1 | //===-- Double-precision 10^x function ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/exp10.h" |
10 | #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. |
11 | #include "explogxf.h" // ziv_test_denorm. |
12 | #include "src/__support/CPP/bit.h" |
13 | #include "src/__support/CPP/optional.h" |
14 | #include "src/__support/FPUtil/FEnvImpl.h" |
15 | #include "src/__support/FPUtil/FPBits.h" |
16 | #include "src/__support/FPUtil/PolyEval.h" |
17 | #include "src/__support/FPUtil/double_double.h" |
18 | #include "src/__support/FPUtil/dyadic_float.h" |
19 | #include "src/__support/FPUtil/multiply_add.h" |
20 | #include "src/__support/FPUtil/nearest_integer.h" |
21 | #include "src/__support/FPUtil/rounding_mode.h" |
22 | #include "src/__support/FPUtil/triple_double.h" |
23 | #include "src/__support/common.h" |
24 | #include "src/__support/integer_literals.h" |
25 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
26 | |
27 | #include <errno.h> |
28 | |
29 | namespace LIBC_NAMESPACE { |
30 | |
31 | using fputil::DoubleDouble; |
32 | using fputil::TripleDouble; |
33 | using Float128 = typename fputil::DyadicFloat<128>; |
34 | |
35 | using LIBC_NAMESPACE::operator""_u128 ; |
36 | |
37 | // log2(10) |
38 | constexpr double LOG2_10 = 0x1.a934f0979a371p+1; |
39 | |
40 | // -2^-12 * log10(2) |
41 | // > a = -2^-12 * log10(2); |
42 | // > b = round(a, 32, RN); |
43 | // > c = round(a - b, 32, RN); |
44 | // > d = round(a - b - c, D, RN); |
45 | // Errors < 1.5 * 2^-144 |
46 | constexpr double MLOG10_2_EXP2_M12_HI = -0x1.3441350ap-14; |
47 | constexpr double MLOG10_2_EXP2_M12_MID = 0x1.0c0219dc1da99p-51; |
48 | constexpr double MLOG10_2_EXP2_M12_MID_32 = 0x1.0c0219dcp-51; |
49 | constexpr double MLOG10_2_EXP2_M12_LO = 0x1.da994fd20dba2p-87; |
50 | |
51 | // Error bounds: |
52 | // Errors when using double precision. |
53 | constexpr double ERR_D = 0x1.8p-63; |
54 | |
55 | // Errors when using double-double precision. |
56 | constexpr double ERR_DD = 0x1.8p-99; |
57 | |
58 | namespace { |
59 | |
60 | // Polynomial approximations with double precision. Generated by Sollya with: |
61 | // > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]); |
62 | // > P; |
63 | // Error bounds: |
64 | // | output - (10^dx - 1) / dx | < 2^-52. |
65 | LIBC_INLINE double poly_approx_d(double dx) { |
66 | // dx^2 |
67 | double dx2 = dx * dx; |
68 | double c0 = |
69 | fputil::multiply_add(x: dx, y: 0x1.53524c73cea6ap+1, z: 0x1.26bb1bbb55516p+1); |
70 | double c1 = |
71 | fputil::multiply_add(x: dx, y: 0x1.2bd75cc6afc65p+0, z: 0x1.0470587aa264cp+1); |
72 | double p = fputil::multiply_add(x: dx2, y: c1, z: c0); |
73 | return p; |
74 | } |
75 | |
76 | // Polynomial approximation with double-double precision. Generated by Solya |
77 | // with: |
78 | // > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]); |
79 | // Error bounds: |
80 | // | output - 10^(dx) | < 2^-101 |
81 | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { |
82 | // Taylor polynomial. |
83 | constexpr DoubleDouble COEFFS[] = { |
84 | {.lo: 0, .hi: 0x1p0}, |
85 | {.lo: -0x1.f48ad494e927bp-53, .hi: 0x1.26bb1bbb55516p1}, |
86 | {.lo: -0x1.e2bfab3191cd2p-53, .hi: 0x1.53524c73cea69p1}, |
87 | {.lo: 0x1.80fb65ec3b503p-53, .hi: 0x1.0470591de2ca4p1}, |
