| 1 | //===--- SolverTest.h - Type-parameterized test for solvers ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_SOLVER_TEST_H_ |
| 10 | #define LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_SOLVER_TEST_H_ |
| 11 | |
| 12 | #include "TestingSupport.h" |
| 13 | #include "clang/Analysis/FlowSensitive/Solver.h" |
| 14 | #include "gmock/gmock.h" |
| 15 | #include "gtest/gtest.h" |
| 16 | |
| 17 | namespace clang::dataflow::test { |
| 18 | |
| 19 | namespace { |
| 20 | |
| 21 | constexpr auto AssignedTrue = Solver::Result::Assignment::AssignedTrue; |
| 22 | constexpr auto AssignedFalse = Solver::Result::Assignment::AssignedFalse; |
| 23 | |
| 24 | using testing::_; |
| 25 | using testing::AnyOf; |
| 26 | using testing::Pair; |
| 27 | using testing::UnorderedElementsAre; |
| 28 | |
| 29 | } // namespace |
| 30 | |
| 31 | /// Type-parameterized test for implementations of the `Solver` interface. |
| 32 | /// To use: |
| 33 | /// 1. Implement a specialization of `createSolverWithLowTimeout()` for the |
| 34 | /// solver you want to test. |
| 35 | /// 2. Instantiate the test suite for the solver you want to test using |
| 36 | /// `INSTANTIATE_TYPED_TEST_SUITE_P()`. |
| 37 | /// See WatchedLiteralsSolverTest.cpp for an example. |
| 38 | template <typename SolverT> class SolverTest : public ::testing::Test { |
| 39 | protected: |
| 40 | // Checks if the conjunction of `Vals` is satisfiable and returns the |
| 41 | // corresponding result. |
| 42 | Solver::Result solve(llvm::ArrayRef<const Formula *> Vals) { |
| 43 | return SolverT().solve(Vals); |
| 44 | } |
| 45 | |
| 46 | // Create a specialization for the solver type to test. |
| 47 | SolverT createSolverWithLowTimeout(); |
| 48 | }; |
| 49 | |
| 50 | TYPED_TEST_SUITE_P(SolverTest); |
| 51 | |
| 52 | MATCHER(unsat, "" ) { |
| 53 | return arg.getStatus() == Solver::Result::Status::Unsatisfiable; |
| 54 | } |
| 55 | |
| 56 | MATCHER_P(sat, SolutionMatcher, |
| 57 | "is satisfiable, where solution " + |
| 58 | (testing::DescribeMatcher< |
| 59 | llvm::DenseMap<Atom, Solver::Result::Assignment>>( |
| 60 | SolutionMatcher))) { |
| 61 | if (arg.getStatus() != Solver::Result::Status::Satisfiable) |
| 62 | return false; |
| 63 | auto Solution = *arg.getSolution(); |
| 64 | return testing::ExplainMatchResult(SolutionMatcher, Solution, |
| 65 | result_listener); |
| 66 | } |
| 67 | |
| 68 | TYPED_TEST_P(SolverTest, Var) { |
| 69 | ConstraintContext Ctx; |
| 70 | auto X = Ctx.atom(); |
| 71 | |
| 72 | // X |
| 73 | EXPECT_THAT(this->solve({X}), |
| 74 | sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue)))); |
| 75 | } |
| 76 | |
| 77 | TYPED_TEST_P(SolverTest, NegatedVar) { |
| 78 | ConstraintContext Ctx; |
| 79 | auto X = Ctx.atom(); |
| 80 | auto NotX = Ctx.neg(Operand: X); |
