1//===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines BugReporter, a utility class for generating
10// PathDiagnostics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15#include "clang/AST/ASTTypeTraits.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/ParentMapContext.h"
24#include "clang/AST/Stmt.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Analysis/AnalysisDeclContext.h"
28#include "clang/Analysis/CFG.h"
29#include "clang/Analysis/CFGStmtMap.h"
30#include "clang/Analysis/PathDiagnostic.h"
31#include "clang/Analysis/ProgramPoint.h"
32#include "clang/Basic/LLVM.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
36#include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
37#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
38#include "clang/StaticAnalyzer/Core/Checker.h"
39#include "clang/StaticAnalyzer/Core/CheckerManager.h"
40#include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
41#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
42#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
43#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45#include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/DenseSet.h"
51#include "llvm/ADT/FoldingSet.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/ADT/SmallPtrSet.h"
54#include "llvm/ADT/SmallString.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/Statistic.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringRef.h"
59#include "llvm/ADT/iterator_range.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/Compiler.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/MemoryBuffer.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <iterator>
69#include <memory>
70#include <optional>
71#include <queue>
72#include <string>
73#include <tuple>
74#include <utility>
75#include <vector>
76
77using namespace clang;
78using namespace ento;
79using namespace llvm;
80
81#define DEBUG_TYPE "BugReporter"
82
83STATISTIC(MaxBugClassSize,
84 "The maximum number of bug reports in the same equivalence class");
85STATISTIC(MaxValidBugClassSize,
86 "The maximum number of bug reports in the same equivalence class "
87 "where at least one report is valid (not suppressed)");
88
89BugReporterVisitor::~BugReporterVisitor() = default;
90
91void BugReporterContext::anchor() {}
92
93//===----------------------------------------------------------------------===//
94// PathDiagnosticBuilder and its associated routines and helper objects.
95//===----------------------------------------------------------------------===//
96
97namespace {
98
99/// A (CallPiece, node assiciated with its CallEnter) pair.
100using CallWithEntry =
101 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
102using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
103
104/// Map from each node to the diagnostic pieces visitors emit for them.
105using VisitorsDiagnosticsTy =
106 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
107
108/// A map from PathDiagnosticPiece to the LocationContext of the inlined
109/// function call it represents.
110using LocationContextMap =
111 llvm::DenseMap<const PathPieces *, const LocationContext *>;
112
113/// A helper class that contains everything needed to construct a
114/// PathDiagnostic object. It does no much more then providing convenient
115/// getters and some well placed asserts for extra security.
116class PathDiagnosticConstruct {
117 /// The consumer we're constructing the bug report for.
118 const PathDiagnosticConsumer *Consumer;
119 /// Our current position in the bug path, which is owned by
120 /// PathDiagnosticBuilder.
121 const ExplodedNode *CurrentNode;
122 /// A mapping from parts of the bug path (for example, a function call, which
123 /// would span backwards from a CallExit to a CallEnter with the nodes in
124 /// between them) with the location contexts it is associated with.
125 LocationContextMap LCM;
126 const SourceManager &SM;
127
128public:
129 /// We keep stack of calls to functions as we're ascending the bug path.
130 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
131 /// that instead?
132 CallWithEntryStack CallStack;
133 /// The bug report we're constructing. For ease of use, this field is kept
134 /// public, though some "shortcut" getters are provided for commonly used
135 /// methods of PathDiagnostic.
136 std::unique_ptr<PathDiagnostic> PD;
137
138public:
139 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
140 const ExplodedNode *ErrorNode,
141 const PathSensitiveBugReport *R);
142
143 /// \returns the location context associated with the current position in the
144 /// bug path.
145 const LocationContext *getCurrLocationContext() const {
146 assert(CurrentNode && "Already reached the root!");
147 return CurrentNode->getLocationContext();
148 }
149
150 /// Same as getCurrLocationContext (they should always return the same
151 /// location context), but works after reaching the root of the bug path as
152 /// well.
153 const LocationContext *getLocationContextForActivePath() const {
154 return LCM.find(Val: &PD->getActivePath())->getSecond();
155 }
156
157 const ExplodedNode *getCurrentNode() const { return CurrentNode; }
158
159 /// Steps the current node to its predecessor.
160 /// \returns whether we reached the root of the bug path.
161 bool ascendToPrevNode() {
162 CurrentNode = CurrentNode->getFirstPred();
163 return static_cast<bool>(CurrentNode);
164 }
165
166 const ParentMap &getParentMap() const {
167 return getCurrLocationContext()->getParentMap();
168 }
169
170 const SourceManager &getSourceManager() const { return SM; }
171
172 const Stmt *getParent(const Stmt *S) const {
173 return getParentMap().getParent(S);
174 }
175
176 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
177 assert(Path && LC);
178 LCM[Path] = LC;
179 }
180
181 const LocationContext *getLocationContextFor(const PathPieces *Path) const {
182 assert(LCM.count(Path) &&
183 "Failed to find the context associated with these pieces!");
184 return LCM.find(Val: Path)->getSecond();
185 }
186
187 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Val: Path); }
188
189 PathPieces &getActivePath() { return PD->getActivePath(); }
190 PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
191
192 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
193 bool shouldAddControlNotes() const {
194 return Consumer->shouldAddControlNotes();
195 }
196 bool shouldGenerateDiagnostics() const {
197 return Consumer->shouldGenerateDiagnostics();
198 }
199 bool supportsLogicalOpControlFlow() const {
200 return Consumer->supportsLogicalOpControlFlow();
201 }
202};
203
204/// Contains every contextual information needed for constructing a
205/// PathDiagnostic object for a given bug report. This class and its fields are
206/// immutable, and passes a BugReportConstruct object around during the
207/// construction.
208class PathDiagnosticBuilder : public BugReporterContext {
209 /// A linear path from the error node to the root.
210 std::unique_ptr<const ExplodedGraph> BugPath;
211 /// The bug report we're describing. Visitors create their diagnostics with
212 /// them being the last entities being able to modify it (for example,
213 /// changing interestingness here would cause inconsistencies as to how this
214 /// file and visitors construct diagnostics), hence its const.
215 const PathSensitiveBugReport *R;
216 /// The leaf of the bug path. This isn't the same as the bug reports error
217 /// node, which refers to the *original* graph, not the bug path.
218 const ExplodedNode *const ErrorNode;
219 /// The diagnostic pieces visitors emitted, which is expected to be collected
220 /// by the time this builder is constructed.
221 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
222
223public:
224 /// Find a non-invalidated report for a given equivalence class, and returns
225 /// a PathDiagnosticBuilder able to construct bug reports for different
226 /// consumers. Returns std::nullopt if no valid report is found.
227 static std::optional<PathDiagnosticBuilder>
228 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
229 PathSensitiveBugReporter &Reporter);
230
231 PathDiagnosticBuilder(
232 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
233 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
234 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
235
236 /// This function is responsible for generating diagnostic pieces that are
237 /// *not* provided by bug report visitors.
238 /// These diagnostics may differ depending on the consumer's settings,
239 /// and are therefore constructed separately for each consumer.
240 ///
241 /// There are two path diagnostics generation modes: with adding edges (used
242 /// for plists) and without (used for HTML and text). When edges are added,
243 /// the path is modified to insert artificially generated edges.
244 /// Otherwise, more detailed diagnostics is emitted for block edges,
245 /// explaining the transitions in words.
246 std::unique_ptr<PathDiagnostic>
247 generate(const PathDiagnosticConsumer *PDC) const;
248
249private:
250 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
251 const CallWithEntryStack &CallStack) const;
252 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
253 PathDiagnosticLocation &PrevLoc) const;
254
255 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
256 BlockEdge BE) const;
257
258 PathDiagnosticPieceRef
259 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
260 PathDiagnosticLocation &Start) const;
261
262 PathDiagnosticPieceRef
263 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
264 PathDiagnosticLocation &Start) const;
265
266 PathDiagnosticPieceRef
267 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
268 const CFGBlock *Src, const CFGBlock *DstC) const;
269
270 PathDiagnosticLocation
271 ExecutionContinues(const PathDiagnosticConstruct &C) const;
272
273 PathDiagnosticLocation
274 ExecutionContinues(llvm::raw_string_ostream &os,
275 const PathDiagnosticConstruct &C) const;
276
277 const PathSensitiveBugReport *getBugReport() const { return R; }
278};
279
280} // namespace
281
282//===----------------------------------------------------------------------===//
283// Base implementation of stack hint generators.
284//===----------------------------------------------------------------------===//
285
286StackHintGenerator::~StackHintGenerator() = default;
287
288std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
289 if (!N)
290 return getMessageForSymbolNotFound();
291
292 ProgramPoint P = N->getLocation();
293 CallExitEnd CExit = P.castAs<CallExitEnd>();
294
295 // FIXME: Use CallEvent to abstract this over all calls.
296 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
297 const auto *CE = dyn_cast_or_null<CallExpr>(Val: CallSite);
298 if (!CE)
299 return {};
300
301 // Check if one of the parameters are set to the interesting symbol.
302 for (auto [Idx, ArgExpr] : llvm::enumerate(First: CE->arguments())) {
303 SVal SV = N->getSVal(S: ArgExpr);
304
305 // Check if the variable corresponding to the symbol is passed by value.
306 SymbolRef AS = SV.getAsLocSymbol();
307 if (AS == Sym) {
308 return getMessageForArg(ArgExpr, Idx);
309 }
310
311 // Check if the parameter is a pointer to the symbol.
312 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
313 // Do not attempt to dereference void*.
314 if (ArgExpr->getType()->isVoidPointerType())
315 continue;
316 SVal PSV = N->getState()->getSVal(R: Reg->getRegion());
317 SymbolRef AS = PSV.getAsLocSymbol();
318 if (AS == Sym) {
319 return getMessageForArg(ArgExpr, Idx);
320 }
321 }
322 }
323
324 // Check if we are returning the interesting symbol.
325 SVal SV = N->getSVal(CE);
326 SymbolRef RetSym = SV.getAsLocSymbol();
327 if (RetSym == Sym) {
328 return getMessageForReturn(CallExpr: CE);
329 }
330
331 return getMessageForSymbolNotFound();
332}
333
334std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
335 unsigned ArgIndex) {
336 // Printed parameters start at 1, not 0.
337 ++ArgIndex;
338
339 return (llvm::Twine(Msg) + " via " + std::to_string(val: ArgIndex) +
340 llvm::getOrdinalSuffix(Val: ArgIndex) + " parameter").str();
341}
342
343//===----------------------------------------------------------------------===//
344// Diagnostic cleanup.
345//===----------------------------------------------------------------------===//
346
347static PathDiagnosticEventPiece *
348eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
349 PathDiagnosticEventPiece *Y) {
350 // Prefer diagnostics that come from ConditionBRVisitor over
351 // those that came from TrackConstraintBRVisitor,
352 // unless the one from ConditionBRVisitor is
353 // its generic fallback diagnostic.
354 const void *tagPreferred = ConditionBRVisitor::getTag();
355 const void *tagLesser = TrackConstraintBRVisitor::getTag();
356
357 if (X->getLocation() != Y->getLocation())
358 return nullptr;
359
360 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
361 return ConditionBRVisitor::isPieceMessageGeneric(Piece: X) ? Y : X;
362
363 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
364 return ConditionBRVisitor::isPieceMessageGeneric(Piece: Y) ? X : Y;
365
366 return nullptr;
367}
368
369/// An optimization pass over PathPieces that removes redundant diagnostics
370/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
371/// BugReporterVisitors use different methods to generate diagnostics, with
372/// one capable of emitting diagnostics in some cases but not in others. This
373/// can lead to redundant diagnostic pieces at the same point in a path.
374static void removeRedundantMsgs(PathPieces &path) {
375 unsigned N = path.size();
376 if (N < 2)
377 return;
378 // NOTE: this loop intentionally is not using an iterator. Instead, we
379 // are streaming the path and modifying it in place. This is done by
380 // grabbing the front, processing it, and if we decide to keep it append
381 // it to the end of the path. The entire path is processed in this way.
382 for (unsigned i = 0; i < N; ++i) {
383 auto piece = std::move(path.front());
384 path.pop_front();
385
386 switch (piece->getKind()) {
387 case PathDiagnosticPiece::Call:
388 removeRedundantMsgs(path&: cast<PathDiagnosticCallPiece>(Val&: *piece).path);
389 break;
390 case PathDiagnosticPiece::Macro:
391 removeRedundantMsgs(path&: cast<PathDiagnosticMacroPiece>(Val&: *piece).subPieces);
392 break;
393 case PathDiagnosticPiece::Event: {
394 if (i == N-1)
395 break;
396
397 if (auto *nextEvent =
398 dyn_cast<PathDiagnosticEventPiece>(Val: path.front().get())) {
399 auto *event = cast<PathDiagnosticEventPiece>(Val: piece.get());
400 // Check to see if we should keep one of the two pieces. If we
401 // come up with a preference, record which piece to keep, and consume
402 // another piece from the path.
403 if (auto *pieceToKeep =
404 eventsDescribeSameCondition(X: event, Y: nextEvent)) {
405 piece = std::move(pieceToKeep == event ? piece : path.front());
406 path.pop_front();
407 ++i;
408 }
409 }
410 break;
411 }
412 case PathDiagnosticPiece::ControlFlow:
413 case PathDiagnosticPiece::Note:
414 case PathDiagnosticPiece::PopUp:
415 break;
416 }
417 path.push_back(x: std::move(piece));
418 }
419}
420
421/// Recursively scan through a path and prune out calls and macros pieces
422/// that aren't needed. Return true if afterwards the path contains
423/// "interesting stuff" which means it shouldn't be pruned from the parent path.
424static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
425 PathPieces &pieces,
426 const PathSensitiveBugReport *R,
427 bool IsInteresting = false) {
428 bool containsSomethingInteresting = IsInteresting;
429 const unsigned N = pieces.size();
430
431 for (unsigned i = 0 ; i < N ; ++i) {
432 // Remove the front piece from the path. If it is still something we
433 // want to keep once we are done, we will push it back on the end.
434 auto piece = std::move(pieces.front());
435 pieces.pop_front();
436
437 switch (piece->getKind()) {
438 case PathDiagnosticPiece::Call: {
439 auto &call = cast<PathDiagnosticCallPiece>(Val&: *piece);
440 // Check if the location context is interesting.
