| 1 | //===-- Double-precision 10^x function ------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/exp10.h" |
| 10 | #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. |
| 11 | #include "explogxf.h" // ziv_test_denorm. |
| 12 | #include "src/__support/CPP/bit.h" |
| 13 | #include "src/__support/CPP/optional.h" |
| 14 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 15 | #include "src/__support/FPUtil/FPBits.h" |
| 16 | #include "src/__support/FPUtil/PolyEval.h" |
| 17 | #include "src/__support/FPUtil/double_double.h" |
| 18 | #include "src/__support/FPUtil/dyadic_float.h" |
| 19 | #include "src/__support/FPUtil/multiply_add.h" |
| 20 | #include "src/__support/FPUtil/nearest_integer.h" |
| 21 | #include "src/__support/FPUtil/rounding_mode.h" |
| 22 | #include "src/__support/FPUtil/triple_double.h" |
| 23 | #include "src/__support/common.h" |
| 24 | #include "src/__support/integer_literals.h" |
| 25 | #include "src/__support/macros/config.h" |
| 26 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 27 | |
| 28 | namespace LIBC_NAMESPACE_DECL { |
| 29 | |
| 30 | using fputil::DoubleDouble; |
| 31 | using fputil::TripleDouble; |
| 32 | using Float128 = typename fputil::DyadicFloat<128>; |
| 33 | |
| 34 | using LIBC_NAMESPACE::operator""_u128 ; |
| 35 | |
| 36 | // log2(10) |
| 37 | constexpr double LOG2_10 = 0x1.a934f0979a371p+1; |
| 38 | |
| 39 | // -2^-12 * log10(2) |
| 40 | // > a = -2^-12 * log10(2); |
| 41 | // > b = round(a, 32, RN); |
| 42 | // > c = round(a - b, 32, RN); |
| 43 | // > d = round(a - b - c, D, RN); |
| 44 | // Errors < 1.5 * 2^-144 |
| 45 | constexpr double MLOG10_2_EXP2_M12_HI = -0x1.3441350ap-14; |
| 46 | constexpr double MLOG10_2_EXP2_M12_MID = 0x1.0c0219dc1da99p-51; |
| 47 | |
| 48 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 49 | constexpr double MLOG10_2_EXP2_M12_MID_32 = 0x1.0c0219dcp-51; |
| 50 | constexpr double MLOG10_2_EXP2_M12_LO = 0x1.da994fd20dba2p-87; |
| 51 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 52 | |
| 53 | // Error bounds: |
| 54 | // Errors when using double precision. |
| 55 | constexpr double ERR_D = 0x1.8p-63; |
| 56 | |
| 57 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 58 | // Errors when using double-double precision. |
| 59 | constexpr double ERR_DD = 0x1.8p-99; |
| 60 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 61 | |
| 62 | namespace { |
| 63 | |
| 64 | // Polynomial approximations with double precision. Generated by Sollya with: |
| 65 | // > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]); |
| 66 | // > P; |
| 67 | // Error bounds: |
| 68 | // | output - (10^dx - 1) / dx | < 2^-52. |
| 69 | LIBC_INLINE double poly_approx_d(double dx) { |
| 70 | // dx^2 |
| 71 | double dx2 = dx * dx; |
| 72 | double c0 = |
| 73 | fputil::multiply_add(dx, 0x1.53524c73cea6ap+1, 0x1.26bb1bbb55516p+1); |
| 74 | double c1 = |
| 75 | fputil::multiply_add(dx, 0x1.2bd75cc6afc65p+0, 0x1.0470587aa264cp+1); |
| 76 | double p = fputil::multiply_add(dx2, c1, c0); |
| 77 | return p; |
| 78 | } |
| 79 | |
| 80 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 81 | // Polynomial approximation with double-double precision. Generated by Solya |
| 82 | // with: |
| 83 | // > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]); |
| 84 | // Error bounds: |
| 85 | // | output - 10^(dx) | < 2^-101 |
| 86 | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { |
| 87 | // Taylor polynomial. |
| 88 | constexpr DoubleDouble COEFFS[] = { |
| 89 | {0, 0x1p0}, |
| 90 | {-0x1.f48ad494e927bp-53, 0x1.26bb1bbb55516p1}, |
| 91 | {-0x1.e2bfab3191cd2p-53, 0x1.53524c73cea69p1}, |
| 92 | {0x1.80fb65ec3b503p-53, 0x1.0470591de2ca4p1}, |
| 93 | {0x1.338fc05e21e55p-54, 0x1.2bd7609fd98c4p0}, |
| 94 | {0x1.d4ea116818fbp-56, 0x1.1429ffd519865p-1}, |
| 95 | {-0x1.872a8ff352077p-57, 0x1.a7ed70847c8b3p-3}, |
| 96 | |
| 97 | }; |
| 98 | |
| 99 | DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], |
| 100 | COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); |
| 101 | return p; |
| 102 | } |
| 103 | |
| 104 | // Polynomial approximation with 128-bit precision: |
| 105 | // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 |
| 106 | // For |dx| < 2^-14: |
