1 | //===-- Double-precision e^x - 1 function ---------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/expm1.h" |
10 | #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. |
11 | #include "explogxf.h" // ziv_test_denorm. |
12 | #include "src/__support/CPP/bit.h" |
13 | #include "src/__support/CPP/optional.h" |
14 | #include "src/__support/FPUtil/FEnvImpl.h" |
15 | #include "src/__support/FPUtil/FPBits.h" |
16 | #include "src/__support/FPUtil/PolyEval.h" |
17 | #include "src/__support/FPUtil/double_double.h" |
18 | #include "src/__support/FPUtil/dyadic_float.h" |
19 | #include "src/__support/FPUtil/except_value_utils.h" |
20 | #include "src/__support/FPUtil/multiply_add.h" |
21 | #include "src/__support/FPUtil/nearest_integer.h" |
22 | #include "src/__support/FPUtil/rounding_mode.h" |
23 | #include "src/__support/FPUtil/triple_double.h" |
24 | #include "src/__support/common.h" |
25 | #include "src/__support/integer_literals.h" |
26 | #include "src/__support/macros/config.h" |
27 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
28 | |
29 | #if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0) |
30 | #define LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS |
31 | #endif |
32 | |
33 | namespace LIBC_NAMESPACE_DECL { |
34 | |
35 | using fputil::DoubleDouble; |
36 | using fputil::TripleDouble; |
37 | using Float128 = typename fputil::DyadicFloat<128>; |
38 | |
39 | using LIBC_NAMESPACE::operator""_u128 ; |
40 | |
41 | // log2(e) |
42 | constexpr double LOG2_E = 0x1.71547652b82fep+0; |
43 | |
44 | // Error bounds: |
45 | // Errors when using double precision. |
46 | // 0x1.8p-63; |
47 | constexpr uint64_t ERR_D = 0x3c08000000000000; |
48 | // Errors when using double-double precision. |
49 | // 0x1.0p-99 |
50 | [[maybe_unused]] constexpr uint64_t ERR_DD = 0x39c0000000000000; |
51 | |
52 | // -2^-12 * log(2) |
53 | // > a = -2^-12 * log(2); |
54 | // > b = round(a, 30, RN); |
55 | // > c = round(a - b, 30, RN); |
56 | // > d = round(a - b - c, D, RN); |
57 | // Errors < 1.5 * 2^-133 |
58 | constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13; |
59 | constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47; |
60 | constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47; |
61 | constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79; |
62 | |
63 | namespace { |
64 | |
65 | // Polynomial approximations with double precision: |
66 | // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. |
67 | // For |dx| < 2^-13 + 2^-30: |
68 | // | output - expm1(dx) / dx | < 2^-51. |
69 | LIBC_INLINE double poly_approx_d(double dx) { |
70 | // dx^2 |
71 | double dx2 = dx * dx; |
72 | // c0 = 1 + dx / 2 |
73 | double c0 = fputil::multiply_add(dx, 0.5, 1.0); |
74 | // c1 = 1/6 + dx / 24 |
75 | double c1 = |
76 | fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3); |
77 | // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24 |
78 | double p = fputil::multiply_add(dx2, c1, c0); |
79 | return p; |
80 | } |
81 | |
82 | // Polynomial approximation with double-double precision: |
83 | // Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040 |
84 | // For |dx| < 2^-13 + 2^-30: |
85 | // | output - expm1(dx) | < 2^-101 |
86 | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { |
87 | // Taylor polynomial. |
88 | constexpr DoubleDouble COEFFS[] = { |
89 | {0, 0x1p0}, // 1 |
90 | {0, 0x1p-1}, // 1/2 |
91 | {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6 |
92 | {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24 |
93 | {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120 |
94 | {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720 |
95 | {0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13}, // 1/5040 |
96 | }; |
97 | |
98 | DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], |
99 | COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); |
100 | return p; |
101 | } |
102 | |
103 | // Polynomial approximation with 128-bit precision: |
104 | // Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040 |
105 | // For |dx| < 2^-13 + 2^-30: |
106 | // | output - exp(dx) | < 2^-126. |
