1 | //===-- HLFIROps.cpp ------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "flang/Optimizer/HLFIR/HLFIROps.h" |
14 | |
15 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
16 | #include "flang/Optimizer/Dialect/FIRType.h" |
17 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
18 | #include "flang/Optimizer/HLFIR/HLFIRDialect.h" |
19 | #include "mlir/IR/Builders.h" |
20 | #include "mlir/IR/BuiltinAttributes.h" |
21 | #include "mlir/IR/BuiltinTypes.h" |
22 | #include "mlir/IR/DialectImplementation.h" |
23 | #include "mlir/IR/Matchers.h" |
24 | #include "mlir/IR/OpImplementation.h" |
25 | #include "llvm/ADT/APInt.h" |
26 | #include "llvm/ADT/TypeSwitch.h" |
27 | #include "llvm/Support/CommandLine.h" |
28 | #include <iterator> |
29 | #include <mlir/Interfaces/SideEffectInterfaces.h> |
30 | #include <optional> |
31 | #include <tuple> |
32 | |
33 | static llvm::cl::opt<bool> useStrictIntrinsicVerifier( |
34 | "strict-intrinsic-verifier" , llvm::cl::init(Val: false), |
35 | llvm::cl::desc("use stricter verifier for HLFIR intrinsic operations" )); |
36 | |
37 | /// generic implementation of the memory side effects interface for hlfir |
38 | /// transformational intrinsic operations |
39 | static void |
40 | getIntrinsicEffects(mlir::Operation *self, |
41 | llvm::SmallVectorImpl<mlir::SideEffects::EffectInstance< |
42 | mlir::MemoryEffects::Effect>> &effects) { |
43 | // allocation effect if we return an expr |
44 | assert(self->getNumResults() == 1 && |
45 | "hlfir intrinsic ops only produce 1 result" ); |
46 | if (mlir::isa<hlfir::ExprType>(self->getResult(0).getType())) |
47 | effects.emplace_back(mlir::MemoryEffects::Allocate::get(), |
48 | self->getResult(0), |
49 | mlir::SideEffects::DefaultResource::get()); |
50 | |
51 | // read effect if we read from a pointer or refference type |
52 | // or a box who'se pointer is read from inside of the intrinsic so that |
53 | // loop conflicts can be detected in code like |
54 | // hlfir.region_assign { |
55 | // %2 = hlfir.transpose %0#0 : (!fir.box<!fir.array<?x?xf32>>) -> |
56 | // !hlfir.expr<?x?xf32> hlfir.yield %2 : !hlfir.expr<?x?xf32> cleanup { |
57 | // hlfir.destroy %2 : !hlfir.expr<?x?xf32> |
58 | // } |
59 | // } to { |
60 | // hlfir.yield %0#0 : !fir.box<!fir.array<?x?xf32>> |
61 | // } |
62 | for (mlir::Value operand : self->getOperands()) { |
63 | mlir::Type opTy = operand.getType(); |
64 | if (fir::isa_ref_type(opTy) || fir::isa_box_type(opTy)) |
65 | effects.emplace_back(mlir::MemoryEffects::Read::get(), operand, |
66 | mlir::SideEffects::DefaultResource::get()); |
67 | } |
68 | } |
69 | |
70 | //===----------------------------------------------------------------------===// |
71 | // DeclareOp |
72 | //===----------------------------------------------------------------------===// |
73 | |
74 | /// Is this a fir.[ref/ptr/heap]<fir.[box/class]<fir.heap<T>>> type? |
75 | static bool isAllocatableBoxRef(mlir::Type type) { |
76 | fir::BaseBoxType boxType = |
77 | fir::dyn_cast_ptrEleTy(type).dyn_cast_or_null<fir::BaseBoxType>(); |
78 | return boxType && boxType.getEleTy().isa<fir::HeapType>(); |
79 | } |
80 | |
81 | mlir::LogicalResult hlfir::AssignOp::verify() { |
82 | mlir::Type lhsType = getLhs().getType(); |
83 | if (isAllocatableAssignment() && !isAllocatableBoxRef(lhsType)) |
84 | return emitOpError("lhs must be an allocatable when `realloc` is set" ); |
85 | if (mustKeepLhsLengthInAllocatableAssignment() && |
86 | !(isAllocatableAssignment() && |
87 | hlfir::getFortranElementType(lhsType).isa<fir::CharacterType>())) |
88 | return emitOpError("`realloc` must be set and lhs must be a character " |
89 | "allocatable when `keep_lhs_length_if_realloc` is set" ); |
90 | return mlir::success(); |
91 | } |
92 | |
93 | //===----------------------------------------------------------------------===// |
94 | // DeclareOp |
95 | //===----------------------------------------------------------------------===// |
96 | |
97 | /// Given a FIR memory type, and information about non default lower bounds, get |
98 | /// the related HLFIR variable type. |
99 | mlir::Type hlfir::DeclareOp::getHLFIRVariableType(mlir::Type inputType, |
100 | bool hasExplicitLowerBounds) { |
101 | mlir::Type type = fir::unwrapRefType(inputType); |
102 | if (type.isa<fir::BaseBoxType>()) |
103 | return inputType; |
104 | if (auto charType = type.dyn_cast<fir::CharacterType>()) |
105 | if (charType.hasDynamicLen()) |
106 | return fir::BoxCharType::get(charType.getContext(), charType.getFKind()); |
107 | |
108 | auto seqType = type.dyn_cast<fir::SequenceType>(); |
109 | bool hasDynamicExtents = |
110 | seqType && fir::sequenceWithNonConstantShape(seqType); |
111 | mlir::Type eleType = seqType ? seqType.getEleTy() : type; |
112 | bool hasDynamicLengthParams = fir::characterWithDynamicLen(eleType) || |
113 | fir::isRecordWithTypeParameters(eleType); |
114 | if (hasExplicitLowerBounds || hasDynamicExtents || hasDynamicLengthParams) |
115 | return fir::BoxType::get(type); |
116 | return inputType; |
117 | } |
118 | |
119 | static bool hasExplicitLowerBounds(mlir::Value shape) { |
120 | return shape && shape.getType().isa<fir::ShapeShiftType, fir::ShiftType>(); |
121 | } |
122 | |
123 | void hlfir::DeclareOp::build(mlir::OpBuilder &builder, |
124 | mlir::OperationState &result, mlir::Value memref, |
125 | llvm::StringRef uniq_name, mlir::Value shape, |
126 | mlir::ValueRange typeparams, |
127 | fir::FortranVariableFlagsAttr fortran_attrs, |
128 | fir::CUDADataAttributeAttr cuda_attr) { |
129 | auto nameAttr = builder.getStringAttr(uniq_name); |
130 | mlir::Type inputType = memref.getType(); |
131 | bool hasExplicitLbs = hasExplicitLowerBounds(shape); |
132 | mlir::Type hlfirVariableType = |
133 | getHLFIRVariableType(inputType, hasExplicitLbs); |
134 | build(builder, result, {hlfirVariableType, inputType}, memref, shape, |
135 | typeparams, nameAttr, fortran_attrs, cuda_attr); |
136 | } |
137 | |
138 | mlir::LogicalResult hlfir::DeclareOp::verify() { |
139 | if (getMemref().getType() != getResult(1).getType()) |
140 | return emitOpError("second result type must match input memref type" ); |
141 | mlir::Type hlfirVariableType = getHLFIRVariableType( |
142 | getMemref().getType(), hasExplicitLowerBounds(getShape())); |
143 | if (hlfirVariableType != getResult(0).getType()) |
144 | return emitOpError("first result type is inconsistent with variable " |
145 | "properties: expected " ) |
146 | << hlfirVariableType; |
147 | // The rest of the argument verification is done by the |
148 | // FortranVariableInterface verifier. |
149 | auto fortranVar = |
150 | mlir::cast<fir::FortranVariableOpInterface>(this->getOperation()); |
151 | return fortranVar.verifyDeclareLikeOpImpl(getMemref()); |
152 | } |
153 | |
154 | //===----------------------------------------------------------------------===// |
155 | // DesignateOp |
156 | //===----------------------------------------------------------------------===// |
157 | |
158 | void hlfir::DesignateOp::build( |
159 | mlir::OpBuilder &builder, mlir::OperationState &result, |
160 | mlir::Type result_type, mlir::Value memref, llvm::StringRef component, |
161 | mlir::Value component_shape, llvm::ArrayRef<Subscript> subscripts, |
162 | mlir::ValueRange substring, std::optional<bool> complex_part, |
163 | mlir::Value shape, mlir::ValueRange typeparams, |
164 | fir::FortranVariableFlagsAttr fortran_attrs) { |
165 | auto componentAttr = |
166 | component.empty() ? mlir::StringAttr{} : builder.getStringAttr(component); |
167 | llvm::SmallVector<mlir::Value> indices; |
168 | llvm::SmallVector<bool> isTriplet; |
169 | for (auto subscript : subscripts) { |
170 | if (auto *triplet = std::get_if<Triplet>(&subscript)) { |
171 | isTriplet.push_back(true); |
172 | indices.push_back(std::get<0>(*triplet)); |
173 | indices.push_back(std::get<1>(*triplet)); |
174 | indices.push_back(std::get<2>(*triplet)); |
175 | } else { |
176 | isTriplet.push_back(false); |
177 | indices.push_back(std::get<mlir::Value>(subscript)); |
178 | } |
179 | } |
180 | auto isTripletAttr = |
181 | mlir::DenseBoolArrayAttr::get(builder.getContext(), isTriplet); |
182 | auto complexPartAttr = |
183 | complex_part.has_value() |
184 | ? mlir::BoolAttr::get(builder.getContext(), *complex_part) |
185 | : mlir::BoolAttr{}; |
186 | build(builder, result, result_type, memref, componentAttr, component_shape, |
187 | indices, isTripletAttr, substring, complexPartAttr, shape, typeparams, |
188 | fortran_attrs); |
189 | } |
190 | |
191 | void hlfir::DesignateOp::build(mlir::OpBuilder &builder, |
192 | mlir::OperationState &result, |
193 | mlir::Type result_type, mlir::Value memref, |
194 | mlir::ValueRange indices, |
195 | mlir::ValueRange typeparams, |
196 | fir::FortranVariableFlagsAttr fortran_attrs) { |
197 | llvm::SmallVector<bool> isTriplet(indices.size(), false); |
198 | auto isTripletAttr = |
199 | mlir::DenseBoolArrayAttr::get(builder.getContext(), isTriplet); |
200 | build(builder, result, result_type, memref, |
201 | /*componentAttr=*/mlir::StringAttr{}, /*component_shape=*/mlir::Value{}, |
202 | indices, isTripletAttr, /*substring*/ mlir::ValueRange{}, |
203 | /*complexPartAttr=*/mlir::BoolAttr{}, /*shape=*/mlir::Value{}, |
204 | typeparams, fortran_attrs); |
205 | } |
206 | |
207 | static mlir::ParseResult parseDesignatorIndices( |
208 | mlir::OpAsmParser &parser, |
209 | llvm::SmallVectorImpl<mlir::OpAsmParser::UnresolvedOperand> &indices, |
210 | mlir::DenseBoolArrayAttr &isTripletAttr) { |
211 | llvm::SmallVector<bool> isTriplet; |
212 | if (mlir::succeeded(parser.parseOptionalLParen())) { |
213 | do { |
214 | mlir::OpAsmParser::UnresolvedOperand i1, i2, i3; |
215 | if (parser.parseOperand(i1)) |
216 | return mlir::failure(); |
217 | indices.push_back(i1); |
218 | if (mlir::succeeded(parser.parseOptionalColon())) { |
219 | if (parser.parseOperand(i2) || parser.parseColon() || |
220 | parser.parseOperand(i3)) |
221 | return mlir::failure(); |
222 | indices.push_back(i2); |
223 | indices.push_back(i3); |
224 | isTriplet.push_back(Elt: true); |
225 | } else { |
226 | isTriplet.push_back(Elt: false); |
227 | } |
228 | } while (mlir::succeeded(parser.parseOptionalComma())); |
229 | if (parser.parseRParen()) |
230 | return mlir::failure(); |
231 | } |
232 | isTripletAttr = mlir::DenseBoolArrayAttr::get(parser.getContext(), isTriplet); |
233 | return mlir::success(); |
234 | } |
235 | |
236 | static void |
237 | printDesignatorIndices(mlir::OpAsmPrinter &p, hlfir::DesignateOp designateOp, |
238 | mlir::OperandRange indices, |
239 | const mlir::DenseBoolArrayAttr &isTripletAttr) { |
240 | if (!indices.empty()) { |
241 | p << '('; |
242 | unsigned i = 0; |
243 | for (auto isTriplet : isTripletAttr.asArrayRef()) { |
244 | if (isTriplet) { |
