| 1 | //===-- ABISysV_arm64.cpp -------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABISysV_arm64.h" |
| 10 | |
| 11 | #include <optional> |
| 12 | #include <vector> |
| 13 | |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/TargetParser/Triple.h" |
| 16 | |
| 17 | #include "lldb/Core/Module.h" |
| 18 | #include "lldb/Core/PluginManager.h" |
| 19 | #include "lldb/Core/Value.h" |
| 20 | #include "lldb/Symbol/UnwindPlan.h" |
| 21 | #include "lldb/Target/Process.h" |
| 22 | #include "lldb/Target/RegisterContext.h" |
| 23 | #include "lldb/Target/Target.h" |
| 24 | #include "lldb/Target/Thread.h" |
| 25 | #include "lldb/Utility/ConstString.h" |
| 26 | #include "lldb/Utility/LLDBLog.h" |
| 27 | #include "lldb/Utility/Log.h" |
| 28 | #include "lldb/Utility/RegisterValue.h" |
| 29 | #include "lldb/Utility/Scalar.h" |
| 30 | #include "lldb/Utility/Status.h" |
| 31 | #include "lldb/ValueObject/ValueObjectConstResult.h" |
| 32 | |
| 33 | using namespace lldb; |
| 34 | using namespace lldb_private; |
| 35 | |
| 36 | bool ABISysV_arm64::GetPointerReturnRegister(const char *&name) { |
| 37 | name = "x0" ; |
| 38 | return true; |
| 39 | } |
| 40 | |
| 41 | size_t ABISysV_arm64::GetRedZoneSize() const { return 128; } |
| 42 | |
| 43 | // Static Functions |
| 44 | |
| 45 | ABISP |
| 46 | ABISysV_arm64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
| 47 | const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); |
| 48 | const llvm::Triple::VendorType vendor_type = arch.GetTriple().getVendor(); |
| 49 | |
| 50 | if (vendor_type != llvm::Triple::Apple) { |
| 51 | if (arch_type == llvm::Triple::aarch64 || |
| 52 | arch_type == llvm::Triple::aarch64_32) { |
| 53 | return ABISP( |
| 54 | new ABISysV_arm64(std::move(process_sp), MakeMCRegisterInfo(arch))); |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | return ABISP(); |
| 59 | } |
| 60 | |
| 61 | static Status PushToLinuxGuardedControlStack(addr_t return_addr, |
| 62 | RegisterContext *reg_ctx, |
| 63 | Thread &thread) { |
| 64 | Status err; |
| 65 | |
| 66 | // If the Guarded Control Stack extension is present we may need to put the |
| 67 | // return address onto that stack. |
| 68 | const RegisterInfo *gcs_features_enabled_info = |
| 69 | reg_ctx->GetRegisterInfoByName(reg_name: "gcs_features_enabled" ); |
| 70 | if (!gcs_features_enabled_info) |
| 71 | return err; |
| 72 | |
| 73 | uint64_t gcs_features_enabled = reg_ctx->ReadRegisterAsUnsigned( |
| 74 | reg_info: gcs_features_enabled_info, LLDB_INVALID_ADDRESS); |
| 75 | if (gcs_features_enabled == LLDB_INVALID_ADDRESS) |
| 76 | return Status("Could not read GCS features enabled register." ); |
| 77 | |
| 78 | // Only attempt this if GCS is enabled. If it's not enabled then gcspr_el0 |
| 79 | // may point to unmapped memory. |
| 80 | if ((gcs_features_enabled & 1) == 0) |
| 81 | return err; |
| 82 | |
| 83 | const RegisterInfo *gcspr_el0_info = |
| 84 | reg_ctx->GetRegisterInfoByName(reg_name: "gcspr_el0" ); |
| 85 | if (!gcspr_el0_info) |
| 86 | return Status("Could not get register info for gcspr_el0." ); |
| 87 | |
| 88 | uint64_t gcspr_el0 = |
| 89 | reg_ctx->ReadRegisterAsUnsigned(reg_info: gcspr_el0_info, LLDB_INVALID_ADDRESS); |
| 90 | if (gcspr_el0 == LLDB_INVALID_ADDRESS) |
| 91 | return Status("Could not read gcspr_el0." ); |
| 92 | |
| 93 | // A link register entry on the GCS is 8 bytes. |
| 94 | gcspr_el0 -= 8; |
| 95 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: gcspr_el0_info, uval: gcspr_el0)) |
| 96 | return Status( |
| 97 | "Attempted to decrement gcspr_el0, but could not write to it." ); |
| 98 | |
| 99 | Status error; |
| 100 | size_t wrote = thread.GetProcess()->WriteMemory(vm_addr: gcspr_el0, buf: &return_addr, |
| 101 | size: sizeof(return_addr), error); |
| 102 | if ((wrote != sizeof(return_addr) || error.Fail())) { |
| 103 | // gcspr_el0 will be restored by the ThreadPlan's DoTakedown. |
| 104 | return Status("Failed to write new Guarded Control Stack entry." ); |
| 105 | } |
| 106 | |
| 107 | Log *log = GetLog(mask: LLDBLog::Expressions); |
| 108 | LLDB_LOGF(log, |
| 109 | "Pushed return address 0x%" PRIx64 " to Guarded Control Stack. " |
| 110 | "gcspr_el0 was 0%" PRIx64 ", is now 0x%" PRIx64 "." , |
| 111 | return_addr, gcspr_el0 - 8, gcspr_el0); |
| 112 | |
| 113 | // gcspr_el0 will be restored to the original value by lldb-server after |
| 114 | // the call has finished, which serves as the "pop". |