107 | [[maybe_unused]] Float128 poly_approx_f128(const Float128 &dx) { |
108 | constexpr Float128 COEFFS_128[]{ |
109 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
110 | {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5 |
111 | {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6 |
112 | {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24 |
113 | {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120 |
114 | {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720 |
115 | {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040 |
116 | }; |
117 | |
118 | Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], |
119 | COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], |
120 | COEFFS_128[6]); |
121 | return p; |
122 | } |
123 | |
124 | #ifdef DEBUGDEBUG |
125 | std::ostream &operator<<(std::ostream &OS, const Float128 &r) { |
126 | OS << (r.sign == Sign::NEG ? "-(" : "(" ) << r.mantissa.val[0] << " + " |
127 | << r.mantissa.val[1] << " * 2^64) * 2^" << r.exponent << "\n" ; |
128 | return OS; |
129 | } |
130 | |
131 | std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) { |
132 | OS << std::hexfloat << "(" << r.hi << " + " << r.lo << ")" |
133 | << std::defaultfloat << "\n" ; |
134 | return OS; |
135 | } |
136 | #endif |
137 | |
138 | // Compute exp(x) - 1 using 128-bit precision. |
139 | // TODO(lntue): investigate triple-double precision implementation for this |
140 | // step. |
141 | [[maybe_unused]] Float128 expm1_f128(double x, double kd, int idx1, int idx2) { |
142 | // Recalculate dx: |
143 | |
144 | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
145 | double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact |
146 | double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133 |
147 | |
148 | Float128 dx = fputil::quick_add( |
149 | Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); |
150 | |
151 | // TODO: Skip recalculating exp_mid1 and exp_mid2. |
152 | Float128 exp_mid1 = |
153 | fputil::quick_add(Float128(EXP2_MID1[idx1].hi), |
154 | fputil::quick_add(Float128(EXP2_MID1[idx1].mid), |
155 | Float128(EXP2_MID1[idx1].lo))); |
156 | |
157 | Float128 exp_mid2 = |
158 | fputil::quick_add(Float128(EXP2_MID2[idx2].hi), |
159 | fputil::quick_add(Float128(EXP2_MID2[idx2].mid), |
160 | Float128(EXP2_MID2[idx2].lo))); |
161 | |
162 | Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); |
163 | |
164 | int hi = static_cast<int>(kd) >> 12; |
165 | Float128 minus_one{Sign::NEG, -127 - hi, |
166 | 0x80000000'00000000'00000000'00000000_u128}; |
167 | |
168 | Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one); |
169 | |
170 | Float128 p = poly_approx_f128(dx); |
171 | |
172 | // r = exp_mid * (1 + dx * P) - 1 |
173 | // = (exp_mid - 1) + (dx * exp_mid) * P |
174 | Float128 r = |
175 | fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1); |
176 | |
177 | r.exponent += hi; |
178 | |
179 | #ifdef DEBUGDEBUG |
180 | std::cout << "=== VERY SLOW PASS ===\n" |
181 | << " kd: " << kd << "\n" |
182 | << " hi: " << hi << "\n" |
183 | << " minus_one: " << minus_one << " dx: " << dx |
184 | << "exp_mid_m1: " << exp_mid_m1 << " exp_mid: " << exp_mid |
185 | << " p: " << p << " r: " << r << std::endl; |
186 | #endif |
187 | |
188 | return r; |
189 | } |
190 | |
191 | // Compute exp(x) - 1 with double-double precision. |
192 | DoubleDouble exp_double_double(double x, double kd, const DoubleDouble &exp_mid, |
193 | const DoubleDouble &hi_part) { |
194 | // Recalculate dx: |
195 | // dx = x - k * 2^-12 * log(2) |
196 | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
197 | double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact |
198 | double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130 |
199 | |
200 | DoubleDouble dx = fputil::exact_add(t1, t2); |
201 | dx.lo += t3; |
202 | |
203 | // Degree-6 Taylor polynomial approximation in double-double precision. |
204 | // | p - exp(x) | < 2^-100. |
205 | DoubleDouble p = poly_approx_dd(dx); |
206 | |
207 | // Error bounds: 2^-99. |
208 | DoubleDouble r = |
209 | fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part); |
210 | |
211 | #ifdef DEBUGDEBUG |
212 | std::cout << "=== SLOW PASS ===\n" |
