1 | //===-- Double-precision 2^x function -------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/exp2.h" |
10 | #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. |
11 | #include "explogxf.h" // ziv_test_denorm. |
12 | #include "src/__support/CPP/bit.h" |
13 | #include "src/__support/CPP/optional.h" |
14 | #include "src/__support/FPUtil/FEnvImpl.h" |
15 | #include "src/__support/FPUtil/FPBits.h" |
16 | #include "src/__support/FPUtil/PolyEval.h" |
17 | #include "src/__support/FPUtil/double_double.h" |
18 | #include "src/__support/FPUtil/dyadic_float.h" |
19 | #include "src/__support/FPUtil/multiply_add.h" |
20 | #include "src/__support/FPUtil/nearest_integer.h" |
21 | #include "src/__support/FPUtil/rounding_mode.h" |
22 | #include "src/__support/FPUtil/triple_double.h" |
23 | #include "src/__support/common.h" |
24 | #include "src/__support/integer_literals.h" |
25 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
26 | |
27 | #include <errno.h> |
28 | |
29 | namespace LIBC_NAMESPACE { |
30 | |
31 | using fputil::DoubleDouble; |
32 | using fputil::TripleDouble; |
33 | using Float128 = typename fputil::DyadicFloat<128>; |
34 | |
35 | using LIBC_NAMESPACE::operator""_u128 ; |
36 | |
37 | // Error bounds: |
38 | // Errors when using double precision. |
39 | #ifdef LIBC_TARGET_CPU_HAS_FMA |
40 | constexpr double ERR_D = 0x1.0p-63; |
41 | #else |
42 | constexpr double ERR_D = 0x1.8p-63; |
43 | #endif // LIBC_TARGET_CPU_HAS_FMA |
44 | |
45 | // Errors when using double-double precision. |
46 | constexpr double ERR_DD = 0x1.0p-100; |
47 | |
48 | namespace { |
49 | |
50 | // Polynomial approximations with double precision. Generated by Sollya with: |
51 | // > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); |
52 | // > P; |
53 | // Error bounds: |
54 | // | output - (2^dx - 1) / dx | < 1.5 * 2^-52. |
55 | LIBC_INLINE double poly_approx_d(double dx) { |
56 | // dx^2 |
57 | double dx2 = dx * dx; |
58 | double c0 = |
59 | fputil::multiply_add(x: dx, y: 0x1.ebfbdff82c58ep-3, z: 0x1.62e42fefa39efp-1); |
60 | double c1 = |
61 | fputil::multiply_add(x: dx, y: 0x1.3b2aba7a95a89p-7, z: 0x1.c6b08e8fc0c0ep-5); |
62 | double p = fputil::multiply_add(x: dx2, y: c1, z: c0); |
63 | return p; |
64 | } |
65 | |
66 | // Polynomial approximation with double-double precision. Generated by Solya |
67 | // with: |
68 | // > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); |
69 | // Error bounds: |
70 | // | output - 2^(dx) | < 2^-101 |
71 | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { |
72 | // Taylor polynomial. |
73 | constexpr DoubleDouble COEFFS[] = { |
74 | {.lo: 0, .hi: 0x1p0}, |
75 | {.lo: 0x1.abc9e3b39824p-56, .hi: 0x1.62e42fefa39efp-1}, |
76 | {.lo: -0x1.5e43a53e4527bp-57, .hi: 0x1.ebfbdff82c58fp-3}, |
77 | {.lo: -0x1.d37963a9444eep-59, .hi: 0x1.c6b08d704a0cp-5}, |
78 | {.lo: 0x1.4eda1a81133dap-62, .hi: 0x1.3b2ab6fba4e77p-7}, |
79 | {.lo: -0x1.c53fd1ba85d14p-64, .hi: 0x1.5d87fe7a265a5p-10}, |
80 | {.lo: 0x1.d89250b013eb8p-70, .hi: 0x1.430912f86cb8ep-13}, |
81 | }; |
82 | |
83 | DoubleDouble p = fputil::polyeval(x: dx, a0: COEFFS[0], a: COEFFS[1], a: COEFFS[2], |
84 | a: COEFFS[3], a: COEFFS[4], a: COEFFS[5], a: COEFFS[6]); |
85 | return p; |
86 | } |
87 | |
88 | // Polynomial approximation with 128-bit precision: |
89 | // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 |
90 | // For |dx| < 2^-13 + 2^-30: |
91 | // | output - exp(dx) | < 2^-126. |
92 | Float128 poly_approx_f128(const Float128 &dx) { |
93 | constexpr Float128 COEFFS_128[]{ |
94 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
95 | {Sign::POS, -128, 0xb17217f7'd1cf79ab'c9e3b398'03f2f6af_u128}, |
96 | {Sign::POS, -128, 0x3d7f7bff'058b1d50'de2d60dd'9c9a1d9f_u128}, |
97 | {Sign::POS, -132, 0xe35846b8'2505fc59'9d3b15d9'e7fb6897_u128}, |
98 | {Sign::POS, -134, 0x9d955b7d'd273b94e'184462f6'bcd2b9e7_u128}, |
99 | {Sign::POS, -137, 0xaec3ff3c'53398883'39ea1bb9'64c51a89_u128}, |