441 if (!removeUnneededCalls(
442 C, pieces&: call.path, R,
443 IsInteresting: R->isInteresting(LC: C.getLocationContextFor(Path: &call.path))))
444 continue;
445
446 containsSomethingInteresting = true;
447 break;
448 }
449 case PathDiagnosticPiece::Macro: {
450 auto &macro = cast<PathDiagnosticMacroPiece>(Val&: *piece);
451 if (!removeUnneededCalls(C, pieces&: macro.subPieces, R, IsInteresting))
452 continue;
453 containsSomethingInteresting = true;
454 break;
455 }
456 case PathDiagnosticPiece::Event: {
457 auto &event = cast<PathDiagnosticEventPiece>(Val&: *piece);
458
459 // We never throw away an event, but we do throw it away wholesale
460 // as part of a path if we throw the entire path away.
461 containsSomethingInteresting |= !event.isPrunable();
462 break;
463 }
464 case PathDiagnosticPiece::ControlFlow:
465 case PathDiagnosticPiece::Note:
466 case PathDiagnosticPiece::PopUp:
467 break;
468 }
469
470 pieces.push_back(x: std::move(piece));
471 }
472
473 return containsSomethingInteresting;
474}
475
476/// Same logic as above to remove extra pieces.
477static void removePopUpNotes(PathPieces &Path) {
478 for (unsigned int i = 0; i < Path.size(); ++i) {
479 auto Piece = std::move(Path.front());
480 Path.pop_front();
481 if (!isa<PathDiagnosticPopUpPiece>(Val: *Piece))
482 Path.push_back(x: std::move(Piece));
483 }
484}
485
486/// Returns true if the given decl has been implicitly given a body, either by
487/// the analyzer or by the compiler proper.
488static bool hasImplicitBody(const Decl *D) {
489 assert(D);
490 return D->isImplicit() || !D->hasBody();
491}
492
493/// Recursively scan through a path and make sure that all call pieces have
494/// valid locations.
495static void
496adjustCallLocations(PathPieces &Pieces,
497 PathDiagnosticLocation *LastCallLocation = nullptr) {
498 for (const auto &I : Pieces) {
499 auto *Call = dyn_cast<PathDiagnosticCallPiece>(Val: I.get());
500
501 if (!Call)
502 continue;
503
504 if (LastCallLocation) {
505 bool CallerIsImplicit = hasImplicitBody(D: Call->getCaller());
506 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
507 Call->callEnter = *LastCallLocation;
508 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
509 Call->callReturn = *LastCallLocation;
510 }
511
512 // Recursively clean out the subclass. Keep this call around if
513 // it contains any informative diagnostics.
514 PathDiagnosticLocation *ThisCallLocation;
515 if (Call->callEnterWithin.asLocation().isValid() &&
516 !hasImplicitBody(D: Call->getCallee()))
517 ThisCallLocation = &Call->callEnterWithin;
518 else
519 ThisCallLocation = &Call->callEnter;
520
521 assert(ThisCallLocation && "Outermost call has an invalid location");
522 adjustCallLocations(Pieces&: Call->path, LastCallLocation: ThisCallLocation);
523 }
524}
525
526/// Remove edges in and out of C++ default initializer expressions. These are
527/// for fields that have in-class initializers, as opposed to being initialized
528/// explicitly in a constructor or braced list.
529static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
530 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
531 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(Val: I->get()))
532 removeEdgesToDefaultInitializers(Pieces&: C->path);
533
534 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(Val: I->get()))
535 removeEdgesToDefaultInitializers(Pieces&: M->subPieces);
536
537 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get())) {
538 const Stmt *Start = CF->getStartLocation().asStmt();
539 const Stmt *End = CF->getEndLocation().asStmt();
540 if (isa_and_nonnull<CXXDefaultInitExpr>(Val: Start)) {
541 I = Pieces.erase(position: I);
542 continue;
543 } else if (isa_and_nonnull<CXXDefaultInitExpr>(Val: End)) {
544 PathPieces::iterator Next = std::next(x: I);
545 if (Next != E) {
546 if (auto *NextCF =
547 dyn_cast<PathDiagnosticControlFlowPiece>(Val: Next->get())) {
548 NextCF->setStartLocation(CF->getStartLocation());
549 }
550 }
551 I = Pieces.erase(position: I);
552 continue;
553 }
554 }
555
556 I++;
557 }
558}
559
560/// Remove all pieces with invalid locations as these cannot be serialized.
561/// We might have pieces with invalid locations as a result of inlining Body
562/// Farm generated functions.
563static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
564 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
565 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(Val: I->get()))
566 removePiecesWithInvalidLocations(Pieces&: C->path);
567
568 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(Val: I->get()))
569 removePiecesWithInvalidLocations(Pieces&: M->subPieces);
570
571 if (!(*I)->getLocation().isValid() ||
572 !(*I)->getLocation().asLocation().isValid()) {
573 I = Pieces.erase(position: I);
574 continue;
575 }
576 I++;
577 }
578}
579
580PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
581 const PathDiagnosticConstruct &C) const {
582 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
583 return PathDiagnosticLocation(S, getSourceManager(),
584 C.getCurrLocationContext());
585
586 return PathDiagnosticLocation::createDeclEnd(LC: C.getCurrLocationContext(),
587 SM: getSourceManager());
588}
589
590PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
591 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
592 // Slow, but probably doesn't matter.
593 if (os.str().empty())
594 os << ' ';
595
596 const PathDiagnosticLocation &Loc = ExecutionContinues(C);
597
598 if (Loc.asStmt())
599 os << "Execution continues on line "
600 << getSourceManager().getExpansionLineNumber(Loc: Loc.asLocation())
601 << '.';
602 else {
603 os << "Execution jumps to the end of the ";
604 const Decl *D = C.getCurrLocationContext()->getDecl();
605 if (isa<ObjCMethodDecl>(Val: D))
606 os << "method";
607 else if (isa<FunctionDecl>(Val: D))
608 os << "function";
609 else {
610 assert(isa<BlockDecl>(D));
611 os << "anonymous block";
612 }
613 os << '.';
614 }
615
616 return Loc;
617}
618
619static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
620 if (isa<Expr>(Val: S) && PM.isConsumedExpr(E: cast<Expr>(Val: S)))
621 return PM.getParentIgnoreParens(S);
622
623 const Stmt *Parent = PM.getParentIgnoreParens(S);
624 if (!Parent)
625 return nullptr;
626
627 switch (Parent->getStmtClass()) {
628 case Stmt::ForStmtClass:
629 case Stmt::DoStmtClass:
630 case Stmt::WhileStmtClass:
631 case Stmt::ObjCForCollectionStmtClass:
632 case Stmt::CXXForRangeStmtClass:
633 return Parent;
634 default:
635 break;
636 }
637
638 return nullptr;
639}
640
641static PathDiagnosticLocation
642getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
643 bool allowNestedContexts = false) {
644 if (!S)
645 return {};
646
647 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
648
649 while (const Stmt *Parent = getEnclosingParent(S, PM: LC->getParentMap())) {
650 switch (Parent->getStmtClass()) {
651 case Stmt::BinaryOperatorClass: {
652 const auto *B = cast<BinaryOperator>(Val: Parent);
653 if (B->isLogicalOp())
654 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
655 break;
656 }
657 case Stmt::CompoundStmtClass:
658 case Stmt::StmtExprClass:
659 return PathDiagnosticLocation(S, SMgr, LC);
660 case Stmt::ChooseExprClass:
661 // Similar to '?' if we are referring to condition, just have the edge
662 // point to the entire choose expression.
663 if (allowNestedContexts || cast<ChooseExpr>(Val: Parent)->getCond() == S)
664 return PathDiagnosticLocation(Parent, SMgr, LC);
665 else
666 return PathDiagnosticLocation(S, SMgr, LC);
667 case Stmt::BinaryConditionalOperatorClass:
668 case Stmt::ConditionalOperatorClass:
669 // For '?', if we are referring to condition, just have the edge point
670 // to the entire '?' expression.
671 if (allowNestedContexts ||
672 cast<AbstractConditionalOperator>(Val: Parent)->getCond() == S)
673 return PathDiagnosticLocation(Parent, SMgr, LC);
674 else
675 return PathDiagnosticLocation(S, SMgr, LC);
676 case Stmt::CXXForRangeStmtClass:
677 if (cast<CXXForRangeStmt>(Val: Parent)->getBody() == S)
678 return PathDiagnosticLocation(S, SMgr, LC);
679 break;
680 case Stmt::DoStmtClass:
681 return PathDiagnosticLocation(S, SMgr, LC);
682 case Stmt::ForStmtClass:
683 if (cast<ForStmt>(Val: Parent)->getBody() == S)
684 return PathDiagnosticLocation(S, SMgr, LC);
685 break;
686 case Stmt::IfStmtClass:
687 if (cast<IfStmt>(Val: Parent)->getCond() != S)
688 return PathDiagnosticLocation(S, SMgr, LC);
689 break;
690 case Stmt::ObjCForCollectionStmtClass:
691 if (cast<ObjCForCollectionStmt>(Val: Parent)->getBody() == S)
692 return PathDiagnosticLocation(S, SMgr, LC);
693 break;
694 case Stmt::WhileStmtClass:
695 if (cast<WhileStmt>(Val: Parent)->getCond() != S)
696 return PathDiagnosticLocation(S, SMgr, LC);
697 break;
698 default:
699 break;
700 }
701
702 S = Parent;
703 }
704
705 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
706
707 return PathDiagnosticLocation(S, SMgr, LC);
708}
709
710//===----------------------------------------------------------------------===//
711// "Minimal" path diagnostic generation algorithm.
712//===----------------------------------------------------------------------===//
713
714/// If the piece contains a special message, add it to all the call pieces on
715/// the active stack. For example, my_malloc allocated memory, so MallocChecker
716/// will construct an event at the call to malloc(), and add a stack hint that
717/// an allocated memory was returned. We'll use this hint to construct a message
718/// when returning from the call to my_malloc
719///
720/// void *my_malloc() { return malloc(sizeof(int)); }
721/// void fishy() {
722/// void *ptr = my_malloc(); // returned allocated memory
723/// } // leak
724void PathDiagnosticBuilder::updateStackPiecesWithMessage(
725 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
726 if (R->hasCallStackHint(Piece: P))
727 for (const auto &I : CallStack) {
728 PathDiagnosticCallPiece *CP = I.first;
729 const ExplodedNode *N = I.second;
730 std::string stackMsg = R->getCallStackMessage(Piece: P, N);
731
732 // The last message on the path to final bug is the most important
733 // one. Since we traverse the path backwards, do not add the message
734 // if one has been previously added.
735 if (!CP->hasCallStackMessage())
736 CP->setCallStackMessage(stackMsg);
737 }
738}
739
740static void CompactMacroExpandedPieces(PathPieces &path,
741 const SourceManager& SM);
742
743PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
744 const PathDiagnosticConstruct &C, const CFGBlock *Dst,
745 PathDiagnosticLocation &Start) const {
746
747 const SourceManager &SM = getSourceManager();
748 // Figure out what case arm we took.
749 std::string sbuf;
750 llvm::raw_string_ostream os(sbuf);
751 PathDiagnosticLocation End;
752
753 if (const Stmt *S = Dst->getLabel()) {
754 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
755
756 switch (S->getStmtClass()) {
757 default:
758 os << "No cases match in the switch statement. "
759 "Control jumps to line "
760 << End.asLocation().getExpansionLineNumber();
761 break;
762 case Stmt::DefaultStmtClass:
763 os << "Control jumps to the 'default' case at line "
764 << End.asLocation().getExpansionLineNumber();
765 break;
766
767 case Stmt::CaseStmtClass: {
768 os << "Control jumps to 'case ";
769 const auto *Case = cast<CaseStmt>(Val: S);
770 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
771
772 // Determine if it is an enum.
773 bool GetRawInt = true;
774
775 if (const auto *DR = dyn_cast<DeclRefExpr>(Val: LHS)) {
776 // FIXME: Maybe this should be an assertion. Are there cases
777 // were it is not an EnumConstantDecl?
778 const auto *D = dyn_cast<EnumConstantDecl>(Val: DR->getDecl());
779
780 if (D) {
781 GetRawInt = false;
782 os << *D;
783 }
784 }
785
786 if (GetRawInt)
787 os << LHS->EvaluateKnownConstInt(Ctx: getASTContext());
788
789 os << ":' at line " << End.asLocation().getExpansionLineNumber();
790 break;
791 }
792 }
793 } else {
794 os << "'Default' branch taken. ";
795 End = ExecutionContinues(os, C);
796 }
797 return std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
798 args&: os.str());
799}
800
801PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
802 const PathDiagnosticConstruct &C, const Stmt *S,
803 PathDiagnosticLocation &Start) const {
804 std::string sbuf;
805 llvm::raw_string_ostream os(sbuf);
806 const PathDiagnosticLocation &End =
807 getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
808 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
809 return std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args: End, args&: os.str());
810}
811
812PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
813 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
814 const CFGBlock *Dst) const {
815
816 const SourceManager &SM = getSourceManager();
817
818 const auto *B = cast<BinaryOperator>(Val: T);
819 std::string sbuf;
820 llvm::raw_string_ostream os(sbuf);
821 os << "Left side of '";
822 PathDiagnosticLocation Start, End;
823
824 if (B->getOpcode() == BO_LAnd) {
825 os << "&&"
826 << "' is ";
827
828 if (*(Src->succ_begin() + 1) == Dst) {
829 os << "false";
830 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
831 Start =
832 PathDiagnosticLocation::createOperatorLoc(BO: B, SM);
833 } else {
834 os << "true";
835 Start =
836 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
837 End = ExecutionContinues(C);
838 }
839 } else {
840 assert(B->getOpcode() == BO_LOr);
841 os << "||"
842 << "' is ";
843
844 if (*(Src->succ_begin() + 1) == Dst) {
845 os << "false";
846 Start =
847 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
848 End = ExecutionContinues(C);
849 } else {
850 os << "true";
851 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
852 Start =
853 PathDiagnosticLocation::createOperatorLoc(BO: B, SM);
854 }
855 }
856 return std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
857 args&: os.str());
858}
859
860void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
861 PathDiagnosticConstruct &C, BlockEdge BE) const {
862 const SourceManager &SM = getSourceManager();
863 const LocationContext *LC = C.getCurrLocationContext();
864 const CFGBlock *Src = BE.getSrc();
865 const CFGBlock *Dst = BE.getDst();
866 const Stmt *T = Src->getTerminatorStmt();
867 if (!T)
868 return;
869
870 auto Start = PathDiagnosticLocation::createBegin(S: T, SM, LAC: LC);
871 switch (T->getStmtClass()) {
872 default:
873 break;
874
875 case Stmt::GotoStmtClass:
876 case Stmt::IndirectGotoStmtClass: {
877 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
878 C.getActivePath().push_front(x: generateDiagForGotoOP(C, S, Start));
879 break;
880 }
881
882 case Stmt::SwitchStmtClass: {
883 C.getActivePath().push_front(x: generateDiagForSwitchOP(C, Dst, Start));
884 break;
885 }
886
887 case Stmt::BreakStmtClass:
888 case Stmt::ContinueStmtClass: {
889 std::string sbuf;
890 llvm::raw_string_ostream os(sbuf);
891 PathDiagnosticLocation End = ExecutionContinues(os, C);
892 C.getActivePath().push_front(
893 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End, args&: os.str()));
894 break;
895 }
896
897 // Determine control-flow for ternary '?'.
