1//===-- MveEmitter.cpp - Generate arm_mve.h for use with clang ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This set of linked tablegen backends is responsible for emitting the bits
10// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11// and provides a set of types and functions for (more or less) direct access
12// to the MVE instruction set, including the scalar shifts as well as the
13// vector instructions.
14//
15// MVE's standard intrinsic functions are unusual in that they have a system of
16// polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18// arguments you give it.
19//
20// This constrains the implementation strategies. The usual approach to making
21// the user-facing functions polymorphic would be to either use
22// __attribute__((overloadable)) to make a set of vaddq() functions that are
23// all inline wrappers on the underlying clang builtins, or to define a single
24// vaddq() macro which expands to an instance of _Generic.
25//
26// The inline-wrappers approach would work fine for most intrinsics, except for
27// the ones that take an argument required to be a compile-time constant,
28// because if you wrap an inline function around a call to a builtin, the
29// constant nature of the argument is not passed through.
30//
31// The _Generic approach can be made to work with enough effort, but it takes a
32// lot of machinery, because of the design feature of _Generic that even the
33// untaken branches are required to pass all front-end validity checks such as
34// type-correctness. You can work around that by nesting further _Generics all
35// over the place to coerce things to the right type in untaken branches, but
36// what you get out is complicated, hard to guarantee its correctness, and
37// worst of all, gives _completely unreadable_ error messages if the user gets
38// the types wrong for an intrinsic call.
39//
40// Therefore, my strategy is to introduce a new __attribute__ that allows a
41// function to be mapped to a clang builtin even though it doesn't have the
42// same name, and then declare all the user-facing MVE function names with that
43// attribute, mapping each one directly to the clang builtin. And the
44// polymorphic ones have __attribute__((overloadable)) as well. So once the
45// compiler has resolved the overload, it knows the internal builtin ID of the
46// selected function, and can check the immediate arguments against that; and
47// if the user gets the types wrong in a call to a polymorphic intrinsic, they
48// get a completely clear error message showing all the declarations of that
49// function in the header file and explaining why each one doesn't fit their
50// call.
51//
52// The downside of this is that if every clang builtin has to correspond
53// exactly to a user-facing ACLE intrinsic, then you can't save work in the
54// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56// description for an MVE intrinsic has to contain a full description of the
57// sequence of IRBuilder calls that clang will need to make.
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/ADT/APInt.h"
62#include "llvm/ADT/StringRef.h"
63#include "llvm/ADT/StringSwitch.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/raw_ostream.h"
66#include "llvm/TableGen/Error.h"
67#include "llvm/TableGen/Record.h"
68#include "llvm/TableGen/StringToOffsetTable.h"
69#include <cassert>
70#include <cstddef>
71#include <cstdint>
72#include <list>
73#include <map>
74#include <memory>
75#include <set>
76#include <string>
77#include <vector>
78
79using namespace llvm;
80
81namespace {
82
83class EmitterBase;
84class Result;
85
86// -----------------------------------------------------------------------------
87// A system of classes to represent all the types we'll need to deal with in
88// the prototypes of intrinsics.
89//
90// Query methods include finding out the C name of a type; the "LLVM name" in
91// the sense of a C++ code snippet that can be used in the codegen function;
92// the suffix that represents the type in the ACLE intrinsic naming scheme
93// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94// type is floating-point related (hence should be under #ifdef in the MVE
95// header so that it isn't included in integer-only MVE mode); and the type's
96// size in bits. Not all subtypes support all these queries.
97
98class Type {
99public:
100 enum class TypeKind {
101 // Void appears as a return type (for store intrinsics, which are pure
102 // side-effect). It's also used as the parameter type in the Tablegen
103 // when an intrinsic doesn't need to come in various suffixed forms like
104 // vfooq_s8,vfooq_u16,vfooq_f32.
105 Void,
106
107 // Scalar is used for ordinary int and float types of all sizes.
108 Scalar,
109
110 // Vector is used for anything that occupies exactly one MVE vector
111 // register, i.e. {uint,int,float}NxM_t.
112 Vector,
113
114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115 // interleaving load/store intrinsics v{ld,st}{2,4}q.
116 MultiVector,
117
118 // Predicate is used by all the predicated intrinsics. Its C
119 // representation is mve_pred16_t (which is just an alias for uint16_t).
120 // But we give more detail here, by indicating that a given predicate
121 // instruction is logically regarded as a vector of i1 containing the
122 // same number of lanes as the input vector type. So our Predicate type
123 // comes with a lane count, which we use to decide which kind of <n x i1>
124 // we'll invoke the pred_i2v IR intrinsic to translate it into.
125 Predicate,
126
127 // Pointer is used for pointer types (obviously), and comes with a flag
128 // indicating whether it's a pointer to a const or mutable instance of
129 // the pointee type.
130 Pointer,
131 };
132
133private:
134 const TypeKind TKind;
135
136protected:
137 Type(TypeKind K) : TKind(K) {}
138
139public:
140 TypeKind typeKind() const { return TKind; }
141 virtual ~Type() = default;
142 virtual bool requiresFloat() const = 0;
143 virtual bool requiresMVE() const = 0;
144 virtual unsigned sizeInBits() const = 0;
145 virtual std::string cName() const = 0;
146 virtual std::string llvmName() const {
147 PrintFatalError(Msg: "no LLVM type name available for type " + cName());
148 }
149 virtual std::string acleSuffix(std::string) const {
150 PrintFatalError(Msg: "no ACLE suffix available for this type");
151 }
152};
153
154enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
155inline std::string toLetter(ScalarTypeKind kind) {
156 switch (kind) {
157 case ScalarTypeKind::SignedInt:
158 return "s";
159 case ScalarTypeKind::UnsignedInt:
160 return "u";
161 case ScalarTypeKind::Float:
162 return "f";
163 }
164 llvm_unreachable("Unhandled ScalarTypeKind enum");
165}
166inline std::string toCPrefix(ScalarTypeKind kind) {
167 switch (kind) {
168 case ScalarTypeKind::SignedInt:
169 return "int";
170 case ScalarTypeKind::UnsignedInt:
171 return "uint";
172 case ScalarTypeKind::Float:
173 return "float";
174 }
175 llvm_unreachable("Unhandled ScalarTypeKind enum");
176}
177
178class VoidType : public Type {
179public:
180 VoidType() : Type(TypeKind::Void) {}
181 unsigned sizeInBits() const override { return 0; }
182 bool requiresFloat() const override { return false; }
183 bool requiresMVE() const override { return false; }
184 std::string cName() const override { return "void"; }
185
186 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
187 std::string acleSuffix(std::string) const override { return ""; }
188};
189
190class PointerType : public Type {
191 const Type *Pointee;
192 bool Const;
193
194public:
195 PointerType(const Type *Pointee, bool Const)
196 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
197 unsigned sizeInBits() const override { return 32; }
198 bool requiresFloat() const override { return Pointee->requiresFloat(); }
199 bool requiresMVE() const override { return Pointee->requiresMVE(); }
200 std::string cName() const override {
201 std::string Name = Pointee->cName();
202
203 // The syntax for a pointer in C is different when the pointee is
204 // itself a pointer. The MVE intrinsics don't contain any double
205 // pointers, so we don't need to worry about that wrinkle.
206 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207
208 if (Const)
209 Name = "const " + Name;
210 return Name + " *";
211 }
212 std::string llvmName() const override { return "Builder.getPtrTy()"; }
213 const Type *getPointeeType() const { return Pointee; }
214
215 static bool classof(const Type *T) {
216 return T->typeKind() == TypeKind::Pointer;
217 }
218};
219
220// Base class for all the types that have a name of the form
221// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
222//
223// For this sub-hierarchy we invent a cNameBase() method which returns the
224// whole name except for the trailing "_t", so that Vector and MultiVector can
225// append an extra "x2" or whatever to their element type's cNameBase(). Then
226// the main cName() query method puts "_t" on the end for the final type name.
227
228class CRegularNamedType : public Type {
229 using Type::Type;
230 virtual std::string cNameBase() const = 0;
231
232public:
233 std::string cName() const override { return cNameBase() + "_t"; }
234};
235
236class ScalarType : public CRegularNamedType {
237 ScalarTypeKind Kind;
238 unsigned Bits;
239 std::string NameOverride;
240
241public:
242 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
243 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString(FieldName: "kind"))
244 .Case(S: "s", Value: ScalarTypeKind::SignedInt)
245 .Case(S: "u", Value: ScalarTypeKind::UnsignedInt)
246 .Case(S: "f", Value: ScalarTypeKind::Float);
247 Bits = Record->getValueAsInt(FieldName: "size");
248 NameOverride = std::string(Record->getValueAsString(FieldName: "nameOverride"));
249 }
250 unsigned sizeInBits() const override { return Bits; }
251 ScalarTypeKind kind() const { return Kind; }
252 std::string suffix() const { return toLetter(kind: Kind) + utostr(X: Bits); }
253 std::string cNameBase() const override {
254 return toCPrefix(kind: Kind) + utostr(X: Bits);
255 }
256 std::string cName() const override {
257 if (NameOverride.empty())
258 return CRegularNamedType::cName();
259 return NameOverride;
260 }
261 std::string llvmName() const override {
262 if (Kind == ScalarTypeKind::Float) {
263 if (Bits == 16)
264 return "HalfTy";
265 if (Bits == 32)
266 return "FloatTy";
267 if (Bits == 64)
268 return "DoubleTy";
269 PrintFatalError(Msg: "bad size for floating type");
270 }
271 return "Int" + utostr(X: Bits) + "Ty";
272 }
273 std::string acleSuffix(std::string overrideLetter) const override {
274 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(kind: Kind))
275 + utostr(X: Bits);
276 }
277 bool isInteger() const { return Kind != ScalarTypeKind::Float; }
278 bool requiresFloat() const override { return !isInteger(); }
279 bool requiresMVE() const override { return false; }
280 bool hasNonstandardName() const { return !NameOverride.empty(); }
281
282 static bool classof(const Type *T) {
283 return T->typeKind() == TypeKind::Scalar;
284 }
285};
286
287class VectorType : public CRegularNamedType {
288 const ScalarType *Element;
289 unsigned Lanes;
290
291public:
292 VectorType(const ScalarType *Element, unsigned Lanes)
293 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
294 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
295 unsigned lanes() const { return Lanes; }
296 bool requiresFloat() const override { return Element->requiresFloat(); }
297 bool requiresMVE() const override { return true; }
298 std::string cNameBase() const override {
299 return Element->cNameBase() + "x" + utostr(X: Lanes);
300 }
301 std::string llvmName() const override {
302 return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
303 utostr(X: Lanes) + ")";
304 }
305
306 static bool classof(const Type *T) {
307 return T->typeKind() == TypeKind::Vector;
308 }
309};
310
311class MultiVectorType : public CRegularNamedType {
312 const VectorType *Element;
313 unsigned Registers;
314
315public:
316 MultiVectorType(unsigned Registers, const VectorType *Element)
317 : CRegularNamedType(TypeKind::MultiVector), Element(Element),
318 Registers(Registers) {}
319 unsigned sizeInBits() const override {
320 return Registers * Element->sizeInBits();
321 }
322 unsigned registers() const { return Registers; }
323 bool requiresFloat() const override { return Element->requiresFloat(); }
324 bool requiresMVE() const override { return true; }
325 std::string cNameBase() const override {
326 return Element->cNameBase() + "x" + utostr(X: Registers);
327 }
328
329 // MultiVectorType doesn't override llvmName, because we don't expect to do
330 // automatic code generation for the MVE intrinsics that use it: the {vld2,
331 // vld4, vst2, vst4} family are the only ones that use these types, so it was
332 // easier to hand-write the codegen for dealing with these structs than to
333 // build in lots of extra automatic machinery that would only be used once.