245 | assert(i + 2 < indices.size() && "ill-formed indices" ); |
246 | p << indices[i] << ":" << indices[i + 1] << ":" << indices[i + 2]; |
247 | i += 3; |
248 | } else { |
249 | p << indices[i++]; |
250 | } |
251 | if (i != indices.size()) |
252 | p << ", " ; |
253 | } |
254 | p << ')'; |
255 | } |
256 | } |
257 | |
258 | static mlir::ParseResult |
259 | parseDesignatorComplexPart(mlir::OpAsmParser &parser, |
260 | mlir::BoolAttr &complexPart) { |
261 | if (mlir::succeeded(parser.parseOptionalKeyword("imag" ))) |
262 | complexPart = mlir::BoolAttr::get(parser.getContext(), true); |
263 | else if (mlir::succeeded(parser.parseOptionalKeyword("real" ))) |
264 | complexPart = mlir::BoolAttr::get(parser.getContext(), false); |
265 | return mlir::success(); |
266 | } |
267 | |
268 | static void printDesignatorComplexPart(mlir::OpAsmPrinter &p, |
269 | hlfir::DesignateOp designateOp, |
270 | mlir::BoolAttr complexPartAttr) { |
271 | if (complexPartAttr) { |
272 | if (complexPartAttr.getValue()) |
273 | p << "imag" ; |
274 | else |
275 | p << "real" ; |
276 | } |
277 | } |
278 | |
279 | mlir::LogicalResult hlfir::DesignateOp::verify() { |
280 | mlir::Type memrefType = getMemref().getType(); |
281 | mlir::Type baseType = getFortranElementOrSequenceType(memrefType); |
282 | mlir::Type baseElementType = fir::unwrapSequenceType(baseType); |
283 | unsigned numSubscripts = getIsTriplet().size(); |
284 | unsigned subscriptsRank = |
285 | llvm::count_if(getIsTriplet(), [](bool isTriplet) { return isTriplet; }); |
286 | unsigned outputRank = 0; |
287 | mlir::Type outputElementType; |
288 | bool hasBoxComponent; |
289 | if (getComponent()) { |
290 | auto component = getComponent().value(); |
291 | auto recType = baseElementType.dyn_cast<fir::RecordType>(); |
292 | if (!recType) |
293 | return emitOpError( |
294 | "component must be provided only when the memref is a derived type" ); |
295 | unsigned fieldIdx = recType.getFieldIndex(component); |
296 | if (fieldIdx > recType.getNumFields()) { |
297 | return emitOpError("component " ) |
298 | << component << " is not a component of memref element type " |
299 | << recType; |
300 | } |
301 | mlir::Type fieldType = recType.getType(fieldIdx); |
302 | mlir::Type componentBaseType = getFortranElementOrSequenceType(fieldType); |
303 | hasBoxComponent = fieldType.isa<fir::BaseBoxType>(); |
304 | if (componentBaseType.isa<fir::SequenceType>() && |
305 | baseType.isa<fir::SequenceType>() && |
306 | (numSubscripts == 0 || subscriptsRank > 0)) |
307 | return emitOpError("indices must be provided and must not contain " |
308 | "triplets when both memref and component are arrays" ); |
309 | if (numSubscripts != 0) { |
310 | if (!componentBaseType.isa<fir::SequenceType>()) |
311 | return emitOpError("indices must not be provided if component appears " |
312 | "and is not an array component" ); |
313 | if (!getComponentShape()) |
314 | return emitOpError( |
315 | "component_shape must be provided when indexing a component" ); |
316 | mlir::Type compShapeType = getComponentShape().getType(); |
317 | unsigned componentRank = |
318 | componentBaseType.cast<fir::SequenceType>().getDimension(); |
319 | auto shapeType = compShapeType.dyn_cast<fir::ShapeType>(); |
320 | auto shapeShiftType = compShapeType.dyn_cast<fir::ShapeShiftType>(); |
321 | if (!((shapeType && shapeType.getRank() == componentRank) || |
322 | (shapeShiftType && shapeShiftType.getRank() == componentRank))) |
323 | return emitOpError("component_shape must be a fir.shape or " |
324 | "fir.shapeshift with the rank of the component" ); |
325 | if (numSubscripts > componentRank) |
326 | return emitOpError("indices number must match array component rank" ); |
327 | } |
328 | if (auto baseSeqType = baseType.dyn_cast<fir::SequenceType>()) |
329 | // This case must come first to cover "array%array_comp(i, j)" that has |
330 | // subscripts for the component but whose rank come from the base. |
331 | outputRank = baseSeqType.getDimension(); |
332 | else if (numSubscripts != 0) |
333 | outputRank = subscriptsRank; |
334 | else if (auto componentSeqType = |
335 | componentBaseType.dyn_cast<fir::SequenceType>()) |
336 | outputRank = componentSeqType.getDimension(); |
337 | outputElementType = fir::unwrapSequenceType(componentBaseType); |
338 | } else { |
339 | outputElementType = baseElementType; |
340 | unsigned baseTypeRank = |
341 | baseType.isa<fir::SequenceType>() |
342 | ? baseType.cast<fir::SequenceType>().getDimension() |
343 | : 0; |
344 | if (numSubscripts != 0) { |
345 | if (baseTypeRank != numSubscripts) |
346 | return emitOpError("indices number must match memref rank" ); |
347 | outputRank = subscriptsRank; |
348 | } else if (auto baseSeqType = baseType.dyn_cast<fir::SequenceType>()) { |
349 | outputRank = baseSeqType.getDimension(); |
350 | } |
351 | } |
352 | |
353 | if (!getSubstring().empty()) { |
354 | if (!outputElementType.isa<fir::CharacterType>()) |
355 | return emitOpError("memref or component must have character type if " |
356 | "substring indices are provided" ); |
357 | if (getSubstring().size() != 2) |
358 | return emitOpError("substring must contain 2 indices when provided" ); |
359 | } |
360 | if (getComplexPart()) { |
361 | if (!fir::isa_complex(outputElementType)) |
362 | return emitOpError("memref or component must have complex type if " |
363 | "complex_part is provided" ); |
364 | if (auto firCplx = outputElementType.dyn_cast<fir::ComplexType>()) |
365 | outputElementType = firCplx.getElementType(); |
366 | else |
367 | outputElementType = |
368 | outputElementType.cast<mlir::ComplexType>().getElementType(); |
369 | } |
370 | mlir::Type resultBaseType = |
371 | getFortranElementOrSequenceType(getResult().getType()); |
372 | unsigned resultRank = 0; |
373 | if (auto resultSeqType = resultBaseType.dyn_cast<fir::SequenceType>()) |
374 | resultRank = resultSeqType.getDimension(); |
375 | if (resultRank != outputRank) |
376 | return emitOpError("result type rank is not consistent with operands, " |
377 | "expected rank " ) |
378 | << outputRank; |
379 | mlir::Type resultElementType = fir::unwrapSequenceType(resultBaseType); |
380 | // result type must match the one that was inferred here, except the character |
381 | // length may differ because of substrings. |
382 | if (resultElementType != outputElementType && |
383 | !(resultElementType.isa<fir::CharacterType>() && |
384 | outputElementType.isa<fir::CharacterType>()) && |
385 | !(resultElementType.isa<mlir::FloatType>() && |
386 | outputElementType.isa<fir::RealType>())) |
387 | return emitOpError( |
388 | "result element type is not consistent with operands, expected " ) |
389 | << outputElementType; |
390 | |
391 | if (isBoxAddressType(getResult().getType())) { |
392 | if (!hasBoxComponent || numSubscripts != 0 || !getSubstring().empty() || |
393 | getComplexPart()) |
394 | return emitOpError( |
395 | "result type must only be a box address type if it designates a " |
396 | "component that is a fir.box or fir.class and if there are no " |
397 | "indices, substrings, and complex part" ); |
398 | |
399 | } else { |
400 | if ((resultRank == 0) != !getShape()) |
401 | return emitOpError("shape must be provided if and only if the result is " |
402 | "an array that is not a box address" ); |
403 | if (resultRank != 0) { |
404 | auto shapeType = getShape().getType().dyn_cast<fir::ShapeType>(); |
405 | auto shapeShiftType = |
406 | getShape().getType().dyn_cast<fir::ShapeShiftType>(); |
407 | if (!((shapeType && shapeType.getRank() == resultRank) || |
408 | (shapeShiftType && shapeShiftType.getRank() == resultRank))) |
409 | return emitOpError("shape must be a fir.shape or fir.shapeshift with " |
410 | "the rank of the result" ); |
411 | } |
412 | auto numLenParam = getTypeparams().size(); |
413 | if (outputElementType.isa<fir::CharacterType>()) { |
414 | if (numLenParam != 1) |
415 | return emitOpError("must be provided one length parameter when the " |
416 | "result is a character" ); |
417 | } else if (fir::isRecordWithTypeParameters(outputElementType)) { |
418 | if (numLenParam != |
419 | outputElementType.cast<fir::RecordType>().getNumLenParams()) |
420 | return emitOpError("must be provided the same number of length " |
421 | "parameters as in the result derived type" ); |
422 | } else if (numLenParam != 0) { |
423 | return emitOpError("must not be provided length parameters if the result " |
424 | "type does not have length parameters" ); |
425 | } |
426 | } |
427 | return mlir::success(); |
428 | } |
429 | |
430 | //===----------------------------------------------------------------------===// |
431 | // ParentComponentOp |
432 | //===----------------------------------------------------------------------===// |
433 | |
434 | mlir::LogicalResult hlfir::ParentComponentOp::verify() { |
435 | mlir::Type baseType = |
436 | hlfir::getFortranElementOrSequenceType(getMemref().getType()); |
437 | auto maybeInputSeqType = baseType.dyn_cast<fir::SequenceType>(); |
438 | unsigned inputTypeRank = |
439 | maybeInputSeqType ? maybeInputSeqType.getDimension() : 0; |
440 | unsigned shapeRank = 0; |
441 | if (mlir::Value shape = getShape()) |
442 | if (auto shapeType = shape.getType().dyn_cast<fir::ShapeType>()) |
443 | shapeRank = shapeType.getRank(); |
444 | if (inputTypeRank != shapeRank) |
445 | return emitOpError( |
446 | "must be provided a shape if and only if the base is an array" ); |
447 | mlir::Type outputBaseType = hlfir::getFortranElementOrSequenceType(getType()); |
448 | auto maybeOutputSeqType = outputBaseType.dyn_cast<fir::SequenceType>(); |
449 | unsigned outputTypeRank = |
450 | maybeOutputSeqType ? maybeOutputSeqType.getDimension() : 0; |
451 | if (inputTypeRank != outputTypeRank) |
452 | return emitOpError("result type rank must match input type rank" ); |
453 | if (maybeOutputSeqType && maybeInputSeqType) |
454 | for (auto [inputDim, outputDim] : |
455 | llvm::zip(maybeInputSeqType.getShape(), maybeOutputSeqType.getShape())) |
456 | if (inputDim != fir::SequenceType::getUnknownExtent() && |
457 | outputDim != fir::SequenceType::getUnknownExtent()) |
458 | if (inputDim != outputDim) |
459 | return emitOpError( |
460 | "result type extents are inconsistent with memref type" ); |
461 | fir::RecordType baseRecType = |
462 | hlfir::getFortranElementType(baseType).dyn_cast<fir::RecordType>(); |
463 | fir::RecordType outRecType = |
464 | hlfir::getFortranElementType(outputBaseType).dyn_cast<fir::RecordType>(); |
465 | if (!baseRecType || !outRecType) |
466 | return emitOpError("result type and input type must be derived types" ); |
467 | |
468 | // Note: result should not be a fir.class: its dynamic type is being set to |
469 | // the parent type and allowing fir.class would break the operation codegen: |
470 | // it would keep the input dynamic type. |
