1 | //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains definitons for the AST differencing interface. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Tooling/ASTDiff/ASTDiff.h" |
14 | #include "clang/AST/ParentMapContext.h" |
15 | #include "clang/AST/RecursiveASTVisitor.h" |
16 | #include "clang/Basic/SourceManager.h" |
17 | #include "clang/Lex/Lexer.h" |
18 | #include "llvm/ADT/PriorityQueue.h" |
19 | |
20 | #include <limits> |
21 | #include <memory> |
22 | #include <optional> |
23 | #include <unordered_set> |
24 | |
25 | using namespace llvm; |
26 | using namespace clang; |
27 | |
28 | namespace clang { |
29 | namespace diff { |
30 | |
31 | namespace { |
32 | /// Maps nodes of the left tree to ones on the right, and vice versa. |
33 | class Mapping { |
34 | public: |
35 | Mapping() = default; |
36 | Mapping(Mapping &&Other) = default; |
37 | Mapping &operator=(Mapping &&Other) = default; |
38 | |
39 | Mapping(size_t Size) { |
40 | SrcToDst = std::make_unique<NodeId[]>(num: Size); |
41 | DstToSrc = std::make_unique<NodeId[]>(num: Size); |
42 | } |
43 | |
44 | void link(NodeId Src, NodeId Dst) { |
45 | SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; |
46 | } |
47 | |
48 | NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } |
49 | NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } |
50 | bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } |
51 | bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } |
52 | |
53 | private: |
54 | std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; |
55 | }; |
56 | } // end anonymous namespace |
57 | |
58 | class ASTDiff::Impl { |
59 | public: |
60 | SyntaxTree::Impl &T1, &T2; |
61 | Mapping TheMapping; |
62 | |
63 | Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, |
64 | const ComparisonOptions &Options); |
65 | |
66 | /// Matches nodes one-by-one based on their similarity. |
67 | void computeMapping(); |
68 | |
69 | // Compute Change for each node based on similarity. |
70 | void computeChangeKinds(Mapping &M); |
71 | |
72 | NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, |
73 | NodeId Id) const { |
74 | if (&*Tree == &T1) |
75 | return TheMapping.getDst(Src: Id); |
76 | assert(&*Tree == &T2 && "Invalid tree." ); |
77 | return TheMapping.getSrc(Dst: Id); |
78 | } |
79 | |
80 | private: |
81 | // Returns true if the two subtrees are identical. |
82 | bool identical(NodeId Id1, NodeId Id2) const; |
83 | |
84 | // Returns false if the nodes must not be mached. |
85 | bool isMatchingPossible(NodeId Id1, NodeId Id2) const; |
86 | |
87 | // Returns true if the nodes' parents are matched. |
88 | bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; |
89 | |
90 | // Uses an optimal albeit slow algorithm to compute a mapping between two |
91 | // subtrees, but only if both have fewer nodes than MaxSize. |
92 | void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; |
93 | |
94 | // Computes the ratio of common descendants between the two nodes. |
95 | // Descendants are only considered to be equal when they are mapped in M. |
96 | double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; |
97 | |
98 | // Returns the node that has the highest degree of similarity. |
99 | NodeId findCandidate(const Mapping &M, NodeId Id1) const; |
100 | |
101 | // Returns a mapping of identical subtrees. |
102 | Mapping matchTopDown() const; |
103 | |
104 | // Tries to match any yet unmapped nodes, in a bottom-up fashion. |
105 | void matchBottomUp(Mapping &M) const; |
106 | |
107 | const ComparisonOptions &Options; |
108 | |
109 | friend class ZhangShashaMatcher; |
110 | }; |
111 | |
112 | /// Represents the AST of a TranslationUnit. |
113 | class SyntaxTree::Impl { |
114 | public: |
115 | Impl(SyntaxTree *Parent, ASTContext &AST); |
116 | /// Constructs a tree from an AST node. |
117 | Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); |
118 | Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); |
119 | template <class T> |
120 | Impl(SyntaxTree *Parent, |
121 | std::enable_if_t<std::is_base_of_v<Stmt, T>, T> *Node, ASTContext &AST) |
122 | : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} |
123 | template <class T> |
124 | Impl(SyntaxTree *Parent, |
125 | std::enable_if_t<std::is_base_of_v<Decl, T>, T> *Node, ASTContext &AST) |
126 | : Impl(Parent, dyn_cast<Decl>(Node), AST) {} |
127 | |
128 | SyntaxTree *Parent; |
129 | ASTContext &AST; |
130 | PrintingPolicy TypePP; |
131 | /// Nodes in preorder. |
132 | std::vector<Node> Nodes; |
133 | std::vector<NodeId> Leaves; |
134 | // Maps preorder indices to postorder ones. |
135 | std::vector<int> PostorderIds; |
136 | std::vector<NodeId> NodesBfs; |
137 | |
138 | int getSize() const { return Nodes.size(); } |
139 | NodeId getRootId() const { return 0; } |
