1 | //===-- ABISysV_arm64.cpp -------------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABISysV_arm64.h" |
10 | |
11 | #include <optional> |
12 | #include <vector> |
13 | |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/TargetParser/Triple.h" |
16 | |
17 | #include "lldb/Core/Module.h" |
18 | #include "lldb/Core/PluginManager.h" |
19 | #include "lldb/Core/Value.h" |
20 | #include "lldb/Core/ValueObjectConstResult.h" |
21 | #include "lldb/Symbol/UnwindPlan.h" |
22 | #include "lldb/Target/Process.h" |
23 | #include "lldb/Target/RegisterContext.h" |
24 | #include "lldb/Target/Target.h" |
25 | #include "lldb/Target/Thread.h" |
26 | #include "lldb/Utility/ConstString.h" |
27 | #include "lldb/Utility/LLDBLog.h" |
28 | #include "lldb/Utility/Log.h" |
29 | #include "lldb/Utility/RegisterValue.h" |
30 | #include "lldb/Utility/Scalar.h" |
31 | #include "lldb/Utility/Status.h" |
32 | |
33 | #include "Utility/ARM64_DWARF_Registers.h" |
34 | |
35 | using namespace lldb; |
36 | using namespace lldb_private; |
37 | |
38 | bool ABISysV_arm64::GetPointerReturnRegister(const char *&name) { |
39 | name = "x0"; |
40 | return true; |
41 | } |
42 | |
43 | size_t ABISysV_arm64::GetRedZoneSize() const { return 128; } |
44 | |
45 | // Static Functions |
46 | |
47 | ABISP |
48 | ABISysV_arm64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
49 | const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); |
50 | const llvm::Triple::VendorType vendor_type = arch.GetTriple().getVendor(); |
51 | |
52 | if (vendor_type != llvm::Triple::Apple) { |
53 | if (arch_type == llvm::Triple::aarch64 || |
54 | arch_type == llvm::Triple::aarch64_32) { |
55 | return ABISP( |
56 | new ABISysV_arm64(std::move(process_sp), MakeMCRegisterInfo(arch))); |
57 | } |
58 | } |
59 | |
60 | return ABISP(); |
61 | } |
62 | |
63 | bool ABISysV_arm64::PrepareTrivialCall(Thread &thread, addr_t sp, |
64 | addr_t func_addr, addr_t return_addr, |
65 | llvm::ArrayRef<addr_t> args) const { |
66 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
67 | if (!reg_ctx) |
68 | return false; |
69 | |
70 | Log *log = GetLog(mask: LLDBLog::Expressions); |
71 | |
72 | if (log) { |
73 | StreamString s; |
74 | s.Printf(format: "ABISysV_arm64::PrepareTrivialCall (tid = 0x%"PRIx64 |
75 | ", sp = 0x%"PRIx64 ", func_addr = 0x%"PRIx64 |
76 | ", return_addr = 0x%"PRIx64, |
77 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
78 | (uint64_t)return_addr); |
79 | |
80 | for (size_t i = 0; i < args.size(); ++i) |
81 | s.Printf(format: ", arg%d = 0x%"PRIx64, static_cast<int>(i + 1), args[i]); |
82 | s.PutCString(cstr: ")"); |
83 | log->PutString(str: s.GetString()); |
84 | } |
85 | |
86 | // x0 - x7 contain first 8 simple args |
87 | if (args.size() > 8) |
88 | return false; |
89 | |
90 | for (size_t i = 0; i < args.size(); ++i) { |
91 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo( |
92 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i); |
93 | LLDB_LOGF(log, "About to write arg%d (0x%"PRIx64 ") into %s", |
94 | static_cast<int>(i + 1), args[i], reg_info->name); |
95 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
96 | return false; |
97 | } |
98 | |
99 | // Set "lr" to the return address |
100 | if (!reg_ctx->WriteRegisterFromUnsigned( |
101 | reg_info: reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
102 | LLDB_REGNUM_GENERIC_RA), |
103 | uval: return_addr)) |
104 | return false; |
105 | |
106 | // Set "sp" to the requested value |
107 | if (!reg_ctx->WriteRegisterFromUnsigned( |
108 | reg_info: reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