88 | {.lo: 0x1.338fc05e21e55p-54, .hi: 0x1.2bd7609fd98c4p0}, |
89 | {.lo: 0x1.d4ea116818fbp-56, .hi: 0x1.1429ffd519865p-1}, |
90 | {.lo: -0x1.872a8ff352077p-57, .hi: 0x1.a7ed70847c8b3p-3}, |
91 | |
92 | }; |
93 | |
94 | DoubleDouble p = fputil::polyeval(x: dx, a0: COEFFS[0], a: COEFFS[1], a: COEFFS[2], |
95 | a: COEFFS[3], a: COEFFS[4], a: COEFFS[5], a: COEFFS[6]); |
96 | return p; |
97 | } |
98 | |
99 | // Polynomial approximation with 128-bit precision: |
100 | // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 |
101 | // For |dx| < 2^-14: |
102 | // | output - 10^dx | < 1.5 * 2^-124. |
103 | Float128 poly_approx_f128(const Float128 &dx) { |
104 | constexpr Float128 COEFFS_128[]{ |
105 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
106 | {Sign::POS, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u128}, |
107 | {Sign::POS, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u128}, |
108 | {Sign::POS, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u128}, |
109 | {Sign::POS, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u128}, |
110 | {Sign::POS, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u128}, |
111 | {Sign::POS, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u128}, |
112 | {Sign::POS, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u128}, |
113 | }; |
114 | |
115 | Float128 p = fputil::polyeval(x: dx, a0: COEFFS_128[0], a: COEFFS_128[1], a: COEFFS_128[2], |
116 | a: COEFFS_128[3], a: COEFFS_128[4], a: COEFFS_128[5], |
117 | a: COEFFS_128[6], a: COEFFS_128[7]); |
118 | return p; |
119 | } |
120 | |
121 | // Compute 10^(x) using 128-bit precision. |
122 | // TODO(lntue): investigate triple-double precision implementation for this |
123 | // step. |
124 | Float128 exp10_f128(double x, double kd, int idx1, int idx2) { |
125 | double t1 = fputil::multiply_add(x: kd, y: MLOG10_2_EXP2_M12_HI, z: x); // exact |
126 | double t2 = kd * MLOG10_2_EXP2_M12_MID_32; // exact |
127 | double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-144 |
128 | |
129 | Float128 dx = fputil::quick_add( |
130 | a: Float128(t1), b: fputil::quick_add(a: Float128(t2), b: Float128(t3))); |
131 | |
132 | // TODO: Skip recalculating exp_mid1 and exp_mid2. |
133 | Float128 exp_mid1 = |
134 | fputil::quick_add(a: Float128(EXP2_MID1[idx1].hi), |
135 | b: fputil::quick_add(a: Float128(EXP2_MID1[idx1].mid), |
136 | b: Float128(EXP2_MID1[idx1].lo))); |
137 | |
138 | Float128 exp_mid2 = |
139 | fputil::quick_add(a: Float128(EXP2_MID2[idx2].hi), |
140 | b: fputil::quick_add(a: Float128(EXP2_MID2[idx2].mid), |
141 | b: Float128(EXP2_MID2[idx2].lo))); |
142 | |
143 | Float128 exp_mid = fputil::quick_mul(a: exp_mid1, b: exp_mid2); |
144 | |
145 | Float128 p = poly_approx_f128(dx); |
146 | |
147 | Float128 r = fputil::quick_mul(a: exp_mid, b: p); |
148 | |
149 | r.exponent += static_cast<int>(kd) >> 12; |
150 | |
151 | return r; |
152 | } |
153 | |
154 | // Compute 10^x with double-double precision. |
155 | DoubleDouble exp10_double_double(double x, double kd, |
156 | const DoubleDouble &exp_mid) { |
157 | // Recalculate dx: |
158 | // dx = x - k * 2^-12 * log10(2) |
159 | double t1 = fputil::multiply_add(x: kd, y: MLOG10_2_EXP2_M12_HI, z: x); // exact |
160 | double t2 = kd * MLOG10_2_EXP2_M12_MID_32; // exact |