213 | << " dx: " << dx << " p: " << p << " r: " << r << std::endl; |
214 | #endif |
215 | |
216 | return r; |
217 | } |
218 | |
219 | // Check for exceptional cases when |
220 | // |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 |
221 | double set_exceptional(double x) { |
222 | using FPBits = typename fputil::FPBits<double>; |
223 | FPBits xbits(x); |
224 | |
225 | uint64_t x_u = xbits.uintval(); |
226 | uint64_t x_abs = xbits.abs().uintval(); |
227 | |
228 | // |x| <= 2^-53. |
229 | if (x_abs <= 0x3ca0'0000'0000'0000ULL) { |
230 | // expm1(x) ~ x. |
231 | |
232 | if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) { |
233 | if (LIBC_UNLIKELY(x_abs == 0)) |
234 | return x; |
235 | // |x| <= 2^-968, need to scale up a bit before rounding, then scale it |
236 | // back down. |
237 | return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022); |
238 | } |
239 | |
240 | // 2^-968 < |x| <= 2^-53. |
241 | return fputil::round_result_slightly_up(x); |
242 | } |
243 | |
244 | // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan. |
245 | |
246 | // x < log(2^-54) or -inf/nan |
247 | if (x_u >= 0xc042'b708'8723'20e2ULL) { |
248 | // expm1(-Inf) = -1 |
249 | if (xbits.is_inf()) |
250 | return -1.0; |
251 | |
252 | // exp(nan) = nan |
253 | if (xbits.is_nan()) |
254 | return x; |
255 | |
256 | return fputil::round_result_slightly_up(-1.0); |
257 | } |
258 | |
259 | // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan |
260 | // x is finite |
261 | if (x_u < 0x7ff0'0000'0000'0000ULL) { |
262 | int rounding = fputil::quick_get_round(); |
263 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
264 | return FPBits::max_normal().get_val(); |
265 | |
266 | fputil::set_errno_if_required(ERANGE); |
267 | fputil::raise_except_if_required(FE_OVERFLOW); |
268 | } |
269 | // x is +inf or nan |
270 | return x + FPBits::inf().get_val(); |
271 | } |
272 | |
273 | } // namespace |
274 | |
275 | LLVM_LIBC_FUNCTION(double, expm1, (double x)) { |
276 | using FPBits = typename fputil::FPBits<double>; |
277 | |
278 | FPBits xbits(x); |
279 | |
280 | bool x_is_neg = xbits.is_neg(); |
281 | uint64_t x_u = xbits.uintval(); |
282 | |
283 | // Upper bound: max normal number = 2^1023 * (2 - 2^-52) |
284 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9 |
285 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9 |
286 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9 |
287 | // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty |
288 | |
289 | // Lower bound: log(2^-54) = -0x1.2b708872320e2p5 |
290 | // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5 |
291 | |
292 | // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53. |
293 | |
294 | if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 || |
295 | (x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) || |
296 | x_u <= 0x3ca0000000000000)) { |
297 | return set_exceptional(x); |
298 | } |
299 | |
300 | // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52)) |
301 | |
302 | // Range reduction: |
303 | // Let x = log(2) * (hi + mid1 + mid2) + lo |
304 | // in which: |
305 | // hi is an integer |
306 | // mid1 * 2^6 is an integer |
307 | // mid2 * 2^12 is an integer |
308 | // then: |
309 | // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo). |
310 | // With this formula: |
311 | // - multiplying by 2^hi is exact and cheap, simply by adding the exponent |
312 | // field. |
313 | // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. |
314 | // - exp(lo) ~ 1 + lo + a0 * lo^2 + ... |
315 | // |
316 | // They can be defined by: |
317 | // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x) |
318 | // If we store L2E = round(log2(e), D, RN), then: |
319 | // log2(e) - L2E ~ 1.5 * 2^(-56) |
320 | // So the errors when computing in double precision is: |
321 | // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <= |
322 | // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | + |
323 | // + | x * 2^12 * L2E - D(x * 2^12 * L2E) | |
324 | // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN |
325 | // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes. |
326 | // So if: |