109 | LLDB_REGNUM_GENERIC_SP), |
110 | uval: sp)) |
111 | return false; |
112 | |
113 | // Set "pc" to the address requested |
114 | if (!reg_ctx->WriteRegisterFromUnsigned( |
115 | reg_info: reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
116 | LLDB_REGNUM_GENERIC_PC), |
117 | uval: func_addr)) |
118 | return false; |
119 | |
120 | return true; |
121 | } |
122 | |
123 | // TODO: We dont support fp/SIMD arguments in v0-v7 |
124 | bool ABISysV_arm64::GetArgumentValues(Thread &thread, ValueList &values) const { |
125 | uint32_t num_values = values.GetSize(); |
126 | |
127 | ExecutionContext exe_ctx(thread.shared_from_this()); |
128 | |
129 | // Extract the register context so we can read arguments from registers |
130 | |
131 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
132 | |
133 | if (!reg_ctx) |
134 | return false; |
135 | |
136 | addr_t sp = 0; |
137 | |
138 | for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx) { |
139 | // We currently only support extracting values with Clang QualTypes. Do we |
140 | // care about others? |
141 | Value *value = values.GetValueAtIndex(idx: value_idx); |
142 | |
143 | if (!value) |
144 | return false; |
145 | |
146 | CompilerType value_type = value->GetCompilerType(); |
147 | if (value_type) { |
148 | bool is_signed = false; |
149 | size_t bit_width = 0; |
150 | std::optional<uint64_t> bit_size = value_type.GetBitSize(exe_scope: &thread); |
151 | if (!bit_size) |
152 | return false; |
153 | if (value_type.IsIntegerOrEnumerationType(is_signed)) { |
154 | bit_width = *bit_size; |
155 | } else if (value_type.IsPointerOrReferenceType()) { |
156 | bit_width = *bit_size; |
157 | } else { |
158 | // We only handle integer, pointer and reference types currently... |
159 | return false; |
160 | } |
161 | |
162 | if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8)) { |
163 | if (value_idx < 8) { |
164 | // Arguments 1-8 are in x0-x7... |
165 | const RegisterInfo *reg_info = nullptr; |
166 | reg_info = reg_ctx->GetRegisterInfo( |
167 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx); |
168 | |
169 | if (reg_info) { |
170 | RegisterValue reg_value; |
171 | |
172 | if (reg_ctx->ReadRegister(reg_info, reg_value)) { |
173 | if (is_signed) |
174 | reg_value.SignExtend(sign_bitpos: bit_width); |
175 | if (!reg_value.GetScalarValue(scalar&: value->GetScalar())) |
176 | return false; |
177 | continue; |
178 | } |
179 | } |
180 | return false; |
181 | } else { |
182 | // TODO: Verify for stack layout for SysV |
183 | if (sp == 0) { |
184 | // Read the stack pointer if we already haven't read it |
185 | sp = reg_ctx->GetSP(fail_value: 0); |
186 | if (sp == 0) |
187 | return false; |
188 | } |
189 | |
190 | // Arguments 5 on up are on the stack |
191 | const uint32_t arg_byte_size = (bit_width + (8 - 1)) / 8; |
192 | Status error; |
193 | if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory( |
194 | addr: sp, byte_size: arg_byte_size, is_signed, scalar&: value->GetScalar(), error)) |
195 | return false; |
196 | |
197 | sp += arg_byte_size; |
198 | // Align up to the next 8 byte boundary if needed |
199 | if (sp % 8) { |
200 | sp >>= 3; |
201 | sp += 1; |
202 | sp <<= 3; |
203 | } |
204 | } |
205 | } |
206 | } |
207 | } |
208 | return true; |
209 | } |
210 | |
211 | Status ABISysV_arm64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
212 | lldb::ValueObjectSP &new_value_sp) { |
213 | Status error; |
214 | if (!new_value_sp) { |
215 | error.SetErrorString("Empty value object for return value."); |