| 115 | |
| 116 | return err; |
| 117 | } |
| 118 | |
| 119 | bool ABISysV_arm64::PrepareTrivialCall(Thread &thread, addr_t sp, |
| 120 | addr_t func_addr, addr_t return_addr, |
| 121 | llvm::ArrayRef<addr_t> args) const { |
| 122 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
| 123 | if (!reg_ctx) |
| 124 | return false; |
| 125 | |
| 126 | Log *log = GetLog(mask: LLDBLog::Expressions); |
| 127 | |
| 128 | if (log) { |
| 129 | StreamString s; |
| 130 | s.Printf(format: "ABISysV_arm64::PrepareTrivialCall (tid = 0x%" PRIx64 |
| 131 | ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 |
| 132 | ", return_addr = 0x%" PRIx64, |
| 133 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
| 134 | (uint64_t)return_addr); |
| 135 | |
| 136 | for (size_t i = 0; i < args.size(); ++i) |
| 137 | s.Printf(format: ", arg%d = 0x%" PRIx64, static_cast<int>(i + 1), args[i]); |
| 138 | s.PutCString(cstr: ")" ); |
| 139 | log->PutString(str: s.GetString()); |
| 140 | } |
| 141 | |
| 142 | // x0 - x7 contain first 8 simple args |
| 143 | if (args.size() > 8) |
| 144 | return false; |
| 145 | |
| 146 | if (GetProcessSP()->GetTarget().GetArchitecture().GetTriple().isOSLinux()) { |
| 147 | Status err = PushToLinuxGuardedControlStack(return_addr, reg_ctx, thread); |
| 148 | // If we could not manage the GCS, the expression will certainly fail, |
| 149 | // and if we just carried on, that failure would be a lot more cryptic. |
| 150 | if (err.Fail()) { |
| 151 | LLDB_LOGF(log, "Failed to setup Guarded Call Stack: %s" , err.AsCString()); |
| 152 | return false; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | for (size_t i = 0; i < args.size(); ++i) { |
| 157 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo( |
| 158 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i); |
| 159 | LLDB_LOGF(log, "About to write arg%d (0x%" PRIx64 ") into %s" , |
| 160 | static_cast<int>(i + 1), args[i], reg_info->name); |
| 161 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
| 162 | return false; |
| 163 | } |
| 164 | |
| 165 | // Set "lr" to the return address |
| 166 | if (!reg_ctx->WriteRegisterFromUnsigned( |
| 167 | reg_info: reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 168 | LLDB_REGNUM_GENERIC_RA), |
| 169 | uval: return_addr)) |
| 170 | return false; |
| 171 | |
| 172 | // Set "sp" to the requested value |
| 173 | if (!reg_ctx->WriteRegisterFromUnsigned( |
| 174 | reg_info: reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 175 | LLDB_REGNUM_GENERIC_SP), |
| 176 | uval: sp)) |
| 177 | return false; |
| 178 | |
| 179 | // Set "pc" to the address requested |
| 180 | if (!reg_ctx->WriteRegisterFromUnsigned( |
| 181 | reg_info: reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 182 | LLDB_REGNUM_GENERIC_PC), |
| 183 | uval: func_addr)) |
| 184 | return false; |
| 185 | |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | // TODO: We dont support fp/SIMD arguments in v0-v7 |
| 190 | bool ABISysV_arm64::GetArgumentValues(Thread &thread, ValueList &values) const { |
| 191 | uint32_t num_values = values.GetSize(); |
| 192 | |
| 193 | ExecutionContext exe_ctx(thread.shared_from_this()); |
| 194 | |
| 195 | // Extract the register context so we can read arguments from registers |
| 196 | |
| 197 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
| 198 | |
| 199 | if (!reg_ctx) |
| 200 | return false; |
| 201 | |
| 202 | addr_t sp = 0; |
| 203 | |
| 204 | for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx) { |
| 205 | // We currently only support extracting values with Clang QualTypes. Do we |
| 206 | // care about others? |
| 207 | Value *value = values.GetValueAtIndex(idx: value_idx); |
| 208 | |
| 209 | if (!value) |
| 210 | return false; |
| 211 | |
| 212 | CompilerType value_type = value->GetCompilerType(); |
| 213 | if (value_type) { |
| 214 | bool is_signed = false; |
| 215 | size_t bit_width = 0; |
| 216 | std::optional<uint64_t> bit_size = |
| 217 | llvm::expectedToOptional(E: value_type.GetBitSize(exe_scope: &thread)); |
| 218 | if (!bit_size) |
| 219 | return false; |
| 220 | if (value_type.IsIntegerOrEnumerationType(is_signed)) { |
| 221 | bit_width = *bit_size; |
| 222 | } else if (value_type.IsPointerOrReferenceType()) { |
| 223 | bit_width = *bit_size; |
| 224 | } else { |
| 225 | // We only handle integer, pointer and reference types currently... |
| 226 | return false; |
| 227 | } |
| 228 | |