898 case Stmt::BinaryConditionalOperatorClass:
899 case Stmt::ConditionalOperatorClass: {
900 std::string sbuf;
901 llvm::raw_string_ostream os(sbuf);
902 os << "'?' condition is ";
903
904 if (*(Src->succ_begin() + 1) == Dst)
905 os << "false";
906 else
907 os << "true";
908
909 PathDiagnosticLocation End = ExecutionContinues(C);
910
911 if (const Stmt *S = End.asStmt())
912 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
913
914 C.getActivePath().push_front(
915 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End, args&: os.str()));
916 break;
917 }
918
919 // Determine control-flow for short-circuited '&&' and '||'.
920 case Stmt::BinaryOperatorClass: {
921 if (!C.supportsLogicalOpControlFlow())
922 break;
923
924 C.getActivePath().push_front(x: generateDiagForBinaryOP(C, T, Src, Dst));
925 break;
926 }
927
928 case Stmt::DoStmtClass:
929 if (*(Src->succ_begin()) == Dst) {
930 std::string sbuf;
931 llvm::raw_string_ostream os(sbuf);
932
933 os << "Loop condition is true. ";
934 PathDiagnosticLocation End = ExecutionContinues(os, C);
935
936 if (const Stmt *S = End.asStmt())
937 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
938
939 C.getActivePath().push_front(
940 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
941 args&: os.str()));
942 } else {
943 PathDiagnosticLocation End = ExecutionContinues(C);
944
945 if (const Stmt *S = End.asStmt())
946 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
947
948 C.getActivePath().push_front(
949 x: std::make_shared<PathDiagnosticControlFlowPiece>(
950 args&: Start, args&: End, args: "Loop condition is false. Exiting loop"));
951 }
952 break;
953
954 case Stmt::WhileStmtClass:
955 case Stmt::ForStmtClass:
956 if (*(Src->succ_begin() + 1) == Dst) {
957 std::string sbuf;
958 llvm::raw_string_ostream os(sbuf);
959
960 os << "Loop condition is false. ";
961 PathDiagnosticLocation End = ExecutionContinues(os, C);
962 if (const Stmt *S = End.asStmt())
963 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
964
965 C.getActivePath().push_front(
966 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: Start, args&: End,
967 args&: os.str()));
968 } else {
969 PathDiagnosticLocation End = ExecutionContinues(C);
970 if (const Stmt *S = End.asStmt())
971 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
972
973 C.getActivePath().push_front(
974 x: std::make_shared<PathDiagnosticControlFlowPiece>(
975 args&: Start, args&: End, args: "Loop condition is true. Entering loop body"));
976 }
977
978 break;
979
980 case Stmt::IfStmtClass: {
981 PathDiagnosticLocation End = ExecutionContinues(C);
982
983 if (const Stmt *S = End.asStmt())
984 End = getEnclosingStmtLocation(S, LC: C.getCurrLocationContext());
985
986 if (*(Src->succ_begin() + 1) == Dst)
987 C.getActivePath().push_front(
988 x: std::make_shared<PathDiagnosticControlFlowPiece>(
989 args&: Start, args&: End, args: "Taking false branch"));
990 else
991 C.getActivePath().push_front(
992 x: std::make_shared<PathDiagnosticControlFlowPiece>(
993 args&: Start, args&: End, args: "Taking true branch"));
994
995 break;
996 }
997 }
998}
999
1000//===----------------------------------------------------------------------===//
1001// Functions for determining if a loop was executed 0 times.
1002//===----------------------------------------------------------------------===//
1003
1004static bool isLoop(const Stmt *Term) {
1005 switch (Term->getStmtClass()) {
1006 case Stmt::ForStmtClass:
1007 case Stmt::WhileStmtClass:
1008 case Stmt::ObjCForCollectionStmtClass:
1009 case Stmt::CXXForRangeStmtClass:
1010 return true;
1011 default:
1012 // Note that we intentionally do not include do..while here.
1013 return false;
1014 }
1015}
1016
1017static bool isJumpToFalseBranch(const BlockEdge *BE) {
1018 const CFGBlock *Src = BE->getSrc();
1019 assert(Src->succ_size() == 2);
1020 return (*(Src->succ_begin()+1) == BE->getDst());
1021}
1022
1023static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1024 const Stmt *SubS) {
1025 while (SubS) {
1026 if (SubS == S)
1027 return true;
1028 SubS = PM.getParent(S: SubS);
1029 }
1030 return false;
1031}
1032
1033static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1034 const ExplodedNode *N) {
1035 while (N) {
1036 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1037 if (SP) {
1038 const Stmt *S = SP->getStmt();
1039 if (!isContainedByStmt(PM, S: Term, SubS: S))
1040 return S;
1041 }
1042 N = N->getFirstPred();
1043 }
1044 return nullptr;
1045}
1046
1047static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1048 const Stmt *LoopBody = nullptr;
1049 switch (Term->getStmtClass()) {
1050 case Stmt::CXXForRangeStmtClass: {
1051 const auto *FR = cast<CXXForRangeStmt>(Val: Term);
1052 if (isContainedByStmt(PM, FR->getInc(), S))
1053 return true;
1054 if (isContainedByStmt(PM, S: FR->getLoopVarStmt(), SubS: S))
1055 return true;
1056 LoopBody = FR->getBody();
1057 break;
1058 }
1059 case Stmt::ForStmtClass: {
1060 const auto *FS = cast<ForStmt>(Val: Term);
1061 if (isContainedByStmt(PM, FS->getInc(), S))
1062 return true;
1063 LoopBody = FS->getBody();
1064 break;
1065 }
1066 case Stmt::ObjCForCollectionStmtClass: {
1067 const auto *FC = cast<ObjCForCollectionStmt>(Val: Term);
1068 LoopBody = FC->getBody();
1069 break;
1070 }
1071 case Stmt::WhileStmtClass:
1072 LoopBody = cast<WhileStmt>(Val: Term)->getBody();
1073 break;
1074 default:
1075 return false;
1076 }
1077 return isContainedByStmt(PM, S: LoopBody, SubS: S);
1078}
1079
1080/// Adds a sanitized control-flow diagnostic edge to a path.
1081static void addEdgeToPath(PathPieces &path,
1082 PathDiagnosticLocation &PrevLoc,
1083 PathDiagnosticLocation NewLoc) {
1084 if (!NewLoc.isValid())
1085 return;
1086
1087 SourceLocation NewLocL = NewLoc.asLocation();
1088 if (NewLocL.isInvalid())
1089 return;
1090
1091 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1092 PrevLoc = NewLoc;
1093 return;
1094 }
1095
1096 // Ignore self-edges, which occur when there are multiple nodes at the same
1097 // statement.
1098 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1099 return;
1100
1101 path.push_front(
1102 x: std::make_shared<PathDiagnosticControlFlowPiece>(args&: NewLoc, args&: PrevLoc));
1103 PrevLoc = NewLoc;
1104}
1105
1106/// A customized wrapper for CFGBlock::getTerminatorCondition()
1107/// which returns the element for ObjCForCollectionStmts.
1108static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1109 const Stmt *S = B->getTerminatorCondition();
1110 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(Val: S))
1111 return FS->getElement();
1112 return S;
1113}
1114
1115constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1116constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1117constexpr llvm::StringLiteral StrLoopRangeEmpty =
1118 "Loop body skipped when range is empty";
1119constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1120 "Loop body skipped when collection is empty";
1121
1122static std::unique_ptr<FilesToLineNumsMap>
1123findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1124
1125void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1126 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1127 ProgramPoint P = C.getCurrentNode()->getLocation();
1128 const SourceManager &SM = getSourceManager();
1129
1130 // Have we encountered an entrance to a call? It may be
1131 // the case that we have not encountered a matching
1132 // call exit before this point. This means that the path
1133 // terminated within the call itself.
1134 if (auto CE = P.getAs<CallEnter>()) {
1135
1136 if (C.shouldAddPathEdges()) {
1137 // Add an edge to the start of the function.
1138 const StackFrameContext *CalleeLC = CE->getCalleeContext();
1139 const Decl *D = CalleeLC->getDecl();
1140 // Add the edge only when the callee has body. We jump to the beginning
1141 // of the *declaration*, however we expect it to be followed by the
1142 // body. This isn't the case for autosynthesized property accessors in
1143 // Objective-C. No need for a similar extra check for CallExit points
1144 // because the exit edge comes from a statement (i.e. return),
1145 // not from declaration.
1146 if (D->hasBody())
1147 addEdgeToPath(path&: C.getActivePath(), PrevLoc,
1148 NewLoc: PathDiagnosticLocation::createBegin(D, SM));
1149 }
1150
1151 // Did we visit an entire call?
1152 bool VisitedEntireCall = C.PD->isWithinCall();
1153 C.PD->popActivePath();
1154
1155 PathDiagnosticCallPiece *Call;
1156 if (VisitedEntireCall) {
1157 Call = cast<PathDiagnosticCallPiece>(Val: C.getActivePath().front().get());
1158 } else {
1159 // The path terminated within a nested location context, create a new
1160 // call piece to encapsulate the rest of the path pieces.
1161 const Decl *Caller = CE->getLocationContext()->getDecl();
1162 Call = PathDiagnosticCallPiece::construct(pieces&: C.getActivePath(), caller: Caller);
1163 assert(C.getActivePath().size() == 1 &&
1164 C.getActivePath().front().get() == Call);
1165
1166 // Since we just transferred the path over to the call piece, reset the
1167 // mapping of the active path to the current location context.
1168 assert(C.isInLocCtxMap(&C.getActivePath()) &&
1169 "When we ascend to a previously unvisited call, the active path's "
1170 "address shouldn't change, but rather should be compacted into "
1171 "a single CallEvent!");
1172 C.updateLocCtxMap(Path: &C.getActivePath(), LC: C.getCurrLocationContext());
1173
1174 // Record the location context mapping for the path within the call.
1175 assert(!C.isInLocCtxMap(&Call->path) &&
1176 "When we ascend to a previously unvisited call, this must be the "
1177 "first time we encounter the caller context!");
1178 C.updateLocCtxMap(Path: &Call->path, LC: CE->getCalleeContext());
1179 }
1180 Call->setCallee(CE: *CE, SM);
1181
1182 // Update the previous location in the active path.
1183 PrevLoc = Call->getLocation();
1184
1185 if (!C.CallStack.empty()) {
1186 assert(C.CallStack.back().first == Call);
1187 C.CallStack.pop_back();
1188 }
1189 return;
1190 }
1191
1192 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1193 "The current position in the bug path is out of sync with the "
1194 "location context associated with the active path!");
1195
1196 // Have we encountered an exit from a function call?
1197 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1198
1199 // We are descending into a call (backwards). Construct
1200 // a new call piece to contain the path pieces for that call.
1201 auto Call = PathDiagnosticCallPiece::construct(CE: *CE, SM);
1202 // Record the mapping from call piece to LocationContext.
1203 assert(!C.isInLocCtxMap(&Call->path) &&
1204 "We just entered a call, this must've been the first time we "
1205 "encounter its context!");
1206 C.updateLocCtxMap(Path: &Call->path, LC: CE->getCalleeContext());
1207
1208 if (C.shouldAddPathEdges()) {
1209 // Add the edge to the return site.
1210 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: Call->callReturn);
1211 PrevLoc.invalidate();
1212 }
1213
1214 auto *P = Call.get();
1215 C.getActivePath().push_front(x: std::move(Call));
1216
1217 // Make the contents of the call the active path for now.
1218 C.PD->pushActivePath(p: &P->path);
1219 C.CallStack.push_back(Elt: CallWithEntry(P, C.getCurrentNode()));
1220 return;
1221 }
1222
1223 if (auto PS = P.getAs<PostStmt>()) {
1224 if (!C.shouldAddPathEdges())
1225 return;
1226
1227 // Add an edge. If this is an ObjCForCollectionStmt do
1228 // not add an edge here as it appears in the CFG both
1229 // as a terminator and as a terminator condition.
1230 if (!isa<ObjCForCollectionStmt>(Val: PS->getStmt())) {
1231 PathDiagnosticLocation L =
1232 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1233 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: L);
1234 }
1235
1236 } else if (auto BE = P.getAs<BlockEdge>()) {
1237
1238 if (C.shouldAddControlNotes()) {
1239 generateMinimalDiagForBlockEdge(C, BE: *BE);
1240 }
1241
1242 if (!C.shouldAddPathEdges()) {
1243 return;
1244 }
1245
1246 // Are we jumping to the head of a loop? Add a special diagnostic.
1247 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1248 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1249 const Stmt *Body = nullptr;
1250
1251 if (const auto *FS = dyn_cast<ForStmt>(Val: Loop))
1252 Body = FS->getBody();
1253 else if (const auto *WS = dyn_cast<WhileStmt>(Val: Loop))
1254 Body = WS->getBody();
1255 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Val: Loop)) {
1256 Body = OFS->getBody();
1257 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Val: Loop)) {
1258 Body = FRS->getBody();
1259 }
1260 // do-while statements are explicitly excluded here
1261
1262 auto p = std::make_shared<PathDiagnosticEventPiece>(
1263 args&: L, args: "Looping back to the head of the loop");
1264 p->setPrunable(isPrunable: true);
1265
1266 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: p->getLocation());
1267 // We might've added a very similar control node already
1268 if (!C.shouldAddControlNotes()) {
1269 C.getActivePath().push_front(x: std::move(p));
1270 }
1271
1272 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Val: Body)) {
1273 addEdgeToPath(path&: C.getActivePath(), PrevLoc,
1274 NewLoc: PathDiagnosticLocation::createEndBrace(CS, SM));
1275 }
1276 }
1277
1278 const CFGBlock *BSrc = BE->getSrc();
1279 const ParentMap &PM = C.getParentMap();
1280
1281 if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1282 // Are we jumping past the loop body without ever executing the
1283 // loop (because the condition was false)?