471 | if (getType().isa<fir::ClassType>()) |
472 | return emitOpError("result type must not be polymorphic" ); |
473 | |
474 | // The array results are known to not be dis-contiguous in most cases (the |
475 | // exception being if the parent type was extended by a type without any |
476 | // components): require a fir.box to be used for the result to carry the |
477 | // strides. |
478 | if (!getType().isa<fir::BoxType>() && |
479 | (outputTypeRank != 0 || fir::isRecordWithTypeParameters(outRecType))) |
480 | return emitOpError("result type must be a fir.box if the result is an " |
481 | "array or has length parameters" ); |
482 | return mlir::success(); |
483 | } |
484 | |
485 | //===----------------------------------------------------------------------===// |
486 | // LogicalReductionOp |
487 | //===----------------------------------------------------------------------===// |
488 | template <typename LogicalReductionOp> |
489 | static mlir::LogicalResult |
490 | verifyLogicalReductionOp(LogicalReductionOp reductionOp) { |
491 | mlir::Operation *op = reductionOp->getOperation(); |
492 | |
493 | auto results = op->getResultTypes(); |
494 | assert(results.size() == 1); |
495 | |
496 | mlir::Value mask = reductionOp->getMask(); |
497 | mlir::Value dim = reductionOp->getDim(); |
498 | |
499 | fir::SequenceType maskTy = |
500 | hlfir::getFortranElementOrSequenceType(mask.getType()) |
501 | .cast<fir::SequenceType>(); |
502 | mlir::Type logicalTy = maskTy.getEleTy(); |
503 | llvm::ArrayRef<int64_t> maskShape = maskTy.getShape(); |
504 | |
505 | mlir::Type resultType = results[0]; |
506 | if (mlir::isa<fir::LogicalType>(resultType)) { |
507 | // Result is of the same type as MASK |
508 | if ((resultType != logicalTy) && useStrictIntrinsicVerifier) |
509 | return reductionOp->emitOpError( |
510 | "result must have the same element type as MASK argument" ); |
511 | |
512 | } else if (auto resultExpr = |
513 | mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) { |
514 | // Result should only be in hlfir.expr form if it is an array |
515 | if (maskShape.size() > 1 && dim != nullptr) { |
516 | if (!resultExpr.isArray()) |
517 | return reductionOp->emitOpError("result must be an array" ); |
518 | |
519 | if ((resultExpr.getEleTy() != logicalTy) && useStrictIntrinsicVerifier) |
520 | return reductionOp->emitOpError( |
521 | "result must have the same element type as MASK argument" ); |
522 | |
523 | llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape(); |
524 | // Result has rank n-1 |
525 | if (resultShape.size() != (maskShape.size() - 1)) |
526 | return reductionOp->emitOpError( |
527 | "result rank must be one less than MASK" ); |
528 | } else { |
529 | return reductionOp->emitOpError("result must be of logical type" ); |
530 | } |
531 | } else { |
532 | return reductionOp->emitOpError("result must be of logical type" ); |
533 | } |
534 | return mlir::success(); |
535 | } |
536 | |
537 | //===----------------------------------------------------------------------===// |
538 | // AllOp |
539 | //===----------------------------------------------------------------------===// |
540 | |
541 | mlir::LogicalResult hlfir::AllOp::verify() { |
542 | return verifyLogicalReductionOp<hlfir::AllOp *>(this); |
543 | } |
544 | |
545 | void hlfir::AllOp::getEffects( |
546 | llvm::SmallVectorImpl< |
547 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
548 | &effects) { |
549 | getIntrinsicEffects(getOperation(), effects); |
550 | } |
551 | |
552 | //===----------------------------------------------------------------------===// |
553 | // AnyOp |
554 | //===----------------------------------------------------------------------===// |
555 | |
556 | mlir::LogicalResult hlfir::AnyOp::verify() { |
557 | return verifyLogicalReductionOp<hlfir::AnyOp *>(this); |
558 | } |
559 | |
560 | void hlfir::AnyOp::getEffects( |
561 | llvm::SmallVectorImpl< |
562 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
563 | &effects) { |
564 | getIntrinsicEffects(getOperation(), effects); |
565 | } |
566 | |
567 | //===----------------------------------------------------------------------===// |
568 | // CountOp |
569 | //===----------------------------------------------------------------------===// |
570 | |
571 | mlir::LogicalResult hlfir::CountOp::verify() { |
572 | mlir::Operation *op = getOperation(); |
573 | |
574 | auto results = op->getResultTypes(); |
575 | assert(results.size() == 1); |
576 | mlir::Value mask = getMask(); |
577 | mlir::Value dim = getDim(); |
578 | |
579 | fir::SequenceType maskTy = |
580 | hlfir::getFortranElementOrSequenceType(mask.getType()) |
581 | .cast<fir::SequenceType>(); |
582 | llvm::ArrayRef<int64_t> maskShape = maskTy.getShape(); |
583 | |
584 | mlir::Type resultType = results[0]; |
585 | if (auto resultExpr = mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) { |
586 | if (maskShape.size() > 1 && dim != nullptr) { |
587 | if (!resultExpr.isArray()) |
588 | return emitOpError("result must be an array" ); |
589 | |
590 | llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape(); |
591 | // Result has rank n-1 |
592 | if (resultShape.size() != (maskShape.size() - 1)) |
593 | return emitOpError("result rank must be one less than MASK" ); |
594 | } else { |
595 | return emitOpError("result must be of numerical array type" ); |
596 | } |
597 | } else if (!hlfir::isFortranScalarNumericalType(resultType)) { |
598 | return emitOpError("result must be of numerical scalar type" ); |
599 | } |
600 | |
601 | return mlir::success(); |
602 | } |
603 | |
604 | void hlfir::CountOp::getEffects( |
605 | llvm::SmallVectorImpl< |
606 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
607 | &effects) { |
608 | getIntrinsicEffects(getOperation(), effects); |
609 | } |
610 | |
611 | //===----------------------------------------------------------------------===// |
612 | // ConcatOp |
613 | //===----------------------------------------------------------------------===// |
614 | |
615 | static unsigned getCharacterKind(mlir::Type t) { |
616 | return hlfir::getFortranElementType(t).cast<fir::CharacterType>().getFKind(); |
617 | } |
618 | |
619 | static std::optional<fir::CharacterType::LenType> |
620 | getCharacterLengthIfStatic(mlir::Type t) { |
621 | if (auto charType = |
622 | hlfir::getFortranElementType(t).dyn_cast<fir::CharacterType>()) |
623 | if (charType.hasConstantLen()) |
624 | return charType.getLen(); |
625 | return std::nullopt; |
626 | } |
627 | |
628 | mlir::LogicalResult hlfir::ConcatOp::verify() { |
629 | if (getStrings().size() < 2) |
630 | return emitOpError("must be provided at least two string operands" ); |
631 | unsigned kind = getCharacterKind(getResult().getType()); |
632 | for (auto string : getStrings()) |
633 | if (kind != getCharacterKind(string.getType())) |
634 | return emitOpError("strings must have the same KIND as the result type" ); |
635 | return mlir::success(); |
636 | } |
637 | |
638 | void hlfir::ConcatOp::build(mlir::OpBuilder &builder, |
639 | mlir::OperationState &result, |
640 | mlir::ValueRange strings, mlir::Value len) { |
641 | fir::CharacterType::LenType resultTypeLen = 0; |
642 | assert(!strings.empty() && "must contain operands" ); |
643 | unsigned kind = getCharacterKind(strings[0].getType()); |
644 | for (auto string : strings) |
645 | if (auto cstLen = getCharacterLengthIfStatic(string.getType())) { |
646 | resultTypeLen += *cstLen; |
647 | } else { |
648 | resultTypeLen = fir::CharacterType::unknownLen(); |
649 | break; |
650 | } |
651 | auto resultType = hlfir::ExprType::get( |
652 | builder.getContext(), hlfir::ExprType::Shape{}, |
653 | fir::CharacterType::get(builder.getContext(), kind, resultTypeLen), |
654 | false); |
655 | build(builder, result, resultType, strings, len); |
656 | } |
657 | |
658 | void hlfir::ConcatOp::getEffects( |
659 | llvm::SmallVectorImpl< |
660 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
661 | &effects) { |
662 | getIntrinsicEffects(getOperation(), effects); |
663 | } |
664 | |
665 | //===----------------------------------------------------------------------===// |
666 | // NumericalReductionOp |
667 | //===----------------------------------------------------------------------===// |
668 | |
669 | template <typename NumericalReductionOp> |
670 | static mlir::LogicalResult |
671 | verifyArrayAndMaskForReductionOp(NumericalReductionOp reductionOp) { |
672 | mlir::Value array = reductionOp->getArray(); |
673 | mlir::Value mask = reductionOp->getMask(); |
674 | |
675 | fir::SequenceType arrayTy = |
676 | hlfir::getFortranElementOrSequenceType(array.getType()) |
677 | .cast<fir::SequenceType>(); |
678 | llvm::ArrayRef<int64_t> arrayShape = arrayTy.getShape(); |
679 | |
680 | if (mask) { |
681 | fir::SequenceType maskSeq = |
682 | hlfir::getFortranElementOrSequenceType(mask.getType()) |
683 | .dyn_cast<fir::SequenceType>(); |
684 | llvm::ArrayRef<int64_t> maskShape; |
685 | |
686 | if (maskSeq) |
687 | maskShape = maskSeq.getShape(); |
688 | |
689 | if (!maskShape.empty()) { |
690 | if (maskShape.size() != arrayShape.size()) |
691 | return reductionOp->emitWarning("MASK must be conformable to ARRAY" ); |
692 | if (useStrictIntrinsicVerifier) { |
693 | static_assert(fir::SequenceType::getUnknownExtent() == |
694 | hlfir::ExprType::getUnknownExtent()); |
695 | constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent(); |
696 | for (std::size_t i = 0; i < arrayShape.size(); ++i) { |
697 | int64_t arrayExtent = arrayShape[i]; |
698 | int64_t maskExtent = maskShape[i]; |
699 | if ((arrayExtent != maskExtent) && (arrayExtent != unknownExtent) && |
700 | (maskExtent != unknownExtent)) |
701 | return reductionOp->emitWarning( |
702 | "MASK must be conformable to ARRAY" ); |
703 | } |
704 | } |
705 | } |
706 | } |
707 | return mlir::success(); |
708 | } |
709 | |
710 | template <typename NumericalReductionOp> |
711 | static mlir::LogicalResult |
712 | verifyNumericalReductionOp(NumericalReductionOp reductionOp) { |
713 | mlir::Operation *op = reductionOp->getOperation(); |
714 | auto results = op->getResultTypes(); |
715 | assert(results.size() == 1); |
716 | |
717 | auto res = verifyArrayAndMaskForReductionOp(reductionOp); |
718 | if (failed(res)) |
719 | return res; |
720 | |
721 | mlir::Value array = reductionOp->getArray(); |
722 | mlir::Value dim = reductionOp->getDim(); |
723 | fir::SequenceType arrayTy = |
724 | hlfir::getFortranElementOrSequenceType(array.getType()) |
725 | .cast<fir::SequenceType>(); |
726 | mlir::Type numTy = arrayTy.getEleTy(); |
727 | llvm::ArrayRef<int64_t> arrayShape = arrayTy.getShape(); |
728 | |
729 | mlir::Type resultType = results[0]; |
730 | if (hlfir::isFortranScalarNumericalType(resultType)) { |
731 | // Result is of the same type as ARRAY |