| 107 | // | output - 10^dx | < 1.5 * 2^-124. |
| 108 | Float128 poly_approx_f128(const Float128 &dx) { |
| 109 | constexpr Float128 COEFFS_128[]{ |
| 110 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
| 111 | {Sign::POS, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u128}, |
| 112 | {Sign::POS, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u128}, |
| 113 | {Sign::POS, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u128}, |
| 114 | {Sign::POS, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u128}, |
| 115 | {Sign::POS, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u128}, |
| 116 | {Sign::POS, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u128}, |
| 117 | {Sign::POS, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u128}, |
| 118 | }; |
| 119 | |
| 120 | Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], |
| 121 | COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], |
| 122 | COEFFS_128[6], COEFFS_128[7]); |
| 123 | return p; |
| 124 | } |
| 125 | |
| 126 | // Compute 10^(x) using 128-bit precision. |
| 127 | // TODO(lntue): investigate triple-double precision implementation for this |
| 128 | // step. |
| 129 | Float128 exp10_f128(double x, double kd, int idx1, int idx2) { |
| 130 | double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact |
| 131 | double t2 = kd * MLOG10_2_EXP2_M12_MID_32; // exact |
| 132 | double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-144 |
| 133 | |
| 134 | Float128 dx = fputil::quick_add( |
| 135 | Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); |
| 136 | |
| 137 | // TODO: Skip recalculating exp_mid1 and exp_mid2. |
| 138 | Float128 exp_mid1 = |
| 139 | fputil::quick_add(Float128(EXP2_MID1[idx1].hi), |
| 140 | fputil::quick_add(Float128(EXP2_MID1[idx1].mid), |
| 141 | Float128(EXP2_MID1[idx1].lo))); |
| 142 | |
| 143 | Float128 exp_mid2 = |
| 144 | fputil::quick_add(Float128(EXP2_MID2[idx2].hi), |
| 145 | fputil::quick_add(Float128(EXP2_MID2[idx2].mid), |
| 146 | Float128(EXP2_MID2[idx2].lo))); |
| 147 | |
| 148 | Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); |
| 149 | |
| 150 | Float128 p = poly_approx_f128(dx); |
| 151 | |
| 152 | Float128 r = fputil::quick_mul(exp_mid, p); |
| 153 | |
| 154 | r.exponent += static_cast<int>(kd) >> 12; |
| 155 | |
| 156 | return r; |
| 157 | } |
| 158 | |
| 159 | // Compute 10^x with double-double precision. |
| 160 | DoubleDouble exp10_double_double(double x, double kd, |
| 161 | const DoubleDouble &exp_mid) { |
| 162 | // Recalculate dx: |
| 163 | // dx = x - k * 2^-12 * log10(2) |
| 164 | double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact |
| 165 | double t2 = kd * MLOG10_2_EXP2_M12_MID_32; // exact |
| 166 | double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-140 |
| 167 | |
| 168 | DoubleDouble dx = fputil::exact_add(t1, t2); |
| 169 | dx.lo += t3; |
| 170 | |
| 171 | // Degree-6 polynomial approximation in double-double precision. |
| 172 | // | p - 10^x | < 2^-103. |
| 173 | DoubleDouble p = poly_approx_dd(dx); |
| 174 | |
| 175 | // Error bounds: 2^-102. |
| 176 | DoubleDouble r = fputil::quick_mult(exp_mid, p); |
| 177 | |
| 178 | return r; |
| 179 | } |
| 180 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 181 | |
| 182 | // When output is denormal. |
| 183 | double exp10_denorm(double x) { |
| 184 | // Range reduction. |
| 185 | double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21); |
| 186 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); |
| 187 | double kd = static_cast<double>(k); |
| 188 | |
| 189 | uint32_t idx1 = (k >> 6) & 0x3f; |
| 190 | uint32_t idx2 = k & 0x3f; |
| 191 | |
| 192 | int hi = k >> 12; |
| 193 | |
| 194 | DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; |
| 195 | DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; |
| 196 | DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); |
| 197 | |
| 198 | // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14 |
| 199 | double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact |
| 200 | double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h); |
| 201 | |
| 202 | double mid_lo = dx * exp_mid.hi; |
| 203 | |
