1//===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines BugReporter, a utility class for generating
10// PathDiagnostics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15#include "clang/AST/ASTTypeTraits.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/ParentMapContext.h"
24#include "clang/AST/Stmt.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Analysis/AnalysisDeclContext.h"
28#include "clang/Analysis/CFG.h"
29#include "clang/Analysis/CFGStmtMap.h"
30#include "clang/Analysis/PathDiagnostic.h"
31#include "clang/Analysis/ProgramPoint.h"
32#include "clang/Basic/LLVM.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
36#include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
37#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
38#include "clang/StaticAnalyzer/Core/Checker.h"
39#include "clang/StaticAnalyzer/Core/CheckerManager.h"
40#include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
41#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
42#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
43#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45#include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/DenseSet.h"
51#include "llvm/ADT/FoldingSet.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/ADT/SmallPtrSet.h"
54#include "llvm/ADT/SmallString.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/Statistic.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringRef.h"
59#include "llvm/ADT/iterator_range.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/Compiler.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/MemoryBuffer.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <iterator>
69#include <memory>
70#include <optional>
71#include <queue>
72#include <string>
73#include <tuple>
74#include <utility>
75#include <vector>
76
77using namespace clang;
78using namespace ento;
79using namespace llvm;
80
81#define DEBUG_TYPE "BugReporter"
82
83STATISTIC(MaxBugClassSize,
84 "The maximum number of bug reports in the same equivalence class");
85STATISTIC(MaxValidBugClassSize,
86 "The maximum number of bug reports in the same equivalence class "
87 "where at least one report is valid (not suppressed)");
88
89BugReporterVisitor::~BugReporterVisitor() = default;
90
91void BugReporterContext::anchor() {}
92
93//===----------------------------------------------------------------------===//
94// PathDiagnosticBuilder and its associated routines and helper objects.
95//===----------------------------------------------------------------------===//
96
97namespace {
98
99/// A (CallPiece, node assiciated with its CallEnter) pair.
100using CallWithEntry =
101 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
102using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
103
104/// Map from each node to the diagnostic pieces visitors emit for them.
105using VisitorsDiagnosticsTy =
106 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
107
108/// A map from PathDiagnosticPiece to the LocationContext of the inlined
109/// function call it represents.
110using LocationContextMap =
111 llvm::DenseMap<const PathPieces *, const LocationContext *>;
112
113/// A helper class that contains everything needed to construct a
114/// PathDiagnostic object. It does no much more then providing convenient
115/// getters and some well placed asserts for extra security.
116class PathDiagnosticConstruct {
117 /// The consumer we're constructing the bug report for.
118 const PathDiagnosticConsumer *Consumer;
119 /// Our current position in the bug path, which is owned by
120 /// PathDiagnosticBuilder.
121 const ExplodedNode *CurrentNode;
122 /// A mapping from parts of the bug path (for example, a function call, which
123 /// would span backwards from a CallExit to a CallEnter with the nodes in
124 /// between them) with the location contexts it is associated with.
125 LocationContextMap LCM;
126 const SourceManager &SM;
127
128public:
129 /// We keep stack of calls to functions as we're ascending the bug path.
130 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
131 /// that instead?
132 CallWithEntryStack CallStack;
133 /// The bug report we're constructing. For ease of use, this field is kept
134 /// public, though some "shortcut" getters are provided for commonly used
135 /// methods of PathDiagnostic.
136 std::unique_ptr<PathDiagnostic> PD;
137
138public:
139 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
140 const ExplodedNode *ErrorNode,
141 const PathSensitiveBugReport *R,
142 const Decl *AnalysisEntryPoint);
143
144 /// \returns the location context associated with the current position in the
145 /// bug path.
146 const LocationContext *getCurrLocationContext() const {
147 assert(CurrentNode && "Already reached the root!");
148 return CurrentNode->getLocationContext();
149 }
150
151 /// Same as getCurrLocationContext (they should always return the same
152 /// location context), but works after reaching the root of the bug path as
153 /// well.
154 const LocationContext *getLocationContextForActivePath() const {
155 return LCM.find(Val: &PD->getActivePath())->getSecond();
156 }
157
158 const ExplodedNode *getCurrentNode() const { return CurrentNode; }
159
160 /// Steps the current node to its predecessor.
161 /// \returns whether we reached the root of the bug path.
162 bool ascendToPrevNode() {
163 CurrentNode = CurrentNode->getFirstPred();
164 return static_cast<bool>(CurrentNode);
165 }
166
167 const ParentMap &getParentMap() const {
168 return getCurrLocationContext()->getParentMap();
169 }
170
171 const SourceManager &getSourceManager() const { return SM; }
172
173 const Stmt *getParent(const Stmt *S) const {
174 return getParentMap().getParent(S);
175 }
176
177 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
178 assert(Path && LC);
179 LCM[Path] = LC;
180 }
181
182 const LocationContext *getLocationContextFor(const PathPieces *Path) const {
183 assert(LCM.count(Path) &&
184 "Failed to find the context associated with these pieces!");
185 return LCM.find(Val: Path)->getSecond();
186 }
187
188 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Val: Path); }
189
190 PathPieces &getActivePath() { return PD->getActivePath(); }
191 PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
192
193 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
194 bool shouldAddControlNotes() const {
195 return Consumer->shouldAddControlNotes();
196 }
197 bool shouldGenerateDiagnostics() const {
198 return Consumer->shouldGenerateDiagnostics();
199 }
200 bool supportsLogicalOpControlFlow() const {
201 return Consumer->supportsLogicalOpControlFlow();
202 }
203};
204
205/// Contains every contextual information needed for constructing a
206/// PathDiagnostic object for a given bug report. This class and its fields are
207/// immutable, and passes a BugReportConstruct object around during the
208/// construction.
209class PathDiagnosticBuilder : public BugReporterContext {
210 /// A linear path from the error node to the root.
211 std::unique_ptr<const ExplodedGraph> BugPath;
212 /// The bug report we're describing. Visitors create their diagnostics with
213 /// them being the last entities being able to modify it (for example,
214 /// changing interestingness here would cause inconsistencies as to how this
215 /// file and visitors construct diagnostics), hence its const.
216 const PathSensitiveBugReport *R;
217 /// The leaf of the bug path. This isn't the same as the bug reports error
218 /// node, which refers to the *original* graph, not the bug path.
219 const ExplodedNode *const ErrorNode;
220 /// The diagnostic pieces visitors emitted, which is expected to be collected
221 /// by the time this builder is constructed.
222 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
223
224public:
225 /// Find a non-invalidated report for a given equivalence class, and returns
226 /// a PathDiagnosticBuilder able to construct bug reports for different
227 /// consumers. Returns std::nullopt if no valid report is found.
228 static std::optional<PathDiagnosticBuilder>
229 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
230 PathSensitiveBugReporter &Reporter);
231
232 PathDiagnosticBuilder(
233 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
234 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
235 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
236
237 /// This function is responsible for generating diagnostic pieces that are
238 /// *not* provided by bug report visitors.
239 /// These diagnostics may differ depending on the consumer's settings,
240 /// and are therefore constructed separately for each consumer.
241 ///
242 /// There are two path diagnostics generation modes: with adding edges (used
243 /// for plists) and without (used for HTML and text). When edges are added,
244 /// the path is modified to insert artificially generated edges.
245 /// Otherwise, more detailed diagnostics is emitted for block edges,
246 /// explaining the transitions in words.
247 std::unique_ptr<PathDiagnostic>
248 generate(const PathDiagnosticConsumer *PDC) const;
249
250private:
251 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
252 const CallWithEntryStack &CallStack) const;
253 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
254 PathDiagnosticLocation &PrevLoc) const;
255
256 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
257 BlockEdge BE) const;
258
259 PathDiagnosticPieceRef
260 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
261 PathDiagnosticLocation &Start) const;
262
263 PathDiagnosticPieceRef
264 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
265 PathDiagnosticLocation &Start) const;
266
267 PathDiagnosticPieceRef
268 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
269 const CFGBlock *Src, const CFGBlock *DstC) const;
270
271 PathDiagnosticLocation
272 ExecutionContinues(const PathDiagnosticConstruct &C) const;
273
274 PathDiagnosticLocation
275 ExecutionContinues(llvm::raw_string_ostream &os,
276 const PathDiagnosticConstruct &C) const;
277
278 const PathSensitiveBugReport *getBugReport() const { return R; }
279};
280
281} // namespace
282
283//===----------------------------------------------------------------------===//
284// Base implementation of stack hint generators.
285//===----------------------------------------------------------------------===//
286
287StackHintGenerator::~StackHintGenerator() = default;
288
289std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
290 if (!N)
291 return getMessageForSymbolNotFound();
292
293 ProgramPoint P = N->getLocation();
294 CallExitEnd CExit = P.castAs<CallExitEnd>();
295
296 // FIXME: Use CallEvent to abstract this over all calls.
297 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
298 const auto *CE = dyn_cast_or_null<CallExpr>(Val: CallSite);
299 if (!CE)
300 return {};
301
302 // Check if one of the parameters are set to the interesting symbol.
303 for (auto [Idx, ArgExpr] : llvm::enumerate(First: CE->arguments())) {
304 SVal SV = N->getSVal(S: ArgExpr);
305
306 // Check if the variable corresponding to the symbol is passed by value.
307 SymbolRef AS = SV.getAsLocSymbol();
308 if (AS == Sym) {
309 return getMessageForArg(ArgExpr, Idx);
310 }
311
312 // Check if the parameter is a pointer to the symbol.
313 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
314 // Do not attempt to dereference void*.
315 if (ArgExpr->getType()->isVoidPointerType())
316 continue;
317 SVal PSV = N->getState()->getSVal(R: Reg->getRegion());
318 SymbolRef AS = PSV.getAsLocSymbol();
319 if (AS == Sym) {
320 return getMessageForArg(ArgExpr, Idx);
321 }
322 }
323 }
324
325 // Check if we are returning the interesting symbol.
326 SVal SV = N->getSVal(CE);
327 SymbolRef RetSym = SV.getAsLocSymbol();
328 if (RetSym == Sym) {
329 return getMessageForReturn(CallExpr: CE);
330 }
331
332 return getMessageForSymbolNotFound();
333}
334
335std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
336 unsigned ArgIndex) {
337 // Printed parameters start at 1, not 0.
338 ++ArgIndex;
339
340 return (llvm::Twine(Msg) + " via " + std::to_string(val: ArgIndex) +
341 llvm::getOrdinalSuffix(Val: ArgIndex) + " parameter").str();
342}
343
344//===----------------------------------------------------------------------===//
345// Diagnostic cleanup.
346//===----------------------------------------------------------------------===//
347
348static PathDiagnosticEventPiece *
349eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
350 PathDiagnosticEventPiece *Y) {
351 // Prefer diagnostics that come from ConditionBRVisitor over
352 // those that came from TrackConstraintBRVisitor,
353 // unless the one from ConditionBRVisitor is
354 // its generic fallback diagnostic.
355 const void *tagPreferred = ConditionBRVisitor::getTag();
356 const void *tagLesser = TrackConstraintBRVisitor::getTag();
357
358 if (X->getLocation() != Y->getLocation())
359 return nullptr;
360
361 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
362 return ConditionBRVisitor::isPieceMessageGeneric(Piece: X) ? Y : X;
363
364 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
365 return ConditionBRVisitor::isPieceMessageGeneric(Piece: Y) ? X : Y;
366
367 return nullptr;
368}
369
370/// An optimization pass over PathPieces that removes redundant diagnostics
371/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
372/// BugReporterVisitors use different methods to generate diagnostics, with
373/// one capable of emitting diagnostics in some cases but not in others. This
374/// can lead to redundant diagnostic pieces at the same point in a path.
375static void removeRedundantMsgs(PathPieces &path) {
376 unsigned N = path.size();
377 if (N < 2)
378 return;
379 // NOTE: this loop intentionally is not using an iterator. Instead, we
380 // are streaming the path and modifying it in place. This is done by
381 // grabbing the front, processing it, and if we decide to keep it append
382 // it to the end of the path. The entire path is processed in this way.
383 for (unsigned i = 0; i < N; ++i) {
384 auto piece = std::move(path.front());
385 path.pop_front();
386
387 switch (piece->getKind()) {
388 case PathDiagnosticPiece::Call:
389 removeRedundantMsgs(path&: cast<PathDiagnosticCallPiece>(Val&: *piece).path);
390 break;
391 case PathDiagnosticPiece::Macro:
392 removeRedundantMsgs(path&: cast<PathDiagnosticMacroPiece>(Val&: *piece).subPieces);
393 break;
394 case PathDiagnosticPiece::Event: {
395 if (i == N-1)
396 break;
397
398 if (auto *nextEvent =
399 dyn_cast<PathDiagnosticEventPiece>(Val: path.front().get())) {
400 auto *event = cast<PathDiagnosticEventPiece>(Val: piece.get());
401 // Check to see if we should keep one of the two pieces. If we
402 // come up with a preference, record which piece to keep, and consume
403 // another piece from the path.
404 if (auto *pieceToKeep =
405 eventsDescribeSameCondition(X: event, Y: nextEvent)) {
406 piece = std::move(pieceToKeep == event ? piece : path.front());
407 path.pop_front();
408 ++i;
409 }
410 }
411 break;
412 }
413 case PathDiagnosticPiece::ControlFlow:
414 case PathDiagnosticPiece::Note:
415 case PathDiagnosticPiece::PopUp:
416 break;
417 }
418 path.push_back(x: std::move(piece));
419 }
420}
421
422/// Recursively scan through a path and prune out calls and macros pieces
423/// that aren't needed. Return true if afterwards the path contains
424/// "interesting stuff" which means it shouldn't be pruned from the parent path.
425static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
426 PathPieces &pieces,
427 const PathSensitiveBugReport *R,
428 bool IsInteresting = false) {
429 bool containsSomethingInteresting = IsInteresting;
430 const unsigned N = pieces.size();
431
432 for (unsigned i = 0 ; i < N ; ++i) {
433 // Remove the front piece from the path. If it is still something we
434 // want to keep once we are done, we will push it back on the end.
435 auto piece = std::move(pieces.front());
436 pieces.pop_front();
437
438 switch (piece->getKind()) {
439 case PathDiagnosticPiece::Call: {
440 auto &call = cast<PathDiagnosticCallPiece>(Val&: *piece);
441 // Check if the location context is interesting.