732 | if ((resultType != numTy) && useStrictIntrinsicVerifier) |
733 | return reductionOp->emitOpError( |
734 | "result must have the same element type as ARRAY argument" ); |
735 | |
736 | } else if (auto resultExpr = |
737 | mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) { |
738 | if (arrayShape.size() > 1 && dim != nullptr) { |
739 | if (!resultExpr.isArray()) |
740 | return reductionOp->emitOpError("result must be an array" ); |
741 | |
742 | if ((resultExpr.getEleTy() != numTy) && useStrictIntrinsicVerifier) |
743 | return reductionOp->emitOpError( |
744 | "result must have the same element type as ARRAY argument" ); |
745 | |
746 | llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape(); |
747 | // Result has rank n-1 |
748 | if (resultShape.size() != (arrayShape.size() - 1)) |
749 | return reductionOp->emitOpError( |
750 | "result rank must be one less than ARRAY" ); |
751 | } else { |
752 | return reductionOp->emitOpError( |
753 | "result must be of numerical scalar type" ); |
754 | } |
755 | } else { |
756 | return reductionOp->emitOpError("result must be of numerical scalar type" ); |
757 | } |
758 | return mlir::success(); |
759 | } |
760 | |
761 | //===----------------------------------------------------------------------===// |
762 | // ProductOp |
763 | //===----------------------------------------------------------------------===// |
764 | |
765 | mlir::LogicalResult hlfir::ProductOp::verify() { |
766 | return verifyNumericalReductionOp<hlfir::ProductOp *>(this); |
767 | } |
768 | |
769 | void hlfir::ProductOp::getEffects( |
770 | llvm::SmallVectorImpl< |
771 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
772 | &effects) { |
773 | getIntrinsicEffects(getOperation(), effects); |
774 | } |
775 | |
776 | //===----------------------------------------------------------------------===// |
777 | // CharacterReductionOp |
778 | //===----------------------------------------------------------------------===// |
779 | |
780 | template <typename CharacterReductionOp> |
781 | static mlir::LogicalResult |
782 | verifyCharacterReductionOp(CharacterReductionOp reductionOp) { |
783 | mlir::Operation *op = reductionOp->getOperation(); |
784 | auto results = op->getResultTypes(); |
785 | assert(results.size() == 1); |
786 | |
787 | auto res = verifyArrayAndMaskForReductionOp(reductionOp); |
788 | if (failed(res)) |
789 | return res; |
790 | |
791 | mlir::Value array = reductionOp->getArray(); |
792 | mlir::Value dim = reductionOp->getDim(); |
793 | fir::SequenceType arrayTy = |
794 | hlfir::getFortranElementOrSequenceType(array.getType()) |
795 | .cast<fir::SequenceType>(); |
796 | mlir::Type numTy = arrayTy.getEleTy(); |
797 | llvm::ArrayRef<int64_t> arrayShape = arrayTy.getShape(); |
798 | |
799 | auto resultExpr = results[0].cast<hlfir::ExprType>(); |
800 | mlir::Type resultType = resultExpr.getEleTy(); |
801 | assert(mlir::isa<fir::CharacterType>(resultType) && |
802 | "result must be character" ); |
803 | |
804 | // Result is of the same type as ARRAY |
805 | if ((resultType != numTy) && useStrictIntrinsicVerifier) |
806 | return reductionOp->emitOpError( |
807 | "result must have the same element type as ARRAY argument" ); |
808 | |
809 | if (arrayShape.size() > 1 && dim != nullptr) { |
810 | if (!resultExpr.isArray()) |
811 | return reductionOp->emitOpError("result must be an array" ); |
812 | llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape(); |
813 | // Result has rank n-1 |
814 | if (resultShape.size() != (arrayShape.size() - 1)) |
815 | return reductionOp->emitOpError( |
816 | "result rank must be one less than ARRAY" ); |
817 | } else if (!resultExpr.isScalar()) { |
818 | return reductionOp->emitOpError("result must be scalar character" ); |
819 | } |
820 | return mlir::success(); |
821 | } |
822 | |
823 | //===----------------------------------------------------------------------===// |
824 | // MaxvalOp |
825 | //===----------------------------------------------------------------------===// |
826 | |
827 | mlir::LogicalResult hlfir::MaxvalOp::verify() { |
828 | mlir::Operation *op = getOperation(); |
829 | |
830 | auto results = op->getResultTypes(); |
831 | assert(results.size() == 1); |
832 | |
833 | auto resultExpr = mlir::dyn_cast<hlfir::ExprType>(results[0]); |
834 | if (resultExpr && mlir::isa<fir::CharacterType>(resultExpr.getEleTy())) { |
835 | return verifyCharacterReductionOp<hlfir::MaxvalOp *>(this); |
836 | } |
837 | return verifyNumericalReductionOp<hlfir::MaxvalOp *>(this); |
838 | } |
839 | |
840 | void hlfir::MaxvalOp::getEffects( |
841 | llvm::SmallVectorImpl< |
842 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
843 | &effects) { |
844 | getIntrinsicEffects(getOperation(), effects); |
845 | } |
846 | |
847 | //===----------------------------------------------------------------------===// |
848 | // MinvalOp |
849 | //===----------------------------------------------------------------------===// |
850 | |
851 | mlir::LogicalResult hlfir::MinvalOp::verify() { |
852 | mlir::Operation *op = getOperation(); |
853 | |
854 | auto results = op->getResultTypes(); |
855 | assert(results.size() == 1); |
856 | |
857 | auto resultExpr = mlir::dyn_cast<hlfir::ExprType>(results[0]); |
858 | if (resultExpr && mlir::isa<fir::CharacterType>(resultExpr.getEleTy())) { |
859 | return verifyCharacterReductionOp<hlfir::MinvalOp *>(this); |
860 | } |
861 | return verifyNumericalReductionOp<hlfir::MinvalOp *>(this); |
862 | } |
863 | |
864 | void hlfir::MinvalOp::getEffects( |
865 | llvm::SmallVectorImpl< |
866 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
867 | &effects) { |
868 | getIntrinsicEffects(getOperation(), effects); |
869 | } |
870 | |
871 | //===----------------------------------------------------------------------===// |
872 | // MinlocOp |
873 | //===----------------------------------------------------------------------===// |
874 | |
875 | template <typename NumericalReductionOp> |
876 | static mlir::LogicalResult |
877 | verifyResultForMinMaxLoc(NumericalReductionOp reductionOp) { |
878 | mlir::Operation *op = reductionOp->getOperation(); |
879 | auto results = op->getResultTypes(); |
880 | assert(results.size() == 1); |
881 | |
882 | mlir::Value array = reductionOp->getArray(); |
883 | mlir::Value dim = reductionOp->getDim(); |
884 | fir::SequenceType arrayTy = |
885 | hlfir::getFortranElementOrSequenceType(array.getType()) |
886 | .cast<fir::SequenceType>(); |
887 | llvm::ArrayRef<int64_t> arrayShape = arrayTy.getShape(); |
888 | |
889 | mlir::Type resultType = results[0]; |
890 | if (dim && arrayShape.size() == 1) { |
891 | if (!fir::isa_integer(resultType)) |
892 | return reductionOp->emitOpError("result must be scalar integer" ); |
893 | } else if (auto resultExpr = |
894 | mlir::dyn_cast_or_null<hlfir::ExprType>(resultType)) { |
895 | if (!resultExpr.isArray()) |
896 | return reductionOp->emitOpError("result must be an array" ); |
897 | |
898 | if (!fir::isa_integer(resultExpr.getEleTy())) |
899 | return reductionOp->emitOpError("result must have integer elements" ); |
900 | |
901 | llvm::ArrayRef<int64_t> resultShape = resultExpr.getShape(); |
902 | // With dim the result has rank n-1 |
903 | if (dim && resultShape.size() != (arrayShape.size() - 1)) |
904 | return reductionOp->emitOpError( |
905 | "result rank must be one less than ARRAY" ); |
906 | // With dim the result has rank n |
907 | if (!dim && resultShape.size() != 1) |
908 | return reductionOp->emitOpError("result rank must be 1" ); |
909 | } else { |
910 | return reductionOp->emitOpError("result must be of numerical expr type" ); |
911 | } |
912 | return mlir::success(); |
913 | } |
914 | |
915 | mlir::LogicalResult hlfir::MinlocOp::verify() { |
916 | auto res = verifyArrayAndMaskForReductionOp(this); |
917 | if (failed(res)) |
918 | return res; |
919 | |
920 | return verifyResultForMinMaxLoc(this); |
921 | } |
922 | |
923 | void hlfir::MinlocOp::getEffects( |
924 | llvm::SmallVectorImpl< |
925 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
926 | &effects) { |
927 | getIntrinsicEffects(getOperation(), effects); |
928 | } |
929 | |
930 | //===----------------------------------------------------------------------===// |
931 | // MaxlocOp |
932 | //===----------------------------------------------------------------------===// |
933 | |
934 | mlir::LogicalResult hlfir::MaxlocOp::verify() { |
935 | auto res = verifyArrayAndMaskForReductionOp(this); |
936 | if (failed(res)) |
937 | return res; |
938 | |
939 | return verifyResultForMinMaxLoc(this); |
940 | } |
941 | |
942 | void hlfir::MaxlocOp::getEffects( |
943 | llvm::SmallVectorImpl< |
944 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
945 | &effects) { |
946 | getIntrinsicEffects(getOperation(), effects); |
947 | } |
948 | |
949 | //===----------------------------------------------------------------------===// |
950 | // SetLengthOp |
951 | //===----------------------------------------------------------------------===// |
952 | |
953 | void hlfir::SetLengthOp::build(mlir::OpBuilder &builder, |
954 | mlir::OperationState &result, mlir::Value string, |
955 | mlir::Value len) { |
956 | fir::CharacterType::LenType resultTypeLen = fir::CharacterType::unknownLen(); |
957 | if (auto cstLen = fir::getIntIfConstant(len)) |
958 | resultTypeLen = *cstLen; |
959 | unsigned kind = getCharacterKind(string.getType()); |
960 | auto resultType = hlfir::ExprType::get( |
961 | builder.getContext(), hlfir::ExprType::Shape{}, |
962 | fir::CharacterType::get(builder.getContext(), kind, resultTypeLen), |
963 | false); |
964 | build(builder, result, resultType, string, len); |
965 | } |
966 | |
967 | void hlfir::SetLengthOp::getEffects( |
968 | llvm::SmallVectorImpl< |
969 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
970 | &effects) { |
971 | getIntrinsicEffects(getOperation(), effects); |
972 | } |
973 | |
974 | //===----------------------------------------------------------------------===// |
975 | // SumOp |
976 | //===----------------------------------------------------------------------===// |
977 | |
978 | mlir::LogicalResult hlfir::SumOp::verify() { |
979 | return verifyNumericalReductionOp<hlfir::SumOp *>(this); |
980 | } |
981 | |
982 | void hlfir::SumOp::getEffects( |
983 | llvm::SmallVectorImpl< |
984 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
985 | &effects) { |
986 | getIntrinsicEffects(getOperation(), effects); |
987 | } |
988 | |
989 | //===----------------------------------------------------------------------===// |
990 | // DotProductOp |
991 | //===----------------------------------------------------------------------===// |
992 | |
993 | mlir::LogicalResult hlfir::DotProductOp::verify() { |
994 | mlir::Value lhs = getLhs(); |
995 | mlir::Value rhs = getRhs(); |