1284 if (isLoop(Term)) {
1285 const Stmt *TermCond = getTerminatorCondition(B: BSrc);
1286 bool IsInLoopBody = isInLoopBody(
1287 PM, S: getStmtBeforeCond(PM, Term: TermCond, N: C.getCurrentNode()), Term);
1288
1289 StringRef str;
1290
1291 if (isJumpToFalseBranch(BE: &*BE)) {
1292 if (!IsInLoopBody) {
1293 if (isa<ObjCForCollectionStmt>(Val: Term)) {
1294 str = StrLoopCollectionEmpty;
1295 } else if (isa<CXXForRangeStmt>(Val: Term)) {
1296 str = StrLoopRangeEmpty;
1297 } else {
1298 str = StrLoopBodyZero;
1299 }
1300 }
1301 } else {
1302 str = StrEnteringLoop;
1303 }
1304
1305 if (!str.empty()) {
1306 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1307 C.getCurrLocationContext());
1308 auto PE = std::make_shared<PathDiagnosticEventPiece>(args&: L, args&: str);
1309 PE->setPrunable(isPrunable: true);
1310 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: PE->getLocation());
1311
1312 // We might've added a very similar control node already
1313 if (!C.shouldAddControlNotes()) {
1314 C.getActivePath().push_front(x: std::move(PE));
1315 }
1316 }
1317 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Val: Term)) {
1318 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1319 addEdgeToPath(path&: C.getActivePath(), PrevLoc, NewLoc: L);
1320 }
1321 }
1322 }
1323}
1324
1325static std::unique_ptr<PathDiagnostic>
1326generateDiagnosticForBasicReport(const BasicBugReport *R) {
1327 const BugType &BT = R->getBugType();
1328 return std::make_unique<PathDiagnostic>(
1329 args: BT.getCheckerName(), args: R->getDeclWithIssue(), args: BT.getDescription(),
1330 args: R->getDescription(), args: R->getShortDescription(/*UseFallback=*/false),
1331 args: BT.getCategory(), args: R->getUniqueingLocation(), args: R->getUniqueingDecl(),
1332 args: std::make_unique<FilesToLineNumsMap>());
1333}
1334
1335static std::unique_ptr<PathDiagnostic>
1336generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1337 const SourceManager &SM) {
1338 const BugType &BT = R->getBugType();
1339 return std::make_unique<PathDiagnostic>(
1340 args: BT.getCheckerName(), args: R->getDeclWithIssue(), args: BT.getDescription(),
1341 args: R->getDescription(), args: R->getShortDescription(/*UseFallback=*/false),
1342 args: BT.getCategory(), args: R->getUniqueingLocation(), args: R->getUniqueingDecl(),
1343 args: findExecutedLines(SM, N: R->getErrorNode()));
1344}
1345
1346static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1347 if (!S)
1348 return nullptr;
1349
1350 while (true) {
1351 S = PM.getParentIgnoreParens(S);
1352
1353 if (!S)
1354 break;
1355
1356 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(Val: S))
1357 continue;
1358
1359 break;
1360 }
1361
1362 return S;
1363}
1364
1365static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1366 switch (S->getStmtClass()) {
1367 case Stmt::BinaryOperatorClass: {
1368 const auto *BO = cast<BinaryOperator>(Val: S);
1369 if (!BO->isLogicalOp())
1370 return false;
1371 return BO->getLHS() == Cond || BO->getRHS() == Cond;
1372 }
1373 case Stmt::IfStmtClass:
1374 return cast<IfStmt>(Val: S)->getCond() == Cond;
1375 case Stmt::ForStmtClass:
1376 return cast<ForStmt>(Val: S)->getCond() == Cond;
1377 case Stmt::WhileStmtClass:
1378 return cast<WhileStmt>(Val: S)->getCond() == Cond;
1379 case Stmt::DoStmtClass:
1380 return cast<DoStmt>(Val: S)->getCond() == Cond;
1381 case Stmt::ChooseExprClass:
1382 return cast<ChooseExpr>(Val: S)->getCond() == Cond;
1383 case Stmt::IndirectGotoStmtClass:
1384 return cast<IndirectGotoStmt>(Val: S)->getTarget() == Cond;
1385 case Stmt::SwitchStmtClass:
1386 return cast<SwitchStmt>(Val: S)->getCond() == Cond;
1387 case Stmt::BinaryConditionalOperatorClass:
1388 return cast<BinaryConditionalOperator>(Val: S)->getCond() == Cond;
1389 case Stmt::ConditionalOperatorClass: {
1390 const auto *CO = cast<ConditionalOperator>(Val: S);
1391 return CO->getCond() == Cond ||
1392 CO->getLHS() == Cond ||
1393 CO->getRHS() == Cond;
1394 }
1395 case Stmt::ObjCForCollectionStmtClass:
1396 return cast<ObjCForCollectionStmt>(Val: S)->getElement() == Cond;
1397 case Stmt::CXXForRangeStmtClass: {
1398 const auto *FRS = cast<CXXForRangeStmt>(Val: S);
1399 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1400 }
1401 default:
1402 return false;
1403 }
1404}
1405
1406static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1407 if (const auto *FS = dyn_cast<ForStmt>(Val: FL))
1408 return FS->getInc() == S || FS->getInit() == S;
1409 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Val: FL))
1410 return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1411 FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1412 return false;
1413}
1414
1415using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1416
1417/// Adds synthetic edges from top-level statements to their subexpressions.
1418///
1419/// This avoids a "swoosh" effect, where an edge from a top-level statement A
1420/// points to a sub-expression B.1 that's not at the start of B. In these cases,
1421/// we'd like to see an edge from A to B, then another one from B to B.1.
1422static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1423 const ParentMap &PM = LC->getParentMap();
1424 PathPieces::iterator Prev = pieces.end();
1425 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1426 Prev = I, ++I) {
1427 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1428
1429 if (!Piece)
1430 continue;
1431
1432 PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1433 SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1434
1435 PathDiagnosticLocation NextSrcContext = SrcLoc;
1436 const Stmt *InnerStmt = nullptr;
1437 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1438 SrcContexts.push_back(Elt: NextSrcContext);
1439 InnerStmt = NextSrcContext.asStmt();
1440 NextSrcContext = getEnclosingStmtLocation(S: InnerStmt, LC,
1441 /*allowNested=*/allowNestedContexts: true);
1442 }
1443
1444 // Repeatedly split the edge as necessary.
1445 // This is important for nested logical expressions (||, &&, ?:) where we
1446 // want to show all the levels of context.
1447 while (true) {
1448 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1449
1450 // We are looking at an edge. Is the destination within a larger
1451 // expression?
1452 PathDiagnosticLocation DstContext =
1453 getEnclosingStmtLocation(S: Dst, LC, /*allowNested=*/allowNestedContexts: true);
1454 if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1455 break;
1456
1457 // If the source is in the same context, we're already good.
1458 if (llvm::is_contained(Range&: SrcContexts, Element: DstContext))
1459 break;
1460
1461 // Update the subexpression node to point to the context edge.
1462 Piece->setStartLocation(DstContext);
1463
1464 // Try to extend the previous edge if it's at the same level as the source
1465 // context.
1466 if (Prev != E) {
1467 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Val: Prev->get());
1468
1469 if (PrevPiece) {
1470 if (const Stmt *PrevSrc =
1471 PrevPiece->getStartLocation().getStmtOrNull()) {
1472 const Stmt *PrevSrcParent = getStmtParent(S: PrevSrc, PM);
1473 if (PrevSrcParent ==
1474 getStmtParent(S: DstContext.getStmtOrNull(), PM)) {
1475 PrevPiece->setEndLocation(DstContext);
1476 break;
1477 }
1478 }
1479 }
1480 }
1481
1482 // Otherwise, split the current edge into a context edge and a
1483 // subexpression edge. Note that the context statement may itself have
1484 // context.
1485 auto P =
1486 std::make_shared<PathDiagnosticControlFlowPiece>(args&: SrcLoc, args&: DstContext);
1487 Piece = P.get();
1488 I = pieces.insert(position: I, x: std::move(P));
1489 }
1490 }
1491}
1492
1493/// Move edges from a branch condition to a branch target
1494/// when the condition is simple.
1495///
1496/// This restructures some of the work of addContextEdges. That function
1497/// creates edges this may destroy, but they work together to create a more
1498/// aesthetically set of edges around branches. After the call to
1499/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1500/// the branch to the branch condition, and (3) an edge from the branch
1501/// condition to the branch target. We keep (1), but may wish to remove (2)
1502/// and move the source of (3) to the branch if the branch condition is simple.
1503static void simplifySimpleBranches(PathPieces &pieces) {
1504 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1505 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1506
1507 if (!PieceI)
1508 continue;
1509
1510 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1511 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1512
1513 if (!s1Start || !s1End)
1514 continue;
1515
1516 PathPieces::iterator NextI = I; ++NextI;
1517 if (NextI == E)
1518 break;
1519
1520 PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1521
1522 while (true) {
1523 if (NextI == E)
1524 break;
1525
1526 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(Val: NextI->get());
1527 if (EV) {
1528 StringRef S = EV->getString();
1529 if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1530 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1531 ++NextI;
1532 continue;
1533 }
1534 break;
1535 }
1536
1537 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1538 break;
1539 }
1540
1541 if (!PieceNextI)
1542 continue;
1543
1544 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1545 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1546
1547 if (!s2Start || !s2End || s1End != s2Start)
1548 continue;
1549
1550 // We only perform this transformation for specific branch kinds.
1551 // We don't want to do this for do..while, for example.
1552 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1553 CXXForRangeStmt>(Val: s1Start))
1554 continue;
1555
1556 // Is s1End the branch condition?
1557 if (!isConditionForTerminator(S: s1Start, Cond: s1End))
1558 continue;
1559
1560 // Perform the hoisting by eliminating (2) and changing the start
1561 // location of (3).
1562 PieceNextI->setStartLocation(PieceI->getStartLocation());
1563 I = pieces.erase(position: I);
1564 }
1565}
1566
1567/// Returns the number of bytes in the given (character-based) SourceRange.
1568///
1569/// If the locations in the range are not on the same line, returns
1570/// std::nullopt.
1571///
1572/// Note that this does not do a precise user-visible character or column count.
1573static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1574 SourceRange Range) {
1575 SourceRange ExpansionRange(SM.getExpansionLoc(Loc: Range.getBegin()),
1576 SM.getExpansionRange(Loc: Range.getEnd()).getEnd());
1577
1578 FileID FID = SM.getFileID(SpellingLoc: ExpansionRange.getBegin());
1579 if (FID != SM.getFileID(SpellingLoc: ExpansionRange.getEnd()))
1580 return std::nullopt;
1581
1582 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1583 if (!Buffer)
1584 return std::nullopt;
1585
1586 unsigned BeginOffset = SM.getFileOffset(SpellingLoc: ExpansionRange.getBegin());
1587 unsigned EndOffset = SM.getFileOffset(SpellingLoc: ExpansionRange.getEnd());
1588 StringRef Snippet = Buffer->getBuffer().slice(Start: BeginOffset, End: EndOffset);
1589
1590 // We're searching the raw bytes of the buffer here, which might include
1591 // escaped newlines and such. That's okay; we're trying to decide whether the
1592 // SourceRange is covering a large or small amount of space in the user's
1593 // editor.
1594 if (Snippet.find_first_of(Chars: "\r\n") != StringRef::npos)
1595 return std::nullopt;
1596
1597 // This isn't Unicode-aware, but it doesn't need to be.
1598 return Snippet.size();
1599}
1600
1601/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1602static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1603 const Stmt *S) {
1604 return getLengthOnSingleLine(SM, Range: S->getSourceRange());
1605}
1606
1607/// Eliminate two-edge cycles created by addContextEdges().
1608///
1609/// Once all the context edges are in place, there are plenty of cases where
1610/// there's a single edge from a top-level statement to a subexpression,
1611/// followed by a single path note, and then a reverse edge to get back out to
1612/// the top level. If the statement is simple enough, the subexpression edges
1613/// just add noise and make it harder to understand what's going on.
1614///
1615/// This function only removes edges in pairs, because removing only one edge
1616/// might leave other edges dangling.
1617///
1618/// This will not remove edges in more complicated situations:
1619/// - if there is more than one "hop" leading to or from a subexpression.
1620/// - if there is an inlined call between the edges instead of a single event.
1621/// - if the whole statement is large enough that having subexpression arrows
1622/// might be helpful.
1623static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1624 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1625 // Pattern match the current piece and its successor.
1626 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1627
1628 if (!PieceI) {
1629 ++I;
1630 continue;
1631 }
1632
1633 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1634 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1635
1636 PathPieces::iterator NextI = I; ++NextI;
1637 if (NextI == E)
1638 break;
1639
1640 const auto *PieceNextI =
1641 dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1642
1643 if (!PieceNextI) {
1644 if (isa<PathDiagnosticEventPiece>(Val: NextI->get())) {
1645 ++NextI;
1646 if (NextI == E)
1647 break;
1648 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1649 }
1650
1651 if (!PieceNextI) {
1652 ++I;
1653 continue;
1654 }
1655 }
1656
1657 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1658 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1659
1660 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1661 const size_t MAX_SHORT_LINE_LENGTH = 80;
1662 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, S: s1Start);
1663 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1664 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, S: s2Start);
1665 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1666 Path.erase(position: I);
1667 I = Path.erase(position: NextI);
1668 continue;
1669 }
1670 }
1671 }
1672
1673 ++I;
1674 }
1675}
1676
1677/// Return true if X is contained by Y.
1678static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1679 while (X) {
1680 if (X == Y)
1681 return true;
1682 X = PM.getParent(S: X);
1683 }
1684 return false;
1685}
1686
1687// Remove short edges on the same line less than 3 columns in difference.
1688static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1689 const ParentMap &PM) {
1690 bool erased = false;
1691
1692 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1693 erased ? I : ++I) {
1694 erased = false;
1695
1696 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1697
1698 if (!PieceI)
1699 continue;
1700
1701 const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1702 const Stmt *end = PieceI->getEndLocation().getStmtOrNull();
1703
1704 if (!start || !end)
1705 continue;
1706
1707 const Stmt *endParent = PM.getParent(S: end);
1708 if (!endParent)
1709 continue;
1710
1711 if (isConditionForTerminator(S: end, Cond: endParent))
1712 continue;
1713
1714 SourceLocation FirstLoc = start->getBeginLoc();
1715 SourceLocation SecondLoc = end->getBeginLoc();
1716
1717 if (!SM.isWrittenInSameFile(Loc1: FirstLoc, Loc2: SecondLoc))
1718 continue;
1719 if (SM.isBeforeInTranslationUnit(LHS: SecondLoc, RHS: FirstLoc))
1720 std::swap(a&: SecondLoc, b&: FirstLoc);
1721
1722 SourceRange EdgeRange(FirstLoc, SecondLoc);
1723 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, Range: EdgeRange);
1724
1725 // If the statements are on different lines, continue.