442 if (!removeUnneededCalls(
443 C, pieces&: call.path, R,
444 IsInteresting: R->isInteresting(LC: C.getLocationContextFor(Path: &call.path))))
445 continue;
446
447 containsSomethingInteresting = true;
448 break;
449 }
450 case PathDiagnosticPiece::Macro: {
451 auto &macro = cast<PathDiagnosticMacroPiece>(Val&: *piece);
452 if (!removeUnneededCalls(C, pieces&: macro.subPieces, R, IsInteresting))
453 continue;
454 containsSomethingInteresting = true;
455 break;
456 }
457 case PathDiagnosticPiece::Event: {
458 auto &event = cast<PathDiagnosticEventPiece>(Val&: *piece);
459
460 // We never throw away an event, but we do throw it away wholesale
461 // as part of a path if we throw the entire path away.
462 containsSomethingInteresting |= !event.isPrunable();
463 break;
464 }
465 case PathDiagnosticPiece::ControlFlow:
466 case PathDiagnosticPiece::Note:
467 case PathDiagnosticPiece::PopUp:
468 break;
469 }
470
471 pieces.push_back(x: std::move(piece));
472 }
473
474 return containsSomethingInteresting;
475}
476
477/// Same logic as above to remove extra pieces.
478static void removePopUpNotes(PathPieces &Path) {
479 for (unsigned int i = 0; i < Path.size(); ++i) {
480 auto Piece = std::move(Path.front());
481 Path.pop_front();
482 if (!isa<PathDiagnosticPopUpPiece>(Val: *Piece))
483 Path.push_back(x: std::move(Piece));
484 }
485}
486
487/// Returns true if the given decl has been implicitly given a body, either by
488/// the analyzer or by the compiler proper.
489static bool hasImplicitBody(const Decl *D) {
490 assert(D);
491 return D->isImplicit() || !D->hasBody();
492}
493
494/// Recursively scan through a path and make sure that all call pieces have
495/// valid locations.
496static void
497adjustCallLocations(PathPieces &Pieces,
498 PathDiagnosticLocation *LastCallLocation = nullptr) {
499 for (const auto &I : Pieces) {
500 auto *Call = dyn_cast<PathDiagnosticCallPiece>(Val: I.get());
501
502 if (!Call)
503 continue;
504
505 if (LastCallLocation) {
506 bool CallerIsImplicit = hasImplicitBody(D: Call->getCaller());
507 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
508 Call->callEnter = *LastCallLocation;
509 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
510 Call->callReturn = *LastCallLocation;
511 }
512
513 // Recursively clean out the subclass. Keep this call around if
514 // it contains any informative diagnostics.
515 PathDiagnosticLocation *ThisCallLocation;
516 if (Call->callEnterWithin.asLocation().isValid() &&
517 !hasImplicitBody(D: Call->getCallee()))
518 ThisCallLocation = &Call->callEnterWithin;
519 else
520 ThisCallLocation = &Call->callEnter;
521
522 assert(ThisCallLocation && "Outermost call has an invalid location");
523 adjustCallLocations(Pieces&: Call->path, LastCallLocation: ThisCallLocation);
524 }
525}
526
527/// Remove edges in and out of C++ default initializer expressions. These are
528/// for fields that have in-class initializers, as opposed to being initialized
529/// explicitly in a constructor or braced list.
530static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
531 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
532 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(Val: I->get()))
533 removeEdgesToDefaultInitializers(Pieces&: C->path);
534
535 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(Val: I->get()))
536 removeEdgesToDefaultInitializers(Pieces&: M->subPieces);
537
538 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get())) {
539 const Stmt *Start = CF->getStartLocation().asStmt();
540 const Stmt *End = CF->getEndLocation().asStmt();
541 if (isa_and_nonnull<CXXDefaultInitExpr>(Val: Start)) {
542 I = Pieces.erase(position: I);
543 continue;
544 } else if (isa_and_nonnull<CXXDefaultInitExpr>(Val: End)) {
545 PathPieces::iterator Next = std::next(x: I);
546 if (Next != E) {
547 if (auto *NextCF =
548 dyn_cast<PathDiagnosticControlFlowPiece>(Val: Next->get())) {
549 NextCF->setStartLocation(CF->getStartLocation());
550 }
551 }
552 I = Pieces.erase(position: I);
553 continue;
554 }
555 }
556
557 I++;
558 }
559}
560
561/// Remove all pieces with invalid locations as these cannot be serialized.
562/// We might have pieces with invalid locations as a result of inlining Body
563/// Farm generated functions.
564static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
565 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
566 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(Val: I->get()))
567 removePiecesWithInvalidLocations(Pieces&: C->path);
568
569 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(Val: I->get()))
570 removePiecesWithInvalidLocations(Pieces&: M->subPieces);
571
572 if (!(*I)->getLocation().isValid() ||
573 !(*I)->getLocation().asLocation().isValid()) {
574 I = Pieces.erase(position: I);
575 continue;
576 }
577 I++;
578 }
579}
580
581PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
582 const PathDiagnosticConstruct &C) const {
583 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
584 return PathDiagnosticLocation(S, getSourceManager(),
585 C.getCurrLocationContext());
586
587 return PathDiagnosticLocation::createDeclEnd(LC: C.getCurrLocationContext(),
588 SM: getSourceManager());
589}
590
591PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
592 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
593 // Slow, but probably doesn't matter.
594 if (os.str().empty())
595 os << ' ';
596
597 const PathDiagnosticLocation &Loc = ExecutionContinues(C);
598
599 if (Loc.asStmt())
600 os << "Execution continues on line "
601 << getSourceManager().getExpansionLineNumber(Loc: Loc.asLocation())
602 << '.';
603 else {
604 os << "Execution jumps to the end of the ";
605 const Decl *D = C.getCurrLocationContext()->getDecl();
606 if (isa<ObjCMethodDecl>(Val: D))
607 os << "method";
608 else if (isa<FunctionDecl>(Val: D))
609 os << "function";
610 else {
611 assert(isa<BlockDecl>(D));
612 os << "anonymous block";
613 }
614 os << '.';
615 }
616
617 return Loc;
618}
619
620static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
621 if (isa<Expr>(Val: S) && PM.isConsumedExpr(E: cast<Expr>(Val: S)))
622 return PM.getParentIgnoreParens(S);
623
624 const Stmt *Parent = PM.getParentIgnoreParens(S);
625 if (!Parent)
626 return nullptr;
627
628 switch (Parent->getStmtClass()) {
629 case Stmt::ForStmtClass:
630 case Stmt::DoStmtClass:
631 case Stmt::WhileStmtClass:
632 case Stmt::ObjCForCollectionStmtClass:
633 case Stmt::CXXForRangeStmtClass:
634 return Parent;
635 default:
636 break;
637 }
638
639 return nullptr;
640}
641
642static PathDiagnosticLocation
643getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
644 bool allowNestedContexts = false) {
645 if (!S)
646 return {};
647
648 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
649
650 while (const Stmt *Parent = getEnclosingParent(S, PM: LC->getParentMap())) {
651 switch (Parent->getStmtClass()) {
652 case Stmt::BinaryOperatorClass: {
653 const auto *B = cast<BinaryOperator>(Val: Parent);
654 if (B->isLogicalOp())
655 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
656 break;
657 }
658 case Stmt::CompoundStmtClass:
659 case Stmt::StmtExprClass:
660 return PathDiagnosticLocation(S, SMgr, LC);
661 case Stmt::ChooseExprClass:
662 // Similar to '?' if we are referring to condition, just have the edge
663 // point to the entire choose expression.
664 if (allowNestedContexts || cast<ChooseExpr>(Val: Parent)->getCond() == S)
665 return PathDiagnosticLocation(Parent, SMgr, LC);
666 else
667 return PathDiagnosticLocation(S, SMgr, LC);
668 case Stmt::BinaryConditionalOperatorClass:
669 case Stmt::ConditionalOperatorClass:
670 // For '?', if we are referring to condition, just have the edge point
671 // to the entire '?' expression.
672 if (allowNestedContexts ||
673 cast<AbstractConditionalOperator>(Val: Parent)->getCond() == S)
674 return PathDiagnosticLocation(Parent, SMgr, LC);
675 else
676 return PathDiagnosticLocation(S, SMgr, LC);
677 case Stmt::CXXForRangeStmtClass:
678 if (cast<CXXForRangeStmt>(Val: Parent)->getBody() == S)
679 return PathDiagnosticLocation(S, SMgr, LC);
680 break;
681 case Stmt::DoStmtClass:
682 return PathDiagnosticLocation(S, SMgr, LC);
683 case Stmt::ForStmtClass:
684 if (cast<ForStmt>(Val: Parent)->getBody() == S)
685 return PathDiagnosticLocation(S, SMgr, LC);
686 break;
687 case Stmt::IfStmtClass:
688 if (cast<IfStmt>(Val: Parent)->getCond() != S)
689 return PathDiagnosticLocation(S, SMgr, LC);
690 break;
691 case Stmt::ObjCForCollectionStmtClass:
692 if (cast<ObjCForCollectionStmt>(Val: Parent)->getBody() == S)
693 return PathDiagnosticLocation(S, SMgr, LC);
694 break;
695 case Stmt::WhileStmtClass:
696 if (cast<WhileStmt>(Val: Parent)->getCond() != S)
697 return PathDiagnosticLocation(S, SMgr, LC);
698 break;
699 default:
700 break;
701 }
702
703 S = Parent;
704 }
705
706 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
707
708 return PathDiagnosticLocation(S, SMgr, LC);
709}
710
711//===----------------------------------------------------------------------===//
712// "Minimal" path diagnostic generation algorithm.
713//===----------------------------------------------------------------------===//
714
715/// If the piece contains a special message, add it to all the call pieces on
716/// the active stack. For example, my_malloc allocated memory, so MallocChecker
717/// will construct an event at the call to malloc(), and add a stack hint that
718/// an allocated memory was returned. We'll use this hint to construct a message
719/// when returning from the call to my_malloc
720///
721/// void *my_malloc() { return malloc(sizeof(int)); }
722/// void fishy() {
723/// void *ptr = my_malloc(); // returned allocated memory
724/// } // leak
725void PathDiagnosticBuilder::updateStackPiecesWithMessage(
726 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
727 if (R->hasCallStackHint(Piece: P))
728 for (const auto &I : CallStack) {
729 PathDiagnosticCallPiece *CP = I.first;
730 const ExplodedNode *N = I.second;
731 std::string stackMsg = R->getCallStackMessage(Piece: P, N);
732
733 // The last message on the path to final bug is the most important
734 // one. Since we traverse the path backwards, do not add the message
735 // if one has been previously added.
736 if (!CP->hasCallStackMessage())
737 CP->setCallStackMessage(stackMsg);
738 }
739}
740
741static void CompactMacroExpandedPieces(PathPieces &path,
742 const SourceManager& SM);
743
744PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
745 const PathDiagnosticConstruct &C, const CFGBlock *Dst,
746 PathDiagnosticLocation &Start) const {
747
748 const SourceManager &SM = getSourceManager();
749 // Figure out what case arm we took.
750 std::string sbuf;
751 llvm::raw_string_ostream os(sbuf);
752 PathDiagnosticLocation End;
753
754 if (const Stmt *S = Dst->getLabel()) {
755 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
756
757 switch (S->getStmtClass()) {
758 default:
759 os << "No cases match in the switch statement. "
760 "Control jumps to line "
761 << End.asLocation().getExpansionLineNumber();
762 break;
763 case Stmt::DefaultStmtClass:
764 os << "Control jumps to the 'default' case at line "
765 << End.asLocation().getExpansionLineNumber();
766 break;
767
768 case Stmt::CaseStmtClass: {
769 os << "Control jumps to 'case ";
770 const auto *Case = cast<CaseStmt>(Val: S);
771 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
772
773 // Determine if it is an enum.
774 bool GetRawInt = true;
775
776 if (const auto *DR = dyn_cast<DeclRefExpr>(Val: LHS)) {
777 // FIXME: Maybe this should be an assertion. Are there cases
778 // were it is not an EnumConstantDecl?
779 const auto *D = dyn_cast<EnumConstantDecl>(Val: DR->getDecl());
780
781 if (D) {
782 GetRawInt = false;
783 os << *D;
784 }
785 }
786
787 if (GetRawInt)
788 os << LHS->EvaluateKnownConstInt(Ctx: getASTContext());
789
790 os << ":' at line " << End.asLocation().getExpansionLineNumber();
791 break;
792 }
793 }
794 } else {
795 os << "'Default' branch taken. ";
796 End = ExecutionContinues(os, C);
797 }
798 return std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
799 args&: os.str());
800}
801
802PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
803 const PathDiagnosticConstruct &C, const Stmt *S,
804 PathDiagnosticLocation &Start) const {
805 std::string sbuf;
806 llvm::raw_string_ostream os(sbuf);
807 const PathDiagnosticLocation &End =
808 getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
809 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
810 return std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args: End, args&: os.str());
811}
812
813PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
814 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
815 const CFGBlock *Dst) const {
816
817 const SourceManager &SM = getSourceManager();
818
819 const auto *B = cast<BinaryOperator>(Val: T);
820 std::string sbuf;
821 llvm::raw_string_ostream os(sbuf);
822 os << "Left side of '";
823 PathDiagnosticLocation Start, End;
824
825 if (B->getOpcode() == BO_LAnd) {
826 os << "&&"
827 << "' is ";
828
829 if (*(Src->succ_begin() + 1) == Dst) {
830 os << "false";
831 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
832 Start =
833 PathDiagnosticLocation::createOperatorLoc(BO: B, SM);
834 } else {
835 os << "true";
836 Start =
837 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
838 End = ExecutionContinues(C);
839 }
840 } else {
841 assert(B->getOpcode() == BO_LOr);
842 os << "||"
843 << "' is ";
844
845 if (*(Src->succ_begin() + 1) == Dst) {
846 os << "false";
847 Start =
848 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
849 End = ExecutionContinues(C);
850 } else {
851 os << "true";
852 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
853 Start =
854 PathDiagnosticLocation::createOperatorLoc(BO: B, SM);
855 }
856 }
857 return std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
858 args&: os.str());
859}
860
861void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
862 PathDiagnosticConstruct &C, BlockEdge BE) const {
863 const SourceManager &SM = getSourceManager();
864 const LocationContext *LC = C.getCurrLocationContext();
865 const CFGBlock *Src = BE.getSrc();
866 const CFGBlock *Dst = BE.getDst();
867 const Stmt *T = Src->getTerminatorStmt();
868 if (!T)
869 return;
870
871 auto Start = PathDiagnosticLocation::createBegin(S: T, SM, LAC: LC);
872 switch (T->getStmtClass()) {
873 default:
874 break;
875
876 case Stmt::GotoStmtClass:
877 case Stmt::IndirectGotoStmtClass: {
878 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
879 C.getActivePath().push_front(x: generateDiagForGotoOP(C, S, Start));
880 break;
881 }
882
883 case Stmt::SwitchStmtClass: {
884 C.getActivePath().push_front(x: generateDiagForSwitchOP(C, Dst, Start));
885 break;
886 }
887
888 case Stmt::BreakStmtClass:
889 case Stmt::ContinueStmtClass: {
890 std::string sbuf;
891 llvm::raw_string_ostream os(sbuf);
892 PathDiagnosticLocation End = ExecutionContinues(os, C);
893 C.getActivePath().push_front(
894 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End, args&: os.str()));
895 break;
896 }
897
898 // Determine control-flow for ternary '?'.
