1 | //===-- String to float conversion utils ------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC___SUPPORT_STR_TO_FLOAT_H |
10 | #define LLVM_LIBC_SRC___SUPPORT_STR_TO_FLOAT_H |
11 | |
12 | #include "src/__support/CPP/bit.h" |
13 | #include "src/__support/CPP/limits.h" |
14 | #include "src/__support/CPP/optional.h" |
15 | #include "src/__support/CPP/string_view.h" |
16 | #include "src/__support/FPUtil/FEnvImpl.h" |
17 | #include "src/__support/FPUtil/FPBits.h" |
18 | #include "src/__support/FPUtil/dyadic_float.h" |
19 | #include "src/__support/FPUtil/rounding_mode.h" |
20 | #include "src/__support/common.h" |
21 | #include "src/__support/ctype_utils.h" |
22 | #include "src/__support/detailed_powers_of_ten.h" |
23 | #include "src/__support/high_precision_decimal.h" |
24 | #include "src/__support/str_to_integer.h" |
25 | #include "src/__support/str_to_num_result.h" |
26 | #include "src/__support/uint128.h" |
27 | #include "src/errno/libc_errno.h" // For ERANGE |
28 | |
29 | namespace LIBC_NAMESPACE { |
30 | namespace internal { |
31 | |
32 | template <class T> struct ExpandedFloat { |
33 | typename fputil::FPBits<T>::StorageType mantissa; |
34 | int32_t exponent; |
35 | }; |
36 | |
37 | template <class T> struct FloatConvertReturn { |
38 | ExpandedFloat<T> num = {0, 0}; |
39 | int error = 0; |
40 | }; |
41 | |
42 | LIBC_INLINE uint64_t low64(const UInt128 &num) { |
43 | return static_cast<uint64_t>(num & 0xffffffffffffffff); |
44 | } |
45 | |
46 | LIBC_INLINE uint64_t high64(const UInt128 &num) { |
47 | return static_cast<uint64_t>(num >> 64); |
48 | } |
49 | |
50 | template <class T> LIBC_INLINE void set_implicit_bit(fputil::FPBits<T> &) { |
51 | return; |
52 | } |
53 | |
54 | #if defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
55 | template <> |
56 | LIBC_INLINE void |
57 | set_implicit_bit<long double>(fputil::FPBits<long double> &result) { |
58 | result.set_implicit_bit(result.get_biased_exponent() != 0); |
59 | } |
60 | #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
61 | |
62 | // This Eisel-Lemire implementation is based on the algorithm described in the |
63 | // paper Number Parsing at a Gigabyte per Second, Software: Practice and |
64 | // Experience 51 (8), 2021 (https://arxiv.org/abs/2101.11408), as well as the |
65 | // description by Nigel Tao |
66 | // (https://nigeltao.github.io/blog/2020/eisel-lemire.html) and the golang |
67 | // implementation, also by Nigel Tao |
68 | // (https://github.com/golang/go/blob/release-branch.go1.16/src/strconv/eisel_lemire.go#L25) |
69 | // for some optimizations as well as handling 32 bit floats. |
70 | template <class T> |
71 | LIBC_INLINE cpp::optional<ExpandedFloat<T>> |
72 | eisel_lemire(ExpandedFloat<T> init_num, |
73 | RoundDirection round = RoundDirection::Nearest) { |
74 | using FPBits = typename fputil::FPBits<T>; |
75 | using StorageType = typename FPBits::StorageType; |
76 | |
77 | StorageType mantissa = init_num.mantissa; |
78 | int32_t exp10 = init_num.exponent; |
79 | |
80 | if (sizeof(T) > 8) { // This algorithm cannot handle anything longer than a |
81 | // double, so we skip straight to the fallback. |
82 | return cpp::nullopt; |
83 | } |
84 | |
85 | // Exp10 Range |
86 | if (exp10 < DETAILED_POWERS_OF_TEN_MIN_EXP_10 || |
87 | exp10 > DETAILED_POWERS_OF_TEN_MAX_EXP_10) { |
88 | return cpp::nullopt; |
89 | } |
90 | |
91 | // Normalization |
92 | uint32_t clz = cpp::countl_zero<StorageType>(mantissa); |
93 | mantissa <<= clz; |
94 | |
95 | int32_t exp2 = |
96 | exp10_to_exp2(exp10) + FPBits::STORAGE_LEN + FPBits::EXP_BIAS - clz; |
97 | |
98 | // Multiplication |
99 | const uint64_t *power_of_ten = |
100 | DETAILED_POWERS_OF_TEN[exp10 - DETAILED_POWERS_OF_TEN_MIN_EXP_10]; |
101 | |
102 | UInt128 first_approx = |
103 | static_cast<UInt128>(mantissa) * static_cast<UInt128>(power_of_ten[1]); |
104 | |
105 | // Wider Approximation |
106 | UInt128 final_approx; |
107 | // The halfway constant is used to check if the bits that will be shifted away |
108 | // intially are all 1. For doubles this is 64 (bitstype size) - 52 (final |
109 | // mantissa size) - 3 (we shift away the last two bits separately for |
110 | // accuracy, and the most significant bit is ignored.) = 9 bits. Similarly, |
111 | // it's 6 bits for floats in this case. |
112 | const uint64_t halfway_constant = |
113 | (uint64_t(1) << (FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3))) - 1; |
114 | if ((high64(num: first_approx) & halfway_constant) == halfway_constant && |
115 | low64(num: first_approx) + mantissa < mantissa) { |
116 | UInt128 low_bits = |
117 | static_cast<UInt128>(mantissa) * static_cast<UInt128>(power_of_ten[0]); |
118 | UInt128 second_approx = |
119 | first_approx + static_cast<UInt128>(high64(num: low_bits)); |
120 | |
121 | if ((high64(num: second_approx) & halfway_constant) == halfway_constant && |
122 | low64(num: second_approx) + 1 == 0 && |
123 | low64(num: low_bits) + mantissa < mantissa) { |
124 | return cpp::nullopt; |
125 | } |
126 | final_approx = second_approx; |
127 | } else { |
128 | final_approx = first_approx; |
129 | } |
130 | |
131 | // Shifting to 54 bits for doubles and 25 bits for floats |
132 | StorageType msb = static_cast<StorageType>(high64(num: final_approx) >> |
133 | (FPBits::STORAGE_LEN - 1)); |
134 | StorageType final_mantissa = static_cast<StorageType>( |
135 | high64(num: final_approx) >> |
136 | (msb + FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3))); |
137 | exp2 -= static_cast<uint32_t>(1 ^ msb); // same as !msb |
138 | |
139 | if (round == RoundDirection::Nearest) { |
140 | // Half-way ambiguity |
141 | if (low64(num: final_approx) == 0 && |
142 | (high64(num: final_approx) & halfway_constant) == 0 && |
143 | (final_mantissa & 3) == 1) { |
144 | return cpp::nullopt; |
145 | } |
146 | |
147 | // Round to even. |
148 | final_mantissa += final_mantissa & 1; |
149 | |
150 | } else if (round == RoundDirection::Up) { |
151 | // If any of the bits being rounded away are non-zero, then round up. |
152 | if (low64(num: final_approx) > 0 || |
153 | (high64(num: final_approx) & halfway_constant) > 0) { |
154 | // Add two since the last current lowest bit is about to be shifted away. |