| 81 | |
| 82 | // !X |
| 83 | EXPECT_THAT(this->solve({NotX}), |
| 84 | sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse)))); |
| 85 | } |
| 86 | |
| 87 | TYPED_TEST_P(SolverTest, UnitConflict) { |
| 88 | ConstraintContext Ctx; |
| 89 | auto X = Ctx.atom(); |
| 90 | auto NotX = Ctx.neg(Operand: X); |
| 91 | |
| 92 | // X ^ !X |
| 93 | EXPECT_THAT(this->solve({X, NotX}), unsat()); |
| 94 | } |
| 95 | |
| 96 | TYPED_TEST_P(SolverTest, DistinctVars) { |
| 97 | ConstraintContext Ctx; |
| 98 | auto X = Ctx.atom(); |
| 99 | auto Y = Ctx.atom(); |
| 100 | auto NotY = Ctx.neg(Operand: Y); |
| 101 | |
| 102 | // X ^ !Y |
| 103 | EXPECT_THAT(this->solve({X, NotY}), |
| 104 | sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue), |
| 105 | Pair(Y->getAtom(), AssignedFalse)))); |
| 106 | } |
| 107 | |
| 108 | TYPED_TEST_P(SolverTest, DoubleNegation) { |
| 109 | ConstraintContext Ctx; |
| 110 | auto X = Ctx.atom(); |
| 111 | auto NotX = Ctx.neg(Operand: X); |
| 112 | auto NotNotX = Ctx.neg(Operand: NotX); |
| 113 | |
| 114 | // !!X ^ !X |
| 115 | EXPECT_THAT(this->solve({NotNotX, NotX}), unsat()); |
| 116 | } |
| 117 | |
| 118 | TYPED_TEST_P(SolverTest, NegatedDisjunction) { |
| 119 | ConstraintContext Ctx; |
| 120 | auto X = Ctx.atom(); |
| 121 | auto Y = Ctx.atom(); |
| 122 | auto XOrY = Ctx.disj(LHS: X, RHS: Y); |
| 123 | auto NotXOrY = Ctx.neg(Operand: XOrY); |
| 124 | |
| 125 | // !(X v Y) ^ (X v Y) |
| 126 | EXPECT_THAT(this->solve({NotXOrY, XOrY}), unsat()); |
| 127 | } |
| 128 | |
| 129 | TYPED_TEST_P(SolverTest, NegatedConjunction) { |
| 130 | ConstraintContext Ctx; |
| 131 | auto X = Ctx.atom(); |
| 132 | auto Y = Ctx.atom(); |
| 133 | auto XAndY = Ctx.conj(LHS: X, RHS: Y); |
| 134 | auto NotXAndY = Ctx.neg(Operand: XAndY); |
| 135 | |
| 136 | // !(X ^ Y) ^ (X ^ Y) |
| 137 | EXPECT_THAT(this->solve({NotXAndY, XAndY}), unsat()); |
| 138 | } |
| 139 | |
| 140 | TYPED_TEST_P(SolverTest, DisjunctionSameVarWithNegation) { |
| 141 | ConstraintContext Ctx; |
| 142 | auto X = Ctx.atom(); |
| 143 | auto NotX = Ctx.neg(Operand: X); |
| 144 | auto XOrNotX = Ctx.disj(LHS: X, RHS: NotX); |
| 145 | |
| 146 | // X v !X |
| 147 | EXPECT_THAT(this->solve({XOrNotX}), sat(_)); |
| 148 | } |
| 149 | |
| 150 | TYPED_TEST_P(SolverTest, DisjunctionSameVar) { |
| 151 | ConstraintContext Ctx; |
| 152 | auto X = Ctx.atom(); |
| 153 | auto XOrX = Ctx.disj(LHS: X, RHS: X); |
| 154 | |
| 155 | // X v X |
| 156 | EXPECT_THAT(this->solve({XOrX}), sat(_)); |
| 157 | } |
| 158 | |
| 159 | TYPED_TEST_P(SolverTest, ConjunctionSameVarsConflict) { |
| 160 | ConstraintContext Ctx; |
| 161 | auto X = Ctx.atom(); |
| 162 | auto NotX = Ctx.neg(Operand: X); |
| 163 | auto XAndNotX = Ctx.conj(LHS: X, RHS: NotX); |
| 164 | |
| 165 | // X ^ !X |