327 | // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely |
328 | // in double precision, the reduced argument: |
329 | // lo = x - log(2) * (hi + mid1 + mid2) is bounded by: |
330 | // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x)) |
331 | // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52)) |
332 | // < 2^-13 + 2^-41 |
333 | // |
334 | |
335 | // The following trick computes the round(x * L2E) more efficiently |
336 | // than using the rounding instructions, with the tradeoff for less accuracy, |
337 | // and hence a slightly larger range for the reduced argument `lo`. |
338 | // |
339 | // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9, |
340 | // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23, |
341 | // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t. |
342 | // Thus, the goal is to be able to use an additional addition and fixed width |
343 | // shift to get an int32_t representing round(x * 2^12 * L2E). |
344 | // |
345 | // Assuming int32_t using 2-complement representation, since the mantissa part |
346 | // of a double precision is unsigned with the leading bit hidden, if we add an |
347 | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the |
348 | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be |
349 | // considered as a proper 2-complement representations of x*2^12*L2E. |
350 | // |
351 | // One small problem with this approach is that the sum (x*2^12*L2E + C) in |
352 | // double precision is rounded to the least significant bit of the dorminant |
353 | // factor C. In order to minimize the rounding errors from this addition, we |
354 | // want to minimize e1. Another constraint that we want is that after |
355 | // shifting the mantissa so that the least significant bit of int32_t |
356 | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without |
357 | // any adjustment. So combining these 2 requirements, we can choose |
358 | // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence |
359 | // after right shifting the mantissa, the resulting int32_t has correct sign. |
360 | // With this choice of C, the number of mantissa bits we need to shift to the |
361 | // right is: 52 - 33 = 19. |
362 | // |
363 | // Moreover, since the integer right shifts are equivalent to rounding down, |
364 | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- |
365 | // +infinity. So in particular, we can compute: |
366 | // hmm = x * 2^12 * L2E + C, |
367 | // where C = 2^33 + 2^32 + 2^-1, then if |
368 | // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19), |
369 | // the reduced argument: |
370 | // lo = x - log(2) * 2^-12 * k is bounded by: |
371 | // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19 |
372 | // = 2^-13 + 2^-31 + 2^-41. |
373 | // |
374 | // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the |
375 | // exponent 2^12 is not needed. So we can simply define |
376 | // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and |
377 | // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19). |
378 | |
379 | // Rounding errors <= 2^-31 + 2^-41. |
380 | double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21); |
381 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); |
382 | double kd = static_cast<double>(k); |
383 | |
384 | uint32_t idx1 = (k >> 6) & 0x3f; |
385 | uint32_t idx2 = k & 0x3f; |
386 | int hi = k >> 12; |
387 | |
388 | DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; |
389 | DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; |
390 | |
391 | DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); |
392 | |
393 | // -2^(-hi) |
394 | double one_scaled = |
395 | FPBits::create_value(Sign::NEG, FPBits::EXP_BIAS - hi, 0).get_val(); |
396 | |
397 | // 2^(mid1 + mid2) - 2^(-hi) |
398 | DoubleDouble hi_part = x_is_neg ? fputil::exact_add(one_scaled, exp_mid.hi) |
399 | : fputil::exact_add(exp_mid.hi, one_scaled); |
400 | |
401 | hi_part.lo += exp_mid.lo; |
402 | |
403 | // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo) |
404 | // = 2^11 * 2^-13 * 2^-52 |
405 | // = 2^-54. |
406 | // |dx| < 2^-13 + 2^-30. |
407 | double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