155 | final_mantissa += 2; |
156 | } |
157 | } |
158 | // else round down, which has no effect. |
159 | |
160 | // From 54 to 53 bits for doubles and 25 to 24 bits for floats |
161 | final_mantissa >>= 1; |
162 | if ((final_mantissa >> (FPBits::FRACTION_LEN + 1)) > 0) { |
163 | final_mantissa >>= 1; |
164 | ++exp2; |
165 | } |
166 | |
167 | // The if block is equivalent to (but has fewer branches than): |
168 | // if exp2 <= 0 || exp2 >= 0x7FF { etc } |
169 | if (static_cast<uint32_t>(exp2) - 1 >= (1 << FPBits::EXP_LEN) - 2) { |
170 | return cpp::nullopt; |
171 | } |
172 | |
173 | ExpandedFloat<T> output; |
174 | output.mantissa = final_mantissa; |
175 | output.exponent = exp2; |
176 | return output; |
177 | } |
178 | |
179 | #if !defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) |
180 | template <> |
181 | LIBC_INLINE cpp::optional<ExpandedFloat<long double>> |
182 | eisel_lemire<long double>(ExpandedFloat<long double> init_num, |
183 | RoundDirection round) { |
184 | using FPBits = typename fputil::FPBits<long double>; |
185 | using StorageType = typename FPBits::StorageType; |
186 | |
187 | StorageType mantissa = init_num.mantissa; |
188 | int32_t exp10 = init_num.exponent; |
189 | |
190 | // Exp10 Range |
191 | // This doesn't reach very far into the range for long doubles, since it's |
192 | // sized for doubles and their 11 exponent bits, and not for long doubles and |
193 | // their 15 exponent bits (max exponent of ~300 for double vs ~5000 for long |
194 | // double). This is a known tradeoff, and was made because a proper long |
195 | // double table would be approximately 16 times larger. This would have |
196 | // significant memory and storage costs all the time to speed up a relatively |
197 | // uncommon path. In addition the exp10_to_exp2 function only approximates |
198 | // multiplying by log(10)/log(2), and that approximation may not be accurate |
199 | // out to the full long double range. |
200 | if (exp10 < DETAILED_POWERS_OF_TEN_MIN_EXP_10 || |
201 | exp10 > DETAILED_POWERS_OF_TEN_MAX_EXP_10) { |
202 | return cpp::nullopt; |
203 | } |
204 | |
205 | // Normalization |
206 | uint32_t clz = cpp::countl_zero<StorageType>(value: mantissa); |
207 | mantissa <<= clz; |
208 | |
209 | int32_t exp2 = |
210 | exp10_to_exp2(exp10) + FPBits::STORAGE_LEN + FPBits::EXP_BIAS - clz; |
211 | |
212 | // Multiplication |
213 | const uint64_t *power_of_ten = |
214 | DETAILED_POWERS_OF_TEN[exp10 - DETAILED_POWERS_OF_TEN_MIN_EXP_10]; |
215 | |
216 | // Since the input mantissa is more than 64 bits, we have to multiply with the |
217 | // full 128 bits of the power of ten to get an approximation with the same |
218 | // number of significant bits. This means that we only get the one |
219 | // approximation, and that approximation is 256 bits long. |
220 | UInt128 approx_upper = static_cast<UInt128>(high64(num: mantissa)) * |
221 | static_cast<UInt128>(power_of_ten[1]); |
222 | |
223 | UInt128 approx_middle_a = static_cast<UInt128>(high64(num: mantissa)) * |
224 | static_cast<UInt128>(power_of_ten[0]); |
225 | UInt128 approx_middle_b = static_cast<UInt128>(low64(num: mantissa)) * |
226 | static_cast<UInt128>(power_of_ten[1]); |
227 | |
228 | UInt128 approx_middle = approx_middle_a + approx_middle_b; |
229 | |
230 | // Handle overflow in the middle |
231 | approx_upper += (approx_middle < approx_middle_a) ? UInt128(1) << 64 : 0; |
232 | |
233 | UInt128 approx_lower = static_cast<UInt128>(low64(num: mantissa)) * |
234 | static_cast<UInt128>(power_of_ten[0]); |
235 | |
236 | UInt128 final_approx_lower = |
237 | approx_lower + (static_cast<UInt128>(low64(num: approx_middle)) << 64); |
238 | UInt128 final_approx_upper = approx_upper + high64(num: approx_middle) + |
239 | (final_approx_lower < approx_lower ? 1 : 0); |
240 | |
241 | // The halfway constant is used to check if the bits that will be shifted away |
242 | // intially are all 1. For 80 bit floats this is 128 (bitstype size) - 64 |
243 | // (final mantissa size) - 3 (we shift away the last two bits separately for |
244 | // accuracy, and the most significant bit is ignored.) = 61 bits. Similarly, |
245 | // it's 12 bits for 128 bit floats in this case. |
246 | constexpr UInt128 HALFWAY_CONSTANT = |
247 | (UInt128(1) << (FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3))) - 1; |
248 | |
249 | if ((final_approx_upper & HALFWAY_CONSTANT) == HALFWAY_CONSTANT && |
250 | final_approx_lower + mantissa < mantissa) { |
251 | return cpp::nullopt; |
252 | } |
253 | |
254 | // Shifting to 65 bits for 80 bit floats and 113 bits for 128 bit floats |
255 | uint32_t msb = |
256 | static_cast<uint32_t>(final_approx_upper >> (FPBits::STORAGE_LEN - 1)); |
257 | StorageType final_mantissa = |
258 | final_approx_upper >> |
259 | (msb + FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3)); |
260 | exp2 -= static_cast<uint32_t>(1 ^ msb); // same as !msb |
261 | |
262 | if (round == RoundDirection::Nearest) { |
263 | // Half-way ambiguity |
264 | if (final_approx_lower == 0 && |
265 | (final_approx_upper & HALFWAY_CONSTANT) == 0 && |
266 | (final_mantissa & 3) == 1) { |
267 | return cpp::nullopt; |
268 | } |
269 | // Round to even. |
270 | final_mantissa += final_mantissa & 1; |
271 | |
272 | } else if (round == RoundDirection::Up) { |
273 | // If any of the bits being rounded away are non-zero, then round up. |
274 | if (final_approx_lower > 0 || (final_approx_upper & HALFWAY_CONSTANT) > 0) { |
275 | // Add two since the last current lowest bit is about to be shifted away. |
276 | final_mantissa += 2; |
277 | } |
278 | } |
279 | // else round down, which has no effect. |
280 | |
281 | // From 65 to 64 bits for 80 bit floats and 113 to 112 bits for 128 bit |
282 | // floats |
283 | final_mantissa >>= 1; |
284 | if ((final_mantissa >> (FPBits::FRACTION_LEN + 1)) > 0) { |
285 | final_mantissa >>= 1; |
286 | ++exp2; |
287 | } |
288 | |
289 | // The if block is equivalent to (but has fewer branches than): |
290 | // if exp2 <= 0 || exp2 >= MANTISSA_MAX { etc } |
291 | if (exp2 - 1 >= (1 << FPBits::EXP_LEN) - 2) { |
292 | return cpp::nullopt; |
293 | } |
294 | |