216 | return error; |
217 | } |
218 | |
219 | CompilerType return_value_type = new_value_sp->GetCompilerType(); |
220 | if (!return_value_type) { |
221 | error.SetErrorString("Null clang type for return value."); |
222 | return error; |
223 | } |
224 | |
225 | Thread *thread = frame_sp->GetThread().get(); |
226 | |
227 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
228 | |
229 | if (reg_ctx) { |
230 | DataExtractor data; |
231 | Status data_error; |
232 | const uint64_t byte_size = new_value_sp->GetData(data, error&: data_error); |
233 | if (data_error.Fail()) { |
234 | error.SetErrorStringWithFormat( |
235 | "Couldn't convert return value to raw data: %s", |
236 | data_error.AsCString()); |
237 | return error; |
238 | } |
239 | |
240 | const uint32_t type_flags = return_value_type.GetTypeInfo(pointee_or_element_compiler_type: nullptr); |
241 | if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) { |
242 | if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) { |
243 | // Extract the register context so we can read arguments from registers |
244 | lldb::offset_t offset = 0; |
245 | if (byte_size <= 16) { |
246 | const RegisterInfo *x0_info = reg_ctx->GetRegisterInfo( |
247 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1); |
248 | if (byte_size <= 8) { |
249 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size); |
250 | |
251 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: x0_info, uval: raw_value)) |
252 | error.SetErrorString("failed to write register x0"); |
253 | } else { |
254 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: 8); |
255 | |
256 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info: x0_info, uval: raw_value)) { |
257 | const RegisterInfo *x1_info = reg_ctx->GetRegisterInfo( |
258 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2); |
259 | raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: byte_size - offset); |
260 | |
261 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: x1_info, uval: raw_value)) |
262 | error.SetErrorString("failed to write register x1"); |
263 | } |
264 | } |
265 | } else { |
266 | error.SetErrorString("We don't support returning longer than 128 bit " |
267 | "integer values at present."); |
268 | } |
269 | } else if (type_flags & eTypeIsFloat) { |
270 | if (type_flags & eTypeIsComplex) { |
271 | // Don't handle complex yet. |
272 | error.SetErrorString( |
273 | "returning complex float values are not supported"); |
274 | } else { |
275 | const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName(reg_name: "v0", start_idx: 0); |
276 | |
277 | if (v0_info) { |
278 | if (byte_size <= 16) { |
279 | RegisterValue reg_value; |
280 | error = reg_value.SetValueFromData(reg_info: *v0_info, data, offset: 0, partial_data_ok: true); |
281 | if (error.Success()) |
282 | if (!reg_ctx->WriteRegister(reg_info: v0_info, reg_value)) |
283 | error.SetErrorString("failed to write register v0"); |
284 | } else { |
285 | error.SetErrorString("returning float values longer than 128 " |
286 | "bits are not supported"); |
287 | } |
288 | } else |
289 | error.SetErrorString("v0 register is not available on this target"); |
290 | } |
291 | } |
292 | } else if (type_flags & eTypeIsVector) { |
293 | if (byte_size > 0) { |
294 | const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName(reg_name: "v0", start_idx: 0); |
295 | |
296 | if (v0_info) { |
297 | if (byte_size <= v0_info->byte_size) { |
298 | RegisterValue reg_value; |
299 | error = reg_value.SetValueFromData(reg_info: *v0_info, data, offset: 0, partial_data_ok: true); |
