| 1 | //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Defines a modeling-checker for modeling STL iterator-like iterators. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | // |
| 13 | // In the code, iterator can be represented as a: |
| 14 | // * type-I: typedef-ed pointer. Operations over such iterator, such as |
| 15 | // comparisons or increments, are modeled straightforwardly by the |
| 16 | // analyzer. |
| 17 | // * type-II: structure with its method bodies available. Operations over such |
| 18 | // iterator are inlined by the analyzer, and results of modeling |
| 19 | // these operations are exposing implementation details of the |
| 20 | // iterators, which is not necessarily helping. |
| 21 | // * type-III: completely opaque structure. Operations over such iterator are |
| 22 | // modeled conservatively, producing conjured symbols everywhere. |
| 23 | // |
| 24 | // To handle all these types in a common way we introduce a structure called |
| 25 | // IteratorPosition which is an abstraction of the position the iterator |
| 26 | // represents using symbolic expressions. The checker handles all the |
| 27 | // operations on this structure. |
| 28 | // |
| 29 | // Additionally, depending on the circumstances, operators of types II and III |
| 30 | // can be represented as: |
| 31 | // * type-IIa, type-IIIa: conjured structure symbols - when returned by value |
| 32 | // from conservatively evaluated methods such as |
| 33 | // `.begin()`. |
| 34 | // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as |
| 35 | // variables or temporaries, when the iterator object is |
| 36 | // currently treated as an lvalue. |
| 37 | // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the |
| 38 | // iterator object is treated as an rvalue taken of a |
| 39 | // particular lvalue, eg. a copy of "type-a" iterator |
| 40 | // object, or an iterator that existed before the |
| 41 | // analysis has started. |
| 42 | // |
| 43 | // To handle any of these three different representations stored in an SVal we |
| 44 | // use setter and getters functions which separate the three cases. To store |
| 45 | // them we use a pointer union of symbol and memory region. |
| 46 | // |
| 47 | // The checker works the following way: We record the begin and the |
| 48 | // past-end iterator for all containers whenever their `.begin()` and `.end()` |
| 49 | // are called. Since the Constraint Manager cannot handle such SVals we need |
| 50 | // to take over its role. We post-check equality and non-equality comparisons |
| 51 | // and record that the two sides are equal if we are in the 'equal' branch |
| 52 | // (true-branch for `==` and false-branch for `!=`). |
| 53 | // |
| 54 | // In case of type-I or type-II iterators we get a concrete integer as a result |
| 55 | // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In |
| 56 | // this latter case we record the symbol and reload it in evalAssume() and do |
| 57 | // the propagation there. We also handle (maybe double) negated comparisons |
| 58 | // which are represented in the form of (x == 0 or x != 0) where x is the |
| 59 | // comparison itself. |
| 60 | // |
| 61 | // Since `SimpleConstraintManager` cannot handle complex symbolic expressions |
| 62 | // we only use expressions of the format S, S+n or S-n for iterator positions |
| 63 | // where S is a conjured symbol and n is an unsigned concrete integer. When |
| 64 | // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as |
| 65 | // a constraint which we later retrieve when doing an actual comparison. |
| 66 | |
| 67 | #include "clang/AST/DeclTemplate.h" |
| 68 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| 69 | #include "clang/StaticAnalyzer/Core/Checker.h" |
| 70 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" |
| 71 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 72 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| 73 | #include "llvm/ADT/STLExtras.h" |
| 74 | |
| 75 | #include "Iterator.h" |
| 76 | |
| 77 | #include <utility> |
| 78 | |
| 79 | using namespace clang; |
| 80 | using namespace ento; |
| 81 | using namespace iterator; |
| 82 | |
| 83 | namespace { |
| 84 | |
| 85 | class IteratorModeling |
| 86 | : public Checker<check::PostCall, check::PostStmt<UnaryOperator>, |
| 87 | check::PostStmt<BinaryOperator>, |
| 88 | check::PostStmt<MaterializeTemporaryExpr>, |
| 89 | check::Bind, check::LiveSymbols, check::DeadSymbols> { |
| 90 | |
| 91 | using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, |
| 92 | ConstCFGElementRef, SVal, SVal, |
| 93 | SVal) const; |
| 94 | |
| 95 | void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call, |
| 96 | OverloadedOperatorKind Op) const; |