295 | ExpandedFloat<long double> output; |
296 | output.mantissa = final_mantissa; |
297 | output.exponent = exp2; |
298 | return output; |
299 | } |
300 | #endif // !defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) |
301 | |
302 | // The nth item in POWERS_OF_TWO represents the greatest power of two less than |
303 | // 10^n. This tells us how much we can safely shift without overshooting. |
304 | constexpr uint8_t POWERS_OF_TWO[19] = { |
305 | 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59, |
306 | }; |
307 | constexpr int32_t NUM_POWERS_OF_TWO = |
308 | sizeof(POWERS_OF_TWO) / sizeof(POWERS_OF_TWO[0]); |
309 | |
310 | // Takes a mantissa and base 10 exponent and converts it into its closest |
311 | // floating point type T equivalent. This is the fallback algorithm used when |
312 | // the Eisel-Lemire algorithm fails, it's slower but more accurate. It's based |
313 | // on the Simple Decimal Conversion algorithm by Nigel Tao, described at this |
314 | // link: https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html |
315 | template <class T> |
316 | LIBC_INLINE FloatConvertReturn<T> simple_decimal_conversion( |
317 | const char *__restrict numStart, |
318 | const size_t num_len = cpp::numeric_limits<size_t>::max(), |
319 | RoundDirection round = RoundDirection::Nearest) { |
320 | using FPBits = typename fputil::FPBits<T>; |
321 | using StorageType = typename FPBits::StorageType; |
322 | |
323 | int32_t exp2 = 0; |
324 | HighPrecisionDecimal hpd = HighPrecisionDecimal(numStart, num_len); |
325 | |
326 | FloatConvertReturn<T> output; |
327 | |
328 | if (hpd.get_num_digits() == 0) { |
329 | output.num = {0, 0}; |
330 | return output; |
331 | } |
332 | |
333 | // If the exponent is too large and can't be represented in this size of |
334 | // float, return inf. |
335 | if (hpd.get_decimal_point() > 0 && |
336 | exp10_to_exp2(exp10: hpd.get_decimal_point() - 1) > FPBits::EXP_BIAS) { |
337 | output.num = {0, fputil::FPBits<T>::MAX_BIASED_EXPONENT}; |
338 | output.error = ERANGE; |
339 | return output; |
340 | } |
341 | // If the exponent is too small even for a subnormal, return 0. |
342 | if (hpd.get_decimal_point() < 0 && |
343 | exp10_to_exp2(exp10: -hpd.get_decimal_point()) > |
344 | (FPBits::EXP_BIAS + static_cast<int32_t>(FPBits::FRACTION_LEN))) { |
345 | output.num = {0, 0}; |
346 | output.error = ERANGE; |
347 | return output; |
348 | } |
349 | |
350 | // Right shift until the number is smaller than 1. |
351 | while (hpd.get_decimal_point() > 0) { |
352 | int32_t shift_amount = 0; |
353 | if (hpd.get_decimal_point() >= NUM_POWERS_OF_TWO) { |
354 | shift_amount = 60; |
355 | } else { |
356 | shift_amount = POWERS_OF_TWO[hpd.get_decimal_point()]; |
357 | } |
358 | exp2 += shift_amount; |
359 | hpd.shift(shift_amount: -shift_amount); |
360 | } |
361 | |
362 | // Left shift until the number is between 1/2 and 1 |
363 | while (hpd.get_decimal_point() < 0 || |
364 | (hpd.get_decimal_point() == 0 && hpd.get_digits()[0] < 5)) { |
365 | int32_t shift_amount = 0; |
366 | |
367 | if (-hpd.get_decimal_point() >= NUM_POWERS_OF_TWO) { |
368 | shift_amount = 60; |
369 | } else if (hpd.get_decimal_point() != 0) { |
370 | shift_amount = POWERS_OF_TWO[-hpd.get_decimal_point()]; |
371 | } else { // This handles the case of the number being between .1 and .5 |
372 | shift_amount = 1; |
373 | } |
374 | exp2 -= shift_amount; |
375 | hpd.shift(shift_amount); |
376 | } |
377 | |
378 | // Left shift once so that the number is between 1 and 2 |
379 | --exp2; |
380 | hpd.shift(shift_amount: 1); |
381 | |
382 | // Get the biased exponent |
383 | exp2 += FPBits::EXP_BIAS; |
384 | |
385 | // Handle the exponent being too large (and return inf). |
386 | if (exp2 >= FPBits::MAX_BIASED_EXPONENT) { |
387 | output.num = {0, FPBits::MAX_BIASED_EXPONENT}; |
388 | output.error = ERANGE; |
389 | return output; |
390 | } |
391 | |
392 | // Shift left to fill the mantissa |
393 | hpd.shift(shift_amount: FPBits::FRACTION_LEN); |
394 | StorageType final_mantissa = hpd.round_to_integer_type<StorageType>(); |
395 | |
396 | // Handle subnormals |
397 | if (exp2 <= 0) { |
398 | // Shift right until there is a valid exponent |
399 | while (exp2 < 0) { |
400 | hpd.shift(shift_amount: -1); |
401 | ++exp2; |
402 | } |
403 | // Shift right one more time to compensate for the left shift to get it |
404 | // between 1 and 2. |
405 | hpd.shift(shift_amount: -1); |
406 | final_mantissa = hpd.round_to_integer_type<StorageType>(round); |
407 | |
408 | // Check if by shifting right we've caused this to round to a normal number. |
409 | if ((final_mantissa >> FPBits::FRACTION_LEN) != 0) { |
410 | ++exp2; |
411 | } |
412 | } |
413 | |
414 | // Check if rounding added a bit, and shift down if that's the case. |
415 | if (final_mantissa == StorageType(2) << FPBits::FRACTION_LEN) { |
416 | final_mantissa >>= 1; |
417 | ++exp2; |
418 | |
419 | // Check if this rounding causes exp2 to go out of range and make the result |
420 | // INF. If this is the case, then finalMantissa and exp2 are already the |
421 | // correct values for an INF result. |
422 | if (exp2 >= FPBits::MAX_BIASED_EXPONENT) { |
423 | output.error = ERANGE; |
424 | } |
425 | } |
426 | |
427 | if (exp2 == 0) { |
428 | output.error = ERANGE; |
429 | } |
430 | |
431 | output.num = {final_mantissa, exp2}; |
432 | return output; |
433 | } |
434 | |
435 | // This class is used for templating the constants for Clinger's Fast Path, |
436 | // described as a method of approximation in |
437 | // Clinger WD. How to Read Floating Point Numbers Accurately. SIGPLAN Not 1990 |
438 | // Jun;25(6):92–101. https://doi.org/10.1145/93548.93557. |
439 | // As well as the additions by Gay that extend the useful range by the number of |
440 | // exact digits stored by the float type, described in |
441 | // Gay DM, Correctly rounded binary-decimal and decimal-binary conversions; |
442 | // 1990. AT&T Bell Laboratories Numerical Analysis Manuscript 90-10. |
443 | template <class T> class ClingerConsts; |
444 | |
445 | template <> class ClingerConsts<float> { |
446 | public: |
447 | static constexpr float POWERS_OF_TEN_ARRAY[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, |