| 229 | if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8)) { |
| 230 | if (value_idx < 8) { |
| 231 | // Arguments 1-8 are in x0-x7... |
| 232 | const RegisterInfo *reg_info = nullptr; |
| 233 | reg_info = reg_ctx->GetRegisterInfo( |
| 234 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx); |
| 235 | |
| 236 | if (reg_info) { |
| 237 | RegisterValue reg_value; |
| 238 | |
| 239 | if (reg_ctx->ReadRegister(reg_info, reg_value)) { |
| 240 | if (is_signed) |
| 241 | reg_value.SignExtend(sign_bitpos: bit_width); |
| 242 | if (!reg_value.GetScalarValue(scalar&: value->GetScalar())) |
| 243 | return false; |
| 244 | continue; |
| 245 | } |
| 246 | } |
| 247 | return false; |
| 248 | } else { |
| 249 | // TODO: Verify for stack layout for SysV |
| 250 | if (sp == 0) { |
| 251 | // Read the stack pointer if we already haven't read it |
| 252 | sp = reg_ctx->GetSP(fail_value: 0); |
| 253 | if (sp == 0) |
| 254 | return false; |
| 255 | } |
| 256 | |
| 257 | // Arguments 5 on up are on the stack |
| 258 | const uint32_t arg_byte_size = (bit_width + (8 - 1)) / 8; |
| 259 | Status error; |
| 260 | if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory( |
| 261 | addr: sp, byte_size: arg_byte_size, is_signed, scalar&: value->GetScalar(), error)) |
| 262 | return false; |
| 263 | |
| 264 | sp += arg_byte_size; |
| 265 | // Align up to the next 8 byte boundary if needed |
| 266 | if (sp % 8) { |
| 267 | sp >>= 3; |
| 268 | sp += 1; |
| 269 | sp <<= 3; |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | return true; |
| 276 | } |
| 277 | |
| 278 | Status ABISysV_arm64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
| 279 | lldb::ValueObjectSP &new_value_sp) { |
| 280 | Status error; |
| 281 | if (!new_value_sp) { |
| 282 | error = Status::FromErrorString(str: "Empty value object for return value." ); |
| 283 | return error; |
| 284 | } |
| 285 | |
| 286 | CompilerType return_value_type = new_value_sp->GetCompilerType(); |
| 287 | if (!return_value_type) { |
| 288 | error = Status::FromErrorString(str: "Null clang type for return value." ); |
| 289 | return error; |
| 290 | } |
| 291 | |
| 292 | Thread *thread = frame_sp->GetThread().get(); |
| 293 | |
| 294 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
| 295 | |
| 296 | if (reg_ctx) { |
| 297 | DataExtractor data; |
| 298 | Status data_error; |
| 299 | const uint64_t byte_size = new_value_sp->GetData(data, error&: data_error); |
| 300 | if (data_error.Fail()) { |
| 301 | error = Status::FromErrorStringWithFormat( |
| 302 | format: "Couldn't convert return value to raw data: %s" , |
| 303 | data_error.AsCString()); |
| 304 | return error; |
| 305 | } |
| 306 | |
| 307 | const uint32_t type_flags = return_value_type.GetTypeInfo(pointee_or_element_compiler_type: nullptr); |
| 308 | if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) { |
| 309 | if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) { |
| 310 | // Extract the register context so we can read arguments from registers |
| 311 | lldb::offset_t offset = 0; |
| 312 | if (byte_size <= 16) { |
| 313 | const RegisterInfo *x0_info = reg_ctx->GetRegisterInfo( |
| 314 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1); |
| 315 | if (byte_size <= 8) { |
| 316 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size); |
| 317 | |
| 318 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: x0_info, uval: raw_value)) |
| 319 | error = Status::FromErrorString(str: "failed to write register x0" ); |
| 320 | } else { |
| 321 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: 8); |
| 322 | |
| 323 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info: x0_info, uval: raw_value)) { |
| 324 | const RegisterInfo *x1_info = reg_ctx->GetRegisterInfo( |
| 325 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2); |
| 326 | raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: byte_size - offset); |
| 327 | |
| 328 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: x1_info, uval: raw_value)) |
| 329 | error = Status::FromErrorString(str: "failed to write register x1" ); |
| 330 | } |
| 331 | } |
| 332 | } else { |
| 333 | error = Status::FromErrorString( |
| 334 | str: "We don't support returning longer than 128 bit " |
| 335 | "integer values at present." ); |
| 336 | } |
| 337 | } else if (type_flags & eTypeIsFloat) { |
| 338 | if (type_flags & eTypeIsComplex) { |
| 339 | // Don't handle complex yet. |
| 340 | error = Status::FromErrorString( |
