| 1 | //===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines a checker that reports uninitialized fields in objects |
| 10 | // created after a constructor call. |
| 11 | // |
| 12 | // To read about command line options and how the checker works, refer to the |
| 13 | // top of the file and inline comments in UninitializedObject.h. |
| 14 | // |
| 15 | // Some of the logic is implemented in UninitializedPointee.cpp, to reduce the |
| 16 | // complexity of this file. |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| 21 | #include "UninitializedObject.h" |
| 22 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
| 23 | #include "clang/Driver/DriverDiagnostic.h" |
| 24 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| 25 | #include "clang/StaticAnalyzer/Core/Checker.h" |
| 26 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| 27 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" |
| 28 | |
| 29 | using namespace clang; |
| 30 | using namespace clang::ento; |
| 31 | using namespace clang::ast_matchers; |
| 32 | |
| 33 | /// We'll mark fields (and pointee of fields) that are confirmed to be |
| 34 | /// uninitialized as already analyzed. |
| 35 | REGISTER_SET_WITH_PROGRAMSTATE(AnalyzedRegions, const MemRegion *) |
| 36 | |
| 37 | namespace { |
| 38 | |
| 39 | class UninitializedObjectChecker |
| 40 | : public Checker<check::EndFunction, check::DeadSymbols> { |
| 41 | const BugType BT_uninitField{this, "Uninitialized fields" }; |
| 42 | |
| 43 | public: |
| 44 | // The fields of this struct will be initialized when registering the checker. |
| 45 | UninitObjCheckerOptions Opts; |
| 46 | |
| 47 | void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const; |
| 48 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
| 49 | }; |
| 50 | |
| 51 | /// A basic field type, that is not a pointer or a reference, it's dynamic and |
| 52 | /// static type is the same. |
| 53 | class RegularField final : public FieldNode { |
| 54 | public: |
| 55 | RegularField(const FieldRegion *FR) : FieldNode(FR) {} |
| 56 | |
| 57 | void printNoteMsg(llvm::raw_ostream &Out) const override { |
| 58 | Out << "uninitialized field " ; |
| 59 | } |
| 60 | |
| 61 | void printPrefix(llvm::raw_ostream &Out) const override {} |
| 62 | |
| 63 | void printNode(llvm::raw_ostream &Out) const override { |
| 64 | Out << getVariableName(Field: getDecl()); |
| 65 | } |
| 66 | |
| 67 | void printSeparator(llvm::raw_ostream &Out) const override { Out << '.'; } |
| 68 | }; |
| 69 | |
| 70 | /// Represents that the FieldNode that comes after this is declared in a base |
| 71 | /// of the previous FieldNode. As such, this descendant doesn't wrap a |
| 72 | /// FieldRegion, and is purely a tool to describe a relation between two other |
| 73 | /// FieldRegion wrapping descendants. |
| 74 | class BaseClass final : public FieldNode { |
| 75 | const QualType BaseClassT; |
| 76 | |
| 77 | public: |
| 78 | BaseClass(const QualType &T) : FieldNode(nullptr), BaseClassT(T) { |
| 79 | assert(!T.isNull()); |
| 80 | assert(T->getAsCXXRecordDecl()); |
| 81 | } |
| 82 | |
| 83 | void printNoteMsg(llvm::raw_ostream &Out) const override { |
| 84 | llvm_unreachable("This node can never be the final node in the " |
| 85 | "fieldchain!" ); |
| 86 | } |
| 87 | |
| 88 | void printPrefix(llvm::raw_ostream &Out) const override {} |
| 89 | |
| 90 | void printNode(llvm::raw_ostream &Out) const override { |
| 91 | Out << BaseClassT->getAsCXXRecordDecl()->getName() << "::" ; |
| 92 | } |
| 93 | |