| 166 | EXPECT_THAT(this->solve({XAndNotX}), unsat()); |
| 167 | } |
| 168 | |
| 169 | TYPED_TEST_P(SolverTest, ConjunctionSameVar) { |
| 170 | ConstraintContext Ctx; |
| 171 | auto X = Ctx.atom(); |
| 172 | auto XAndX = Ctx.conj(LHS: X, RHS: X); |
| 173 | |
| 174 | // X ^ X |
| 175 | EXPECT_THAT(this->solve({XAndX}), sat(_)); |
| 176 | } |
| 177 | |
| 178 | TYPED_TEST_P(SolverTest, PureVar) { |
| 179 | ConstraintContext Ctx; |
| 180 | auto X = Ctx.atom(); |
| 181 | auto Y = Ctx.atom(); |
| 182 | auto NotX = Ctx.neg(Operand: X); |
| 183 | auto NotXOrY = Ctx.disj(LHS: NotX, RHS: Y); |
| 184 | auto NotY = Ctx.neg(Operand: Y); |
| 185 | auto NotXOrNotY = Ctx.disj(LHS: NotX, RHS: NotY); |
| 186 | |
| 187 | // (!X v Y) ^ (!X v !Y) |
| 188 | EXPECT_THAT(this->solve({NotXOrY, NotXOrNotY}), |
| 189 | sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse), |
| 190 | Pair(Y->getAtom(), _)))); |
| 191 | } |
| 192 | |
| 193 | TYPED_TEST_P(SolverTest, MustAssumeVarIsFalse) { |
| 194 | ConstraintContext Ctx; |
| 195 | auto X = Ctx.atom(); |
| 196 | auto Y = Ctx.atom(); |
| 197 | auto XOrY = Ctx.disj(LHS: X, RHS: Y); |
| 198 | auto NotX = Ctx.neg(Operand: X); |
| 199 | auto NotXOrY = Ctx.disj(LHS: NotX, RHS: Y); |
| 200 | auto NotY = Ctx.neg(Operand: Y); |
| 201 | auto NotXOrNotY = Ctx.disj(LHS: NotX, RHS: NotY); |
| 202 | |
| 203 | // (X v Y) ^ (!X v Y) ^ (!X v !Y) |
| 204 | EXPECT_THAT(this->solve({XOrY, NotXOrY, NotXOrNotY}), |
| 205 | sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse), |
| 206 | Pair(Y->getAtom(), AssignedTrue)))); |
| 207 | } |
| 208 | |
| 209 | TYPED_TEST_P(SolverTest, DeepConflict) { |
| 210 | ConstraintContext Ctx; |
| 211 | auto X = Ctx.atom(); |
| 212 | auto Y = Ctx.atom(); |
| 213 | auto XOrY = Ctx.disj(LHS: X, RHS: Y); |
| 214 | auto NotX = Ctx.neg(Operand: X); |
| 215 | auto NotXOrY = Ctx.disj(LHS: NotX, RHS: Y); |
| 216 | auto NotY = Ctx.neg(Operand: Y); |
| 217 | auto NotXOrNotY = Ctx.disj(LHS: NotX, RHS: NotY); |
| 218 | auto XOrNotY = Ctx.disj(LHS: X, RHS: NotY); |
| 219 | |
| 220 | // (X v Y) ^ (!X v Y) ^ (!X v !Y) ^ (X v !Y) |
| 221 | EXPECT_THAT(this->solve({XOrY, NotXOrY, NotXOrNotY, XOrNotY}), unsat()); |
| 222 | } |
| 223 | |
| 224 | TYPED_TEST_P(SolverTest, IffIsEquivalentToDNF) { |
| 225 | ConstraintContext Ctx; |
| 226 | auto X = Ctx.atom(); |
| 227 | auto Y = Ctx.atom(); |
| 228 | auto NotX = Ctx.neg(Operand: X); |
| 229 | auto NotY = Ctx.neg(Operand: Y); |
| 230 | auto XIffY = Ctx.iff(LHS: X, RHS: Y); |
| 231 | auto XIffYDNF = Ctx.disj(LHS: Ctx.conj(LHS: X, RHS: Y), RHS: Ctx.conj(LHS: NotX, RHS: NotY)); |
| 232 | auto NotEquivalent = Ctx.neg(Operand: Ctx.iff(LHS: XIffY, RHS: XIffYDNF)); |
| 233 | |
| 234 | // !((X <=> Y) <=> ((X ^ Y) v (!X ^ !Y))) |
| 235 | EXPECT_THAT(this->solve({NotEquivalent}), unsat()); |