996 | fir::SequenceType lhsTy = |
997 | hlfir::getFortranElementOrSequenceType(lhs.getType()) |
998 | .cast<fir::SequenceType>(); |
999 | fir::SequenceType rhsTy = |
1000 | hlfir::getFortranElementOrSequenceType(rhs.getType()) |
1001 | .cast<fir::SequenceType>(); |
1002 | llvm::ArrayRef<int64_t> lhsShape = lhsTy.getShape(); |
1003 | llvm::ArrayRef<int64_t> rhsShape = rhsTy.getShape(); |
1004 | std::size_t lhsRank = lhsShape.size(); |
1005 | std::size_t rhsRank = rhsShape.size(); |
1006 | mlir::Type lhsEleTy = lhsTy.getEleTy(); |
1007 | mlir::Type rhsEleTy = rhsTy.getEleTy(); |
1008 | mlir::Type resultTy = getResult().getType(); |
1009 | |
1010 | if ((lhsRank != 1) || (rhsRank != 1)) |
1011 | return emitOpError("both arrays must have rank 1" ); |
1012 | |
1013 | int64_t lhsSize = lhsShape[0]; |
1014 | int64_t rhsSize = rhsShape[0]; |
1015 | |
1016 | constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent(); |
1017 | if ((lhsSize != unknownExtent) && (rhsSize != unknownExtent) && |
1018 | (lhsSize != rhsSize) && useStrictIntrinsicVerifier) |
1019 | return emitOpError("both arrays must have the same size" ); |
1020 | |
1021 | if (useStrictIntrinsicVerifier) { |
1022 | if (mlir::isa<fir::LogicalType>(lhsEleTy) != |
1023 | mlir::isa<fir::LogicalType>(rhsEleTy)) |
1024 | return emitOpError("if one array is logical, so should the other be" ); |
1025 | |
1026 | if (mlir::isa<fir::LogicalType>(lhsEleTy) != |
1027 | mlir::isa<fir::LogicalType>(resultTy)) |
1028 | return emitOpError("the result type should be a logical only if the " |
1029 | "argument types are logical" ); |
1030 | } |
1031 | |
1032 | if (!hlfir::isFortranScalarNumericalType(resultTy) && |
1033 | !mlir::isa<fir::LogicalType>(resultTy)) |
1034 | return emitOpError( |
1035 | "the result must be of scalar numerical or logical type" ); |
1036 | |
1037 | return mlir::success(); |
1038 | } |
1039 | |
1040 | void hlfir::DotProductOp::getEffects( |
1041 | llvm::SmallVectorImpl< |
1042 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
1043 | &effects) { |
1044 | getIntrinsicEffects(getOperation(), effects); |
1045 | } |
1046 | |
1047 | //===----------------------------------------------------------------------===// |
1048 | // MatmulOp |
1049 | //===----------------------------------------------------------------------===// |
1050 | |
1051 | mlir::LogicalResult hlfir::MatmulOp::verify() { |
1052 | mlir::Value lhs = getLhs(); |
1053 | mlir::Value rhs = getRhs(); |
1054 | fir::SequenceType lhsTy = |
1055 | hlfir::getFortranElementOrSequenceType(lhs.getType()) |
1056 | .cast<fir::SequenceType>(); |
1057 | fir::SequenceType rhsTy = |
1058 | hlfir::getFortranElementOrSequenceType(rhs.getType()) |
1059 | .cast<fir::SequenceType>(); |
1060 | llvm::ArrayRef<int64_t> lhsShape = lhsTy.getShape(); |
1061 | llvm::ArrayRef<int64_t> rhsShape = rhsTy.getShape(); |
1062 | std::size_t lhsRank = lhsShape.size(); |
1063 | std::size_t rhsRank = rhsShape.size(); |
1064 | mlir::Type lhsEleTy = lhsTy.getEleTy(); |
1065 | mlir::Type rhsEleTy = rhsTy.getEleTy(); |
1066 | hlfir::ExprType resultTy = getResult().getType().cast<hlfir::ExprType>(); |
1067 | llvm::ArrayRef<int64_t> resultShape = resultTy.getShape(); |
1068 | mlir::Type resultEleTy = resultTy.getEleTy(); |
1069 | |
1070 | if (((lhsRank != 1) && (lhsRank != 2)) || ((rhsRank != 1) && (rhsRank != 2))) |
1071 | return emitOpError("array must have either rank 1 or rank 2" ); |
1072 | |
1073 | if ((lhsRank == 1) && (rhsRank == 1)) |
1074 | return emitOpError("at least one array must have rank 2" ); |
1075 | |
1076 | if (mlir::isa<fir::LogicalType>(lhsEleTy) != |
1077 | mlir::isa<fir::LogicalType>(rhsEleTy)) |
1078 | return emitOpError("if one array is logical, so should the other be" ); |
1079 | |
1080 | if (!useStrictIntrinsicVerifier) |
1081 | return mlir::success(); |
1082 | |
1083 | int64_t lastLhsDim = lhsShape[lhsRank - 1]; |
1084 | int64_t firstRhsDim = rhsShape[0]; |
1085 | constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent(); |
1086 | if (lastLhsDim != firstRhsDim) |
1087 | if ((lastLhsDim != unknownExtent) && (firstRhsDim != unknownExtent)) |
1088 | return emitOpError( |
1089 | "the last dimension of LHS should match the first dimension of RHS" ); |
1090 | |
1091 | if (mlir::isa<fir::LogicalType>(lhsEleTy) != |
1092 | mlir::isa<fir::LogicalType>(resultEleTy)) |
1093 | return emitOpError("the result type should be a logical only if the " |
1094 | "argument types are logical" ); |
1095 | |
1096 | llvm::SmallVector<int64_t, 2> expectedResultShape; |
1097 | if (lhsRank == 2) { |
1098 | if (rhsRank == 2) { |
1099 | expectedResultShape.push_back(lhsShape[0]); |
1100 | expectedResultShape.push_back(rhsShape[1]); |
1101 | } else { |
1102 | // rhsRank == 1 |
1103 | expectedResultShape.push_back(lhsShape[0]); |
1104 | } |
1105 | } else { |
1106 | // lhsRank == 1 |
1107 | // rhsRank == 2 |
1108 | expectedResultShape.push_back(rhsShape[1]); |
1109 | } |
1110 | if (resultShape.size() != expectedResultShape.size()) |
1111 | return emitOpError("incorrect result shape" ); |
1112 | if (resultShape[0] != expectedResultShape[0] && |
1113 | expectedResultShape[0] != unknownExtent) |
1114 | return emitOpError("incorrect result shape" ); |
1115 | if (resultShape.size() == 2 && resultShape[1] != expectedResultShape[1] && |
1116 | expectedResultShape[1] != unknownExtent) |
1117 | return emitOpError("incorrect result shape" ); |
1118 | |
1119 | return mlir::success(); |
1120 | } |
1121 | |
1122 | mlir::LogicalResult |
1123 | hlfir::MatmulOp::canonicalize(MatmulOp matmulOp, |
1124 | mlir::PatternRewriter &rewriter) { |
1125 | // the only two uses of the transposed matrix should be for the hlfir.matmul |
1126 | // and hlfir.destory |
1127 | auto isOtherwiseUnused = [&](hlfir::TransposeOp transposeOp) -> bool { |
1128 | std::size_t numUses = 0; |
1129 | for (mlir::Operation *user : transposeOp.getResult().getUsers()) { |
1130 | ++numUses; |
1131 | if (user == matmulOp) |
1132 | continue; |
1133 | if (mlir::dyn_cast_or_null<hlfir::DestroyOp>(user)) |
1134 | continue; |
1135 | // some other use! |
1136 | return false; |
1137 | } |
1138 | return numUses <= 2; |
1139 | }; |
1140 | |
1141 | mlir::Value lhs = matmulOp.getLhs(); |
1142 | // Rewrite MATMUL(TRANSPOSE(lhs), rhs) => hlfir.matmul_transpose lhs, rhs |
1143 | if (auto transposeOp = lhs.getDefiningOp<hlfir::TransposeOp>()) { |
1144 | if (isOtherwiseUnused(transposeOp)) { |
1145 | mlir::Location loc = matmulOp.getLoc(); |
1146 | mlir::Type resultTy = matmulOp.getResult().getType(); |
1147 | auto matmulTransposeOp = rewriter.create<hlfir::MatmulTransposeOp>( |
1148 | loc, resultTy, transposeOp.getArray(), matmulOp.getRhs()); |
1149 | |
1150 | // we don't need to remove any hlfir.destroy because it will be needed for |
1151 | // the new intrinsic result anyway |
1152 | rewriter.replaceOp(matmulOp, matmulTransposeOp.getResult()); |
1153 | |
1154 | // but we do need to get rid of the hlfir.destroy for the hlfir.transpose |
1155 | // result (which is entirely removed) |
1156 | llvm::SmallVector<mlir::Operation *> users( |
1157 | transposeOp->getResult(0).getUsers()); |
1158 | for (mlir::Operation *user : users) |
1159 | if (auto destroyOp = mlir::dyn_cast_or_null<hlfir::DestroyOp>(user)) |
1160 | rewriter.eraseOp(destroyOp); |
1161 | rewriter.eraseOp(transposeOp); |
1162 | |
1163 | return mlir::success(); |
1164 | } |
1165 | } |
1166 | |
1167 | return mlir::failure(); |
1168 | } |
1169 | |
1170 | void hlfir::MatmulOp::getEffects( |
1171 | llvm::SmallVectorImpl< |
1172 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
1173 | &effects) { |
1174 | getIntrinsicEffects(getOperation(), effects); |
1175 | } |
1176 | |
1177 | //===----------------------------------------------------------------------===// |
1178 | // TransposeOp |
1179 | //===----------------------------------------------------------------------===// |
1180 | |
1181 | mlir::LogicalResult hlfir::TransposeOp::verify() { |
1182 | mlir::Value array = getArray(); |
1183 | fir::SequenceType arrayTy = |
1184 | hlfir::getFortranElementOrSequenceType(array.getType()) |
1185 | .cast<fir::SequenceType>(); |
1186 | llvm::ArrayRef<int64_t> inShape = arrayTy.getShape(); |
1187 | std::size_t rank = inShape.size(); |
1188 | mlir::Type eleTy = arrayTy.getEleTy(); |
1189 | hlfir::ExprType resultTy = getResult().getType().cast<hlfir::ExprType>(); |
1190 | llvm::ArrayRef<int64_t> resultShape = resultTy.getShape(); |
1191 | std::size_t resultRank = resultShape.size(); |
1192 | mlir::Type resultEleTy = resultTy.getEleTy(); |
1193 | |
1194 | if (rank != 2 || resultRank != 2) |
1195 | return emitOpError("input and output arrays should have rank 2" ); |
1196 | |
1197 | if (!useStrictIntrinsicVerifier) |
1198 | return mlir::success(); |
1199 | |
1200 | constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent(); |
1201 | if ((inShape[0] != resultShape[1]) && (inShape[0] != unknownExtent)) |
1202 | return emitOpError("output shape does not match input array" ); |
1203 | if ((inShape[1] != resultShape[0]) && (inShape[1] != unknownExtent)) |
1204 | return emitOpError("output shape does not match input array" ); |
1205 | |
1206 | if (eleTy != resultEleTy) |
1207 | return emitOpError( |
1208 | "input and output arrays should have the same element type" ); |
1209 | |
1210 | return mlir::success(); |
1211 | } |
1212 | |
1213 | void hlfir::TransposeOp::getEffects( |
1214 | llvm::SmallVectorImpl< |
1215 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
1216 | &effects) { |
1217 | getIntrinsicEffects(getOperation(), effects); |
1218 | } |
1219 | |
1220 | //===----------------------------------------------------------------------===// |
1221 | // MatmulTransposeOp |
1222 | //===----------------------------------------------------------------------===// |
1223 | |
1224 | mlir::LogicalResult hlfir::MatmulTransposeOp::verify() { |
1225 | mlir::Value lhs = getLhs(); |
1226 | mlir::Value rhs = getRhs(); |
1227 | fir::SequenceType lhsTy = |
1228 | hlfir::getFortranElementOrSequenceType(lhs.getType()) |
1229 | .cast<fir::SequenceType>(); |
1230 | fir::SequenceType rhsTy = |
1231 | hlfir::getFortranElementOrSequenceType(rhs.getType()) |
1232 | .cast<fir::SequenceType>(); |
1233 | llvm::ArrayRef<int64_t> lhsShape = lhsTy.getShape(); |
1234 | llvm::ArrayRef<int64_t> rhsShape = rhsTy.getShape(); |
1235 | std::size_t lhsRank = lhsShape.size(); |
1236 | std::size_t rhsRank = rhsShape.size(); |
1237 | mlir::Type lhsEleTy = lhsTy.getEleTy(); |
1238 | mlir::Type rhsEleTy = rhsTy.getEleTy(); |
1239 | hlfir::ExprType resultTy = getResult().getType().cast<hlfir::ExprType>(); |
1240 | llvm::ArrayRef<int64_t> resultShape = resultTy.getShape(); |
1241 | mlir::Type resultEleTy = resultTy.getEleTy(); |
1242 | |
