1 | //===- CallGraphSort.cpp --------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// The file is responsible for sorting sections using LLVM call graph profile |
10 | /// data by placing frequently executed code sections together. The goal of the |
11 | /// placement is to improve the runtime performance of the final executable by |
12 | /// arranging code sections so that i-TLB misses and i-cache misses are reduced. |
13 | /// |
14 | /// The algorithm first builds a call graph based on the profile data and then |
15 | /// iteratively merges "chains" (ordered lists) of input sections which will be |
16 | /// laid out as a unit. There are two implementations for deciding how to |
17 | /// merge a pair of chains: |
18 | /// - a simpler one, referred to as Call-Chain Clustering (C^3), that follows |
19 | /// "Optimizing Function Placement for Large-Scale Data-Center Applications" |
20 | /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf |
21 | /// - a more advanced one, referred to as Cache-Directed-Sort (CDSort), which |
22 | /// typically produces layouts with higher locality, and hence, yields fewer |
23 | /// instruction cache misses on large binaries. |
24 | //===----------------------------------------------------------------------===// |
25 | |
26 | #include "CallGraphSort.h" |
27 | #include "InputFiles.h" |
28 | #include "InputSection.h" |
29 | #include "Symbols.h" |
30 | #include "llvm/Support/FileSystem.h" |
31 | #include "llvm/Transforms/Utils/CodeLayout.h" |
32 | |
33 | #include <numeric> |
34 | |
35 | using namespace llvm; |
36 | using namespace lld; |
37 | using namespace lld::elf; |
38 | |
39 | namespace { |
40 | struct Edge { |
41 | int from; |
42 | uint64_t weight; |
43 | }; |
44 | |
45 | struct Cluster { |
46 | Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {} |
47 | |
48 | double getDensity() const { |
49 | if (size == 0) |
50 | return 0; |
51 | return double(weight) / double(size); |
52 | } |
53 | |
54 | int next; |
55 | int prev; |
56 | uint64_t size; |
57 | uint64_t weight = 0; |
58 | uint64_t initialWeight = 0; |
59 | Edge bestPred = {.from: -1, .weight: 0}; |
60 | }; |
61 | |
62 | /// Implementation of the Call-Chain Clustering (C^3). The goal of this |
63 | /// algorithm is to improve runtime performance of the executable by arranging |
64 | /// code sections such that page table and i-cache misses are minimized. |
65 | /// |
66 | /// Definitions: |
67 | /// * Cluster |
68 | /// * An ordered list of input sections which are laid out as a unit. At the |
69 | /// beginning of the algorithm each input section has its own cluster and |
70 | /// the weight of the cluster is the sum of the weight of all incoming |
71 | /// edges. |
72 | /// * Call-Chain Clustering (C³) Heuristic |
73 | /// * Defines when and how clusters are combined. Pick the highest weighted |
74 | /// input section then add it to its most likely predecessor if it wouldn't |
75 | /// penalize it too much. |
76 | /// * Density |
77 | /// * The weight of the cluster divided by the size of the cluster. This is a |
78 | /// proxy for the amount of execution time spent per byte of the cluster. |
79 | /// |
80 | /// It does so given a call graph profile by the following: |
81 | /// * Build a weighted call graph from the call graph profile |
82 | /// * Sort input sections by weight |
83 | /// * For each input section starting with the highest weight |
84 | /// * Find its most likely predecessor cluster |
85 | /// * Check if the combined cluster would be too large, or would have too low |
86 | /// a density. |
87 | /// * If not, then combine the clusters. |
88 | /// * Sort non-empty clusters by density |
89 | class CallGraphSort { |
90 | public: |
91 | CallGraphSort(); |
92 | |
93 | DenseMap<const InputSectionBase *, int> run(); |
94 | |
95 | private: |
96 | std::vector<Cluster> clusters; |
97 | std::vector<const InputSectionBase *> sections; |
98 | }; |
99 | |
100 | // Maximum amount the combined cluster density can be worse than the original |
101 | // cluster to consider merging. |
102 | constexpr int MAX_DENSITY_DEGRADATION = 8; |
103 | |
104 | // Maximum cluster size in bytes. |
105 | constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; |
106 | } // end anonymous namespace |
107 | |
108 | using SectionPair = |
109 | std::pair<const InputSectionBase *, const InputSectionBase *>; |
110 | |
111 | // Take the edge list in Config->CallGraphProfile, resolve symbol names to |
112 | // Symbols, and generate a graph between InputSections with the provided |
113 | // weights. |
114 | CallGraphSort::CallGraphSort() { |
115 | MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile; |