| 341 | str: "returning complex float values are not supported" ); |
| 342 | } else { |
| 343 | const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName(reg_name: "v0" , start_idx: 0); |
| 344 | |
| 345 | if (v0_info) { |
| 346 | if (byte_size <= 16) { |
| 347 | RegisterValue reg_value; |
| 348 | error = reg_value.SetValueFromData(reg_info: *v0_info, data, offset: 0, partial_data_ok: true); |
| 349 | if (error.Success()) |
| 350 | if (!reg_ctx->WriteRegister(reg_info: v0_info, reg_value)) |
| 351 | error = |
| 352 | Status::FromErrorString(str: "failed to write register v0" ); |
| 353 | } else { |
| 354 | error = Status::FromErrorString( |
| 355 | str: "returning float values longer than 128 " |
| 356 | "bits are not supported" ); |
| 357 | } |
| 358 | } else |
| 359 | error = Status::FromErrorString( |
| 360 | str: "v0 register is not available on this target" ); |
| 361 | } |
| 362 | } |
| 363 | } else if (type_flags & eTypeIsVector) { |
| 364 | if (byte_size > 0) { |
| 365 | const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName(reg_name: "v0" , start_idx: 0); |
| 366 | |
| 367 | if (v0_info) { |
| 368 | if (byte_size <= v0_info->byte_size) { |
| 369 | RegisterValue reg_value; |
| 370 | error = reg_value.SetValueFromData(reg_info: *v0_info, data, offset: 0, partial_data_ok: true); |
| 371 | if (error.Success()) { |
| 372 | if (!reg_ctx->WriteRegister(reg_info: v0_info, reg_value)) |
| 373 | error = Status::FromErrorString(str: "failed to write register v0" ); |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | } else { |
| 380 | error = Status::FromErrorString(str: "no registers are available" ); |
| 381 | } |
| 382 | |
| 383 | return error; |
| 384 | } |
| 385 | |
| 386 | // AAPCS64 (Procedure Call Standard for the ARM 64-bit Architecture) says |
| 387 | // registers x19 through x28 and sp are callee preserved. v8-v15 are non- |
| 388 | // volatile (and specifically only the lower 8 bytes of these regs), the rest |
| 389 | // of the fp/SIMD registers are volatile. |
| 390 | |
| 391 | // We treat x29 as callee preserved also, else the unwinder won't try to |
| 392 | // retrieve fp saves. |
| 393 | |
| 394 | bool ABISysV_arm64::RegisterIsVolatile(const RegisterInfo *reg_info) { |
| 395 | if (reg_info) { |
| 396 | const char *name = reg_info->name; |
| 397 | |
| 398 | // Sometimes we'll be called with the "alternate" name for these registers; |
| 399 | // recognize them as non-volatile. |
| 400 | |
| 401 | if (name[0] == 'p' && name[1] == 'c') // pc |
| 402 | return false; |
| 403 | if (name[0] == 'f' && name[1] == 'p') // fp |
| 404 | return false; |
| 405 | if (name[0] == 's' && name[1] == 'p') // sp |
| 406 | return false; |
| 407 | if (name[0] == 'l' && name[1] == 'r') // lr |
| 408 | return false; |
| 409 | |
| 410 | if (name[0] == 'x' || name[0] == 'r') { |
| 411 | // Volatile registers: x0-x18 |
| 412 | // Although documentation says only x19-28 + sp are callee saved We ll |
| 413 | // also have to treat x30 as non-volatile. Each dwarf frame has its own |
| 414 | // value of lr. Return false for the non-volatile gpr regs, true for |
| 415 | // everything else |
| 416 | switch (name[1]) { |
| 417 | case '1': |
| 418 | switch (name[2]) { |
| 419 | case '9': |
| 420 | return false; // x19 is non-volatile |
| 421 | default: |
| 422 | return true; |
| 423 | } |
| 424 | break; |
| 425 | case '2': |
| 426 | switch (name[2]) { |
| 427 | case '0': |
| 428 | case '1': |
| 429 | case '2': |
| 430 | case '3': |
| 431 | case '4': |
| 432 | case '5': |
| 433 | case '6': |
| 434 | case '7': |
| 435 | case '8': |
| 436 | return false; // x20 - 28 are non-volatile |
| 437 | case '9': |
| 438 | return false; // x29 aka fp treat as non-volatile |
| 439 | default: |
| 440 | return true; |
| 441 | } |
| 442 | case '3': // x30 (lr) and x31 (sp) treat as non-volatile |
| 443 | if (name[2] == '0' || name[2] == '1') |
| 444 | return false; |
| 445 | break; |
| 446 | default: |
| 447 | return true; // all volatile cases not handled above fall here. |
| 448 | } |
| 449 | } else if (name[0] == 'v' || name[0] == 's' || name[0] == 'd') { |
| 450 | // Volatile registers: v0-7, v16-v31 |
| 451 | // Return false for non-volatile fp/SIMD regs, true for everything else |
| 452 | switch (name[1]) { |
| 453 | case '8': |
| 454 | case '9': |
| 455 | return false; // v8-v9 are non-volatile |
| 456 | case '1': |
| 457 | switch (name[2]) { |
| 458 | case '0': |