300 | if (error.Success()) { |
301 | if (!reg_ctx->WriteRegister(reg_info: v0_info, reg_value)) |
302 | error.SetErrorString("failed to write register v0"); |
303 | } |
304 | } |
305 | } |
306 | } |
307 | } |
308 | } else { |
309 | error.SetErrorString("no registers are available"); |
310 | } |
311 | |
312 | return error; |
313 | } |
314 | |
315 | bool ABISysV_arm64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { |
316 | unwind_plan.Clear(); |
317 | unwind_plan.SetRegisterKind(eRegisterKindDWARF); |
318 | |
319 | uint32_t lr_reg_num = arm64_dwarf::lr; |
320 | uint32_t sp_reg_num = arm64_dwarf::sp; |
321 | |
322 | UnwindPlan::RowSP row(new UnwindPlan::Row); |
323 | |
324 | // Our previous Call Frame Address is the stack pointer |
325 | row->GetCFAValue().SetIsRegisterPlusOffset(reg_num: sp_reg_num, offset: 0); |
326 | |
327 | unwind_plan.AppendRow(row_sp: row); |
328 | unwind_plan.SetReturnAddressRegister(lr_reg_num); |
329 | |
330 | // All other registers are the same. |
331 | |
332 | unwind_plan.SetSourceName("arm64 at-func-entry default"); |
333 | unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); |
334 | unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
335 | unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); |
336 | |
337 | return true; |
338 | } |
339 | |
340 | bool ABISysV_arm64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { |
341 | unwind_plan.Clear(); |
342 | unwind_plan.SetRegisterKind(eRegisterKindDWARF); |
343 | |
344 | uint32_t fp_reg_num = arm64_dwarf::fp; |
345 | uint32_t pc_reg_num = arm64_dwarf::pc; |
346 | |
347 | UnwindPlan::RowSP row(new UnwindPlan::Row); |
348 | const int32_t ptr_size = 8; |
349 | |
350 | row->GetCFAValue().SetIsRegisterPlusOffset(reg_num: fp_reg_num, offset: 2 * ptr_size); |
351 | row->SetOffset(0); |
352 | row->SetUnspecifiedRegistersAreUndefined(true); |
353 | |
354 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: fp_reg_num, offset: ptr_size * -2, can_replace: true); |
355 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: ptr_size * -1, can_replace: true); |
356 | |
357 | unwind_plan.AppendRow(row_sp: row); |
358 | unwind_plan.SetSourceName("arm64 default unwind plan"); |
359 | unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); |
360 | unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
361 | unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); |
362 | |
363 | return true; |
364 | } |
365 | |
366 | // AAPCS64 (Procedure Call Standard for the ARM 64-bit Architecture) says |
367 | // registers x19 through x28 and sp are callee preserved. v8-v15 are non- |
368 | // volatile (and specifically only the lower 8 bytes of these regs), the rest |
369 | // of the fp/SIMD registers are volatile. |
370 | |
371 | // We treat x29 as callee preserved also, else the unwinder won't try to |
372 | // retrieve fp saves. |
373 | |
374 | bool ABISysV_arm64::RegisterIsVolatile(const RegisterInfo *reg_info) { |
375 | if (reg_info) { |
376 | const char *name = reg_info->name; |
377 | |
378 | // Sometimes we'll be called with the "alternate" name for these registers; |
379 | // recognize them as non-volatile. |
380 | |
381 | if (name[0] == 'p' && name[1] == 'c') // pc |
382 | return false; |
383 | if (name[0] == 'f' && name[1] == 'p') // fp |
384 | return false; |
385 | if (name[0] == 's' && name[1] == 'p') // sp |
386 | return false; |
387 | if (name[0] == 'l' && name[1] == 'r') // lr |
388 | return false; |
389 | |
390 | if (name[0] == 'x' || name[0] == 'r') { |