334
335 static bool classof(const Type *T) {
336 return T->typeKind() == TypeKind::MultiVector;
337 }
338};
339
340class PredicateType : public CRegularNamedType {
341 unsigned Lanes;
342
343public:
344 PredicateType(unsigned Lanes)
345 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
346 unsigned sizeInBits() const override { return 16; }
347 std::string cNameBase() const override { return "mve_pred16"; }
348 bool requiresFloat() const override { return false; };
349 bool requiresMVE() const override { return true; }
350 std::string llvmName() const override {
351 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(X: Lanes) +
352 ")";
353 }
354
355 static bool classof(const Type *T) {
356 return T->typeKind() == TypeKind::Predicate;
357 }
358};
359
360// -----------------------------------------------------------------------------
361// Class to facilitate merging together the code generation for many intrinsics
362// by means of varying a few constant or type parameters.
363//
364// Most obviously, the intrinsics in a single parametrised family will have
365// code generation sequences that only differ in a type or two, e.g. vaddq_s8
366// and vaddq_u16 will look the same apart from putting a different vector type
367// in the call to CGM.getIntrinsic(). But also, completely different intrinsics
368// will often code-generate in the same way, with only a different choice of
369// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
370// marshalling the arguments and return values of the IR intrinsic in exactly
371// the same way. And others might differ only in some other kind of constant,
372// such as a lane index.
373//
374// So, when we generate the IR-building code for all these intrinsics, we keep
375// track of every value that could possibly be pulled out of the code and
376// stored ahead of time in a local variable. Then we group together intrinsics
377// by textual equivalence of the code that would result if _all_ those
378// parameters were stored in local variables. That gives us maximal sets that
379// can be implemented by a single piece of IR-building code by changing
380// parameter values ahead of time.
381//
382// After we've done that, we do a second pass in which we only allocate _some_
383// of the parameters into local variables, by tracking which ones have the same
384// values as each other (so that a single variable can be reused) and which
385// ones are the same across the whole set (so that no variable is needed at
386// all).
387//
388// Hence the class below. Its allocParam method is invoked during code
389// generation by every method of a Result subclass (see below) that wants to
390// give it the opportunity to pull something out into a switchable parameter.
391// It returns a variable name for the parameter, or (if it's being used in the
392// second pass once we've decided that some parameters don't need to be stored
393// in variables after all) it might just return the input expression unchanged.
394
395struct CodeGenParamAllocator {
396 // Accumulated during code generation
397 std::vector<std::string> *ParamTypes = nullptr;
398 std::vector<std::string> *ParamValues = nullptr;
399
400 // Provided ahead of time in pass 2, to indicate which parameters are being
401 // assigned to what. This vector contains an entry for each call to
402 // allocParam expected during code gen (which we counted up in pass 1), and
403 // indicates the number of the parameter variable that should be returned, or
404 // -1 if this call shouldn't allocate a parameter variable at all.
405 //
406 // We rely on the recursive code generation working identically in passes 1
407 // and 2, so that the same list of calls to allocParam happen in the same
408 // order. That guarantees that the parameter numbers recorded in pass 1 will
409 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
410 // decided to do about each one in pass 2.
411 std::vector<int> *ParamNumberMap = nullptr;
412
413 // Internally track how many things we've allocated
414 unsigned nparams = 0;
415
416 std::string allocParam(StringRef Type, StringRef Value) {
417 unsigned ParamNumber;
418
419 if (!ParamNumberMap) {
420 // In pass 1, unconditionally assign a new parameter variable to every
421 // value we're asked to process.
422 ParamNumber = nparams++;
423 } else {
424 // In pass 2, consult the map provided by the caller to find out which
425 // variable we should be keeping things in.
426 int MapValue = (*ParamNumberMap)[nparams++];
427 if (MapValue < 0)
428 return std::string(Value);
429 ParamNumber = MapValue;
430 }
431
432 // If we've allocated a new parameter variable for the first time, store
433 // its type and value to be retrieved after codegen.
434 if (ParamTypes && ParamTypes->size() == ParamNumber)
435 ParamTypes->push_back(x: std::string(Type));
436 if (ParamValues && ParamValues->size() == ParamNumber)
437 ParamValues->push_back(x: std::string(Value));
438
439 // Unimaginative naming scheme for parameter variables.
440 return "Param" + utostr(X: ParamNumber);
441 }
442};
443
444// -----------------------------------------------------------------------------
445// System of classes that represent all the intermediate values used during
446// code-generation for an intrinsic.
447//
448// The base class 'Result' can represent a value of the LLVM type 'Value', or
449// sometimes 'Address' (for loads/stores, including an alignment requirement).
450//
451// In the case where the Tablegen provides a value in the codegen dag as a
452// plain integer literal, the Result object we construct here will be one that
453// returns true from hasIntegerConstantValue(). This allows the generated C++
454// code to use the constant directly in contexts which can take a literal
455// integer, such as Builder.CreateExtractValue(thing, 1), without going to the
456// effort of calling llvm::ConstantInt::get() and then pulling the constant
457// back out of the resulting llvm:Value later.
458
459class Result {
460public:
461 // Convenient shorthand for the pointer type we'll be using everywhere.
462 using Ptr = std::shared_ptr<Result>;
463
464private:
465 Ptr Predecessor;
466 std::string VarName;
467 bool VarNameUsed = false;
468 unsigned Visited = 0;
469
470public:
471 virtual ~Result() = default;
472 using Scope = std::map<std::string, Ptr, std::less<>>;
473 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
474 virtual bool hasIntegerConstantValue() const { return false; }
475 virtual uint32_t integerConstantValue() const { return 0; }
476 virtual bool hasIntegerValue() const { return false; }
477 virtual std::string getIntegerValue(const std::string &) {
478 llvm_unreachable("non-working Result::getIntegerValue called");
479 }
480 virtual std::string typeName() const { return "Value *"; }
481
482 // Mostly, when a code-generation operation has a dependency on prior
483 // operations, it's because it uses the output values of those operations as
484 // inputs. But there's one exception, which is the use of 'seq' in Tablegen
485 // to indicate that operations have to be performed in sequence regardless of
486 // whether they use each others' output values.
487 //
488 // So, the actual generation of code is done by depth-first search, using the
489 // prerequisites() method to get a list of all the other Results that have to
490 // be computed before this one. That method divides into the 'predecessor',
491 // set by setPredecessor() while processing a 'seq' dag node, and the list
492 // returned by 'morePrerequisites', which each subclass implements to return
493 // a list of the Results it uses as input to whatever its own computation is
494 // doing.
495
496 virtual void morePrerequisites(std::vector<Ptr> &output) const {}
497 std::vector<Ptr> prerequisites() const {
498 std::vector<Ptr> ToRet;
499 if (Predecessor)
500 ToRet.push_back(x: Predecessor);
501 morePrerequisites(output&: ToRet);
502 return ToRet;
503 }
504
505 void setPredecessor(Ptr p) {
506 // If the user has nested one 'seq' node inside another, and this
507 // method is called on the return value of the inner 'seq' (i.e.
508 // the final item inside it), then we can't link _this_ node to p,
509 // because it already has a predecessor. Instead, walk the chain
510 // until we find the first item in the inner seq, and link that to
511 // p, so that nesting seqs has the obvious effect of linking
512 // everything together into one long sequential chain.
513 Result *r = this;
514 while (r->Predecessor)
515 r = r->Predecessor.get();
516 r->Predecessor = p;
517 }
518
519 // Each Result will be assigned a variable name in the output code, but not
520 // all those variable names will actually be used (e.g. the return value of
521 // Builder.CreateStore has void type, so nobody will want to refer to it). To
522 // prevent annoying compiler warnings, we track whether each Result's
523 // variable name was ever actually mentioned in subsequent statements, so
524 // that it can be left out of the final generated code.
525 std::string varname() {
526 VarNameUsed = true;
527 return VarName;
528 }
529 void setVarname(const StringRef s) { VarName = std::string(s); }
530 bool varnameUsed() const { return VarNameUsed; }
531
532 // Emit code to generate this result as a Value *.
533 virtual std::string asValue() {
534 return varname();
535 }
536
537 // Code generation happens in multiple passes. This method tracks whether a
538 // Result has yet been visited in a given pass, without the need for a
539 // tedious loop in between passes that goes through and resets a 'visited'
540 // flag back to false: you just set Pass=1 the first time round, and Pass=2
541 // the second time.
542 bool needsVisiting(unsigned Pass) {
543 bool ToRet = Visited < Pass;
544 Visited = Pass;
545 return ToRet;
546 }
547};
548
549// Result subclass that retrieves one of the arguments to the clang builtin
550// function. In cases where the argument has pointer type, we call
551// EmitPointerWithAlignment and store the result in a variable of type Address,
552// so that load and store IR nodes can know the right alignment. Otherwise, we
553// call EmitScalarExpr.
554//
555// There are aggregate parameters in the MVE intrinsics API, but we don't deal
556// with them in this Tablegen back end: they only arise in the vld2q/vld4q and
557// vst2q/vst4q family, which is few enough that we just write the code by hand
558// for those in CGBuiltin.cpp.
559class BuiltinArgResult : public Result {
560public:
561 unsigned ArgNum;
562 bool AddressType;
563 bool Immediate;
564 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
565 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
566 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
567 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
568 << "(E->getArg(" << ArgNum << "))";
569 }
570 std::string typeName() const override {
571 return AddressType ? "Address" : Result::typeName();
572 }
573 // Emit code to generate this result as a Value *.
574 std::string asValue() override {
575 if (AddressType)
576 return "(" + varname() + ".emitRawPointer(*this))";
577 return Result::asValue();
578 }
579 bool hasIntegerValue() const override { return Immediate; }
580 std::string getIntegerValue(const std::string &IntType) override {
581 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
582 utostr(X: ArgNum) + "), getContext())";
583 }
584};
585
586// Result subclass for an integer literal appearing in Tablegen. This may need
587// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
588// it may be used directly as an integer, depending on which IRBuilder method
589// it's being passed to.
590class IntLiteralResult : public Result {
591public:
592 const ScalarType *IntegerType;
593 uint32_t IntegerValue;
594 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
595 : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
596 void genCode(raw_ostream &OS,
597 CodeGenParamAllocator &ParamAlloc) const override {
598 OS << "llvm::ConstantInt::get("
599 << ParamAlloc.allocParam(Type: "llvm::Type *", Value: IntegerType->llvmName())
600 << ", ";
601 OS << ParamAlloc.allocParam(Type: IntegerType->cName(), Value: utostr(X: IntegerValue))
602 << ")";
603 }
604 bool hasIntegerConstantValue() const override { return true; }
605 uint32_t integerConstantValue() const override { return IntegerValue; }
606};
607
608// Result subclass representing a cast between different integer types. We use
609// our own ScalarType abstraction as the representation of the target type,
610// which gives both size and signedness.
611class IntCastResult : public Result {
612public:
613 const ScalarType *IntegerType;
614 Ptr V;
615 IntCastResult(const ScalarType *IntegerType, Ptr V)
616 : IntegerType(IntegerType), V(V) {}
617 void genCode(raw_ostream &OS,
618 CodeGenParamAllocator &ParamAlloc) const override {
619 OS << "Builder.CreateIntCast(" << V->varname() << ", "
620 << ParamAlloc.allocParam(Type: "llvm::Type *", Value: IntegerType->llvmName()) << ", "
621 << ParamAlloc.allocParam(Type: "bool",
622 Value: IntegerType->kind() == ScalarTypeKind::SignedInt
623 ? "true"
624 : "false")
625 << ")";
626 }
627 void morePrerequisites(std::vector<Ptr> &output) const override {
628 output.push_back(x: V);
629 }
630};
631
632// Result subclass representing a cast between different pointer types.