899 case Stmt::BinaryConditionalOperatorClass:
900 case Stmt::ConditionalOperatorClass: {
901 std::string sbuf;
902 llvm::raw_string_ostream os(sbuf);
903 os << "'?' condition is ";
904
905 if (*(Src->succ_begin() + 1) == Dst)
906 os << "false";
907 else
908 os << "true";
909
910 PathDiagnosticLocation End = ExecutionContinues(C);
911
912 if (const Stmt *S = End.asStmt())
913 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
914
915 C.getActivePath().push_front(
916 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End, args&: os.str()));
917 break;
918 }
919
920 // Determine control-flow for short-circuited '&&' and '||'.
921 case Stmt::BinaryOperatorClass: {
922 if (!C.supportsLogicalOpControlFlow())
923 break;
924
925 C.getActivePath().push_front(x: generateDiagForBinaryOP(C, T, Src, Dst));
926 break;
927 }
928
929 case Stmt::DoStmtClass:
930 if (*(Src->succ_begin()) == Dst) {
931 std::string sbuf;
932 llvm::raw_string_ostream os(sbuf);
933
934 os << "Loop condition is true. ";
935 PathDiagnosticLocation End = ExecutionContinues(os, C);
936
937 if (const Stmt *S = End.asStmt())
938 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
939
940 C.getActivePath().push_front(
941 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
942 args&: os.str()));
943 } else {
944 PathDiagnosticLocation End = ExecutionContinues(C);
945
946 if (const Stmt *S = End.asStmt())
947 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
948
949 C.getActivePath().push_front(
950 x: std::make_shared<PathDiagnosticControlFlowPiece>(
951 args&: Start, args&: End, args: "Loop condition is false. Exiting loop"));
952 }
953 break;
954
955 case Stmt::WhileStmtClass:
956 case Stmt::ForStmtClass:
957 if (*(Src->succ_begin() + 1) == Dst) {
958 std::string sbuf;
959 llvm::raw_string_ostream os(sbuf);
960
961 os << "Loop condition is false. ";
962 PathDiagnosticLocation End = ExecutionContinues(os, C);
963 if (const Stmt *S = End.asStmt())
964 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
965
966 C.getActivePath().push_front(
967 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
968 args&: os.str()));
969 } else {
970 PathDiagnosticLocation End = ExecutionContinues(C);
971 if (const Stmt *S = End.asStmt())
972 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
973
974 C.getActivePath().push_front(
975 x: std::make_shared<PathDiagnosticControlFlowPiece>(
976 args&: Start, args&: End, args: "Loop condition is true. Entering loop body"));
977 }
978
979 break;
980
981 case Stmt::IfStmtClass: {
982 PathDiagnosticLocation End = ExecutionContinues(C);
983
984 if (const Stmt *S = End.asStmt())
985 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
986
987 if (*(Src->succ_begin() + 1) == Dst)
988 C.getActivePath().push_front(
989 x: std::make_shared<PathDiagnosticControlFlowPiece>(
990 args&: Start, args&: End, args: "Taking false branch"));
991 else
992 C.getActivePath().push_front(
993 x: std::make_shared<PathDiagnosticControlFlowPiece>(
994 args&: Start, args&: End, args: "Taking true branch"));
995
996 break;
997 }
998 }
999}
1000
1001//===----------------------------------------------------------------------===//
1002// Functions for determining if a loop was executed 0 times.
1003//===----------------------------------------------------------------------===//
1004
1005static bool isLoop(const Stmt *Term) {
1006 switch (Term->getStmtClass()) {
1007 case Stmt::ForStmtClass:
1008 case Stmt::WhileStmtClass:
1009 case Stmt::ObjCForCollectionStmtClass:
1010 case Stmt::CXXForRangeStmtClass:
1011 return true;
1012 default:
1013 // Note that we intentionally do not include do..while here.
1014 return false;
1015 }
1016}
1017
1018static bool isJumpToFalseBranch(const BlockEdge *BE) {
1019 const CFGBlock *Src = BE->getSrc();
1020 assert(Src->succ_size() == 2);
1021 return (*(Src->succ_begin()+1) == BE->getDst());
1022}
1023
1024static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1025 const Stmt *SubS) {
1026 while (SubS) {
1027 if (SubS == S)
1028 return true;
1029 SubS = PM.getParent(S: SubS);
1030 }
1031 return false;
1032}
1033
1034static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1035 const ExplodedNode *N) {
1036 while (N) {
1037 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1038 if (SP) {
1039 const Stmt *S = SP->getStmt();
1040 if (!isContainedByStmt(PM, S: Term, SubS: S))
1041 return S;
1042 }
1043 N = N->getFirstPred();
1044 }
1045 return nullptr;
1046}
1047
1048static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1049 const Stmt *LoopBody = nullptr;
1050 switch (Term->getStmtClass()) {
1051 case Stmt::CXXForRangeStmtClass: {
1052 const auto *FR = cast<CXXForRangeStmt>(Val: Term);
1053 if (isContainedByStmt(PM, FR->getInc(), S))
1054 return true;
1055 if (isContainedByStmt(PM, S: FR->getLoopVarStmt(), SubS: S))
1056 return true;
1057 LoopBody = FR->getBody();
1058 break;
1059 }
1060 case Stmt::ForStmtClass: {
1061 const auto *FS = cast<ForStmt>(Val: Term);
1062 if (isContainedByStmt(PM, FS->getInc(), S))
1063 return true;
1064 LoopBody = FS->getBody();
1065 break;
1066 }
1067 case Stmt::ObjCForCollectionStmtClass: {
1068 const auto *FC = cast<ObjCForCollectionStmt>(Val: Term);
1069 LoopBody = FC->getBody();
1070 break;
1071 }
1072 case Stmt::WhileStmtClass:
1073 LoopBody = cast<WhileStmt>(Val: Term)->getBody();
1074 break;
1075 default:
1076 return false;
1077 }
1078 return isContainedByStmt(PM, S: LoopBody, SubS: S);
1079}
1080
1081/// Adds a sanitized control-flow diagnostic edge to a path.
1082static void addEdgeToPath(PathPieces &path,
1083 PathDiagnosticLocation &PrevLoc,
1084 PathDiagnosticLocation NewLoc) {
1085 if (!NewLoc.isValid())
1086 return;
1087
1088 SourceLocation NewLocL = NewLoc.asLocation();
1089 if (NewLocL.isInvalid())
1090 return;
1091
1092 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1093 PrevLoc = NewLoc;
1094 return;
1095 }
1096
1097 // Ignore self-edges, which occur when there are multiple nodes at the same
1098 // statement.
1099 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1100 return;
1101
1102 path.push_front(
1103 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: NewLoc, args&: PrevLoc));
1104 PrevLoc = NewLoc;
1105}
1106
1107/// A customized wrapper for CFGBlock::getTerminatorCondition()
1108/// which returns the element for ObjCForCollectionStmts.
1109static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1110 const Stmt *S = B->getTerminatorCondition();
1111 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(Val: S))
1112 return FS->getElement();
1113 return S;
1114}
1115
1116constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1117constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1118constexpr llvm::StringLiteral StrLoopRangeEmpty =
1119 "Loop body skipped when range is empty";
1120constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1121 "Loop body skipped when collection is empty";
1122
1123static std::unique_ptr<FilesToLineNumsMap>
1124findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1125
1126void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1127 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1128 ProgramPoint P = C.getCurrentNode()->getLocation();
1129 const SourceManager &SM = getSourceManager();
1130
1131 // Have we encountered an entrance to a call? It may be
1132 // the case that we have not encountered a matching
1133 // call exit before this point. This means that the path
1134 // terminated within the call itself.
1135 if (auto CE = P.getAs<CallEnter>()) {
1136
1137 if (C.shouldAddPathEdges()) {
1138 // Add an edge to the start of the function.
1139 const StackFrameContext *CalleeLC = CE->getCalleeContext();
1140 const Decl *D = CalleeLC->getDecl();
1141 // Add the edge only when the callee has body. We jump to the beginning
1142 // of the *declaration*, however we expect it to be followed by the
1143 // body. This isn't the case for autosynthesized property accessors in
1144 // Objective-C. No need for a similar extra check for CallExit points
1145 // because the exit edge comes from a statement (i.e. return),
1146 // not from declaration.
1147 if (D->hasBody())
1148 addEdgeToPath(path&: C.getActivePath(), PrevLoc,
1149 NewLoc: PathDiagnosticLocation::createBegin(D, SM));
1150 }
1151
1152 // Did we visit an entire call?
1153 bool VisitedEntireCall = C.PD->isWithinCall();
1154 C.PD->popActivePath();
1155
1156 PathDiagnosticCallPiece *Call;
1157 if (VisitedEntireCall) {
1158 Call = cast<PathDiagnosticCallPiece>(Val: C.getActivePath().front().get());
1159 } else {
1160 // The path terminated within a nested location context, create a new
1161 // call piece to encapsulate the rest of the path pieces.
1162 const Decl *Caller = CE->getLocationContext()->getDecl();
1163 Call = PathDiagnosticCallPiece::construct(pieces&: C.getActivePath(), caller: Caller);
1164 assert(C.getActivePath().size() == 1 &&
1165 C.getActivePath().front().get() == Call);
1166
1167 // Since we just transferred the path over to the call piece, reset the
1168 // mapping of the active path to the current location context.
1169 assert(C.isInLocCtxMap(&C.getActivePath()) &&
1170 "When we ascend to a previously unvisited call, the active path's "
1171 "address shouldn't change, but rather should be compacted into "
1172 "a single CallEvent!");
1173 C.updateLocCtxMap(Path: &C.getActivePath(), LC: C.getCurrLocationContext());
1174
1175 // Record the location context mapping for the path within the call.
1176 assert(!C.isInLocCtxMap(&Call->path) &&
1177 "When we ascend to a previously unvisited call, this must be the "
1178 "first time we encounter the caller context!");
1179 C.updateLocCtxMap(Path: &Call->path, LC: CE->getCalleeContext());
1180 }
1181 Call->setCallee(CE: *CE, SM);
1182
1183 // Update the previous location in the active path.
1184 PrevLoc = Call->getLocation();
1185
1186 if (!C.CallStack.empty()) {
1187 assert(C.CallStack.back().first == Call);
1188 C.CallStack.pop_back();
1189 }
1190 return;
1191 }
1192
1193 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1194 "The current position in the bug path is out of sync with the "
1195 "location context associated with the active path!");
1196
1197 // Have we encountered an exit from a function call?
1198 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1199
1200 // We are descending into a call (backwards). Construct
1201 // a new call piece to contain the path pieces for that call.
1202 auto Call = PathDiagnosticCallPiece::construct(CE: *CE, SM);
1203 // Record the mapping from call piece to LocationContext.
1204 assert(!C.isInLocCtxMap(&Call->path) &&
1205 "We just entered a call, this must've been the first time we "
1206 "encounter its context!");
1207 C.updateLocCtxMap(Path: &Call->path, LC: CE->getCalleeContext());
1208
1209 if (C.shouldAddPathEdges()) {
1210 // Add the edge to the return site.
1211 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: Call->callReturn);
1212 PrevLoc.invalidate();
1213 }
1214
1215 auto *P = Call.get();
1216 C.getActivePath().push_front(x: std::move(Call));
1217
1218 // Make the contents of the call the active path for now.
1219 C.PD->pushActivePath(p: &P->path);
1220 C.CallStack.push_back(Elt: CallWithEntry(P, C.getCurrentNode()));
1221 return;
1222 }
1223
1224 if (auto PS = P.getAs<PostStmt>()) {
1225 if (!C.shouldAddPathEdges())
1226 return;
1227
1228 // Add an edge. If this is an ObjCForCollectionStmt do
1229 // not add an edge here as it appears in the CFG both
1230 // as a terminator and as a terminator condition.
1231 if (!isa<ObjCForCollectionStmt>(Val: PS->getStmt())) {
1232 PathDiagnosticLocation L =
1233 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1234 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: L);
1235 }
1236
1237 } else if (auto BE = P.getAs<BlockEdge>()) {
1238
1239 if (C.shouldAddControlNotes()) {
1240 generateMinimalDiagForBlockEdge(C, BE: *BE);
1241 }
1242
1243 if (!C.shouldAddPathEdges()) {
1244 return;
1245 }
1246
1247 // Are we jumping to the head of a loop? Add a special diagnostic.
1248 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1249 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1250 const Stmt *Body = nullptr;
1251
1252 if (const auto *FS = dyn_cast<ForStmt>(Val: Loop))
1253 Body = FS->getBody();
1254 else if (const auto *WS = dyn_cast<WhileStmt>(Val: Loop))
1255 Body = WS->getBody();
1256 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Val: Loop)) {
1257 Body = OFS->getBody();
1258 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Val: Loop)) {
1259 Body = FRS->getBody();
1260 }
1261 // do-while statements are explicitly excluded here
1262
1263 auto p = std::make_shared<PathDiagnosticEventPiece>(
1264 args&: L, args: "Looping back to the head of the loop");
1265 p->setPrunable(isPrunable: true);
1266
1267 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: p->getLocation());
1268 // We might've added a very similar control node already
1269 if (!C.shouldAddControlNotes()) {
1270 C.getActivePath().push_front(x: std::move(p));
1271 }
1272
1273 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Val: Body)) {
1274 addEdgeToPath(path&: C.getActivePath(), PrevLoc,
1275 NewLoc: PathDiagnosticLocation::createEndBrace(CS, SM));
1276 }
1277 }
1278
1279 const CFGBlock *BSrc = BE->getSrc();
1280 const ParentMap &PM = C.getParentMap();
1281
1282 if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1283 // Are we jumping past the loop body without ever executing the
1284 // loop (because the condition was false)?