1243 | // lhs must have rank 2 for the transpose to be valid |
1244 | if ((lhsRank != 2) || ((rhsRank != 1) && (rhsRank != 2))) |
1245 | return emitOpError("array must have either rank 1 or rank 2" ); |
1246 | |
1247 | if (!useStrictIntrinsicVerifier) |
1248 | return mlir::success(); |
1249 | |
1250 | if (mlir::isa<fir::LogicalType>(lhsEleTy) != |
1251 | mlir::isa<fir::LogicalType>(rhsEleTy)) |
1252 | return emitOpError("if one array is logical, so should the other be" ); |
1253 | |
1254 | // for matmul we compare the last dimension of lhs with the first dimension of |
1255 | // rhs, but for MatmulTranspose, dimensions of lhs are inverted by the |
1256 | // transpose |
1257 | int64_t firstLhsDim = lhsShape[0]; |
1258 | int64_t firstRhsDim = rhsShape[0]; |
1259 | constexpr int64_t unknownExtent = fir::SequenceType::getUnknownExtent(); |
1260 | if (firstLhsDim != firstRhsDim) |
1261 | if ((firstLhsDim != unknownExtent) && (firstRhsDim != unknownExtent)) |
1262 | return emitOpError( |
1263 | "the first dimension of LHS should match the first dimension of RHS" ); |
1264 | |
1265 | if (mlir::isa<fir::LogicalType>(lhsEleTy) != |
1266 | mlir::isa<fir::LogicalType>(resultEleTy)) |
1267 | return emitOpError("the result type should be a logical only if the " |
1268 | "argument types are logical" ); |
1269 | |
1270 | llvm::SmallVector<int64_t, 2> expectedResultShape; |
1271 | if (rhsRank == 2) { |
1272 | expectedResultShape.push_back(lhsShape[1]); |
1273 | expectedResultShape.push_back(rhsShape[1]); |
1274 | } else { |
1275 | // rhsRank == 1 |
1276 | expectedResultShape.push_back(lhsShape[1]); |
1277 | } |
1278 | if (resultShape.size() != expectedResultShape.size()) |
1279 | return emitOpError("incorrect result shape" ); |
1280 | if (resultShape[0] != expectedResultShape[0]) |
1281 | return emitOpError("incorrect result shape" ); |
1282 | if (resultShape.size() == 2 && resultShape[1] != expectedResultShape[1]) |
1283 | return emitOpError("incorrect result shape" ); |
1284 | |
1285 | return mlir::success(); |
1286 | } |
1287 | |
1288 | void hlfir::MatmulTransposeOp::getEffects( |
1289 | llvm::SmallVectorImpl< |
1290 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
1291 | &effects) { |
1292 | getIntrinsicEffects(getOperation(), effects); |
1293 | } |
1294 | |
1295 | //===----------------------------------------------------------------------===// |
1296 | // AssociateOp |
1297 | //===----------------------------------------------------------------------===// |
1298 | |
1299 | void hlfir::AssociateOp::build(mlir::OpBuilder &builder, |
1300 | mlir::OperationState &result, mlir::Value source, |
1301 | llvm::StringRef uniq_name, mlir::Value shape, |
1302 | mlir::ValueRange typeparams, |
1303 | fir::FortranVariableFlagsAttr fortran_attrs) { |
1304 | auto nameAttr = builder.getStringAttr(uniq_name); |
1305 | mlir::Type dataType = getFortranElementOrSequenceType(source.getType()); |
1306 | |
1307 | // Preserve polymorphism of polymorphic expr. |
1308 | mlir::Type firVarType; |
1309 | auto sourceExprType = mlir::dyn_cast<hlfir::ExprType>(source.getType()); |
1310 | if (sourceExprType && sourceExprType.isPolymorphic()) |
1311 | firVarType = fir::ClassType::get(fir::HeapType::get(dataType)); |
1312 | else |
1313 | firVarType = fir::ReferenceType::get(dataType); |
1314 | |
1315 | mlir::Type hlfirVariableType = |
1316 | DeclareOp::getHLFIRVariableType(firVarType, /*hasExplicitLbs=*/false); |
1317 | mlir::Type i1Type = builder.getI1Type(); |
1318 | build(builder, result, {hlfirVariableType, firVarType, i1Type}, source, shape, |
1319 | typeparams, nameAttr, fortran_attrs); |
1320 | } |
1321 | |
1322 | void hlfir::AssociateOp::build( |
1323 | mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value source, |
1324 | mlir::Value shape, mlir::ValueRange typeparams, |
1325 | fir::FortranVariableFlagsAttr fortran_attrs, |
1326 | llvm::ArrayRef<mlir::NamedAttribute> attributes) { |
1327 | mlir::Type dataType = getFortranElementOrSequenceType(source.getType()); |
1328 | |
1329 | // Preserve polymorphism of polymorphic expr. |
1330 | mlir::Type firVarType; |
1331 | auto sourceExprType = mlir::dyn_cast<hlfir::ExprType>(source.getType()); |
1332 | if (sourceExprType && sourceExprType.isPolymorphic()) |
1333 | firVarType = fir::ClassType::get(fir::HeapType::get(dataType)); |
1334 | else |
1335 | firVarType = fir::ReferenceType::get(dataType); |
1336 | |
1337 | mlir::Type hlfirVariableType = |
1338 | DeclareOp::getHLFIRVariableType(firVarType, /*hasExplicitLbs=*/false); |
1339 | mlir::Type i1Type = builder.getI1Type(); |
1340 | build(builder, result, {hlfirVariableType, firVarType, i1Type}, source, shape, |
1341 | typeparams, {}, fortran_attrs); |
1342 | result.addAttributes(attributes); |
1343 | } |
1344 | |
1345 | //===----------------------------------------------------------------------===// |
1346 | // EndAssociateOp |
1347 | //===----------------------------------------------------------------------===// |
1348 | |
1349 | void hlfir::EndAssociateOp::build(mlir::OpBuilder &builder, |
1350 | mlir::OperationState &result, |
1351 | hlfir::AssociateOp associate) { |
1352 | mlir::Value hlfirBase = associate.getBase(); |
1353 | mlir::Value firBase = associate.getFirBase(); |
1354 | // If EndAssociateOp may need to initiate the deallocation |
1355 | // of allocatable components, it has to have access to the variable |
1356 | // definition, so we cannot use the FIR base as the operand. |
1357 | return build(builder, result, |
1358 | hlfir::mayHaveAllocatableComponent(hlfirBase.getType()) |
1359 | ? hlfirBase |
1360 | : firBase, |
1361 | associate.getMustFreeStrorageFlag()); |
1362 | } |
1363 | |
1364 | mlir::LogicalResult hlfir::EndAssociateOp::verify() { |
1365 | mlir::Value var = getVar(); |
1366 | if (hlfir::mayHaveAllocatableComponent(var.getType()) && |
1367 | !hlfir::isFortranEntity(var)) |
1368 | return emitOpError("that requires components deallocation must have var " |
1369 | "operand that is a Fortran entity" ); |
1370 | |
1371 | return mlir::success(); |
1372 | } |
1373 | |
1374 | //===----------------------------------------------------------------------===// |
1375 | // AsExprOp |
1376 | //===----------------------------------------------------------------------===// |
1377 | |
1378 | void hlfir::AsExprOp::build(mlir::OpBuilder &builder, |
1379 | mlir::OperationState &result, mlir::Value var, |
1380 | mlir::Value mustFree) { |
1381 | hlfir::ExprType::Shape typeShape; |
1382 | bool isPolymorphic = fir::isPolymorphicType(var.getType()); |
1383 | mlir::Type type = getFortranElementOrSequenceType(var.getType()); |
1384 | if (auto seqType = type.dyn_cast<fir::SequenceType>()) { |
1385 | typeShape.append(seqType.getShape().begin(), seqType.getShape().end()); |
1386 | type = seqType.getEleTy(); |
1387 | } |
1388 | |
1389 | auto resultType = hlfir::ExprType::get(builder.getContext(), typeShape, type, |
1390 | isPolymorphic); |
1391 | return build(builder, result, resultType, var, mustFree); |
1392 | } |
1393 | |
1394 | void hlfir::AsExprOp::getEffects( |
1395 | llvm::SmallVectorImpl< |
1396 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
1397 | &effects) { |
1398 | // this isn't a transformational intrinsic but follows the same pattern: it |
1399 | // creates a hlfir.expr and so needs to have an allocation effect, plus it |
1400 | // might have a pointer-like argument, in which case it has a read effect |
1401 | // upon those |
1402 | getIntrinsicEffects(getOperation(), effects); |
1403 | } |
1404 | |
1405 | //===----------------------------------------------------------------------===// |
1406 | // ElementalOp |
1407 | //===----------------------------------------------------------------------===// |
1408 | |
1409 | /// Common builder for ElementalOp and ElementalAddrOp to add the arguments and |
1410 | /// create the elemental body. Result and clean-up body must be handled in |
1411 | /// specific builders. |
1412 | template <typename Op> |
1413 | static void buildElemental(mlir::OpBuilder &builder, |
1414 | mlir::OperationState &odsState, mlir::Value shape, |
1415 | mlir::Value mold, mlir::ValueRange typeparams, |
1416 | bool isUnordered) { |
1417 | odsState.addOperands(shape); |
1418 | if (mold) |
1419 | odsState.addOperands(mold); |
1420 | odsState.addOperands(typeparams); |
1421 | odsState.addAttribute( |
1422 | Op::getOperandSegmentSizesAttrName(odsState.name), |
1423 | builder.getDenseI32ArrayAttr({/*shape=*/1, (mold ? 1 : 0), |
1424 | static_cast<int32_t>(typeparams.size())})); |
1425 | if (isUnordered) |
1426 | odsState.addAttribute(Op::getUnorderedAttrName(odsState.name), |
1427 | isUnordered ? builder.getUnitAttr() : nullptr); |
1428 | mlir::Region *bodyRegion = odsState.addRegion(); |
1429 | bodyRegion->push_back(new mlir::Block{}); |
1430 | if (auto shapeType = shape.getType().dyn_cast<fir::ShapeType>()) { |
1431 | unsigned dim = shapeType.getRank(); |
1432 | mlir::Type indexType = builder.getIndexType(); |
1433 | for (unsigned d = 0; d < dim; ++d) |
1434 | bodyRegion->front().addArgument(indexType, odsState.location); |
1435 | } |
1436 | } |
1437 | |
1438 | void hlfir::ElementalOp::build(mlir::OpBuilder &builder, |
1439 | mlir::OperationState &odsState, |
1440 | mlir::Type resultType, mlir::Value shape, |
1441 | mlir::Value mold, mlir::ValueRange typeparams, |
1442 | bool isUnordered) { |
1443 | odsState.addTypes(resultType); |
1444 | buildElemental<hlfir::ElementalOp>(builder, odsState, shape, mold, typeparams, |
1445 | isUnordered); |
1446 | } |
1447 | |
1448 | mlir::Value hlfir::ElementalOp::getElementEntity() { |
1449 | return mlir::cast<hlfir::YieldElementOp>(getBody()->back()).getElementValue(); |
1450 | } |
1451 | |
1452 | mlir::LogicalResult hlfir::ElementalOp::verify() { |
1453 | mlir::Value mold = getMold(); |
1454 | hlfir::ExprType resultType = mlir::cast<hlfir::ExprType>(getType()); |
1455 | if (!!mold != resultType.isPolymorphic()) |
1456 | return emitOpError("result must be polymorphic when mold is present " |
1457 | "and vice versa" ); |
1458 | |
1459 | return mlir::success(); |
1460 | } |
1461 | |
1462 | //===----------------------------------------------------------------------===// |
1463 | // ApplyOp |
1464 | //===----------------------------------------------------------------------===// |
1465 | |
1466 | void hlfir::ApplyOp::build(mlir::OpBuilder &builder, |
1467 | mlir::OperationState &odsState, mlir::Value expr, |
1468 | mlir::ValueRange indices, |
1469 | mlir::ValueRange typeparams) { |
1470 | mlir::Type resultType = expr.getType(); |
1471 | if (auto exprType = resultType.dyn_cast<hlfir::ExprType>()) |
1472 | resultType = exprType.getElementExprType(); |
1473 | build(builder, odsState, resultType, expr, indices, typeparams); |
1474 | } |
1475 | |