| 97 | void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call, |
| 98 | const Expr *OrigExpr, |
| 99 | const AdvanceFn *Handler) const; |
| 100 | |
| 101 | void handleComparison(CheckerContext &C, const Expr *CE, |
| 102 | ConstCFGElementRef Elem, SVal RetVal, SVal LVal, |
| 103 | SVal RVal, OverloadedOperatorKind Op) const; |
| 104 | void processComparison(CheckerContext &C, ProgramStateRef State, |
| 105 | SymbolRef Sym1, SymbolRef Sym2, SVal RetVal, |
| 106 | OverloadedOperatorKind Op) const; |
| 107 | void handleIncrement(CheckerContext &C, SVal RetVal, SVal Iter, |
| 108 | bool Postfix) const; |
| 109 | void handleDecrement(CheckerContext &C, SVal RetVal, SVal Iter, |
| 110 | bool Postfix) const; |
| 111 | void handleRandomIncrOrDecr(CheckerContext &C, ConstCFGElementRef Elem, |
| 112 | OverloadedOperatorKind Op, SVal RetVal, |
| 113 | SVal Iterator, SVal Amount) const; |
| 114 | void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator, |
| 115 | ConstCFGElementRef Elem, OverloadedOperatorKind OK, |
| 116 | SVal Offset) const; |
| 117 | void handleAdvance(CheckerContext &C, ConstCFGElementRef Elem, SVal RetVal, |
| 118 | SVal Iter, SVal Amount) const; |
| 119 | void handlePrev(CheckerContext &C, ConstCFGElementRef Elem, SVal RetVal, |
| 120 | SVal Iter, SVal Amount) const; |
| 121 | void handleNext(CheckerContext &C, ConstCFGElementRef Elem, SVal RetVal, |
| 122 | SVal Iter, SVal Amount) const; |
| 123 | void assignToContainer(CheckerContext &C, ConstCFGElementRef Elem, |
| 124 | SVal RetVal, const MemRegion *Cont) const; |
| 125 | bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const; |
| 126 | void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, |
| 127 | const char *Sep) const override; |
| 128 | |
| 129 | // std::advance, std::prev & std::next |
| 130 | CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = { |
| 131 | // template<class InputIt, class Distance> |
| 132 | // void advance(InputIt& it, Distance n); |
| 133 | {{CDM::SimpleFunc, {"std" , "advance" }, 2}, |
| 134 | &IteratorModeling::handleAdvance}, |
| 135 | |
| 136 | // template<class BidirIt> |
| 137 | // BidirIt prev( |
| 138 | // BidirIt it, |
| 139 | // typename std::iterator_traits<BidirIt>::difference_type n = 1); |
| 140 | {{CDM::SimpleFunc, {"std" , "prev" }, 2}, &IteratorModeling::handlePrev}, |
| 141 | |
| 142 | // template<class ForwardIt> |
| 143 | // ForwardIt next( |
| 144 | // ForwardIt it, |
| 145 | // typename std::iterator_traits<ForwardIt>::difference_type n = 1); |
| 146 | {{CDM::SimpleFunc, {"std" , "next" }, 2}, &IteratorModeling::handleNext}, |
| 147 | }; |
| 148 | |
| 149 | public: |
| 150 | IteratorModeling() = default; |
| 151 | |
| 152 | void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
| 153 | void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const; |
| 154 | void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const; |
| 155 | void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const; |
| 156 | void checkPostStmt(const MaterializeTemporaryExpr *MTE, |
| 157 | CheckerContext &C) const; |
| 158 | void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const; |
| 159 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
| 160 | }; |
| 161 | |
| 162 | bool isSimpleComparisonOperator(OverloadedOperatorKind OK); |
| 163 | bool isSimpleComparisonOperator(BinaryOperatorKind OK); |
| 164 | ProgramStateRef removeIteratorPosition(ProgramStateRef State, SVal Val); |
| 165 | ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, |
| 166 | SymbolRef Sym2, bool Equal); |
| 167 | bool isBoundThroughLazyCompoundVal(const Environment &Env, |
| 168 | const MemRegion *Reg); |
| 169 | const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call); |
| 170 | |
| 171 | } // namespace |
| 172 | |
| 173 | void IteratorModeling::checkPostCall(const CallEvent &Call, |
| 174 | CheckerContext &C) const { |
| 175 | // Record new iterator positions and iterator position changes |
| 176 | const auto *Func = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl()); |
| 177 | if (!Func) |
| 178 | return; |
| 179 | |
| 180 | if (Func->isOverloadedOperator()) { |
| 181 | const auto Op = Func->getOverloadedOperator(); |
| 182 | handleOverloadedOperator(C, Call, Op); |
| 183 | return; |
| 184 | } |
| 185 | |
| 186 | const auto *OrigExpr = Call.getOriginExpr(); |
| 187 | if (!OrigExpr) |
| 188 | return; |
| 189 | |
| 190 | const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call); |
| 191 | if (Handler) { |
| 192 | handleAdvanceLikeFunction(C, Call, OrigExpr, Handler); |
| 193 | return; |
| 194 | } |
| 195 | |
| 196 | if (!isIteratorType(Type: Call.getResultType())) |
| 197 | return; |
| 198 | |
