MemRegion *ToR = C.getSVal(CE).getAsRegion();
403 if (!ToR)
404 return C.getPredecessor();
405
406 if (isa<ExplicitCastExpr>(Val: CE))
407 return C.getPredecessor();
408
409 if (const Type *NewTy = getBetterObjCType(CE, C)) {
410 State = setDynamicTypeInfo(State, MR: ToR, NewTy: QualType(NewTy, 0));
411 return C.addTransition(State);
412 }
413 return C.getPredecessor();
414}
415
416void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
417 CheckerContext &C) const {
418 if (NewE->isArray())
419 return;
420
421 // We only track dynamic type info for regions.
422 const MemRegion *MR = C.getSVal(NewE).getAsRegion();
423 if (!MR)
424 return;
425
426 C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
427 /*CanBeSubClassed=*/false));
428}
429
430// Return a better dynamic type if one can be derived from the cast.
431// Compare the current dynamic type of the region and the new type to which we
432// are casting. If the new type is lower in the inheritance hierarchy, pick it.
433const ObjCObjectPointerType *
434DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
435 CheckerContext &C) const {
436 const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
437 assert(ToR);
438
439 // Get the old and new types.
440 const ObjCObjectPointerType *NewTy =
441 CastE->getType()->getAs<ObjCObjectPointerType>();
442 if (!NewTy)
443 return nullptr;
444 QualType OldDTy = getDynamicTypeInfo(State: C.getState(), MR: ToR).getType();
445 if (OldDTy.isNull()) {
446 return NewTy;
447 }
448 const ObjCObjectPointerType *OldTy =
449 OldDTy->getAs<ObjCObjectPointerType>();
450 if (!OldTy)
451 return nullptr;
452
453 // Id the old type is 'id', the new one is more precise.
454 if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
455 return NewTy;
456
457 // Return new if it's a subclass of old.
458 const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
459 const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
460 if (ToI && FromI && FromI->isSuperClassOf(I: ToI))
461 return NewTy;
462
463 return nullptr;
464}
465
466static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
467 const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
468 const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
469 // Checking if from and to are the same classes modulo specialization.
470 if (From->getInterfaceDecl()->getCanonicalDecl() ==
471 To->getInterfaceDecl()->getCanonicalDecl()) {
472 if (To->isSpecialized()) {
473 assert(MostInformativeCandidate->isSpecialized());
474 return MostInformativeCandidate;
475 }
476 return From;
477 }
478
479 if (To->getObjectType()->getSuperClassType().isNull()) {
480 // If To has no super class and From and To aren't the same then
481 // To was not actually a descendent of From. In this case the best we can
482 // do is 'From'.
483 return From;
484 }
485
486 const auto *SuperOfTo =
487 To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
488 assert(SuperOfTo);
489 QualType SuperPtrOfToQual =
490 C.getObjCObjectPointerType(OIT: QualType(SuperOfTo, 0));
491 const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
492 if (To->isUnspecialized())
493 return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
494 C);
495 else
496 return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
497 MostInformativeCandidate, C);
498}
499
500/// A downcast may loose specialization information. E. g.:
501/// MutableMap<T, U> : Map
502/// The downcast to MutableMap looses the information about the types of the
503/// Map (due to the type parameters are not being forwarded to Map), and in
504/// general there is no way to recover that information from the
505/// declaration. In order to have to most information, lets find the most
506/// derived type that has all the type parameters forwarded.
507///
508/// Get the a subclass of \p From (which has a lower bound \p To) that do not
509/// loose information about type parameters. \p To has to be a subclass of
510/// \p From. From has to be specialized.
511static const ObjCObjectPointerType *
512getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
513 const ObjCObjectPointerType *To, ASTContext &C) {
514 return getMostInformativeDerivedClassImpl(From, To, MostInformativeCandidate: To, C);
515}
516
517/// Inputs:
518/// \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
519/// bound might be the subclass of this type.
520/// \param StaticUpperBound A static upper bound for a symbol.
521/// \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
522/// \param Current The type that was inferred for a symbol in a previous
523/// context. Might be null when this is the first time that inference happens.
524/// Precondition:
525/// \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
526/// is not null, it is specialized.
527/// Possible cases:
528/// (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
529/// (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
530/// (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
531/// (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
532/// Effect:
533/// Use getMostInformativeDerivedClass with the upper and lower bound of the
534/// set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
535/// lower bound must be specialized. If the result differs from \p Current or
536/// \p Current is null, store the result.