391 | // Volatile registers: x0-x18 |
392 | // Although documentation says only x19-28 + sp are callee saved We ll |
393 | // also have to treat x30 as non-volatile. Each dwarf frame has its own |
394 | // value of lr. Return false for the non-volatile gpr regs, true for |
395 | // everything else |
396 | switch (name[1]) { |
397 | case '1': |
398 | switch (name[2]) { |
399 | case '9': |
400 | return false; // x19 is non-volatile |
401 | default: |
402 | return true; |
403 | } |
404 | break; |
405 | case '2': |
406 | switch (name[2]) { |
407 | case '0': |
408 | case '1': |
409 | case '2': |
410 | case '3': |
411 | case '4': |
412 | case '5': |
413 | case '6': |
414 | case '7': |
415 | case '8': |
416 | return false; // x20 - 28 are non-volatile |
417 | case '9': |
418 | return false; // x29 aka fp treat as non-volatile |
419 | default: |
420 | return true; |
421 | } |
422 | case '3': // x30 (lr) and x31 (sp) treat as non-volatile |
423 | if (name[2] == '0' || name[2] == '1') |
424 | return false; |
425 | break; |
426 | default: |
427 | return true; // all volatile cases not handled above fall here. |
428 | } |
429 | } else if (name[0] == 'v' || name[0] == 's' || name[0] == 'd') { |
430 | // Volatile registers: v0-7, v16-v31 |
431 | // Return false for non-volatile fp/SIMD regs, true for everything else |
432 | switch (name[1]) { |
433 | case '8': |
434 | case '9': |
435 | return false; // v8-v9 are non-volatile |
436 | case '1': |
437 | switch (name[2]) { |
438 | case '0': |
439 | case '1': |
440 | case '2': |
441 | case '3': |
442 | case '4': |
443 | case '5': |
444 | return false; // v10-v15 are non-volatile |
445 | default: |
446 | return true; |
447 | } |
448 | default: |
449 | return true; |
450 | } |
451 | } |
452 | } |
453 | return true; |
454 | } |
455 | |
456 | static bool LoadValueFromConsecutiveGPRRegisters( |
457 | ExecutionContext &exe_ctx, RegisterContext *reg_ctx, |
458 | const CompilerType &value_type, |
459 | bool is_return_value, // false => parameter, true => return value |
460 | uint32_t &NGRN, // NGRN (see ABI documentation) |
461 | uint32_t &NSRN, // NSRN (see ABI documentation) |
462 | DataExtractor &data) { |
463 | std::optional<uint64_t> byte_size = |
464 | value_type.GetByteSize(exe_scope: exe_ctx.GetBestExecutionContextScope()); |
465 | |
466 | if (byte_size || *byte_size == 0) |
467 | return false; |
468 | |
469 | std::unique_ptr<DataBufferHeap> heap_data_up( |
470 | new DataBufferHeap(*byte_size, 0)); |
471 | const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder(); |
472 | Status error; |
473 | |
474 | CompilerType base_type; |
475 | const uint32_t homogeneous_count = |
476 | value_type.IsHomogeneousAggregate(base_type_ptr: &base_type); |
477 | if (homogeneous_count > 0 && homogeneous_count <= 8) { |
478 | // Make sure we have enough registers |
479 | if (NSRN < 8 && (8 - NSRN) >= homogeneous_count) { |
480 | if (!base_type) |
481 | return false; |
482 | std::optional<uint64_t> base_byte_size = |
483 | base_type.GetByteSize(exe_scope: exe_ctx.GetBestExecutionContextScope()); |
484 | if (!base_byte_size) |
485 | return false; |
486 | uint32_t data_offset = 0; |
487 | |
488 | for (uint32_t i = 0; i < homogeneous_count; ++i) { |
489 | char v_name[8]; |
490 | ::snprintf(s: v_name, maxlen: sizeof(v_name), format: "v%u", NSRN); |
491 | const RegisterInfo *reg_info = |
492 | reg_ctx->GetRegisterInfoByName(reg_name: v_name, start_idx: 0); |
493 | if (reg_info == nullptr) |
494 | return false; |
495 | |
496 | if (*base_byte_size > reg_info->byte_size) |
497 | return false; |