140 | PreorderIterator begin() const { return getRootId(); } |
141 | PreorderIterator end() const { return getSize(); } |
142 | |
143 | const Node &getNode(NodeId Id) const { return Nodes[Id]; } |
144 | Node &getMutableNode(NodeId Id) { return Nodes[Id]; } |
145 | bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } |
146 | void addNode(Node &N) { Nodes.push_back(x: N); } |
147 | int getNumberOfDescendants(NodeId Id) const; |
148 | bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; |
149 | int findPositionInParent(NodeId Id, bool Shifted = false) const; |
150 | |
151 | std::string getRelativeName(const NamedDecl *ND, |
152 | const DeclContext *Context) const; |
153 | std::string getRelativeName(const NamedDecl *ND) const; |
154 | |
155 | std::string getNodeValue(NodeId Id) const; |
156 | std::string getNodeValue(const Node &Node) const; |
157 | std::string getDeclValue(const Decl *D) const; |
158 | std::string getStmtValue(const Stmt *S) const; |
159 | |
160 | private: |
161 | void initTree(); |
162 | void setLeftMostDescendants(); |
163 | }; |
164 | |
165 | static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } |
166 | static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } |
167 | static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) { |
168 | return !I->isWritten(); |
169 | } |
170 | |
171 | template <class T> |
172 | static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { |
173 | if (!N) |
174 | return true; |
175 | SourceLocation SLoc = N->getSourceRange().getBegin(); |
176 | if (SLoc.isValid()) { |
177 | // Ignore everything from other files. |
178 | if (!SrcMgr.isInMainFile(Loc: SLoc)) |
179 | return true; |
180 | // Ignore macros. |
181 | if (SLoc != SrcMgr.getSpellingLoc(Loc: SLoc)) |
182 | return true; |
183 | } |
184 | return isSpecializedNodeExcluded(N); |
185 | } |
186 | |
187 | namespace { |
188 | // Sets Height, Parent and Children for each node. |
189 | struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { |
190 | int Id = 0, Depth = 0; |
191 | NodeId Parent; |
192 | SyntaxTree::Impl &Tree; |
193 | |
194 | PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} |
195 | |
196 | template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { |
197 | NodeId MyId = Id; |
198 | Tree.Nodes.emplace_back(); |
199 | Node &N = Tree.getMutableNode(Id: MyId); |
200 | N.Parent = Parent; |
201 | N.Depth = Depth; |
202 | N.ASTNode = DynTypedNode::create(*ASTNode); |
203 | assert(!N.ASTNode.getNodeKind().isNone() && |
204 | "Expected nodes to have a valid kind." ); |
205 | if (Parent.isValid()) { |
206 | Node &P = Tree.getMutableNode(Id: Parent); |
207 | P.Children.push_back(Elt: MyId); |
208 | } |
209 | Parent = MyId; |
210 | ++Id; |
211 | ++Depth; |
212 | return std::make_tuple(args&: MyId, args: Tree.getNode(Id: MyId).Parent); |
213 | } |
214 | void PostTraverse(std::tuple<NodeId, NodeId> State) { |
215 | NodeId MyId, PreviousParent; |
216 | std::tie(args&: MyId, args&: PreviousParent) = State; |
217 | assert(MyId.isValid() && "Expecting to only traverse valid nodes." ); |
218 | Parent = PreviousParent; |
219 | --Depth; |
220 | Node &N = Tree.getMutableNode(Id: MyId); |
221 | N.RightMostDescendant = Id - 1; |
222 | assert(N.RightMostDescendant >= 0 && |
223 | N.RightMostDescendant < Tree.getSize() && |
224 | "Rightmost descendant must be a valid tree node." ); |
225 | if (N.isLeaf()) |
226 | Tree.Leaves.push_back(x: MyId); |
227 | N.Height = 1; |
228 | for (NodeId Child : N.Children) |
229 | N.Height = std::max(a: N.Height, b: 1 + Tree.getNode(Id: Child).Height); |
230 | } |
231 | bool TraverseDecl(Decl *D) { |
232 | if (isNodeExcluded(SrcMgr: Tree.AST.getSourceManager(), N: D)) |
233 | return true; |
234 | auto SavedState = PreTraverse(ASTNode: D); |
235 | RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); |
236 | PostTraverse(State: SavedState); |
237 | return true; |
238 | } |
239 | bool TraverseStmt(Stmt *S) { |
240 | if (auto *E = dyn_cast_or_null<Expr>(Val: S)) |
241 | S = E->IgnoreImplicit(); |
242 | if (isNodeExcluded(SrcMgr: Tree.AST.getSourceManager(), N: S)) |
243 | return true; |
244 | auto SavedState = PreTraverse(ASTNode: S); |
245 | RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); |
246 | PostTraverse(State: SavedState); |
247 | return true; |
248 | } |
249 | bool TraverseType(QualType T) { return true; } |
250 | bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { |
251 | if (isNodeExcluded(SrcMgr: Tree.AST.getSourceManager(), N: Init)) |
252 | return true; |
253 | auto SavedState = PreTraverse(ASTNode: Init); |
254 | RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init); |
255 | PostTraverse(State: SavedState); |
256 | return true; |
257 | } |
258 | }; |
259 | } // end anonymous namespace |
260 | |