633class PointerCastResult : public Result {
634public:
635 const PointerType *PtrType;
636 Ptr V;
637 PointerCastResult(const PointerType *PtrType, Ptr V)
638 : PtrType(PtrType), V(V) {}
639 void genCode(raw_ostream &OS,
640 CodeGenParamAllocator &ParamAlloc) const override {
641 OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
642 << ParamAlloc.allocParam(Type: "llvm::Type *", Value: PtrType->llvmName()) << ")";
643 }
644 void morePrerequisites(std::vector<Ptr> &output) const override {
645 output.push_back(x: V);
646 }
647};
648
649// Result subclass representing a call to an IRBuilder method. Each IRBuilder
650// method we want to use will have a Tablegen record giving the method name and
651// describing any important details of how to call it, such as whether a
652// particular argument should be an integer constant instead of an llvm::Value.
653class IRBuilderResult : public Result {
654public:
655 StringRef CallPrefix;
656 std::vector<Ptr> Args;
657 std::set<unsigned> AddressArgs;
658 std::map<unsigned, std::string> IntegerArgs;
659 IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args,
660 const std::set<unsigned> &AddressArgs,
661 const std::map<unsigned, std::string> &IntegerArgs)
662 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
663 IntegerArgs(IntegerArgs) {}
664 void genCode(raw_ostream &OS,
665 CodeGenParamAllocator &ParamAlloc) const override {
666 OS << CallPrefix;
667 const char *Sep = "";
668 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
669 Ptr Arg = Args[i];
670 auto it = IntegerArgs.find(x: i);
671
672 OS << Sep;
673 Sep = ", ";
674
675 if (it != IntegerArgs.end()) {
676 if (Arg->hasIntegerConstantValue())
677 OS << "static_cast<" << it->second << ">("
678 << ParamAlloc.allocParam(Type: it->second,
679 Value: utostr(X: Arg->integerConstantValue()))
680 << ")";
681 else if (Arg->hasIntegerValue())
682 OS << ParamAlloc.allocParam(Type: it->second,
683 Value: Arg->getIntegerValue(it->second));
684 } else {
685 OS << Arg->varname();
686 }
687 }
688 OS << ")";
689 }
690 void morePrerequisites(std::vector<Ptr> &output) const override {
691 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
692 Ptr Arg = Args[i];
693 if (IntegerArgs.find(x: i) != IntegerArgs.end())
694 continue;
695 output.push_back(x: Arg);
696 }
697 }
698};
699
700// Result subclass representing making an Address out of a Value.
701class AddressResult : public Result {
702public:
703 Ptr Arg;
704 const Type *Ty;
705 unsigned Align;
706 AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
707 : Arg(Arg), Ty(Ty), Align(Align) {}
708 void genCode(raw_ostream &OS,
709 CodeGenParamAllocator &ParamAlloc) const override {
710 OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
711 << ", CharUnits::fromQuantity(" << Align << "))";
712 }
713 std::string typeName() const override {
714 return "Address";
715 }
716 void morePrerequisites(std::vector<Ptr> &output) const override {
717 output.push_back(x: Arg);
718 }
719};
720
721// Result subclass representing a call to an IR intrinsic, which we first have
722// to look up using an Intrinsic::ID constant and an array of types.
723class IRIntrinsicResult : public Result {
724public:
725 std::string IntrinsicID;
726 std::vector<const Type *> ParamTypes;
727 std::vector<Ptr> Args;
728 IRIntrinsicResult(StringRef IntrinsicID,
729 const std::vector<const Type *> &ParamTypes,
730 const std::vector<Ptr> &Args)
731 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
732 Args(Args) {}
733 void genCode(raw_ostream &OS,
734 CodeGenParamAllocator &ParamAlloc) const override {
735 std::string IntNo = ParamAlloc.allocParam(
736 Type: "Intrinsic::ID", Value: "Intrinsic::" + IntrinsicID);
737 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
738 if (!ParamTypes.empty()) {
739 OS << ", {";
740 const char *Sep = "";
741 for (auto T : ParamTypes) {
742 OS << Sep << ParamAlloc.allocParam(Type: "llvm::Type *", Value: T->llvmName());
743 Sep = ", ";
744 }
745 OS << "}";
746 }
747 OS << "), {";
748 const char *Sep = "";
749 for (auto Arg : Args) {
750 OS << Sep << Arg->asValue();
751 Sep = ", ";
752 }
753 OS << "})";
754 }
755 void morePrerequisites(std::vector<Ptr> &output) const override {
756 llvm::append_range(C&: output, R: Args);
757 }
758};
759
760// Result subclass that specifies a type, for use in IRBuilder operations such
761// as CreateBitCast that take a type argument.
762class TypeResult : public Result {
763public:
764 const Type *T;
765 TypeResult(const Type *T) : T(T) {}
766 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
767 OS << T->llvmName();
768 }
769 std::string typeName() const override {
770 return "llvm::Type *";
771 }
772};
773
774// -----------------------------------------------------------------------------
775// Class that describes a single ACLE intrinsic.
776//
777// A Tablegen record will typically describe more than one ACLE intrinsic, by
778// means of setting the 'list<Type> Params' field to a list of multiple
779// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
780// We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
781// rather than a single one for all of them. Hence, the constructor takes both
782// a Tablegen record and the current value of the parameter type.
783
784class ACLEIntrinsic {
785 // Structure documenting that one of the intrinsic's arguments is required to
786 // be a compile-time constant integer, and what constraints there are on its
787 // value. Used when generating Sema checking code.
788 struct ImmediateArg {
789 enum class BoundsType { ExplicitRange, UInt };
790 BoundsType boundsType;
791 int64_t i1, i2;
792 StringRef ExtraCheckType, ExtraCheckArgs;
793 const Type *ArgType;
794 };
795
796 // For polymorphic intrinsics, FullName is the explicit name that uniquely
797 // identifies this variant of the intrinsic, and ShortName is the name it
798 // shares with at least one other intrinsic.
799 std::string ShortName, FullName;
800
801 // Name of the architecture extension, used in the Clang builtin name
802 StringRef BuiltinExtension;
803
804 // A very small number of intrinsics _only_ have a polymorphic
805 // variant (vuninitializedq taking an unevaluated argument).
806 bool PolymorphicOnly;
807
808 // Another rarely-used flag indicating that the builtin doesn't
809 // evaluate its argument(s) at all.
810 bool NonEvaluating;
811
812 // True if the intrinsic needs only the C header part (no codegen, semantic
813 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
814 bool HeaderOnly;
815
816 const Type *ReturnType;
817 std::vector<const Type *> ArgTypes;
818 std::map<unsigned, ImmediateArg> ImmediateArgs;
819 Result::Ptr Code;
820
821 std::map<std::string, std::string> CustomCodeGenArgs;
822
823 // Recursive function that does the internals of code generation.
824 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
825 unsigned Pass) const {
826 if (!V->needsVisiting(Pass))
827 return;
828
829 for (Result::Ptr W : V->prerequisites())
830 genCodeDfs(V: W, Used, Pass);
831
832 Used.push_back(x: V);
833 }
834
835public:
836 const std::string &shortName() const { return ShortName; }
837 const std::string &fullName() const { return FullName; }
838 StringRef builtinExtension() const { return BuiltinExtension; }
839 const Type *returnType() const { return ReturnType; }
840 const std::vector<const Type *> &argTypes() const { return ArgTypes; }
841 bool requiresFloat() const {
842 if (ReturnType->requiresFloat())
843 return true;
844 for (const Type *T : ArgTypes)
845 if (T->requiresFloat())
846 return true;
847 return false;
848 }
849 bool requiresMVE() const {
850 return ReturnType->requiresMVE() ||
851 any_of(Range: ArgTypes, P: [](const Type *T) { return T->requiresMVE(); });
852 }
853 bool polymorphic() const { return ShortName != FullName; }
854 bool polymorphicOnly() const { return PolymorphicOnly; }
855 bool nonEvaluating() const { return NonEvaluating; }
856 bool headerOnly() const { return HeaderOnly; }
857
858 // External entry point for code generation, called from EmitterBase.
859 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
860 unsigned Pass) const {
861 assert(!headerOnly() && "Called genCode for header-only intrinsic");
862 if (!hasCode()) {
863 for (auto kv : CustomCodeGenArgs)
864 OS << " " << kv.first << " = " << kv.second << ";\n";
865 OS << " break; // custom code gen\n";
866 return;
867 }
868 std::list<Result::Ptr> Used;
869 genCodeDfs(V: Code, Used, Pass);
870
871 unsigned varindex = 0;
872 for (Result::Ptr V : Used)
873 if (V->varnameUsed())
874 V->setVarname("Val" + utostr(X: varindex++));
875
876 for (Result::Ptr V : Used) {
877 OS << " ";
878 if (V == Used.back()) {
879 assert(!V->varnameUsed());
880 OS << "return "; // FIXME: what if the top-level thing is void?
881 } else if (V->varnameUsed()) {
882 std::string Type = V->typeName();
883 OS << V->typeName();
884 if (!StringRef(Type).ends_with(Suffix: "*"))
885 OS << " ";
886 OS << V->varname() << " = ";
887 }
888 V->genCode(OS, ParamAlloc);
889 OS << ";\n";
890 }
891 }
892 bool hasCode() const { return Code != nullptr; }
893
894 static std::string signedHexLiteral(const APInt &iOrig) {
895 APInt i = iOrig.trunc(width: 64);
896 SmallString<40> s;
897 i.toString(Str&: s, Radix: 16, Signed: true, formatAsCLiteral: true);
898 return std::string(s);
899 }
900
901 std::string genSema() const {
902 assert(!headerOnly() && "Called genSema for header-only intrinsic");
903 std::vector<std::string> SemaChecks;
904
905 for (const auto &kv : ImmediateArgs) {
906 const ImmediateArg &IA = kv.second;
907
908 APInt lo(128, 0), hi(128, 0);
909 switch (IA.boundsType) {
910 case ImmediateArg::BoundsType::ExplicitRange:
911 lo = IA.i1;
912 hi = IA.i2;
913 break;
914 case ImmediateArg::BoundsType::UInt:
915 lo = 0;
916 hi = APInt::getMaxValue(numBits: IA.i1).zext(width: 128);
917 break;
918 }
919
920 std::string Index = utostr(X: kv.first);
921
922 // Emit a range check if the legal range of values for the
923 // immediate is smaller than the _possible_ range of values for
924 // its type.