408 | double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h); |
409 | |
410 | // We use the degree-4 Taylor polynomial to approximate exp(lo): |
411 | // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo) |
412 | // So that the errors are bounded by: |
413 | // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 |
414 | // Let P_ be an evaluation of P where all intermediate computations are in |
415 | // double precision. Using either Horner's or Estrin's schemes, the evaluated |
416 | // errors can be bounded by: |
417 | // |P_(dx) - P(dx)| < 2^-51 |
418 | // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64 |
419 | // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63. |
420 | // Since we approximate |
421 | // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, |
422 | // We use the expression: |
423 | // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ |
424 | // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) |
425 | // with errors bounded by 1.5 * 2^-63. |
426 | |
427 | // Finally, we have the following approximation formula: |
428 | // expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1 |
429 | // = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) ) |
430 | // ~ 2^hi * ( (exp_mid.hi - 2^-hi) + |
431 | // + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)) |
432 | |
433 | double mid_lo = dx * exp_mid.hi; |
434 | |
435 | // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. |
436 | double p = poly_approx_d(dx); |
437 | |
438 | double lo = fputil::multiply_add(p, mid_lo, hi_part.lo); |
439 | |
440 | // TODO: The following line leaks encoding abstraction. Use FPBits methods |
441 | // instead. |
442 | uint64_t err = x_is_neg ? (static_cast<uint64_t>(-hi) << 52) : 0; |
443 | |
444 | double err_d = cpp::bit_cast<double>(ERR_D + err); |
445 | |
446 | double upper = hi_part.hi + (lo + err_d); |
447 | double lower = hi_part.hi + (lo - err_d); |
448 | |
449 | #ifdef DEBUGDEBUG |
450 | std::cout << "=== FAST PASS ===\n" |
451 | << " x: " << std::hexfloat << x << std::defaultfloat << "\n" |
452 | << " k: " << k << "\n" |
453 | << " idx1: " << idx1 << "\n" |
454 | << " idx2: " << idx2 << "\n" |
455 | << " hi: " << hi << "\n" |
456 | << " dx: " << std::hexfloat << dx << std::defaultfloat << "\n" |
457 | << "exp_mid: " << exp_mid << "hi_part: " << hi_part |
458 | << " mid_lo: " << std::hexfloat << mid_lo << std::defaultfloat |
459 | << "\n" |
460 | << " p: " << std::hexfloat << p << std::defaultfloat << "\n" |
461 | << " lo: " << std::hexfloat << lo << std::defaultfloat << "\n" |
462 | << " upper: " << std::hexfloat << upper << std::defaultfloat |
463 | << "\n" |
464 | << " lower: " << std::hexfloat << lower << std::defaultfloat |
465 | << "\n" |
466 | << std::endl; |
467 | #endif |
468 | |
469 | if (LIBC_LIKELY(upper == lower)) { |
470 | // to multiply by 2^hi, a fast way is to simply add hi to the exponent |
471 | // field. |
472 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
473 | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); |
474 | return r; |
475 | } |
476 | |
477 | // Use double-double |
478 | DoubleDouble r_dd = exp_double_double(x, kd, exp_mid, hi_part); |
479 | |
480 | #ifdef LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS |
481 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
482 | double r = |
483 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(r_dd.hi + r_dd.lo)); |
484 | return r; |
485 | #else |
486 | double err_dd = cpp::bit_cast<double>(ERR_DD + err); |
487 | |
488 | double upper_dd = r_dd.hi + (r_dd.lo + err_dd); |
489 | double lower_dd = r_dd.hi + (r_dd.lo - err_dd); |
490 | |
491 | if (LIBC_LIKELY(upper_dd == lower_dd)) { |
492 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
493 | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); |
494 | return r; |
495 | } |
496 | |
497 | // Use 128-bit precision |
498 | Float128 r_f128 = expm1_f128(x, kd, idx1, idx2); |
499 | |
500 | return static_cast<double>(r_f128); |
501 | #endif // LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS |
502 | } |
503 | |
504 | } // namespace LIBC_NAMESPACE_DECL |
505 | |