537static bool
538storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
539 const ObjCObjectPointerType *const *Current,
540 const ObjCObjectPointerType *StaticLowerBound,
541 const ObjCObjectPointerType *StaticUpperBound,
542 ASTContext &C) {
543 // TODO: The above 4 cases are not exhaustive. In particular, it is possible
544 // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
545 // or both.
546 //
547 // For example, suppose Foo<T> and Bar<T> are unrelated types.
548 //
549 // Foo<T> *f = ...
550 // Bar<T> *b = ...
551 //
552 // id t1 = b;
553 // f = t1;
554 // id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
555 //
556 // We should either constrain the callers of this function so that the stated
557 // preconditions hold (and assert it) or rewrite the function to expicitly
558 // handle the additional cases.
559
560 // Precondition
561 assert(StaticUpperBound->isSpecialized() ||
562 StaticLowerBound->isSpecialized());
563 assert(!Current || (*Current)->isSpecialized());
564
565 // Case (1)
566 if (!Current) {
567 if (StaticUpperBound->isUnspecialized()) {
568 State = State->set<MostSpecializedTypeArgsMap>(K: Sym, E: StaticLowerBound);
569 return true;
570 }
571 // Upper bound is specialized.
572 const ObjCObjectPointerType *WithMostInfo =
573 getMostInformativeDerivedClass(From: StaticUpperBound, To: StaticLowerBound, C);
574 State = State->set<MostSpecializedTypeArgsMap>(K: Sym, E: WithMostInfo);
575 return true;
576 }
577
578 // Case (3)
579 if (C.canAssignObjCInterfaces(LHSOPT: StaticLowerBound, RHSOPT: *Current)) {
580 return false;
581 }
582
583 // Case (4)
584 if (C.canAssignObjCInterfaces(LHSOPT: *Current, RHSOPT: StaticUpperBound)) {
585 // The type arguments might not be forwarded at any point of inheritance.
586 const ObjCObjectPointerType *WithMostInfo =
587 getMostInformativeDerivedClass(From: *Current, To: StaticUpperBound, C);
588 WithMostInfo =
589 getMostInformativeDerivedClass(From: WithMostInfo, To: StaticLowerBound, C);
590 if (WithMostInfo == *Current)
591 return false;
592 State = State->set<MostSpecializedTypeArgsMap>(K: Sym, E: WithMostInfo);
593 return true;
594 }
595
596 // Case (2)
597 const ObjCObjectPointerType *WithMostInfo =
598 getMostInformativeDerivedClass(From: *Current, To: StaticLowerBound, C);
599 if (WithMostInfo != *Current) {
600 State = State->set<MostSpecializedTypeArgsMap>(K: Sym, E: WithMostInfo);
601 return true;
602 }
603
604 return false;
605}
606
607/// Type inference based on static type information that is available for the
608/// cast and the tracked type information for the given symbol. When the tracked
609/// symbol and the destination type of the cast are unrelated, report an error.
610void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
611 CheckerContext &C) const {
612 if (CE->getCastKind() != CK_BitCast)
613 return;
614
615 QualType OriginType = CE->getSubExpr()->getType();
616 QualType DestType = CE->getType();
617
618 const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
619 const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
620
621 if (!OrigObjectPtrType || !DestObjectPtrType)
622 return;
623
624 ProgramStateRef State = C.getState();
625 ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
626
627 ASTContext &ASTCtxt = C.getASTContext();
628
629 // This checker detects the subtyping relationships using the assignment
630 // rules. In order to be able to do this the kindofness must be stripped
631 // first. The checker treats every type as kindof type anyways: when the
632 // tracked type is the subtype of the static type it tries to look up the
633 // methods in the tracked type first.
634 OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ctx: ASTCtxt);
635 DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
636
637 if (OrigObjectPtrType->isUnspecialized() &&
638 DestObjectPtrType->isUnspecialized())
639 return;
640
641 SymbolRef Sym = C.getSVal(CE).getAsSymbol();
642 if (!Sym)
643 return;
644
645 const ObjCObjectPointerType *const *TrackedType =
646 State->get<MostSpecializedTypeArgsMap>(key: Sym);
647
648 if (isa<ExplicitCastExpr>(Val: CE)) {
649 // Treat explicit casts as an indication from the programmer that the
650 // Objective-C type system is not rich enough to express the needed
651 // invariant. In such cases, forget any existing information inferred
652 // about the type arguments. We don't assume the casted-to specialized
653 // type here because the invariant the programmer specifies in the cast
654 // may only hold at this particular program point and not later ones.