| 94 | void printSeparator(llvm::raw_ostream &Out) const override {} |
| 95 | |
| 96 | bool isBase() const override { return true; } |
| 97 | }; |
| 98 | |
| 99 | } // end of anonymous namespace |
| 100 | |
| 101 | // Utility function declarations. |
| 102 | |
| 103 | /// Returns the region that was constructed by CtorDecl, or nullptr if that |
| 104 | /// isn't possible. |
| 105 | static const TypedValueRegion * |
| 106 | getConstructedRegion(const CXXConstructorDecl *CtorDecl, |
| 107 | CheckerContext &Context); |
| 108 | |
| 109 | /// Checks whether the object constructed by \p Ctor will be analyzed later |
| 110 | /// (e.g. if the object is a field of another object, in which case we'd check |
| 111 | /// it multiple times). |
| 112 | static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor, |
| 113 | CheckerContext &Context); |
| 114 | |
| 115 | /// Checks whether RD contains a field with a name or type name that matches |
| 116 | /// \p Pattern. |
| 117 | static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern); |
| 118 | |
| 119 | /// Checks _syntactically_ whether it is possible to access FD from the record |
| 120 | /// that contains it without a preceding assert (even if that access happens |
| 121 | /// inside a method). This is mainly used for records that act like unions, like |
| 122 | /// having multiple bit fields, with only a fraction being properly initialized. |
| 123 | /// If these fields are properly guarded with asserts, this method returns |
| 124 | /// false. |
| 125 | /// |
| 126 | /// Since this check is done syntactically, this method could be inaccurate. |
| 127 | static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State); |
| 128 | |
| 129 | //===----------------------------------------------------------------------===// |
| 130 | // Methods for UninitializedObjectChecker. |
| 131 | //===----------------------------------------------------------------------===// |
| 132 | |
| 133 | void UninitializedObjectChecker::checkEndFunction( |
| 134 | const ReturnStmt *RS, CheckerContext &Context) const { |
| 135 | |
| 136 | const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>( |
| 137 | Val: Context.getLocationContext()->getDecl()); |
| 138 | if (!CtorDecl) |
| 139 | return; |
| 140 | |
| 141 | if (!CtorDecl->isUserProvided()) |
| 142 | return; |
| 143 | |
| 144 | if (CtorDecl->getParent()->isUnion()) |
| 145 | return; |
| 146 | |
| 147 | // This avoids essentially the same error being reported multiple times. |
| 148 | if (willObjectBeAnalyzedLater(Ctor: CtorDecl, Context)) |
| 149 | return; |
| 150 | |
| 151 | const TypedValueRegion *R = getConstructedRegion(CtorDecl, Context); |
| 152 | if (!R) |
| 153 | return; |
| 154 | |
| 155 | FindUninitializedFields F(Context.getState(), R, Opts); |
| 156 | |
| 157 | std::pair<ProgramStateRef, const UninitFieldMap &> UninitInfo = |
| 158 | F.getResults(); |
| 159 | |
| 160 | ProgramStateRef UpdatedState = UninitInfo.first; |
| 161 | const UninitFieldMap &UninitFields = UninitInfo.second; |
| 162 | |
| 163 | if (UninitFields.empty()) { |
| 164 | Context.addTransition(State: UpdatedState); |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | // There are uninitialized fields in the record. |
| 169 | |
| 170 | ExplodedNode *Node = Context.generateNonFatalErrorNode(State: UpdatedState); |
| 171 | if (!Node) |
| 172 | return; |
| 173 | |
| 174 | PathDiagnosticLocation LocUsedForUniqueing; |
| 175 | const Stmt *CallSite = Context.getStackFrame()->getCallSite(); |
| 176 | if (CallSite) |
| 177 | LocUsedForUniqueing = PathDiagnosticLocation::createBegin( |