498 | |
499 | RegisterValue reg_value; |
500 | |
501 | if (!reg_ctx->ReadRegister(reg_info, reg_value)) |
502 | return false; |
503 | |
504 | // Make sure we have enough room in "heap_data_up" |
505 | if ((data_offset + *base_byte_size) <= heap_data_up->GetByteSize()) { |
506 | const size_t bytes_copied = reg_value.GetAsMemoryData( |
507 | reg_info: *reg_info, dst: heap_data_up->GetBytes() + data_offset, |
508 | dst_len: *base_byte_size, dst_byte_order: byte_order, error); |
509 | if (bytes_copied != *base_byte_size) |
510 | return false; |
511 | data_offset += bytes_copied; |
512 | ++NSRN; |
513 | } else |
514 | return false; |
515 | } |
516 | data.SetByteOrder(byte_order); |
517 | data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize()); |
518 | data.SetData(data_sp: DataBufferSP(heap_data_up.release())); |
519 | return true; |
520 | } |
521 | } |
522 | |
523 | const size_t max_reg_byte_size = 16; |
524 | if (*byte_size <= max_reg_byte_size) { |
525 | size_t bytes_left = *byte_size; |
526 | uint32_t data_offset = 0; |
527 | while (data_offset < *byte_size) { |
528 | if (NGRN >= 8) |
529 | return false; |
530 | |
531 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo( |
532 | reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN); |
533 | if (reg_info == nullptr) |
534 | return false; |
535 | |
536 | RegisterValue reg_value; |
537 | |
538 | if (!reg_ctx->ReadRegister(reg_info, reg_value)) |
539 | return false; |
540 | |
541 | const size_t curr_byte_size = std::min<size_t>(a: 8, b: bytes_left); |
542 | const size_t bytes_copied = reg_value.GetAsMemoryData( |
543 | reg_info: *reg_info, dst: heap_data_up->GetBytes() + data_offset, dst_len: curr_byte_size, |
544 | dst_byte_order: byte_order, error); |
545 | if (bytes_copied == 0) |
546 | return false; |
547 | if (bytes_copied >= bytes_left) |
548 | break; |
549 | data_offset += bytes_copied; |
550 | bytes_left -= bytes_copied; |
551 | ++NGRN; |
552 | } |
553 | } else { |
554 | const RegisterInfo *reg_info = nullptr; |
555 | if (is_return_value) { |
556 | // The SysV arm64 ABI doesn't require you to write the return location |
557 | // back to x8 before returning from the function the way the x86_64 ABI |
558 | // does. It looks like all the users of this ABI currently choose not to |
559 | // do that, and so we can't reconstruct stack based returns on exit |
560 | // from the function. |
561 | return false; |
562 | } else { |
563 | // We are assuming we are stopped at the first instruction in a function |
564 | // and that the ABI is being respected so all parameters appear where |
565 | // they should be (functions with no external linkage can legally violate |
566 | // the ABI). |
567 | if (NGRN >= 8) |
568 | return false; |
569 | |
570 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
571 | LLDB_REGNUM_GENERIC_ARG1 + NGRN); |
572 | if (reg_info == nullptr) |
573 | return false; |
574 | ++NGRN; |
575 | } |
576 | |
577 | const lldb::addr_t value_addr = |
578 | reg_ctx->ReadRegisterAsUnsigned(reg_info, LLDB_INVALID_ADDRESS); |
579 | |
580 | if (value_addr == LLDB_INVALID_ADDRESS) |
581 | return false; |
582 | |
583 | if (exe_ctx.GetProcessRef().ReadMemory( |
584 | vm_addr: value_addr, buf: heap_data_up->GetBytes(), size: heap_data_up->GetByteSize(), |
585 | error) != heap_data_up->GetByteSize()) { |
586 | return false; |
587 | } |
588 | } |
589 | |
590 | data.SetByteOrder(byte_order); |
591 | data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize()); |
592 | data.SetData(data_sp: DataBufferSP(heap_data_up.release())); |