655 // We don't want a suppressing cast to require a cascade of casts down the
656 // line.
657 if (TrackedType) {
658 State = State->remove<MostSpecializedTypeArgsMap>(K: Sym);
659 C.addTransition(State, Pred: AfterTypeProp);
660 }
661 return;
662 }
663
664 // Check which assignments are legal.
665 bool OrigToDest =
666 ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
667 bool DestToOrig =
668 ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
669
670 // The tracked type should be the sub or super class of the static destination
671 // type. When an (implicit) upcast or a downcast happens according to static
672 // types, and there is no subtyping relationship between the tracked and the
673 // static destination types, it indicates an error.
674 if (TrackedType &&
675 !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
676 !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
677 // This distinct program point tag is needed because `State` can be
678 // identical to the state of the node `AfterTypeProp`, and in that case
679 // `generateNonFatalErrorNode` would "cache out" and return nullptr
680 // (instead of re-creating an already existing node).
681 static SimpleProgramPointTag IllegalConv("DynamicTypePropagation",
682 "IllegalConversion");
683 ExplodedNode *N =
684 C.generateNonFatalErrorNode(State, Pred: AfterTypeProp, Tag: &IllegalConv);
685 if (N)
686 reportGenericsBug(From: *TrackedType, To: DestObjectPtrType, N, Sym, C);
687 return;
688 }
689
690 // Handle downcasts and upcasts.
691
692 const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
693 const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
694 if (OrigToDest && !DestToOrig)
695 std::swap(a&: LowerBound, b&: UpperBound);
696
697 // The id type is not a real bound. Eliminate it.
698 LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
699 UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
700
701 if (storeWhenMoreInformative(State, Sym, Current: TrackedType, StaticLowerBound: LowerBound, StaticUpperBound: UpperBound,
702 C&: ASTCtxt)) {
703 C.addTransition(State, Pred: AfterTypeProp);
704 }
705}
706
707static const Expr *stripCastsAndSugar(const Expr *E) {
708 E = E->IgnoreParenImpCasts();
709 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E))
710 E = POE->getSyntacticForm()->IgnoreParenImpCasts();
711 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
712 E = OVE->getSourceExpr()->IgnoreParenImpCasts();
713 return E;
714}
715
716static bool isObjCTypeParamDependent(QualType Type) {
717 // It is illegal to typedef parameterized types inside an interface. Therefore
718 // an Objective-C type can only be dependent on a type parameter when the type
719 // parameter structurally present in the type itself.
720 class IsObjCTypeParamDependentTypeVisitor
721 : public DynamicRecursiveASTVisitor {
722 public:
723 IsObjCTypeParamDependentTypeVisitor() = default;
724 bool VisitObjCTypeParamType(ObjCTypeParamType *Type) override {
725 if (isa<ObjCTypeParamDecl>(Val: Type->getDecl())) {
726 Result = true;
727 return false;
728 }
729 return true;
730 }
731
732 bool Result = false;
733 };
734
735 IsObjCTypeParamDependentTypeVisitor Visitor;
736 Visitor.TraverseType(Type);
737 return Visitor.Result;
738}
739
740/// A method might not be available in the interface indicated by the static
741/// type. However it might be available in the tracked type. In order to
742/// properly substitute the type parameters we need the declaration context of
743/// the method. The more specialized the enclosing class of the method is, the
744/// more likely that the parameter substitution will be successful.
745static const ObjCMethodDecl *
746findMethodDecl(const ObjCMessageExpr *MessageExpr,
747 const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
748 const ObjCMethodDecl *Method = nullptr;
749
750 QualType ReceiverType = MessageExpr->getReceiverType();
751
752 // Do this "devirtualization" on instance and class methods only. Trust the
753 // static type on super and super class calls.
754 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
755 MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
756 // When the receiver type is id, Class, or some super class of the tracked
757 // type, look up the method in the tracked type, not in the receiver type.
758 // This way we preserve more information.
759 if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
760 ASTCtxt.canAssignObjCInterfaces(
761 LHSOPT: ReceiverType->castAs<ObjCObjectPointerType>(), RHSOPT: TrackedType)) {
762 const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
763 // The method might not be found.