448 | 1e6, 1e7, 1e8, 1e9, 1e10}; |
449 | static constexpr int32_t EXACT_POWERS_OF_TEN = 10; |
450 | static constexpr int32_t DIGITS_IN_MANTISSA = 7; |
451 | static constexpr float MAX_EXACT_INT = 16777215.0; |
452 | }; |
453 | |
454 | template <> class ClingerConsts<double> { |
455 | public: |
456 | static constexpr double POWERS_OF_TEN_ARRAY[] = { |
457 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
458 | 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
459 | static constexpr int32_t EXACT_POWERS_OF_TEN = 22; |
460 | static constexpr int32_t DIGITS_IN_MANTISSA = 15; |
461 | static constexpr double MAX_EXACT_INT = 9007199254740991.0; |
462 | }; |
463 | |
464 | #if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) |
465 | template <> class ClingerConsts<long double> { |
466 | public: |
467 | static constexpr long double POWERS_OF_TEN_ARRAY[] = { |
468 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
469 | 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
470 | static constexpr int32_t EXACT_POWERS_OF_TEN = |
471 | ClingerConsts<double>::EXACT_POWERS_OF_TEN; |
472 | static constexpr int32_t DIGITS_IN_MANTISSA = |
473 | ClingerConsts<double>::DIGITS_IN_MANTISSA; |
474 | static constexpr long double MAX_EXACT_INT = |
475 | ClingerConsts<double>::MAX_EXACT_INT; |
476 | }; |
477 | #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
478 | template <> class ClingerConsts<long double> { |
479 | public: |
480 | static constexpr long double POWERS_OF_TEN_ARRAY[] = { |
481 | 1e0L, 1e1L, 1e2L, 1e3L, 1e4L, 1e5L, 1e6L, 1e7L, 1e8L, 1e9L, |
482 | 1e10L, 1e11L, 1e12L, 1e13L, 1e14L, 1e15L, 1e16L, 1e17L, 1e18L, 1e19L, |
483 | 1e20L, 1e21L, 1e22L, 1e23L, 1e24L, 1e25L, 1e26L, 1e27L}; |
484 | static constexpr int32_t EXACT_POWERS_OF_TEN = 27; |
485 | static constexpr int32_t DIGITS_IN_MANTISSA = 21; |
486 | static constexpr long double MAX_EXACT_INT = 18446744073709551615.0L; |
487 | }; |
488 | #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT128) |
489 | template <> class ClingerConsts<long double> { |
490 | public: |
491 | static constexpr long double POWERS_OF_TEN_ARRAY[] = { |
492 | 1e0L, 1e1L, 1e2L, 1e3L, 1e4L, 1e5L, 1e6L, 1e7L, 1e8L, 1e9L, |
493 | 1e10L, 1e11L, 1e12L, 1e13L, 1e14L, 1e15L, 1e16L, 1e17L, 1e18L, 1e19L, |
494 | 1e20L, 1e21L, 1e22L, 1e23L, 1e24L, 1e25L, 1e26L, 1e27L, 1e28L, 1e29L, |
495 | 1e30L, 1e31L, 1e32L, 1e33L, 1e34L, 1e35L, 1e36L, 1e37L, 1e38L, 1e39L, |
496 | 1e40L, 1e41L, 1e42L, 1e43L, 1e44L, 1e45L, 1e46L, 1e47L, 1e48L}; |
497 | static constexpr int32_t EXACT_POWERS_OF_TEN = 48; |
498 | static constexpr int32_t DIGITS_IN_MANTISSA = 33; |
499 | static constexpr long double MAX_EXACT_INT = |
500 | 10384593717069655257060992658440191.0L; |
501 | }; |
502 | #else |
503 | #error "Unknown long double type" |
504 | #endif |
505 | |
506 | // Take an exact mantissa and exponent and attempt to convert it using only |
507 | // exact floating point arithmetic. This only handles numbers with low |
508 | // exponents, but handles them quickly. This is an implementation of Clinger's |
509 | // Fast Path, as described above. |
510 | template <class T> |
511 | LIBC_INLINE cpp::optional<ExpandedFloat<T>> |
512 | clinger_fast_path(ExpandedFloat<T> init_num, |
513 | RoundDirection round = RoundDirection::Nearest) { |
514 | using FPBits = typename fputil::FPBits<T>; |
515 | using StorageType = typename FPBits::StorageType; |
516 | |
517 | StorageType mantissa = init_num.mantissa; |
518 | int32_t exp10 = init_num.exponent; |
519 | |
520 | if ((mantissa >> FPBits::FRACTION_LEN) > 0) { |
521 | return cpp::nullopt; |
522 | } |
523 | |
524 | FPBits result; |
525 | T float_mantissa; |
526 | if constexpr (cpp::is_same_v<StorageType, UInt<128>>) { |
527 | float_mantissa = static_cast<T>(fputil::DyadicFloat<128>( |
528 | Sign::POS, 0, |
529 | fputil::DyadicFloat<128>::MantissaType( |
530 | {uint64_t(mantissa), uint64_t(mantissa >> 64)}))); |
531 | } else { |
532 | float_mantissa = static_cast<T>(mantissa); |
533 | } |
534 | |
535 | if (exp10 == 0) { |
536 | result = FPBits(float_mantissa); |
537 | } |
538 | if (exp10 > 0) { |
539 | if (exp10 > ClingerConsts<T>::EXACT_POWERS_OF_TEN + |
540 | ClingerConsts<T>::DIGITS_IN_MANTISSA) { |
541 | return cpp::nullopt; |
542 | } |
543 | if (exp10 > ClingerConsts<T>::EXACT_POWERS_OF_TEN) { |
544 | float_mantissa = float_mantissa * |
545 | ClingerConsts<T>::POWERS_OF_TEN_ARRAY |
546 | [exp10 - ClingerConsts<T>::EXACT_POWERS_OF_TEN]; |
547 | exp10 = ClingerConsts<T>::EXACT_POWERS_OF_TEN; |
548 | } |
549 | if (float_mantissa > ClingerConsts<T>::MAX_EXACT_INT) { |
550 | return cpp::nullopt; |
551 | } |
552 | result = |
553 | FPBits(float_mantissa * ClingerConsts<T>::POWERS_OF_TEN_ARRAY[exp10]); |
554 | } else if (exp10 < 0) { |
555 | if (-exp10 > ClingerConsts<T>::EXACT_POWERS_OF_TEN) { |
556 | return cpp::nullopt; |
557 | } |
558 | result = |
559 | FPBits(float_mantissa / ClingerConsts<T>::POWERS_OF_TEN_ARRAY[-exp10]); |
560 | } |
561 | |
562 | // If the rounding mode is not nearest, then the sign of the number may affect |
563 | // the result. To make sure the rounding mode is respected properly, the |
564 | // calculation is redone with a negative result, and the rounding mode is used |
565 | // to select the correct result. |
566 | if (round != RoundDirection::Nearest) { |
567 | FPBits negative_result; |
568 | // I'm 99% sure this will break under fast math optimizations. |
569 | negative_result = FPBits((-float_mantissa) * |
570 | ClingerConsts<T>::POWERS_OF_TEN_ARRAY[exp10]); |
571 | |
572 | // If the results are equal, then we don't need to use the rounding mode. |
573 | if (result.get_val() != -negative_result.get_val()) { |
574 | FPBits lower_result; |
575 | FPBits higher_result; |
576 | |
577 | if (result.get_val() < -negative_result.get_val()) { |
578 | lower_result = result; |
579 | higher_result = negative_result; |
580 | } else { |
581 | lower_result = negative_result; |
582 | higher_result = result; |
583 | } |
584 | |
585 | if (round == RoundDirection::Up) { |
586 | result = higher_result; |
587 | } else { |
588 | result = lower_result; |
589 | } |
590 | } |
591 | } |
592 | |