116 | DenseMap<const InputSectionBase *, int> secToCluster; |
117 | |
118 | auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { |
119 | auto res = secToCluster.try_emplace(Key: isec, Args: clusters.size()); |
120 | if (res.second) { |
121 | sections.push_back(x: isec); |
122 | clusters.emplace_back(args: clusters.size(), args: isec->getSize()); |
123 | } |
124 | return res.first->second; |
125 | }; |
126 | |
127 | // Create the graph. |
128 | for (std::pair<SectionPair, uint64_t> &c : profile) { |
129 | const auto *fromSB = cast<InputSectionBase>(Val: c.first.first); |
130 | const auto *toSB = cast<InputSectionBase>(Val: c.first.second); |
131 | uint64_t weight = c.second; |
132 | |
133 | // Ignore edges between input sections belonging to different output |
134 | // sections. This is done because otherwise we would end up with clusters |
135 | // containing input sections that can't actually be placed adjacently in the |
136 | // output. This messes with the cluster size and density calculations. We |
137 | // would also end up moving input sections in other output sections without |
138 | // moving them closer to what calls them. |
139 | if (fromSB->getOutputSection() != toSB->getOutputSection()) |
140 | continue; |
141 | |
142 | int from = getOrCreateNode(fromSB); |
143 | int to = getOrCreateNode(toSB); |
144 | |
145 | clusters[to].weight += weight; |
146 | |
147 | if (from == to) |
148 | continue; |
149 | |
150 | // Remember the best edge. |
151 | Cluster &toC = clusters[to]; |
152 | if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { |
153 | toC.bestPred.from = from; |
154 | toC.bestPred.weight = weight; |
155 | } |
156 | } |
157 | for (Cluster &c : clusters) |
158 | c.initialWeight = c.weight; |
159 | } |
160 | |
161 | // It's bad to merge clusters which would degrade the density too much. |
162 | static bool isNewDensityBad(Cluster &a, Cluster &b) { |
163 | double newDensity = double(a.weight + b.weight) / double(a.size + b.size); |
164 | return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; |
165 | } |
166 | |
167 | // Find the leader of V's belonged cluster (represented as an equivalence |
168 | // class). We apply union-find path-halving technique (simple to implement) in |
169 | // the meantime as it decreases depths and the time complexity. |
170 | static int getLeader(int *leaders, int v) { |
171 | while (leaders[v] != v) { |
172 | leaders[v] = leaders[leaders[v]]; |
173 | v = leaders[v]; |
174 | } |
175 | return v; |
176 | } |
177 | |
178 | static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx, |
179 | Cluster &from, int fromIdx) { |
180 | int tail1 = into.prev, tail2 = from.prev; |
181 | into.prev = tail2; |
182 | cs[tail2].next = intoIdx; |
183 | from.prev = tail1; |
184 | cs[tail1].next = fromIdx; |
185 | into.size += from.size; |
186 | into.weight += from.weight; |
187 | from.size = 0; |
188 | from.weight = 0; |
189 | } |
190 | |
191 | // Group InputSections into clusters using the Call-Chain Clustering heuristic |
192 | // then sort the clusters by density. |
193 | DenseMap<const InputSectionBase *, int> CallGraphSort::run() { |
194 | std::vector<int> sorted(clusters.size()); |
195 | std::unique_ptr<int[]> leaders(new int[clusters.size()]); |
196 | |
197 | std::iota(first: leaders.get(), last: leaders.get() + clusters.size(), value: 0); |
198 | std::iota(first: sorted.begin(), last: sorted.end(), value: 0); |
199 | llvm::stable_sort(Range&: sorted, C: [&](int a, int b) { |
200 | return clusters[a].getDensity() > clusters[b].getDensity(); |
201 | }); |
202 | |
203 | for (int l : sorted) { |
204 | // The cluster index is the same as the index of its leader here because |
205 | // clusters[L] has not been merged into another cluster yet. |
206 | Cluster &c = clusters[l]; |
207 | |
208 | // Don't consider merging if the edge is unlikely. |
209 | if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) |
210 | continue; |
211 | |
212 | int predL = getLeader(leaders: leaders.get(), v: c.bestPred.from); |
213 | if (l == predL) |
214 | continue; |
215 | |
216 | Cluster *predC = &clusters[predL]; |
217 | if (c.size + predC->size > MAX_CLUSTER_SIZE) |
218 | continue; |
219 | |
220 | if (isNewDensityBad(a&: *predC, b&: c)) |
221 | continue; |
222 | |
223 | leaders[l] = predL; |
224 | mergeClusters(cs&: clusters, into&: *predC, intoIdx: predL, from&: c, fromIdx: l); |
225 | } |
226 | |
227 | // Sort remaining non-empty clusters by density. |
228 | sorted.clear(); |
229 | for (int i = 0, e = (int)clusters.size(); i != e; ++i) |
230 | if (clusters[i].size > 0) |
231 | sorted.push_back(x: i); |