| 459 | case '1': |
| 460 | case '2': |
| 461 | case '3': |
| 462 | case '4': |
| 463 | case '5': |
| 464 | return false; // v10-v15 are non-volatile |
| 465 | default: |
| 466 | return true; |
| 467 | } |
| 468 | default: |
| 469 | return true; |
| 470 | } |
| 471 | } |
| 472 | } |
| 473 | return true; |
| 474 | } |
| 475 | |
| 476 | static bool ( |
| 477 | ExecutionContext &exe_ctx, RegisterContext *reg_ctx, |
| 478 | const CompilerType &value_type, |
| 479 | bool is_return_value, // false => parameter, true => return value |
| 480 | uint32_t &NGRN, // NGRN (see ABI documentation) |
| 481 | uint32_t &NSRN, // NSRN (see ABI documentation) |
| 482 | DataExtractor &data) { |
| 483 | std::optional<uint64_t> byte_size = llvm::expectedToOptional( |
| 484 | E: value_type.GetByteSize(exe_scope: exe_ctx.GetBestExecutionContextScope())); |
| 485 | |
| 486 | if (byte_size || *byte_size == 0) |
| 487 | return false; |
| 488 | |
| 489 | std::unique_ptr<DataBufferHeap> heap_data_up( |
| 490 | new DataBufferHeap(*byte_size, 0)); |
| 491 | const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder(); |
| 492 | Status error; |
| 493 | |
| 494 | CompilerType base_type; |
| 495 | const uint32_t homogeneous_count = |
| 496 | value_type.IsHomogeneousAggregate(base_type_ptr: &base_type); |
| 497 | if (homogeneous_count > 0 && homogeneous_count <= 8) { |
| 498 | // Make sure we have enough registers |
| 499 | if (NSRN < 8 && (8 - NSRN) >= homogeneous_count) { |
| 500 | if (!base_type) |
| 501 | return false; |
| 502 | std::optional<uint64_t> base_byte_size = llvm::expectedToOptional( |
| 503 | E: base_type.GetByteSize(exe_scope: exe_ctx.GetBestExecutionContextScope())); |
| 504 | if (!base_byte_size) |
| 505 | return false; |
| 506 | uint32_t data_offset = 0; |
| 507 | |
| 508 | for (uint32_t i = 0; i < homogeneous_count; ++i) { |
| 509 | char v_name[8]; |
| 510 | ::snprintf(s: v_name, maxlen: sizeof(v_name), format: "v%u" , NSRN); |
| 511 | const RegisterInfo *reg_info = |
| 512 | reg_ctx->GetRegisterInfoByName(reg_name: v_name, start_idx: 0); |
| 513 | if (reg_info == nullptr) |
| 514 | return false; |
| 515 | |
| 516 | if (*base_byte_size > reg_info->byte_size) |
| 517 | return false; |
| 518 | |
| 519 | RegisterValue reg_value; |
| 520 | |
| 521 | if (!reg_ctx->ReadRegister(reg_info, reg_value)) |
| 522 | return false; |
| 523 | |
| 524 | // Make sure we have enough room in "heap_data_up" |
| 525 | if ((data_offset + *base_byte_size) <= heap_data_up->GetByteSize()) { |
| 526 | const size_t bytes_copied = reg_value.GetAsMemoryData( |
| 527 | reg_info: *reg_info, dst: heap_data_up->GetBytes() + data_offset, |
| 528 | dst_len: *base_byte_size, dst_byte_order: byte_order, error); |
| 529 | if (bytes_copied != *base_byte_size) |
| 530 | return false; |
| 531 | data_offset += bytes_copied; |
| 532 | ++NSRN; |
| 533 | } else |
| 534 | return false; |
| 535 | } |
| 536 | data.SetByteOrder(byte_order); |
| 537 | data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize()); |
| 538 | data.SetData(data_sp: DataBufferSP(heap_data_up.release())); |
| 539 | return true; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | const size_t max_reg_byte_size = 16; |
| 544 | if (*byte_size <= max_reg_byte_size) { |
| 545 | size_t bytes_left = *byte_size; |
| 546 | uint32_t data_offset = 0; |
| 547 | while (data_offset < *byte_size) { |
| 548 | if (NGRN >= 8) |
| 549 | return false; |
| 550 | |
| 551 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo( |
| 552 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN); |
| 553 | if (reg_info == nullptr) |
| 554 | return false; |
| 555 | |
| 556 | RegisterValue reg_value; |
| 557 | |
| 558 | if (!reg_ctx->ReadRegister(reg_info, reg_value)) |
| 559 | return false; |
| 560 | |
| 561 | const size_t curr_byte_size = std::min<size_t>(a: 8, b: bytes_left); |
| 562 | const size_t bytes_copied = reg_value.GetAsMemoryData( |
| 563 | reg_info: *reg_info, dst: heap_data_up->GetBytes() + data_offset, dst_len: curr_byte_size, |
| 564 | dst_byte_order: byte_order, error); |
| 565 | if (bytes_copied == 0) |
| 566 | return false; |
| 567 | if (bytes_copied >= bytes_left) |
| 568 | break; |
| 569 | data_offset += bytes_copied; |
| 570 | bytes_left -= bytes_copied; |
| 571 | ++NGRN; |
| 572 | } |
| 573 | } else { |
| 574 | const RegisterInfo *reg_info = nullptr; |
| 575 | if (is_return_value) { |
| 576 | // The SysV arm64 ABI doesn't require you to write the return location |