100 | {Sign::POS, -138, 0x2861225f'345c396a'842c5341'8fa8ae61_u128}, |
101 | {Sign::POS, -144, 0xffe5fe2d'109a319d'7abeb5ab'd5ad2079_u128}, |
102 | }; |
103 | |
104 | Float128 p = fputil::polyeval(x: dx, a0: COEFFS_128[0], a: COEFFS_128[1], a: COEFFS_128[2], |
105 | a: COEFFS_128[3], a: COEFFS_128[4], a: COEFFS_128[5], |
106 | a: COEFFS_128[6], a: COEFFS_128[7]); |
107 | return p; |
108 | } |
109 | |
110 | // Compute 2^(x) using 128-bit precision. |
111 | // TODO(lntue): investigate triple-double precision implementation for this |
112 | // step. |
113 | Float128 exp2_f128(double x, int hi, int idx1, int idx2) { |
114 | Float128 dx = Float128(x); |
115 | |
116 | // TODO: Skip recalculating exp_mid1 and exp_mid2. |
117 | Float128 exp_mid1 = |
118 | fputil::quick_add(a: Float128(EXP2_MID1[idx1].hi), |
119 | b: fputil::quick_add(a: Float128(EXP2_MID1[idx1].mid), |
120 | b: Float128(EXP2_MID1[idx1].lo))); |
121 | |
122 | Float128 exp_mid2 = |
123 | fputil::quick_add(a: Float128(EXP2_MID2[idx2].hi), |
124 | b: fputil::quick_add(a: Float128(EXP2_MID2[idx2].mid), |
125 | b: Float128(EXP2_MID2[idx2].lo))); |
126 | |
127 | Float128 exp_mid = fputil::quick_mul(a: exp_mid1, b: exp_mid2); |
128 | |
129 | Float128 p = poly_approx_f128(dx); |
130 | |
131 | Float128 r = fputil::quick_mul(a: exp_mid, b: p); |
132 | |
133 | r.exponent += hi; |
134 | |
135 | return r; |
136 | } |
137 | |
138 | // Compute 2^x with double-double precision. |
139 | DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) { |
140 | DoubleDouble dx({.lo: 0, .hi: x}); |
141 | |
142 | // Degree-6 polynomial approximation in double-double precision. |
143 | // | p - 2^x | < 2^-103. |
144 | DoubleDouble p = poly_approx_dd(dx); |
145 | |
146 | // Error bounds: 2^-102. |
147 | DoubleDouble r = fputil::quick_mult(a: exp_mid, b: p); |
148 | |
149 | return r; |
150 | } |
151 | |
152 | // When output is denormal. |
153 | double exp2_denorm(double x) { |
154 | // Range reduction. |
155 | int k = |
156 | static_cast<int>(cpp::bit_cast<uint64_t>(from: x + 0x1.8000'0000'4p21) >> 19); |
157 | double kd = static_cast<double>(k); |
158 | |
159 | uint32_t idx1 = (k >> 6) & 0x3f; |
160 | uint32_t idx2 = k & 0x3f; |
161 | |
162 | int hi = k >> 12; |
163 | |
164 | DoubleDouble exp_mid1{.lo: EXP2_MID1[idx1].mid, .hi: EXP2_MID1[idx1].hi}; |
165 | DoubleDouble exp_mid2{.lo: EXP2_MID2[idx2].mid, .hi: EXP2_MID2[idx2].hi}; |
166 | DoubleDouble exp_mid = fputil::quick_mult(a: exp_mid1, b: exp_mid2); |
167 | |
168 | // |dx| < 2^-13 + 2^-30. |
169 | double dx = fputil::multiply_add(x: kd, y: -0x1.0p-12, z: x); // exact |
170 | |
171 | double mid_lo = dx * exp_mid.hi; |
172 | |
173 | // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. |
174 | double p = poly_approx_d(dx); |
175 | |
176 | double lo = fputil::multiply_add(x: p, y: mid_lo, z: exp_mid.lo); |
177 | |
178 | if (auto r = ziv_test_denorm(hi, mid: exp_mid.hi, lo, err: ERR_D); |
179 | LIBC_LIKELY(r.has_value())) |
180 | return r.value(); |
181 | |
182 | // Use double-double |
183 | DoubleDouble r_dd = exp2_double_double(x: dx, exp_mid); |
184 | |
185 | if (auto r = ziv_test_denorm(hi, mid: r_dd.hi, lo: r_dd.lo, err: ERR_DD); |
186 | LIBC_LIKELY(r.has_value())) |
187 | return r.value(); |
188 | |
189 | // Use 128-bit precision |
190 | Float128 r_f128 = exp2_f128(x: dx, hi, idx1, idx2); |
191 | |
192 | return static_cast<double>(r_f128); |
193 | } |
194 | |
195 | // Check for exceptional cases when: |
196 | // * log2(1 - 2^-54) < x < log2(1 + 2^-53) |
197 | // * x >= 1024 |
198 | // * x <= -1022 |
199 | // * x is inf or nan |
200 | double set_exceptional(double x) { |
201 | using FPBits = typename fputil::FPBits<double>; |
202 | FPBits xbits(x); |
203 | |
204 | uint64_t x_u = xbits.uintval(); |
205 | uint64_t x_abs = xbits.abs().uintval(); |
206 | |
207 | // |x| < log2(1 + 2^-53) |