1726 if (!ByteWidth)
1727 continue;
1728
1729 const size_t MAX_PUNY_EDGE_LENGTH = 2;
1730 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1731 // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1732 // there might not be enough /columns/. A proper user-visible column count
1733 // is probably too expensive, though.
1734 I = path.erase(position: I);
1735 erased = true;
1736 continue;
1737 }
1738 }
1739}
1740
1741static void removeIdenticalEvents(PathPieces &path) {
1742 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1743 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(Val: I->get());
1744
1745 if (!PieceI)
1746 continue;
1747
1748 PathPieces::iterator NextI = I; ++NextI;
1749 if (NextI == E)
1750 return;
1751
1752 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(Val: NextI->get());
1753
1754 if (!PieceNextI)
1755 continue;
1756
1757 // Erase the second piece if it has the same exact message text.
1758 if (PieceI->getString() == PieceNextI->getString()) {
1759 path.erase(position: NextI);
1760 }
1761 }
1762}
1763
1764static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1765 OptimizedCallsSet &OCS) {
1766 bool hasChanges = false;
1767 const LocationContext *LC = C.getLocationContextFor(Path: &path);
1768 assert(LC);
1769 const ParentMap &PM = LC->getParentMap();
1770 const SourceManager &SM = C.getSourceManager();
1771
1772 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1773 // Optimize subpaths.
1774 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(Val: I->get())) {
1775 // Record the fact that a call has been optimized so we only do the
1776 // effort once.
1777 if (!OCS.count(V: CallI)) {
1778 while (optimizeEdges(C, path&: CallI->path, OCS)) {
1779 }
1780 OCS.insert(V: CallI);
1781 }
1782 ++I;
1783 continue;
1784 }
1785
1786 // Pattern match the current piece and its successor.
1787 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: I->get());
1788
1789 if (!PieceI) {
1790 ++I;
1791 continue;
1792 }
1793
1794 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1795 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1796 const Stmt *level1 = getStmtParent(S: s1Start, PM);
1797 const Stmt *level2 = getStmtParent(S: s1End, PM);
1798
1799 PathPieces::iterator NextI = I; ++NextI;
1800 if (NextI == E)
1801 break;
1802
1803 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(Val: NextI->get());
1804
1805 if (!PieceNextI) {
1806 ++I;
1807 continue;
1808 }
1809
1810 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1811 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1812 const Stmt *level3 = getStmtParent(S: s2Start, PM);
1813 const Stmt *level4 = getStmtParent(S: s2End, PM);
1814
1815 // Rule I.
1816 //
1817 // If we have two consecutive control edges whose end/begin locations
1818 // are at the same level (e.g. statements or top-level expressions within
1819 // a compound statement, or siblings share a single ancestor expression),
1820 // then merge them if they have no interesting intermediate event.
1821 //
1822 // For example:
1823 //
1824 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1825 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
1826 //
1827 // NOTE: this will be limited later in cases where we add barriers
1828 // to prevent this optimization.
1829 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1830 PieceI->setEndLocation(PieceNextI->getEndLocation());
1831 path.erase(position: NextI);
1832 hasChanges = true;
1833 continue;
1834 }
1835
1836 // Rule II.
1837 //
1838 // Eliminate edges between subexpressions and parent expressions
1839 // when the subexpression is consumed.
1840 //
1841 // NOTE: this will be limited later in cases where we add barriers
1842 // to prevent this optimization.
1843 if (s1End && s1End == s2Start && level2) {
1844 bool removeEdge = false;
1845 // Remove edges into the increment or initialization of a
1846 // loop that have no interleaving event. This means that
1847 // they aren't interesting.
1848 if (isIncrementOrInitInForLoop(S: s1End, FL: level2))
1849 removeEdge = true;
1850 // Next only consider edges that are not anchored on
1851 // the condition of a terminator. This are intermediate edges
1852 // that we might want to trim.
1853 else if (!isConditionForTerminator(S: level2, Cond: s1End)) {
1854 // Trim edges on expressions that are consumed by
1855 // the parent expression.
1856 if (isa<Expr>(Val: s1End) && PM.isConsumedExpr(E: cast<Expr>(Val: s1End))) {
1857 removeEdge = true;
1858 }
1859 // Trim edges where a lexical containment doesn't exist.
1860 // For example:
1861 //
1862 // X -> Y -> Z
1863 //
1864 // If 'Z' lexically contains Y (it is an ancestor) and
1865 // 'X' does not lexically contain Y (it is a descendant OR
1866 // it has no lexical relationship at all) then trim.
1867 //
1868 // This can eliminate edges where we dive into a subexpression
1869 // and then pop back out, etc.
1870 else if (s1Start && s2End &&
1871 lexicalContains(PM, X: s2Start, Y: s2End) &&
1872 !lexicalContains(PM, X: s1End, Y: s1Start)) {
1873 removeEdge = true;
1874 }
1875 // Trim edges from a subexpression back to the top level if the
1876 // subexpression is on a different line.
1877 //
1878 // A.1 -> A -> B
1879 // becomes
1880 // A.1 -> B
1881 //
1882 // These edges just look ugly and don't usually add anything.
1883 else if (s1Start && s2End &&
1884 lexicalContains(PM, X: s1Start, Y: s1End)) {
1885 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1886 PieceI->getStartLocation().asLocation());
1887 if (!getLengthOnSingleLine(SM, Range: EdgeRange))
1888 removeEdge = true;
1889 }
1890 }
1891
1892 if (removeEdge) {
1893 PieceI->setEndLocation(PieceNextI->getEndLocation());
1894 path.erase(position: NextI);
1895 hasChanges = true;
1896 continue;
1897 }
1898 }
1899
1900 // Optimize edges for ObjC fast-enumeration loops.
1901 //
1902 // (X -> collection) -> (collection -> element)
1903 //
1904 // becomes:
1905 //
1906 // (X -> element)
1907 if (s1End == s2Start) {
1908 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(Val: level3);
1909 if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1910 s2End == FS->getElement()) {
1911 PieceI->setEndLocation(PieceNextI->getEndLocation());
1912 path.erase(position: NextI);
1913 hasChanges = true;
1914 continue;
1915 }
1916 }
1917
1918 // No changes at this index? Move to the next one.
1919 ++I;
1920 }
1921
1922 if (!hasChanges) {
1923 // Adjust edges into subexpressions to make them more uniform
1924 // and aesthetically pleasing.
1925 addContextEdges(pieces&: path, LC);
1926 // Remove "cyclical" edges that include one or more context edges.
1927 removeContextCycles(Path&: path, SM);
1928 // Hoist edges originating from branch conditions to branches
1929 // for simple branches.
1930 simplifySimpleBranches(pieces&: path);
1931 // Remove any puny edges left over after primary optimization pass.
1932 removePunyEdges(path, SM, PM);
1933 // Remove identical events.
1934 removeIdenticalEvents(path);
1935 }
1936
1937 return hasChanges;
1938}
1939
1940/// Drop the very first edge in a path, which should be a function entry edge.
1941///
1942/// If the first edge is not a function entry edge (say, because the first
1943/// statement had an invalid source location), this function does nothing.
1944// FIXME: We should just generate invalid edges anyway and have the optimizer
1945// deal with them.
1946static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1947 PathPieces &Path) {
1948 const auto *FirstEdge =
1949 dyn_cast<PathDiagnosticControlFlowPiece>(Val: Path.front().get());
1950 if (!FirstEdge)
1951 return;
1952
1953 const Decl *D = C.getLocationContextFor(Path: &Path)->getDecl();
1954 PathDiagnosticLocation EntryLoc =
1955 PathDiagnosticLocation::createBegin(D, SM: C.getSourceManager());
1956 if (FirstEdge->getStartLocation() != EntryLoc)
1957 return;
1958
1959 Path.pop_front();
1960}
1961
1962/// Populate executes lines with lines containing at least one diagnostics.
1963static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1964
1965 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1966 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1967
1968 for (const auto &P : path) {
1969 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1970 FileID FID = Loc.getFileID();
1971 unsigned LineNo = Loc.getLineNumber();
1972 assert(FID.isValid());
1973 ExecutedLines[FID].insert(x: LineNo);
1974 }
1975}
1976
1977PathDiagnosticConstruct::PathDiagnosticConstruct(
1978 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1979 const PathSensitiveBugReport *R)
1980 : Consumer(PDC), CurrentNode(ErrorNode),
1981 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1982 PD(generateEmptyDiagnosticForReport(R, SM: getSourceManager())) {
1983 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1984}
1985
1986PathDiagnosticBuilder::PathDiagnosticBuilder(
1987 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1988 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1989 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1990 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1991 ErrorNode(ErrorNode),
1992 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1993
1994std::unique_ptr<PathDiagnostic>
1995PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1996 PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1997
1998 const SourceManager &SM = getSourceManager();
1999 const AnalyzerOptions &Opts = getAnalyzerOptions();
2000
2001 if (!PDC->shouldGenerateDiagnostics())
2002 return generateEmptyDiagnosticForReport(R, SM: getSourceManager());
2003
2004 // Construct the final (warning) event for the bug report.
2005 auto EndNotes = VisitorsDiagnostics->find(Val: ErrorNode);
2006 PathDiagnosticPieceRef LastPiece;
2007 if (EndNotes != VisitorsDiagnostics->end()) {
2008 assert(!EndNotes->second.empty());
2009 LastPiece = EndNotes->second[0];
2010 } else {
2011 LastPiece = BugReporterVisitor::getDefaultEndPath(BRC: *this, N: ErrorNode,
2012 BR: *getBugReport());
2013 }
2014 Construct.PD->setEndOfPath(LastPiece);
2015
2016 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2017 // From the error node to the root, ascend the bug path and construct the bug
2018 // report.
2019 while (Construct.ascendToPrevNode()) {
2020 generatePathDiagnosticsForNode(C&: Construct, PrevLoc);
2021
2022 auto VisitorNotes = VisitorsDiagnostics->find(Val: Construct.getCurrentNode());
2023 if (VisitorNotes == VisitorsDiagnostics->end())
2024 continue;
2025
2026 // This is a workaround due to inability to put shared PathDiagnosticPiece
2027 // into a FoldingSet.
2028 std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2029
2030 // Add pieces from custom visitors.
2031 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2032 llvm::FoldingSetNodeID ID;
2033 Note->Profile(ID);
2034 if (!DeduplicationSet.insert(x: ID).second)
2035 continue;
2036
2037 if (PDC->shouldAddPathEdges())
2038 addEdgeToPath(path&: Construct.getActivePath(), PrevLoc, NewLoc: Note->getLocation());
2039 updateStackPiecesWithMessage(P: Note, CallStack: Construct.CallStack);
2040 Construct.getActivePath().push_front(x: Note);
2041 }
2042 }
2043
2044 if (PDC->shouldAddPathEdges()) {
2045 // Add an edge to the start of the function.
2046 // We'll prune it out later, but it helps make diagnostics more uniform.
2047 const StackFrameContext *CalleeLC =
2048 Construct.getLocationContextForActivePath()->getStackFrame();
2049 const Decl *D = CalleeLC->getDecl();
2050 addEdgeToPath(path&: Construct.getActivePath(), PrevLoc,
2051 NewLoc: PathDiagnosticLocation::createBegin(D, SM));
2052 }
2053
2054
2055 // Finally, prune the diagnostic path of uninteresting stuff.
2056 if (!Construct.PD->path.empty()) {
2057 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2058 bool stillHasNotes =
2059 removeUnneededCalls(C: Construct, pieces&: Construct.getMutablePieces(), R);
2060 assert(stillHasNotes);
2061 (void)stillHasNotes;
2062 }
2063
2064 // Remove pop-up notes if needed.
2065 if (!Opts.ShouldAddPopUpNotes)
2066 removePopUpNotes(Path&: Construct.getMutablePieces());
2067
2068 // Redirect all call pieces to have valid locations.
2069 adjustCallLocations(Pieces&: Construct.getMutablePieces());
2070 removePiecesWithInvalidLocations(Pieces&: Construct.getMutablePieces());
2071
2072 if (PDC->shouldAddPathEdges()) {
2073
2074 // Reduce the number of edges from a very conservative set
2075 // to an aesthetically pleasing subset that conveys the
2076 // necessary information.
2077 OptimizedCallsSet OCS;
2078 while (optimizeEdges(C: Construct, path&: Construct.getMutablePieces(), OCS)) {
2079 }
2080
2081 // Drop the very first function-entry edge. It's not really necessary
2082 // for top-level functions.
2083 dropFunctionEntryEdge(C: Construct, Path&: Construct.getMutablePieces());
2084 }
2085
2086 // Remove messages that are basically the same, and edges that may not
2087 // make sense.
2088 // We have to do this after edge optimization in the Extensive mode.
2089 removeRedundantMsgs(path&: Construct.getMutablePieces());
2090 removeEdgesToDefaultInitializers(Pieces&: Construct.getMutablePieces());
2091 }
2092
2093 if (Opts.ShouldDisplayMacroExpansions)
2094 CompactMacroExpandedPieces(path&: Construct.getMutablePieces(), SM);
2095
2096 return std::move(Construct.PD);
2097}
2098
2099//===----------------------------------------------------------------------===//
2100// Methods for BugType and subclasses.
2101//===----------------------------------------------------------------------===//
2102
2103void BugType::anchor() {}
2104
2105//===----------------------------------------------------------------------===//
2106// Methods for BugReport and subclasses.