593 | ExpandedFloat<T> output; |
594 | output.mantissa = result.get_mantissa(); |
595 | output.exponent = result.get_biased_exponent(); |
596 | return output; |
597 | } |
598 | |
599 | // The upper bound is the highest base-10 exponent that could possibly give a |
600 | // non-inf result for this size of float. The value is |
601 | // log10(2^(exponent bias)). |
602 | // The generic approximation uses the fact that log10(2^x) ~= x/3 |
603 | template <typename T> LIBC_INLINE constexpr int32_t get_upper_bound() { |
604 | return fputil::FPBits<T>::EXP_BIAS / 3; |
605 | } |
606 | |
607 | template <> LIBC_INLINE constexpr int32_t get_upper_bound<float>() { |
608 | return 39; |
609 | } |
610 | |
611 | template <> LIBC_INLINE constexpr int32_t get_upper_bound<double>() { |
612 | return 309; |
613 | } |
614 | |
615 | // The lower bound is the largest negative base-10 exponent that could possibly |
616 | // give a non-zero result for this size of float. The value is |
617 | // log10(2^(exponent bias + final mantissa width + intermediate mantissa width)) |
618 | // The intermediate mantissa is the integer that's been parsed from the string, |
619 | // and the final mantissa is the fractional part of the output number. A very |
620 | // low base 10 exponent with a very high intermediate mantissa can cancel each |
621 | // other out, and subnormal numbers allow for the result to be at the very low |
622 | // end of the final mantissa. |
623 | template <typename T> LIBC_INLINE constexpr int32_t get_lower_bound() { |
624 | using FPBits = typename fputil::FPBits<T>; |
625 | return -((FPBits::EXP_BIAS + |
626 | static_cast<int32_t>(FPBits::FRACTION_LEN + FPBits::STORAGE_LEN)) / |
627 | 3); |
628 | } |
629 | |
630 | template <> LIBC_INLINE constexpr int32_t get_lower_bound<float>() { |
631 | return -(39 + 6 + 10); |
632 | } |
633 | |
634 | template <> LIBC_INLINE constexpr int32_t get_lower_bound<double>() { |
635 | return -(309 + 15 + 20); |
636 | } |
637 | |
638 | // Takes a mantissa and base 10 exponent and converts it into its closest |
639 | // floating point type T equivalient. First we try the Eisel-Lemire algorithm, |
640 | // then if that fails then we fall back to a more accurate algorithm for |
641 | // accuracy. The resulting mantissa and exponent are placed in outputMantissa |
642 | // and outputExp2. |
643 | template <class T> |
644 | LIBC_INLINE FloatConvertReturn<T> decimal_exp_to_float( |
645 | ExpandedFloat<T> init_num, bool truncated, RoundDirection round, |
646 | const char *__restrict numStart, |
647 | const size_t num_len = cpp::numeric_limits<size_t>::max()) { |
648 | using FPBits = typename fputil::FPBits<T>; |
649 | using StorageType = typename FPBits::StorageType; |
650 | |
651 | StorageType mantissa = init_num.mantissa; |
652 | int32_t exp10 = init_num.exponent; |
653 | |
654 | FloatConvertReturn<T> output; |
655 | cpp::optional<ExpandedFloat<T>> opt_output; |
656 | |
657 | // If the exponent is too large and can't be represented in this size of |
658 | // float, return inf. These bounds are relatively loose, but are mostly |
659 | // serving as a first pass. Some close numbers getting through is okay. |
660 | if (exp10 > get_upper_bound<T>()) { |
661 | output.num = {0, FPBits::MAX_BIASED_EXPONENT}; |
662 | output.error = ERANGE; |
663 | return output; |
664 | } |
665 | // If the exponent is too small even for a subnormal, return 0. |
666 | if (exp10 < get_lower_bound<T>()) { |
667 | output.num = {0, 0}; |
668 | output.error = ERANGE; |
669 | return output; |
670 | } |
671 | |
672 | // Clinger's Fast Path and Eisel-Lemire can't set errno, but they can fail. |
673 | // For this reason the "error" field in their return values is used to |
674 | // represent whether they've failed as opposed to the errno value. Any |
675 | // non-zero value represents a failure. |
676 | |
677 | #ifndef LIBC_COPT_STRTOFLOAT_DISABLE_CLINGER_FAST_PATH |
678 | if (!truncated) { |
679 | opt_output = clinger_fast_path<T>(init_num, round); |
680 | // If the algorithm succeeded the error will be 0, else it will be a |
681 | // non-zero number. |
682 | if (opt_output.has_value()) { |
683 | return {opt_output.value(), 0}; |
684 | } |
685 | } |
686 | #endif // LIBC_COPT_STRTOFLOAT_DISABLE_CLINGER_FAST_PATH |
687 | |
688 | #ifndef LIBC_COPT_STRTOFLOAT_DISABLE_EISEL_LEMIRE |
689 | // Try Eisel-Lemire |
690 | opt_output = eisel_lemire<T>(init_num, round); |
691 | if (opt_output.has_value()) { |
692 | if (!truncated) { |
693 | return {opt_output.value(), 0}; |
694 | } |
695 | // If the mantissa is truncated, then the result may be off by the LSB, so |
696 | // check if rounding the mantissa up changes the result. If not, then it's |
697 | // safe, else use the fallback. |
698 | auto second_output = eisel_lemire<T>({mantissa + 1, exp10}, round); |
699 | if (second_output.has_value()) { |
700 | if (opt_output->mantissa == second_output->mantissa && |
701 | opt_output->exponent == second_output->exponent) { |
702 | return {opt_output.value(), 0}; |
703 | } |
704 | } |
705 | } |
706 | #endif // LIBC_COPT_STRTOFLOAT_DISABLE_EISEL_LEMIRE |
707 | |
708 | #ifndef LIBC_COPT_STRTOFLOAT_DISABLE_SIMPLE_DECIMAL_CONVERSION |
709 | output = simple_decimal_conversion<T>(numStart, num_len, round); |
710 | #else |
711 | #warning "Simple decimal conversion is disabled, result may not be correct." |
712 | #endif // LIBC_COPT_STRTOFLOAT_DISABLE_SIMPLE_DECIMAL_CONVERSION |
713 | |
714 | return output; |
715 | } |
716 | |
717 | // Takes a mantissa and base 2 exponent and converts it into its closest |
718 | // floating point type T equivalient. Since the exponent is already in the right |
719 | // form, this is mostly just shifting and rounding. This is used for hexadecimal |
720 | // numbers since a base 16 exponent multiplied by 4 is the base 2 exponent. |
721 | template <class T> |
722 | LIBC_INLINE FloatConvertReturn<T> binary_exp_to_float(ExpandedFloat<T> init_num, |
723 | bool truncated, |
724 | RoundDirection round) { |
725 | using FPBits = typename fputil::FPBits<T>; |
726 | using StorageType = typename FPBits::StorageType; |
727 | |
728 | StorageType mantissa = init_num.mantissa; |
729 | int32_t exp2 = init_num.exponent; |