| 577 | // back to x8 before returning from the function the way the x86_64 ABI |
| 578 | // does. It looks like all the users of this ABI currently choose not to |
| 579 | // do that, and so we can't reconstruct stack based returns on exit |
| 580 | // from the function. |
| 581 | return false; |
| 582 | } else { |
| 583 | // We are assuming we are stopped at the first instruction in a function |
| 584 | // and that the ABI is being respected so all parameters appear where |
| 585 | // they should be (functions with no external linkage can legally violate |
| 586 | // the ABI). |
| 587 | if (NGRN >= 8) |
| 588 | return false; |
| 589 | |
| 590 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 591 | LLDB_REGNUM_GENERIC_ARG1 + NGRN); |
| 592 | if (reg_info == nullptr) |
| 593 | return false; |
| 594 | ++NGRN; |
| 595 | } |
| 596 | |
| 597 | const lldb::addr_t value_addr = |
| 598 | reg_ctx->ReadRegisterAsUnsigned(reg_info, LLDB_INVALID_ADDRESS); |
| 599 | |
| 600 | if (value_addr == LLDB_INVALID_ADDRESS) |
| 601 | return false; |
| 602 | |
| 603 | if (exe_ctx.GetProcessRef().ReadMemory( |
| 604 | vm_addr: value_addr, buf: heap_data_up->GetBytes(), size: heap_data_up->GetByteSize(), |
| 605 | error) != heap_data_up->GetByteSize()) { |
| 606 | return false; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | data.SetByteOrder(byte_order); |
| 611 | data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize()); |
| 612 | data.SetData(data_sp: DataBufferSP(heap_data_up.release())); |
| 613 | return true; |
| 614 | } |
| 615 | |
| 616 | ValueObjectSP ABISysV_arm64::GetReturnValueObjectImpl( |
| 617 | Thread &thread, CompilerType &return_compiler_type) const { |
| 618 | ValueObjectSP return_valobj_sp; |
| 619 | Value value; |
| 620 | |
| 621 | ExecutionContext exe_ctx(thread.shared_from_this()); |
| 622 | if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr) |
| 623 | return return_valobj_sp; |
| 624 | |
| 625 | // value.SetContext (Value::eContextTypeClangType, return_compiler_type); |
| 626 | value.SetCompilerType(return_compiler_type); |
| 627 | |
| 628 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
| 629 | if (!reg_ctx) |
| 630 | return return_valobj_sp; |
| 631 | |
| 632 | std::optional<uint64_t> byte_size = |
| 633 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
| 634 | if (!byte_size) |
| 635 | return return_valobj_sp; |
| 636 | |
| 637 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(pointee_or_element_compiler_type: nullptr); |
| 638 | if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) { |
| 639 | value.SetValueType(Value::ValueType::Scalar); |
| 640 | |
| 641 | bool success = false; |
| 642 | if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) { |
| 643 | // Extract the register context so we can read arguments from registers |
| 644 | if (*byte_size <= 8) { |
| 645 | const RegisterInfo *x0_reg_info = nullptr; |
| 646 | x0_reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 647 | LLDB_REGNUM_GENERIC_ARG1); |
| 648 | if (x0_reg_info) { |
| 649 | uint64_t raw_value = |
| 650 | thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg_info: x0_reg_info, |
| 651 | fail_value: 0); |
| 652 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
| 653 | switch (*byte_size) { |
| 654 | default: |
| 655 | break; |
| 656 | case 16: // uint128_t |
| 657 | // In register x0 and x1 |
| 658 | { |
| 659 | const RegisterInfo *x1_reg_info = nullptr; |
| 660 | x1_reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 661 | LLDB_REGNUM_GENERIC_ARG2); |
| 662 | |
| 663 | if (x1_reg_info) { |
| 664 | if (*byte_size <= |
| 665 | x0_reg_info->byte_size + x1_reg_info->byte_size) { |
| 666 | std::unique_ptr<DataBufferHeap> heap_data_up( |
| 667 | new DataBufferHeap(*byte_size, 0)); |
| 668 | const ByteOrder byte_order = |
| 669 | exe_ctx.GetProcessRef().GetByteOrder(); |
| 670 | RegisterValue x0_reg_value; |
| 671 | RegisterValue x1_reg_value; |
| 672 | if (reg_ctx->ReadRegister(reg_info: x0_reg_info, reg_value&: x0_reg_value) && |
| 673 | reg_ctx->ReadRegister(reg_info: x1_reg_info, reg_value&: x1_reg_value)) { |
| 674 | Status error; |
| 675 | if (x0_reg_value.GetAsMemoryData( |
| 676 | reg_info: *x0_reg_info, dst: heap_data_up->GetBytes() + 0, dst_len: 8, |
| 677 | dst_byte_order: byte_order, error) && |
| 678 | x1_reg_value.GetAsMemoryData( |
| 679 | reg_info: *x1_reg_info, dst: heap_data_up->GetBytes() + 8, dst_len: 8, |