1285 if (isLoop(Term)) {
1286 const Stmt *TermCond = getTerminatorCondition(B: BSrc);
1287 bool IsInLoopBody = isInLoopBody(
1288 PM, S: getStmtBeforeCond(PM, Term: TermCond, N: C.getCurrentNode()), Term);
1289
1290 StringRef str;
1291
1292 if (isJumpToFalseBranch(BE: &*BE)) {
1293 if (!IsInLoopBody) {
1294 if (isa<ObjCForCollectionStmt>(Val: Term)) {
1295 str = StrLoopCollectionEmpty;
1296 } else if (isa<CXXForRangeStmt>(Val: Term)) {
1297 str = StrLoopRangeEmpty;
1298 } else {
1299 str = StrLoopBodyZero;
1300 }
1301 }
1302 } else {
1303 str = StrEnteringLoop;
1304 }
1305
1306 if (!str.empty()) {
1307 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1308 C.getCurrLocationContext());
1309 auto PE = std::make_shared<PathDiagnosticEventPiece>(args&: L, args&: str);
1310 PE->setPrunable(isPrunable: true);
1311 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: PE->getLocation());
1312
1313 // We might've added a very similar control node already
1314 if (!C.shouldAddControlNotes()) {
1315 C.getActivePath().push_front(x: std::move(PE));
1316 }
1317 }
1318 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Val: Term)) {
1319 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1320 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: L);
1321 }
1322 }
1323 }
1324}
1325
1326static std::unique_ptr<PathDiagnostic>
1327generateDiagnosticForBasicReport(const BasicBugReport *R,
1328 const Decl *AnalysisEntryPoint) {
1329 const BugType &BT = R->getBugType();
1330 return std::make_unique<PathDiagnostic>(
1331 args: BT.getCheckerName(), args: R->getDeclWithIssue(), args: BT.getDescription(),
1332 args: R->getDescription(), args: R->getShortDescription(/*UseFallback=*/false),
1333 args: BT.getCategory(), args: R->getUniqueingLocation(), args: R->getUniqueingDecl(),
1334 args&: AnalysisEntryPoint, args: std::make_unique<FilesToLineNumsMap>());
1335}
1336
1337static std::unique_ptr<PathDiagnostic>
1338generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1339 const SourceManager &SM,
1340 const Decl *AnalysisEntryPoint) {
1341 const BugType &BT = R->getBugType();
1342 return std::make_unique<PathDiagnostic>(
1343 args: BT.getCheckerName(), args: R->getDeclWithIssue(), args: BT.getDescription(),
1344 args: R->getDescription(), args: R->getShortDescription(/*UseFallback=*/false),
1345 args: BT.getCategory(), args: R->getUniqueingLocation(), args: R->getUniqueingDecl(),
1346 args&: AnalysisEntryPoint, args: findExecutedLines(SM, N: R->getErrorNode()));
1347}
1348
1349static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1350 if (!S)
1351 return nullptr;
1352
1353 while (true) {
1354 S = PM.getParentIgnoreParens(S);
1355
1356 if (!S)
1357 break;
1358
1359 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(Val: S))
1360 continue;
1361
1362 break;
1363 }
1364
1365 return S;
1366}
1367
1368static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1369 switch (S->getStmtClass()) {
1370 case Stmt::BinaryOperatorClass: {
1371 const auto *BO = cast<BinaryOperator>(Val: S);
1372 if (!BO->isLogicalOp())
1373 return false;
1374 return BO->getLHS() == Cond || BO->getRHS() == Cond;
1375 }
1376 case Stmt::IfStmtClass:
1377 return cast<IfStmt>(Val: S)->getCond() == Cond;
1378 case Stmt::ForStmtClass:
1379 return cast<ForStmt>(Val: S)->getCond() == Cond;
1380 case Stmt::WhileStmtClass:
1381 return cast<WhileStmt>(Val: S)->getCond() == Cond;
1382 case Stmt::DoStmtClass:
1383 return cast<DoStmt>(Val: S)->getCond() == Cond;
1384 case Stmt::ChooseExprClass:
1385 return cast<ChooseExpr>(Val: S)->getCond() == Cond;
1386 case Stmt::IndirectGotoStmtClass:
1387 return cast<IndirectGotoStmt>(Val: S)->getTarget() == Cond;
1388 case Stmt::SwitchStmtClass:
1389 return cast<SwitchStmt>(Val: S)->getCond() == Cond;
1390 case Stmt::BinaryConditionalOperatorClass:
1391 return cast<BinaryConditionalOperator>(Val: S)->getCond() == Cond;
1392 case Stmt::ConditionalOperatorClass: {
1393 const auto *CO = cast<ConditionalOperator>(Val: S);
1394 return CO->getCond() == Cond ||
1395 CO->getLHS() == Cond ||
1396 CO->getRHS() == Cond;
1397 }
1398 case Stmt::ObjCForCollectionStmtClass:
1399 return cast<ObjCForCollectionStmt>(Val: S)->getElement() == Cond;
1400 case Stmt::CXXForRangeStmtClass: {
1401 const auto *FRS = cast<CXXForRangeStmt>(Val: S);
1402 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1403 }
1404 default:
1405 return false;
1406 }
1407}
1408
1409static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1410 if (const auto *FS = dyn_cast<ForStmt>(Val: FL))
1411 return FS->getInc() == S || FS->getInit() == S;
1412 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Val: FL))
1413 return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1414 FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1415 return false;
1416}
1417
1418using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1419
1420/// Adds synthetic edges from top-level statements to their subexpressions.
1421///
1422/// This avoids a "swoosh" effect, where an edge from a top-level statement A
1423/// points to a sub-expression B.1 that's not at the start of B. In these cases,
1424/// we'd like to see an edge from A to B, then another one from B to B.1.
1425static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1426 const ParentMap &PM = LC->getParentMap();
1427 PathPieces::iterator Prev = pieces.end();
1428 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1429 Prev = I, ++I) {
1430 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1431
1432 if (!Piece)
1433 continue;
1434
1435 PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1436 SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1437
1438 PathDiagnosticLocation NextSrcContext = SrcLoc;
1439 const Stmt *InnerStmt = nullptr;
1440 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1441 SrcContexts.push_back(Elt: NextSrcContext);
1442 InnerStmt = NextSrcContext.asStmt();
1443 NextSrcContext = getEnclosingStmtLocation(S: InnerStmt, LC,
1444 /*allowNested=*/allowNestedContexts: true);
1445 }
1446
1447 // Repeatedly split the edge as necessary.
1448 // This is important for nested logical expressions (||, &&, ?:) where we
1449 // want to show all the levels of context.
1450 while (true) {
1451 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1452
1453 // We are looking at an edge. Is the destination within a larger
1454 // expression?
1455 PathDiagnosticLocation DstContext =
1456 getEnclosingStmtLocation(S: Dst, LC, /*allowNested=*/allowNestedContexts: true);
1457 if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1458 break;
1459
1460 // If the source is in the same context, we're already good.
1461 if (llvm::is_contained(Range&: SrcContexts, Element: DstContext))
1462 break;
1463
1464 // Update the subexpression node to point to the context edge.
1465 Piece->setStartLocation(DstContext);
1466
1467 // Try to extend the previous edge if it's at the same level as the source
1468 // context.
1469 if (Prev != E) {
1470 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Val: Prev->get());
1471
1472 if (PrevPiece) {
1473 if (const Stmt *PrevSrc =
1474 PrevPiece->getStartLocation().getStmtOrNull()) {
1475 const Stmt *PrevSrcParent = getStmtParent(S: PrevSrc, PM);
1476 if (PrevSrcParent ==
1477 getStmtParent(S: DstContext.getStmtOrNull(), PM)) {
1478 PrevPiece->setEndLocation(DstContext);
1479 break;
1480 }
1481 }
1482 }
1483 }
1484
1485 // Otherwise, split the current edge into a context edge and a
1486 // subexpression edge. Note that the context statement may itself have
1487 // context.
1488 auto P =
1489 std::make_shared<PathDiagnosticControlFlowPiece>(args&: SrcLoc, args&: DstContext);
1490 Piece = P.get();
1491 I = pieces.insert(position: I, x: std::move(P));
1492 }
1493 }
1494}
1495
1496/// Move edges from a branch condition to a branch target
1497/// when the condition is simple.
1498///
1499/// This restructures some of the work of addContextEdges. That function
1500/// creates edges this may destroy, but they work together to create a more
1501/// aesthetically set of edges around branches. After the call to
1502/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1503/// the branch to the branch condition, and (3) an edge from the branch
1504/// condition to the branch target. We keep (1), but may wish to remove (2)
1505/// and move the source of (3) to the branch if the branch condition is simple.
1506static void simplifySimpleBranches(PathPieces &pieces) {
1507 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1508 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1509
1510 if (!PieceI)
1511 continue;
1512
1513 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1514 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1515
1516 if (!s1Start || !s1End)
1517 continue;
1518
1519 PathPieces::iterator NextI = I; ++NextI;
1520 if (NextI == E)
1521 break;
1522
1523 PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1524
1525 while (true) {
1526 if (NextI == E)
1527 break;
1528
1529 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(Val: NextI->get());
1530 if (EV) {
1531 StringRef S = EV->getString();
1532 if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1533 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1534 ++NextI;
1535 continue;
1536 }
1537 break;
1538 }
1539
1540 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1541 break;
1542 }
1543
1544 if (!PieceNextI)
1545 continue;
1546
1547 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1548 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1549
1550 if (!s2Start || !s2End || s1End != s2Start)
1551 continue;
1552
1553 // We only perform this transformation for specific branch kinds.
1554 // We don't want to do this for do..while, for example.
1555 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1556 CXXForRangeStmt>(Val: s1Start))
1557 continue;
1558
1559 // Is s1End the branch condition?
1560 if (!isConditionForTerminator(S: s1Start, Cond: s1End))
1561 continue;
1562
1563 // Perform the hoisting by eliminating (2) and changing the start
1564 // location of (3).
1565 PieceNextI->setStartLocation(PieceI->getStartLocation());
1566 I = pieces.erase(position: I);
1567 }
1568}
1569
1570/// Returns the number of bytes in the given (character-based) SourceRange.
1571///
1572/// If the locations in the range are not on the same line, returns
1573/// std::nullopt.
1574///
1575/// Note that this does not do a precise user-visible character or column count.
1576static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1577 SourceRange Range) {
1578 SourceRange ExpansionRange(SM.getExpansionLoc(Loc: Range.getBegin()),
1579 SM.getExpansionRange(Loc: Range.getEnd()).getEnd());
1580
1581 FileID FID = SM.getFileID(SpellingLoc: ExpansionRange.getBegin());
1582 if (FID != SM.getFileID(SpellingLoc: ExpansionRange.getEnd()))
1583 return std::nullopt;
1584
1585 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1586 if (!Buffer)
1587 return std::nullopt;
1588
1589 unsigned BeginOffset = SM.getFileOffset(SpellingLoc: ExpansionRange.getBegin());
1590 unsigned EndOffset = SM.getFileOffset(SpellingLoc: ExpansionRange.getEnd());
1591 StringRef Snippet = Buffer->getBuffer().slice(Start: BeginOffset, End: EndOffset);
1592
1593 // We're searching the raw bytes of the buffer here, which might include
1594 // escaped newlines and such. That's okay; we're trying to decide whether the
1595 // SourceRange is covering a large or small amount of space in the user's
1596 // editor.
1597 if (Snippet.find_first_of(Chars: "\r\n") != StringRef::npos)
1598 return std::nullopt;
1599
1600 // This isn't Unicode-aware, but it doesn't need to be.
1601 return Snippet.size();
1602}
1603
1604/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1605static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1606 const Stmt *S) {
1607 return getLengthOnSingleLine(SM, Range: S->getSourceRange());
1608}
1609
1610/// Eliminate two-edge cycles created by addContextEdges().
1611///
1612/// Once all the context edges are in place, there are plenty of cases where
1613/// there's a single edge from a top-level statement to a subexpression,
1614/// followed by a single path note, and then a reverse edge to get back out to
1615/// the top level. If the statement is simple enough, the subexpression edges
1616/// just add noise and make it harder to understand what's going on.
1617///
1618/// This function only removes edges in pairs, because removing only one edge
1619/// might leave other edges dangling.
1620///
1621/// This will not remove edges in more complicated situations:
1622/// - if there is more than one "hop" leading to or from a subexpression.
1623/// - if there is an inlined call between the edges instead of a single event.
1624/// - if the whole statement is large enough that having subexpression arrows
1625/// might be helpful.
1626static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1627 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1628 // Pattern match the current piece and its successor.
1629 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1630
1631 if (!PieceI) {
1632 ++I;
1633 continue;
1634 }
1635
1636 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1637 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1638
1639 PathPieces::iterator NextI = I; ++NextI;
1640 if (NextI == E)
1641 break;
1642
1643 const auto *PieceNextI =
1644 dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1645
1646 if (!PieceNextI) {
1647 if (isa<PathDiagnosticEventPiece>(Val: NextI->get())) {
1648 ++NextI;
1649 if (NextI == E)
1650 break;
1651 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1652 }
1653
1654 if (!PieceNextI) {
1655 ++I;
1656 continue;
1657 }
1658 }
1659
1660 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1661 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1662
1663 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1664 const size_t MAX_SHORT_LINE_LENGTH = 80;
1665 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, S: s1Start);
1666 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1667 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, S: s2Start);
1668 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1669 Path.erase(position: I);
1670 I = Path.erase(position: NextI);
1671 continue;
1672 }
1673 }
1674 }
1675
1676 ++I;
1677 }
1678}
1679
1680/// Return true if X is contained by Y.
1681static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1682 while (X) {
1683 if (X == Y)
1684 return true;
1685 X = PM.getParent(S: X);
1686 }
1687 return false;
1688}
1689
1690// Remove short edges on the same line less than 3 columns in difference.
1691static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1692 const ParentMap &PM) {
1693 bool erased = false;
1694
1695 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1696 erased ? I : ++I) {
1697 erased = false;
1698
1699 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1700
1701 if (!PieceI)
1702 continue;
1703
1704 const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1705 const Stmt *end = PieceI->getEndLocation().getStmtOrNull();
1706
1707 if (!start || !end)
1708 continue;
1709
1710 const Stmt *endParent = PM.getParent(S: end);
1711 if (!endParent)
1712 continue;
1713
1714 if (isConditionForTerminator(S: end, Cond: endParent))
1715 continue;
1716
1717 SourceLocation FirstLoc = start->getBeginLoc();
1718 SourceLocation SecondLoc = end->getBeginLoc();
1719
1720 if (!SM.isWrittenInSameFile(Loc1: FirstLoc, Loc2: SecondLoc))
1721 continue;
1722 if (SM.isBeforeInTranslationUnit(LHS: SecondLoc, RHS: FirstLoc))
1723 std::swap(a&: SecondLoc, b&: FirstLoc);
1724
1725 SourceRange EdgeRange(FirstLoc, SecondLoc);
1726 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, Range: EdgeRange);
1727
1728 // If the statements are on different lines, continue.
1729 if (!ByteWidth)
1730 continue;
1731
1732 const size_t MAX_PUNY_EDGE_LENGTH = 2;
1733 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1734 // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1735 // there might not be enough /columns/. A proper user-visible column count
1736 // is probably too expensive, though.