2107//===----------------------------------------------------------------------===//
2108
2109LLVM_ATTRIBUTE_USED static bool
2110isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2111 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2112 if (Pair.second == CheckerName)
2113 return true;
2114 }
2115 return false;
2116}
2117
2118LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2119 StringRef CheckerName) {
2120 for (const CheckerInfo &Checker : Registry.Checkers) {
2121 if (Checker.FullName == CheckerName)
2122 return Checker.IsHidden;
2123 }
2124 llvm_unreachable(
2125 "Checker name not found in CheckerRegistry -- did you retrieve it "
2126 "correctly from CheckerManager::getCurrentCheckerName?");
2127}
2128
2129PathSensitiveBugReport::PathSensitiveBugReport(
2130 const BugType &bt, StringRef shortDesc, StringRef desc,
2131 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2132 const Decl *DeclToUnique)
2133 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2134 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2135 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2136 assert(!isDependency(ErrorNode->getState()
2137 ->getAnalysisManager()
2138 .getCheckerManager()
2139 ->getCheckerRegistryData(),
2140 bt.getCheckerName()) &&
2141 "Some checkers depend on this one! We don't allow dependency "
2142 "checkers to emit warnings, because checkers should depend on "
2143 "*modeling*, not *diagnostics*.");
2144
2145 assert((bt.getCheckerName().starts_with("debug") ||
2146 !isHidden(ErrorNode->getState()
2147 ->getAnalysisManager()
2148 .getCheckerManager()
2149 ->getCheckerRegistryData(),
2150 bt.getCheckerName())) &&
2151 "Hidden checkers musn't emit diagnostics as they are by definition "
2152 "non-user facing!");
2153}
2154
2155void PathSensitiveBugReport::addVisitor(
2156 std::unique_ptr<BugReporterVisitor> visitor) {
2157 if (!visitor)
2158 return;
2159
2160 llvm::FoldingSetNodeID ID;
2161 visitor->Profile(ID);
2162
2163 void *InsertPos = nullptr;
2164 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2165 return;
2166 }
2167
2168 Callbacks.push_back(Elt: std::move(visitor));
2169}
2170
2171void PathSensitiveBugReport::clearVisitors() {
2172 Callbacks.clear();
2173}
2174
2175const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2176 const ExplodedNode *N = getErrorNode();
2177 if (!N)
2178 return nullptr;
2179
2180 const LocationContext *LC = N->getLocationContext();
2181 return LC->getStackFrame()->getDecl();
2182}
2183
2184void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2185 hash.AddInteger(I: static_cast<int>(getKind()));
2186 hash.AddPointer(Ptr: &BT);
2187 hash.AddString(String: Description);
2188 assert(Location.isValid());
2189 Location.Profile(ID&: hash);
2190
2191 for (SourceRange range : Ranges) {
2192 if (!range.isValid())
2193 continue;
2194 hash.Add(x: range.getBegin());
2195 hash.Add(x: range.getEnd());
2196 }
2197}
2198
2199void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2200 hash.AddInteger(I: static_cast<int>(getKind()));
2201 hash.AddPointer(Ptr: &BT);
2202 hash.AddString(String: Description);
2203 PathDiagnosticLocation UL = getUniqueingLocation();
2204 if (UL.isValid()) {
2205 UL.Profile(ID&: hash);
2206 } else {
2207 // TODO: The statement may be null if the report was emitted before any
2208 // statements were executed. In particular, some checkers by design
2209 // occasionally emit their reports in empty functions (that have no
2210 // statements in their body). Do we profile correctly in this case?
2211 hash.AddPointer(Ptr: ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2212 }
2213
2214 for (SourceRange range : Ranges) {
2215 if (!range.isValid())
2216 continue;
2217 hash.Add(x: range.getBegin());
2218 hash.Add(x: range.getEnd());
2219 }
2220}
2221
2222template <class T>
2223static void insertToInterestingnessMap(
2224 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2225 bugreporter::TrackingKind TKind) {
2226 auto Result = InterestingnessMap.insert({Val, TKind});
2227
2228 if (Result.second)
2229 return;
2230
2231 // Even if this symbol/region was already marked as interesting as a
2232 // condition, if we later mark it as interesting again but with
2233 // thorough tracking, overwrite it. Entities marked with thorough
2234 // interestiness are the most important (or most interesting, if you will),
2235 // and we wouldn't like to downplay their importance.
2236
2237 switch (TKind) {
2238 case bugreporter::TrackingKind::Thorough:
2239 Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2240 return;
2241 case bugreporter::TrackingKind::Condition:
2242 return;
2243 }
2244
2245 llvm_unreachable(
2246 "BugReport::markInteresting currently can only handle 2 different "
2247 "tracking kinds! Please define what tracking kind should this entitiy"
2248 "have, if it was already marked as interesting with a different kind!");
2249}
2250
2251void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2252 bugreporter::TrackingKind TKind) {
2253 if (!sym)
2254 return;
2255
2256 insertToInterestingnessMap(InterestingnessMap&: InterestingSymbols, Val: sym, TKind);
2257
2258 // FIXME: No tests exist for this code and it is questionable:
2259 // How to handle multiple metadata for the same region?
2260 if (const auto *meta = dyn_cast<SymbolMetadata>(Val: sym))
2261 markInteresting(R: meta->getRegion(), TKind);
2262}
2263
2264void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2265 if (!sym)
2266 return;
2267 InterestingSymbols.erase(Val: sym);
2268
2269 // The metadata part of markInteresting is not reversed here.
2270 // Just making the same region not interesting is incorrect
2271 // in specific cases.
2272 if (const auto *meta = dyn_cast<SymbolMetadata>(Val: sym))
2273 markNotInteresting(R: meta->getRegion());
2274}
2275
2276void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2277 bugreporter::TrackingKind TKind) {
2278 if (!R)
2279 return;
2280
2281 R = R->getBaseRegion();
2282 insertToInterestingnessMap(InterestingnessMap&: InterestingRegions, Val: R, TKind);
2283
2284 if (const auto *SR = dyn_cast<SymbolicRegion>(Val: R))
2285 markInteresting(sym: SR->getSymbol(), TKind);
2286}
2287
2288void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2289 if (!R)
2290 return;
2291
2292 R = R->getBaseRegion();
2293 InterestingRegions.erase(Val: R);
2294
2295 if (const auto *SR = dyn_cast<SymbolicRegion>(Val: R))
2296 markNotInteresting(sym: SR->getSymbol());
2297}
2298
2299void PathSensitiveBugReport::markInteresting(SVal V,
2300 bugreporter::TrackingKind TKind) {
2301 markInteresting(R: V.getAsRegion(), TKind);
2302 markInteresting(sym: V.getAsSymbol(), TKind);
2303}
2304
2305void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2306 if (!LC)
2307 return;
2308 InterestingLocationContexts.insert(Ptr: LC);
2309}
2310
2311std::optional<bugreporter::TrackingKind>
2312PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2313 auto RKind = getInterestingnessKind(R: V.getAsRegion());
2314 auto SKind = getInterestingnessKind(sym: V.getAsSymbol());
2315 if (!RKind)
2316 return SKind;
2317 if (!SKind)
2318 return RKind;
2319
2320 // If either is marked with throrough tracking, return that, we wouldn't like
2321 // to downplay a note's importance by 'only' mentioning it as a condition.
2322 switch(*RKind) {
2323 case bugreporter::TrackingKind::Thorough:
2324 return RKind;
2325 case bugreporter::TrackingKind::Condition:
2326 return SKind;
2327 }
2328
2329 llvm_unreachable(
2330 "BugReport::getInterestingnessKind currently can only handle 2 different "
2331 "tracking kinds! Please define what tracking kind should we return here "
2332 "when the kind of getAsRegion() and getAsSymbol() is different!");
2333 return std::nullopt;
2334}
2335
2336std::optional<bugreporter::TrackingKind>
2337PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2338 if (!sym)
2339 return std::nullopt;
2340 // We don't currently consider metadata symbols to be interesting
2341 // even if we know their region is interesting. Is that correct behavior?
2342 auto It = InterestingSymbols.find(Val: sym);
2343 if (It == InterestingSymbols.end())
2344 return std::nullopt;
2345 return It->getSecond();
2346}
2347
2348std::optional<bugreporter::TrackingKind>
2349PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2350 if (!R)
2351 return std::nullopt;
2352
2353 R = R->getBaseRegion();
2354 auto It = InterestingRegions.find(Val: R);
2355 if (It != InterestingRegions.end())
2356 return It->getSecond();
2357
2358 if (const auto *SR = dyn_cast<SymbolicRegion>(Val: R))
2359 return getInterestingnessKind(sym: SR->getSymbol());
2360 return std::nullopt;
2361}
2362
2363bool PathSensitiveBugReport::isInteresting(SVal V) const {
2364 return getInterestingnessKind(V).has_value();
2365}
2366
2367bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2368 return getInterestingnessKind(sym).has_value();
2369}
2370
2371bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2372 return getInterestingnessKind(R).has_value();
2373}
2374
2375bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const {
2376 if (!LC)
2377 return false;
2378 return InterestingLocationContexts.count(Ptr: LC);
2379}
2380
2381const Stmt *PathSensitiveBugReport::getStmt() const {
2382 if (!ErrorNode)
2383 return nullptr;
2384
2385 ProgramPoint ProgP = ErrorNode->getLocation();
2386 const Stmt *S = nullptr;
2387
2388 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2389 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2390 if (BE->getBlock() == &Exit)
2391 S = ErrorNode->getPreviousStmtForDiagnostics();
2392 }
2393 if (!S)
2394 S = ErrorNode->getStmtForDiagnostics();
2395
2396 return S;
2397}
2398
2399ArrayRef<SourceRange>
2400PathSensitiveBugReport::getRanges() const {
2401 // If no custom ranges, add the range of the statement corresponding to
2402 // the error node.
2403 if (Ranges.empty() && isa_and_nonnull<Expr>(Val: getStmt()))
2404 return ErrorNodeRange;
2405
2406 return Ranges;
2407}
2408
2409PathDiagnosticLocation
2410PathSensitiveBugReport::getLocation() const {
2411 assert(ErrorNode && "Cannot create a location with a null node.");
2412 const Stmt *S = ErrorNode->getStmtForDiagnostics();
2413 ProgramPoint P = ErrorNode->getLocation();
2414 const LocationContext *LC = P.getLocationContext();
2415 SourceManager &SM =
2416 ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2417
2418 if (!S) {
2419 // If this is an implicit call, return the implicit call point location.
2420 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2421 return PathDiagnosticLocation(PIE->getLocation(), SM);
2422 if (auto FE = P.getAs<FunctionExitPoint>()) {
2423 if (const ReturnStmt *RS = FE->getStmt())
2424 return PathDiagnosticLocation::createBegin(RS, SM, LC);
2425 }
2426 S = ErrorNode->getNextStmtForDiagnostics();
2427 }
2428
2429 if (S) {
2430 // Attributed statements usually have corrupted begin locations,
2431 // it's OK to ignore attributes for our purposes and deal with
2432 // the actual annotated statement.
2433 if (const auto *AS = dyn_cast<AttributedStmt>(Val: S))
2434 S = AS->getSubStmt();
2435
2436 // For member expressions, return the location of the '.' or '->'.
2437 if (const auto *ME = dyn_cast<MemberExpr>(Val: S))
2438 return PathDiagnosticLocation::createMemberLoc(ME, SM);
2439
2440 // For binary operators, return the location of the operator.
2441 if (const auto *B = dyn_cast<BinaryOperator>(Val: S))
2442 return PathDiagnosticLocation::createOperatorLoc(BO: B, SM);
2443
2444 if (P.getAs<PostStmtPurgeDeadSymbols>())
2445 return PathDiagnosticLocation::createEnd(S, SM, LAC: LC);
2446
2447 if (S->getBeginLoc().isValid())
2448 return PathDiagnosticLocation(S, SM, LC);
2449
2450 return PathDiagnosticLocation(
2451 PathDiagnosticLocation::getValidSourceLocation(S, LAC: LC), SM);
2452 }
2453
2454 return PathDiagnosticLocation::createDeclEnd(LC: ErrorNode->getLocationContext(),
2455 SM);
2456}
2457
2458//===----------------------------------------------------------------------===//
2459// Methods for BugReporter and subclasses.
2460//===----------------------------------------------------------------------===//
2461
2462const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2463 return Eng.getGraph();
2464}
2465
2466ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2467 return Eng.getStateManager();
2468}
2469
2470BugReporter::BugReporter(BugReporterData &D)
2471 : D(D), UserSuppressions(D.getASTContext()) {}
2472
2473BugReporter::~BugReporter() {
2474 // Make sure reports are flushed.
2475 assert(StrBugTypes.empty() &&
2476 "Destroying BugReporter before diagnostics are emitted!");
2477
2478 // Free the bug reports we are tracking.
2479 for (const auto I : EQClassesVector)
2480 delete I;
2481}
2482
2483void BugReporter::FlushReports() {
2484 // We need to flush reports in deterministic order to ensure the order
2485 // of the reports is consistent between runs.
2486 for (const auto EQ : EQClassesVector)
2487 FlushReport(EQ&: *EQ);
2488
2489 // BugReporter owns and deletes only BugTypes created implicitly through
2490 // EmitBasicReport.
2491 // FIXME: There are leaks from checkers that assume that the BugTypes they
2492 // create will be destroyed by the BugReporter.
2493 StrBugTypes.clear();
2494}
2495
2496//===----------------------------------------------------------------------===//
2497// PathDiagnostics generation.
2498//===----------------------------------------------------------------------===//
2499
2500namespace {
2501
2502/// A wrapper around an ExplodedGraph that contains a single path from the root
2503/// to the error node.
2504class BugPathInfo {
2505public:
2506 std::unique_ptr<ExplodedGraph> BugPath;
2507 PathSensitiveBugReport *Report;
2508 const ExplodedNode *ErrorNode;
2509};
2510
2511/// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2512/// conveniently retrieve bug paths from a single error node to the root.
2513class BugPathGetter {
2514 std::unique_ptr<ExplodedGraph> TrimmedGraph;
2515
2516 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2517
2518 /// Assign each node with its distance from the root.
2519 PriorityMapTy PriorityMap;
2520
2521 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2522 /// we need to pair it to the error node of the constructed trimmed graph.
2523 using ReportNewNodePair =
2524 std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2525 SmallVector<ReportNewNodePair, 32> ReportNodes;
2526
2527 BugPathInfo CurrentBugPath;
2528
2529 /// A helper class for sorting ExplodedNodes by priority.
2530 template <bool Descending>
2531 class PriorityCompare {
2532 const PriorityMapTy &PriorityMap;
2533
2534 public:
2535 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2536
2537 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2538 PriorityMapTy::const_iterator LI = PriorityMap.find(Val: LHS);
2539 PriorityMapTy::const_iterator RI = PriorityMap.find(Val: RHS);
2540 PriorityMapTy::const_iterator E = PriorityMap.end();
2541
2542 if (LI == E)
2543 return Descending;
2544 if (RI == E)
2545 return !Descending;
2546
2547 return Descending ? LI->second > RI->second
2548 : LI->second < RI->second;
2549 }
2550
2551 bool operator()(const ReportNewNodePair &LHS,
2552 const ReportNewNodePair &RHS) const {
2553 return (*this)(LHS.second, RHS.second);
2554 }
2555 };
2556
2557public:
2558 BugPathGetter(const ExplodedGraph *OriginalGraph,
2559 ArrayRef<PathSensitiveBugReport *> &bugReports);
2560
2561 BugPathInfo *getNextBugPath();
2562};
2563
2564} // namespace
2565
2566BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2567 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2568 SmallVector<const ExplodedNode *, 32> Nodes;
2569 for (const auto I : bugReports) {
2570 assert(I->isValid() &&
2571 "We only allow BugReporterVisitors and BugReporter itself to "
2572 "invalidate reports!");
2573 Nodes.emplace_back(Args: I->getErrorNode());
2574 }
2575
2576 // The trimmed graph is created in the body of the constructor to ensure
2577 // that the DenseMaps have been initialized already.