764 Selector Sel = MessageExpr->getSelector();
765 Method = InterfaceDecl->lookupInstanceMethod(Sel);
766 if (!Method)
767 Method = InterfaceDecl->lookupClassMethod(Sel);
768 }
769 }
770
771 // Fallback to statick method lookup when the one based on the tracked type
772 // failed.
773 return Method ? Method : MessageExpr->getMethodDecl();
774}
775
776/// Get the returned ObjCObjectPointerType by a method based on the tracked type
777/// information, or null pointer when the returned type is not an
778/// ObjCObjectPointerType.
779static QualType getReturnTypeForMethod(
780 const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
781 const ObjCObjectPointerType *SelfType, ASTContext &C) {
782 QualType StaticResultType = Method->getReturnType();
783
784 // Is the return type declared as instance type?
785 if (StaticResultType == C.getObjCInstanceType())
786 return QualType(SelfType, 0);
787
788 // Check whether the result type depends on a type parameter.
789 if (!isObjCTypeParamDependent(Type: StaticResultType))
790 return QualType();
791
792 QualType ResultType = StaticResultType.substObjCTypeArgs(
793 ctx&: C, typeArgs: TypeArgs, context: ObjCSubstitutionContext::Result);
794
795 return ResultType;
796}
797
798/// When the receiver has a tracked type, use that type to validate the
799/// argumments of the message expression and the return value.
800void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
801 CheckerContext &C) const {
802 ProgramStateRef State = C.getState();
803 SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
804 if (!Sym)
805 return;
806
807 const ObjCObjectPointerType *const *TrackedType =
808 State->get<MostSpecializedTypeArgsMap>(key: Sym);
809 if (!TrackedType)
810 return;
811
812 // Get the type arguments from tracked type and substitute type arguments
813 // before do the semantic check.
814
815 ASTContext &ASTCtxt = C.getASTContext();
816 const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
817 const ObjCMethodDecl *Method =
818 findMethodDecl(MessageExpr, TrackedType: *TrackedType, ASTCtxt);
819
820 // It is possible to call non-existent methods in Obj-C.
821 if (!Method)
822 return;
823
824 // If the method is declared on a class that has a non-invariant
825 // type parameter, don't warn about parameter mismatches after performing
826 // substitution. This prevents warning when the programmer has purposely
827 // casted the receiver to a super type or unspecialized type but the analyzer
828 // has a more precise tracked type than the programmer intends at the call
829 // site.
830 //
831 // For example, consider NSArray (which has a covariant type parameter)
832 // and NSMutableArray (a subclass of NSArray where the type parameter is
833 // invariant):
834 // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
835 //
836 // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
837 // NSArray<NSObject *> *other = [a arrayByAddingObject:number] // Safe
838 //
839 // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
840 //
841
842 const ObjCInterfaceDecl *Interface = Method->getClassInterface();
843 if (!Interface)
844 return;
845
846 ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
847 if (!TypeParams)
848 return;
849
850 for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
851 if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
852 return;
853 }
854
855 std::optional<ArrayRef<QualType>> TypeArgs =
856 (*TrackedType)->getObjCSubstitutions(dc: Method->getDeclContext());
857 // This case might happen when there is an unspecialized override of a
858 // specialized method.
859 if (!TypeArgs)
860 return;
861
862 for (unsigned i = 0; i < Method->param_size(); i++) {
863 const Expr *Arg = MessageExpr->getArg(Arg: i);
864 const ParmVarDecl *Param = Method->parameters()[i];
865
866 QualType OrigParamType = Param->getType();
867 if (!isObjCTypeParamDependent(Type: OrigParamType))
868 continue;
869
870 QualType ParamType = OrigParamType.substObjCTypeArgs(
871 ctx&: ASTCtxt, typeArgs: *TypeArgs, context: ObjCSubstitutionContext::Parameter);
872 // Check if it can be assigned
873 const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
874 const auto *ArgObjectPtrType =
875 stripCastsAndSugar(E: Arg)->getType()->getAs<ObjCObjectPointerType>();
876 if (!ParamObjectPtrType || !ArgObjectPtrType)
877 continue;
878
879 // Check if we have more concrete tracked type that is not a super type of
880 // the static argument type.