| 236 | } |
| 237 | |
| 238 | TYPED_TEST_P(SolverTest, IffSameVars) { |
| 239 | ConstraintContext Ctx; |
| 240 | auto X = Ctx.atom(); |
| 241 | auto XEqX = Ctx.iff(LHS: X, RHS: X); |
| 242 | |
| 243 | // X <=> X |
| 244 | EXPECT_THAT(this->solve({XEqX}), sat(_)); |
| 245 | } |
| 246 | |
| 247 | TYPED_TEST_P(SolverTest, IffDistinctVars) { |
| 248 | ConstraintContext Ctx; |
| 249 | auto X = Ctx.atom(); |
| 250 | auto Y = Ctx.atom(); |
| 251 | auto XEqY = Ctx.iff(LHS: X, RHS: Y); |
| 252 | |
| 253 | // X <=> Y |
| 254 | EXPECT_THAT( |
| 255 | this->solve({XEqY}), |
| 256 | sat(AnyOf(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue), |
| 257 | Pair(Y->getAtom(), AssignedTrue)), |
| 258 | UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse), |
| 259 | Pair(Y->getAtom(), AssignedFalse))))); |
| 260 | } |
| 261 | |
| 262 | TYPED_TEST_P(SolverTest, IffWithUnits) { |
| 263 | ConstraintContext Ctx; |
| 264 | auto X = Ctx.atom(); |
| 265 | auto Y = Ctx.atom(); |
| 266 | auto XEqY = Ctx.iff(LHS: X, RHS: Y); |
| 267 | |
| 268 | // (X <=> Y) ^ X ^ Y |
| 269 | EXPECT_THAT(this->solve({XEqY, X, Y}), |
| 270 | sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue), |
| 271 | Pair(Y->getAtom(), AssignedTrue)))); |
| 272 | } |
| 273 | |
| 274 | TYPED_TEST_P(SolverTest, IffWithUnitsConflict) { |
| 275 | Arena A; |
| 276 | auto Constraints = parseFormulas(A, Lines: R"( |
| 277 | (V0 = V1) |
| 278 | V0 |
| 279 | !V1 |
| 280 | )" ); |
| 281 | EXPECT_THAT(this->solve(Constraints), unsat()); |
| 282 | } |
| 283 | |
| 284 | TYPED_TEST_P(SolverTest, IffTransitiveConflict) { |
| 285 | Arena A; |
| 286 | auto Constraints = parseFormulas(A, Lines: R"( |
| 287 | (V0 = V1) |
| 288 | (V1 = V2) |
| 289 | V2 |
| 290 | !V0 |
| 291 | )" ); |
| 292 | EXPECT_THAT(this->solve(Constraints), unsat()); |
| 293 | } |
| 294 | |
| 295 | TYPED_TEST_P(SolverTest, DeMorgan) { |
| 296 | Arena A; |
| 297 | auto Constraints = parseFormulas(A, Lines: R"( |
| 298 | (!(V0 | V1) = (!V0 & !V1)) |
| 299 | (!(V2 & V3) = (!V2 | !V3)) |
| 300 | )" ); |
| 301 | EXPECT_THAT(this->solve(Constraints), sat(_)); |
| 302 | } |
| 303 | |
| 304 | TYPED_TEST_P(SolverTest, RespectsAdditionalConstraints) { |
| 305 | Arena A; |
| 306 | auto Constraints = parseFormulas(A, Lines: R"( |
| 307 | (V0 = V1) |
| 308 | V0 |
| 309 | !V1 |
| 310 | )" ); |
| 311 | EXPECT_THAT(this->solve(Constraints), unsat()); |
| 312 | } |
| 313 | |
| 314 | TYPED_TEST_P(SolverTest, ImplicationIsEquivalentToDNF) { |
| 315 | Arena A; |
| 316 | auto Constraints = parseFormulas(A, Lines: R"( |
| 317 | !((V0 => V1) = (!V0 | V1)) |
| 318 | )" ); |
| 319 | EXPECT_THAT(this->solve(Constraints), unsat()); |
| 320 | } |
| 321 | |
| 322 | TYPED_TEST_P(SolverTest, ImplicationConflict) { |
| 323 | Arena A; |