1737 I = path.erase(position: I);
1738 erased = true;
1739 continue;
1740 }
1741 }
1742}
1743
1744static void removeIdenticalEvents(PathPieces &path) {
1745 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1746 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(Val: I->get());
1747
1748 if (!PieceI)
1749 continue;
1750
1751 PathPieces::iterator NextI = I; ++NextI;
1752 if (NextI == E)
1753 return;
1754
1755 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(Val: NextI->get());
1756
1757 if (!PieceNextI)
1758 continue;
1759
1760 // Erase the second piece if it has the same exact message text.
1761 if (PieceI->getString() == PieceNextI->getString()) {
1762 path.erase(position: NextI);
1763 }
1764 }
1765}
1766
1767static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1768 OptimizedCallsSet &OCS) {
1769 bool hasChanges = false;
1770 const LocationContext *LC = C.getLocationContextFor(Path: &path);
1771 assert(LC);
1772 const ParentMap &PM = LC->getParentMap();
1773 const SourceManager &SM = C.getSourceManager();
1774
1775 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1776 // Optimize subpaths.
1777 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(Val: I->get())) {
1778 // Record the fact that a call has been optimized so we only do the
1779 // effort once.
1780 if (!OCS.count(V: CallI)) {
1781 while (optimizeEdges(C, path&: CallI->path, OCS)) {
1782 }
1783 OCS.insert(V: CallI);
1784 }
1785 ++I;
1786 continue;
1787 }
1788
1789 // Pattern match the current piece and its successor.
1790 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1791
1792 if (!PieceI) {
1793 ++I;
1794 continue;
1795 }
1796
1797 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1798 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1799 const Stmt *level1 = getStmtParent(S: s1Start, PM);
1800 const Stmt *level2 = getStmtParent(S: s1End, PM);
1801
1802 PathPieces::iterator NextI = I; ++NextI;
1803 if (NextI == E)
1804 break;
1805
1806 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1807
1808 if (!PieceNextI) {
1809 ++I;
1810 continue;
1811 }
1812
1813 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1814 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1815 const Stmt *level3 = getStmtParent(S: s2Start, PM);
1816 const Stmt *level4 = getStmtParent(S: s2End, PM);
1817
1818 // Rule I.
1819 //
1820 // If we have two consecutive control edges whose end/begin locations
1821 // are at the same level (e.g. statements or top-level expressions within
1822 // a compound statement, or siblings share a single ancestor expression),
1823 // then merge them if they have no interesting intermediate event.
1824 //
1825 // For example:
1826 //
1827 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1828 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
1829 //
1830 // NOTE: this will be limited later in cases where we add barriers
1831 // to prevent this optimization.
1832 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1833 PieceI->setEndLocation(PieceNextI->getEndLocation());
1834 path.erase(position: NextI);
1835 hasChanges = true;
1836 continue;
1837 }
1838
1839 // Rule II.
1840 //
1841 // Eliminate edges between subexpressions and parent expressions
1842 // when the subexpression is consumed.
1843 //
1844 // NOTE: this will be limited later in cases where we add barriers
1845 // to prevent this optimization.
1846 if (s1End && s1End == s2Start && level2) {
1847 bool removeEdge = false;
1848 // Remove edges into the increment or initialization of a
1849 // loop that have no interleaving event. This means that
1850 // they aren't interesting.
1851 if (isIncrementOrInitInForLoop(S: s1End, FL: level2))
1852 removeEdge = true;
1853 // Next only consider edges that are not anchored on
1854 // the condition of a terminator. This are intermediate edges
1855 // that we might want to trim.
1856 else if (!isConditionForTerminator(S: level2, Cond: s1End)) {
1857 // Trim edges on expressions that are consumed by
1858 // the parent expression.
1859 if (isa<Expr>(Val: s1End) && PM.isConsumedExpr(E: cast<Expr>(Val: s1End))) {
1860 removeEdge = true;
1861 }
1862 // Trim edges where a lexical containment doesn't exist.
1863 // For example:
1864 //
1865 // X -> Y -> Z
1866 //
1867 // If 'Z' lexically contains Y (it is an ancestor) and
1868 // 'X' does not lexically contain Y (it is a descendant OR
1869 // it has no lexical relationship at all) then trim.
1870 //
1871 // This can eliminate edges where we dive into a subexpression
1872 // and then pop back out, etc.
1873 else if (s1Start && s2End &&
1874 lexicalContains(PM, X: s2Start, Y: s2End) &&
1875 !lexicalContains(PM, X: s1End, Y: s1Start)) {
1876 removeEdge = true;
1877 }
1878 // Trim edges from a subexpression back to the top level if the
1879 // subexpression is on a different line.
1880 //
1881 // A.1 -> A -> B
1882 // becomes
1883 // A.1 -> B
1884 //
1885 // These edges just look ugly and don't usually add anything.
1886 else if (s1Start && s2End &&
1887 lexicalContains(PM, X: s1Start, Y: s1End)) {
1888 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1889 PieceI->getStartLocation().asLocation());
1890 if (!getLengthOnSingleLine(SM, Range: EdgeRange))
1891 removeEdge = true;
1892 }
1893 }
1894
1895 if (removeEdge) {
1896 PieceI->setEndLocation(PieceNextI->getEndLocation());
1897 path.erase(position: NextI);
1898 hasChanges = true;
1899 continue;
1900 }
1901 }
1902
1903 // Optimize edges for ObjC fast-enumeration loops.
1904 //
1905 // (X -> collection) -> (collection -> element)
1906 //
1907 // becomes:
1908 //
1909 // (X -> element)
1910 if (s1End == s2Start) {
1911 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(Val: level3);
1912 if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1913 s2End == FS->getElement()) {
1914 PieceI->setEndLocation(PieceNextI->getEndLocation());
1915 path.erase(position: NextI);
1916 hasChanges = true;
1917 continue;
1918 }
1919 }
1920
1921 // No changes at this index? Move to the next one.
1922 ++I;
1923 }
1924
1925 if (!hasChanges) {
1926 // Adjust edges into subexpressions to make them more uniform
1927 // and aesthetically pleasing.
1928 addContextEdges(pieces&: path, LC);
1929 // Remove "cyclical" edges that include one or more context edges.
1930 removeContextCycles(Path&: path, SM);
1931 // Hoist edges originating from branch conditions to branches
1932 // for simple branches.
1933 simplifySimpleBranches(pieces&: path);
1934 // Remove any puny edges left over after primary optimization pass.
1935 removePunyEdges(path, SM, PM);
1936 // Remove identical events.
1937 removeIdenticalEvents(path);
1938 }
1939
1940 return hasChanges;
1941}
1942
1943/// Drop the very first edge in a path, which should be a function entry edge.
1944///
1945/// If the first edge is not a function entry edge (say, because the first
1946/// statement had an invalid source location), this function does nothing.
1947// FIXME: We should just generate invalid edges anyway and have the optimizer
1948// deal with them.
1949static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1950 PathPieces &Path) {
1951 const auto *FirstEdge =
1952 dyn_cast<PathDiagnosticControlFlowPiece>(Val: Path.front().get());
1953 if (!FirstEdge)
1954 return;
1955
1956 const Decl *D = C.getLocationContextFor(Path: &Path)->getDecl();
1957 PathDiagnosticLocation EntryLoc =
1958 PathDiagnosticLocation::createBegin(D, SM: C.getSourceManager());
1959 if (FirstEdge->getStartLocation() != EntryLoc)
1960 return;
1961
1962 Path.pop_front();
1963}
1964
1965/// Populate executes lines with lines containing at least one diagnostics.
1966static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1967
1968 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1969 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1970
1971 for (const auto &P : path) {
1972 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1973 FileID FID = Loc.getFileID();
1974 unsigned LineNo = Loc.getLineNumber();
1975 assert(FID.isValid());
1976 ExecutedLines[FID].insert(x: LineNo);
1977 }
1978}
1979
1980PathDiagnosticConstruct::PathDiagnosticConstruct(
1981 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1982 const PathSensitiveBugReport *R, const Decl *AnalysisEntryPoint)
1983 : Consumer(PDC), CurrentNode(ErrorNode),
1984 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1985 PD(generateEmptyDiagnosticForReport(R, SM: getSourceManager(),
1986 AnalysisEntryPoint)) {
1987 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1988}
1989
1990PathDiagnosticBuilder::PathDiagnosticBuilder(
1991 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1992 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1993 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1994 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1995 ErrorNode(ErrorNode),
1996 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1997
1998std::unique_ptr<PathDiagnostic>
1999PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
2000 const Decl *EntryPoint = getBugReporter().getAnalysisEntryPoint();
2001 PathDiagnosticConstruct Construct(PDC, ErrorNode, R, EntryPoint);
2002
2003 const SourceManager &SM = getSourceManager();
2004 const AnalyzerOptions &Opts = getAnalyzerOptions();
2005
2006 if (!PDC->shouldGenerateDiagnostics())
2007 return generateEmptyDiagnosticForReport(R, SM: getSourceManager(), AnalysisEntryPoint: EntryPoint);
2008
2009 // Construct the final (warning) event for the bug report.
2010 auto EndNotes = VisitorsDiagnostics->find(Val: ErrorNode);
2011 PathDiagnosticPieceRef LastPiece;
2012 if (EndNotes != VisitorsDiagnostics->end()) {
2013 assert(!EndNotes->second.empty());
2014 LastPiece = EndNotes->second[0];
2015 } else {
2016 LastPiece = BugReporterVisitor::getDefaultEndPath(BRC: *this, N: ErrorNode,
2017 BR: *getBugReport());
2018 }
2019 Construct.PD->setEndOfPath(LastPiece);
2020
2021 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2022 // From the error node to the root, ascend the bug path and construct the bug
2023 // report.
2024 while (Construct.ascendToPrevNode()) {
2025 generatePathDiagnosticsForNode(C&: Construct, PrevLoc);
2026
2027 auto VisitorNotes = VisitorsDiagnostics->find(Val: Construct.getCurrentNode());
2028 if (VisitorNotes == VisitorsDiagnostics->end())
2029 continue;
2030
2031 // This is a workaround due to inability to put shared PathDiagnosticPiece
2032 // into a FoldingSet.
2033 std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2034
2035 // Add pieces from custom visitors.
2036 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2037 llvm::FoldingSetNodeID ID;
2038 Note->Profile(ID);
2039 if (!DeduplicationSet.insert(x: ID).second)
2040 continue;
2041
2042 if (PDC->shouldAddPathEdges())
2043 addEdgeToPath(path&: Construct.getActivePath(), PrevLoc, NewLoc: Note->getLocation());
2044 updateStackPiecesWithMessage(P: Note, CallStack: Construct.CallStack);
2045 Construct.getActivePath().push_front(x: Note);
2046 }
2047 }
2048
2049 if (PDC->shouldAddPathEdges()) {
2050 // Add an edge to the start of the function.
2051 // We'll prune it out later, but it helps make diagnostics more uniform.
2052 const StackFrameContext *CalleeLC =
2053 Construct.getLocationContextForActivePath()->getStackFrame();
2054 const Decl *D = CalleeLC->getDecl();
2055 addEdgeToPath(path&: Construct.getActivePath(), PrevLoc,
2056 NewLoc: PathDiagnosticLocation::createBegin(D, SM));
2057 }
2058
2059
2060 // Finally, prune the diagnostic path of uninteresting stuff.
2061 if (!Construct.PD->path.empty()) {
2062 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2063 bool stillHasNotes =
2064 removeUnneededCalls(C: Construct, pieces&: Construct.getMutablePieces(), R);
2065 assert(stillHasNotes);
2066 (void)stillHasNotes;
2067 }
2068
2069 // Remove pop-up notes if needed.
2070 if (!Opts.ShouldAddPopUpNotes)
2071 removePopUpNotes(Path&: Construct.getMutablePieces());
2072
2073 // Redirect all call pieces to have valid locations.
2074 adjustCallLocations(Pieces&: Construct.getMutablePieces());
2075 removePiecesWithInvalidLocations(Pieces&: Construct.getMutablePieces());
2076
2077 if (PDC->shouldAddPathEdges()) {
2078
2079 // Reduce the number of edges from a very conservative set
2080 // to an aesthetically pleasing subset that conveys the
2081 // necessary information.
2082 OptimizedCallsSet OCS;
2083 while (optimizeEdges(C: Construct, path&: Construct.getMutablePieces(), OCS)) {
2084 }
2085
2086 // Drop the very first function-entry edge. It's not really necessary
2087 // for top-level functions.
2088 dropFunctionEntryEdge(C: Construct, Path&: Construct.getMutablePieces());
2089 }
2090
2091 // Remove messages that are basically the same, and edges that may not
2092 // make sense.
2093 // We have to do this after edge optimization in the Extensive mode.
2094 removeRedundantMsgs(path&: Construct.getMutablePieces());
2095 removeEdgesToDefaultInitializers(Pieces&: Construct.getMutablePieces());
2096 }
2097
2098 if (Opts.ShouldDisplayMacroExpansions)
2099 CompactMacroExpandedPieces(path&: Construct.getMutablePieces(), SM);
2100
2101 return std::move(Construct.PD);
2102}
2103
2104//===----------------------------------------------------------------------===//
2105// Methods for BugType and subclasses.
2106//===----------------------------------------------------------------------===//
2107
2108void BugType::anchor() {}
2109
2110//===----------------------------------------------------------------------===//
2111// Methods for BugReport and subclasses.