593 | return true; |
594 | } |
595 | |
596 | ValueObjectSP ABISysV_arm64::GetReturnValueObjectImpl( |
597 | Thread &thread, CompilerType &return_compiler_type) const { |
598 | ValueObjectSP return_valobj_sp; |
599 | Value value; |
600 | |
601 | ExecutionContext exe_ctx(thread.shared_from_this()); |
602 | if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr) |
603 | return return_valobj_sp; |
604 | |
605 | // value.SetContext (Value::eContextTypeClangType, return_compiler_type); |
606 | value.SetCompilerType(return_compiler_type); |
607 | |
608 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
609 | if (!reg_ctx) |
610 | return return_valobj_sp; |
611 | |
612 | std::optional<uint64_t> byte_size = return_compiler_type.GetByteSize(exe_scope: &thread); |
613 | if (!byte_size) |
614 | return return_valobj_sp; |
615 | |
616 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(pointee_or_element_compiler_type: nullptr); |
617 | if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) { |
618 | value.SetValueType(Value::ValueType::Scalar); |
619 | |
620 | bool success = false; |
621 | if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) { |
622 | // Extract the register context so we can read arguments from registers |
623 | if (*byte_size <= 8) { |
624 | const RegisterInfo *x0_reg_info = nullptr; |
625 | x0_reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
626 | LLDB_REGNUM_GENERIC_ARG1); |
627 | if (x0_reg_info) { |
628 | uint64_t raw_value = |
629 | thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg_info: x0_reg_info, |
630 | fail_value: 0); |
631 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
632 | switch (*byte_size) { |
633 | default: |
634 | break; |
635 | case 16: // uint128_t |
636 | // In register x0 and x1 |
637 | { |
638 | const RegisterInfo *x1_reg_info = nullptr; |
639 | x1_reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
640 | LLDB_REGNUM_GENERIC_ARG2); |
641 | |
642 | if (x1_reg_info) { |
643 | if (*byte_size <= |
644 | x0_reg_info->byte_size + x1_reg_info->byte_size) { |
645 | std::unique_ptr<DataBufferHeap> heap_data_up( |
646 | new DataBufferHeap(*byte_size, 0)); |
647 | const ByteOrder byte_order = |
648 | exe_ctx.GetProcessRef().GetByteOrder(); |
649 | RegisterValue x0_reg_value; |
650 | RegisterValue x1_reg_value; |
651 | if (reg_ctx->ReadRegister(reg_info: x0_reg_info, reg_value&: x0_reg_value) && |
652 | reg_ctx->ReadRegister(reg_info: x1_reg_info, reg_value&: x1_reg_value)) { |
653 | Status error; |
654 | if (x0_reg_value.GetAsMemoryData( |
655 | reg_info: *x0_reg_info, dst: heap_data_up->GetBytes() + 0, dst_len: 8, |
656 | dst_byte_order: byte_order, error) && |
657 | x1_reg_value.GetAsMemoryData( |
658 | reg_info: *x1_reg_info, dst: heap_data_up->GetBytes() + 8, dst_len: 8, |
659 | dst_byte_order: byte_order, error)) { |
660 | DataExtractor data( |
661 | DataBufferSP(heap_data_up.release()), byte_order, |
662 | exe_ctx.GetProcessRef().GetAddressByteSize()); |
663 | |
664 | return_valobj_sp = ValueObjectConstResult::Create( |
665 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString(""), data); |
666 | return return_valobj_sp; |
667 | } |
668 | } |
669 | } |
670 | } |
671 | } |
672 | break; |
673 | case sizeof(uint64_t): |
674 | if (is_signed) |
675 | value.GetScalar() = (int64_t)(raw_value); |
676 | else |
677 | value.GetScalar() = (uint64_t)(raw_value); |
678 | success = true; |
679 | break; |
680 | |
681 | case sizeof(uint32_t): |
682 | if (is_signed) |
683 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