232 | llvm::stable_sort(Range&: sorted, C: [&](int a, int b) { |
233 | return clusters[a].getDensity() > clusters[b].getDensity(); |
234 | }); |
235 | |
236 | DenseMap<const InputSectionBase *, int> orderMap; |
237 | int curOrder = 1; |
238 | for (int leader : sorted) { |
239 | for (int i = leader;;) { |
240 | orderMap[sections[i]] = curOrder++; |
241 | i = clusters[i].next; |
242 | if (i == leader) |
243 | break; |
244 | } |
245 | } |
246 | if (!config->printSymbolOrder.empty()) { |
247 | std::error_code ec; |
248 | raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None); |
249 | if (ec) { |
250 | error(msg: "cannot open " + config->printSymbolOrder + ": " + ec.message()); |
251 | return orderMap; |
252 | } |
253 | |
254 | // Print the symbols ordered by C3, in the order of increasing curOrder |
255 | // Instead of sorting all the orderMap, just repeat the loops above. |
256 | for (int leader : sorted) |
257 | for (int i = leader;;) { |
258 | // Search all the symbols in the file of the section |
259 | // and find out a Defined symbol with name that is within the section. |
260 | for (Symbol *sym : sections[i]->file->getSymbols()) |
261 | if (!sym->isSection()) // Filter out section-type symbols here. |
262 | if (auto *d = dyn_cast<Defined>(Val: sym)) |
263 | if (sections[i] == d->section) |
264 | os << sym->getName() << "\n" ; |
265 | i = clusters[i].next; |
266 | if (i == leader) |
267 | break; |
268 | } |
269 | } |
270 | |
271 | return orderMap; |
272 | } |
273 | |
274 | // Sort sections by the profile data using the Cache-Directed Sort algorithm. |
275 | // The placement is done by optimizing the locality by co-locating frequently |
276 | // executed code sections together. |
277 | DenseMap<const InputSectionBase *, int> elf::computeCacheDirectedSortOrder() { |
278 | SmallVector<uint64_t, 0> funcSizes; |
279 | SmallVector<uint64_t, 0> funcCounts; |
280 | SmallVector<codelayout::EdgeCount, 0> callCounts; |
281 | SmallVector<uint64_t, 0> callOffsets; |
282 | SmallVector<const InputSectionBase *, 0> sections; |
283 | DenseMap<const InputSectionBase *, size_t> secToTargetId; |
284 | |
285 | auto getOrCreateNode = [&](const InputSectionBase *inSec) -> size_t { |
286 | auto res = secToTargetId.try_emplace(Key: inSec, Args: sections.size()); |
287 | if (res.second) { |
288 | // inSec does not appear before in the graph. |
289 | sections.push_back(Elt: inSec); |
290 | funcSizes.push_back(Elt: inSec->getSize()); |
291 | funcCounts.push_back(Elt: 0); |
292 | } |
293 | return res.first->second; |
294 | }; |
295 | |
296 | // Create the graph. |
297 | for (std::pair<SectionPair, uint64_t> &c : config->callGraphProfile) { |
298 | const InputSectionBase *fromSB = cast<InputSectionBase>(Val: c.first.first); |
299 | const InputSectionBase *toSB = cast<InputSectionBase>(Val: c.first.second); |
300 | // Ignore edges between input sections belonging to different sections. |
301 | if (fromSB->getOutputSection() != toSB->getOutputSection()) |
302 | continue; |
303 | |
304 | uint64_t weight = c.second; |
305 | // Ignore edges with zero weight. |
306 | if (weight == 0) |
307 | continue; |
308 | |
309 | size_t from = getOrCreateNode(fromSB); |
310 | size_t to = getOrCreateNode(toSB); |
311 | // Ignore self-edges (recursive calls). |
312 | if (from == to) |
313 | continue; |
314 | |
315 | callCounts.push_back(Elt: {.src: from, .dst: to, .count: weight}); |
316 | // Assume that the jump is at the middle of the input section. The profile |
317 | // data does not contain jump offsets. |
318 | callOffsets.push_back(Elt: (funcSizes[from] + 1) / 2); |
319 | funcCounts[to] += weight; |
320 | } |
321 | |
322 | // Run the layout algorithm. |
323 | std::vector<uint64_t> sortedSections = codelayout::computeCacheDirectedLayout( |
324 | FuncSizes: funcSizes, FuncCounts: funcCounts, CallCounts: callCounts, CallOffsets: callOffsets); |
325 | |
326 | // Create the final order. |
327 | DenseMap<const InputSectionBase *, int> orderMap; |
328 | int curOrder = 1; |
329 | for (uint64_t secIdx : sortedSections) |
330 | orderMap[sections[secIdx]] = curOrder++; |
331 | |
332 | return orderMap; |
333 | } |
334 | |
335 | // Sort sections by the profile data provided by --callgraph-profile-file. |
336 | // |
337 | // This first builds a call graph based on the profile data then merges sections |
338 | // according either to the C³ or Cache-Directed-Sort ordering algorithm. |
339 | DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { |
340 | if (config->callGraphProfileSort == CGProfileSortKind::Cdsort) |
341 | return computeCacheDirectedSortOrder(); |
342 | return CallGraphSort().run(); |
343 | } |
344 | |