| 199 | auto State = C.getState(); |
| 200 | |
| 201 | // Already bound to container? |
| 202 | if (getIteratorPosition(State, Val: Call.getReturnValue())) |
| 203 | return; |
| 204 | |
| 205 | // Copy-like and move constructors |
| 206 | if (isa<CXXConstructorCall>(Val: &Call) && Call.getNumArgs() == 1) { |
| 207 | if (const auto *Pos = getIteratorPosition(State, Val: Call.getArgSVal(Index: 0))) { |
| 208 | State = setIteratorPosition(State, Val: Call.getReturnValue(), Pos: *Pos); |
| 209 | if (cast<CXXConstructorDecl>(Val: Func)->isMoveConstructor()) { |
| 210 | State = removeIteratorPosition(State, Val: Call.getArgSVal(Index: 0)); |
| 211 | } |
| 212 | C.addTransition(State); |
| 213 | return; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | // Assumption: if return value is an iterator which is not yet bound to a |
| 218 | // container, then look for the first iterator argument of the |
| 219 | // same type as the return value and bind the return value to |
| 220 | // the same container. This approach works for STL algorithms. |
| 221 | // FIXME: Add a more conservative mode |
| 222 | for (unsigned i = 0; i < Call.getNumArgs(); ++i) { |
| 223 | if (isIteratorType(Type: Call.getArgExpr(Index: i)->getType()) && |
| 224 | Call.getArgExpr(Index: i)->getType().getNonReferenceType().getDesugaredType( |
| 225 | Context: C.getASTContext()).getTypePtr() == |
| 226 | Call.getResultType().getDesugaredType(Context: C.getASTContext()).getTypePtr()) { |
| 227 | if (const auto *Pos = getIteratorPosition(State, Val: Call.getArgSVal(Index: i))) { |
| 228 | assignToContainer(C, Elem: Call.getCFGElementRef(), RetVal: Call.getReturnValue(), |
| 229 | Cont: Pos->getContainer()); |
| 230 | return; |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S, |
| 237 | CheckerContext &C) const { |
| 238 | auto State = C.getState(); |
| 239 | const auto *Pos = getIteratorPosition(State, Val); |
| 240 | if (Pos) { |
| 241 | State = setIteratorPosition(State, Val: Loc, Pos: *Pos); |
| 242 | C.addTransition(State); |
| 243 | } else { |
| 244 | const auto *OldPos = getIteratorPosition(State, Val: Loc); |
| 245 | if (OldPos) { |
| 246 | State = removeIteratorPosition(State, Val: Loc); |
| 247 | C.addTransition(State); |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | void IteratorModeling::checkPostStmt(const UnaryOperator *UO, |
| 253 | CheckerContext &C) const { |
| 254 | UnaryOperatorKind OK = UO->getOpcode(); |
| 255 | if (!isIncrementOperator(OK) && !isDecrementOperator(OK)) |
| 256 | return; |
| 257 | |
| 258 | auto &SVB = C.getSValBuilder(); |
| 259 | handlePtrIncrOrDecr(C, Iterator: UO->getSubExpr(), Elem: C.getCFGElementRef(), |
| 260 | OK: isIncrementOperator(OK) ? OO_Plus : OO_Minus, |
| 261 | Offset: SVB.makeArrayIndex(idx: 1)); |
| 262 | } |
| 263 | |
| 264 | void IteratorModeling::checkPostStmt(const BinaryOperator *BO, |
| 265 | CheckerContext &C) const { |
| 266 | const ProgramStateRef State = C.getState(); |
| 267 | const BinaryOperatorKind OK = BO->getOpcode(); |
| 268 | const Expr *const LHS = BO->getLHS(); |
| 269 | const Expr *const RHS = BO->getRHS(); |
| 270 | const SVal LVal = State->getSVal(LHS, C.getLocationContext()); |
| 271 | const SVal RVal = State->getSVal(RHS, C.getLocationContext()); |
| 272 | |
| 273 | if (isSimpleComparisonOperator(OK: BO->getOpcode())) { |
| 274 | SVal Result = State->getSVal(BO, C.getLocationContext()); |
| 275 | handleComparison(C, BO, C.getCFGElementRef(), Result, LVal, RVal, |
| 276 | BinaryOperator::getOverloadedOperator(Opc: OK)); |
| 277 | } else if (isRandomIncrOrDecrOperator(OK)) { |
| 278 | // In case of operator+ the iterator can be either on the LHS (eg.: it + 1), |
| 279 | // or on the RHS (eg.: 1 + it). Both cases are modeled. |
| 280 | const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType(); |
| 281 | const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS; |
| 282 | const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS; |
| 283 | |
| 284 | // The non-iterator side must have an integral or enumeration type. |
| 285 | if (!AmountExpr->getType()->isIntegralOrEnumerationType()) |
| 286 | return; |
| 287 | SVal AmountVal = IsIterOnLHS ? RVal : LVal; |
| 288 | handlePtrIncrOrDecr(C, Iterator: IterExpr, Elem: C.getCFGElementRef(), |
| 289 | OK: BinaryOperator::getOverloadedOperator(Opc: OK), Offset: AmountVal); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE, |
| 294 | CheckerContext &C) const { |
| 295 | /* Transfer iterator state to temporary objects */ |
| 296 | auto State = C.getState(); |
| 297 | const auto *Pos = getIteratorPosition(State, Val: C.getSVal(MTE->getSubExpr())); |
| 298 | if (!Pos) |
| 299 | return; |
| 300 | State = setIteratorPosition(State, C.getSVal(MTE), *Pos); |