| 680 | dst_byte_order: byte_order, error)) { |
| 681 | DataExtractor data( |
| 682 | DataBufferSP(heap_data_up.release()), byte_order, |
| 683 | exe_ctx.GetProcessRef().GetAddressByteSize()); |
| 684 | |
| 685 | return_valobj_sp = ValueObjectConstResult::Create( |
| 686 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
| 687 | return return_valobj_sp; |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | } |
| 693 | break; |
| 694 | case sizeof(uint64_t): |
| 695 | if (is_signed) |
| 696 | value.GetScalar() = (int64_t)(raw_value); |
| 697 | else |
| 698 | value.GetScalar() = (uint64_t)(raw_value); |
| 699 | success = true; |
| 700 | break; |
| 701 | |
| 702 | case sizeof(uint32_t): |
| 703 | if (is_signed) |
| 704 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
| 705 | else |
| 706 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
| 707 | success = true; |
| 708 | break; |
| 709 | |
| 710 | case sizeof(uint16_t): |
| 711 | if (is_signed) |
| 712 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
| 713 | else |
| 714 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
| 715 | success = true; |
| 716 | break; |
| 717 | |
| 718 | case sizeof(uint8_t): |
| 719 | if (is_signed) |
| 720 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
| 721 | else |
| 722 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
| 723 | success = true; |
| 724 | break; |
| 725 | } |
| 726 | } |
| 727 | } |
| 728 | } else if (type_flags & eTypeIsFloat) { |
| 729 | if (type_flags & eTypeIsComplex) { |
| 730 | // Don't handle complex yet. |
| 731 | } else { |
| 732 | if (*byte_size <= sizeof(long double)) { |
| 733 | const RegisterInfo *v0_reg_info = |
| 734 | reg_ctx->GetRegisterInfoByName(reg_name: "v0" , start_idx: 0); |
| 735 | RegisterValue v0_value; |
| 736 | if (reg_ctx->ReadRegister(reg_info: v0_reg_info, reg_value&: v0_value)) { |
| 737 | DataExtractor data; |
| 738 | if (v0_value.GetData(data)) { |
| 739 | lldb::offset_t offset = 0; |
| 740 | if (*byte_size == sizeof(float)) { |
| 741 | value.GetScalar() = data.GetFloat(offset_ptr: &offset); |
| 742 | success = true; |
| 743 | } else if (*byte_size == sizeof(double)) { |
| 744 | value.GetScalar() = data.GetDouble(offset_ptr: &offset); |
| 745 | success = true; |
| 746 | } else if (*byte_size == sizeof(long double)) { |
| 747 | value.GetScalar() = data.GetLongDouble(offset_ptr: &offset); |
| 748 | success = true; |
| 749 | } |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | if (success) |
| 757 | return_valobj_sp = ValueObjectConstResult::Create( |
| 758 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
| 759 | } else if (type_flags & eTypeIsVector && *byte_size <= 16) { |
| 760 | if (*byte_size > 0) { |
| 761 | const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName(reg_name: "v0" , start_idx: 0); |
| 762 | |
| 763 | if (v0_info) { |
| 764 | std::unique_ptr<DataBufferHeap> heap_data_up( |
| 765 | new DataBufferHeap(*byte_size, 0)); |
| 766 | const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder(); |
| 767 | RegisterValue reg_value; |
| 768 | if (reg_ctx->ReadRegister(reg_info: v0_info, reg_value)) { |
| 769 | Status error; |
| 770 | if (reg_value.GetAsMemoryData(reg_info: *v0_info, dst: heap_data_up->GetBytes(), |
| 771 | dst_len: heap_data_up->GetByteSize(), dst_byte_order: byte_order, |
| 772 | error)) { |
| 773 | DataExtractor data(DataBufferSP(heap_data_up.release()), byte_order, |
| 774 | exe_ctx.GetProcessRef().GetAddressByteSize()); |
| 775 | return_valobj_sp = ValueObjectConstResult::Create( |
| 776 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
| 777 | } |
| 778 | } |
| 779 | } |
| 780 | } |
| 781 | } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass || |
| 782 | (type_flags & eTypeIsVector && *byte_size > 16)) { |
| 783 | DataExtractor data; |
| 784 | |
| 785 | uint32_t NGRN = 0; // Search ABI docs for NGRN |
| 786 | uint32_t NSRN = 0; // Search ABI docs for NSRN |
| 787 | const bool is_return_value = true; |
| 788 | if (LoadValueFromConsecutiveGPRRegisters( |
| 789 | exe_ctx, reg_ctx, value_type: return_compiler_type, is_return_value, NGRN, NSRN, |
| 790 | data)) { |
| 791 | return_valobj_sp = ValueObjectConstResult::Create( |
| 792 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
| 793 | } |
| 794 | } |
| 795 | return return_valobj_sp; |
| 796 | } |
| 797 | |
| 798 | lldb::addr_t ABISysV_arm64::FixAddress(addr_t pc, addr_t mask) { |