925 unsigned ArgTypeBits = IA.ArgType->sizeInBits();
926 APInt ArgTypeRange = APInt::getMaxValue(numBits: ArgTypeBits).zext(width: 128);
927 APInt ActualRange = (hi - lo).trunc(width: 64).sext(width: 128);
928 if (ActualRange.ult(RHS: ArgTypeRange))
929 SemaChecks.push_back(x: "SemaRef.BuiltinConstantArgRange(TheCall, " +
930 Index + ", " + signedHexLiteral(iOrig: lo) + ", " +
931 signedHexLiteral(iOrig: hi) + ")");
932
933 if (!IA.ExtraCheckType.empty()) {
934 std::string Suffix;
935 if (!IA.ExtraCheckArgs.empty()) {
936 std::string tmp;
937 StringRef Arg = IA.ExtraCheckArgs;
938 if (Arg == "!lanesize") {
939 tmp = utostr(X: IA.ArgType->sizeInBits());
940 Arg = tmp;
941 }
942 Suffix = (Twine(", ") + Arg).str();
943 }
944 SemaChecks.push_back(x: (Twine("SemaRef.BuiltinConstantArg") +
945 IA.ExtraCheckType + "(TheCall, " + Index +
946 Suffix + ")")
947 .str());
948 }
949
950 assert(!SemaChecks.empty());
951 }
952 if (SemaChecks.empty())
953 return "";
954 return join(Begin: std::begin(cont&: SemaChecks), End: std::end(cont&: SemaChecks),
955 Separator: " ||\n ") +
956 ";\n";
957 }
958
959 ACLEIntrinsic(EmitterBase &ME, const Record *R, const Type *Param);
960};
961
962// -----------------------------------------------------------------------------
963// The top-level class that holds all the state from analyzing the entire
964// Tablegen input.
965
966class EmitterBase {
967protected:
968 // EmitterBase holds a collection of all the types we've instantiated.
969 VoidType Void;
970 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
971 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
972 std::unique_ptr<VectorType>>
973 VectorTypes;
974 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
975 MultiVectorTypes;
976 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
977 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
978
979 // And all the ACLEIntrinsic instances we've created.
980 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
981
982public:
983 // Methods to create a Type object, or return the right existing one from the
984 // maps stored in this object.
985 const VoidType *getVoidType() { return &Void; }
986 const ScalarType *getScalarType(StringRef Name) {
987 return ScalarTypes[std::string(Name)].get();
988 }
989 const ScalarType *getScalarType(const Record *R) {
990 return getScalarType(Name: R->getName());
991 }
992 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
993 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
994 ST->sizeInBits(), Lanes);
995 auto [It, Inserted] = VectorTypes.try_emplace(k: key);
996 if (Inserted)
997 It->second = std::make_unique<VectorType>(args&: ST, args&: Lanes);
998 return It->second.get();
999 }
1000 const VectorType *getVectorType(const ScalarType *ST) {
1001 return getVectorType(ST, Lanes: 128 / ST->sizeInBits());
1002 }
1003 const MultiVectorType *getMultiVectorType(unsigned Registers,
1004 const VectorType *VT) {
1005 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1006 auto [It, Inserted] = MultiVectorTypes.try_emplace(k: key);
1007 if (Inserted)
1008 It->second = std::make_unique<MultiVectorType>(args&: Registers, args&: VT);
1009 return It->second.get();
1010 }
1011 const PredicateType *getPredicateType(unsigned Lanes) {
1012 unsigned key = Lanes;
1013 auto [It, Inserted] = PredicateTypes.try_emplace(k: key);
1014 if (Inserted)
1015 It->second = std::make_unique<PredicateType>(args&: Lanes);
1016 return It->second.get();
1017 }
1018 const PointerType *getPointerType(const Type *T, bool Const) {
1019 PointerType PT(T, Const);
1020 std::string key = PT.cName();
1021 auto [It, Inserted] = PointerTypes.try_emplace(k: key);
1022 if (Inserted)
1023 It->second = std::make_unique<PointerType>(args&: PT);
1024 return It->second.get();
1025 }
1026
1027 // Methods to construct a type from various pieces of Tablegen. These are
1028 // always called in the context of setting up a particular ACLEIntrinsic, so
1029 // there's always an ambient parameter type (because we're iterating through
1030 // the Params list in the Tablegen record for the intrinsic), which is used
1031 // to expand Tablegen classes like 'Vector' which mean something different in
1032 // each member of a parametric family.
1033 const Type *getType(const Record *R, const Type *Param);
1034 const Type *getType(const DagInit *D, const Type *Param);
1035 const Type *getType(const Init *I, const Type *Param);
1036
1037 // Functions that translate the Tablegen representation of an intrinsic's
1038 // code generation into a collection of Value objects (which will then be
1039 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1040 Result::Ptr getCodeForDag(const DagInit *D, const Result::Scope &Scope,
1041 const Type *Param);
1042 Result::Ptr getCodeForDagArg(const DagInit *D, unsigned ArgNum,
1043 const Result::Scope &Scope, const Type *Param);
1044 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1045 bool Immediate);
1046
1047 void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1048
1049 // Constructor and top-level functions.
1050
1051 EmitterBase(const RecordKeeper &Records);
1052 virtual ~EmitterBase() = default;
1053
1054 virtual void EmitHeader(raw_ostream &OS) = 0;
1055 virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1056 virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1057 void EmitBuiltinCG(raw_ostream &OS);
1058 void EmitBuiltinAliases(raw_ostream &OS);
1059};
1060
1061const Type *EmitterBase::getType(const Init *I, const Type *Param) {
1062 if (const auto *Dag = dyn_cast<DagInit>(Val: I))
1063 return getType(D: Dag, Param);
1064 if (const auto *Def = dyn_cast<DefInit>(Val: I))
1065 return getType(R: Def->getDef(), Param);
1066
1067 PrintFatalError(Msg: "Could not convert this value into a type");
1068}
1069
1070const Type *EmitterBase::getType(const Record *R, const Type *Param) {
1071 // Pass to a subfield of any wrapper records. We don't expect more than one
1072 // of these: immediate operands are used as plain numbers rather than as
1073 // llvm::Value, so it's meaningless to promote their type anyway.
1074 if (R->isSubClassOf(Name: "Immediate"))
1075 R = R->getValueAsDef(FieldName: "type");
1076 else if (R->isSubClassOf(Name: "unpromoted"))
1077 R = R->getValueAsDef(FieldName: "underlying_type");
1078
1079 if (R->getName() == "Void")
1080 return getVoidType();
1081 if (R->isSubClassOf(Name: "PrimitiveType"))
1082 return getScalarType(R);
1083 if (R->isSubClassOf(Name: "ComplexType"))
1084 return getType(D: R->getValueAsDag(FieldName: "spec"), Param);
1085
1086 PrintFatalError(ErrorLoc: R->getLoc(), Msg: "Could not convert this record into a type");
1087}
1088
1089const Type *EmitterBase::getType(const DagInit *D, const Type *Param) {
1090 // The meat of the getType system: types in the Tablegen are represented by a
1091 // dag whose operators select sub-cases of this function.
1092
1093 const Record *Op = cast<DefInit>(Val: D->getOperator())->getDef();
1094 if (!Op->isSubClassOf(Name: "ComplexTypeOp"))
1095 PrintFatalError(
1096 Msg: "Expected ComplexTypeOp as dag operator in type expression");
1097
1098 if (Op->getName() == "CTO_Parameter") {
1099 if (isa<VoidType>(Val: Param))
1100 PrintFatalError(Msg: "Parametric type in unparametrised context");
1101 return Param;
1102 }
1103
1104 if (Op->getName() == "CTO_Vec") {
1105 const Type *Element = getType(I: D->getArg(Num: 0), Param);
1106 if (D->getNumArgs() == 1) {
1107 return getVectorType(ST: cast<ScalarType>(Val: Element));
1108 } else {
1109 const Type *ExistingVector = getType(I: D->getArg(Num: 1), Param);
1110 return getVectorType(ST: cast<ScalarType>(Val: Element),
1111 Lanes: cast<VectorType>(Val: ExistingVector)->lanes());
1112 }
1113 }
1114
1115 if (Op->getName() == "CTO_Pred") {
1116 const Type *Element = getType(I: D->getArg(Num: 0), Param);
1117 return getPredicateType(Lanes: 128 / Element->sizeInBits());
1118 }
1119
1120 if (Op->isSubClassOf(Name: "CTO_Tuple")) {
1121 unsigned Registers = Op->getValueAsInt(FieldName: "n");
1122 const Type *Element = getType(I: D->getArg(Num: 0), Param);
1123 return getMultiVectorType(Registers, VT: cast<VectorType>(Val: Element));
1124 }
1125
1126 if (Op->isSubClassOf(Name: "CTO_Pointer")) {
1127 const Type *Pointee = getType(I: D->getArg(Num: 0), Param);
1128 return getPointerType(T: Pointee, Const: Op->getValueAsBit(FieldName: "const"));
1129 }
1130
1131 if (Op->getName() == "CTO_CopyKind") {
1132 const ScalarType *STSize = cast<ScalarType>(Val: getType(I: D->getArg(Num: 0), Param));
1133 const ScalarType *STKind = cast<ScalarType>(Val: getType(I: D->getArg(Num: 1), Param));
1134 for (const auto &kv : ScalarTypes) {
1135 const ScalarType *RT = kv.second.get();
1136 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1137 return RT;
1138 }
1139 PrintFatalError(Msg: "Cannot find a type to satisfy CopyKind");
1140 }
1141
1142 if (Op->isSubClassOf(Name: "CTO_ScaleSize")) {
1143 const ScalarType *STKind = cast<ScalarType>(Val: getType(I: D->getArg(Num: 0), Param));
1144 int Num = Op->getValueAsInt(FieldName: "num"), Denom = Op->getValueAsInt(FieldName: "denom");
1145 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1146 for (const auto &kv : ScalarTypes) {
1147 const ScalarType *RT = kv.second.get();
1148 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1149 return RT;
1150 }
1151 PrintFatalError(Msg: "Cannot find a type to satisfy ScaleSize");
1152 }
1153
1154 PrintFatalError(Msg: "Bad operator in type dag expression");
1155}
1156
1157Result::Ptr EmitterBase::getCodeForDag(const DagInit *D,
1158 const Result::Scope &Scope,
1159 const Type *Param) {
1160 const Record *Op = cast<DefInit>(Val: D->getOperator())->getDef();
1161
1162 if (Op->getName() == "seq") {
1163 Result::Scope SubScope = Scope;
1164 Result::Ptr PrevV = nullptr;
1165 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1166 // We don't use getCodeForDagArg here, because the argument name
1167 // has different semantics in a seq
1168 Result::Ptr V =
1169 getCodeForDag(D: cast<DagInit>(Val: D->getArg(Num: i)), Scope: SubScope, Param);
1170 StringRef ArgName = D->getArgNameStr(Num: i);
1171 if (!ArgName.empty())