| 324 | auto Constraints = parseFormulas(A, Lines: R"( |
| 325 | (V0 => V1) |
| 326 | (V0 & !V1) |
| 327 | )" ); |
| 328 | EXPECT_THAT(this->solve(Constraints), unsat()); |
| 329 | } |
| 330 | |
| 331 | TYPED_TEST_P(SolverTest, ReachedLimitsReflectsTimeouts) { |
| 332 | Arena A; |
| 333 | auto Constraints = parseFormulas(A, Lines: R"( |
| 334 | (!(V0 | V1) = (!V0 & !V1)) |
| 335 | (!(V2 & V3) = (!V2 & !V3)) |
| 336 | )" ); |
| 337 | TypeParam solver = this->createSolverWithLowTimeout(); |
| 338 | ASSERT_EQ(solver.solve(Constraints).getStatus(), |
| 339 | Solver::Result::Status::TimedOut); |
| 340 | EXPECT_TRUE(solver.reachedLimit()); |
| 341 | } |
| 342 | |
| 343 | TYPED_TEST_P(SolverTest, SimpleButLargeContradiction) { |
| 344 | // This test ensures that the solver takes a short-cut on known |
| 345 | // contradictory inputs, without using max_iterations. At the time |
| 346 | // this test is added, formulas that are easily recognized to be |
| 347 | // contradictory at CNF construction time would lead to timeout. |
| 348 | TypeParam solver = this->createSolverWithLowTimeout(); |
| 349 | ConstraintContext Ctx; |
| 350 | auto first = Ctx.atom(); |
| 351 | auto last = first; |
| 352 | for (int i = 1; i < 10000; ++i) { |
| 353 | last = Ctx.conj(LHS: last, RHS: Ctx.atom()); |
| 354 | } |
| 355 | last = Ctx.conj(LHS: Ctx.neg(Operand: first), RHS: last); |
| 356 | ASSERT_EQ(solver.solve({last}).getStatus(), |
| 357 | Solver::Result::Status::Unsatisfiable); |
| 358 | EXPECT_FALSE(solver.reachedLimit()); |
| 359 | |
| 360 | first = Ctx.atom(); |
| 361 | last = Ctx.neg(Operand: first); |
| 362 | for (int i = 1; i < 10000; ++i) { |
| 363 | last = Ctx.conj(LHS: last, RHS: Ctx.neg(Operand: Ctx.atom())); |
| 364 | } |
| 365 | last = Ctx.conj(LHS: first, RHS: last); |
| 366 | ASSERT_EQ(solver.solve({last}).getStatus(), |
| 367 | Solver::Result::Status::Unsatisfiable); |
| 368 | EXPECT_FALSE(solver.reachedLimit()); |
| 369 | } |
| 370 | |
| 371 | REGISTER_TYPED_TEST_SUITE_P( |
| 372 | SolverTest, Var, NegatedVar, UnitConflict, DistinctVars, DoubleNegation, |
| 373 | NegatedDisjunction, NegatedConjunction, DisjunctionSameVarWithNegation, |
| 374 | DisjunctionSameVar, ConjunctionSameVarsConflict, ConjunctionSameVar, |
| 375 | PureVar, MustAssumeVarIsFalse, DeepConflict, IffIsEquivalentToDNF, |
| 376 | IffSameVars, IffDistinctVars, IffWithUnits, IffWithUnitsConflict, |
| 377 | IffTransitiveConflict, DeMorgan, RespectsAdditionalConstraints, |
| 378 | ImplicationIsEquivalentToDNF, ImplicationConflict, |
| 379 | ReachedLimitsReflectsTimeouts, SimpleButLargeContradiction); |
| 380 | |
| 381 | } // namespace clang::dataflow::test |
| 382 | |
| 383 | #endif // LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_TESTING_SUPPORT_H_ |
| 384 | |