2112//===----------------------------------------------------------------------===//
2113
2114LLVM_ATTRIBUTE_USED static bool
2115isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2116 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2117 if (Pair.second == CheckerName)
2118 return true;
2119 }
2120 return false;
2121}
2122
2123LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2124 StringRef CheckerName) {
2125 for (const CheckerInfo &Checker : Registry.Checkers) {
2126 if (Checker.FullName == CheckerName)
2127 return Checker.IsHidden;
2128 }
2129 llvm_unreachable(
2130 "Checker name not found in CheckerRegistry -- did you retrieve it "
2131 "correctly from CheckerManager::getCurrentCheckerName?");
2132}
2133
2134PathSensitiveBugReport::PathSensitiveBugReport(
2135 const BugType &bt, StringRef shortDesc, StringRef desc,
2136 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2137 const Decl *DeclToUnique)
2138 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2139 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2140 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2141 assert(!isDependency(ErrorNode->getState()
2142 ->getAnalysisManager()
2143 .getCheckerManager()
2144 ->getCheckerRegistryData(),
2145 bt.getCheckerName()) &&
2146 "Some checkers depend on this one! We don't allow dependency "
2147 "checkers to emit warnings, because checkers should depend on "
2148 "*modeling*, not *diagnostics*.");
2149
2150 assert((bt.getCheckerName().starts_with("debug") ||
2151 !isHidden(ErrorNode->getState()
2152 ->getAnalysisManager()
2153 .getCheckerManager()
2154 ->getCheckerRegistryData(),
2155 bt.getCheckerName())) &&
2156 "Hidden checkers musn't emit diagnostics as they are by definition "
2157 "non-user facing!");
2158}
2159
2160void PathSensitiveBugReport::addVisitor(
2161 std::unique_ptr<BugReporterVisitor> visitor) {
2162 if (!visitor)
2163 return;
2164
2165 llvm::FoldingSetNodeID ID;
2166 visitor->Profile(ID);
2167
2168 void *InsertPos = nullptr;
2169 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2170 return;
2171 }
2172
2173 Callbacks.push_back(Elt: std::move(visitor));
2174}
2175
2176void PathSensitiveBugReport::clearVisitors() {
2177 Callbacks.clear();
2178}
2179
2180const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2181 const ExplodedNode *N = getErrorNode();
2182 if (!N)
2183 return nullptr;
2184
2185 const LocationContext *LC = N->getLocationContext();
2186 return LC->getStackFrame()->getDecl();
2187}
2188
2189void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2190 hash.AddInteger(I: static_cast<int>(getKind()));
2191 hash.AddPointer(Ptr: &BT);
2192 hash.AddString(String: Description);
2193 assert(Location.isValid());
2194 Location.Profile(ID&: hash);
2195
2196 for (SourceRange range : Ranges) {
2197 if (!range.isValid())
2198 continue;
2199 hash.Add(x: range.getBegin());
2200 hash.Add(x: range.getEnd());
2201 }
2202}
2203
2204void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2205 hash.AddInteger(I: static_cast<int>(getKind()));
2206 hash.AddPointer(Ptr: &BT);
2207 hash.AddString(String: Description);
2208 PathDiagnosticLocation UL = getUniqueingLocation();
2209 if (UL.isValid()) {
2210 UL.Profile(ID&: hash);
2211 } else {
2212 // TODO: The statement may be null if the report was emitted before any
2213 // statements were executed. In particular, some checkers by design
2214 // occasionally emit their reports in empty functions (that have no
2215 // statements in their body). Do we profile correctly in this case?
2216 hash.AddPointer(Ptr: ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2217 }
2218
2219 for (SourceRange range : Ranges) {
2220 if (!range.isValid())
2221 continue;
2222 hash.Add(x: range.getBegin());
2223 hash.Add(x: range.getEnd());
2224 }
2225}
2226
2227template <class T>
2228static void insertToInterestingnessMap(
2229 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2230 bugreporter::TrackingKind TKind) {
2231 auto Result = InterestingnessMap.insert({Val, TKind});
2232
2233 if (Result.second)
2234 return;
2235
2236 // Even if this symbol/region was already marked as interesting as a
2237 // condition, if we later mark it as interesting again but with
2238 // thorough tracking, overwrite it. Entities marked with thorough
2239 // interestiness are the most important (or most interesting, if you will),
2240 // and we wouldn't like to downplay their importance.
2241
2242 switch (TKind) {
2243 case bugreporter::TrackingKind::Thorough:
2244 Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2245 return;
2246 case bugreporter::TrackingKind::Condition:
2247 return;
2248 }
2249
2250 llvm_unreachable(
2251 "BugReport::markInteresting currently can only handle 2 different "
2252 "tracking kinds! Please define what tracking kind should this entitiy"
2253 "have, if it was already marked as interesting with a different kind!");
2254}
2255
2256void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2257 bugreporter::TrackingKind TKind) {
2258 if (!sym)
2259 return;
2260
2261 insertToInterestingnessMap(InterestingnessMap&: InterestingSymbols, Val: sym, TKind);
2262
2263 // FIXME: No tests exist for this code and it is questionable:
2264 // How to handle multiple metadata for the same region?
2265 if (const auto *meta = dyn_cast<SymbolMetadata>(Val: sym))
2266 markInteresting(R: meta->getRegion(), TKind);
2267}
2268
2269void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2270 if (!sym)
2271 return;
2272 InterestingSymbols.erase(Val: sym);
2273
2274 // The metadata part of markInteresting is not reversed here.
2275 // Just making the same region not interesting is incorrect
2276 // in specific cases.
2277 if (const auto *meta = dyn_cast<SymbolMetadata>(Val: sym))
2278 markNotInteresting(R: meta->getRegion());
2279}
2280
2281void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2282 bugreporter::TrackingKind TKind) {
2283 if (!R)
2284 return;
2285
2286 R = R->getBaseRegion();
2287 insertToInterestingnessMap(InterestingnessMap&: InterestingRegions, Val: R, TKind);
2288
2289 if (const auto *SR = dyn_cast<SymbolicRegion>(Val: R))
2290 markInteresting(sym: SR->getSymbol(), TKind);
2291}
2292
2293void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2294 if (!R)
2295 return;
2296
2297 R = R->getBaseRegion();
2298 InterestingRegions.erase(Val: R);
2299
2300 if (const auto *SR = dyn_cast<SymbolicRegion>(Val: R))
2301 markNotInteresting(sym: SR->getSymbol());
2302}
2303
2304void PathSensitiveBugReport::markInteresting(SVal V,
2305 bugreporter::TrackingKind TKind) {
2306 markInteresting(R: V.getAsRegion(), TKind);
2307 markInteresting(sym: V.getAsSymbol(), TKind);
2308}
2309
2310void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2311 if (!LC)
2312 return;
2313 InterestingLocationContexts.insert(Ptr: LC);
2314}
2315
2316std::optional<bugreporter::TrackingKind>
2317PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2318 auto RKind = getInterestingnessKind(R: V.getAsRegion());
2319 auto SKind = getInterestingnessKind(sym: V.getAsSymbol());
2320 if (!RKind)
2321 return SKind;
2322 if (!SKind)
2323 return RKind;
2324
2325 // If either is marked with throrough tracking, return that, we wouldn't like
2326 // to downplay a note's importance by 'only' mentioning it as a condition.
2327 switch(*RKind) {
2328 case bugreporter::TrackingKind::Thorough:
2329 return RKind;
2330 case bugreporter::TrackingKind::Condition:
2331 return SKind;
2332 }
2333
2334 llvm_unreachable(
2335 "BugReport::getInterestingnessKind currently can only handle 2 different "
2336 "tracking kinds! Please define what tracking kind should we return here "
2337 "when the kind of getAsRegion() and getAsSymbol() is different!");
2338 return std::nullopt;
2339}
2340
2341std::optional<bugreporter::TrackingKind>
2342PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2343 if (!sym)
2344 return std::nullopt;
2345 // We don't currently consider metadata symbols to be interesting
2346 // even if we know their region is interesting. Is that correct behavior?
2347 auto It = InterestingSymbols.find(Val: sym);
2348 if (It == InterestingSymbols.end())
2349 return std::nullopt;
2350 return It->getSecond();
2351}
2352
2353std::optional<bugreporter::TrackingKind>
2354PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2355 if (!R)
2356 return std::nullopt;
2357
2358 R = R->getBaseRegion();
2359 auto It = InterestingRegions.find(Val: R);
2360 if (It != InterestingRegions.end())
2361 return It->getSecond();
2362
2363 if (const auto *SR = dyn_cast<SymbolicRegion>(Val: R))
2364 return getInterestingnessKind(sym: SR->getSymbol());
2365 return std::nullopt;
2366}
2367
2368bool PathSensitiveBugReport::isInteresting(SVal V) const {
2369 return getInterestingnessKind(V).has_value();
2370}
2371
2372bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2373 return getInterestingnessKind(sym).has_value();
2374}
2375
2376bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2377 return getInterestingnessKind(R).has_value();
2378}
2379
2380bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const {
2381 if (!LC)
2382 return false;
2383 return InterestingLocationContexts.count(Ptr: LC);
2384}
2385
2386const Stmt *PathSensitiveBugReport::getStmt() const {
2387 if (!ErrorNode)
2388 return nullptr;
2389
2390 ProgramPoint ProgP = ErrorNode->getLocation();
2391 const Stmt *S = nullptr;
2392
2393 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2394 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2395 if (BE->getBlock() == &Exit)
2396 S = ErrorNode->getPreviousStmtForDiagnostics();
2397 }
2398 if (!S)
2399 S = ErrorNode->getStmtForDiagnostics();
2400
2401 return S;
2402}
2403
2404ArrayRef<SourceRange>
2405PathSensitiveBugReport::getRanges() const {
2406 // If no custom ranges, add the range of the statement corresponding to
2407 // the error node.
2408 if (Ranges.empty() && isa_and_nonnull<Expr>(Val: getStmt()))
2409 return ErrorNodeRange;
2410
2411 return Ranges;
2412}
2413
2414PathDiagnosticLocation
2415PathSensitiveBugReport::getLocation() const {
2416 assert(ErrorNode && "Cannot create a location with a null node.");
2417 const Stmt *S = ErrorNode->getStmtForDiagnostics();
2418 ProgramPoint P = ErrorNode->getLocation();
2419 const LocationContext *LC = P.getLocationContext();
2420 SourceManager &SM =
2421 ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2422
2423 if (!S) {
2424 // If this is an implicit call, return the implicit call point location.
2425 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2426 return PathDiagnosticLocation(PIE->getLocation(), SM);
2427 if (auto FE = P.getAs<FunctionExitPoint>()) {
2428 if (const ReturnStmt *RS = FE->getStmt())
2429 return PathDiagnosticLocation::createBegin(RS, SM, LC);
2430 }
2431 S = ErrorNode->getNextStmtForDiagnostics();
2432 }
2433
2434 if (S) {
2435 // Attributed statements usually have corrupted begin locations,
2436 // it's OK to ignore attributes for our purposes and deal with
2437 // the actual annotated statement.
2438 if (const auto *AS = dyn_cast<AttributedStmt>(Val: S))
2439 S = AS->getSubStmt();
2440
2441 // For member expressions, return the location of the '.' or '->'.
2442 if (const auto *ME = dyn_cast<MemberExpr>(Val: S))
2443 return PathDiagnosticLocation::createMemberLoc(ME, SM);
2444
2445 // For binary operators, return the location of the operator.
2446 if (const auto *B = dyn_cast<BinaryOperator>(Val: S))
2447 return PathDiagnosticLocation::createOperatorLoc(BO: B, SM);
2448
2449 if (P.getAs<PostStmtPurgeDeadSymbols>())
2450 return PathDiagnosticLocation::createEnd(S, SM, LAC: LC);
2451
2452 if (S->getBeginLoc().isValid())
2453 return PathDiagnosticLocation(S, SM, LC);
2454
2455 return PathDiagnosticLocation(
2456 PathDiagnosticLocation::getValidSourceLocation(S, LAC: LC), SM);
2457 }
2458
2459 return PathDiagnosticLocation::createDeclEnd(LC: ErrorNode->getLocationContext(),
2460 SM);
2461}
2462
2463//===----------------------------------------------------------------------===//
2464// Methods for BugReporter and subclasses.
2465//===----------------------------------------------------------------------===//
2466
2467const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2468 return Eng.getGraph();
2469}
2470
2471ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2472 return Eng.getStateManager();
2473}
2474
2475BugReporter::BugReporter(BugReporterData &D)
2476 : D(D), UserSuppressions(D.getASTContext()) {}
2477
2478BugReporter::~BugReporter() {
2479 // Make sure reports are flushed.
2480 assert(StrBugTypes.empty() &&
2481 "Destroying BugReporter before diagnostics are emitted!");
2482
2483 // Free the bug reports we are tracking.
2484 for (const auto I : EQClassesVector)
2485 delete I;
2486}
2487
2488void BugReporter::FlushReports() {
2489 // We need to flush reports in deterministic order to ensure the order
2490 // of the reports is consistent between runs.
2491 for (const auto EQ : EQClassesVector)
2492 FlushReport(EQ&: *EQ);
2493
2494 // BugReporter owns and deletes only BugTypes created implicitly through
2495 // EmitBasicReport.
2496 // FIXME: There are leaks from checkers that assume that the BugTypes they
2497 // create will be destroyed by the BugReporter.
2498 StrBugTypes.clear();
2499}
2500
2501//===----------------------------------------------------------------------===//
2502// PathDiagnostics generation.
2503//===----------------------------------------------------------------------===//
2504
2505namespace {
2506
2507/// A wrapper around an ExplodedGraph that contains a single path from the root
2508/// to the error node.
2509class BugPathInfo {
2510public:
2511 std::unique_ptr<ExplodedGraph> BugPath;
2512 PathSensitiveBugReport *Report;
2513 const ExplodedNode *ErrorNode;
2514};
2515
2516/// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2517/// conveniently retrieve bug paths from a single error node to the root.
2518class BugPathGetter {
2519 std::unique_ptr<ExplodedGraph> TrimmedGraph;
2520
2521 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2522
2523 /// Assign each node with its distance from the root.
2524 PriorityMapTy PriorityMap;
2525
2526 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2527 /// we need to pair it to the error node of the constructed trimmed graph.
2528 using ReportNewNodePair =
2529 std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2530 SmallVector<ReportNewNodePair, 32> ReportNodes;
2531
2532 BugPathInfo CurrentBugPath;
2533
2534 /// A helper class for sorting ExplodedNodes by priority.
2535 template <bool Descending>
2536 class PriorityCompare {
2537 const PriorityMapTy &PriorityMap;
2538
2539 public:
2540 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2541
2542 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2543 PriorityMapTy::const_iterator LI = PriorityMap.find(Val: LHS);
2544 PriorityMapTy::const_iterator RI = PriorityMap.find(Val: RHS);
2545 PriorityMapTy::const_iterator E = PriorityMap.end();
2546
2547 if (LI == E)
2548 return Descending;
2549 if (RI == E)
2550 return !Descending;
2551
2552 return Descending ? LI->second > RI->second
2553 : LI->second < RI->second;
2554 }
2555
2556 bool operator()(const ReportNewNodePair &LHS,
2557 const ReportNewNodePair &RHS) const {
2558 return (*this)(LHS.second, RHS.second);
2559 }
2560 };
2561
2562public:
2563 BugPathGetter(const ExplodedGraph *OriginalGraph,
2564 ArrayRef<PathSensitiveBugReport *> &bugReports);
2565
2566 BugPathInfo *getNextBugPath();
2567};
2568
2569} // namespace
2570
2571BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2572 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2573 SmallVector<const ExplodedNode *, 32> Nodes;
2574 for (const auto I : bugReports) {
2575 assert(I->isValid() &&
2576 "We only allow BugReporterVisitors and BugReporter itself to "
2577 "invalidate reports!");
2578 Nodes.emplace_back(Args: I->getErrorNode());
2579 }
2580
2581 // The trimmed graph is created in the body of the constructor to ensure
2582 // that the DenseMaps have been initialized already.