| 301 | C.addTransition(State); |
| 302 | } |
| 303 | |
| 304 | void IteratorModeling::checkLiveSymbols(ProgramStateRef State, |
| 305 | SymbolReaper &SR) const { |
| 306 | // Keep symbolic expressions of iterator positions alive |
| 307 | auto RegionMap = State->get<IteratorRegionMap>(); |
| 308 | for (const IteratorPosition &Pos : llvm::make_second_range(c&: RegionMap)) { |
| 309 | for (SymbolRef Sym : Pos.getOffset()->symbols()) |
| 310 | if (isa<SymbolData>(Val: Sym)) |
| 311 | SR.markLive(sym: Sym); |
| 312 | } |
| 313 | |
| 314 | auto SymbolMap = State->get<IteratorSymbolMap>(); |
| 315 | for (const IteratorPosition &Pos : llvm::make_second_range(c&: SymbolMap)) { |
| 316 | for (SymbolRef Sym : Pos.getOffset()->symbols()) |
| 317 | if (isa<SymbolData>(Val: Sym)) |
| 318 | SR.markLive(sym: Sym); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | void IteratorModeling::checkDeadSymbols(SymbolReaper &SR, |
| 323 | CheckerContext &C) const { |
| 324 | // Cleanup |
| 325 | auto State = C.getState(); |
| 326 | |
| 327 | auto RegionMap = State->get<IteratorRegionMap>(); |
| 328 | for (const auto &Reg : RegionMap) { |
| 329 | if (!SR.isLiveRegion(region: Reg.first)) { |
| 330 | // The region behind the `LazyCompoundVal` is often cleaned up before |
| 331 | // the `LazyCompoundVal` itself. If there are iterator positions keyed |
| 332 | // by these regions their cleanup must be deferred. |
| 333 | if (!isBoundThroughLazyCompoundVal(Env: State->getEnvironment(), Reg: Reg.first)) { |
| 334 | State = State->remove<IteratorRegionMap>(K: Reg.first); |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | auto SymbolMap = State->get<IteratorSymbolMap>(); |
| 340 | for (const auto &Sym : SymbolMap) { |
| 341 | if (!SR.isLive(sym: Sym.first)) { |
| 342 | State = State->remove<IteratorSymbolMap>(K: Sym.first); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | C.addTransition(State); |
| 347 | } |
| 348 | |
| 349 | void |
| 350 | IteratorModeling::handleOverloadedOperator(CheckerContext &C, |
| 351 | const CallEvent &Call, |
| 352 | OverloadedOperatorKind Op) const { |
| 353 | if (isSimpleComparisonOperator(OK: Op)) { |
| 354 | const auto *OrigExpr = Call.getOriginExpr(); |
| 355 | const auto Elem = Call.getCFGElementRef(); |
| 356 | if (!OrigExpr) |
| 357 | return; |
| 358 | |
| 359 | if (const auto *InstCall = dyn_cast<CXXInstanceCall>(Val: &Call)) { |
| 360 | handleComparison(C, CE: OrigExpr, Elem, RetVal: Call.getReturnValue(), |
| 361 | LVal: InstCall->getCXXThisVal(), RVal: Call.getArgSVal(Index: 0), Op); |
| 362 | return; |
| 363 | } |
| 364 | |
| 365 | handleComparison(C, CE: OrigExpr, Elem, RetVal: Call.getReturnValue(), |
| 366 | LVal: Call.getArgSVal(Index: 0), RVal: Call.getArgSVal(Index: 1), Op); |
| 367 | return; |
| 368 | } else if (isRandomIncrOrDecrOperator(OK: Op)) { |
| 369 | const auto *OrigExpr = Call.getOriginExpr(); |
| 370 | const auto Elem = Call.getCFGElementRef(); |
| 371 | if (!OrigExpr) |
| 372 | return; |
| 373 | |
| 374 | if (const auto *InstCall = dyn_cast<CXXInstanceCall>(Val: &Call)) { |
| 375 | if (Call.getNumArgs() >= 1 && |
| 376 | Call.getArgExpr(Index: 0)->getType()->isIntegralOrEnumerationType()) { |
| 377 | handleRandomIncrOrDecr(C, Elem, Op, RetVal: Call.getReturnValue(), |
| 378 | Iterator: InstCall->getCXXThisVal(), Amount: Call.getArgSVal(Index: 0)); |
| 379 | return; |
| 380 | } |
| 381 | } else if (Call.getNumArgs() >= 2) { |
| 382 | const Expr *FirstArg = Call.getArgExpr(Index: 0); |
| 383 | const Expr *SecondArg = Call.getArgExpr(Index: 1); |
| 384 | const QualType FirstType = FirstArg->getType(); |
| 385 | const QualType SecondType = SecondArg->getType(); |
| 386 | |
| 387 | if (FirstType->isIntegralOrEnumerationType() || |
| 388 | SecondType->isIntegralOrEnumerationType()) { |
| 389 | // In case of operator+ the iterator can be either on the LHS (eg.: |
| 390 | // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled. |
| 391 | const bool IsIterFirst = FirstType->isStructureOrClassType(); |
| 392 | const SVal FirstArg = Call.getArgSVal(Index: 0); |
| 393 | const SVal SecondArg = Call.getArgSVal(Index: 1); |
| 394 | SVal Iterator = IsIterFirst ? FirstArg : SecondArg; |
| 395 | SVal Amount = IsIterFirst ? SecondArg : FirstArg; |
| 396 | |
| 397 | handleRandomIncrOrDecr(C, Elem, Op, RetVal: Call.getReturnValue(), Iterator, |
| 398 | Amount); |
| 399 | return; |
| 400 | } |
| 401 | } |
| 402 | } else if (isIncrementOperator(OK: Op)) { |
| 403 | if (const auto *InstCall = dyn_cast<CXXInstanceCall>(Val: &Call)) { |
| 404 | handleIncrement(C, RetVal: Call.getReturnValue(), Iter: InstCall->getCXXThisVal(), |
| 405 | Postfix: Call.getNumArgs()); |
| 406 | return; |