2578 InterExplodedGraphMap ForwardMap;
2579 TrimmedGraph = OriginalGraph->trim(Nodes, ForwardMap: &ForwardMap);
2580
2581 // Find the (first) error node in the trimmed graph. We just need to consult
2582 // the node map which maps from nodes in the original graph to nodes
2583 // in the new graph.
2584 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2585
2586 for (PathSensitiveBugReport *Report : bugReports) {
2587 const ExplodedNode *NewNode = ForwardMap.lookup(Val: Report->getErrorNode());
2588 assert(NewNode &&
2589 "Failed to construct a trimmed graph that contains this error "
2590 "node!");
2591 ReportNodes.emplace_back(Args&: Report, Args&: NewNode);
2592 RemainingNodes.insert(Ptr: NewNode);
2593 }
2594
2595 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2596
2597 // Perform a forward BFS to find all the shortest paths.
2598 std::queue<const ExplodedNode *> WS;
2599
2600 assert(TrimmedGraph->num_roots() == 1);
2601 WS.push(x: *TrimmedGraph->roots_begin());
2602 unsigned Priority = 0;
2603
2604 while (!WS.empty()) {
2605 const ExplodedNode *Node = WS.front();
2606 WS.pop();
2607
2608 PriorityMapTy::iterator PriorityEntry;
2609 bool IsNew;
2610 std::tie(args&: PriorityEntry, args&: IsNew) = PriorityMap.insert(KV: {Node, Priority});
2611 ++Priority;
2612
2613 if (!IsNew) {
2614 assert(PriorityEntry->second <= Priority);
2615 continue;
2616 }
2617
2618 if (RemainingNodes.erase(Ptr: Node))
2619 if (RemainingNodes.empty())
2620 break;
2621
2622 for (const ExplodedNode *Succ : Node->succs())
2623 WS.push(x: Succ);
2624 }
2625
2626 // Sort the error paths from longest to shortest.
2627 llvm::sort(C&: ReportNodes, Comp: PriorityCompare<true>(PriorityMap));
2628}
2629
2630BugPathInfo *BugPathGetter::getNextBugPath() {
2631 if (ReportNodes.empty())
2632 return nullptr;
2633
2634 const ExplodedNode *OrigN;
2635 std::tie(args&: CurrentBugPath.Report, args&: OrigN) = ReportNodes.pop_back_val();
2636 assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2637
2638 // Create a new graph with a single path. This is the graph that will be
2639 // returned to the caller.
2640 auto GNew = std::make_unique<ExplodedGraph>();
2641
2642 // Now walk from the error node up the BFS path, always taking the
2643 // predeccessor with the lowest number.
2644 ExplodedNode *Succ = nullptr;
2645 while (true) {
2646 // Create the equivalent node in the new graph with the same state
2647 // and location.
2648 ExplodedNode *NewN = GNew->createUncachedNode(
2649 L: OrigN->getLocation(), State: OrigN->getState(),
2650 Id: OrigN->getID(), IsSink: OrigN->isSink());
2651
2652 // Link up the new node with the previous node.
2653 if (Succ)
2654 Succ->addPredecessor(V: NewN, G&: *GNew);
2655 else
2656 CurrentBugPath.ErrorNode = NewN;
2657
2658 Succ = NewN;
2659
2660 // Are we at the final node?
2661 if (OrigN->pred_empty()) {
2662 GNew->addRoot(V: NewN);
2663 break;
2664 }
2665
2666 // Find the next predeccessor node. We choose the node that is marked
2667 // with the lowest BFS number.
2668 OrigN = *std::min_element(first: OrigN->pred_begin(), last: OrigN->pred_end(),
2669 comp: PriorityCompare<false>(PriorityMap));
2670 }
2671
2672 CurrentBugPath.BugPath = std::move(GNew);
2673
2674 return &CurrentBugPath;
2675}
2676
2677/// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2678/// object and collapses PathDiagosticPieces that are expanded by macros.
2679static void CompactMacroExpandedPieces(PathPieces &path,
2680 const SourceManager& SM) {
2681 using MacroStackTy = std::vector<
2682 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2683
2684 using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2685
2686 MacroStackTy MacroStack;
2687 PiecesTy Pieces;
2688
2689 for (PathPieces::const_iterator I = path.begin(), E = path.end();
2690 I != E; ++I) {
2691 const auto &piece = *I;
2692
2693 // Recursively compact calls.
2694 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(Val: &*piece)) {
2695 CompactMacroExpandedPieces(path&: call->path, SM);
2696 }
2697
2698 // Get the location of the PathDiagnosticPiece.
2699 const FullSourceLoc Loc = piece->getLocation().asLocation();
2700
2701 // Determine the instantiation location, which is the location we group
2702 // related PathDiagnosticPieces.
2703 SourceLocation InstantiationLoc = Loc.isMacroID() ?
2704 SM.getExpansionLoc(Loc) :
2705 SourceLocation();
2706
2707 if (Loc.isFileID()) {
2708 MacroStack.clear();
2709 Pieces.push_back(x: piece);
2710 continue;
2711 }
2712
2713 assert(Loc.isMacroID());
2714
2715 // Is the PathDiagnosticPiece within the same macro group?
2716 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2717 MacroStack.back().first->subPieces.push_back(x: piece);
2718 continue;
2719 }
2720
2721 // We aren't in the same group. Are we descending into a new macro
2722 // or are part of an old one?
2723 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2724
2725 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2726 SM.getExpansionLoc(Loc) :
2727 SourceLocation();
2728
2729 // Walk the entire macro stack.
2730 while (!MacroStack.empty()) {
2731 if (InstantiationLoc == MacroStack.back().second) {
2732 MacroGroup = MacroStack.back().first;
2733 break;
2734 }
2735
2736 if (ParentInstantiationLoc == MacroStack.back().second) {
2737 MacroGroup = MacroStack.back().first;
2738 break;
2739 }
2740
2741 MacroStack.pop_back();
2742 }
2743
2744 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2745 // Create a new macro group and add it to the stack.
2746 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2747 args: PathDiagnosticLocation::createSingleLocation(PDL: piece->getLocation()));
2748
2749 if (MacroGroup)
2750 MacroGroup->subPieces.push_back(x: NewGroup);
2751 else {
2752 assert(InstantiationLoc.isFileID());
2753 Pieces.push_back(x: NewGroup);
2754 }
2755
2756 MacroGroup = NewGroup;
2757 MacroStack.push_back(x: std::make_pair(x&: MacroGroup, y&: InstantiationLoc));
2758 }
2759
2760 // Finally, add the PathDiagnosticPiece to the group.
2761 MacroGroup->subPieces.push_back(x: piece);
2762 }
2763
2764 // Now take the pieces and construct a new PathDiagnostic.
2765 path.clear();
2766
2767 path.insert(position: path.end(), first: Pieces.begin(), last: Pieces.end());
2768}
2769
2770/// Generate notes from all visitors.
2771/// Notes associated with @c ErrorNode are generated using
2772/// @c getEndPath, and the rest are generated with @c VisitNode.
2773static std::unique_ptr<VisitorsDiagnosticsTy>
2774generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2775 const ExplodedNode *ErrorNode,
2776 BugReporterContext &BRC) {
2777 std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2778 std::make_unique<VisitorsDiagnosticsTy>();
2779 PathSensitiveBugReport::VisitorList visitors;
2780
2781 // Run visitors on all nodes starting from the node *before* the last one.
2782 // The last node is reserved for notes generated with @c getEndPath.
2783 const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2784 while (NextNode) {
2785
2786 // At each iteration, move all visitors from report to visitor list. This is
2787 // important, because the Profile() functions of the visitors make sure that
2788 // a visitor isn't added multiple times for the same node, but it's fine
2789 // to add the a visitor with Profile() for different nodes (e.g. tracking
2790 // a region at different points of the symbolic execution).
2791 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2792 visitors.push_back(Elt: std::move(Visitor));
2793
2794 R->clearVisitors();
2795
2796 const ExplodedNode *Pred = NextNode->getFirstPred();
2797 if (!Pred) {
2798 PathDiagnosticPieceRef LastPiece;
2799 for (auto &V : visitors) {
2800 V->finalizeVisitor(BRC, EndPathNode: ErrorNode, BR&: *R);
2801
2802 if (auto Piece = V->getEndPath(BRC, N: ErrorNode, BR&: *R)) {
2803 assert(!LastPiece &&
2804 "There can only be one final piece in a diagnostic.");
2805 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2806 "The final piece must contain a message!");
2807 LastPiece = std::move(Piece);
2808 (*Notes)[ErrorNode].push_back(x: LastPiece);
2809 }
2810 }
2811 break;
2812 }
2813
2814 for (auto &V : visitors) {
2815 auto P = V->VisitNode(Succ: NextNode, BRC, BR&: *R);
2816 if (P)
2817 (*Notes)[NextNode].push_back(x: std::move(P));
2818 }
2819
2820 if (!R->isValid())
2821 break;
2822
2823 NextNode = Pred;
2824 }
2825
2826 return Notes;
2827}
2828
2829std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2830 ArrayRef<PathSensitiveBugReport *> &bugReports,
2831 PathSensitiveBugReporter &Reporter) {
2832
2833 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2834
2835 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2836 // Find the BugReport with the original location.
2837 PathSensitiveBugReport *R = BugPath->Report;
2838 assert(R && "No original report found for sliced graph.");
2839 assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2840 const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2841
2842 // Register refutation visitors first, if they mark the bug invalid no
2843 // further analysis is required
2844 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2845
2846 // Register additional node visitors.
2847 R->addVisitor<NilReceiverBRVisitor>();
2848 R->addVisitor<ConditionBRVisitor>();
2849 R->addVisitor<TagVisitor>();
2850
2851 BugReporterContext BRC(Reporter);
2852
2853 // Run all visitors on a given graph, once.
2854 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2855 generateVisitorsDiagnostics(R, ErrorNode, BRC);
2856
2857 if (R->isValid()) {
2858 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2859 // If crosscheck is enabled, remove all visitors, add the refutation
2860 // visitor and check again
2861 R->clearVisitors();
2862 R->addVisitor<FalsePositiveRefutationBRVisitor>();
2863
2864 // We don't overwrite the notes inserted by other visitors because the
2865 // refutation manager does not add any new note to the path
2866 generateVisitorsDiagnostics(R, ErrorNode: BugPath->ErrorNode, BRC);
2867 }
2868
2869 // Check if the bug is still valid
2870 if (R->isValid())
2871 return PathDiagnosticBuilder(
2872 std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2873 BugPath->ErrorNode, std::move(visitorNotes));
2874 }
2875 }
2876
2877 return {};
2878}
2879
2880std::unique_ptr<DiagnosticForConsumerMapTy>
2881PathSensitiveBugReporter::generatePathDiagnostics(
2882 ArrayRef<PathDiagnosticConsumer *> consumers,
2883 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2884 assert(!bugReports.empty());
2885
2886 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2887
2888 std::optional<PathDiagnosticBuilder> PDB =
2889 PathDiagnosticBuilder::findValidReport(bugReports, Reporter&: *this);
2890
2891 if (PDB) {
2892 for (PathDiagnosticConsumer *PC : consumers) {
2893 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PDC: PC)) {
2894 (*Out)[PC] = std::move(PD);
2895 }
2896 }
2897 }
2898
2899 return Out;
2900}
2901
2902void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2903 bool ValidSourceLoc = R->getLocation().isValid();
2904 assert(ValidSourceLoc);
2905 // If we mess up in a release build, we'd still prefer to just drop the bug
2906 // instead of trying to go on.
2907 if (!ValidSourceLoc)
2908 return;
2909
2910 // If the user asked to suppress this report, we should skip it.
2911 if (UserSuppressions.isSuppressed(*R))
2912 return;
2913
2914 // Compute the bug report's hash to determine its equivalence class.
2915 llvm::FoldingSetNodeID ID;
2916 R->Profile(hash&: ID);
2917
2918 // Lookup the equivance class. If there isn't one, create it.
2919 void *InsertPos;
2920 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2921
2922 if (!EQ) {
2923 EQ = new BugReportEquivClass(std::move(R));
2924 EQClasses.InsertNode(N: EQ, InsertPos);
2925 EQClassesVector.push_back(x: EQ);
2926 } else
2927 EQ->AddReport(R: std::move(R));
2928}
2929
2930void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2931 if (auto PR = dyn_cast<PathSensitiveBugReport>(Val: R.get()))
2932 if (const ExplodedNode *E = PR->getErrorNode()) {
2933 // An error node must either be a sink or have a tag, otherwise
2934 // it could get reclaimed before the path diagnostic is created.
2935 assert((E->isSink() || E->getLocation().getTag()) &&
2936 "Error node must either be a sink or have a tag");
2937
2938 const AnalysisDeclContext *DeclCtx =
2939 E->getLocationContext()->getAnalysisDeclContext();
2940 // The source of autosynthesized body can be handcrafted AST or a model
2941 // file. The locations from handcrafted ASTs have no valid source
2942 // locations and have to be discarded. Locations from model files should
2943 // be preserved for processing and reporting.
2944 if (DeclCtx->isBodyAutosynthesized() &&
2945 !DeclCtx->isBodyAutosynthesizedFromModelFile())
2946 return;
2947 }
2948
2949 BugReporter::emitReport(R: std::move(R));
2950}
2951
2952//===----------------------------------------------------------------------===//
2953// Emitting reports in equivalence classes.
2954//===----------------------------------------------------------------------===//
2955
2956namespace {
2957
2958struct FRIEC_WLItem {
2959 const ExplodedNode *N;
2960 ExplodedNode::const_succ_iterator I, E;
2961
2962 FRIEC_WLItem(const ExplodedNode *n)
2963 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2964};
2965
2966} // namespace
2967
2968BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2969 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2970 // If we don't need to suppress any of the nodes because they are
2971 // post-dominated by a sink, simply add all the nodes in the equivalence class
2972 // to 'Nodes'. Any of the reports will serve as a "representative" report.