| 178 | S: CallSite, SM: Context.getSourceManager(), LAC: Node->getLocationContext()); |
| 179 | |
| 180 | // For Plist consumers that don't support notes just yet, we'll convert notes |
| 181 | // to warnings. |
| 182 | if (Opts.ShouldConvertNotesToWarnings) { |
| 183 | for (const auto &Pair : UninitFields) { |
| 184 | |
| 185 | auto Report = std::make_unique<PathSensitiveBugReport>( |
| 186 | args: BT_uninitField, args: Pair.second, args&: Node, args&: LocUsedForUniqueing, |
| 187 | args: Node->getLocationContext()->getDecl()); |
| 188 | Context.emitReport(R: std::move(Report)); |
| 189 | } |
| 190 | return; |
| 191 | } |
| 192 | |
| 193 | SmallString<100> WarningBuf; |
| 194 | llvm::raw_svector_ostream WarningOS(WarningBuf); |
| 195 | WarningOS << UninitFields.size() << " uninitialized field" |
| 196 | << (UninitFields.size() == 1 ? "" : "s" ) |
| 197 | << " at the end of the constructor call" ; |
| 198 | |
| 199 | auto Report = std::make_unique<PathSensitiveBugReport>( |
| 200 | args: BT_uninitField, args: WarningOS.str(), args&: Node, args&: LocUsedForUniqueing, |
| 201 | args: Node->getLocationContext()->getDecl()); |
| 202 | |
| 203 | for (const auto &Pair : UninitFields) { |
| 204 | Report->addNote(Msg: Pair.second, |
| 205 | Pos: PathDiagnosticLocation::create(Pair.first->getDecl(), |
| 206 | Context.getSourceManager())); |
| 207 | } |
| 208 | Context.emitReport(R: std::move(Report)); |
| 209 | } |
| 210 | |
| 211 | void UninitializedObjectChecker::checkDeadSymbols(SymbolReaper &SR, |
| 212 | CheckerContext &C) const { |
| 213 | ProgramStateRef State = C.getState(); |
| 214 | for (const MemRegion *R : State->get<AnalyzedRegions>()) { |
| 215 | if (!SR.isLiveRegion(region: R)) |
| 216 | State = State->remove<AnalyzedRegions>(K: R); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | //===----------------------------------------------------------------------===// |
| 221 | // Methods for FindUninitializedFields. |
| 222 | //===----------------------------------------------------------------------===// |
| 223 | |
| 224 | FindUninitializedFields::FindUninitializedFields( |
| 225 | ProgramStateRef State, const TypedValueRegion *const R, |
| 226 | const UninitObjCheckerOptions &Opts) |
| 227 | : State(State), ObjectR(R), Opts(Opts) { |
| 228 | |
| 229 | isNonUnionUninit(R: ObjectR, LocalChain: FieldChainInfo(ChainFactory)); |
| 230 | |
| 231 | // In non-pedantic mode, if ObjectR doesn't contain a single initialized |
| 232 | // field, we'll assume that Object was intentionally left uninitialized. |
| 233 | if (!Opts.IsPedantic && !isAnyFieldInitialized()) |
| 234 | UninitFields.clear(); |
| 235 | } |
| 236 | |
| 237 | bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain, |
| 238 | const MemRegion *PointeeR) { |
| 239 | const FieldRegion *FR = Chain.getUninitRegion(); |
| 240 | |
| 241 | assert((PointeeR || !isDereferencableType(FR->getDecl()->getType())) && |
| 242 | "One must also pass the pointee region as a parameter for " |
| 243 | "dereferenceable fields!" ); |
| 244 | |
| 245 | if (State->getStateManager().getContext().getSourceManager().isInSystemHeader( |
| 246 | Loc: FR->getDecl()->getLocation())) |
| 247 | return false; |
| 248 | |
| 249 | if (Opts.IgnoreGuardedFields && !hasUnguardedAccess(FD: FR->getDecl(), State)) |
| 250 | return false; |
| 251 | |
| 252 | if (State->contains<AnalyzedRegions>(key: FR)) |
| 253 | return false; |
| 254 | |
| 255 | if (PointeeR) { |
| 256 | if (State->contains<AnalyzedRegions>(key: PointeeR)) { |