1172 SubScope[std::string(ArgName)] = V;
1173 if (PrevV)
1174 V->setPredecessor(PrevV);
1175 PrevV = V;
1176 }
1177 return PrevV;
1178 } else if (Op->isSubClassOf(Name: "Type")) {
1179 if (D->getNumArgs() != 1)
1180 PrintFatalError(Msg: "Type casts should have exactly one argument");
1181 const Type *CastType = getType(R: Op, Param);
1182 Result::Ptr Arg = getCodeForDagArg(D, ArgNum: 0, Scope, Param);
1183 if (const auto *ST = dyn_cast<ScalarType>(Val: CastType)) {
1184 if (!ST->requiresFloat()) {
1185 if (Arg->hasIntegerConstantValue())
1186 return std::make_shared<IntLiteralResult>(
1187 args&: ST, args: Arg->integerConstantValue());
1188 else
1189 return std::make_shared<IntCastResult>(args&: ST, args&: Arg);
1190 }
1191 } else if (const auto *PT = dyn_cast<PointerType>(Val: CastType)) {
1192 return std::make_shared<PointerCastResult>(args&: PT, args&: Arg);
1193 }
1194 PrintFatalError(Msg: "Unsupported type cast");
1195 } else if (Op->getName() == "address") {
1196 if (D->getNumArgs() != 2)
1197 PrintFatalError(Msg: "'address' should have two arguments");
1198 Result::Ptr Arg = getCodeForDagArg(D, ArgNum: 0, Scope, Param);
1199
1200 const Type *Ty = nullptr;
1201 if (const auto *DI = dyn_cast<DagInit>(Val: D->getArg(Num: 0)))
1202 if (auto *PTy = dyn_cast<PointerType>(Val: getType(I: DI->getOperator(), Param)))
1203 Ty = PTy->getPointeeType();
1204 if (!Ty)
1205 PrintFatalError(Msg: "'address' pointer argument should be a pointer");
1206
1207 unsigned Alignment;
1208 if (const auto *II = dyn_cast<IntInit>(Val: D->getArg(Num: 1))) {
1209 Alignment = II->getValue();
1210 } else {
1211 PrintFatalError(Msg: "'address' alignment argument should be an integer");
1212 }
1213 return std::make_shared<AddressResult>(args&: Arg, args&: Ty, args&: Alignment);
1214 } else if (Op->getName() == "unsignedflag") {
1215 if (D->getNumArgs() != 1)
1216 PrintFatalError(Msg: "unsignedflag should have exactly one argument");
1217 const Record *TypeRec = cast<DefInit>(Val: D->getArg(Num: 0))->getDef();
1218 if (!TypeRec->isSubClassOf(Name: "Type"))
1219 PrintFatalError(Msg: "unsignedflag's argument should be a type");
1220 if (const auto *ST = dyn_cast<ScalarType>(Val: getType(R: TypeRec, Param))) {
1221 return std::make_shared<IntLiteralResult>(
1222 args: getScalarType(Name: "u32"), args: ST->kind() == ScalarTypeKind::UnsignedInt);
1223 } else {
1224 PrintFatalError(Msg: "unsignedflag's argument should be a scalar type");
1225 }
1226 } else if (Op->getName() == "bitsize") {
1227 if (D->getNumArgs() != 1)
1228 PrintFatalError(Msg: "bitsize should have exactly one argument");
1229 const Record *TypeRec = cast<DefInit>(Val: D->getArg(Num: 0))->getDef();
1230 if (!TypeRec->isSubClassOf(Name: "Type"))
1231 PrintFatalError(Msg: "bitsize's argument should be a type");
1232 if (const auto *ST = dyn_cast<ScalarType>(Val: getType(R: TypeRec, Param))) {
1233 return std::make_shared<IntLiteralResult>(args: getScalarType(Name: "u32"),
1234 args: ST->sizeInBits());
1235 } else {
1236 PrintFatalError(Msg: "bitsize's argument should be a scalar type");
1237 }
1238 } else {
1239 std::vector<Result::Ptr> Args;
1240 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1241 Args.push_back(x: getCodeForDagArg(D, ArgNum: i, Scope, Param));
1242 if (Op->isSubClassOf(Name: "IRBuilderBase")) {
1243 std::set<unsigned> AddressArgs;
1244 std::map<unsigned, std::string> IntegerArgs;
1245 for (const Record *sp : Op->getValueAsListOfDefs(FieldName: "special_params")) {
1246 unsigned Index = sp->getValueAsInt(FieldName: "index");
1247 if (sp->isSubClassOf(Name: "IRBuilderAddrParam")) {
1248 AddressArgs.insert(x: Index);
1249 } else if (sp->isSubClassOf(Name: "IRBuilderIntParam")) {
1250 IntegerArgs[Index] = std::string(sp->getValueAsString(FieldName: "type"));
1251 }
1252 }
1253 return std::make_shared<IRBuilderResult>(args: Op->getValueAsString(FieldName: "prefix"),
1254 args&: Args, args&: AddressArgs, args&: IntegerArgs);
1255 } else if (Op->isSubClassOf(Name: "IRIntBase")) {
1256 std::vector<const Type *> ParamTypes;
1257 for (const Record *RParam : Op->getValueAsListOfDefs(FieldName: "params"))
1258 ParamTypes.push_back(x: getType(R: RParam, Param));
1259 std::string IntName = std::string(Op->getValueAsString(FieldName: "intname"));
1260 if (Op->getValueAsBit(FieldName: "appendKind"))
1261 IntName += "_" + toLetter(kind: cast<ScalarType>(Val: Param)->kind());
1262 return std::make_shared<IRIntrinsicResult>(args&: IntName, args&: ParamTypes, args&: Args);
1263 } else {
1264 PrintFatalError(Msg: "Unsupported dag node " + Op->getName());
1265 }
1266 }
1267}
1268
1269Result::Ptr EmitterBase::getCodeForDagArg(const DagInit *D, unsigned ArgNum,
1270 const Result::Scope &Scope,
1271 const Type *Param) {
1272 const Init *Arg = D->getArg(Num: ArgNum);
1273 StringRef Name = D->getArgNameStr(Num: ArgNum);
1274
1275 if (!Name.empty()) {
1276 if (!isa<UnsetInit>(Val: Arg))
1277 PrintFatalError(
1278 Msg: "dag operator argument should not have both a value and a name");
1279 auto it = Scope.find(x: Name);
1280 if (it == Scope.end())
1281 PrintFatalError(Msg: "unrecognized variable name '" + Name + "'");
1282 return it->second;
1283 }
1284
1285 // Sometimes the Arg is a bit. Prior to multiclass template argument
1286 // checking, integers would sneak through the bit declaration,
1287 // but now they really are bits.
1288 if (const auto *BI = dyn_cast<BitInit>(Val: Arg))
1289 return std::make_shared<IntLiteralResult>(args: getScalarType(Name: "u32"),
1290 args: BI->getValue());
1291
1292 if (const auto *II = dyn_cast<IntInit>(Val: Arg))
1293 return std::make_shared<IntLiteralResult>(args: getScalarType(Name: "u32"),
1294 args: II->getValue());
1295
1296 if (const auto *DI = dyn_cast<DagInit>(Val: Arg))
1297 return getCodeForDag(D: DI, Scope, Param);
1298
1299 if (const auto *DI = dyn_cast<DefInit>(Val: Arg)) {
1300 const Record *Rec = DI->getDef();
1301 if (Rec->isSubClassOf(Name: "Type")) {
1302 const Type *T = getType(R: Rec, Param);
1303 return std::make_shared<TypeResult>(args&: T);
1304 }
1305 }
1306
1307 PrintError(Msg: "bad DAG argument type for code generation");
1308 PrintNote(Msg: "DAG: " + D->getAsString());
1309 if (const auto *Typed = dyn_cast<TypedInit>(Val: Arg))
1310 PrintNote(Msg: "argument type: " + Typed->getType()->getAsString());
1311 PrintFatalNote(Msg: "argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1312}
1313
1314Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1315 bool Promote, bool Immediate) {
1316 Result::Ptr V = std::make_shared<BuiltinArgResult>(
1317 args&: ArgNum, args: isa<PointerType>(Val: ArgType), args&: Immediate);
1318
1319 if (Promote) {
1320 if (const auto *ST = dyn_cast<ScalarType>(Val: ArgType)) {
1321 if (ST->isInteger() && ST->sizeInBits() < 32)
1322 V = std::make_shared<IntCastResult>(args: getScalarType(Name: "u32"), args&: V);
1323 } else if (const auto *PT = dyn_cast<PredicateType>(Val: ArgType)) {
1324 V = std::make_shared<IntCastResult>(args: getScalarType(Name: "u32"), args&: V);
1325 V = std::make_shared<IRIntrinsicResult>(args: "arm_mve_pred_i2v",
1326 args: std::vector<const Type *>{PT},
1327 args: std::vector<Result::Ptr>{V});
1328 }
1329 }
1330
1331 return V;
1332}
1333
1334ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, const Record *R,
1335 const Type *Param)
1336 : ReturnType(ME.getType(R: R->getValueAsDef(FieldName: "ret"), Param)) {
1337 // Derive the intrinsic's full name, by taking the name of the
1338 // Tablegen record (or override) and appending the suffix from its
1339 // parameter type. (If the intrinsic is unparametrised, its
1340 // parameter type will be given as Void, which returns the empty
1341 // string for acleSuffix.)
1342 StringRef BaseName =
1343 (R->isSubClassOf(Name: "NameOverride") ? R->getValueAsString(FieldName: "basename")
1344 : R->getName());
1345 StringRef overrideLetter = R->getValueAsString(FieldName: "overrideKindLetter");
1346 FullName =
1347 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1348
1349 // Derive the intrinsic's polymorphic name, by removing components from the
1350 // full name as specified by its 'pnt' member ('polymorphic name type'),
1351 // which indicates how many type suffixes to remove, and any other piece of
1352 // the name that should be removed.
1353 const Record *PolymorphicNameType = R->getValueAsDef(FieldName: "pnt");
1354 SmallVector<StringRef, 8> NameParts;
1355 StringRef(FullName).split(A&: NameParts, Separator: '_');
1356 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1357 FieldName: "NumTypeSuffixesToDiscard");
1358 i < e; ++i)
1359 NameParts.pop_back();
1360 if (!PolymorphicNameType->isValueUnset(FieldName: "ExtraSuffixToDiscard")) {
1361 StringRef ExtraSuffix =
1362 PolymorphicNameType->getValueAsString(FieldName: "ExtraSuffixToDiscard");
1363 auto it = NameParts.end();
1364 while (it != NameParts.begin()) {
1365 --it;
1366 if (*it == ExtraSuffix) {
1367 NameParts.erase(CI: it);
1368 break;
1369 }
1370 }
1371 }
1372 ShortName = join(Begin: std::begin(cont&: NameParts), End: std::end(cont&: NameParts), Separator: "_");
1373
1374 BuiltinExtension = R->getValueAsString(FieldName: "builtinExtension");
1375
1376 PolymorphicOnly = R->getValueAsBit(FieldName: "polymorphicOnly");
1377 NonEvaluating = R->getValueAsBit(FieldName: "nonEvaluating");
1378 HeaderOnly = R->getValueAsBit(FieldName: "headerOnly");
1379
1380 // Process the intrinsic's argument list.
1381 const DagInit *ArgsDag = R->getValueAsDag(FieldName: "args");
1382 Result::Scope Scope;
1383 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1384 const Init *TypeInit = ArgsDag->getArg(Num: i);
1385
1386 bool Promote = true;
1387 if (const auto *TypeDI = dyn_cast<DefInit>(Val: TypeInit))
1388 if (TypeDI->getDef()->isSubClassOf(Name: "unpromoted"))
1389 Promote = false;
1390
1391 // Work out the type of the argument, for use in the function prototype in
1392 // the header file.
1393 const Type *ArgType = ME.getType(I: TypeInit, Param);
1394 ArgTypes.push_back(x: ArgType);
1395
1396 // If the argument is a subclass of Immediate, record the details about
1397 // what values it can take, for Sema checking.