161 | double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-140 |
162 | |
163 | DoubleDouble dx = fputil::exact_add(a: t1, b: t2); |
164 | dx.lo += t3; |
165 | |
166 | // Degree-6 polynomial approximation in double-double precision. |
167 | // | p - 10^x | < 2^-103. |
168 | DoubleDouble p = poly_approx_dd(dx); |
169 | |
170 | // Error bounds: 2^-102. |
171 | DoubleDouble r = fputil::quick_mult(a: exp_mid, b: p); |
172 | |
173 | return r; |
174 | } |
175 | |
176 | // When output is denormal. |
177 | double exp10_denorm(double x) { |
178 | // Range reduction. |
179 | double tmp = fputil::multiply_add(x, y: LOG2_10, z: 0x1.8000'0000'4p21); |
180 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(from: tmp) >> 19); |
181 | double kd = static_cast<double>(k); |
182 | |
183 | uint32_t idx1 = (k >> 6) & 0x3f; |
184 | uint32_t idx2 = k & 0x3f; |
185 | |
186 | int hi = k >> 12; |
187 | |
188 | DoubleDouble exp_mid1{.lo: EXP2_MID1[idx1].mid, .hi: EXP2_MID1[idx1].hi}; |
189 | DoubleDouble exp_mid2{.lo: EXP2_MID2[idx2].mid, .hi: EXP2_MID2[idx2].hi}; |
190 | DoubleDouble exp_mid = fputil::quick_mult(a: exp_mid1, b: exp_mid2); |
191 | |
192 | // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14 |
193 | double lo_h = fputil::multiply_add(x: kd, y: MLOG10_2_EXP2_M12_HI, z: x); // exact |
194 | double dx = fputil::multiply_add(x: kd, y: MLOG10_2_EXP2_M12_MID, z: lo_h); |
195 | |
196 | double mid_lo = dx * exp_mid.hi; |
197 | |
198 | // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. |
199 | double p = poly_approx_d(dx); |
200 | |
201 | double lo = fputil::multiply_add(x: p, y: mid_lo, z: exp_mid.lo); |
202 | |
203 | if (auto r = ziv_test_denorm(hi, mid: exp_mid.hi, lo, err: ERR_D); |
204 | LIBC_LIKELY(r.has_value())) |
205 | return r.value(); |
206 | |
207 | // Use double-double |
208 | DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid); |
209 | |
210 | if (auto r = ziv_test_denorm(hi, mid: r_dd.hi, lo: r_dd.lo, err: ERR_DD); |
211 | LIBC_LIKELY(r.has_value())) |
212 | return r.value(); |
213 | |
214 | // Use 128-bit precision |
215 | Float128 r_f128 = exp10_f128(x, kd, idx1, idx2); |
216 | |
217 | return static_cast<double>(r_f128); |
218 | } |
219 | |
220 | // Check for exceptional cases when: |
221 | // * log10(1 - 2^-54) < x < log10(1 + 2^-53) |
222 | // * x >= log10(2^1024) |
223 | // * x <= log10(2^-1022) |
224 | // * x is inf or nan |
225 | double set_exceptional(double x) { |
226 | using FPBits = typename fputil::FPBits<double>; |
227 | FPBits xbits(x); |
228 | |
229 | uint64_t x_u = xbits.uintval(); |
230 | uint64_t x_abs = xbits.abs().uintval(); |
231 | |
232 | // |x| < log10(1 + 2^-53) |
233 | if (x_abs <= 0x3c8bcb7b1526e50e) { |
234 | // 10^(x) ~ 1 + x/2 |
235 | return fputil::multiply_add(x, y: 0.5, z: 1.0); |
236 | } |
237 | |
238 | // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan. |
239 | if (x_u >= 0xc0733a7146f72a42) { |
240 | // x <= log10(2^-1075) or -inf/nan |
241 | if (x_u > 0xc07439b746e36b52) { |
242 | // exp(-Inf) = 0 |
243 | if (xbits.is_inf()) |
244 | return 0.0; |
245 | |
246 | // exp(nan) = nan |
247 | if (xbits.is_nan()) |
248 | return x; |
249 | |
250 | if (fputil::quick_get_round() == FE_UPWARD) |
251 | return FPBits::min_subnormal().get_val(); |
252 | fputil::set_errno_if_required(ERANGE); |