2973 assert(EQ.getReports().size() > 0);
2974 const BugType& BT = EQ.getReports()[0]->getBugType();
2975 if (!BT.isSuppressOnSink()) {
2976 BugReport *R = EQ.getReports()[0].get();
2977 for (auto &J : EQ.getReports()) {
2978 if (auto *PR = dyn_cast<PathSensitiveBugReport>(Val: J.get())) {
2979 R = PR;
2980 bugReports.push_back(Elt: PR);
2981 }
2982 }
2983 return R;
2984 }
2985
2986 // For bug reports that should be suppressed when all paths are post-dominated
2987 // by a sink node, iterate through the reports in the equivalence class
2988 // until we find one that isn't post-dominated (if one exists). We use a
2989 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
2990 // this as a recursive function, but we don't want to risk blowing out the
2991 // stack for very long paths.
2992 BugReport *exampleReport = nullptr;
2993
2994 for (const auto &I: EQ.getReports()) {
2995 auto *R = dyn_cast<PathSensitiveBugReport>(Val: I.get());
2996 if (!R)
2997 continue;
2998
2999 const ExplodedNode *errorNode = R->getErrorNode();
3000 if (errorNode->isSink()) {
3001 llvm_unreachable(
3002 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3003 }
3004 // No successors? By definition this nodes isn't post-dominated by a sink.
3005 if (errorNode->succ_empty()) {
3006 bugReports.push_back(Elt: R);
3007 if (!exampleReport)
3008 exampleReport = R;
3009 continue;
3010 }
3011
3012 // See if we are in a no-return CFG block. If so, treat this similarly
3013 // to being post-dominated by a sink. This works better when the analysis
3014 // is incomplete and we have never reached the no-return function call(s)
3015 // that we'd inevitably bump into on this path.
3016 if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3017 if (ErrorB->isInevitablySinking())
3018 continue;
3019
3020 // At this point we know that 'N' is not a sink and it has at least one
3021 // successor. Use a DFS worklist to find a non-sink end-of-path node.
3022 using WLItem = FRIEC_WLItem;
3023 using DFSWorkList = SmallVector<WLItem, 10>;
3024
3025 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3026
3027 DFSWorkList WL;
3028 WL.push_back(Elt: errorNode);
3029 Visited[errorNode] = 1;
3030
3031 while (!WL.empty()) {
3032 WLItem &WI = WL.back();
3033 assert(!WI.N->succ_empty());
3034
3035 for (; WI.I != WI.E; ++WI.I) {
3036 const ExplodedNode *Succ = *WI.I;
3037 // End-of-path node?
3038 if (Succ->succ_empty()) {
3039 // If we found an end-of-path node that is not a sink.
3040 if (!Succ->isSink()) {
3041 bugReports.push_back(Elt: R);
3042 if (!exampleReport)
3043 exampleReport = R;
3044 WL.clear();
3045 break;
3046 }
3047 // Found a sink? Continue on to the next successor.
3048 continue;
3049 }
3050 // Mark the successor as visited. If it hasn't been explored,
3051 // enqueue it to the DFS worklist.
3052 unsigned &mark = Visited[Succ];
3053 if (!mark) {
3054 mark = 1;
3055 WL.push_back(Elt: Succ);
3056 break;
3057 }
3058 }
3059
3060 // The worklist may have been cleared at this point. First
3061 // check if it is empty before checking the last item.
3062 if (!WL.empty() && &WL.back() == &WI)
3063 WL.pop_back();
3064 }
3065 }
3066
3067 // ExampleReport will be NULL if all the nodes in the equivalence class
3068 // were post-dominated by sinks.
3069 return exampleReport;
3070}
3071
3072void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3073 SmallVector<BugReport*, 10> bugReports;
3074 BugReport *report = findReportInEquivalenceClass(eqClass&: EQ, bugReports);
3075 if (!report)
3076 return;
3077
3078 // See whether we need to silence the checker/package.
3079 for (const std::string &CheckerOrPackage :
3080 getAnalyzerOptions().SilencedCheckersAndPackages) {
3081 if (report->getBugType().getCheckerName().starts_with(Prefix: CheckerOrPackage))
3082 return;
3083 }
3084
3085 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3086 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3087 generateDiagnosticForConsumerMap(exampleReport: report, consumers: Consumers, bugReports);
3088
3089 for (auto &P : *Diagnostics) {
3090 PathDiagnosticConsumer *Consumer = P.first;
3091 std::unique_ptr<PathDiagnostic> &PD = P.second;
3092
3093 // If the path is empty, generate a single step path with the location
3094 // of the issue.
3095 if (PD->path.empty()) {
3096 PathDiagnosticLocation L = report->getLocation();
3097 auto piece = std::make_unique<PathDiagnosticEventPiece>(
3098 args&: L, args: report->getDescription());
3099 for (SourceRange Range : report->getRanges())
3100 piece->addRange(R: Range);
3101 PD->setEndOfPath(std::move(piece));
3102 }
3103
3104 PathPieces &Pieces = PD->getMutablePieces();
3105 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3106 // For path diagnostic consumers that don't support extra notes,
3107 // we may optionally convert those to path notes.
3108 for (const auto &I : llvm::reverse(C: report->getNotes())) {
3109 PathDiagnosticNotePiece *Piece = I.get();
3110 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3111 args: Piece->getLocation(), args: Piece->getString());
3112 for (const auto &R: Piece->getRanges())
3113 ConvertedPiece->addRange(R);
3114
3115 Pieces.push_front(x: std::move(ConvertedPiece));
3116 }
3117 } else {
3118 for (const auto &I : llvm::reverse(C: report->getNotes()))
3119 Pieces.push_front(x: I);
3120 }
3121
3122 for (const auto &I : report->getFixits())
3123 Pieces.back()->addFixit(F: I);
3124
3125 updateExecutedLinesWithDiagnosticPieces(PD&: *PD);
3126 Consumer->HandlePathDiagnostic(D: std::move(PD));
3127 }
3128}
3129
3130/// Insert all lines participating in the function signature \p Signature
3131/// into \p ExecutedLines.
3132static void populateExecutedLinesWithFunctionSignature(
3133 const Decl *Signature, const SourceManager &SM,
3134 FilesToLineNumsMap &ExecutedLines) {
3135 SourceRange SignatureSourceRange;
3136 const Stmt* Body = Signature->getBody();
3137 if (const auto FD = dyn_cast<FunctionDecl>(Val: Signature)) {
3138 SignatureSourceRange = FD->getSourceRange();
3139 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Val: Signature)) {
3140 SignatureSourceRange = OD->getSourceRange();
3141 } else {
3142 return;
3143 }
3144 SourceLocation Start = SignatureSourceRange.getBegin();
3145 SourceLocation End = Body ? Body->getSourceRange().getBegin()
3146 : SignatureSourceRange.getEnd();
3147 if (!Start.isValid() || !End.isValid())
3148 return;
3149 unsigned StartLine = SM.getExpansionLineNumber(Loc: Start);
3150 unsigned EndLine = SM.getExpansionLineNumber(Loc: End);
3151
3152 FileID FID = SM.getFileID(SpellingLoc: SM.getExpansionLoc(Loc: Start));
3153 for (unsigned Line = StartLine; Line <= EndLine; Line++)
3154 ExecutedLines[FID].insert(x: Line);
3155}
3156
3157static void populateExecutedLinesWithStmt(
3158 const Stmt *S, const SourceManager &SM,
3159 FilesToLineNumsMap &ExecutedLines) {
3160 SourceLocation Loc = S->getSourceRange().getBegin();
3161 if (!Loc.isValid())
3162 return;
3163 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3164 FileID FID = SM.getFileID(SpellingLoc: ExpansionLoc);
3165 unsigned LineNo = SM.getExpansionLineNumber(Loc: ExpansionLoc);
3166 ExecutedLines[FID].insert(x: LineNo);
3167}
3168
3169/// \return all executed lines including function signatures on the path
3170/// starting from \p N.
3171static std::unique_ptr<FilesToLineNumsMap>
3172findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3173 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3174
3175 while (N) {
3176 if (N->getFirstPred() == nullptr) {
3177 // First node: show signature of the entrance point.
3178 const Decl *D = N->getLocationContext()->getDecl();
3179 populateExecutedLinesWithFunctionSignature(Signature: D, SM, ExecutedLines&: *ExecutedLines);
3180 } else if (auto CE = N->getLocationAs<CallEnter>()) {
3181 // Inlined function: show signature.
3182 const Decl* D = CE->getCalleeContext()->getDecl();
3183 populateExecutedLinesWithFunctionSignature(Signature: D, SM, ExecutedLines&: *ExecutedLines);
3184 } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3185 populateExecutedLinesWithStmt(S, SM, ExecutedLines&: *ExecutedLines);
3186
3187 // Show extra context for some parent kinds.
3188 const Stmt *P = N->getParentMap().getParent(S);
3189
3190 // The path exploration can die before the node with the associated
3191 // return statement is generated, but we do want to show the whole
3192 // return.
3193 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(Val: P)) {
3194 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3195 P = N->getParentMap().getParent(RS);
3196 }
3197
3198 if (isa_and_nonnull<SwitchCase, LabelStmt>(Val: P))
3199 populateExecutedLinesWithStmt(S: P, SM, ExecutedLines&: *ExecutedLines);
3200 }
3201
3202 N = N->getFirstPred();
3203 }
3204 return ExecutedLines;
3205}
3206
3207std::unique_ptr<DiagnosticForConsumerMapTy>
3208BugReporter::generateDiagnosticForConsumerMap(
3209 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3210 ArrayRef<BugReport *> bugReports) {
3211 auto *basicReport = cast<BasicBugReport>(Val: exampleReport);
3212 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3213 for (auto *Consumer : consumers)
3214 (*Out)[Consumer] = generateDiagnosticForBasicReport(R: basicReport);
3215 return Out;
3216}
3217
3218static PathDiagnosticCallPiece *
3219getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3220 const SourceManager &SMgr) {
3221 SourceLocation CallLoc = CP->callEnter.asLocation();
3222
3223 // If the call is within a macro, don't do anything (for now).
3224 if (CallLoc.isMacroID())
3225 return nullptr;
3226
3227 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3228 "The call piece should not be in a header file.");
3229
3230 // Check if CP represents a path through a function outside of the main file.
3231 if (!AnalysisManager::isInCodeFile(SL: CP->callEnterWithin.asLocation(), SM: SMgr))
3232 return CP;
3233
3234 const PathPieces &Path = CP->path;
3235 if (Path.empty())
3236 return nullptr;
3237
3238 // Check if the last piece in the callee path is a call to a function outside
3239 // of the main file.
3240 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Val: Path.back().get()))
3241 return getFirstStackedCallToHeaderFile(CP: CPInner, SMgr);
3242
3243 // Otherwise, the last piece is in the main file.
3244 return nullptr;
3245}
3246
3247static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3248 if (PD.path.empty())
3249 return;
3250
3251 PathDiagnosticPiece *LastP = PD.path.back().get();
3252 assert(LastP);
3253 const SourceManager &SMgr = LastP->getLocation().getManager();
3254
3255 // We only need to check if the report ends inside headers, if the last piece
3256 // is a call piece.
3257 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(Val: LastP)) {
3258 CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3259 if (CP) {
3260 // Mark the piece.
3261 CP->setAsLastInMainSourceFile();
3262
3263 // Update the path diagnostic message.
3264 const auto *ND = dyn_cast<NamedDecl>(Val: CP->getCallee());
3265 if (ND) {
3266 SmallString<200> buf;
3267 llvm::raw_svector_ostream os(buf);
3268 os << " (within a call to '" << ND->getDeclName() << "')";
3269 PD.appendToDesc(S: os.str());
3270 }
3271
3272 // Reset the report containing declaration and location.
3273 PD.setDeclWithIssue(CP->getCaller());
3274 PD.setLocation(CP->getLocation());
3275
3276 return;
3277 }
3278 }
3279}
3280
3281
3282
3283std::unique_ptr<DiagnosticForConsumerMapTy>
3284PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3285 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3286 ArrayRef<BugReport *> bugReports) {
3287 std::vector<BasicBugReport *> BasicBugReports;
3288 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3289 if (isa<BasicBugReport>(Val: exampleReport))
3290 return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3291 consumers, bugReports);
3292
3293 // Generate the full path sensitive diagnostic, using the generation scheme
3294 // specified by the PathDiagnosticConsumer. Note that we have to generate
3295 // path diagnostics even for consumers which do not support paths, because
3296 // the BugReporterVisitors may mark this bug as a false positive.
3297 assert(!bugReports.empty());
3298 MaxBugClassSize.updateMax(V: bugReports.size());
3299
3300 // Avoid copying the whole array because there may be a lot of reports.
3301 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3302 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3303 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3304 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3305 consumers, bugReports&: convertedArrayOfReports);
3306
3307 if (Out->empty())
3308 return Out;
3309
3310 MaxValidBugClassSize.updateMax(V: bugReports.size());
3311
3312 // Examine the report and see if the last piece is in a header. Reset the
3313 // report location to the last piece in the main source file.
3314 const AnalyzerOptions &Opts = getAnalyzerOptions();
3315 for (auto const &P : *Out)
3316 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3317 resetDiagnosticLocationToMainFile(PD&: *P.second);
3318
3319 return Out;
3320}
3321
3322void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3323 const CheckerBase *Checker, StringRef Name,
3324 StringRef Category, StringRef Str,
3325 PathDiagnosticLocation Loc,
3326 ArrayRef<SourceRange> Ranges,
3327 ArrayRef<FixItHint> Fixits) {
3328 EmitBasicReport(DeclWithIssue, CheckerName: Checker->getCheckerName(), BugName: Name, BugCategory: Category, BugStr: Str,
3329 Loc, Ranges, Fixits);
3330}
3331
3332void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3333 CheckerNameRef CheckName,
3334 StringRef name, StringRef category,
3335 StringRef str, PathDiagnosticLocation Loc,
3336 ArrayRef<SourceRange> Ranges,
3337 ArrayRef<FixItHint> Fixits) {
3338 // 'BT' is owned by BugReporter.
3339 BugType *BT = getBugTypeForName(CheckerName: CheckName, name, category);
3340 auto R = std::make_unique<BasicBugReport>(args&: *BT, args&: str, args&: Loc);
3341 R->setDeclWithIssue(DeclWithIssue);
3342 for (const auto &SR : Ranges)
3343 R->addRange(R: SR);
3344 for (const auto &FH : Fixits)
3345 R->addFixItHint(F: FH);
3346 emitReport(R: std::move(R));
3347}
3348
3349BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3350 StringRef name, StringRef category) {
3351 SmallString<136> fullDesc;
3352 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3353 << ":" << category;
3354 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3355 if (!BT)
3356 BT = std::make_unique<BugType>(args&: CheckName, args&: name, args&: category);
3357 return BT.get();
3358}
3359

source code of clang/lib/StaticAnalyzer/Core/BugReporter.cpp