1398 bool Immediate = false;
1399 if (const auto *TypeDI = dyn_cast<DefInit>(Val: TypeInit)) {
1400 const Record *TypeRec = TypeDI->getDef();
1401 if (TypeRec->isSubClassOf(Name: "Immediate")) {
1402 Immediate = true;
1403
1404 const Record *Bounds = TypeRec->getValueAsDef(FieldName: "bounds");
1405 ImmediateArg &IA = ImmediateArgs[i];
1406 if (Bounds->isSubClassOf(Name: "IB_ConstRange")) {
1407 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1408 IA.i1 = Bounds->getValueAsInt(FieldName: "lo");
1409 IA.i2 = Bounds->getValueAsInt(FieldName: "hi");
1410 } else if (Bounds->getName() == "IB_UEltValue") {
1411 IA.boundsType = ImmediateArg::BoundsType::UInt;
1412 IA.i1 = Param->sizeInBits();
1413 } else if (Bounds->getName() == "IB_LaneIndex") {
1414 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1415 IA.i1 = 0;
1416 IA.i2 = 128 / Param->sizeInBits() - 1;
1417 } else if (Bounds->isSubClassOf(Name: "IB_EltBit")) {
1418 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1419 IA.i1 = Bounds->getValueAsInt(FieldName: "base");
1420 const Type *T = ME.getType(R: Bounds->getValueAsDef(FieldName: "type"), Param);
1421 IA.i2 = IA.i1 + T->sizeInBits() - 1;
1422 } else {
1423 PrintFatalError(Msg: "unrecognised ImmediateBounds subclass");
1424 }
1425
1426 IA.ArgType = ArgType;
1427
1428 if (!TypeRec->isValueUnset(FieldName: "extra")) {
1429 IA.ExtraCheckType = TypeRec->getValueAsString(FieldName: "extra");
1430 if (!TypeRec->isValueUnset(FieldName: "extraarg"))
1431 IA.ExtraCheckArgs = TypeRec->getValueAsString(FieldName: "extraarg");
1432 }
1433 }
1434 }
1435
1436 // The argument will usually have a name in the arguments dag, which goes
1437 // into the variable-name scope that the code gen will refer to.
1438 StringRef ArgName = ArgsDag->getArgNameStr(Num: i);
1439 if (!ArgName.empty())
1440 Scope[std::string(ArgName)] =
1441 ME.getCodeForArg(ArgNum: i, ArgType, Promote, Immediate);
1442 }
1443
1444 // Finally, go through the codegen dag and translate it into a Result object
1445 // (with an arbitrary DAG of depended-on Results hanging off it).
1446 const DagInit *CodeDag = R->getValueAsDag(FieldName: "codegen");
1447 const Record *MainOp = cast<DefInit>(Val: CodeDag->getOperator())->getDef();
1448 if (MainOp->isSubClassOf(Name: "CustomCodegen")) {
1449 // Or, if it's the special case of CustomCodegen, just accumulate
1450 // a list of parameters we're going to assign to variables before
1451 // breaking from the loop.
1452 CustomCodeGenArgs["CustomCodeGenType"] =
1453 (Twine("CustomCodeGen::") + MainOp->getValueAsString(FieldName: "type")).str();
1454 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1455 StringRef Name = CodeDag->getArgNameStr(Num: i);
1456 if (Name.empty()) {
1457 PrintFatalError(Msg: "Operands to CustomCodegen should have names");
1458 } else if (const auto *II = dyn_cast<IntInit>(Val: CodeDag->getArg(Num: i))) {
1459 CustomCodeGenArgs[std::string(Name)] = itostr(X: II->getValue());
1460 } else if (const auto *SI = dyn_cast<StringInit>(Val: CodeDag->getArg(Num: i))) {
1461 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1462 } else {
1463 PrintFatalError(Msg: "Operands to CustomCodegen should be integers");
1464 }
1465 }
1466 } else {
1467 Code = ME.getCodeForDag(D: CodeDag, Scope, Param);
1468 }
1469}
1470
1471EmitterBase::EmitterBase(const RecordKeeper &Records) {
1472 // Construct the whole EmitterBase.
1473
1474 // First, look up all the instances of PrimitiveType. This gives us the list
1475 // of vector typedefs we have to put in arm_mve.h, and also allows us to
1476 // collect all the useful ScalarType instances into a big list so that we can
1477 // use it for operations such as 'find the unsigned version of this signed
1478 // integer type'.
1479 for (const Record *R : Records.getAllDerivedDefinitions(ClassName: "PrimitiveType"))
1480 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(args&: R);
1481
1482 // Now go through the instances of Intrinsic, and for each one, iterate
1483 // through its list of type parameters making an ACLEIntrinsic for each one.
1484 for (const Record *R : Records.getAllDerivedDefinitions(ClassName: "Intrinsic")) {
1485 for (const Record *RParam : R->getValueAsListOfDefs(FieldName: "params")) {
1486 const Type *Param = getType(R: RParam, Param: getVoidType());
1487 auto Intrinsic = std::make_unique<ACLEIntrinsic>(args&: *this, args&: R, args&: Param);
1488 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1489 }
1490 }
1491}
1492
1493/// A wrapper on raw_string_ostream that contains its own buffer rather than
1494/// having to point it at one elsewhere. (In other words, it works just like
1495/// std::ostringstream; also, this makes it convenient to declare a whole array
1496/// of them at once.)
1497///
1498/// We have to set this up using multiple inheritance, to ensure that the
1499/// string member has been constructed before raw_string_ostream's constructor
1500/// is given a pointer to it.
1501class string_holder {
1502protected:
1503 std::string S;
1504};
1505class raw_self_contained_string_ostream : private string_holder,
1506 public raw_string_ostream {
1507public:
1508 raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1509};
1510
1511const char LLVMLicenseHeader[] =
1512 " *\n"
1513 " *\n"
1514 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1515 " Exceptions.\n"
1516 " * See https://llvm.org/LICENSE.txt for license information.\n"
1517 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1518 " *\n"
1519 " *===-----------------------------------------------------------------"
1520 "------===\n"
1521 " */\n"
1522 "\n";
1523
1524// Machinery for the grouping of intrinsics by similar codegen.
1525//
1526// The general setup is that 'MergeableGroup' stores the things that a set of
1527// similarly shaped intrinsics have in common: the text of their code
1528// generation, and the number and type of their parameter variables.
1529// MergeableGroup is the key in a std::map whose value is a set of
1530// OutputIntrinsic, which stores the ways in which a particular intrinsic
1531// specializes the MergeableGroup's generic description: the function name and
1532// the _values_ of the parameter variables.
1533
1534struct ComparableStringVector : std::vector<std::string> {
1535 // Infrastructure: a derived class of vector<string> which comes with an
1536 // ordering, so that it can be used as a key in maps and an element in sets.
1537 // There's no requirement on the ordering beyond being deterministic.
1538 bool operator<(const ComparableStringVector &rhs) const {
1539 if (size() != rhs.size())
1540 return size() < rhs.size();
1541 for (size_t i = 0, e = size(); i < e; ++i)
1542 if ((*this)[i] != rhs[i])
1543 return (*this)[i] < rhs[i];
1544 return false;
1545 }
1546};
1547
1548struct OutputIntrinsic {
1549 const ACLEIntrinsic *Int;
1550 std::string Name;
1551 ComparableStringVector ParamValues;
1552 bool operator<(const OutputIntrinsic &rhs) const {
1553 return std::tie(args: Name, args: ParamValues) < std::tie(args: rhs.Name, args: rhs.ParamValues);
1554 }
1555};
1556struct MergeableGroup {
1557 std::string Code;
1558 ComparableStringVector ParamTypes;
1559 bool operator<(const MergeableGroup &rhs) const {
1560 return std::tie(args: Code, args: ParamTypes) < std::tie(args: rhs.Code, args: rhs.ParamTypes);
1561 }
1562};
1563
1564void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1565 // Pass 1: generate code for all the intrinsics as if every type or constant
1566 // that can possibly be abstracted out into a parameter variable will be.
1567 // This identifies the sets of intrinsics we'll group together into a single
1568 // piece of code generation.
1569
1570 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1571
1572 for (const auto &kv : ACLEIntrinsics) {
1573 const ACLEIntrinsic &Int = *kv.second;
1574 if (Int.headerOnly())
1575 continue;
1576
1577 MergeableGroup MG;
1578 OutputIntrinsic OI;
1579
1580 OI.Int = &Int;
1581 OI.Name = Int.fullName();
1582 CodeGenParamAllocator ParamAllocPrelim{.ParamTypes: &MG.ParamTypes, .ParamValues: &OI.ParamValues};
1583 raw_string_ostream OS(MG.Code);
1584 Int.genCode(OS, ParamAlloc&: ParamAllocPrelim, Pass: 1);
1585
1586 MergeableGroupsPrelim[MG].insert(x: OI);
1587 }
1588
1589 // Pass 2: for each of those groups, optimize the parameter variable set by
1590 // eliminating 'parameters' that are the same for all intrinsics in the
1591 // group, and merging together pairs of parameter variables that take the
1592 // same values as each other for all intrinsics in the group.
1593
1594 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1595
1596 for (const auto &kv : MergeableGroupsPrelim) {
1597 const MergeableGroup &MG = kv.first;
1598 std::vector<int> ParamNumbers;
1599 std::map<ComparableStringVector, int> ParamNumberMap;
1600
1601 // Loop over the parameters for this group.
1602 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1603 // Is this parameter the same for all intrinsics in the group?
1604 const OutputIntrinsic &OI_first = *kv.second.begin();
1605 bool Constant = all_of(Range: kv.second, P: [&](const OutputIntrinsic &OI) {
1606 return OI.ParamValues[i] == OI_first.ParamValues[i];
1607 });
1608
1609 // If so, record it as -1, meaning 'no parameter variable needed'. Then
1610 // the corresponding call to allocParam in pass 2 will not generate a
1611 // variable at all, and just use the value inline.
1612 if (Constant) {
1613 ParamNumbers.push_back(x: -1);
1614 continue;
1615 }
1616
1617 // Otherwise, make a list of the values this parameter takes for each
1618 // intrinsic, and see if that value vector matches anything we already
1619 // have. We also record the parameter type, so that we don't accidentally
1620 // match up two parameter variables with different types. (Not that
1621 // there's much chance of them having textually equivalent values, but in
1622 // _principle_ it could happen.)
1623 ComparableStringVector key;
1624 key.push_back(x: MG.ParamTypes[i]);
1625 for (const auto &OI : kv.second)
1626 key.push_back(x: OI.ParamValues[i]);
1627
1628 // Obtain a new parameter variable if we don't have one.
1629 int ParamNum =
1630 ParamNumberMap.try_emplace(k: key, args: ParamNumberMap.size()).first->second;
1631 ParamNumbers.push_back(x: ParamNum);
1632 }
1633
1634 // Now we're ready to do the pass 2 code generation, which will emit the
1635 // reduced set of parameter variables we've just worked out.
1636
1637 for (const auto &OI_prelim : kv.second) {
1638 const ACLEIntrinsic *Int = OI_prelim.Int;
1639
1640 MergeableGroup MG;
1641 OutputIntrinsic OI;
1642
1643 OI.Int = OI_prelim.Int;
1644 OI.Name = OI_prelim.Name;
1645 CodeGenParamAllocator ParamAlloc{.ParamTypes: &MG.ParamTypes, .ParamValues: &OI.ParamValues,
1646 .ParamNumberMap: &ParamNumbers};
1647 raw_string_ostream OS(MG.Code);
1648 Int->genCode(OS, ParamAlloc, Pass: 2);
1649
1650 MergeableGroups[MG].insert(x: OI);
1651 }
1652 }
1653
1654 // Output the actual C++ code.
1655
1656 for (const auto &kv : MergeableGroups) {
1657 const MergeableGroup &MG = kv.first;
1658
1659 // List of case statements in the main switch on BuiltinID, and an open
1660 // brace.
1661 const char *prefix = "";
1662 for (const auto &OI : kv.second) {
1663 OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1664 << "_" << OI.Name << ":";
1665
1666 prefix = "\n";
1667 }
1668 OS << " {\n";
1669
1670 if (!MG.ParamTypes.empty()) {
1671 // If we've got some parameter variables, then emit their declarations...
1672 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1673 StringRef Type = MG.ParamTypes[i];
1674 OS << " " << Type;
1675 if (!Type.ends_with(Suffix: "*"))
1676 OS << " ";
1677 OS << " Param" << utostr(X: i) << ";\n";
1678 }
1679
1680 // ... and an inner switch on BuiltinID that will fill them in with each
1681 // individual intrinsic's values.