253 | fputil::raise_except_if_required(FE_UNDERFLOW); |
254 | return 0.0; |
255 | } |
256 | |
257 | return exp10_denorm(x); |
258 | } |
259 | |
260 | // x >= log10(2^1024) or +inf/nan |
261 | // x is finite |
262 | if (x_u < 0x7ff0'0000'0000'0000ULL) { |
263 | int rounding = fputil::quick_get_round(); |
264 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
265 | return FPBits::max_normal().get_val(); |
266 | |
267 | fputil::set_errno_if_required(ERANGE); |
268 | fputil::raise_except_if_required(FE_OVERFLOW); |
269 | } |
270 | // x is +inf or nan |
271 | return x + FPBits::inf().get_val(); |
272 | } |
273 | |
274 | } // namespace |
275 | |
276 | LLVM_LIBC_FUNCTION(double, exp10, (double x)) { |
277 | using FPBits = typename fputil::FPBits<double>; |
278 | FPBits xbits(x); |
279 | |
280 | uint64_t x_u = xbits.uintval(); |
281 | |
282 | // x <= log10(2^-1022) or x >= log10(2^1024) or |
283 | // log10(1 - 2^-54) < x < log10(1 + 2^-53). |
284 | if (LIBC_UNLIKELY(x_u >= 0xc0733a7146f72a42 || |
285 | (x_u <= 0xbc7bcb7b1526e50e && x_u >= 0x40734413509f79ff) || |
286 | x_u < 0x3c8bcb7b1526e50e)) { |
287 | return set_exceptional(x); |
288 | } |
289 | |
290 | // Now log10(2^-1075) < x <= log10(1 - 2^-54) or |
291 | // log10(1 + 2^-53) < x < log10(2^1024) |
292 | |
293 | // Range reduction: |
294 | // Let x = log10(2) * (hi + mid1 + mid2) + lo |
295 | // in which: |
296 | // hi is an integer |
297 | // mid1 * 2^6 is an integer |
298 | // mid2 * 2^12 is an integer |
299 | // then: |
300 | // 10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo). |
301 | // With this formula: |
302 | // - multiplying by 2^hi is exact and cheap, simply by adding the exponent |
303 | // field. |
304 | // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. |
305 | // - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... |
306 | // |
307 | // We compute (hi + mid1 + mid2) together by perform the rounding on |
308 | // x * log2(10) * 2^12. |
309 | // Since |x| < |log10(2^-1075)| < 2^9, |
310 | // |x * 2^12| < 2^9 * 2^12 < 2^21, |
311 | // So we can fit the rounded result round(x * 2^12) in int32_t. |
312 | // Thus, the goal is to be able to use an additional addition and fixed width |
313 | // shift to get an int32_t representing round(x * 2^12). |
314 | // |
315 | // Assuming int32_t using 2-complement representation, since the mantissa part |
316 | // of a double precision is unsigned with the leading bit hidden, if we add an |
317 | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the |
318 | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be |
319 | // considered as a proper 2-complement representations of x*2^12. |
320 | // |
321 | // One small problem with this approach is that the sum (x*2^12 + C) in |
322 | // double precision is rounded to the least significant bit of the dorminant |
323 | // factor C. In order to minimize the rounding errors from this addition, we |
324 | // want to minimize e1. Another constraint that we want is that after |
325 | // shifting the mantissa so that the least significant bit of int32_t |
326 | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without |
327 | // any adjustment. So combining these 2 requirements, we can choose |
328 | // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence |
329 | // after right shifting the mantissa, the resulting int32_t has correct sign. |
330 | // With this choice of C, the number of mantissa bits we need to shift to the |
331 | // right is: 52 - 33 = 19. |
332 | // |
333 | // Moreover, since the integer right shifts are equivalent to rounding down, |
334 | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- |
335 | // +infinity. So in particular, we can compute: |
336 | // hmm = x * 2^12 + C, |
337 | // where C = 2^33 + 2^32 + 2^-1, then if |
338 | // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), |
339 | // the reduced argument: |
340 | // lo = x - log10(2) * 2^-12 * k is bounded by: |
341 | // |lo| = |x - log10(2) * 2^-12 * k| |
342 | // = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k | |
343 | // <= log10(2) * 2^-12 * (2^-1 + 2^-19) |
344 | // < 1.5 * 2^-2 * (2^-13 + 2^-31) |
345 | // = 1.5 * (2^-15 * 2^-31) |
346 | // |
347 | // Finally, notice that k only uses the mantissa of x * 2^12, so the |
348 | // exponent 2^12 is not needed. So we can simply define |
349 | // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and |
350 | // k = int32_t(lower 51 bits of double(x + C) >> 19). |
351 | |
352 | // Rounding errors <= 2^-31. |
353 | double tmp = fputil::multiply_add(x, y: LOG2_10, z: 0x1.8000'0000'4p21); |
354 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(from: tmp) >> 19); |
355 | double kd = static_cast<double>(k); |
356 | |
357 | uint32_t idx1 = (k >> 6) & 0x3f; |
358 | uint32_t idx2 = k & 0x3f; |
359 | |
360 | int hi = k >> 12; |
361 | |
362 | DoubleDouble exp_mid1{.lo: EXP2_MID1[idx1].mid, .hi: EXP2_MID1[idx1].hi}; |
363 | DoubleDouble exp_mid2{.lo: EXP2_MID2[idx2].mid, .hi: EXP2_MID2[idx2].hi}; |
364 | DoubleDouble exp_mid = fputil::quick_mult(a: exp_mid1, b: exp_mid2); |
365 | |
366 | // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14 |
367 | double lo_h = fputil::multiply_add(x: kd, y: MLOG10_2_EXP2_M12_HI, z: x); // exact |
368 | double dx = fputil::multiply_add(x: kd, y: MLOG10_2_EXP2_M12_MID, z: lo_h); |
369 | |
370 | // We use the degree-4 polynomial to approximate 10^(lo): |
371 | // 10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 |
372 | // = 1 + lo * P(lo) |
373 | // So that the errors are bounded by: |
374 | // |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 |
375 | // Let P_ be an evaluation of P where all intermediate computations are in |
376 | // double precision. Using either Horner's or Estrin's schemes, the evaluated |
377 | // errors can be bounded by: |
378 | // |P_(lo) - P(lo)| < 2^-51 |
379 | // => |lo * P_(lo) - (2^lo - 1) | < 2^-65 |
380 | // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64. |
381 | // Since we approximate |
382 | // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, |
383 | // We use the expression: |
384 | // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ |
385 | // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) |
386 | // with errors bounded by 2^-64. |
387 | |
388 | double mid_lo = dx * exp_mid.hi; |
389 | |
390 | // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. |
391 | double p = poly_approx_d(dx); |
392 | |
393 | double lo = fputil::multiply_add(x: p, y: mid_lo, z: exp_mid.lo); |
394 | |
395 | double upper = exp_mid.hi + (lo + ERR_D); |