| 204 | // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. |
| 205 | double p = poly_approx_d(dx); |
| 206 | |
| 207 | double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); |
| 208 | |
| 209 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 210 | return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D) |
| 211 | .value(); |
| 212 | #else |
| 213 | if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); |
| 214 | LIBC_LIKELY(r.has_value())) |
| 215 | return r.value(); |
| 216 | |
| 217 | // Use double-double |
| 218 | DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid); |
| 219 | |
| 220 | if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); |
| 221 | LIBC_LIKELY(r.has_value())) |
| 222 | return r.value(); |
| 223 | |
| 224 | // Use 128-bit precision |
| 225 | Float128 r_f128 = exp10_f128(x, kd, idx1, idx2); |
| 226 | |
| 227 | return static_cast<double>(r_f128); |
| 228 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 229 | } |
| 230 | |
| 231 | // Check for exceptional cases when: |
| 232 | // * log10(1 - 2^-54) < x < log10(1 + 2^-53) |
| 233 | // * x >= log10(2^1024) |
| 234 | // * x <= log10(2^-1022) |
| 235 | // * x is inf or nan |
| 236 | double set_exceptional(double x) { |
| 237 | using FPBits = typename fputil::FPBits<double>; |
| 238 | FPBits xbits(x); |
| 239 | |
| 240 | uint64_t x_u = xbits.uintval(); |
| 241 | uint64_t x_abs = xbits.abs().uintval(); |
| 242 | |
| 243 | // |x| < log10(1 + 2^-53) |
| 244 | if (x_abs <= 0x3c8bcb7b1526e50e) { |
| 245 | // 10^(x) ~ 1 + x/2 |
| 246 | return fputil::multiply_add(x, 0.5, 1.0); |
| 247 | } |
| 248 | |
| 249 | // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan. |
| 250 | if (x_u >= 0xc0733a7146f72a42) { |
| 251 | // x <= log10(2^-1075) or -inf/nan |
| 252 | if (x_u > 0xc07439b746e36b52) { |
| 253 | // exp(-Inf) = 0 |
| 254 | if (xbits.is_inf()) |
| 255 | return 0.0; |
| 256 | |
| 257 | // exp(nan) = nan |
| 258 | if (xbits.is_nan()) |
| 259 | return x; |
| 260 | |
| 261 | if (fputil::quick_get_round() == FE_UPWARD) |
| 262 | return FPBits::min_subnormal().get_val(); |
| 263 | fputil::set_errno_if_required(ERANGE); |
| 264 | fputil::raise_except_if_required(FE_UNDERFLOW); |
| 265 | return 0.0; |
| 266 | } |
| 267 | |
| 268 | return exp10_denorm(x); |
| 269 | } |
| 270 | |
| 271 | // x >= log10(2^1024) or +inf/nan |
| 272 | // x is finite |
| 273 | if (x_u < 0x7ff0'0000'0000'0000ULL) { |
| 274 | int rounding = fputil::quick_get_round(); |
| 275 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
| 276 | return FPBits::max_normal().get_val(); |
| 277 | |
| 278 | fputil::set_errno_if_required(ERANGE); |
| 279 | fputil::raise_except_if_required(FE_OVERFLOW); |
| 280 | } |
| 281 | // x is +inf or nan |
| 282 | return x + FPBits::inf().get_val(); |
| 283 | } |
| 284 | |
| 285 | } // namespace |
| 286 | |
| 287 | LLVM_LIBC_FUNCTION(double, exp10, (double x)) { |
| 288 | using FPBits = typename fputil::FPBits<double>; |
| 289 | FPBits xbits(x); |
| 290 | |
| 291 | uint64_t x_u = xbits.uintval(); |
| 292 | |
| 293 | // x <= log10(2^-1022) or x >= log10(2^1024) or |
| 294 | // log10(1 - 2^-54) < x < log10(1 + 2^-53). |
| 295 | if (LIBC_UNLIKELY(x_u >= 0xc0733a7146f72a42 || |
| 296 | (x_u <= 0xbc7bcb7b1526e50e && x_u >= 0x40734413509f79ff) || |
| 297 | x_u < 0x3c8bcb7b1526e50e)) { |
| 298 | return set_exceptional(x); |
| 299 | } |
| 300 | |
| 301 | // Now log10(2^-1075) < x <= log10(1 - 2^-54) or |
| 302 | // log10(1 + 2^-53) < x < log10(2^1024) |
| 303 | |
| 304 | // Range reduction: |
| 305 | // Let x = log10(2) * (hi + mid1 + mid2) + lo |
| 306 | // in which: |
| 307 | // hi is an integer |
| 308 | // mid1 * 2^6 is an integer |
| 309 | // mid2 * 2^12 is an integer |
| 310 | // then: |
| 311 | // 10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo). |
| 312 | // With this formula: |
| 313 | // - multiplying by 2^hi is exact and cheap, simply by adding the exponent |
| 314 | // field. |
| 315 | // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. |
| 316 | // - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... |
| 317 | // |
| 318 | // We compute (hi + mid1 + mid2) together by perform the rounding on |