| 257 | return false; |
| 258 | } |
| 259 | State = State->add<AnalyzedRegions>(K: PointeeR); |
| 260 | } |
| 261 | |
| 262 | State = State->add<AnalyzedRegions>(K: FR); |
| 263 | |
| 264 | UninitFieldMap::mapped_type NoteMsgBuf; |
| 265 | llvm::raw_svector_ostream OS(NoteMsgBuf); |
| 266 | Chain.printNoteMsg(Out&: OS); |
| 267 | |
| 268 | return UninitFields.insert(x: {FR, std::move(NoteMsgBuf)}).second; |
| 269 | } |
| 270 | |
| 271 | bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R, |
| 272 | FieldChainInfo LocalChain) { |
| 273 | assert(R->getValueType()->isRecordType() && |
| 274 | !R->getValueType()->isUnionType() && |
| 275 | "This method only checks non-union record objects!" ); |
| 276 | |
| 277 | const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition(); |
| 278 | |
| 279 | if (!RD) { |
| 280 | IsAnyFieldInitialized = true; |
| 281 | return true; |
| 282 | } |
| 283 | |
| 284 | if (!Opts.IgnoredRecordsWithFieldPattern.empty() && |
| 285 | shouldIgnoreRecord(RD, Pattern: Opts.IgnoredRecordsWithFieldPattern)) { |
| 286 | IsAnyFieldInitialized = true; |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | bool ContainsUninitField = false; |
| 291 | |
| 292 | // Are all of this non-union's fields initialized? |
| 293 | for (const FieldDecl *I : RD->fields()) { |
| 294 | if (I->isUnnamedBitField()) { |
| 295 | continue; |
| 296 | } |
| 297 | const auto FieldVal = |
| 298 | State->getLValue(decl: I, Base: loc::MemRegionVal(R)).castAs<loc::MemRegionVal>(); |
| 299 | const auto *FR = FieldVal.getRegionAs<FieldRegion>(); |
| 300 | QualType T = I->getType(); |
| 301 | |
| 302 | // If LocalChain already contains FR, then we encountered a cyclic |
| 303 | // reference. In this case, region FR is already under checking at an |
| 304 | // earlier node in the directed tree. |
| 305 | if (LocalChain.contains(FR)) |
| 306 | return false; |
| 307 | |
| 308 | if (T->isStructureOrClassType()) { |
| 309 | if (isNonUnionUninit(R: FR, LocalChain: LocalChain.add(FN: RegularField(FR)))) |
| 310 | ContainsUninitField = true; |
| 311 | continue; |
| 312 | } |
| 313 | |
| 314 | if (T->isUnionType()) { |
| 315 | if (isUnionUninit(R: FR)) { |
| 316 | if (addFieldToUninits(Chain: LocalChain.add(FN: RegularField(FR)))) |
| 317 | ContainsUninitField = true; |
| 318 | } else |
| 319 | IsAnyFieldInitialized = true; |
| 320 | continue; |
| 321 | } |
| 322 | |
| 323 | if (T->isArrayType()) { |
| 324 | IsAnyFieldInitialized = true; |
| 325 | continue; |
| 326 | } |
| 327 | |
| 328 | SVal V = State->getSVal(LV: FieldVal); |
| 329 | |
| 330 | if (isDereferencableType(T) || isa<nonloc::LocAsInteger>(Val: V)) { |
| 331 | if (isDereferencableUninit(FR, LocalChain)) |
| 332 | ContainsUninitField = true; |
| 333 | continue; |
| 334 | } |
| 335 | |
| 336 | if (isPrimitiveType(T)) { |
| 337 | if (isPrimitiveUninit(V)) { |
| 338 | if (addFieldToUninits(Chain: LocalChain.add(FN: RegularField(FR)))) |
| 339 | ContainsUninitField = true; |
| 340 | } |
| 341 | continue; |
| 342 | } |
| 343 | |
| 344 | llvm_unreachable("All cases are handled!" ); |
| 345 | } |
| 346 | |
| 347 | // Checking bases. The checker will regard inherited data members as direct |
| 348 | // fields. |
| 349 | const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
| 350 | if (!CXXRD) |
| 351 | return ContainsUninitField; |
| 352 | |
| 353 | for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) { |
| 354 | const auto *BaseRegion = State->getLValue(BaseSpec, Super: R) |
| 355 | .castAs<loc::MemRegionVal>() |
| 356 | .getRegionAs<TypedValueRegion>(); |