261 | SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST) |
262 | : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) { |
263 | TypePP.AnonymousTagLocations = false; |
264 | } |
265 | |
266 | SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) |
267 | : Impl(Parent, AST) { |
268 | PreorderVisitor PreorderWalker(*this); |
269 | PreorderWalker.TraverseDecl(D: N); |
270 | initTree(); |
271 | } |
272 | |
273 | SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) |
274 | : Impl(Parent, AST) { |
275 | PreorderVisitor PreorderWalker(*this); |
276 | PreorderWalker.TraverseStmt(S: N); |
277 | initTree(); |
278 | } |
279 | |
280 | static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, |
281 | NodeId Root) { |
282 | std::vector<NodeId> Postorder; |
283 | std::function<void(NodeId)> Traverse = [&](NodeId Id) { |
284 | const Node &N = Tree.getNode(Id); |
285 | for (NodeId Child : N.Children) |
286 | Traverse(Child); |
287 | Postorder.push_back(x: Id); |
288 | }; |
289 | Traverse(Root); |
290 | return Postorder; |
291 | } |
292 | |
293 | static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, |
294 | NodeId Root) { |
295 | std::vector<NodeId> Ids; |
296 | size_t Expanded = 0; |
297 | Ids.push_back(x: Root); |
298 | while (Expanded < Ids.size()) |
299 | for (NodeId Child : Tree.getNode(Id: Ids[Expanded++]).Children) |
300 | Ids.push_back(x: Child); |
301 | return Ids; |
302 | } |
303 | |
304 | void SyntaxTree::Impl::initTree() { |
305 | setLeftMostDescendants(); |
306 | int PostorderId = 0; |
307 | PostorderIds.resize(new_size: getSize()); |
308 | std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { |
309 | for (NodeId Child : getNode(Id).Children) |
310 | PostorderTraverse(Child); |
311 | PostorderIds[Id] = PostorderId; |
312 | ++PostorderId; |
313 | }; |
314 | PostorderTraverse(getRootId()); |
315 | NodesBfs = getSubtreeBfs(Tree: *this, Root: getRootId()); |
316 | } |
317 | |
318 | void SyntaxTree::Impl::setLeftMostDescendants() { |
319 | for (NodeId Leaf : Leaves) { |
320 | getMutableNode(Id: Leaf).LeftMostDescendant = Leaf; |
321 | NodeId Parent, Cur = Leaf; |
322 | while ((Parent = getNode(Id: Cur).Parent).isValid() && |
323 | getNode(Id: Parent).Children[0] == Cur) { |
324 | Cur = Parent; |
325 | getMutableNode(Id: Cur).LeftMostDescendant = Leaf; |
326 | } |
327 | } |
328 | } |
329 | |
330 | int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { |
331 | return getNode(Id).RightMostDescendant - Id + 1; |
332 | } |
333 | |
334 | bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { |
335 | return Id >= SubtreeRoot && Id <= getNode(Id: SubtreeRoot).RightMostDescendant; |
336 | } |
337 | |
338 | int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { |
339 | NodeId Parent = getNode(Id).Parent; |
340 | if (Parent.isInvalid()) |
341 | return 0; |
342 | const auto &Siblings = getNode(Id: Parent).Children; |
343 | int Position = 0; |
344 | for (size_t I = 0, E = Siblings.size(); I < E; ++I) { |
345 | if (Shifted) |
346 | Position += getNode(Id: Siblings[I]).Shift; |
347 | if (Siblings[I] == Id) { |
348 | Position += I; |
349 | return Position; |
350 | } |
351 | } |
352 | llvm_unreachable("Node not found in parent's children." ); |
353 | } |
354 | |
355 | // Returns the qualified name of ND. If it is subordinate to Context, |
356 | // then the prefix of the latter is removed from the returned value. |
357 | std::string |
358 | SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, |
359 | const DeclContext *Context) const { |
360 | std::string Val = ND->getQualifiedNameAsString(); |
361 | std::string ContextPrefix; |
362 | if (!Context) |
363 | return Val; |
364 | if (auto *Namespace = dyn_cast<NamespaceDecl>(Val: Context)) |
365 | ContextPrefix = Namespace->getQualifiedNameAsString(); |
366 | else if (auto *Record = dyn_cast<RecordDecl>(Val: Context)) |
367 | ContextPrefix = Record->getQualifiedNameAsString(); |
368 | else if (AST.getLangOpts().CPlusPlus11) |
369 | if (auto *Tag = dyn_cast<TagDecl>(Val: Context)) |
370 | ContextPrefix = Tag->getQualifiedNameAsString(); |
371 | // Strip the qualifier, if Val refers to something in the current scope. |
372 | // But leave one leading ':' in place, so that we know that this is a |
373 | // relative path. |
374 | if (!ContextPrefix.empty() && StringRef(Val).starts_with(Prefix: ContextPrefix)) |
375 | Val = Val.substr(pos: ContextPrefix.size() + 1); |
376 | return Val; |
377 | } |
378 | |
379 | std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { |
380 | return getRelativeName(ND, ND->getDeclContext()); |
381 | } |
382 | |
383 | static const DeclContext *getEnclosingDeclContext(ASTContext &AST, |
384 | const Stmt *S) { |
385 | while (S) { |
386 | const auto &Parents = AST.getParents(Node: *S); |