730 | |
731 | FloatConvertReturn<T> output; |
732 | |
733 | // This is the number of leading zeroes a properly normalized float of type T |
734 | // should have. |
735 | constexpr int32_t INF_EXP = (1 << FPBits::EXP_LEN) - 1; |
736 | |
737 | // Normalization step 1: Bring the leading bit to the highest bit of |
738 | // StorageType. |
739 | uint32_t amount_to_shift_left = cpp::countl_zero<StorageType>(mantissa); |
740 | mantissa <<= amount_to_shift_left; |
741 | |
742 | // Keep exp2 representing the exponent of the lowest bit of StorageType. |
743 | exp2 -= amount_to_shift_left; |
744 | |
745 | // biased_exponent represents the biased exponent of the most significant bit. |
746 | int32_t biased_exponent = exp2 + FPBits::STORAGE_LEN + FPBits::EXP_BIAS - 1; |
747 | |
748 | // Handle numbers that're too large and get squashed to inf |
749 | if (biased_exponent >= INF_EXP) { |
750 | // This indicates an overflow, so we make the result INF and set errno. |
751 | output.num = {0, (1 << FPBits::EXP_LEN) - 1}; |
752 | output.error = ERANGE; |
753 | return output; |
754 | } |
755 | |
756 | uint32_t amount_to_shift_right = |
757 | FPBits::STORAGE_LEN - FPBits::FRACTION_LEN - 1; |
758 | |
759 | // Handle subnormals. |
760 | if (biased_exponent <= 0) { |
761 | amount_to_shift_right += 1 - biased_exponent; |
762 | biased_exponent = 0; |
763 | |
764 | if (amount_to_shift_right > FPBits::STORAGE_LEN) { |
765 | // Return 0 if the exponent is too small. |
766 | output.num = {0, 0}; |
767 | output.error = ERANGE; |
768 | return output; |
769 | } |
770 | } |
771 | |
772 | StorageType round_bit_mask = StorageType(1) << (amount_to_shift_right - 1); |
773 | StorageType sticky_mask = round_bit_mask - 1; |
774 | bool round_bit = static_cast<bool>(mantissa & round_bit_mask); |
775 | bool sticky_bit = static_cast<bool>(mantissa & sticky_mask) || truncated; |
776 | |
777 | if (amount_to_shift_right < FPBits::STORAGE_LEN) { |
778 | // Shift the mantissa and clear the implicit bit. |
779 | mantissa >>= amount_to_shift_right; |
780 | mantissa &= FPBits::FRACTION_MASK; |
781 | } else { |
782 | mantissa = 0; |
783 | } |
784 | bool least_significant_bit = static_cast<bool>(mantissa & StorageType(1)); |
785 | |
786 | // TODO: check that this rounding behavior is correct. |
787 | |
788 | if (round == RoundDirection::Nearest) { |
789 | // Perform rounding-to-nearest, tie-to-even. |
790 | if (round_bit && (least_significant_bit || sticky_bit)) { |
791 | ++mantissa; |
792 | } |
793 | } else if (round == RoundDirection::Up) { |
794 | if (round_bit || sticky_bit) { |
795 | ++mantissa; |
796 | } |
797 | } else /* (round == RoundDirection::Down)*/ { |
798 | if (round_bit && sticky_bit) { |
799 | ++mantissa; |
800 | } |
801 | } |
802 | |
803 | if (mantissa > FPBits::FRACTION_MASK) { |
804 | // Rounding causes the exponent to increase. |
805 | ++biased_exponent; |
806 | |
807 | if (biased_exponent == INF_EXP) { |
808 | output.error = ERANGE; |
809 | } |
810 | } |
811 | |
812 | if (biased_exponent == 0) { |
813 | output.error = ERANGE; |
814 | } |
815 | |
816 | output.num = {mantissa & FPBits::FRACTION_MASK, biased_exponent}; |
817 | return output; |
818 | } |
819 | |
820 | // checks if the next 4 characters of the string pointer are the start of a |
821 | // hexadecimal floating point number. Does not advance the string pointer. |
822 | LIBC_INLINE bool is_float_hex_start(const char *__restrict src, |
823 | const char decimalPoint) { |
824 | if (!(src[0] == '0' && tolower(ch: src[1]) == 'x')) { |
825 | return false; |
826 | } |
827 | size_t first_digit = 2; |
828 | if (src[2] == decimalPoint) { |
829 | ++first_digit; |
830 | } |
831 | return isalnum(ch: src[first_digit]) && b36_char_to_int(input: src[first_digit]) < 16; |
832 | } |
833 | |
834 | // Takes the start of a string representing a decimal float, as well as the |
835 | // local decimalPoint. It returns if it suceeded in parsing any digits, and if |
836 | // the return value is true then the outputs are pointer to the end of the |
837 | // number, and the mantissa and exponent for the closest float T representation. |
838 | // If the return value is false, then it is assumed that there is no number |
839 | // here. |
840 | template <class T> |
841 | LIBC_INLINE StrToNumResult<ExpandedFloat<T>> |
842 | decimal_string_to_float(const char *__restrict src, const char DECIMAL_POINT, |
843 | RoundDirection round) { |
844 | using FPBits = typename fputil::FPBits<T>; |
845 | using StorageType = typename FPBits::StorageType; |
846 | |
847 | constexpr uint32_t BASE = 10; |
848 | constexpr char EXPONENT_MARKER = 'e'; |
849 | |
850 | bool truncated = false; |
851 | bool seen_digit = false; |
852 | bool after_decimal = false; |
853 | StorageType mantissa = 0; |
854 | int32_t exponent = 0; |
855 | |
856 | size_t index = 0; |
857 | |
858 | StrToNumResult<ExpandedFloat<T>> output({0, 0}); |
859 | |
860 | // The goal for the first step of parsing is to convert the number in src to |
861 | // the format mantissa * (base ^ exponent) |
862 | |
863 | // The loop fills the mantissa with as many digits as it can hold |
864 | const StorageType bitstype_max_div_by_base = |
865 | cpp::numeric_limits<StorageType>::max() / BASE; |
866 | while (true) { |
867 | if (isdigit(ch: src[index])) { |
868 | uint32_t digit = src[index] - '0'; |
869 | seen_digit = true; |
870 | |
871 | if (mantissa < bitstype_max_div_by_base) { |
872 | mantissa = (mantissa * BASE) + digit; |
873 | if (after_decimal) { |
874 | --exponent; |
875 | } |
876 | } else { |
877 | if (digit > 0) |
878 | truncated = true; |
879 | if (!after_decimal) |
880 | ++exponent; |
881 | } |
882 | |
883 | ++index; |
884 | continue; |
885 | } |
886 | if (src[index] == DECIMAL_POINT) { |
887 | if (after_decimal) { |
888 | break; // this means that src[index] points to a second decimal point, |
889 | // ending the number. |
890 | } |
891 | after_decimal = true; |
892 | ++index; |
893 | continue; |
894 | } |
895 | // The character is neither a digit nor a decimal point. |
896 | break; |
897 | } |
898 | |
899 | if (!seen_digit) |
900 | return output; |
901 | |
902 | // TODO: When adding max length argument, handle the case of a trailing |