208 | if (x_abs <= 0x3ca71547652b82fd) { |
209 | // 2^(x) ~ 1 + x/2 |
210 | return fputil::multiply_add(x, y: 0.5, z: 1.0); |
211 | } |
212 | |
213 | // x <= -1022 || x >= 1024 or inf/nan. |
214 | if (x_u > 0xc08ff00000000000) { |
215 | // x <= -1075 or -inf/nan |
216 | if (x_u >= 0xc090cc0000000000) { |
217 | // exp(-Inf) = 0 |
218 | if (xbits.is_inf()) |
219 | return 0.0; |
220 | |
221 | // exp(nan) = nan |
222 | if (xbits.is_nan()) |
223 | return x; |
224 | |
225 | if (fputil::quick_get_round() == FE_UPWARD) |
226 | return FPBits::min_subnormal().get_val(); |
227 | fputil::set_errno_if_required(ERANGE); |
228 | fputil::raise_except_if_required(FE_UNDERFLOW); |
229 | return 0.0; |
230 | } |
231 | |
232 | return exp2_denorm(x); |
233 | } |
234 | |
235 | // x >= 1024 or +inf/nan |
236 | // x is finite |
237 | if (x_u < 0x7ff0'0000'0000'0000ULL) { |
238 | int rounding = fputil::quick_get_round(); |
239 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
240 | return FPBits::max_normal().get_val(); |
241 | |
242 | fputil::set_errno_if_required(ERANGE); |
243 | fputil::raise_except_if_required(FE_OVERFLOW); |
244 | } |
245 | // x is +inf or nan |
246 | return x + FPBits::inf().get_val(); |
247 | } |
248 | |
249 | } // namespace |
250 | |
251 | LLVM_LIBC_FUNCTION(double, exp2, (double x)) { |
252 | using FPBits = typename fputil::FPBits<double>; |
253 | FPBits xbits(x); |
254 | |
255 | uint64_t x_u = xbits.uintval(); |
256 | |
257 | // x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53). |
258 | if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 || |
259 | (x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) || |
260 | x_u <= 0x3ca71547652b82fd)) { |
261 | return set_exceptional(x); |
262 | } |
263 | |
264 | // Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024 |
265 | |
266 | // Range reduction: |
267 | // Let x = (hi + mid1 + mid2) + lo |
268 | // in which: |
269 | // hi is an integer |
270 | // mid1 * 2^6 is an integer |
271 | // mid2 * 2^12 is an integer |
272 | // then: |
273 | // 2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo). |
274 | // With this formula: |
275 | // - multiplying by 2^hi is exact and cheap, simply by adding the exponent |
276 | // field. |
277 | // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. |
278 | // - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... |
279 | // |
280 | // We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12. |
281 | // Since |x| < |-1075)| < 2^11, |
282 | // |x * 2^12| < 2^11 * 2^12 < 2^23, |
283 | // So we can fit the rounded result round(x * 2^12) in int32_t. |
284 | // Thus, the goal is to be able to use an additional addition and fixed width |
285 | // shift to get an int32_t representing round(x * 2^12). |
286 | // |
287 | // Assuming int32_t using 2-complement representation, since the mantissa part |
288 | // of a double precision is unsigned with the leading bit hidden, if we add an |
289 | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the |
290 | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be |
291 | // considered as a proper 2-complement representations of x*2^12. |
292 | // |
293 | // One small problem with this approach is that the sum (x*2^12 + C) in |
294 | // double precision is rounded to the least significant bit of the dorminant |
295 | // factor C. In order to minimize the rounding errors from this addition, we |
296 | // want to minimize e1. Another constraint that we want is that after |
297 | // shifting the mantissa so that the least significant bit of int32_t |
298 | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without |
299 | // any adjustment. So combining these 2 requirements, we can choose |
300 | // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence |
301 | // after right shifting the mantissa, the resulting int32_t has correct sign. |
302 | // With this choice of C, the number of mantissa bits we need to shift to the |