387 | if (Parents.empty()) |
388 | return nullptr; |
389 | const auto &P = Parents[0]; |
390 | if (const auto *D = P.get<Decl>()) |
391 | return D->getDeclContext(); |
392 | S = P.get<Stmt>(); |
393 | } |
394 | return nullptr; |
395 | } |
396 | |
397 | static std::string getInitializerValue(const CXXCtorInitializer *Init, |
398 | const PrintingPolicy &TypePP) { |
399 | if (Init->isAnyMemberInitializer()) |
400 | return std::string(Init->getAnyMember()->getName()); |
401 | if (Init->isBaseInitializer()) |
402 | return QualType(Init->getBaseClass(), 0).getAsString(Policy: TypePP); |
403 | if (Init->isDelegatingInitializer()) |
404 | return Init->getTypeSourceInfo()->getType().getAsString(Policy: TypePP); |
405 | llvm_unreachable("Unknown initializer type" ); |
406 | } |
407 | |
408 | std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { |
409 | return getNodeValue(Node: getNode(Id)); |
410 | } |
411 | |
412 | std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { |
413 | const DynTypedNode &DTN = N.ASTNode; |
414 | if (auto *S = DTN.get<Stmt>()) |
415 | return getStmtValue(S: S); |
416 | if (auto *D = DTN.get<Decl>()) |
417 | return getDeclValue(D: D); |
418 | if (auto *Init = DTN.get<CXXCtorInitializer>()) |
419 | return getInitializerValue(Init, TypePP); |
420 | llvm_unreachable("Fatal: unhandled AST node.\n" ); |
421 | } |
422 | |
423 | std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { |
424 | std::string Value; |
425 | if (auto *V = dyn_cast<ValueDecl>(Val: D)) |
426 | return getRelativeName(V) + "(" + V->getType().getAsString(Policy: TypePP) + ")" ; |
427 | if (auto *N = dyn_cast<NamedDecl>(Val: D)) |
428 | Value += getRelativeName(ND: N) + ";" ; |
429 | if (auto *T = dyn_cast<TypedefNameDecl>(Val: D)) |
430 | return Value + T->getUnderlyingType().getAsString(Policy: TypePP) + ";" ; |
431 | if (auto *T = dyn_cast<TypeDecl>(Val: D)) |
432 | if (T->getTypeForDecl()) |
433 | Value += |
434 | T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(Policy: TypePP) + |
435 | ";" ; |
436 | if (auto *U = dyn_cast<UsingDirectiveDecl>(Val: D)) |
437 | return std::string(U->getNominatedNamespace()->getName()); |
438 | if (auto *A = dyn_cast<AccessSpecDecl>(Val: D)) { |
439 | CharSourceRange Range(A->getSourceRange(), false); |
440 | return std::string( |
441 | Lexer::getSourceText(Range, SM: AST.getSourceManager(), LangOpts: AST.getLangOpts())); |
442 | } |
443 | return Value; |
444 | } |
445 | |
446 | std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { |
447 | if (auto *U = dyn_cast<UnaryOperator>(Val: S)) |
448 | return std::string(UnaryOperator::getOpcodeStr(Op: U->getOpcode())); |
449 | if (auto *B = dyn_cast<BinaryOperator>(Val: S)) |
450 | return std::string(B->getOpcodeStr()); |
451 | if (auto *M = dyn_cast<MemberExpr>(Val: S)) |
452 | return getRelativeName(M->getMemberDecl()); |
453 | if (auto *I = dyn_cast<IntegerLiteral>(Val: S)) { |
454 | SmallString<256> Str; |
455 | I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); |
456 | return std::string(Str); |
457 | } |
458 | if (auto *F = dyn_cast<FloatingLiteral>(Val: S)) { |
459 | SmallString<256> Str; |
460 | F->getValue().toString(Str); |
461 | return std::string(Str); |
462 | } |
463 | if (auto *D = dyn_cast<DeclRefExpr>(Val: S)) |
464 | return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); |
465 | if (auto *String = dyn_cast<StringLiteral>(Val: S)) |
466 | return std::string(String->getString()); |
467 | if (auto *B = dyn_cast<CXXBoolLiteralExpr>(Val: S)) |
468 | return B->getValue() ? "true" : "false" ; |
469 | return "" ; |
470 | } |
471 | |
472 | /// Identifies a node in a subtree by its postorder offset, starting at 1. |
473 | struct SNodeId { |
474 | int Id = 0; |
475 | |
476 | explicit SNodeId(int Id) : Id(Id) {} |
477 | explicit SNodeId() = default; |
478 | |
479 | operator int() const { return Id; } |
480 | SNodeId &operator++() { return ++Id, *this; } |
481 | SNodeId &operator--() { return --Id, *this; } |
482 | SNodeId operator+(int Other) const { return SNodeId(Id + Other); } |
483 | }; |
484 | |
485 | class Subtree { |
486 | private: |
487 | /// The parent tree. |
488 | const SyntaxTree::Impl &Tree; |
489 | /// Maps SNodeIds to original ids. |
490 | std::vector<NodeId> RootIds; |
491 | /// Maps subtree nodes to their leftmost descendants wtihin the subtree. |
492 | std::vector<SNodeId> LeftMostDescendants; |
493 | |
494 | public: |
495 | std::vector<SNodeId> KeyRoots; |
496 | |
497 | Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { |
498 | RootIds = getSubtreePostorder(Tree, Root: SubtreeRoot); |
499 | int NumLeaves = setLeftMostDescendants(); |
500 | computeKeyRoots(Leaves: NumLeaves); |
501 | } |
502 | int getSize() const { return RootIds.size(); } |
503 | NodeId getIdInRoot(SNodeId Id) const { |