| 407 | } |
| 408 | |
| 409 | handleIncrement(C, RetVal: Call.getReturnValue(), Iter: Call.getArgSVal(Index: 0), |
| 410 | Postfix: Call.getNumArgs()); |
| 411 | return; |
| 412 | } else if (isDecrementOperator(OK: Op)) { |
| 413 | if (const auto *InstCall = dyn_cast<CXXInstanceCall>(Val: &Call)) { |
| 414 | handleDecrement(C, RetVal: Call.getReturnValue(), Iter: InstCall->getCXXThisVal(), |
| 415 | Postfix: Call.getNumArgs()); |
| 416 | return; |
| 417 | } |
| 418 | |
| 419 | handleDecrement(C, RetVal: Call.getReturnValue(), Iter: Call.getArgSVal(Index: 0), |
| 420 | Postfix: Call.getNumArgs()); |
| 421 | return; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | void |
| 426 | IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C, |
| 427 | const CallEvent &Call, |
| 428 | const Expr *OrigExpr, |
| 429 | const AdvanceFn *Handler) const { |
| 430 | if (!C.wasInlined) { |
| 431 | (this->**Handler)(C, Call.getCFGElementRef(), Call.getReturnValue(), |
| 432 | Call.getArgSVal(Index: 0), Call.getArgSVal(Index: 1)); |
| 433 | return; |
| 434 | } |
| 435 | |
| 436 | // If std::advance() was inlined, but a non-standard function it calls inside |
| 437 | // was not, then we have to model it explicitly |
| 438 | const auto *IdInfo = cast<FunctionDecl>(Val: Call.getDecl())->getIdentifier(); |
| 439 | if (IdInfo) { |
| 440 | if (IdInfo->getName() == "advance" ) { |
| 441 | if (noChangeInAdvance(C, Iter: Call.getArgSVal(Index: 0), CE: OrigExpr)) { |
| 442 | (this->**Handler)(C, Call.getCFGElementRef(), Call.getReturnValue(), |
| 443 | Call.getArgSVal(Index: 0), Call.getArgSVal(Index: 1)); |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE, |
| 450 | ConstCFGElementRef Elem, SVal RetVal, |
| 451 | SVal LVal, SVal RVal, |
| 452 | OverloadedOperatorKind Op) const { |
| 453 | // Record the operands and the operator of the comparison for the next |
| 454 | // evalAssume, if the result is a symbolic expression. If it is a concrete |
| 455 | // value (only one branch is possible), then transfer the state between |
| 456 | // the operands according to the operator and the result |
| 457 | auto State = C.getState(); |
| 458 | const auto *LPos = getIteratorPosition(State, Val: LVal); |
| 459 | const auto *RPos = getIteratorPosition(State, Val: RVal); |
| 460 | const MemRegion *Cont = nullptr; |
| 461 | if (LPos) { |
| 462 | Cont = LPos->getContainer(); |
| 463 | } else if (RPos) { |
| 464 | Cont = RPos->getContainer(); |
| 465 | } |
| 466 | if (!Cont) |
| 467 | return; |
| 468 | |
| 469 | // At least one of the iterators has recorded positions. If one of them does |
| 470 | // not then create a new symbol for the offset. |
| 471 | SymbolRef Sym; |
| 472 | if (!LPos || !RPos) { |
| 473 | auto &SymMgr = C.getSymbolManager(); |
| 474 | Sym = SymMgr.conjureSymbol(Elem, LCtx: C.getLocationContext(), |
| 475 | T: C.getASTContext().LongTy, VisitCount: C.blockCount()); |
| 476 | State = assumeNoOverflow(State, Sym, Scale: 4); |
| 477 | } |
| 478 | |
| 479 | if (!LPos) { |
| 480 | State = setIteratorPosition(State, Val: LVal, |
| 481 | Pos: IteratorPosition::getPosition(C: Cont, Of: Sym)); |
| 482 | LPos = getIteratorPosition(State, Val: LVal); |
| 483 | } else if (!RPos) { |
| 484 | State = setIteratorPosition(State, Val: RVal, |
| 485 | Pos: IteratorPosition::getPosition(C: Cont, Of: Sym)); |
| 486 | RPos = getIteratorPosition(State, Val: RVal); |
| 487 | } |
| 488 | |
| 489 | // If the value for which we just tried to set a new iterator position is |
| 490 | // an `SVal`for which no iterator position can be set then the setting was |
| 491 | // unsuccessful. We cannot handle the comparison in this case. |
| 492 | if (!LPos || !RPos) |
| 493 | return; |
| 494 | |
| 495 | // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol |
| 496 | // instead. |
| 497 | if (RetVal.isUnknown()) { |
| 498 | auto &SymMgr = C.getSymbolManager(); |
| 499 | auto *LCtx = C.getLocationContext(); |
| 500 | RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol( |
| 501 | Elem, LCtx, T: C.getASTContext().BoolTy, VisitCount: C.blockCount())); |
| 502 | State = State->BindExpr(CE, LCtx, RetVal); |
| 503 | } |
| 504 | |
| 505 | processComparison(C, State, Sym1: LPos->getOffset(), Sym2: RPos->getOffset(), RetVal, Op); |
| 506 | } |
| 507 | |
| 508 | void IteratorModeling::processComparison(CheckerContext &C, |
| 509 | ProgramStateRef State, SymbolRef Sym1, |
| 510 | SymbolRef Sym2, SVal RetVal, |
| 511 | OverloadedOperatorKind Op) const { |
| 512 | if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) { |
| 513 | if ((State = relateSymbols(State, Sym1, Sym2, |
| 514 | Equal: (Op == OO_EqualEqual) == |
| 515 | (TruthVal->getValue()->getBoolValue())))) { |