1682 OS << " switch (BuiltinID) {\n";
1683 for (const auto &OI : kv.second) {
1684 OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1685 << "_" << OI.Name << ":\n";
1686 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1687 OS << " Param" << utostr(X: i) << " = " << OI.ParamValues[i] << ";\n";
1688 OS << " break;\n";
1689 }
1690 OS << " }\n";
1691 }
1692
1693 // And finally, output the code, and close the outer pair of braces. (The
1694 // code will always end with a 'return' statement, so we need not insert a
1695 // 'break' here.)
1696 OS << MG.Code << "}\n";
1697 }
1698}
1699
1700void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1701 // Build a sorted table of:
1702 // - intrinsic id number
1703 // - full name
1704 // - polymorphic name or -1
1705 StringToOffsetTable StringTable;
1706 OS << "static const IntrinToName MapData[] = {\n";
1707 for (const auto &kv : ACLEIntrinsics) {
1708 const ACLEIntrinsic &Int = *kv.second;
1709 if (Int.headerOnly())
1710 continue;
1711 int32_t ShortNameOffset =
1712 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Str: Int.shortName())
1713 : -1;
1714 OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1715 << Int.fullName() << ", "
1716 << StringTable.GetOrAddStringOffset(Str: Int.fullName()) << ", "
1717 << ShortNameOffset << "},\n";
1718 }
1719 OS << "};\n\n";
1720
1721 OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1722
1723 OS << "static const char IntrinNames[] = {\n";
1724 StringTable.EmitString(O&: OS);
1725 OS << "};\n\n";
1726}
1727
1728void EmitterBase::GroupSemaChecks(
1729 std::map<std::string, std::set<std::string>> &Checks) {
1730 for (const auto &kv : ACLEIntrinsics) {
1731 const ACLEIntrinsic &Int = *kv.second;
1732 if (Int.headerOnly())
1733 continue;
1734 std::string Check = Int.genSema();
1735 if (!Check.empty())
1736 Checks[Check].insert(x: Int.fullName());
1737 }
1738}
1739
1740// -----------------------------------------------------------------------------
1741// The class used for generating arm_mve.h and related Clang bits
1742//
1743
1744class MveEmitter : public EmitterBase {
1745public:
1746 MveEmitter(const RecordKeeper &Records) : EmitterBase(Records) {}
1747 void EmitHeader(raw_ostream &OS) override;
1748 void EmitBuiltinDef(raw_ostream &OS) override;
1749 void EmitBuiltinSema(raw_ostream &OS) override;
1750};
1751
1752void MveEmitter::EmitHeader(raw_ostream &OS) {
1753 // Accumulate pieces of the header file that will be enabled under various
1754 // different combinations of #ifdef. The index into parts[] is made up of
1755 // the following bit flags.
1756 constexpr unsigned Float = 1;
1757 constexpr unsigned UseUserNamespace = 2;
1758
1759 constexpr unsigned NumParts = 4;
1760 raw_self_contained_string_ostream parts[NumParts];
1761
1762 // Write typedefs for all the required vector types, and a few scalar
1763 // types that don't already have the name we want them to have.
1764
1765 parts[0] << "typedef uint16_t mve_pred16_t;\n";
1766 parts[Float] << "typedef __fp16 float16_t;\n"
1767 "typedef float float32_t;\n";
1768 for (const auto &kv : ScalarTypes) {
1769 const ScalarType *ST = kv.second.get();
1770 if (ST->hasNonstandardName())
1771 continue;
1772 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1773 const VectorType *VT = getVectorType(ST);
1774
1775 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1776 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1777 << VT->cName() << ";\n";
1778
1779 // Every vector type also comes with a pair of multi-vector types for
1780 // the VLD2 and VLD4 instructions.
1781 for (unsigned n = 2; n <= 4; n += 2) {
1782 const MultiVectorType *MT = getMultiVectorType(Registers: n, VT);
1783 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1784 << MT->cName() << ";\n";
1785 }
1786 }
1787 parts[0] << "\n";
1788 parts[Float] << "\n";
1789
1790 // Write declarations for all the intrinsics.
1791
1792 for (const auto &kv : ACLEIntrinsics) {
1793 const ACLEIntrinsic &Int = *kv.second;
1794
1795 // We generate each intrinsic twice, under its full unambiguous
1796 // name and its shorter polymorphic name (if the latter exists).
1797 for (bool Polymorphic : {false, true}) {
1798 if (Polymorphic && !Int.polymorphic())
1799 continue;
1800 if (!Polymorphic && Int.polymorphicOnly())
1801 continue;
1802
1803 // We also generate each intrinsic under a name like __arm_vfooq
1804 // (which is in C language implementation namespace, so it's
1805 // safe to define in any conforming user program) and a shorter
1806 // one like vfooq (which is in user namespace, so a user might
1807 // reasonably have used it for something already). If so, they
1808 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1809 // including the header, which will suppress the shorter names
1810 // and leave only the implementation-namespace ones. Then they
1811 // have to write __arm_vfooq everywhere, of course.
1812
1813 for (bool UserNamespace : {false, true}) {
1814 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1815 (UserNamespace ? UseUserNamespace : 0)];
1816
1817 // Make the name of the function in this declaration.
1818
1819 std::string FunctionName =
1820 Polymorphic ? Int.shortName() : Int.fullName();
1821 if (!UserNamespace)
1822 FunctionName = "__arm_" + FunctionName;
1823
1824 // Make strings for the types involved in the function's
1825 // prototype.
1826
1827 std::string RetTypeName = Int.returnType()->cName();
1828 if (!StringRef(RetTypeName).ends_with(Suffix: "*"))
1829 RetTypeName += " ";
1830
1831 std::vector<std::string> ArgTypeNames;
1832 for (const Type *ArgTypePtr : Int.argTypes())
1833 ArgTypeNames.push_back(x: ArgTypePtr->cName());
1834 std::string ArgTypesString =
1835 join(Begin: std::begin(cont&: ArgTypeNames), End: std::end(cont&: ArgTypeNames), Separator: ", ");
1836
1837 // Emit the actual declaration. All these functions are
1838 // declared 'static inline' without a body, which is fine
1839 // provided clang recognizes them as builtins, and has the
1840 // effect that this type signature is used in place of the one
1841 // that Builtins.td didn't provide. That's how we can get
1842 // structure types that weren't defined until this header was
1843 // included to be part of the type signature of a builtin that
1844 // was known to clang already.
1845 //
1846 // The declarations use __attribute__(__clang_arm_builtin_alias),
1847 // so that each function declared will be recognized as the
1848 // appropriate MVE builtin in spite of its user-facing name.
1849 //
1850 // (That's better than making them all wrapper functions,
1851 // partly because it avoids any compiler error message citing
1852 // the wrapper function definition instead of the user's code,
1853 // and mostly because some MVE intrinsics have arguments
1854 // required to be compile-time constants, and that property
1855 // can't be propagated through a wrapper function. It can be
1856 // propagated through a macro, but macros can't be overloaded
1857 // on argument types very easily - you have to use _Generic,
1858 // which makes error messages very confusing when the user
1859 // gets it wrong.)
1860 //
1861 // Finally, the polymorphic versions of the intrinsics are
1862 // also defined with __attribute__(overloadable), so that when
1863 // the same name is defined with several type signatures, the
1864 // right thing happens. Each one of the overloaded
1865 // declarations is given a different builtin id, which
1866 // has exactly the effect we want: first clang resolves the
1867 // overload to the right function, then it knows which builtin
1868 // it's referring to, and then the Sema checking for that
1869 // builtin can check further things like the constant
1870 // arguments.
1871 //
1872 // One more subtlety is the newline just before the return
1873 // type name. That's a cosmetic tweak to make the error
1874 // messages legible if the user gets the types wrong in a call
1875 // to a polymorphic function: this way, clang will print just
1876 // the _final_ line of each declaration in the header, to show
1877 // the type signatures that would have been legal. So all the
1878 // confusing machinery with __attribute__ is left out of the
1879 // error message, and the user sees something that's more or
1880 // less self-documenting: "here's a list of actually readable
1881 // type signatures for vfooq(), and here's why each one didn't
1882 // match your call".
1883
1884 OS << "static __inline__ __attribute__(("
1885 << (Polymorphic ? "__overloadable__, " : "")
1886 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1887 << ")))\n"
1888 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1889 }
1890 }
1891 }
1892 for (auto &part : parts)
1893 part << "\n";
1894
1895 // Now we've finished accumulating bits and pieces into the parts[] array.
1896 // Put it all together to write the final output file.
1897
1898 OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1899 "-----------------------------------===\n"
1900 << LLVMLicenseHeader
1901 << "#ifndef __ARM_MVE_H\n"
1902 "#define __ARM_MVE_H\n"
1903 "\n"
1904 "#if !__ARM_FEATURE_MVE\n"
1905 "#error \"MVE support not enabled\"\n"
1906 "#endif\n"
1907 "\n"
1908 "#include <stdint.h>\n"
1909 "\n"
1910 "#ifdef __cplusplus\n"
1911 "extern \"C\" {\n"
1912 "#endif\n"
1913 "\n";
1914
1915 for (size_t i = 0; i < NumParts; ++i) {
1916 std::vector<std::string> conditions;
1917 if (i & Float)
1918 conditions.push_back(x: "(__ARM_FEATURE_MVE & 2)");
1919 if (i & UseUserNamespace)
1920 conditions.push_back(x: "(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1921
1922 std::string condition =
1923 join(Begin: std::begin(cont&: conditions), End: std::end(cont&: conditions), Separator: " && ");
1924 if (!condition.empty())
1925 OS << "#if " << condition << "\n\n";
1926 OS << parts[i].str();
1927 if (!condition.empty())
1928 OS << "#endif /* " << condition << " */\n\n";
1929 }
1930
1931 OS << "#ifdef __cplusplus\n"
1932 "} /* extern \"C\" */\n"
1933 "#endif\n"
1934 "\n"
1935 "#endif /* __ARM_MVE_H */\n";
1936}
1937
1938void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1939 llvm::StringToOffsetTable Table;
1940 Table.GetOrAddStringOffset(Str: "n");
1941 Table.GetOrAddStringOffset(Str: "nt");
1942 Table.GetOrAddStringOffset(Str: "ntu");
1943 Table.GetOrAddStringOffset(Str: "vi.");
1944
1945 for (const auto &[_, Int] : ACLEIntrinsics)
1946 Table.GetOrAddStringOffset(Str: Int->fullName());
1947
1948 std::map<std::string, ACLEIntrinsic *> ShortNameIntrinsics;
1949 for (const auto &[_, Int] : ACLEIntrinsics) {
1950 if (!Int->polymorphic())
1951 continue;
1952
1953 StringRef Name = Int->shortName();
1954 if (ShortNameIntrinsics.insert(x: {Name.str(), Int.get()}).second)
1955 Table.GetOrAddStringOffset(Str: Name);
1956 }
1957
1958 OS << "#ifdef GET_MVE_BUILTIN_ENUMERATORS\n";
1959 for (const auto &[_, Int] : ACLEIntrinsics) {
1960 OS << " BI__builtin_arm_mve_" << Int->fullName() << ",\n";
1961 }
1962 for (const auto &[Name, _] : ShortNameIntrinsics) {
1963 OS << " BI__builtin_arm_mve_" << Name << ",\n";
1964 }
1965 OS << "#endif // GET_MVE_BUILTIN_ENUMERATORS\n\n";
1966
1967 OS << "#ifdef GET_MVE_BUILTIN_STR_TABLE\n";
1968 Table.EmitStringTableDef(OS, Name: "BuiltinStrings");
1969 OS << "#endif // GET_MVE_BUILTIN_STR_TABLE\n\n";
1970
1971 OS << "#ifdef GET_MVE_BUILTIN_INFOS\n";
1972 for (const auto &[_, Int] : ACLEIntrinsics) {
1973 OS << " Builtin::Info{Builtin::Info::StrOffsets{"
1974 << Table.GetStringOffset(Str: Int->fullName()) << " /* " << Int->fullName()
1975 << " */, " << Table.GetStringOffset(Str: "") << ", "
1976 << Table.GetStringOffset(Str: "n") << " /* n */}},\n";
1977 }
1978 for (const auto &[Name, Int] : ShortNameIntrinsics) {
1979 StringRef Attrs = Int->nonEvaluating() ? "ntu" : "nt";
1980 OS << " Builtin::Info{Builtin::Info::StrOffsets{"
1981 << Table.GetStringOffset(Str: Name) << " /* " << Name << " */, "
1982 << Table.GetStringOffset(Str: "vi.") << " /* vi. */, "
1983 << Table.GetStringOffset(Str: Attrs) << " /* " << Attrs << " */}},\n";
1984 }
1985 OS << "#endif // GET_MVE_BUILTIN_INFOS\n\n";
1986}
1987
1988void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1989 std::map<std::string, std::set<std::string>> Checks;
1990 GroupSemaChecks(Checks);
1991
1992 for (const auto &kv : Checks) {
1993 for (StringRef Name : kv.second)
1994 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1995 OS << " return " << kv.first;
1996 }
1997}
1998
1999// -----------------------------------------------------------------------------
2000// Class that describes an ACLE intrinsic implemented as a macro.