1476 | //===----------------------------------------------------------------------===// |
1477 | // NullOp |
1478 | //===----------------------------------------------------------------------===// |
1479 | |
1480 | void hlfir::NullOp::build(mlir::OpBuilder &builder, |
1481 | mlir::OperationState &odsState) { |
1482 | return build(builder, odsState, |
1483 | fir::ReferenceType::get(builder.getNoneType())); |
1484 | } |
1485 | |
1486 | //===----------------------------------------------------------------------===// |
1487 | // DestroyOp |
1488 | //===----------------------------------------------------------------------===// |
1489 | |
1490 | mlir::LogicalResult hlfir::DestroyOp::verify() { |
1491 | if (mustFinalizeExpr()) { |
1492 | mlir::Value expr = getExpr(); |
1493 | hlfir::ExprType exprTy = mlir::cast<hlfir::ExprType>(expr.getType()); |
1494 | mlir::Type elemTy = hlfir::getFortranElementType(exprTy); |
1495 | if (!mlir::isa<fir::RecordType>(elemTy)) |
1496 | return emitOpError( |
1497 | "the element type must be finalizable, when 'finalize' is set" ); |
1498 | } |
1499 | |
1500 | return mlir::success(); |
1501 | } |
1502 | |
1503 | //===----------------------------------------------------------------------===// |
1504 | // CopyInOp |
1505 | //===----------------------------------------------------------------------===// |
1506 | |
1507 | void hlfir::CopyInOp::build(mlir::OpBuilder &builder, |
1508 | mlir::OperationState &odsState, mlir::Value var, |
1509 | mlir::Value var_is_present) { |
1510 | return build(builder, odsState, {var.getType(), builder.getI1Type()}, var, |
1511 | var_is_present); |
1512 | } |
1513 | |
1514 | //===----------------------------------------------------------------------===// |
1515 | // ShapeOfOp |
1516 | //===----------------------------------------------------------------------===// |
1517 | |
1518 | void hlfir::ShapeOfOp::build(mlir::OpBuilder &builder, |
1519 | mlir::OperationState &result, mlir::Value expr) { |
1520 | hlfir::ExprType exprTy = expr.getType().cast<hlfir::ExprType>(); |
1521 | mlir::Type type = fir::ShapeType::get(builder.getContext(), exprTy.getRank()); |
1522 | build(builder, result, type, expr); |
1523 | } |
1524 | |
1525 | std::size_t hlfir::ShapeOfOp::getRank() { |
1526 | mlir::Type resTy = getResult().getType(); |
1527 | fir::ShapeType shape = resTy.cast<fir::ShapeType>(); |
1528 | return shape.getRank(); |
1529 | } |
1530 | |
1531 | mlir::LogicalResult hlfir::ShapeOfOp::verify() { |
1532 | mlir::Value expr = getExpr(); |
1533 | hlfir::ExprType exprTy = expr.getType().cast<hlfir::ExprType>(); |
1534 | std::size_t exprRank = exprTy.getShape().size(); |
1535 | |
1536 | if (exprRank == 0) |
1537 | return emitOpError("cannot get the shape of a shape-less expression" ); |
1538 | |
1539 | std::size_t shapeRank = getRank(); |
1540 | if (shapeRank != exprRank) |
1541 | return emitOpError("result rank and expr rank do not match" ); |
1542 | |
1543 | return mlir::success(); |
1544 | } |
1545 | |
1546 | mlir::LogicalResult |
1547 | hlfir::ShapeOfOp::canonicalize(ShapeOfOp shapeOf, |
1548 | mlir::PatternRewriter &rewriter) { |
1549 | // if extent information is available at compile time, immediately fold the |
1550 | // hlfir.shape_of into a fir.shape |
1551 | mlir::Location loc = shapeOf.getLoc(); |
1552 | hlfir::ExprType expr = shapeOf.getExpr().getType().cast<hlfir::ExprType>(); |
1553 | |
1554 | mlir::Value shape = hlfir::genExprShape(rewriter, loc, expr); |
1555 | if (!shape) |
1556 | // shape information is not available at compile time |
1557 | return mlir::LogicalResult::failure(); |
1558 | |
1559 | rewriter.replaceAllUsesWith(shapeOf.getResult(), shape); |
1560 | rewriter.eraseOp(shapeOf); |
1561 | return mlir::LogicalResult::success(); |
1562 | } |
1563 | |
1564 | //===----------------------------------------------------------------------===// |
1565 | // GetExtent |
1566 | //===----------------------------------------------------------------------===// |
1567 | |
1568 | void hlfir::GetExtentOp::build(mlir::OpBuilder &builder, |
1569 | mlir::OperationState &result, mlir::Value shape, |
1570 | unsigned dim) { |
1571 | mlir::Type indexTy = builder.getIndexType(); |
1572 | mlir::IntegerAttr dimAttr = mlir::IntegerAttr::get(indexTy, dim); |
1573 | build(builder, result, indexTy, shape, dimAttr); |
1574 | } |
1575 | |
1576 | mlir::LogicalResult hlfir::GetExtentOp::verify() { |
1577 | fir::ShapeType shapeTy = getShape().getType().cast<fir::ShapeType>(); |
1578 | std::uint64_t rank = shapeTy.getRank(); |
1579 | llvm::APInt dim = getDim(); |
1580 | if (dim.sge(rank)) |
1581 | return emitOpError("dimension index out of bounds" ); |
1582 | return mlir::success(); |
1583 | } |
1584 | |
1585 | //===----------------------------------------------------------------------===// |
1586 | // RegionAssignOp |
1587 | //===----------------------------------------------------------------------===// |
1588 | |
1589 | /// Add a fir.end terminator to a parsed region if it does not already has a |
1590 | /// terminator. |
1591 | static void ensureTerminator(mlir::Region ®ion, mlir::Builder &builder, |
1592 | mlir::Location loc) { |
1593 | // Borrow YielOp::ensureTerminator MLIR generated implementation to add a |
1594 | // fir.end if there is no terminator. This has nothing to do with YielOp, |
1595 | // other than the fact that yieldOp has the |
1596 | // SingleBlocklicitTerminator<"fir::FirEndOp"> interface that |
1597 | // cannot be added on other HLFIR operations with several regions which are |
1598 | // not all terminated the same way. |
1599 | hlfir::YieldOp::ensureTerminator(region, builder, loc); |
1600 | } |
1601 | |
1602 | mlir::ParseResult hlfir::RegionAssignOp::parse(mlir::OpAsmParser &parser, |
1603 | mlir::OperationState &result) { |
1604 | mlir::Region &rhsRegion = *result.addRegion(); |
1605 | if (parser.parseRegion(rhsRegion)) |
1606 | return mlir::failure(); |
1607 | mlir::Region &lhsRegion = *result.addRegion(); |
1608 | if (parser.parseKeyword("to" ) || parser.parseRegion(lhsRegion)) |
1609 | return mlir::failure(); |
1610 | mlir::Region &userDefinedAssignmentRegion = *result.addRegion(); |
1611 | if (succeeded(parser.parseOptionalKeyword("user_defined_assign" ))) { |
1612 | mlir::OpAsmParser::Argument rhsArg, lhsArg; |
1613 | if (parser.parseLParen() || parser.parseArgument(rhsArg) || |
1614 | parser.parseColon() || parser.parseType(rhsArg.type) || |
1615 | parser.parseRParen() || parser.parseKeyword("to" ) || |
1616 | parser.parseLParen() || parser.parseArgument(lhsArg) || |
1617 | parser.parseColon() || parser.parseType(lhsArg.type) || |
1618 | parser.parseRParen()) |
1619 | return mlir::failure(); |
1620 | if (parser.parseRegion(userDefinedAssignmentRegion, {rhsArg, lhsArg})) |
1621 | return mlir::failure(); |
1622 | ensureTerminator(userDefinedAssignmentRegion, parser.getBuilder(), |
1623 | result.location); |
1624 | } |
1625 | return mlir::success(); |
1626 | } |
1627 | |
1628 | void hlfir::RegionAssignOp::print(mlir::OpAsmPrinter &p) { |
1629 | p << " " ; |
1630 | p.printRegion(getRhsRegion(), /*printEntryBlockArgs=*/false, |
1631 | /*printBlockTerminators=*/true); |
1632 | p << " to " ; |
1633 | p.printRegion(getLhsRegion(), /*printEntryBlockArgs=*/false, |
1634 | /*printBlockTerminators=*/true); |
1635 | if (!getUserDefinedAssignment().empty()) { |
1636 | p << " user_defined_assign " ; |
1637 | mlir::Value userAssignmentRhs = getUserAssignmentRhs(); |
1638 | mlir::Value userAssignmentLhs = getUserAssignmentLhs(); |
1639 | p << " (" << userAssignmentRhs << ": " << userAssignmentRhs.getType() |
1640 | << ") to (" ; |
1641 | p << userAssignmentLhs << ": " << userAssignmentLhs.getType() << ") " ; |
1642 | p.printRegion(getUserDefinedAssignment(), /*printEntryBlockArgs=*/false, |
1643 | /*printBlockTerminators=*/false); |
1644 | } |
1645 | } |
1646 | |
1647 | static mlir::Operation *getTerminator(mlir::Region ®ion) { |
1648 | if (region.empty() || region.back().empty()) |
1649 | return nullptr; |
1650 | return ®ion.back().back(); |
1651 | } |
1652 | |
1653 | mlir::LogicalResult hlfir::RegionAssignOp::verify() { |
1654 | if (!mlir::isa_and_nonnull<hlfir::YieldOp>(getTerminator(getRhsRegion()))) |
1655 | return emitOpError( |
1656 | "right-hand side region must be terminated by an hlfir.yield" ); |
1657 | if (!mlir::isa_and_nonnull<hlfir::YieldOp, hlfir::ElementalAddrOp>( |
1658 | getTerminator(getLhsRegion()))) |
1659 | return emitOpError("left-hand side region must be terminated by an " |
1660 | "hlfir.yield or hlfir.elemental_addr" ); |
1661 | return mlir::success(); |
1662 | } |
1663 | |
1664 | //===----------------------------------------------------------------------===// |
1665 | // YieldOp |
1666 | //===----------------------------------------------------------------------===// |
1667 | |
1668 | static mlir::ParseResult parseYieldOpCleanup(mlir::OpAsmParser &parser, |
1669 | mlir::Region &cleanup) { |
1670 | if (succeeded(parser.parseOptionalKeyword("cleanup" ))) { |
1671 | if (parser.parseRegion(cleanup, /*arguments=*/{}, |
1672 | /*argTypes=*/{})) |
1673 | return mlir::failure(); |
1674 | hlfir::YieldOp::ensureTerminator(cleanup, parser.getBuilder(), |
1675 | parser.getBuilder().getUnknownLoc()); |
1676 | } |
1677 | return mlir::success(); |
1678 | } |
1679 | |
1680 | template <typename YieldOp> |
1681 | static void printYieldOpCleanup(mlir::OpAsmPrinter &p, YieldOp yieldOp, |
1682 | mlir::Region &cleanup) { |
1683 | if (!cleanup.empty()) { |
1684 | p << "cleanup " ; |
1685 | p.printRegion(cleanup, /*printEntryBlockArgs=*/false, |
1686 | /*printBlockTerminators=*/false); |
1687 | } |
1688 | } |
1689 | |
1690 | //===----------------------------------------------------------------------===// |
1691 | // ElementalAddrOp |
1692 | //===----------------------------------------------------------------------===// |
1693 | |
1694 | void hlfir::ElementalAddrOp::build(mlir::OpBuilder &builder, |
1695 | mlir::OperationState &odsState, |
1696 | mlir::Value shape, mlir::Value mold, |
1697 | mlir::ValueRange typeparams, |
1698 | bool isUnordered) { |
1699 | buildElemental<hlfir::ElementalAddrOp>(builder, odsState, shape, mold, |
1700 | typeparams, isUnordered); |
1701 | // Push cleanUp region. |
1702 | odsState.addRegion(); |
1703 | } |
1704 | |
1705 | mlir::LogicalResult hlfir::ElementalAddrOp::verify() { |
1706 | hlfir::YieldOp yieldOp = |
1707 | mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(getBody())); |
1708 | if (!yieldOp) |
1709 | return emitOpError("body region must be terminated by an hlfir.yield" ); |
1710 | mlir::Type elementAddrType = yieldOp.getEntity().getType(); |
1711 | if (!hlfir::isFortranVariableType(elementAddrType) || |
1712 | hlfir::getFortranElementOrSequenceType(elementAddrType) |
1713 | .isa<fir::SequenceType>()) |