881 SVal ArgSVal = M.getArgSVal(Index: i);
882 SymbolRef ArgSym = ArgSVal.getAsSymbol();
883 if (ArgSym) {
884 const ObjCObjectPointerType *const *TrackedArgType =
885 State->get<MostSpecializedTypeArgsMap>(key: ArgSym);
886 if (TrackedArgType &&
887 ASTCtxt.canAssignObjCInterfaces(LHSOPT: ArgObjectPtrType, RHSOPT: *TrackedArgType)) {
888 ArgObjectPtrType = *TrackedArgType;
889 }
890 }
891
892 // Warn when argument is incompatible with the parameter.
893 if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
894 ArgObjectPtrType)) {
895 ExplodedNode *N = C.generateNonFatalErrorNode(State);
896 reportGenericsBug(From: ArgObjectPtrType, To: ParamObjectPtrType, N, Sym, C, ReportedNode: Arg);
897 return;
898 }
899 }
900}
901
902/// This callback is used to infer the types for Class variables. This info is
903/// used later to validate messages that sent to classes. Class variables are
904/// initialized with by invoking the 'class' method on a class.
905/// This method is also used to infer the type information for the return
906/// types.
907// TODO: right now it only tracks generic types. Extend this to track every
908// type in the DynamicTypeMap and diagnose type errors!
909void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
910 CheckerContext &C) const {
911 const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
912
913 SymbolRef RetSym = M.getReturnValue().getAsSymbol();
914 if (!RetSym)
915 return;
916
917 Selector Sel = MessageExpr->getSelector();
918 ProgramStateRef State = C.getState();
919
920 // Here we try to propagate information on Class objects.
921 if (Sel.getAsString() == "class") {
922 // We try to figure out the type from the receiver of the 'class' message.
923 if (RuntimeType ReceiverRuntimeType = inferReceiverType(Message: M, C)) {
924
925 ReceiverRuntimeType.Type->getSuperClassType();
926 QualType ReceiverClassType(ReceiverRuntimeType.Type, 0);
927
928 // We want to consider only precise information on generics.
929 if (ReceiverRuntimeType.Type->isSpecialized() &&
930 ReceiverRuntimeType.Precise) {
931 QualType ReceiverClassPointerType =
932 C.getASTContext().getObjCObjectPointerType(OIT: ReceiverClassType);
933 const auto *InferredType =
934 ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
935 State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
936 }
937
938 // Constrain the resulting class object to the inferred type.
939 State = setClassObjectDynamicTypeInfo(State, Sym: RetSym, NewTy: ReceiverClassType,
940 CanBeSubClassed: !ReceiverRuntimeType.Precise);
941
942 C.addTransition(State);
943 return;
944 }
945 }
946
947 if (Sel.getAsString() == "superclass") {
948 // We try to figure out the type from the receiver of the 'superclass'
949 // message.
950 if (RuntimeType ReceiverRuntimeType = inferReceiverType(Message: M, C)) {
951
952 // Result type would be a super class of the receiver's type.
953 QualType ReceiversSuperClass =
954 ReceiverRuntimeType.Type->getSuperClassType();
955
956 // Check if it really had super class.
957 //
958 // TODO: we can probably pay closer attention to cases when the class
959 // object can be 'nil' as the result of such message.
960 if (!ReceiversSuperClass.isNull()) {
961 // Constrain the resulting class object to the inferred type.
962 State = setClassObjectDynamicTypeInfo(
963 State, Sym: RetSym, NewTy: ReceiversSuperClass, CanBeSubClassed: !ReceiverRuntimeType.Precise);
964
965 C.addTransition(State);
966 }
967 return;
968 }
969 }
970
971 // Tracking for return types.
972 SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
973 if (!RecSym)
974 return;
975
976 const ObjCObjectPointerType *const *TrackedType =
977 State->get<MostSpecializedTypeArgsMap>(key: RecSym);
978 if (!TrackedType)
979 return;
980
981 ASTContext &ASTCtxt = C.getASTContext();
982 const ObjCMethodDecl *Method =
983 findMethodDecl(MessageExpr, TrackedType: *TrackedType, ASTCtxt);
984 if (!Method)
985 return;
986
987 std::optional<ArrayRef<QualType>> TypeArgs =
988 (*TrackedType)->getObjCSubstitutions(dc: Method->getDeclContext());
989 if (!TypeArgs)
990 return;
991
992 QualType ResultType =
993 getReturnTypeForMethod(Method, TypeArgs: *TypeArgs, SelfType: *TrackedType, C&: ASTCtxt);
994 // The static type is the same as the deduced type.