903 | // EXPONENT MARKER, see scanf for more details. |
904 | if (tolower(ch: src[index]) == EXPONENT_MARKER) { |
905 | bool has_sign = false; |
906 | if (src[index + 1] == '+' || src[index + 1] == '-') { |
907 | has_sign = true; |
908 | } |
909 | if (isdigit(ch: src[index + 1 + static_cast<size_t>(has_sign)])) { |
910 | ++index; |
911 | auto result = strtointeger<int32_t>(src: src + index, base: 10); |
912 | if (result.has_error()) |
913 | output.error = result.error; |
914 | int32_t add_to_exponent = result.value; |
915 | index += result.parsed_len; |
916 | |
917 | // Here we do this operation as int64 to avoid overflow. |
918 | int64_t temp_exponent = static_cast<int64_t>(exponent) + |
919 | static_cast<int64_t>(add_to_exponent); |
920 | |
921 | // If the result is in the valid range, then we use it. The valid range is |
922 | // also within the int32 range, so this prevents overflow issues. |
923 | if (temp_exponent > FPBits::MAX_BIASED_EXPONENT) { |
924 | exponent = FPBits::MAX_BIASED_EXPONENT; |
925 | } else if (temp_exponent < -FPBits::MAX_BIASED_EXPONENT) { |
926 | exponent = -FPBits::MAX_BIASED_EXPONENT; |
927 | } else { |
928 | exponent = static_cast<int32_t>(temp_exponent); |
929 | } |
930 | } |
931 | } |
932 | |
933 | output.parsed_len = index; |
934 | if (mantissa == 0) { // if we have a 0, then also 0 the exponent. |
935 | output.value = {0, 0}; |
936 | } else { |
937 | auto temp = |
938 | decimal_exp_to_float<T>({mantissa, exponent}, truncated, round, src); |
939 | output.value = temp.num; |
940 | output.error = temp.error; |
941 | } |
942 | return output; |
943 | } |
944 | |
945 | // Takes the start of a string representing a hexadecimal float, as well as the |
946 | // local decimal point. It returns if it suceeded in parsing any digits, and if |
947 | // the return value is true then the outputs are pointer to the end of the |
948 | // number, and the mantissa and exponent for the closest float T representation. |
949 | // If the return value is false, then it is assumed that there is no number |
950 | // here. |
951 | template <class T> |
952 | LIBC_INLINE StrToNumResult<ExpandedFloat<T>> |
953 | hexadecimal_string_to_float(const char *__restrict src, |
954 | const char DECIMAL_POINT, RoundDirection round) { |
955 | using FPBits = typename fputil::FPBits<T>; |
956 | using StorageType = typename FPBits::StorageType; |
957 | |
958 | constexpr uint32_t BASE = 16; |
959 | constexpr char EXPONENT_MARKER = 'p'; |
960 | |
961 | bool truncated = false; |
962 | bool seen_digit = false; |
963 | bool after_decimal = false; |
964 | StorageType mantissa = 0; |
965 | int32_t exponent = 0; |
966 | |
967 | size_t index = 0; |
968 | |
969 | StrToNumResult<ExpandedFloat<T>> output({0, 0}); |
970 | |
971 | // The goal for the first step of parsing is to convert the number in src to |
972 | // the format mantissa * (base ^ exponent) |
973 | |
974 | // The loop fills the mantissa with as many digits as it can hold |
975 | const StorageType bitstype_max_div_by_base = |
976 | cpp::numeric_limits<StorageType>::max() / BASE; |
977 | while (true) { |
978 | if (isalnum(ch: src[index])) { |
979 | uint32_t digit = b36_char_to_int(input: src[index]); |
980 | if (digit < BASE) |
981 | seen_digit = true; |
982 | else |
983 | break; |
984 | |
985 | if (mantissa < bitstype_max_div_by_base) { |
986 | mantissa = (mantissa * BASE) + digit; |
987 | if (after_decimal) |
988 | --exponent; |
989 | } else { |
990 | if (digit > 0) |
991 | truncated = true; |
992 | if (!after_decimal) |
993 | ++exponent; |
994 | } |
995 | ++index; |
996 | continue; |
997 | } |
998 | if (src[index] == DECIMAL_POINT) { |
999 | if (after_decimal) { |
1000 | break; // this means that src[index] points to a second decimal point, |
1001 | // ending the number. |
1002 | } |
1003 | after_decimal = true; |
1004 | ++index; |
1005 | continue; |
1006 | } |
1007 | // The character is neither a hexadecimal digit nor a decimal point. |
1008 | break; |
1009 | } |
1010 | |
1011 | if (!seen_digit) |
1012 | return output; |
1013 | |
1014 | // Convert the exponent from having a base of 16 to having a base of 2. |
1015 | exponent *= 4; |
1016 | |
1017 | if (tolower(ch: src[index]) == EXPONENT_MARKER) { |
1018 | bool has_sign = false; |
1019 | if (src[index + 1] == '+' || src[index + 1] == '-') { |
1020 | has_sign = true; |
1021 | } |
1022 | if (isdigit(ch: src[index + 1 + static_cast<size_t>(has_sign)])) { |
1023 | ++index; |
1024 | auto result = strtointeger<int32_t>(src: src + index, base: 10); |
1025 | if (result.has_error()) |
1026 | output.error = result.error; |
1027 | |
1028 | int32_t add_to_exponent = result.value; |
1029 | index += result.parsed_len; |
1030 | |
1031 | // Here we do this operation as int64 to avoid overflow. |
1032 | int64_t temp_exponent = static_cast<int64_t>(exponent) + |
1033 | static_cast<int64_t>(add_to_exponent); |
1034 | |
1035 | // If the result is in the valid range, then we use it. The valid range is |
1036 | // also within the int32 range, so this prevents overflow issues. |
1037 | if (temp_exponent > FPBits::MAX_BIASED_EXPONENT) { |
1038 | exponent = FPBits::MAX_BIASED_EXPONENT; |
1039 | } else if (temp_exponent < -FPBits::MAX_BIASED_EXPONENT) { |
1040 | exponent = -FPBits::MAX_BIASED_EXPONENT; |
1041 | } else { |
1042 | exponent = static_cast<int32_t>(temp_exponent); |
1043 | } |
1044 | } |
1045 | } |
1046 | output.parsed_len = index; |
1047 | if (mantissa == 0) { // if we have a 0, then also 0 the exponent. |
1048 | output.value.exponent = 0; |
1049 | output.value.mantissa = 0; |
1050 | } else { |
1051 | auto temp = binary_exp_to_float<T>({mantissa, exponent}, truncated, round); |
1052 | output.error = temp.error; |
1053 | output.value = temp.num; |
1054 | } |
1055 | return output; |
1056 | } |
1057 | |
1058 | template <class T> |
1059 | LIBC_INLINE typename fputil::FPBits<T>::StorageType |
1060 | nan_mantissa_from_ncharseq(const cpp::string_view ncharseq) { |
1061 | using FPBits = typename fputil::FPBits<T>; |
1062 | using StorageType = typename FPBits::StorageType; |
1063 | |
1064 | StorageType nan_mantissa = 0; |
1065 | |