504 | assert(Id > 0 && Id <= getSize() && "Invalid subtree node index." ); |
505 | return RootIds[Id - 1]; |
506 | } |
507 | const Node &getNode(SNodeId Id) const { |
508 | return Tree.getNode(Id: getIdInRoot(Id)); |
509 | } |
510 | SNodeId getLeftMostDescendant(SNodeId Id) const { |
511 | assert(Id > 0 && Id <= getSize() && "Invalid subtree node index." ); |
512 | return LeftMostDescendants[Id - 1]; |
513 | } |
514 | /// Returns the postorder index of the leftmost descendant in the subtree. |
515 | NodeId getPostorderOffset() const { |
516 | return Tree.PostorderIds[getIdInRoot(Id: SNodeId(1))]; |
517 | } |
518 | std::string getNodeValue(SNodeId Id) const { |
519 | return Tree.getNodeValue(Id: getIdInRoot(Id)); |
520 | } |
521 | |
522 | private: |
523 | /// Returns the number of leafs in the subtree. |
524 | int setLeftMostDescendants() { |
525 | int NumLeaves = 0; |
526 | LeftMostDescendants.resize(new_size: getSize()); |
527 | for (int I = 0; I < getSize(); ++I) { |
528 | SNodeId SI(I + 1); |
529 | const Node &N = getNode(Id: SI); |
530 | NumLeaves += N.isLeaf(); |
531 | assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && |
532 | "Postorder traversal in subtree should correspond to traversal in " |
533 | "the root tree by a constant offset." ); |
534 | LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - |
535 | getPostorderOffset()); |
536 | } |
537 | return NumLeaves; |
538 | } |
539 | void computeKeyRoots(int Leaves) { |
540 | KeyRoots.resize(new_size: Leaves); |
541 | std::unordered_set<int> Visited; |
542 | int K = Leaves - 1; |
543 | for (SNodeId I(getSize()); I > 0; --I) { |
544 | SNodeId LeftDesc = getLeftMostDescendant(Id: I); |
545 | if (Visited.count(x: LeftDesc)) |
546 | continue; |
547 | assert(K >= 0 && "K should be non-negative" ); |
548 | KeyRoots[K] = I; |
549 | Visited.insert(x: LeftDesc); |
550 | --K; |
551 | } |
552 | } |
553 | }; |
554 | |
555 | /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. |
556 | /// Computes an optimal mapping between two trees using only insertion, |
557 | /// deletion and update as edit actions (similar to the Levenshtein distance). |
558 | class ZhangShashaMatcher { |
559 | const ASTDiff::Impl &DiffImpl; |
560 | Subtree S1; |
561 | Subtree S2; |
562 | std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; |
563 | |
564 | public: |
565 | ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, |
566 | const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) |
567 | : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { |
568 | TreeDist = std::make_unique<std::unique_ptr<double[]>[]>( |
569 | num: size_t(S1.getSize()) + 1); |
570 | ForestDist = std::make_unique<std::unique_ptr<double[]>[]>( |
571 | num: size_t(S1.getSize()) + 1); |
572 | for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { |
573 | TreeDist[I] = std::make_unique<double[]>(num: size_t(S2.getSize()) + 1); |
574 | ForestDist[I] = std::make_unique<double[]>(num: size_t(S2.getSize()) + 1); |
575 | } |
576 | } |
577 | |
578 | std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { |
579 | std::vector<std::pair<NodeId, NodeId>> Matches; |
580 | std::vector<std::pair<SNodeId, SNodeId>> TreePairs; |
581 | |
582 | computeTreeDist(); |
583 | |
584 | bool RootNodePair = true; |
585 | |
586 | TreePairs.emplace_back(args: SNodeId(S1.getSize()), args: SNodeId(S2.getSize())); |
587 | |
588 | while (!TreePairs.empty()) { |
589 | SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; |
590 | std::tie(args&: LastRow, args&: LastCol) = TreePairs.back(); |
591 | TreePairs.pop_back(); |
592 | |
593 | if (!RootNodePair) { |
594 | computeForestDist(Id1: LastRow, Id2: LastCol); |
595 | } |
596 | |
597 | RootNodePair = false; |
598 | |
599 | FirstRow = S1.getLeftMostDescendant(Id: LastRow); |
600 | FirstCol = S2.getLeftMostDescendant(Id: LastCol); |
601 | |
602 | Row = LastRow; |
603 | Col = LastCol; |
604 | |
605 | while (Row > FirstRow || Col > FirstCol) { |
606 | if (Row > FirstRow && |
607 | ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { |
608 | --Row; |
609 | } else if (Col > FirstCol && |
610 | ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { |
611 | --Col; |
612 | } else { |
613 | SNodeId LMD1 = S1.getLeftMostDescendant(Id: Row); |
614 | SNodeId LMD2 = S2.getLeftMostDescendant(Id: Col); |
615 | if (LMD1 == S1.getLeftMostDescendant(Id: LastRow) && |
616 | LMD2 == S2.getLeftMostDescendant(Id: LastCol)) { |
617 | NodeId Id1 = S1.getIdInRoot(Id: Row); |
618 | NodeId Id2 = S2.getIdInRoot(Id: Col); |
619 | assert(DiffImpl.isMatchingPossible(Id1, Id2) && |
620 | "These nodes must not be matched." ); |
621 | Matches.emplace_back(args&: Id1, args&: Id2); |
622 | --Row; |
623 | --Col; |
624 | } else { |
625 | TreePairs.emplace_back(args&: Row, args&: Col); |