| 799 | if (mask == LLDB_INVALID_ADDRESS_MASK) |
| 800 | return pc; |
| 801 | lldb::addr_t pac_sign_extension = 0x0080000000000000ULL; |
| 802 | return (pc & pac_sign_extension) ? pc | mask : pc & (~mask); |
| 803 | } |
| 804 | |
| 805 | // Reads code or data address mask for the current Linux process. |
| 806 | static lldb::addr_t ReadLinuxProcessAddressMask(lldb::ProcessSP process_sp, |
| 807 | llvm::StringRef reg_name) { |
| 808 | // LLDB_INVALID_ADDRESS_MASK means there isn't a mask or it has not been read |
| 809 | // yet. We do not return the top byte mask unless thread_sp is valid. This |
| 810 | // prevents calls to this function before the thread is setup locking in the |
| 811 | // value to just the top byte mask, in cases where pointer authentication |
| 812 | // might also be active. |
| 813 | uint64_t address_mask = LLDB_INVALID_ADDRESS_MASK; |
| 814 | lldb::ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); |
| 815 | if (thread_sp) { |
| 816 | // Linux configures user-space virtual addresses with top byte ignored. |
| 817 | // We set default value of mask such that top byte is masked out. |
| 818 | address_mask = ~((1ULL << 56) - 1); |
| 819 | // If Pointer Authentication feature is enabled then Linux exposes |
| 820 | // PAC data and code mask register. Try reading relevant register |
| 821 | // below and merge it with default address mask calculated above. |
| 822 | lldb::RegisterContextSP reg_ctx_sp = thread_sp->GetRegisterContext(); |
| 823 | if (reg_ctx_sp) { |
| 824 | const RegisterInfo *reg_info = |
| 825 | reg_ctx_sp->GetRegisterInfoByName(reg_name, start_idx: 0); |
| 826 | if (reg_info) { |
| 827 | lldb::addr_t mask_reg_val = reg_ctx_sp->ReadRegisterAsUnsigned( |
| 828 | reg: reg_info->kinds[eRegisterKindLLDB], LLDB_INVALID_ADDRESS); |
| 829 | if (mask_reg_val != LLDB_INVALID_ADDRESS) |
| 830 | address_mask |= mask_reg_val; |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | return address_mask; |
| 835 | } |
| 836 | |
| 837 | lldb::addr_t ABISysV_arm64::FixCodeAddress(lldb::addr_t pc) { |
| 838 | if (lldb::ProcessSP process_sp = GetProcessSP()) { |
| 839 | if (process_sp->GetTarget().GetArchitecture().GetTriple().isOSLinux() && |
| 840 | process_sp->GetCodeAddressMask() == LLDB_INVALID_ADDRESS_MASK) |
| 841 | process_sp->SetCodeAddressMask( |
| 842 | ReadLinuxProcessAddressMask(process_sp, reg_name: "code_mask" )); |
| 843 | |
| 844 | // b55 is the highest bit outside TBI (if it's enabled), use |
| 845 | // it to determine if the high bits are set to 0 or 1. |
| 846 | const addr_t pac_sign_extension = 0x0080000000000000ULL; |
| 847 | addr_t mask = process_sp->GetCodeAddressMask(); |
| 848 | // Test if the high memory mask has been overriden separately |
| 849 | if (pc & pac_sign_extension && |
| 850 | process_sp->GetHighmemCodeAddressMask() != LLDB_INVALID_ADDRESS_MASK) |
| 851 | mask = process_sp->GetHighmemCodeAddressMask(); |
| 852 | |
| 853 | return FixAddress(pc, mask); |
| 854 | } |
| 855 | return pc; |
| 856 | } |
| 857 | |
| 858 | lldb::addr_t ABISysV_arm64::FixDataAddress(lldb::addr_t pc) { |
| 859 | if (lldb::ProcessSP process_sp = GetProcessSP()) { |
| 860 | if (process_sp->GetTarget().GetArchitecture().GetTriple().isOSLinux() && |
| 861 | process_sp->GetDataAddressMask() == LLDB_INVALID_ADDRESS_MASK) |
| 862 | process_sp->SetDataAddressMask( |
| 863 | ReadLinuxProcessAddressMask(process_sp, reg_name: "data_mask" )); |
| 864 | |
| 865 | // b55 is the highest bit outside TBI (if it's enabled), use |
| 866 | // it to determine if the high bits are set to 0 or 1. |
| 867 | const addr_t pac_sign_extension = 0x0080000000000000ULL; |
| 868 | addr_t mask = process_sp->GetDataAddressMask(); |
| 869 | // Test if the high memory mask has been overriden separately |
| 870 | if (pc & pac_sign_extension && |
| 871 | process_sp->GetHighmemDataAddressMask() != LLDB_INVALID_ADDRESS_MASK) |
| 872 | mask = process_sp->GetHighmemDataAddressMask(); |
| 873 | |
| 874 | return FixAddress(pc, mask); |
| 875 | } |
| 876 | return pc; |
| 877 | } |
| 878 | |
| 879 | void ABISysV_arm64::Initialize() { |
| 880 | PluginManager::RegisterPlugin(name: GetPluginNameStatic(), |
| 881 | description: "SysV ABI for AArch64 targets" , create_callback: CreateInstance); |
| 882 | } |
| 883 | |
| 884 | void ABISysV_arm64::Terminate() { |
| 885 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
| 886 | } |
| 887 | |