2001//
2002// This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
2003// want to avoid a combinatorial explosion by reinterpreting the arguments to
2004// fixed types.
2005
2006class FunctionMacro {
2007 std::vector<StringRef> Params;
2008 StringRef Definition;
2009
2010public:
2011 FunctionMacro(const Record &R);
2012
2013 const std::vector<StringRef> &getParams() const { return Params; }
2014 StringRef getDefinition() const { return Definition; }
2015};
2016
2017FunctionMacro::FunctionMacro(const Record &R) {
2018 Params = R.getValueAsListOfStrings(FieldName: "params");
2019 Definition = R.getValueAsString(FieldName: "definition");
2020}
2021
2022// -----------------------------------------------------------------------------
2023// The class used for generating arm_cde.h and related Clang bits
2024//
2025
2026class CdeEmitter : public EmitterBase {
2027 std::map<StringRef, FunctionMacro> FunctionMacros;
2028
2029public:
2030 CdeEmitter(const RecordKeeper &Records);
2031 void EmitHeader(raw_ostream &OS) override;
2032 void EmitBuiltinDef(raw_ostream &OS) override;
2033 void EmitBuiltinSema(raw_ostream &OS) override;
2034};
2035
2036CdeEmitter::CdeEmitter(const RecordKeeper &Records) : EmitterBase(Records) {
2037 for (const Record *R : Records.getAllDerivedDefinitions(ClassName: "FunctionMacro"))
2038 FunctionMacros.emplace(args: R->getName(), args: FunctionMacro(*R));
2039}
2040
2041void CdeEmitter::EmitHeader(raw_ostream &OS) {
2042 // Accumulate pieces of the header file that will be enabled under various
2043 // different combinations of #ifdef. The index into parts[] is one of the
2044 // following:
2045 constexpr unsigned None = 0;
2046 constexpr unsigned MVE = 1;
2047 constexpr unsigned MVEFloat = 2;
2048
2049 constexpr unsigned NumParts = 3;
2050 raw_self_contained_string_ostream parts[NumParts];
2051
2052 // Write typedefs for all the required vector types, and a few scalar
2053 // types that don't already have the name we want them to have.
2054
2055 parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2056 parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2057 "typedef float float32_t;\n";
2058 for (const auto &kv : ScalarTypes) {
2059 const ScalarType *ST = kv.second.get();
2060 if (ST->hasNonstandardName())
2061 continue;
2062 // We don't have float64x2_t
2063 if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2064 continue;
2065 raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2066 const VectorType *VT = getVectorType(ST);
2067
2068 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2069 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2070 << VT->cName() << ";\n";
2071 }
2072 parts[MVE] << "\n";
2073 parts[MVEFloat] << "\n";
2074
2075 // Write declarations for all the intrinsics.
2076
2077 for (const auto &kv : ACLEIntrinsics) {
2078 const ACLEIntrinsic &Int = *kv.second;
2079
2080 // We generate each intrinsic twice, under its full unambiguous
2081 // name and its shorter polymorphic name (if the latter exists).
2082 for (bool Polymorphic : {false, true}) {
2083 if (Polymorphic && !Int.polymorphic())
2084 continue;
2085 if (!Polymorphic && Int.polymorphicOnly())
2086 continue;
2087
2088 raw_ostream &OS =
2089 parts[Int.requiresFloat() ? MVEFloat
2090 : Int.requiresMVE() ? MVE : None];
2091
2092 // Make the name of the function in this declaration.
2093 std::string FunctionName =
2094 "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2095
2096 // Make strings for the types involved in the function's
2097 // prototype.
2098 std::string RetTypeName = Int.returnType()->cName();
2099 if (!StringRef(RetTypeName).ends_with(Suffix: "*"))
2100 RetTypeName += " ";
2101
2102 std::vector<std::string> ArgTypeNames;
2103 for (const Type *ArgTypePtr : Int.argTypes())
2104 ArgTypeNames.push_back(x: ArgTypePtr->cName());
2105 std::string ArgTypesString =
2106 join(Begin: std::begin(cont&: ArgTypeNames), End: std::end(cont&: ArgTypeNames), Separator: ", ");
2107
2108 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2109 // comments
2110 OS << "static __inline__ __attribute__(("
2111 << (Polymorphic ? "__overloadable__, " : "")
2112 << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2113 << "_" << Int.fullName() << ")))\n"
2114 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2115 }
2116 }
2117
2118 for (const auto &kv : FunctionMacros) {
2119 StringRef Name = kv.first;
2120 const FunctionMacro &FM = kv.second;
2121
2122 raw_ostream &OS = parts[MVE];
2123 OS << "#define "
2124 << "__arm_" << Name << "(" << join(R: FM.getParams(), Separator: ", ") << ") "
2125 << FM.getDefinition() << "\n";
2126 }
2127
2128 for (auto &part : parts)
2129 part << "\n";
2130
2131 // Now we've finished accumulating bits and pieces into the parts[] array.
2132 // Put it all together to write the final output file.
2133
2134 OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2135 "-----------------------------------===\n"
2136 << LLVMLicenseHeader
2137 << "#ifndef __ARM_CDE_H\n"
2138 "#define __ARM_CDE_H\n"
2139 "\n"
2140 "#if !__ARM_FEATURE_CDE\n"
2141 "#error \"CDE support not enabled\"\n"
2142 "#endif\n"
2143 "\n"
2144 "#include <stdint.h>\n"
2145 "\n"
2146 "#ifdef __cplusplus\n"
2147 "extern \"C\" {\n"
2148 "#endif\n"
2149 "\n";
2150
2151 for (size_t i = 0; i < NumParts; ++i) {
2152 std::string condition;
2153 if (i == MVEFloat)
2154 condition = "__ARM_FEATURE_MVE & 2";
2155 else if (i == MVE)
2156 condition = "__ARM_FEATURE_MVE";
2157
2158 if (!condition.empty())
2159 OS << "#if " << condition << "\n\n";
2160 OS << parts[i].str();
2161 if (!condition.empty())
2162 OS << "#endif /* " << condition << " */\n\n";
2163 }
2164
2165 OS << "#ifdef __cplusplus\n"
2166 "} /* extern \"C\" */\n"
2167 "#endif\n"
2168 "\n"
2169 "#endif /* __ARM_CDE_H */\n";
2170}
2171
2172void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2173 llvm::StringToOffsetTable Table;
2174 Table.GetOrAddStringOffset(Str: "ncU");
2175
2176 for (const auto &[_, Int] : ACLEIntrinsics)
2177 if (!Int->headerOnly())
2178 Table.GetOrAddStringOffset(Str: Int->fullName());
2179
2180 OS << "#ifdef GET_CDE_BUILTIN_ENUMERATORS\n";
2181 for (const auto &[_, Int] : ACLEIntrinsics)
2182 if (!Int->headerOnly())
2183 OS << " BI__builtin_arm_cde_" << Int->fullName() << ",\n";
2184 OS << "#endif // GET_CDE_BUILTIN_ENUMERATORS\n\n";
2185
2186 OS << "#ifdef GET_CDE_BUILTIN_STR_TABLE\n";
2187 Table.EmitStringTableDef(OS, Name: "BuiltinStrings");
2188 OS << "#endif // GET_CDE_BUILTIN_STR_TABLE\n\n";
2189
2190 OS << "#ifdef GET_CDE_BUILTIN_INFOS\n";
2191 for (const auto &[_, Int] : ACLEIntrinsics)
2192 if (!Int->headerOnly())
2193 OS << " Builtin::Info{Builtin::Info::StrOffsets{"
2194 << Table.GetStringOffset(Str: Int->fullName()) << " /* " << Int->fullName()
2195 << " */, " << Table.GetStringOffset(Str: "") << ", "
2196 << Table.GetStringOffset(Str: "ncU") << " /* ncU */}},\n";
2197 OS << "#endif // GET_CDE_BUILTIN_INFOS\n\n";
2198}
2199
2200void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2201 std::map<std::string, std::set<std::string>> Checks;
2202 GroupSemaChecks(Checks);
2203
2204 for (const auto &kv : Checks) {
2205 for (StringRef Name : kv.second)
2206 OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2207 OS << " Err = " << kv.first << " break;\n";
2208 }
2209}
2210
2211} // namespace
2212
2213namespace clang {
2214
2215// MVE
2216
2217void EmitMveHeader(const RecordKeeper &Records, raw_ostream &OS) {
2218 MveEmitter(Records).EmitHeader(OS);
2219}
2220
2221void EmitMveBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) {
2222 MveEmitter(Records).EmitBuiltinDef(OS);
2223}
2224
2225void EmitMveBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) {
2226 MveEmitter(Records).EmitBuiltinSema(OS);
2227}
2228
2229void EmitMveBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
2230 MveEmitter(Records).EmitBuiltinCG(OS);
2231}
2232
2233void EmitMveBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) {
2234 MveEmitter(Records).EmitBuiltinAliases(OS);
2235}
2236
2237// CDE
2238
2239void EmitCdeHeader(const RecordKeeper &Records, raw_ostream &OS) {
2240 CdeEmitter(Records).EmitHeader(OS);
2241}
2242
2243void EmitCdeBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) {
2244 CdeEmitter(Records).EmitBuiltinDef(OS);
2245}
2246
2247void EmitCdeBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) {
2248 CdeEmitter(Records).EmitBuiltinSema(OS);
2249}
2250
2251void EmitCdeBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
2252 CdeEmitter(Records).EmitBuiltinCG(OS);
2253}
2254
2255void EmitCdeBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) {
2256 CdeEmitter(Records).EmitBuiltinAliases(OS);
2257}
2258
2259} // end namespace clang
2260

Provided by KDAB

Privacy Policy
Learn to use CMake with our Intro Training
Find out more

source code of clang/utils/TableGen/MveEmitter.cpp