626 | Row = LMD1; |
627 | Col = LMD2; |
628 | } |
629 | } |
630 | } |
631 | } |
632 | return Matches; |
633 | } |
634 | |
635 | private: |
636 | /// We use a simple cost model for edit actions, which seems good enough. |
637 | /// Simple cost model for edit actions. This seems to make the matching |
638 | /// algorithm perform reasonably well. |
639 | /// The values range between 0 and 1, or infinity if this edit action should |
640 | /// always be avoided. |
641 | static constexpr double DeletionCost = 1; |
642 | static constexpr double InsertionCost = 1; |
643 | |
644 | double getUpdateCost(SNodeId Id1, SNodeId Id2) { |
645 | if (!DiffImpl.isMatchingPossible(Id1: S1.getIdInRoot(Id: Id1), Id2: S2.getIdInRoot(Id: Id2))) |
646 | return std::numeric_limits<double>::max(); |
647 | return S1.getNodeValue(Id: Id1) != S2.getNodeValue(Id: Id2); |
648 | } |
649 | |
650 | void computeTreeDist() { |
651 | for (SNodeId Id1 : S1.KeyRoots) |
652 | for (SNodeId Id2 : S2.KeyRoots) |
653 | computeForestDist(Id1, Id2); |
654 | } |
655 | |
656 | void computeForestDist(SNodeId Id1, SNodeId Id2) { |
657 | assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0." ); |
658 | SNodeId LMD1 = S1.getLeftMostDescendant(Id: Id1); |
659 | SNodeId LMD2 = S2.getLeftMostDescendant(Id: Id2); |
660 | |
661 | ForestDist[LMD1][LMD2] = 0; |
662 | for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { |
663 | ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; |
664 | for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { |
665 | ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; |
666 | SNodeId DLMD1 = S1.getLeftMostDescendant(Id: D1); |
667 | SNodeId DLMD2 = S2.getLeftMostDescendant(Id: D2); |
668 | if (DLMD1 == LMD1 && DLMD2 == LMD2) { |
669 | double UpdateCost = getUpdateCost(Id1: D1, Id2: D2); |
670 | ForestDist[D1][D2] = |
671 | std::min(l: {ForestDist[D1 - 1][D2] + DeletionCost, |
672 | ForestDist[D1][D2 - 1] + InsertionCost, |
673 | ForestDist[D1 - 1][D2 - 1] + UpdateCost}); |
674 | TreeDist[D1][D2] = ForestDist[D1][D2]; |
675 | } else { |
676 | ForestDist[D1][D2] = |
677 | std::min(l: {ForestDist[D1 - 1][D2] + DeletionCost, |
678 | ForestDist[D1][D2 - 1] + InsertionCost, |
679 | ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); |
680 | } |
681 | } |
682 | } |
683 | } |
684 | }; |
685 | |
686 | ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); } |
687 | |
688 | StringRef Node::getTypeLabel() const { return getType().asStringRef(); } |
689 | |
690 | std::optional<std::string> Node::getQualifiedIdentifier() const { |
691 | if (auto *ND = ASTNode.get<NamedDecl>()) { |
692 | if (ND->getDeclName().isIdentifier()) |
693 | return ND->getQualifiedNameAsString(); |
694 | } |
695 | return std::nullopt; |
696 | } |
697 | |
698 | std::optional<StringRef> Node::getIdentifier() const { |
699 | if (auto *ND = ASTNode.get<NamedDecl>()) { |
700 | if (ND->getDeclName().isIdentifier()) |
701 | return ND->getName(); |
702 | } |
703 | return std::nullopt; |
704 | } |
705 | |
706 | namespace { |
707 | // Compares nodes by their depth. |
708 | struct HeightLess { |
709 | const SyntaxTree::Impl &Tree; |
710 | HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} |
711 | bool operator()(NodeId Id1, NodeId Id2) const { |
712 | return Tree.getNode(Id: Id1).Height < Tree.getNode(Id: Id2).Height; |
713 | } |
714 | }; |
715 | } // end anonymous namespace |
716 | |
717 | namespace { |
718 | // Priority queue for nodes, sorted descendingly by their height. |
719 | class PriorityList { |
720 | const SyntaxTree::Impl &Tree; |
721 | HeightLess Cmp; |
722 | std::vector<NodeId> Container; |
723 | PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; |
724 | |
725 | public: |
726 | PriorityList(const SyntaxTree::Impl &Tree) |
727 | : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} |
728 | |
729 | void push(NodeId id) { List.push(x: id); } |
730 | |
731 | std::vector<NodeId> pop() { |
732 | int Max = peekMax(); |
733 | std::vector<NodeId> Result; |
734 | if (Max == 0) |
735 | return Result; |
736 | while (peekMax() == Max) { |
737 | Result.push_back(x: List.top()); |
738 | List.pop(); |
739 | } |
740 | // TODO this is here to get a stable output, not a good heuristic |
741 | llvm::sort(C&: Result); |
742 | return Result; |
743 | } |
744 | int peekMax() const { |
745 | if (List.empty()) |
746 | return 0; |
747 | return Tree.getNode(Id: List.top()).Height; |
748 | } |
749 | void open(NodeId Id) { |
750 | for (NodeId Child : Tree.getNode(Id).Children) |
751 | push(id: Child); |
752 | } |
753 | }; |
754 | } // end anonymous namespace |
755 | |
756 | bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { |
757 | const Node &N1 = T1.getNode(Id: Id1); |
758 | const Node &N2 = T2.getNode(Id: Id2); |