2583 InterExplodedGraphMap ForwardMap;
2584 TrimmedGraph = OriginalGraph->trim(Nodes, ForwardMap: &ForwardMap);
2585
2586 // Find the (first) error node in the trimmed graph. We just need to consult
2587 // the node map which maps from nodes in the original graph to nodes
2588 // in the new graph.
2589 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2590
2591 for (PathSensitiveBugReport *Report : bugReports) {
2592 const ExplodedNode *NewNode = ForwardMap.lookup(Val: Report->getErrorNode());
2593 assert(NewNode &&
2594 "Failed to construct a trimmed graph that contains this error "
2595 "node!");
2596 ReportNodes.emplace_back(Args&: Report, Args&: NewNode);
2597 RemainingNodes.insert(Ptr: NewNode);
2598 }
2599
2600 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2601
2602 // Perform a forward BFS to find all the shortest paths.
2603 std::queue<const ExplodedNode *> WS;
2604
2605 assert(TrimmedGraph->num_roots() == 1);
2606 WS.push(x: *TrimmedGraph->roots_begin());
2607 unsigned Priority = 0;
2608
2609 while (!WS.empty()) {
2610 const ExplodedNode *Node = WS.front();
2611 WS.pop();
2612
2613 PriorityMapTy::iterator PriorityEntry;
2614 bool IsNew;
2615 std::tie(args&: PriorityEntry, args&: IsNew) = PriorityMap.insert(KV: {Node, Priority});
2616 ++Priority;
2617
2618 if (!IsNew) {
2619 assert(PriorityEntry->second <= Priority);
2620 continue;
2621 }
2622
2623 if (RemainingNodes.erase(Ptr: Node))
2624 if (RemainingNodes.empty())
2625 break;
2626
2627 for (const ExplodedNode *Succ : Node->succs())
2628 WS.push(x: Succ);
2629 }
2630
2631 // Sort the error paths from longest to shortest.
2632 llvm::sort(C&: ReportNodes, Comp: PriorityCompare<true>(PriorityMap));
2633}
2634
2635BugPathInfo *BugPathGetter::getNextBugPath() {
2636 if (ReportNodes.empty())
2637 return nullptr;
2638
2639 const ExplodedNode *OrigN;
2640 std::tie(args&: CurrentBugPath.Report, args&: OrigN) = ReportNodes.pop_back_val();
2641 assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2642
2643 // Create a new graph with a single path. This is the graph that will be
2644 // returned to the caller.
2645 auto GNew = std::make_unique<ExplodedGraph>();
2646
2647 // Now walk from the error node up the BFS path, always taking the
2648 // predeccessor with the lowest number.
2649 ExplodedNode *Succ = nullptr;
2650 while (true) {
2651 // Create the equivalent node in the new graph with the same state
2652 // and location.
2653 ExplodedNode *NewN = GNew->createUncachedNode(
2654 L: OrigN->getLocation(), State: OrigN->getState(),
2655 Id: OrigN->getID(), IsSink: OrigN->isSink());
2656
2657 // Link up the new node with the previous node.
2658 if (Succ)
2659 Succ->addPredecessor(V: NewN, G&: *GNew);
2660 else
2661 CurrentBugPath.ErrorNode = NewN;
2662
2663 Succ = NewN;
2664
2665 // Are we at the final node?
2666 if (OrigN->pred_empty()) {
2667 GNew->addRoot(V: NewN);
2668 break;
2669 }
2670
2671 // Find the next predeccessor node. We choose the node that is marked
2672 // with the lowest BFS number.
2673 OrigN = *std::min_element(first: OrigN->pred_begin(), last: OrigN->pred_end(),
2674 comp: PriorityCompare<false>(PriorityMap));
2675 }
2676
2677 CurrentBugPath.BugPath = std::move(GNew);
2678
2679 return &CurrentBugPath;
2680}
2681
2682/// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2683/// object and collapses PathDiagosticPieces that are expanded by macros.
2684static void CompactMacroExpandedPieces(PathPieces &path,
2685 const SourceManager& SM) {
2686 using MacroStackTy = std::vector<
2687 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2688
2689 using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2690
2691 MacroStackTy MacroStack;
2692 PiecesTy Pieces;
2693
2694 for (PathPieces::const_iterator I = path.begin(), E = path.end();
2695 I != E; ++I) {
2696 const auto &piece = *I;
2697
2698 // Recursively compact calls.
2699 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(Val: &*piece)) {
2700 CompactMacroExpandedPieces(path&: call->path, SM);
2701 }
2702
2703 // Get the location of the PathDiagnosticPiece.
2704 const FullSourceLoc Loc = piece->getLocation().asLocation();
2705
2706 // Determine the instantiation location, which is the location we group
2707 // related PathDiagnosticPieces.
2708 SourceLocation InstantiationLoc = Loc.isMacroID() ?
2709 SM.getExpansionLoc(Loc) :
2710 SourceLocation();
2711
2712 if (Loc.isFileID()) {
2713 MacroStack.clear();
2714 Pieces.push_back(x: piece);
2715 continue;
2716 }
2717
2718 assert(Loc.isMacroID());
2719
2720 // Is the PathDiagnosticPiece within the same macro group?
2721 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2722 MacroStack.back().first->subPieces.push_back(x: piece);
2723 continue;
2724 }
2725
2726 // We aren't in the same group. Are we descending into a new macro
2727 // or are part of an old one?
2728 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2729
2730 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2731 SM.getExpansionLoc(Loc) :
2732 SourceLocation();
2733
2734 // Walk the entire macro stack.
2735 while (!MacroStack.empty()) {
2736 if (InstantiationLoc == MacroStack.back().second) {
2737 MacroGroup = MacroStack.back().first;
2738 break;
2739 }
2740
2741 if (ParentInstantiationLoc == MacroStack.back().second) {
2742 MacroGroup = MacroStack.back().first;
2743 break;
2744 }
2745
2746 MacroStack.pop_back();
2747 }
2748
2749 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2750 // Create a new macro group and add it to the stack.
2751 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2752 args: PathDiagnosticLocation::createSingleLocation(PDL: piece->getLocation()));
2753
2754 if (MacroGroup)
2755 MacroGroup->subPieces.push_back(x: NewGroup);
2756 else {
2757 assert(InstantiationLoc.isFileID());
2758 Pieces.push_back(x: NewGroup);
2759 }
2760
2761 MacroGroup = NewGroup;
2762 MacroStack.push_back(x: std::make_pair(x&: MacroGroup, y&: InstantiationLoc));
2763 }
2764
2765 // Finally, add the PathDiagnosticPiece to the group.
2766 MacroGroup->subPieces.push_back(x: piece);
2767 }
2768
2769 // Now take the pieces and construct a new PathDiagnostic.
2770 path.clear();
2771
2772 path.insert(position: path.end(), first: Pieces.begin(), last: Pieces.end());
2773}
2774
2775/// Generate notes from all visitors.
2776/// Notes associated with @c ErrorNode are generated using
2777/// @c getEndPath, and the rest are generated with @c VisitNode.
2778static std::unique_ptr<VisitorsDiagnosticsTy>
2779generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2780 const ExplodedNode *ErrorNode,
2781 BugReporterContext &BRC) {
2782 std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2783 std::make_unique<VisitorsDiagnosticsTy>();
2784 PathSensitiveBugReport::VisitorList visitors;
2785
2786 // Run visitors on all nodes starting from the node *before* the last one.
2787 // The last node is reserved for notes generated with @c getEndPath.
2788 const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2789 while (NextNode) {
2790
2791 // At each iteration, move all visitors from report to visitor list. This is
2792 // important, because the Profile() functions of the visitors make sure that
2793 // a visitor isn't added multiple times for the same node, but it's fine
2794 // to add the a visitor with Profile() for different nodes (e.g. tracking
2795 // a region at different points of the symbolic execution).
2796 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2797 visitors.push_back(Elt: std::move(Visitor));
2798
2799 R->clearVisitors();
2800
2801 const ExplodedNode *Pred = NextNode->getFirstPred();
2802 if (!Pred) {
2803 PathDiagnosticPieceRef LastPiece;
2804 for (auto &V : visitors) {
2805 V->finalizeVisitor(BRC, EndPathNode: ErrorNode, BR&: *R);
2806
2807 if (auto Piece = V->getEndPath(BRC, N: ErrorNode, BR&: *R)) {
2808 assert(!LastPiece &&
2809 "There can only be one final piece in a diagnostic.");
2810 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2811 "The final piece must contain a message!");
2812 LastPiece = std::move(Piece);
2813 (*Notes)[ErrorNode].push_back(x: LastPiece);
2814 }
2815 }
2816 break;
2817 }
2818
2819 for (auto &V : visitors) {
2820 auto P = V->VisitNode(Succ: NextNode, BRC, BR&: *R);
2821 if (P)
2822 (*Notes)[NextNode].push_back(x: std::move(P));
2823 }
2824
2825 if (!R->isValid())
2826 break;
2827
2828 NextNode = Pred;
2829 }
2830
2831 return Notes;
2832}
2833
2834std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2835 ArrayRef<PathSensitiveBugReport *> &bugReports,
2836 PathSensitiveBugReporter &Reporter) {
2837
2838 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2839
2840 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2841 // Find the BugReport with the original location.
2842 PathSensitiveBugReport *R = BugPath->Report;
2843 assert(R && "No original report found for sliced graph.");
2844 assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2845 const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2846
2847 // Register refutation visitors first, if they mark the bug invalid no
2848 // further analysis is required
2849 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2850
2851 // Register additional node visitors.
2852 R->addVisitor<NilReceiverBRVisitor>();
2853 R->addVisitor<ConditionBRVisitor>();
2854 R->addVisitor<TagVisitor>();
2855
2856 BugReporterContext BRC(Reporter);
2857
2858 // Run all visitors on a given graph, once.
2859 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2860 generateVisitorsDiagnostics(R, ErrorNode, BRC);
2861
2862 if (R->isValid()) {
2863 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2864 // If crosscheck is enabled, remove all visitors, add the refutation
2865 // visitor and check again
2866 R->clearVisitors();
2867 R->addVisitor<FalsePositiveRefutationBRVisitor>();
2868
2869 // We don't overwrite the notes inserted by other visitors because the
2870 // refutation manager does not add any new note to the path
2871 generateVisitorsDiagnostics(R, ErrorNode: BugPath->ErrorNode, BRC);
2872 }
2873
2874 // Check if the bug is still valid
2875 if (R->isValid())
2876 return PathDiagnosticBuilder(
2877 std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2878 BugPath->ErrorNode, std::move(visitorNotes));
2879 }
2880 }
2881
2882 return {};
2883}
2884
2885std::unique_ptr<DiagnosticForConsumerMapTy>
2886PathSensitiveBugReporter::generatePathDiagnostics(
2887 ArrayRef<PathDiagnosticConsumer *> consumers,
2888 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2889 assert(!bugReports.empty());
2890
2891 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2892
2893 std::optional<PathDiagnosticBuilder> PDB =
2894 PathDiagnosticBuilder::findValidReport(bugReports, Reporter&: *this);
2895
2896 if (PDB) {
2897 for (PathDiagnosticConsumer *PC : consumers) {
2898 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PDC: PC)) {
2899 (*Out)[PC] = std::move(PD);
2900 }
2901 }
2902 }
2903
2904 return Out;
2905}
2906
2907void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2908 bool ValidSourceLoc = R->getLocation().isValid();
2909 assert(ValidSourceLoc);
2910 // If we mess up in a release build, we'd still prefer to just drop the bug
2911 // instead of trying to go on.
2912 if (!ValidSourceLoc)
2913 return;
2914
2915 // If the user asked to suppress this report, we should skip it.
2916 if (UserSuppressions.isSuppressed(*R))
2917 return;
2918
2919 // Compute the bug report's hash to determine its equivalence class.
2920 llvm::FoldingSetNodeID ID;
2921 R->Profile(hash&: ID);
2922
2923 // Lookup the equivance class. If there isn't one, create it.
2924 void *InsertPos;
2925 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2926
2927 if (!EQ) {
2928 EQ = new BugReportEquivClass(std::move(R));
2929 EQClasses.InsertNode(N: EQ, InsertPos);
2930 EQClassesVector.push_back(x: EQ);
2931 } else
2932 EQ->AddReport(R: std::move(R));
2933}
2934
2935void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2936 if (auto PR = dyn_cast<PathSensitiveBugReport>(Val: R.get()))
2937 if (const ExplodedNode *E = PR->getErrorNode()) {
2938 // An error node must either be a sink or have a tag, otherwise
2939 // it could get reclaimed before the path diagnostic is created.
2940 assert((E->isSink() || E->getLocation().getTag()) &&
2941 "Error node must either be a sink or have a tag");
2942
2943 const AnalysisDeclContext *DeclCtx =
2944 E->getLocationContext()->getAnalysisDeclContext();
2945 // The source of autosynthesized body can be handcrafted AST or a model
2946 // file. The locations from handcrafted ASTs have no valid source
2947 // locations and have to be discarded. Locations from model files should
2948 // be preserved for processing and reporting.
2949 if (DeclCtx->isBodyAutosynthesized() &&
2950 !DeclCtx->isBodyAutosynthesizedFromModelFile())
2951 return;
2952 }
2953
2954 BugReporter::emitReport(R: std::move(R));
2955}
2956
2957//===----------------------------------------------------------------------===//
2958// Emitting reports in equivalence classes.
2959//===----------------------------------------------------------------------===//
2960
2961namespace {
2962
2963struct FRIEC_WLItem {
2964 const ExplodedNode *N;
2965 ExplodedNode::const_succ_iterator I, E;
2966
2967 FRIEC_WLItem(const ExplodedNode *n)
2968 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2969};
2970
2971} // namespace
2972
2973BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2974 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2975 // If we don't need to suppress any of the nodes because they are
2976 // post-dominated by a sink, simply add all the nodes in the equivalence class
2977 // to 'Nodes'. Any of the reports will serve as a "representative" report.
2978 assert(EQ.getReports().size() > 0);
2979 const BugType& BT = EQ.getReports()[0]->getBugType();
2980 if (!BT.isSuppressOnSink()) {
2981 BugReport *R = EQ.getReports()[0].get();
2982 for (auto &J : EQ.getReports()) {
2983 if (auto *PR = dyn_cast<PathSensitiveBugReport>(Val: J.get())) {
2984 R = PR;
2985 bugReports.push_back(Elt: PR);
2986 }
2987 }
2988 return R;
2989 }
2990
2991 // For bug reports that should be suppressed when all paths are post-dominated
2992 // by a sink node, iterate through the reports in the equivalence class
2993 // until we find one that isn't post-dominated (if one exists). We use a
2994 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
2995 // this as a recursive function, but we don't want to risk blowing out the
2996 // stack for very long paths.