| 357 | |
| 358 | // If the head of the list is also a BaseClass, we'll overwrite it to avoid |
| 359 | // note messages like 'this->A::B::x'. |
| 360 | if (!LocalChain.isEmpty() && LocalChain.getHead().isBase()) { |
| 361 | if (isNonUnionUninit(R: BaseRegion, LocalChain: LocalChain.replaceHead( |
| 362 | FN: BaseClass(BaseSpec.getType())))) |
| 363 | ContainsUninitField = true; |
| 364 | } else { |
| 365 | if (isNonUnionUninit(R: BaseRegion, |
| 366 | LocalChain: LocalChain.add(FN: BaseClass(BaseSpec.getType())))) |
| 367 | ContainsUninitField = true; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | return ContainsUninitField; |
| 372 | } |
| 373 | |
| 374 | bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) { |
| 375 | assert(R->getValueType()->isUnionType() && |
| 376 | "This method only checks union objects!" ); |
| 377 | // TODO: Implement support for union fields. |
| 378 | return false; |
| 379 | } |
| 380 | |
| 381 | bool FindUninitializedFields::isPrimitiveUninit(SVal V) { |
| 382 | if (V.isUndef()) |
| 383 | return true; |
| 384 | |
| 385 | IsAnyFieldInitialized = true; |
| 386 | return false; |
| 387 | } |
| 388 | |
| 389 | //===----------------------------------------------------------------------===// |
| 390 | // Methods for FieldChainInfo. |
| 391 | //===----------------------------------------------------------------------===// |
| 392 | |
| 393 | bool FieldChainInfo::contains(const FieldRegion *FR) const { |
| 394 | for (const FieldNode &Node : Chain) { |
| 395 | if (Node.isSameRegion(OtherFR: FR)) |
| 396 | return true; |
| 397 | } |
| 398 | return false; |
| 399 | } |
| 400 | |
| 401 | /// Prints every element except the last to `Out`. Since ImmutableLists store |
| 402 | /// elements in reverse order, and have no reverse iterators, we use a |
| 403 | /// recursive function to print the fieldchain correctly. The last element in |
| 404 | /// the chain is to be printed by `FieldChainInfo::print`. |
| 405 | static void printTail(llvm::raw_ostream &Out, |
| 406 | const FieldChainInfo::FieldChain L); |
| 407 | |
| 408 | // FIXME: This function constructs an incorrect string in the following case: |
| 409 | // |
| 410 | // struct Base { int x; }; |
| 411 | // struct D1 : Base {}; struct D2 : Base {}; |
| 412 | // |
| 413 | // struct MostDerived : D1, D2 { |
| 414 | // MostDerived() {} |
| 415 | // } |
| 416 | // |
| 417 | // A call to MostDerived::MostDerived() will cause two notes that say |
| 418 | // "uninitialized field 'this->x'", but we can't refer to 'x' directly, |
| 419 | // we need an explicit namespace resolution whether the uninit field was |
| 420 | // 'D1::x' or 'D2::x'. |
| 421 | void FieldChainInfo::printNoteMsg(llvm::raw_ostream &Out) const { |
| 422 | if (Chain.isEmpty()) |
| 423 | return; |
| 424 | |
| 425 | const FieldNode &LastField = getHead(); |
| 426 | |
| 427 | LastField.printNoteMsg(Out); |
| 428 | Out << '\''; |
| 429 | |
| 430 | for (const FieldNode &Node : Chain) |
| 431 | Node.printPrefix(Out); |
| 432 | |
| 433 | Out << "this->" ; |
| 434 | printTail(Out, L: Chain.getTail()); |
| 435 | LastField.printNode(Out); |
| 436 | Out << '\''; |
| 437 | } |
| 438 | |
| 439 | static void printTail(llvm::raw_ostream &Out, |
| 440 | const FieldChainInfo::FieldChain L) { |
| 441 | if (L.isEmpty()) |
| 442 | return; |
| 443 | |
| 444 | printTail(Out, L: L.getTail()); |
| 445 | |
| 446 | L.getHead().printNode(Out); |
| 447 | L.getHead().printSeparator(Out); |
| 448 | } |
| 449 | |
| 450 | //===----------------------------------------------------------------------===// |