| 516 | C.addTransition(State); |
| 517 | } else { |
| 518 | C.generateSink(State, Pred: C.getPredecessor()); |
| 519 | } |
| 520 | return; |
| 521 | } |
| 522 | |
| 523 | const auto ConditionVal = RetVal.getAs<DefinedSVal>(); |
| 524 | if (!ConditionVal) |
| 525 | return; |
| 526 | |
| 527 | if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Equal: Op == OO_EqualEqual)) { |
| 528 | StateTrue = StateTrue->assume(Cond: *ConditionVal, Assumption: true); |
| 529 | C.addTransition(State: StateTrue); |
| 530 | } |
| 531 | |
| 532 | if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Equal: Op != OO_EqualEqual)) { |
| 533 | StateFalse = StateFalse->assume(Cond: *ConditionVal, Assumption: false); |
| 534 | C.addTransition(State: StateFalse); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | void IteratorModeling::handleIncrement(CheckerContext &C, SVal RetVal, |
| 539 | SVal Iter, bool Postfix) const { |
| 540 | // Increment the symbolic expressions which represents the position of the |
| 541 | // iterator |
| 542 | auto State = C.getState(); |
| 543 | auto &BVF = C.getSymbolManager().getBasicVals(); |
| 544 | |
| 545 | const auto *Pos = getIteratorPosition(State, Val: Iter); |
| 546 | if (!Pos) |
| 547 | return; |
| 548 | |
| 549 | auto NewState = |
| 550 | advancePosition(State, Iter, Op: OO_Plus, |
| 551 | Distance: nonloc::ConcreteInt(BVF.getValue(X: llvm::APSInt::get(X: 1)))); |
| 552 | assert(NewState && |
| 553 | "Advancing position by concrete int should always be successful" ); |
| 554 | |
| 555 | const auto *NewPos = getIteratorPosition(State: NewState, Val: Iter); |
| 556 | assert(NewPos && |
| 557 | "Iterator should have position after successful advancement" ); |
| 558 | |
| 559 | State = setIteratorPosition(State, Val: Iter, Pos: *NewPos); |
| 560 | State = setIteratorPosition(State, Val: RetVal, Pos: Postfix ? *Pos : *NewPos); |
| 561 | C.addTransition(State); |
| 562 | } |
| 563 | |
| 564 | void IteratorModeling::handleDecrement(CheckerContext &C, SVal RetVal, |
| 565 | SVal Iter, bool Postfix) const { |
| 566 | // Decrement the symbolic expressions which represents the position of the |
| 567 | // iterator |
| 568 | auto State = C.getState(); |
| 569 | auto &BVF = C.getSymbolManager().getBasicVals(); |
| 570 | |
| 571 | const auto *Pos = getIteratorPosition(State, Val: Iter); |
| 572 | if (!Pos) |
| 573 | return; |
| 574 | |
| 575 | auto NewState = |
| 576 | advancePosition(State, Iter, Op: OO_Minus, |
| 577 | Distance: nonloc::ConcreteInt(BVF.getValue(X: llvm::APSInt::get(X: 1)))); |
| 578 | assert(NewState && |
| 579 | "Advancing position by concrete int should always be successful" ); |
| 580 | |
| 581 | const auto *NewPos = getIteratorPosition(State: NewState, Val: Iter); |
| 582 | assert(NewPos && |
| 583 | "Iterator should have position after successful advancement" ); |
| 584 | |
| 585 | State = setIteratorPosition(State, Val: Iter, Pos: *NewPos); |
| 586 | State = setIteratorPosition(State, Val: RetVal, Pos: Postfix ? *Pos : *NewPos); |
| 587 | C.addTransition(State); |
| 588 | } |
| 589 | |
| 590 | void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, |
| 591 | ConstCFGElementRef Elem, |
| 592 | OverloadedOperatorKind Op, |
| 593 | SVal RetVal, SVal Iterator, |
| 594 | SVal Amount) const { |
| 595 | // Increment or decrement the symbolic expressions which represents the |
| 596 | // position of the iterator |
| 597 | auto State = C.getState(); |
| 598 | |
| 599 | const auto *Pos = getIteratorPosition(State, Val: Iterator); |
| 600 | if (!Pos) |
| 601 | return; |
| 602 | |
| 603 | const auto *Value = &Amount; |
| 604 | SVal Val; |
| 605 | if (auto LocAmount = Amount.getAs<Loc>()) { |
| 606 | Val = State->getRawSVal(LV: *LocAmount); |
| 607 | Value = &Val; |
| 608 | } |
| 609 | |
| 610 | const auto &TgtVal = |
| 611 | (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal; |
| 612 | |
| 613 | // `AdvancedState` is a state where the position of `LHS` is advanced. We |
| 614 | // only need this state to retrieve the new position, but we do not want |
| 615 | // to change the position of `LHS` (in every case). |
| 616 | auto AdvancedState = advancePosition(State, Iter: Iterator, Op, Distance: *Value); |
| 617 | if (AdvancedState) { |
| 618 | const auto *NewPos = getIteratorPosition(State: AdvancedState, Val: Iterator); |
| 619 | assert(NewPos && |
| 620 | "Iterator should have position after successful advancement" ); |
| 621 | |
| 622 | State = setIteratorPosition(State, Val: TgtVal, Pos: *NewPos); |
| 623 | C.addTransition(State); |
| 624 | } else { |
| 625 | assignToContainer(C, Elem, RetVal: TgtVal, Cont: Pos->getContainer()); |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C, |