2997 BugReport *exampleReport = nullptr;
2998
2999 for (const auto &I: EQ.getReports()) {
3000 auto *R = dyn_cast<PathSensitiveBugReport>(Val: I.get());
3001 if (!R)
3002 continue;
3003
3004 const ExplodedNode *errorNode = R->getErrorNode();
3005 if (errorNode->isSink()) {
3006 llvm_unreachable(
3007 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3008 }
3009 // No successors? By definition this nodes isn't post-dominated by a sink.
3010 if (errorNode->succ_empty()) {
3011 bugReports.push_back(Elt: R);
3012 if (!exampleReport)
3013 exampleReport = R;
3014 continue;
3015 }
3016
3017 // See if we are in a no-return CFG block. If so, treat this similarly
3018 // to being post-dominated by a sink. This works better when the analysis
3019 // is incomplete and we have never reached the no-return function call(s)
3020 // that we'd inevitably bump into on this path.
3021 if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3022 if (ErrorB->isInevitablySinking())
3023 continue;
3024
3025 // At this point we know that 'N' is not a sink and it has at least one
3026 // successor. Use a DFS worklist to find a non-sink end-of-path node.
3027 using WLItem = FRIEC_WLItem;
3028 using DFSWorkList = SmallVector<WLItem, 10>;
3029
3030 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3031
3032 DFSWorkList WL;
3033 WL.push_back(Elt: errorNode);
3034 Visited[errorNode] = 1;
3035
3036 while (!WL.empty()) {
3037 WLItem &WI = WL.back();
3038 assert(!WI.N->succ_empty());
3039
3040 for (; WI.I != WI.E; ++WI.I) {
3041 const ExplodedNode *Succ = *WI.I;
3042 // End-of-path node?
3043 if (Succ->succ_empty()) {
3044 // If we found an end-of-path node that is not a sink.
3045 if (!Succ->isSink()) {
3046 bugReports.push_back(Elt: R);
3047 if (!exampleReport)
3048 exampleReport = R;
3049 WL.clear();
3050 break;
3051 }
3052 // Found a sink? Continue on to the next successor.
3053 continue;
3054 }
3055 // Mark the successor as visited. If it hasn't been explored,
3056 // enqueue it to the DFS worklist.
3057 unsigned &mark = Visited[Succ];
3058 if (!mark) {
3059 mark = 1;
3060 WL.push_back(Elt: Succ);
3061 break;
3062 }
3063 }
3064
3065 // The worklist may have been cleared at this point. First
3066 // check if it is empty before checking the last item.
3067 if (!WL.empty() && &WL.back() == &WI)
3068 WL.pop_back();
3069 }
3070 }
3071
3072 // ExampleReport will be NULL if all the nodes in the equivalence class
3073 // were post-dominated by sinks.
3074 return exampleReport;
3075}
3076
3077void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3078 SmallVector<BugReport*, 10> bugReports;
3079 BugReport *report = findReportInEquivalenceClass(eqClass&: EQ, bugReports);
3080 if (!report)
3081 return;
3082
3083 // See whether we need to silence the checker/package.
3084 for (const std::string &CheckerOrPackage :
3085 getAnalyzerOptions().SilencedCheckersAndPackages) {
3086 if (report->getBugType().getCheckerName().starts_with(Prefix: CheckerOrPackage))
3087 return;
3088 }
3089
3090 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3091 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3092 generateDiagnosticForConsumerMap(exampleReport: report, consumers: Consumers, bugReports);
3093
3094 for (auto &P : *Diagnostics) {
3095 PathDiagnosticConsumer *Consumer = P.first;
3096 std::unique_ptr<PathDiagnostic> &PD = P.second;
3097
3098 // If the path is empty, generate a single step path with the location
3099 // of the issue.
3100 if (PD->path.empty()) {
3101 PathDiagnosticLocation L = report->getLocation();
3102 auto piece = std::make_unique<PathDiagnosticEventPiece>(
3103 args&: L, args: report->getDescription());
3104 for (SourceRange Range : report->getRanges())
3105 piece->addRange(R: Range);
3106 PD->setEndOfPath(std::move(piece));
3107 }
3108
3109 PathPieces &Pieces = PD->getMutablePieces();
3110 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3111 // For path diagnostic consumers that don't support extra notes,
3112 // we may optionally convert those to path notes.
3113 for (const auto &I : llvm::reverse(C: report->getNotes())) {
3114 PathDiagnosticNotePiece *Piece = I.get();
3115 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3116 args: Piece->getLocation(), args: Piece->getString());
3117 for (const auto &R: Piece->getRanges())
3118 ConvertedPiece->addRange(R);
3119
3120 Pieces.push_front(x: std::move(ConvertedPiece));
3121 }
3122 } else {
3123 for (const auto &I : llvm::reverse(C: report->getNotes()))
3124 Pieces.push_front(x: I);
3125 }
3126
3127 for (const auto &I : report->getFixits())
3128 Pieces.back()->addFixit(F: I);
3129
3130 updateExecutedLinesWithDiagnosticPieces(PD&: *PD);
3131
3132 // If we are debugging, let's have the entry point as the first note.
3133 if (getAnalyzerOptions().AnalyzerDisplayProgress ||
3134 getAnalyzerOptions().AnalyzerNoteAnalysisEntryPoints) {
3135 const Decl *EntryPoint = getAnalysisEntryPoint();
3136 Pieces.push_front(x: std::make_shared<PathDiagnosticEventPiece>(
3137 args: PathDiagnosticLocation{EntryPoint->getLocation(), getSourceManager()},
3138 args: "[debug] analyzing from " +
3139 AnalysisDeclContext::getFunctionName(D: EntryPoint)));
3140 }
3141 Consumer->HandlePathDiagnostic(D: std::move(PD));
3142 }
3143}
3144
3145/// Insert all lines participating in the function signature \p Signature
3146/// into \p ExecutedLines.
3147static void populateExecutedLinesWithFunctionSignature(
3148 const Decl *Signature, const SourceManager &SM,
3149 FilesToLineNumsMap &ExecutedLines) {
3150 SourceRange SignatureSourceRange;
3151 const Stmt* Body = Signature->getBody();
3152 if (const auto FD = dyn_cast<FunctionDecl>(Val: Signature)) {
3153 SignatureSourceRange = FD->getSourceRange();
3154 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Val: Signature)) {
3155 SignatureSourceRange = OD->getSourceRange();
3156 } else {
3157 return;
3158 }
3159 SourceLocation Start = SignatureSourceRange.getBegin();
3160 SourceLocation End = Body ? Body->getSourceRange().getBegin()
3161 : SignatureSourceRange.getEnd();
3162 if (!Start.isValid() || !End.isValid())
3163 return;
3164 unsigned StartLine = SM.getExpansionLineNumber(Loc: Start);
3165 unsigned EndLine = SM.getExpansionLineNumber(Loc: End);
3166
3167 FileID FID = SM.getFileID(SpellingLoc: SM.getExpansionLoc(Loc: Start));
3168 for (unsigned Line = StartLine; Line <= EndLine; Line++)
3169 ExecutedLines[FID].insert(x: Line);
3170}
3171
3172static void populateExecutedLinesWithStmt(
3173 const Stmt *S, const SourceManager &SM,
3174 FilesToLineNumsMap &ExecutedLines) {
3175 SourceLocation Loc = S->getSourceRange().getBegin();
3176 if (!Loc.isValid())
3177 return;
3178 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3179 FileID FID = SM.getFileID(SpellingLoc: ExpansionLoc);
3180 unsigned LineNo = SM.getExpansionLineNumber(Loc: ExpansionLoc);
3181 ExecutedLines[FID].insert(x: LineNo);
3182}
3183
3184/// \return all executed lines including function signatures on the path
3185/// starting from \p N.
3186static std::unique_ptr<FilesToLineNumsMap>
3187findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3188 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3189
3190 while (N) {
3191 if (N->getFirstPred() == nullptr) {
3192 // First node: show signature of the entrance point.
3193 const Decl *D = N->getLocationContext()->getDecl();
3194 populateExecutedLinesWithFunctionSignature(Signature: D, SM, ExecutedLines&: *ExecutedLines);
3195 } else if (auto CE = N->getLocationAs<CallEnter>()) {
3196 // Inlined function: show signature.
3197 const Decl* D = CE->getCalleeContext()->getDecl();
3198 populateExecutedLinesWithFunctionSignature(Signature: D, SM, ExecutedLines&: *ExecutedLines);
3199 } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3200 populateExecutedLinesWithStmt(S, SM, ExecutedLines&: *ExecutedLines);
3201
3202 // Show extra context for some parent kinds.
3203 const Stmt *P = N->getParentMap().getParent(S);
3204
3205 // The path exploration can die before the node with the associated
3206 // return statement is generated, but we do want to show the whole
3207 // return.
3208 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(Val: P)) {
3209 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3210 P = N->getParentMap().getParent(RS);
3211 }
3212
3213 if (isa_and_nonnull<SwitchCase, LabelStmt>(Val: P))
3214 populateExecutedLinesWithStmt(S: P, SM, ExecutedLines&: *ExecutedLines);
3215 }
3216
3217 N = N->getFirstPred();
3218 }
3219 return ExecutedLines;
3220}
3221
3222std::unique_ptr<DiagnosticForConsumerMapTy>
3223BugReporter::generateDiagnosticForConsumerMap(
3224 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3225 ArrayRef<BugReport *> bugReports) {
3226 auto *basicReport = cast<BasicBugReport>(Val: exampleReport);
3227 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3228 for (auto *Consumer : consumers)
3229 (*Out)[Consumer] =
3230 generateDiagnosticForBasicReport(R: basicReport, AnalysisEntryPoint);
3231 return Out;
3232}
3233
3234static PathDiagnosticCallPiece *
3235getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3236 const SourceManager &SMgr) {
3237 SourceLocation CallLoc = CP->callEnter.asLocation();
3238
3239 // If the call is within a macro, don't do anything (for now).
3240 if (CallLoc.isMacroID())
3241 return nullptr;
3242
3243 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3244 "The call piece should not be in a header file.");
3245
3246 // Check if CP represents a path through a function outside of the main file.
3247 if (!AnalysisManager::isInCodeFile(SL: CP->callEnterWithin.asLocation(), SM: SMgr))
3248 return CP;
3249
3250 const PathPieces &Path = CP->path;
3251 if (Path.empty())
3252 return nullptr;
3253
3254 // Check if the last piece in the callee path is a call to a function outside
3255 // of the main file.
3256 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Val: Path.back().get()))
3257 return getFirstStackedCallToHeaderFile(CP: CPInner, SMgr);
3258
3259 // Otherwise, the last piece is in the main file.
3260 return nullptr;
3261}
3262
3263static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3264 if (PD.path.empty())
3265 return;
3266
3267 PathDiagnosticPiece *LastP = PD.path.back().get();
3268 assert(LastP);
3269 const SourceManager &SMgr = LastP->getLocation().getManager();
3270
3271 // We only need to check if the report ends inside headers, if the last piece
3272 // is a call piece.
3273 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(Val: LastP)) {
3274 CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3275 if (CP) {
3276 // Mark the piece.
3277 CP->setAsLastInMainSourceFile();
3278
3279 // Update the path diagnostic message.
3280 const auto *ND = dyn_cast<NamedDecl>(Val: CP->getCallee());
3281 if (ND) {
3282 SmallString<200> buf;
3283 llvm::raw_svector_ostream os(buf);
3284 os << " (within a call to '" << ND->getDeclName() << "')";
3285 PD.appendToDesc(S: os.str());
3286 }
3287
3288 // Reset the report containing declaration and location.
3289 PD.setDeclWithIssue(CP->getCaller());
3290 PD.setLocation(CP->getLocation());
3291
3292 return;
3293 }
3294 }
3295}
3296
3297
3298
3299std::unique_ptr<DiagnosticForConsumerMapTy>
3300PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3301 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3302 ArrayRef<BugReport *> bugReports) {
3303 std::vector<BasicBugReport *> BasicBugReports;
3304 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3305 if (isa<BasicBugReport>(Val: exampleReport))
3306 return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3307 consumers, bugReports);
3308
3309 // Generate the full path sensitive diagnostic, using the generation scheme
3310 // specified by the PathDiagnosticConsumer. Note that we have to generate
3311 // path diagnostics even for consumers which do not support paths, because
3312 // the BugReporterVisitors may mark this bug as a false positive.
3313 assert(!bugReports.empty());
3314 MaxBugClassSize.updateMax(V: bugReports.size());
3315
3316 // Avoid copying the whole array because there may be a lot of reports.
3317 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3318 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3319 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3320 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3321 consumers, bugReports&: convertedArrayOfReports);
3322
3323 if (Out->empty())
3324 return Out;
3325
3326 MaxValidBugClassSize.updateMax(V: bugReports.size());
3327
3328 // Examine the report and see if the last piece is in a header. Reset the
3329 // report location to the last piece in the main source file.
3330 const AnalyzerOptions &Opts = getAnalyzerOptions();
3331 for (auto const &P : *Out)
3332 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3333 resetDiagnosticLocationToMainFile(PD&: *P.second);
3334
3335 return Out;
3336}
3337
3338void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3339 const CheckerBase *Checker, StringRef Name,
3340 StringRef Category, StringRef Str,
3341 PathDiagnosticLocation Loc,
3342 ArrayRef<SourceRange> Ranges,
3343 ArrayRef<FixItHint> Fixits) {
3344 EmitBasicReport(DeclWithIssue, CheckerName: Checker->getCheckerName(), BugName: Name, BugCategory: Category, BugStr: Str,
3345 Loc, Ranges, Fixits);
3346}
3347
3348void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3349 CheckerNameRef CheckName,
3350 StringRef name, StringRef category,
3351 StringRef str, PathDiagnosticLocation Loc,
3352 ArrayRef<SourceRange> Ranges,
3353 ArrayRef<FixItHint> Fixits) {
3354 // 'BT' is owned by BugReporter.
3355 BugType *BT = getBugTypeForName(CheckerName: CheckName, name, category);
3356 auto R = std::make_unique<BasicBugReport>(args&: *BT, args&: str, args&: Loc);
3357 R->setDeclWithIssue(DeclWithIssue);
3358 for (const auto &SR : Ranges)
3359 R->addRange(R: SR);
3360 for (const auto &FH : Fixits)
3361 R->addFixItHint(F: FH);
3362 emitReport(R: std::move(R));
3363}
3364
3365BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3366 StringRef name, StringRef category) {
3367 SmallString<136> fullDesc;
3368 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3369 << ":" << category;
3370 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3371 if (!BT)
3372 BT = std::make_unique<BugType>(args&: CheckName, args&: name, args&: category);
3373 return BT.get();
3374}
3375

source code of clang/lib/StaticAnalyzer/Core/BugReporter.cpp