| 451 | // Utility functions. |
| 452 | //===----------------------------------------------------------------------===// |
| 453 | |
| 454 | static const TypedValueRegion * |
| 455 | getConstructedRegion(const CXXConstructorDecl *CtorDecl, |
| 456 | CheckerContext &Context) { |
| 457 | |
| 458 | Loc ThisLoc = |
| 459 | Context.getSValBuilder().getCXXThis(CtorDecl, Context.getStackFrame()); |
| 460 | |
| 461 | SVal ObjectV = Context.getState()->getSVal(LV: ThisLoc); |
| 462 | |
| 463 | auto *R = ObjectV.getAsRegion()->getAs<TypedValueRegion>(); |
| 464 | if (R && !R->getValueType()->getAsCXXRecordDecl()) |
| 465 | return nullptr; |
| 466 | |
| 467 | return R; |
| 468 | } |
| 469 | |
| 470 | static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor, |
| 471 | CheckerContext &Context) { |
| 472 | |
| 473 | const TypedValueRegion *CurrRegion = getConstructedRegion(CtorDecl: Ctor, Context); |
| 474 | if (!CurrRegion) |
| 475 | return false; |
| 476 | |
| 477 | const LocationContext *LC = Context.getLocationContext(); |
| 478 | while ((LC = LC->getParent())) { |
| 479 | |
| 480 | // If \p Ctor was called by another constructor. |
| 481 | const auto *OtherCtor = dyn_cast<CXXConstructorDecl>(Val: LC->getDecl()); |
| 482 | if (!OtherCtor) |
| 483 | continue; |
| 484 | |
| 485 | const TypedValueRegion *OtherRegion = |
| 486 | getConstructedRegion(CtorDecl: OtherCtor, Context); |
| 487 | if (!OtherRegion) |
| 488 | continue; |
| 489 | |
| 490 | // If the CurrRegion is a subregion of OtherRegion, it will be analyzed |
| 491 | // during the analysis of OtherRegion. |
| 492 | if (CurrRegion->isSubRegionOf(R: OtherRegion)) |
| 493 | return true; |
| 494 | } |
| 495 | |
| 496 | return false; |
| 497 | } |
| 498 | |
| 499 | static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern) { |
| 500 | llvm::Regex R(Pattern); |
| 501 | |
| 502 | for (const FieldDecl *FD : RD->fields()) { |
| 503 | if (R.match(String: FD->getType().getAsString())) |
| 504 | return true; |
| 505 | if (R.match(String: FD->getName())) |
| 506 | return true; |
| 507 | } |
| 508 | |
| 509 | return false; |
| 510 | } |
| 511 | |
| 512 | static const Stmt *getMethodBody(const CXXMethodDecl *M) { |
| 513 | if (isa<CXXConstructorDecl>(Val: M)) |
| 514 | return nullptr; |
| 515 | |
| 516 | if (!M->isDefined()) |
| 517 | return nullptr; |
| 518 | |
| 519 | return M->getDefinition()->getBody(); |
| 520 | } |
| 521 | |
| 522 | static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State) { |
| 523 | |
| 524 | if (FD->getAccess() == AccessSpecifier::AS_public) |
| 525 | return true; |
| 526 | |
| 527 | const auto *Parent = dyn_cast<CXXRecordDecl>(Val: FD->getParent()); |
| 528 | |
| 529 | if (!Parent) |
| 530 | return true; |
| 531 | |
| 532 | Parent = Parent->getDefinition(); |
| 533 | assert(Parent && "The record's definition must be avaible if an uninitialized" |
| 534 | " field of it was found!" ); |
| 535 | |
| 536 | ASTContext &AC = State->getStateManager().getContext(); |
| 537 | |
| 538 | auto FieldAccessM = memberExpr(hasDeclaration(equalsNode(FD))).bind("access" ); |
| 539 | |
| 540 | auto AssertLikeM = callExpr(callee(InnerMatcher: functionDecl( |
| 541 | hasAnyName("exit" , "panic" , "error" , "Assert" , "assert" , "ziperr" , |
| 542 | "assfail" , "db_error" , "__assert" , "__assert2" , "_wassert" , |
| 543 | "__assert_rtn" , "__assert_fail" , "dtrace_assfail" , |
| 544 | "yy_fatal_error" , "_XCAssertionFailureHandler" , |
| 545 | "_DTAssertionFailureHandler" , "_TSAssertionFailureHandler" )))); |