| 319 | // x * log2(10) * 2^12. |
| 320 | // Since |x| < |log10(2^-1075)| < 2^9, |
| 321 | // |x * 2^12| < 2^9 * 2^12 < 2^21, |
| 322 | // So we can fit the rounded result round(x * 2^12) in int32_t. |
| 323 | // Thus, the goal is to be able to use an additional addition and fixed width |
| 324 | // shift to get an int32_t representing round(x * 2^12). |
| 325 | // |
| 326 | // Assuming int32_t using 2-complement representation, since the mantissa part |
| 327 | // of a double precision is unsigned with the leading bit hidden, if we add an |
| 328 | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the |
| 329 | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be |
| 330 | // considered as a proper 2-complement representations of x*2^12. |
| 331 | // |
| 332 | // One small problem with this approach is that the sum (x*2^12 + C) in |
| 333 | // double precision is rounded to the least significant bit of the dorminant |
| 334 | // factor C. In order to minimize the rounding errors from this addition, we |
| 335 | // want to minimize e1. Another constraint that we want is that after |
| 336 | // shifting the mantissa so that the least significant bit of int32_t |
| 337 | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without |
| 338 | // any adjustment. So combining these 2 requirements, we can choose |
| 339 | // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence |
| 340 | // after right shifting the mantissa, the resulting int32_t has correct sign. |
| 341 | // With this choice of C, the number of mantissa bits we need to shift to the |
| 342 | // right is: 52 - 33 = 19. |
| 343 | // |
| 344 | // Moreover, since the integer right shifts are equivalent to rounding down, |
| 345 | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- |
| 346 | // +infinity. So in particular, we can compute: |
| 347 | // hmm = x * 2^12 + C, |
| 348 | // where C = 2^33 + 2^32 + 2^-1, then if |
| 349 | // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), |
| 350 | // the reduced argument: |
| 351 | // lo = x - log10(2) * 2^-12 * k is bounded by: |
| 352 | // |lo| = |x - log10(2) * 2^-12 * k| |
| 353 | // = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k | |
| 354 | // <= log10(2) * 2^-12 * (2^-1 + 2^-19) |
| 355 | // < 1.5 * 2^-2 * (2^-13 + 2^-31) |
| 356 | // = 1.5 * (2^-15 * 2^-31) |
| 357 | // |
| 358 | // Finally, notice that k only uses the mantissa of x * 2^12, so the |
| 359 | // exponent 2^12 is not needed. So we can simply define |
| 360 | // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and |
| 361 | // k = int32_t(lower 51 bits of double(x + C) >> 19). |
| 362 | |
| 363 | // Rounding errors <= 2^-31. |
| 364 | double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21); |
| 365 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); |
| 366 | double kd = static_cast<double>(k); |
| 367 | |
| 368 | uint32_t idx1 = (k >> 6) & 0x3f; |
| 369 | uint32_t idx2 = k & 0x3f; |
| 370 | |
| 371 | int hi = k >> 12; |
| 372 | |
| 373 | DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; |
| 374 | DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; |
| 375 | DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); |
| 376 | |
| 377 | // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14 |
| 378 | double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact |
| 379 | double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h); |
| 380 | |
| 381 | // We use the degree-4 polynomial to approximate 10^(lo): |
| 382 | // 10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 |
| 383 | // = 1 + lo * P(lo) |
| 384 | // So that the errors are bounded by: |
| 385 | // |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 |
| 386 | // Let P_ be an evaluation of P where all intermediate computations are in |
| 387 | // double precision. Using either Horner's or Estrin's schemes, the evaluated |
| 388 | // errors can be bounded by: |
| 389 | // |P_(lo) - P(lo)| < 2^-51 |
| 390 | // => |lo * P_(lo) - (2^lo - 1) | < 2^-65 |
| 391 | // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64. |
| 392 | // Since we approximate |
| 393 | // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, |
| 394 | // We use the expression: |