303 | // right is: 52 - 33 = 19. |
304 | // |
305 | // Moreover, since the integer right shifts are equivalent to rounding down, |
306 | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- |
307 | // +infinity. So in particular, we can compute: |
308 | // hmm = x * 2^12 + C, |
309 | // where C = 2^33 + 2^32 + 2^-1, then if |
310 | // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), |
311 | // the reduced argument: |
312 | // lo = x - 2^-12 * k is bounded by: |
313 | // |lo| <= 2^-13 + 2^-12*2^-19 |
314 | // = 2^-13 + 2^-31. |
315 | // |
316 | // Finally, notice that k only uses the mantissa of x * 2^12, so the |
317 | // exponent 2^12 is not needed. So we can simply define |
318 | // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and |
319 | // k = int32_t(lower 51 bits of double(x + C) >> 19). |
320 | |
321 | // Rounding errors <= 2^-31. |
322 | int k = |
323 | static_cast<int>(cpp::bit_cast<uint64_t>(from: x + 0x1.8000'0000'4p21) >> 19); |
324 | double kd = static_cast<double>(k); |
325 | |
326 | uint32_t idx1 = (k >> 6) & 0x3f; |
327 | uint32_t idx2 = k & 0x3f; |
328 | |
329 | int hi = k >> 12; |
330 | |
331 | DoubleDouble exp_mid1{.lo: EXP2_MID1[idx1].mid, .hi: EXP2_MID1[idx1].hi}; |
332 | DoubleDouble exp_mid2{.lo: EXP2_MID2[idx2].mid, .hi: EXP2_MID2[idx2].hi}; |
333 | DoubleDouble exp_mid = fputil::quick_mult(a: exp_mid1, b: exp_mid2); |
334 | |
335 | // |dx| < 2^-13 + 2^-30. |
336 | double dx = fputil::multiply_add(x: kd, y: -0x1.0p-12, z: x); // exact |
337 | |
338 | // We use the degree-4 polynomial to approximate 2^(lo): |
339 | // 2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo) |
340 | // So that the errors are bounded by: |
341 | // |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 |
342 | // Let P_ be an evaluation of P where all intermediate computations are in |
343 | // double precision. Using either Horner's or Estrin's schemes, the evaluated |
344 | // errors can be bounded by: |
345 | // |P_(lo) - P(lo)| < 2^-51 |
346 | // => |lo * P_(lo) - (2^lo - 1) | < 2^-64 |
347 | // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63. |
348 | // Since we approximate |
349 | // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, |
350 | // We use the expression: |
351 | // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ |
352 | // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) |
353 | // with errors bounded by 2^-63. |
354 | |
355 | double mid_lo = dx * exp_mid.hi; |
356 | |
357 | // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. |
358 | double p = poly_approx_d(dx); |
359 | |
360 | double lo = fputil::multiply_add(x: p, y: mid_lo, z: exp_mid.lo); |
361 | |
362 | double upper = exp_mid.hi + (lo + ERR_D); |
363 | double lower = exp_mid.hi + (lo - ERR_D); |
364 | |
365 | if (LIBC_LIKELY(upper == lower)) { |
366 | // To multiply by 2^hi, a fast way is to simply add hi to the exponent |
367 | // field. |
368 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
369 | double r = cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: upper)); |
370 | return r; |
371 | } |
372 | |
373 | // Use double-double |
374 | DoubleDouble r_dd = exp2_double_double(x: dx, exp_mid); |
375 | |
376 | double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); |
377 | double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); |
378 | |
379 | if (LIBC_LIKELY(upper_dd == lower_dd)) { |
380 | // To multiply by 2^hi, a fast way is to simply add hi to the exponent |
381 | // field. |
382 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
383 | double r = cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: upper_dd)); |
384 | return r; |
385 | } |
386 | |
387 | // Use 128-bit precision |
388 | Float128 r_f128 = exp2_f128(x: dx, hi, idx1, idx2); |
389 | |
390 | return static_cast<double>(r_f128); |
391 | } |
392 | |
393 | } // namespace LIBC_NAMESPACE |
394 | |