995 if (ResultType.isNull())
996 return;
997
998 const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
999 ExplodedNode *Pred = C.getPredecessor();
1000 // When there is an entry available for the return symbol in DynamicTypeMap,
1001 // the call was inlined, and the information in the DynamicTypeMap is should
1002 // be precise.
1003 if (RetRegion && !getRawDynamicTypeInfo(State, MR: RetRegion)) {
1004 // TODO: we have duplicated information in DynamicTypeMap and
1005 // MostSpecializedTypeArgsMap. We should only store anything in the later if
1006 // the stored data differs from the one stored in the former.
1007 State = setDynamicTypeInfo(State, MR: RetRegion, NewTy: ResultType,
1008 /*CanBeSubClassed=*/true);
1009 Pred = C.addTransition(State);
1010 }
1011
1012 const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
1013
1014 if (!ResultPtrType || ResultPtrType->isUnspecialized())
1015 return;
1016
1017 // When the result is a specialized type and it is not tracked yet, track it
1018 // for the result symbol.
1019 if (!State->get<MostSpecializedTypeArgsMap>(key: RetSym)) {
1020 State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
1021 C.addTransition(State, Pred);
1022 }
1023}
1024
1025void DynamicTypePropagation::reportGenericsBug(
1026 const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
1027 ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
1028 const Stmt *ReportedNode) const {
1029 if (!CheckGenerics)
1030 return;
1031
1032 initBugType();
1033 SmallString<192> Buf;
1034 llvm::raw_svector_ostream OS(Buf);
1035 OS << "Conversion from value of type '";
1036 QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1037 OS << "' to incompatible type '";
1038 QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1039 OS << "'";
1040 auto R = std::make_unique<PathSensitiveBugReport>(args&: *ObjCGenericsBugType,
1041 args: OS.str(), args&: N);
1042 R->markInteresting(sym: Sym);
1043 R->addVisitor(visitor: std::make_unique<GenericsBugVisitor>(args&: Sym));
1044 if (ReportedNode)
1045 R->addRange(R: ReportedNode->getSourceRange());
1046 C.emitReport(R: std::move(R));
1047}
1048
1049PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
1050 const ExplodedNode *N, BugReporterContext &BRC,
1051 PathSensitiveBugReport &BR) {
1052 ProgramStateRef state = N->getState();
1053 ProgramStateRef statePrev = N->getFirstPred()->getState();
1054
1055 const ObjCObjectPointerType *const *TrackedType =
1056 state->get<MostSpecializedTypeArgsMap>(key: Sym);
1057 const ObjCObjectPointerType *const *TrackedTypePrev =
1058 statePrev->get<MostSpecializedTypeArgsMap>(key: Sym);
1059 if (!TrackedType)
1060 return nullptr;
1061
1062 if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
1063 return nullptr;
1064
1065 // Retrieve the associated statement.
1066 const Stmt *S = N->getStmtForDiagnostics();
1067 if (!S)
1068 return nullptr;
1069
1070 const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
1071
1072 SmallString<256> Buf;
1073 llvm::raw_svector_ostream OS(Buf);
1074 OS << "Type '";
1075 QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
1076 OS << "' is inferred from ";
1077
1078 if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(Val: S)) {
1079 OS << "explicit cast (from '";
1080 QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
1081 Qualifiers(), OS, LangOpts, llvm::Twine());
1082 OS << "' to '";
1083 QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1084 LangOpts, llvm::Twine());
1085 OS << "')";
1086 } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(Val: S)) {
1087 OS << "implicit cast (from '";
1088 QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
1089 Qualifiers(), OS, LangOpts, llvm::Twine());
1090 OS << "' to '";
1091 QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1092 LangOpts, llvm::Twine());
1093 OS << "')";
1094 } else {
1095 OS << "this context";
1096 }
1097
1098 // Generate the extra diagnostic.
1099 PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
1100 N->getLocationContext());
1101 return std::make_shared<PathDiagnosticEventPiece>(args&: Pos, args: OS.str(), args: true);
1102}
1103
1104/// Register checkers.
1105void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
1106 DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
1107 checker->CheckGenerics = true;
1108 checker->GenericCheckName = mgr.getCurrentCheckerName();
1109}
1110
1111bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager &mgr) {
1112 return true;
1113}
1114
1115void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
1116 mgr.registerChecker<DynamicTypePropagation>();
1117}
1118
1119bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager &mgr) {
1120 return true;
1121}
1122

source code of clang/lib/StaticAnalyzer/Checkers/DynamicTypePropagation.cpp