| 630 | const Expr *Iterator, |
| 631 | ConstCFGElementRef Elem, |
| 632 | OverloadedOperatorKind OK, |
| 633 | SVal Offset) const { |
| 634 | if (!isa<DefinedSVal>(Val: Offset)) |
| 635 | return; |
| 636 | |
| 637 | QualType PtrType = Iterator->getType(); |
| 638 | if (!PtrType->isPointerType()) |
| 639 | return; |
| 640 | QualType ElementType = PtrType->getPointeeType(); |
| 641 | |
| 642 | ProgramStateRef State = C.getState(); |
| 643 | SVal OldVal = State->getSVal(Iterator, C.getLocationContext()); |
| 644 | |
| 645 | const IteratorPosition *OldPos = getIteratorPosition(State, Val: OldVal); |
| 646 | if (!OldPos) |
| 647 | return; |
| 648 | |
| 649 | SVal NewVal; |
| 650 | if (OK == OO_Plus || OK == OO_PlusEqual) { |
| 651 | NewVal = State->getLValue(ElementType, Idx: Offset, Base: OldVal); |
| 652 | } else { |
| 653 | auto &SVB = C.getSValBuilder(); |
| 654 | SVal NegatedOffset = SVB.evalMinus(val: Offset.castAs<NonLoc>()); |
| 655 | NewVal = State->getLValue(ElementType, Idx: NegatedOffset, Base: OldVal); |
| 656 | } |
| 657 | |
| 658 | // `AdvancedState` is a state where the position of `Old` is advanced. We |
| 659 | // only need this state to retrieve the new position, but we do not want |
| 660 | // ever to change the position of `OldVal`. |
| 661 | auto AdvancedState = advancePosition(State, Iter: OldVal, Op: OK, Distance: Offset); |
| 662 | if (AdvancedState) { |
| 663 | const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal); |
| 664 | assert(NewPos && |
| 665 | "Iterator should have position after successful advancement" ); |
| 666 | |
| 667 | ProgramStateRef NewState = setIteratorPosition(State, Val: NewVal, Pos: *NewPos); |
| 668 | C.addTransition(State: NewState); |
| 669 | } else { |
| 670 | assignToContainer(C, Elem, RetVal: NewVal, Cont: OldPos->getContainer()); |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | void IteratorModeling::handleAdvance(CheckerContext &C, ConstCFGElementRef Elem, |
| 675 | SVal RetVal, SVal Iter, |
| 676 | SVal Amount) const { |
| 677 | handleRandomIncrOrDecr(C, Elem, Op: OO_PlusEqual, RetVal, Iterator: Iter, Amount); |
| 678 | } |
| 679 | |
| 680 | void IteratorModeling::handlePrev(CheckerContext &C, ConstCFGElementRef Elem, |
| 681 | SVal RetVal, SVal Iter, SVal Amount) const { |
| 682 | handleRandomIncrOrDecr(C, Elem, Op: OO_Minus, RetVal, Iterator: Iter, Amount); |
| 683 | } |
| 684 | |
| 685 | void IteratorModeling::handleNext(CheckerContext &C, ConstCFGElementRef Elem, |
| 686 | SVal RetVal, SVal Iter, SVal Amount) const { |
| 687 | handleRandomIncrOrDecr(C, Elem, Op: OO_Plus, RetVal, Iterator: Iter, Amount); |
| 688 | } |
| 689 | |
| 690 | void IteratorModeling::assignToContainer(CheckerContext &C, |
| 691 | ConstCFGElementRef Elem, SVal RetVal, |
| 692 | const MemRegion *Cont) const { |
| 693 | Cont = Cont->getMostDerivedObjectRegion(); |
| 694 | |
| 695 | auto State = C.getState(); |
| 696 | const auto *LCtx = C.getLocationContext(); |
| 697 | State = |
| 698 | createIteratorPosition(State, Val: RetVal, Cont, Elem, LCtx, blockCount: C.blockCount()); |
| 699 | |
| 700 | C.addTransition(State); |
| 701 | } |
| 702 | |
| 703 | bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter, |
| 704 | const Expr *CE) const { |
| 705 | // Compare the iterator position before and after the call. (To be called |
| 706 | // from `checkPostCall()`.) |
| 707 | const auto StateAfter = C.getState(); |
| 708 | |
| 709 | const auto *PosAfter = getIteratorPosition(State: StateAfter, Val: Iter); |
| 710 | // If we have no position after the call of `std::advance`, then we are not |
| 711 | // interested. (Modeling of an inlined `std::advance()` should not remove the |
| 712 | // position in any case.) |
| 713 | if (!PosAfter) |
| 714 | return false; |
| 715 | |
| 716 | const ExplodedNode *N = findCallEnter(Node: C.getPredecessor(), Call: CE); |
| 717 | assert(N && "Any call should have a `CallEnter` node." ); |
| 718 | |
| 719 | const auto StateBefore = N->getState(); |
| 720 | const auto *PosBefore = getIteratorPosition(State: StateBefore, Val: Iter); |
| 721 | // FIXME: `std::advance()` should not create a new iterator position but |
| 722 | // change existing ones. However, in case of iterators implemented as |
| 723 | // pointers the handling of parameters in `std::advance()`-like |
| 724 | // functions is still incomplete which may result in cases where |
| 725 | // the new position is assigned to the wrong pointer. This causes |
| 726 | // crash if we use an assertion here. |
| 727 | if (!PosBefore) |
| 728 | return false; |
| 729 | |
| 730 | return PosBefore->getOffset() == PosAfter->getOffset(); |
| 731 | } |
| 732 | |
| 733 | void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State, |