1714 | return emitOpError("body must compute the address of a scalar entity" ); |
1715 | unsigned shapeRank = getShape().getType().cast<fir::ShapeType>().getRank(); |
1716 | if (shapeRank != getIndices().size()) |
1717 | return emitOpError("body number of indices must match shape rank" ); |
1718 | return mlir::success(); |
1719 | } |
1720 | |
1721 | hlfir::YieldOp hlfir::ElementalAddrOp::getYieldOp() { |
1722 | hlfir::YieldOp yieldOp = |
1723 | mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(getBody())); |
1724 | assert(yieldOp && "element_addr is ill-formed" ); |
1725 | return yieldOp; |
1726 | } |
1727 | |
1728 | mlir::Value hlfir::ElementalAddrOp::getElementEntity() { |
1729 | return getYieldOp().getEntity(); |
1730 | } |
1731 | |
1732 | mlir::Region *hlfir::ElementalAddrOp::getElementCleanup() { |
1733 | mlir::Region *cleanup = &getYieldOp().getCleanup(); |
1734 | return cleanup->empty() ? nullptr : cleanup; |
1735 | } |
1736 | |
1737 | //===----------------------------------------------------------------------===// |
1738 | // OrderedAssignmentTreeOpInterface |
1739 | //===----------------------------------------------------------------------===// |
1740 | |
1741 | mlir::LogicalResult hlfir::OrderedAssignmentTreeOpInterface::verifyImpl() { |
1742 | if (mlir::Region *body = getSubTreeRegion()) |
1743 | if (!body->empty()) |
1744 | for (mlir::Operation &op : body->front()) |
1745 | if (!mlir::isa<hlfir::OrderedAssignmentTreeOpInterface, fir::FirEndOp>( |
1746 | op)) |
1747 | return emitOpError( |
1748 | "body region must only contain OrderedAssignmentTreeOpInterface " |
1749 | "operations or fir.end" ); |
1750 | return mlir::success(); |
1751 | } |
1752 | |
1753 | //===----------------------------------------------------------------------===// |
1754 | // ForallOp |
1755 | //===----------------------------------------------------------------------===// |
1756 | |
1757 | static mlir::ParseResult parseForallOpBody(mlir::OpAsmParser &parser, |
1758 | mlir::Region &body) { |
1759 | mlir::OpAsmParser::Argument bodyArg; |
1760 | if (parser.parseLParen() || parser.parseArgument(bodyArg) || |
1761 | parser.parseColon() || parser.parseType(bodyArg.type) || |
1762 | parser.parseRParen()) |
1763 | return mlir::failure(); |
1764 | if (parser.parseRegion(body, {bodyArg})) |
1765 | return mlir::failure(); |
1766 | ensureTerminator(body, parser.getBuilder(), |
1767 | parser.getBuilder().getUnknownLoc()); |
1768 | return mlir::success(); |
1769 | } |
1770 | |
1771 | static void printForallOpBody(mlir::OpAsmPrinter &p, hlfir::ForallOp forall, |
1772 | mlir::Region &body) { |
1773 | mlir::Value forallIndex = forall.getForallIndexValue(); |
1774 | p << " (" << forallIndex << ": " << forallIndex.getType() << ") " ; |
1775 | p.printRegion(body, /*printEntryBlockArgs=*/false, |
1776 | /*printBlockTerminators=*/false); |
1777 | } |
1778 | |
1779 | /// Predicate implementation of YieldIntegerOrEmpty. |
1780 | static bool yieldsIntegerOrEmpty(mlir::Region ®ion) { |
1781 | if (region.empty()) |
1782 | return true; |
1783 | auto yield = mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(region)); |
1784 | return yield && fir::isa_integer(yield.getEntity().getType()); |
1785 | } |
1786 | |
1787 | //===----------------------------------------------------------------------===// |
1788 | // ForallMaskOp |
1789 | //===----------------------------------------------------------------------===// |
1790 | |
1791 | static mlir::ParseResult parseAssignmentMaskOpBody(mlir::OpAsmParser &parser, |
1792 | mlir::Region &body) { |
1793 | if (parser.parseRegion(body)) |
1794 | return mlir::failure(); |
1795 | ensureTerminator(body, parser.getBuilder(), |
1796 | parser.getBuilder().getUnknownLoc()); |
1797 | return mlir::success(); |
1798 | } |
1799 | |
1800 | template <typename ConcreteOp> |
1801 | static void printAssignmentMaskOpBody(mlir::OpAsmPrinter &p, ConcreteOp, |
1802 | mlir::Region &body) { |
1803 | // ElseWhereOp is a WhereOp/ElseWhereOp terminator that should be printed. |
1804 | bool printBlockTerminators = |
1805 | !body.empty() && |
1806 | mlir::isa_and_nonnull<hlfir::ElseWhereOp>(body.back().getTerminator()); |
1807 | p.printRegion(body, /*printEntryBlockArgs=*/false, printBlockTerminators); |
1808 | } |
1809 | |
1810 | static bool yieldsLogical(mlir::Region ®ion, bool mustBeScalarI1) { |
1811 | if (region.empty()) |
1812 | return false; |
1813 | auto yield = mlir::dyn_cast_or_null<hlfir::YieldOp>(getTerminator(region)); |
1814 | if (!yield) |
1815 | return false; |
1816 | mlir::Type yieldType = yield.getEntity().getType(); |
1817 | if (mustBeScalarI1) |
1818 | return hlfir::isI1Type(yieldType); |
1819 | return hlfir::isMaskArgument(yieldType) && |
1820 | hlfir::getFortranElementOrSequenceType(yieldType) |
1821 | .isa<fir::SequenceType>(); |
1822 | } |
1823 | |
1824 | mlir::LogicalResult hlfir::ForallMaskOp::verify() { |
1825 | if (!yieldsLogical(getMaskRegion(), /*mustBeScalarI1=*/true)) |
1826 | return emitOpError("mask region must yield a scalar i1" ); |
1827 | mlir::Operation *op = getOperation(); |
1828 | hlfir::ForallOp forallOp = |
1829 | mlir::dyn_cast_or_null<hlfir::ForallOp>(op->getParentOp()); |
1830 | if (!forallOp || op->getParentRegion() != &forallOp.getBody()) |
1831 | return emitOpError("must be inside the body region of an hlfir.forall" ); |
1832 | return mlir::success(); |
1833 | } |
1834 | |
1835 | //===----------------------------------------------------------------------===// |
1836 | // WhereOp and ElseWhereOp |
1837 | //===----------------------------------------------------------------------===// |
1838 | |
1839 | template <typename ConcreteOp> |
1840 | static mlir::LogicalResult verifyWhereAndElseWhereBody(ConcreteOp &concreteOp) { |
1841 | for (mlir::Operation &op : concreteOp.getBody().front()) |
1842 | if (mlir::isa<hlfir::ForallOp>(op)) |
1843 | return concreteOp.emitOpError( |
1844 | "body region must not contain hlfir.forall" ); |
1845 | return mlir::success(); |
1846 | } |
1847 | |
1848 | mlir::LogicalResult hlfir::WhereOp::verify() { |
1849 | if (!yieldsLogical(getMaskRegion(), /*mustBeScalarI1=*/false)) |
1850 | return emitOpError("mask region must yield a logical array" ); |
1851 | return verifyWhereAndElseWhereBody(*this); |
1852 | } |
1853 | |
1854 | mlir::LogicalResult hlfir::ElseWhereOp::verify() { |
1855 | if (!getMaskRegion().empty()) |
1856 | if (!yieldsLogical(getMaskRegion(), /*mustBeScalarI1=*/false)) |
1857 | return emitOpError( |
1858 | "mask region must yield a logical array when provided" ); |
1859 | return verifyWhereAndElseWhereBody(*this); |
1860 | } |
1861 | |
1862 | //===----------------------------------------------------------------------===// |
1863 | // ForallIndexOp |
1864 | //===----------------------------------------------------------------------===// |
1865 | |
1866 | mlir::LogicalResult |
1867 | hlfir::ForallIndexOp::canonicalize(hlfir::ForallIndexOp indexOp, |
1868 | mlir::PatternRewriter &rewriter) { |
1869 | for (mlir::Operation *user : indexOp->getResult(0).getUsers()) |
1870 | if (!mlir::isa<fir::LoadOp>(user)) |
1871 | return mlir::failure(); |
1872 | |
1873 | auto insertPt = rewriter.saveInsertionPoint(); |
1874 | llvm::SmallVector<mlir::Operation *> users(indexOp->getResult(0).getUsers()); |
1875 | for (mlir::Operation *user : users) |
1876 | if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(user)) { |
1877 | rewriter.setInsertionPoint(loadOp); |
1878 | rewriter.replaceOpWithNewOp<fir::ConvertOp>( |
1879 | user, loadOp.getResult().getType(), indexOp.getIndex()); |
1880 | } |
1881 | rewriter.restoreInsertionPoint(insertPt); |
1882 | rewriter.eraseOp(indexOp); |
1883 | return mlir::success(); |
1884 | } |
1885 | |
1886 | //===----------------------------------------------------------------------===// |
1887 | // CharExtremumOp |
1888 | //===----------------------------------------------------------------------===// |
1889 | |
1890 | mlir::LogicalResult hlfir::CharExtremumOp::verify() { |
1891 | if (getStrings().size() < 2) |
1892 | return emitOpError("must be provided at least two string operands" ); |
1893 | unsigned kind = getCharacterKind(getResult().getType()); |
1894 | for (auto string : getStrings()) |
1895 | if (kind != getCharacterKind(string.getType())) |
1896 | return emitOpError("strings must have the same KIND as the result type" ); |
1897 | return mlir::success(); |
1898 | } |
1899 | |
1900 | void hlfir::CharExtremumOp::build(mlir::OpBuilder &builder, |
1901 | mlir::OperationState &result, |
1902 | hlfir::CharExtremumPredicate predicate, |
1903 | mlir::ValueRange strings) { |
1904 | |
1905 | fir::CharacterType::LenType resultTypeLen = 0; |
1906 | assert(!strings.empty() && "must contain operands" ); |
1907 | unsigned kind = getCharacterKind(strings[0].getType()); |
1908 | for (auto string : strings) |
1909 | if (auto cstLen = getCharacterLengthIfStatic(string.getType())) { |
1910 | resultTypeLen = std::max(resultTypeLen, *cstLen); |
1911 | } else { |
1912 | resultTypeLen = fir::CharacterType::unknownLen(); |
1913 | break; |
1914 | } |
1915 | auto resultType = hlfir::ExprType::get( |
1916 | builder.getContext(), hlfir::ExprType::Shape{}, |
1917 | fir::CharacterType::get(builder.getContext(), kind, resultTypeLen), |
1918 | false); |
1919 | |
1920 | build(builder, result, resultType, predicate, strings); |
1921 | } |
1922 | |
1923 | void hlfir::CharExtremumOp::getEffects( |
1924 | llvm::SmallVectorImpl< |
1925 | mlir::SideEffects::EffectInstance<mlir::MemoryEffects::Effect>> |
1926 | &effects) { |
1927 | getIntrinsicEffects(getOperation(), effects); |
1928 | } |
1929 | |
1930 | //===----------------------------------------------------------------------===// |
1931 | // GetLength |
1932 | //===----------------------------------------------------------------------===// |
1933 | |
1934 | mlir::LogicalResult |
1935 | hlfir::GetLengthOp::canonicalize(GetLengthOp getLength, |
1936 | mlir::PatternRewriter &rewriter) { |
1937 | mlir::Location loc = getLength.getLoc(); |
1938 | auto exprTy = mlir::cast<hlfir::ExprType>(getLength.getExpr().getType()); |
1939 | auto charTy = mlir::cast<fir::CharacterType>(exprTy.getElementType()); |
1940 | if (!charTy.hasConstantLen()) |
1941 | return mlir::failure(); |
1942 | |
1943 | mlir::Type indexTy = rewriter.getIndexType(); |
1944 | auto cstLen = rewriter.create<mlir::arith::ConstantOp>( |
1945 | loc, indexTy, mlir::IntegerAttr::get(indexTy, charTy.getLen())); |
1946 | rewriter.replaceOp(getLength, cstLen); |
1947 | return mlir::success(); |
1948 | } |
1949 | |
1950 | #include "flang/Optimizer/HLFIR/HLFIROpInterfaces.cpp.inc" |
1951 | #define GET_OP_CLASSES |
1952 | #include "flang/Optimizer/HLFIR/HLFIREnums.cpp.inc" |
1953 | #include "flang/Optimizer/HLFIR/HLFIROps.cpp.inc" |
1954 | |