| 546 | |
| 547 | auto NoReturnFuncM = callExpr(callee(InnerMatcher: functionDecl(isNoReturn()))); |
| 548 | |
| 549 | auto GuardM = |
| 550 | stmt(anyOf(ifStmt(), switchStmt(), conditionalOperator(), AssertLikeM, |
| 551 | NoReturnFuncM)) |
| 552 | .bind(ID: "guard" ); |
| 553 | |
| 554 | for (const CXXMethodDecl *M : Parent->methods()) { |
| 555 | const Stmt *MethodBody = getMethodBody(M); |
| 556 | if (!MethodBody) |
| 557 | continue; |
| 558 | |
| 559 | auto Accesses = match(stmt(hasDescendant(FieldAccessM)), *MethodBody, AC); |
| 560 | if (Accesses.empty()) |
| 561 | continue; |
| 562 | const auto *FirstAccess = Accesses[0].getNodeAs<MemberExpr>("access" ); |
| 563 | assert(FirstAccess); |
| 564 | |
| 565 | auto Guards = match(Matcher: stmt(hasDescendant(GuardM)), Node: *MethodBody, Context&: AC); |
| 566 | if (Guards.empty()) |
| 567 | return true; |
| 568 | const auto *FirstGuard = Guards[0].getNodeAs<Stmt>(ID: "guard" ); |
| 569 | assert(FirstGuard); |
| 570 | |
| 571 | if (FirstAccess->getBeginLoc() < FirstGuard->getBeginLoc()) |
| 572 | return true; |
| 573 | } |
| 574 | |
| 575 | return false; |
| 576 | } |
| 577 | |
| 578 | std::string clang::ento::getVariableName(const FieldDecl *Field) { |
| 579 | // If Field is a captured lambda variable, Field->getName() will return with |
| 580 | // an empty string. We can however acquire it's name from the lambda's |
| 581 | // captures. |
| 582 | const auto *CXXParent = dyn_cast<CXXRecordDecl>(Val: Field->getParent()); |
| 583 | |
| 584 | if (CXXParent && CXXParent->isLambda()) { |
| 585 | assert(CXXParent->captures_begin()); |
| 586 | auto It = CXXParent->captures_begin() + Field->getFieldIndex(); |
| 587 | |
| 588 | if (It->capturesVariable()) |
| 589 | return llvm::Twine("/*captured variable*/" + |
| 590 | It->getCapturedVar()->getName()) |
| 591 | .str(); |
| 592 | |
| 593 | if (It->capturesThis()) |
| 594 | return "/*'this' capture*/" ; |
| 595 | |
| 596 | llvm_unreachable("No other capture type is expected!" ); |
| 597 | } |
| 598 | |
| 599 | return std::string(Field->getName()); |
| 600 | } |
| 601 | |
| 602 | void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) { |
| 603 | auto Chk = Mgr.registerChecker<UninitializedObjectChecker>(); |
| 604 | |
| 605 | const AnalyzerOptions &AnOpts = Mgr.getAnalyzerOptions(); |
| 606 | UninitObjCheckerOptions &ChOpts = Chk->Opts; |
| 607 | |
| 608 | ChOpts.IsPedantic = AnOpts.getCheckerBooleanOption(C: Chk, OptionName: "Pedantic" ); |
| 609 | ChOpts.ShouldConvertNotesToWarnings = AnOpts.getCheckerBooleanOption( |
| 610 | C: Chk, OptionName: "NotesAsWarnings" ); |
| 611 | ChOpts.CheckPointeeInitialization = AnOpts.getCheckerBooleanOption( |
| 612 | C: Chk, OptionName: "CheckPointeeInitialization" ); |
| 613 | ChOpts.IgnoredRecordsWithFieldPattern = |
| 614 | std::string(AnOpts.getCheckerStringOption(C: Chk, OptionName: "IgnoreRecordsWithField" )); |
| 615 | ChOpts.IgnoreGuardedFields = |
| 616 | AnOpts.getCheckerBooleanOption(C: Chk, OptionName: "IgnoreGuardedFields" ); |
| 617 | |
| 618 | std::string ErrorMsg; |
| 619 | if (!llvm::Regex(ChOpts.IgnoredRecordsWithFieldPattern).isValid(Error&: ErrorMsg)) |
| 620 | Mgr.reportInvalidCheckerOptionValue(Checker: Chk, OptionName: "IgnoreRecordsWithField" , |
| 621 | ExpectedValueDesc: "a valid regex, building failed with error message " |
| 622 | "\"" + ErrorMsg + "\"" ); |
| 623 | } |
| 624 | |
| 625 | bool ento::shouldRegisterUninitializedObjectChecker(const CheckerManager &mgr) { |
| 626 | return true; |
| 627 | } |
| 628 | |