759 | if (N1.Children.size() != N2.Children.size() || |
760 | !isMatchingPossible(Id1, Id2) || |
761 | T1.getNodeValue(Id: Id1) != T2.getNodeValue(Id: Id2)) |
762 | return false; |
763 | for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) |
764 | if (!identical(Id1: N1.Children[Id], Id2: N2.Children[Id])) |
765 | return false; |
766 | return true; |
767 | } |
768 | |
769 | bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { |
770 | return Options.isMatchingAllowed(N1: T1.getNode(Id: Id1), N2: T2.getNode(Id: Id2)); |
771 | } |
772 | |
773 | bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, |
774 | NodeId Id2) const { |
775 | NodeId P1 = T1.getNode(Id: Id1).Parent; |
776 | NodeId P2 = T2.getNode(Id: Id2).Parent; |
777 | return (P1.isInvalid() && P2.isInvalid()) || |
778 | (P1.isValid() && P2.isValid() && M.getDst(Src: P1) == P2); |
779 | } |
780 | |
781 | void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, |
782 | NodeId Id2) const { |
783 | if (std::max(a: T1.getNumberOfDescendants(Id: Id1), b: T2.getNumberOfDescendants(Id: Id2)) > |
784 | Options.MaxSize) |
785 | return; |
786 | ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); |
787 | std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); |
788 | for (const auto &Tuple : R) { |
789 | NodeId Src = Tuple.first; |
790 | NodeId Dst = Tuple.second; |
791 | if (!M.hasSrc(Src) && !M.hasDst(Dst)) |
792 | M.link(Src, Dst); |
793 | } |
794 | } |
795 | |
796 | double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, |
797 | NodeId Id2) const { |
798 | int CommonDescendants = 0; |
799 | const Node &N1 = T1.getNode(Id: Id1); |
800 | // Count the common descendants, excluding the subtree root. |
801 | for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { |
802 | NodeId Dst = M.getDst(Src); |
803 | CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Id: Dst, SubtreeRoot: Id2)); |
804 | } |
805 | // We need to subtract 1 to get the number of descendants excluding the root. |
806 | double Denominator = T1.getNumberOfDescendants(Id: Id1) - 1 + |
807 | T2.getNumberOfDescendants(Id: Id2) - 1 - CommonDescendants; |
808 | // CommonDescendants is less than the size of one subtree. |
809 | assert(Denominator >= 0 && "Expected non-negative denominator." ); |
810 | if (Denominator == 0) |
811 | return 0; |
812 | return CommonDescendants / Denominator; |
813 | } |
814 | |
815 | NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { |
816 | NodeId Candidate; |
817 | double HighestSimilarity = 0.0; |
818 | for (NodeId Id2 : T2) { |
819 | if (!isMatchingPossible(Id1, Id2)) |
820 | continue; |
821 | if (M.hasDst(Dst: Id2)) |
822 | continue; |
823 | double Similarity = getJaccardSimilarity(M, Id1, Id2); |
824 | if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { |
825 | HighestSimilarity = Similarity; |
826 | Candidate = Id2; |
827 | } |
828 | } |
829 | return Candidate; |
830 | } |
831 | |
832 | void ASTDiff::Impl::matchBottomUp(Mapping &M) const { |
833 | std::vector<NodeId> Postorder = getSubtreePostorder(Tree: T1, Root: T1.getRootId()); |
834 | for (NodeId Id1 : Postorder) { |
835 | if (Id1 == T1.getRootId() && !M.hasSrc(Src: T1.getRootId()) && |
836 | !M.hasDst(Dst: T2.getRootId())) { |
837 | if (isMatchingPossible(Id1: T1.getRootId(), Id2: T2.getRootId())) { |
838 | M.link(Src: T1.getRootId(), Dst: T2.getRootId()); |
839 | addOptimalMapping(M, Id1: T1.getRootId(), Id2: T2.getRootId()); |
840 | } |
841 | break; |
842 | } |
843 | bool Matched = M.hasSrc(Src: Id1); |
844 | const Node &N1 = T1.getNode(Id: Id1); |
845 | bool MatchedChildren = llvm::any_of( |
846 | Range: N1.Children, P: [&](NodeId Child) { return M.hasSrc(Src: Child); }); |
847 | if (Matched || !MatchedChildren) |
848 | continue; |
849 | NodeId Id2 = findCandidate(M, Id1); |
850 | if (Id2.isValid()) { |
851 | M.link(Src: Id1, Dst: Id2); |
852 | addOptimalMapping(M, Id1, Id2); |
853 | } |
854 | } |
855 | } |
856 | |
857 | Mapping ASTDiff::Impl::matchTopDown() const { |
858 | PriorityList L1(T1); |
859 | PriorityList L2(T2); |
860 | |
861 | Mapping M(T1.getSize() + T2.getSize()); |
862 | |
863 | L1.push(id: T1.getRootId()); |
864 | L2.push(id: T2.getRootId()); |
865 | |
866 | int Max1, Max2; |
867 | while (std::min(a: Max1 = L1.peekMax(), b: Max2 = L2.peekMax()) > |
868 | Options.MinHeight) { |
869 | if (Max1 > Max2) { |
870 | for (NodeId Id : L1.pop()) |
871 | L1.open(Id); |
872 | continue; |
873 | } |
874 | if (Max2 > Max1) { |
875 | for (NodeId Id : L2.pop()) |
876 | L2.open(Id); |
877 | continue; |
878 | } |
879 | std::vector<NodeId> H1, H2; |
880 | H1 = L1.pop(); |
881 | H2 = L2.pop(); |
882 | for (NodeId Id1 : H1) { |
883 | for (NodeId Id2 : H2) { |
884 | if (identical(Id1, Id2) && !M.hasSrc(Src: Id1) && !M.hasDst(Dst: Id2)) { |