| 734 | const char *NL, const char *Sep) const { |
| 735 | auto SymbolMap = State->get<IteratorSymbolMap>(); |
| 736 | auto RegionMap = State->get<IteratorRegionMap>(); |
| 737 | // Use a counter to add newlines before every line except the first one. |
| 738 | unsigned Count = 0; |
| 739 | |
| 740 | if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) { |
| 741 | Out << Sep << "Iterator Positions :" << NL; |
| 742 | for (const auto &Sym : SymbolMap) { |
| 743 | if (Count++) |
| 744 | Out << NL; |
| 745 | |
| 746 | Sym.first->dumpToStream(os&: Out); |
| 747 | Out << " : " ; |
| 748 | const auto Pos = Sym.second; |
| 749 | Out << (Pos.isValid() ? "Valid" : "Invalid" ) << " ; Container == " ; |
| 750 | Pos.getContainer()->dumpToStream(os&: Out); |
| 751 | Out<<" ; Offset == " ; |
| 752 | Pos.getOffset()->dumpToStream(os&: Out); |
| 753 | } |
| 754 | |
| 755 | for (const auto &Reg : RegionMap) { |
| 756 | if (Count++) |
| 757 | Out << NL; |
| 758 | |
| 759 | Reg.first->dumpToStream(os&: Out); |
| 760 | Out << " : " ; |
| 761 | const auto Pos = Reg.second; |
| 762 | Out << (Pos.isValid() ? "Valid" : "Invalid" ) << " ; Container == " ; |
| 763 | Pos.getContainer()->dumpToStream(os&: Out); |
| 764 | Out<<" ; Offset == " ; |
| 765 | Pos.getOffset()->dumpToStream(os&: Out); |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | namespace { |
| 771 | |
| 772 | bool isSimpleComparisonOperator(OverloadedOperatorKind OK) { |
| 773 | return OK == OO_EqualEqual || OK == OO_ExclaimEqual; |
| 774 | } |
| 775 | |
| 776 | bool isSimpleComparisonOperator(BinaryOperatorKind OK) { |
| 777 | return OK == BO_EQ || OK == BO_NE; |
| 778 | } |
| 779 | |
| 780 | ProgramStateRef removeIteratorPosition(ProgramStateRef State, SVal Val) { |
| 781 | if (auto Reg = Val.getAsRegion()) { |
| 782 | Reg = Reg->getMostDerivedObjectRegion(); |
| 783 | return State->remove<IteratorRegionMap>(K: Reg); |
| 784 | } else if (const auto Sym = Val.getAsSymbol()) { |
| 785 | return State->remove<IteratorSymbolMap>(K: Sym); |
| 786 | } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) { |
| 787 | return State->remove<IteratorRegionMap>(K: LCVal->getRegion()); |
| 788 | } |
| 789 | return nullptr; |
| 790 | } |
| 791 | |
| 792 | ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, |
| 793 | SymbolRef Sym2, bool Equal) { |
| 794 | auto &SVB = State->getStateManager().getSValBuilder(); |
| 795 | |
| 796 | // FIXME: This code should be reworked as follows: |
| 797 | // 1. Subtract the operands using evalBinOp(). |
| 798 | // 2. Assume that the result doesn't overflow. |
| 799 | // 3. Compare the result to 0. |
| 800 | // 4. Assume the result of the comparison. |
| 801 | const auto comparison = |
| 802 | SVB.evalBinOp(state: State, op: BO_EQ, lhs: nonloc::SymbolVal(Sym1), |
| 803 | rhs: nonloc::SymbolVal(Sym2), type: SVB.getConditionType()); |
| 804 | |
| 805 | assert(isa<DefinedSVal>(comparison) && |
| 806 | "Symbol comparison must be a `DefinedSVal`" ); |
| 807 | |
| 808 | auto NewState = State->assume(Cond: comparison.castAs<DefinedSVal>(), Assumption: Equal); |
| 809 | if (!NewState) |
| 810 | return nullptr; |
| 811 | |
| 812 | if (const auto CompSym = comparison.getAsSymbol()) { |
| 813 | assert(isa<SymIntExpr>(CompSym) && |
| 814 | "Symbol comparison must be a `SymIntExpr`" ); |
| 815 | assert(BinaryOperator::isComparisonOp( |
| 816 | cast<SymIntExpr>(CompSym)->getOpcode()) && |
| 817 | "Symbol comparison must be a comparison" ); |
| 818 | return assumeNoOverflow(State: NewState, Sym: cast<SymIntExpr>(Val: CompSym)->getLHS(), Scale: 2); |
| 819 | } |
| 820 | |
| 821 | return NewState; |
| 822 | } |
| 823 | |
| 824 | bool isBoundThroughLazyCompoundVal(const Environment &Env, |
| 825 | const MemRegion *Reg) { |
| 826 | for (const auto &Binding : Env) { |
| 827 | if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) { |
| 828 | if (LCVal->getRegion() == Reg) |
| 829 | return true; |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | return false; |
| 834 | } |
| 835 | |
| 836 | const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) { |
| 837 | while (Node) { |
| 838 | ProgramPoint PP = Node->getLocation(); |
| 839 | if (auto Enter = PP.getAs<CallEnter>()) { |
| 840 | if (Enter->getCallExpr() == Call) |
| 841 | break; |
| 842 | } |
| 843 | |
| 844 | Node = Node->getFirstPred(); |
| 845 | } |
| 846 | |
| 847 | return Node; |
| 848 | } |
| 849 | |
| 850 | } // namespace |
| 851 | |
| 852 | void ento::registerIteratorModeling(CheckerManager &mgr) { |
| 853 | mgr.registerChecker<IteratorModeling>(); |
| 854 | } |
| 855 | |
| 856 | bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) { |
| 857 | return true; |
| 858 | } |
| 859 | |