| 395 | // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ |
| 396 | // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) |
| 397 | // with errors bounded by 2^-64. |
| 398 | |
| 399 | double mid_lo = dx * exp_mid.hi; |
| 400 | |
| 401 | // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. |
| 402 | double p = poly_approx_d(dx); |
| 403 | |
| 404 | double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); |
| 405 | |
| 406 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 407 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
| 408 | double r = |
| 409 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo)); |
| 410 | return r; |
| 411 | #else |
| 412 | double upper = exp_mid.hi + (lo + ERR_D); |
| 413 | double lower = exp_mid.hi + (lo - ERR_D); |
| 414 | |
| 415 | if (LIBC_LIKELY(upper == lower)) { |
| 416 | // To multiply by 2^hi, a fast way is to simply add hi to the exponent |
| 417 | // field. |
| 418 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
| 419 | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); |
| 420 | return r; |
| 421 | } |
| 422 | |
| 423 | // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23. |
| 424 | // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0) |
| 425 | if (LIBC_UNLIKELY((x_u & 0x8000'ffff'ffff'ffffULL) == 0ULL)) { |
| 426 | switch (x_u) { |
| 427 | case 0x3ff0000000000000: // x = 1.0 |
| 428 | return 10.0; |
| 429 | case 0x4000000000000000: // x = 2.0 |
| 430 | return 100.0; |
| 431 | case 0x4008000000000000: // x = 3.0 |
| 432 | return 1'000.0; |
| 433 | case 0x4010000000000000: // x = 4.0 |
| 434 | return 10'000.0; |
| 435 | case 0x4014000000000000: // x = 5.0 |
| 436 | return 100'000.0; |
| 437 | case 0x4018000000000000: // x = 6.0 |
| 438 | return 1'000'000.0; |
| 439 | case 0x401c000000000000: // x = 7.0 |
| 440 | return 10'000'000.0; |
| 441 | case 0x4020000000000000: // x = 8.0 |
| 442 | return 100'000'000.0; |
| 443 | case 0x4022000000000000: // x = 9.0 |
| 444 | return 1'000'000'000.0; |
| 445 | case 0x4024000000000000: // x = 10.0 |
| 446 | return 10'000'000'000.0; |
| 447 | case 0x4026000000000000: // x = 11.0 |
| 448 | return 100'000'000'000.0; |
| 449 | case 0x4028000000000000: // x = 12.0 |
| 450 | return 1'000'000'000'000.0; |
| 451 | case 0x402a000000000000: // x = 13.0 |
| 452 | return 10'000'000'000'000.0; |
| 453 | case 0x402c000000000000: // x = 14.0 |
| 454 | return 100'000'000'000'000.0; |
| 455 | case 0x402e000000000000: // x = 15.0 |
| 456 | return 1'000'000'000'000'000.0; |
| 457 | case 0x4030000000000000: // x = 16.0 |
| 458 | return 10'000'000'000'000'000.0; |
| 459 | case 0x4031000000000000: // x = 17.0 |
| 460 | return 100'000'000'000'000'000.0; |
| 461 | case 0x4032000000000000: // x = 18.0 |
| 462 | return 1'000'000'000'000'000'000.0; |
| 463 | case 0x4033000000000000: // x = 19.0 |
| 464 | return 10'000'000'000'000'000'000.0; |
| 465 | case 0x4034000000000000: // x = 20.0 |
| 466 | return 100'000'000'000'000'000'000.0; |
| 467 | case 0x4035000000000000: // x = 21.0 |
| 468 | return 1'000'000'000'000'000'000'000.0; |
| 469 | case 0x4036000000000000: // x = 22.0 |
| 470 | return 10'000'000'000'000'000'000'000.0; |
| 471 | case 0x4037000000000000: // x = 23.0 |
| 472 | return 0x1.52d02c7e14af6p76 + x; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | // Use double-double |
| 477 | DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid); |
| 478 | |
| 479 | double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); |
| 480 | double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); |
| 481 | |
| 482 | if (LIBC_LIKELY(upper_dd == lower_dd)) { |
| 483 | // To multiply by 2^hi, a fast way is to simply add hi to the exponent |
| 484 | // field. |
| 485 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
| 486 | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); |
| 487 | return r; |
| 488 | } |
| 489 | |
| 490 | // Use 128-bit precision |
| 491 | Float128 r_f128 = exp10_f128(x, kd, idx1, idx2); |
| 492 | |
| 493 | return static_cast<double>(r_f128); |
| 494 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 495 | } |
| 496 | |
| 497 | } // namespace LIBC_NAMESPACE_DECL |
| 498 | |