1066 | if (ncharseq.data() != nullptr && isdigit(ch: ncharseq[0])) { |
1067 | StrToNumResult<StorageType> strtoint_result = |
1068 | strtointeger<StorageType>(ncharseq.data(), 0); |
1069 | if (!strtoint_result.has_error()) |
1070 | nan_mantissa = strtoint_result.value; |
1071 | |
1072 | if (strtoint_result.parsed_len != static_cast<ptrdiff_t>(ncharseq.size())) |
1073 | nan_mantissa = 0; |
1074 | } |
1075 | |
1076 | return nan_mantissa; |
1077 | } |
1078 | |
1079 | // Takes a pointer to a string and a pointer to a string pointer. This function |
1080 | // is used as the backend for all of the string to float functions. |
1081 | // TODO: Add src_len member to match strtointeger. |
1082 | // TODO: Next, move from char* and length to string_view |
1083 | template <class T> |
1084 | LIBC_INLINE StrToNumResult<T> strtofloatingpoint(const char *__restrict src) { |
1085 | using FPBits = typename fputil::FPBits<T>; |
1086 | using StorageType = typename FPBits::StorageType; |
1087 | |
1088 | FPBits result = FPBits(); |
1089 | bool seen_digit = false; |
1090 | char sign = '+'; |
1091 | |
1092 | int error = 0; |
1093 | |
1094 | ptrdiff_t index = first_non_whitespace(src) - src; |
1095 | |
1096 | if (src[index] == '+' || src[index] == '-') { |
1097 | sign = src[index]; |
1098 | ++index; |
1099 | } |
1100 | |
1101 | if (sign == '-') { |
1102 | result.set_sign(Sign::NEG); |
1103 | } |
1104 | |
1105 | static constexpr char DECIMAL_POINT = '.'; |
1106 | static const char *inf_string = "infinity" ; |
1107 | static const char *nan_string = "nan" ; |
1108 | |
1109 | if (isdigit(ch: src[index]) || src[index] == DECIMAL_POINT) { // regular number |
1110 | int base = 10; |
1111 | if (is_float_hex_start(src: src + index, decimalPoint: DECIMAL_POINT)) { |
1112 | base = 16; |
1113 | index += 2; |
1114 | seen_digit = true; |
1115 | } |
1116 | |
1117 | RoundDirection round_direction = RoundDirection::Nearest; |
1118 | |
1119 | switch (fputil::quick_get_round()) { |
1120 | case FE_TONEAREST: |
1121 | round_direction = RoundDirection::Nearest; |
1122 | break; |
1123 | case FE_UPWARD: |
1124 | if (sign == '+') { |
1125 | round_direction = RoundDirection::Up; |
1126 | } else { |
1127 | round_direction = RoundDirection::Down; |
1128 | } |
1129 | break; |
1130 | case FE_DOWNWARD: |
1131 | if (sign == '+') { |
1132 | round_direction = RoundDirection::Down; |
1133 | } else { |
1134 | round_direction = RoundDirection::Up; |
1135 | } |
1136 | break; |
1137 | case FE_TOWARDZERO: |
1138 | round_direction = RoundDirection::Down; |
1139 | break; |
1140 | } |
1141 | |
1142 | StrToNumResult<ExpandedFloat<T>> parse_result({0, 0}); |
1143 | if (base == 16) { |
1144 | parse_result = hexadecimal_string_to_float<T>(src + index, DECIMAL_POINT, |
1145 | round_direction); |
1146 | } else { // base is 10 |
1147 | parse_result = decimal_string_to_float<T>(src + index, DECIMAL_POINT, |
1148 | round_direction); |
1149 | } |
1150 | seen_digit = parse_result.parsed_len != 0; |
1151 | result.set_mantissa(parse_result.value.mantissa); |
1152 | result.set_biased_exponent(parse_result.value.exponent); |
1153 | index += parse_result.parsed_len; |
1154 | error = parse_result.error; |
1155 | } else if (tolower(ch: src[index]) == 'n') { // NaN |
1156 | if (tolower(ch: src[index + 1]) == nan_string[1] && |
1157 | tolower(ch: src[index + 2]) == nan_string[2]) { |
1158 | seen_digit = true; |
1159 | index += 3; |
1160 | StorageType nan_mantissa = 0; |
1161 | // this handles the case of `NaN(n-character-sequence)`, where the |
1162 | // n-character-sequence is made of 0 or more letters and numbers in any |
1163 | // order. |
1164 | if (src[index] == '(') { |
1165 | size_t left_paren = index; |
1166 | ++index; |
1167 | // Apparently it's common for underscores to also be accepted. No idea |
1168 | // why, but it's causing fuzz failures. |
1169 | while (isalnum(ch: src[index]) || src[index] == '_') |
1170 | ++index; |
1171 | if (src[index] == ')') { |
1172 | ++index; |
1173 | nan_mantissa = nan_mantissa_from_ncharseq<T>( |
1174 | cpp::string_view(src + (left_paren + 1), index - left_paren - 2)); |
1175 | } else { |
1176 | index = left_paren; |
1177 | } |
1178 | } |
1179 | result = FPBits(result.quiet_nan(result.sign(), nan_mantissa)); |
1180 | } |
1181 | } else if (tolower(ch: src[index]) == 'i') { // INF |
1182 | if (tolower(ch: src[index + 1]) == inf_string[1] && |
1183 | tolower(ch: src[index + 2]) == inf_string[2]) { |
1184 | seen_digit = true; |
1185 | result = FPBits(result.inf(result.sign())); |
1186 | if (tolower(ch: src[index + 3]) == inf_string[3] && |
1187 | tolower(ch: src[index + 4]) == inf_string[4] && |
1188 | tolower(ch: src[index + 5]) == inf_string[5] && |
1189 | tolower(ch: src[index + 6]) == inf_string[6] && |
1190 | tolower(ch: src[index + 7]) == inf_string[7]) { |
1191 | // if the string is "INFINITY" then consume 8 characters. |
1192 | index += 8; |
1193 | } else { |
1194 | index += 3; |
1195 | } |
1196 | } |
1197 | } |
1198 | if (!seen_digit) { // If there is nothing to actually parse, then return 0. |
1199 | return {T(0), 0, error}; |
1200 | } |
1201 | |
1202 | // This function only does something if T is long double and the platform uses |
1203 | // special 80 bit long doubles. Otherwise it should be inlined out. |
1204 | set_implicit_bit<T>(result); |
1205 | |
1206 | return {result.get_val(), index, error}; |
1207 | } |
1208 | |
1209 | template <class T> LIBC_INLINE StrToNumResult<T> strtonan(const char *arg) { |
1210 | using FPBits = typename fputil::FPBits<T>; |
1211 | using StorageType = typename FPBits::StorageType; |
1212 | |
1213 | FPBits result; |
1214 | int error = 0; |
1215 | StorageType nan_mantissa = 0; |
1216 | |
1217 | ptrdiff_t index = 0; |
1218 | while (isalnum(ch: arg[index]) || arg[index] == '_') |
1219 | ++index; |
1220 | |
1221 | if (arg[index] == '\0') |
1222 | nan_mantissa = nan_mantissa_from_ncharseq<T>(cpp::string_view(arg, index)); |
1223 | |
1224 | result = FPBits::quiet_nan(Sign::POS, nan_mantissa); |
1225 | return {result.get_val(), 0, error}; |
1226 | } |
1227 | |
1228 | } // namespace internal |
1229 | } // namespace LIBC_NAMESPACE |
1230 | |
1231 | #endif // LLVM_LIBC_SRC___SUPPORT_STR_TO_FLOAT_H |
1232 | |