885 | for (int I = 0, E = T1.getNumberOfDescendants(Id: Id1); I < E; ++I) |
886 | M.link(Src: Id1 + I, Dst: Id2 + I); |
887 | } |
888 | } |
889 | } |
890 | for (NodeId Id1 : H1) { |
891 | if (!M.hasSrc(Src: Id1)) |
892 | L1.open(Id: Id1); |
893 | } |
894 | for (NodeId Id2 : H2) { |
895 | if (!M.hasDst(Dst: Id2)) |
896 | L2.open(Id: Id2); |
897 | } |
898 | } |
899 | return M; |
900 | } |
901 | |
902 | ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, |
903 | const ComparisonOptions &Options) |
904 | : T1(T1), T2(T2), Options(Options) { |
905 | computeMapping(); |
906 | computeChangeKinds(M&: TheMapping); |
907 | } |
908 | |
909 | void ASTDiff::Impl::computeMapping() { |
910 | TheMapping = matchTopDown(); |
911 | if (Options.StopAfterTopDown) |
912 | return; |
913 | matchBottomUp(M&: TheMapping); |
914 | } |
915 | |
916 | void ASTDiff::Impl::computeChangeKinds(Mapping &M) { |
917 | for (NodeId Id1 : T1) { |
918 | if (!M.hasSrc(Src: Id1)) { |
919 | T1.getMutableNode(Id: Id1).Change = Delete; |
920 | T1.getMutableNode(Id: Id1).Shift -= 1; |
921 | } |
922 | } |
923 | for (NodeId Id2 : T2) { |
924 | if (!M.hasDst(Dst: Id2)) { |
925 | T2.getMutableNode(Id: Id2).Change = Insert; |
926 | T2.getMutableNode(Id: Id2).Shift -= 1; |
927 | } |
928 | } |
929 | for (NodeId Id1 : T1.NodesBfs) { |
930 | NodeId Id2 = M.getDst(Src: Id1); |
931 | if (Id2.isInvalid()) |
932 | continue; |
933 | if (!haveSameParents(M, Id1, Id2) || |
934 | T1.findPositionInParent(Id: Id1, Shifted: true) != |
935 | T2.findPositionInParent(Id: Id2, Shifted: true)) { |
936 | T1.getMutableNode(Id: Id1).Shift -= 1; |
937 | T2.getMutableNode(Id: Id2).Shift -= 1; |
938 | } |
939 | } |
940 | for (NodeId Id2 : T2.NodesBfs) { |
941 | NodeId Id1 = M.getSrc(Dst: Id2); |
942 | if (Id1.isInvalid()) |
943 | continue; |
944 | Node &N1 = T1.getMutableNode(Id: Id1); |
945 | Node &N2 = T2.getMutableNode(Id: Id2); |
946 | if (Id1.isInvalid()) |
947 | continue; |
948 | if (!haveSameParents(M, Id1, Id2) || |
949 | T1.findPositionInParent(Id: Id1, Shifted: true) != |
950 | T2.findPositionInParent(Id: Id2, Shifted: true)) { |
951 | N1.Change = N2.Change = Move; |
952 | } |
953 | if (T1.getNodeValue(Id: Id1) != T2.getNodeValue(Id: Id2)) { |
954 | N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); |
955 | } |
956 | } |
957 | } |
958 | |
959 | ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, |
960 | const ComparisonOptions &Options) |
961 | : DiffImpl(std::make_unique<Impl>(args&: *T1.TreeImpl, args&: *T2.TreeImpl, args: Options)) {} |
962 | |
963 | ASTDiff::~ASTDiff() = default; |
964 | |
965 | NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { |
966 | return DiffImpl->getMapped(Tree: SourceTree.TreeImpl, Id); |
967 | } |
968 | |
969 | SyntaxTree::SyntaxTree(ASTContext &AST) |
970 | : TreeImpl(std::make_unique<SyntaxTree::Impl>( |
971 | args: this, args: AST.getTranslationUnitDecl(), args&: AST)) {} |
972 | |
973 | SyntaxTree::~SyntaxTree() = default; |
974 | |
975 | const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } |
976 | |
977 | const Node &SyntaxTree::getNode(NodeId Id) const { |
978 | return TreeImpl->getNode(Id); |
979 | } |
980 | |
981 | int SyntaxTree::getSize() const { return TreeImpl->getSize(); } |
982 | NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } |
983 | SyntaxTree::PreorderIterator SyntaxTree::begin() const { |
984 | return TreeImpl->begin(); |
985 | } |
986 | SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } |
987 | |
988 | int SyntaxTree::findPositionInParent(NodeId Id) const { |
989 | return TreeImpl->findPositionInParent(Id); |
990 | } |
991 | |
992 | std::pair<unsigned, unsigned> |
993 | SyntaxTree::getSourceRangeOffsets(const Node &N) const { |
994 | const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); |
995 | SourceRange Range = N.ASTNode.getSourceRange(); |
996 | SourceLocation BeginLoc = Range.getBegin(); |
997 | SourceLocation EndLoc = Lexer::getLocForEndOfToken( |
998 | Loc: Range.getEnd(), /*Offset=*/0, SM: SrcMgr, LangOpts: TreeImpl->AST.getLangOpts()); |
999 | if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { |
1000 | if (ThisExpr->isImplicit()) |
1001 | EndLoc = BeginLoc; |
1002 | } |
1003 | unsigned Begin = SrcMgr.getFileOffset(SpellingLoc: SrcMgr.getExpansionLoc(Loc: BeginLoc)); |
1004 | unsigned End = SrcMgr.getFileOffset(SpellingLoc: SrcMgr.getExpansionLoc(Loc: EndLoc)); |
1005 | return {Begin, End}; |
1006 | } |
1007 | |
1008 | std::string SyntaxTree::getNodeValue(NodeId Id) const { |
1009 | return TreeImpl->getNodeValue(Id); |
1010 | } |
1011 | |
1012 | std::string SyntaxTree::getNodeValue(const Node &N) const { |
1013 | return TreeImpl->getNodeValue(N); |
1014 | } |
1015 | |
1016 | } // end namespace diff |
1017 | } // end namespace clang |
1018 | |