396 | double lower = exp_mid.hi + (lo - ERR_D); |
397 | |
398 | if (LIBC_LIKELY(upper == lower)) { |
399 | // To multiply by 2^hi, a fast way is to simply add hi to the exponent |
400 | // field. |
401 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
402 | double r = cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: upper)); |
403 | return r; |
404 | } |
405 | |
406 | // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23. |
407 | // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0) |
408 | if (LIBC_UNLIKELY((x_u & 0x8000'ffff'ffff'ffffULL) == 0ULL)) { |
409 | switch (x_u) { |
410 | case 0x3ff0000000000000: // x = 1.0 |
411 | return 10.0; |
412 | case 0x4000000000000000: // x = 2.0 |
413 | return 100.0; |
414 | case 0x4008000000000000: // x = 3.0 |
415 | return 1'000.0; |
416 | case 0x4010000000000000: // x = 4.0 |
417 | return 10'000.0; |
418 | case 0x4014000000000000: // x = 5.0 |
419 | return 100'000.0; |
420 | case 0x4018000000000000: // x = 6.0 |
421 | return 1'000'000.0; |
422 | case 0x401c000000000000: // x = 7.0 |
423 | return 10'000'000.0; |
424 | case 0x4020000000000000: // x = 8.0 |
425 | return 100'000'000.0; |
426 | case 0x4022000000000000: // x = 9.0 |
427 | return 1'000'000'000.0; |
428 | case 0x4024000000000000: // x = 10.0 |
429 | return 10'000'000'000.0; |
430 | case 0x4026000000000000: // x = 11.0 |
431 | return 100'000'000'000.0; |
432 | case 0x4028000000000000: // x = 12.0 |
433 | return 1'000'000'000'000.0; |
434 | case 0x402a000000000000: // x = 13.0 |
435 | return 10'000'000'000'000.0; |
436 | case 0x402c000000000000: // x = 14.0 |
437 | return 100'000'000'000'000.0; |
438 | case 0x402e000000000000: // x = 15.0 |
439 | return 1'000'000'000'000'000.0; |
440 | case 0x4030000000000000: // x = 16.0 |
441 | return 10'000'000'000'000'000.0; |
442 | case 0x4031000000000000: // x = 17.0 |
443 | return 100'000'000'000'000'000.0; |
444 | case 0x4032000000000000: // x = 18.0 |
445 | return 1'000'000'000'000'000'000.0; |
446 | case 0x4033000000000000: // x = 19.0 |
447 | return 10'000'000'000'000'000'000.0; |
448 | case 0x4034000000000000: // x = 20.0 |
449 | return 100'000'000'000'000'000'000.0; |
450 | case 0x4035000000000000: // x = 21.0 |
451 | return 1'000'000'000'000'000'000'000.0; |
452 | case 0x4036000000000000: // x = 22.0 |
453 | return 10'000'000'000'000'000'000'000.0; |
454 | case 0x4037000000000000: // x = 23.0 |
455 | return 0x1.52d02c7e14af6p76 + x; |
456 | } |
457 | } |
458 | |
459 | // Use double-double |
460 | DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid); |
461 | |
462 | double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); |
463 | double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); |
464 | |
465 | if (LIBC_LIKELY(upper_dd == lower_dd)) { |
466 | // To multiply by 2^hi, a fast way is to simply add hi to the exponent |
467 | // field. |
468 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
469 | double r = cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: upper_dd)); |
470 | return r; |
471 | } |
472 | |
473 | // Use 128-bit precision |
474 | Float128 r_f128 = exp10_f128(x, kd, idx1, idx2); |
475 | |
476 | return static_cast<double>(r_f128); |
477 | } |
478 | |
479 | } // namespace LIBC_NAMESPACE |
480 | |