684 | else |
685 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
686 | success = true; |
687 | break; |
688 | |
689 | case sizeof(uint16_t): |
690 | if (is_signed) |
691 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
692 | else |
693 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
694 | success = true; |
695 | break; |
696 | |
697 | case sizeof(uint8_t): |
698 | if (is_signed) |
699 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
700 | else |
701 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
702 | success = true; |
703 | break; |
704 | } |
705 | } |
706 | } |
707 | } else if (type_flags & eTypeIsFloat) { |
708 | if (type_flags & eTypeIsComplex) { |
709 | // Don't handle complex yet. |
710 | } else { |
711 | if (*byte_size <= sizeof(long double)) { |
712 | const RegisterInfo *v0_reg_info = |
713 | reg_ctx->GetRegisterInfoByName(reg_name: "v0", start_idx: 0); |
714 | RegisterValue v0_value; |
715 | if (reg_ctx->ReadRegister(reg_info: v0_reg_info, reg_value&: v0_value)) { |
716 | DataExtractor data; |
717 | if (v0_value.GetData(data)) { |
718 | lldb::offset_t offset = 0; |
719 | if (*byte_size == sizeof(float)) { |
720 | value.GetScalar() = data.GetFloat(offset_ptr: &offset); |
721 | success = true; |
722 | } else if (*byte_size == sizeof(double)) { |
723 | value.GetScalar() = data.GetDouble(offset_ptr: &offset); |
724 | success = true; |
725 | } else if (*byte_size == sizeof(long double)) { |
726 | value.GetScalar() = data.GetLongDouble(offset_ptr: &offset); |
727 | success = true; |
728 | } |
729 | } |
730 | } |
731 | } |
732 | } |
733 | } |
734 | |
735 | if (success) |
736 | return_valobj_sp = ValueObjectConstResult::Create( |
737 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("")); |
738 | } else if (type_flags & eTypeIsVector && *byte_size <= 16) { |
739 | if (*byte_size > 0) { |
740 | const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName(reg_name: "v0", start_idx: 0); |
741 | |
742 | if (v0_info) { |
743 | std::unique_ptr<DataBufferHeap> heap_data_up( |
744 | new DataBufferHeap(*byte_size, 0)); |
745 | const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder(); |
746 | RegisterValue reg_value; |
747 | if (reg_ctx->ReadRegister(reg_info: v0_info, reg_value)) { |
748 | Status error; |
749 | if (reg_value.GetAsMemoryData(reg_info: *v0_info, dst: heap_data_up->GetBytes(), |
750 | dst_len: heap_data_up->GetByteSize(), dst_byte_order: byte_order, |
751 | error)) { |
752 | DataExtractor data(DataBufferSP(heap_data_up.release()), byte_order, |
753 | exe_ctx.GetProcessRef().GetAddressByteSize()); |
754 | return_valobj_sp = ValueObjectConstResult::Create( |
755 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString(""), data); |
756 | } |
757 | } |
758 | } |
759 | } |
760 | } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass || |
761 | (type_flags & eTypeIsVector && *byte_size > 16)) { |
762 | DataExtractor data; |
763 | |
764 | uint32_t NGRN = 0; // Search ABI docs for NGRN |
765 | uint32_t NSRN = 0; // Search ABI docs for NSRN |
766 | const bool is_return_value = true; |
767 | if (LoadValueFromConsecutiveGPRRegisters( |
768 | exe_ctx, reg_ctx, value_type: return_compiler_type, is_return_value, NGRN, NSRN, |
769 | data)) { |
770 | return_valobj_sp = ValueObjectConstResult::Create( |
771 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString(""), data); |
772 | } |
773 | } |
774 | return return_valobj_sp; |
775 | } |
776 | |
777 | lldb::addr_t ABISysV_arm64::FixAddress(addr_t pc, addr_t mask) { |
778 | if (mask == LLDB_INVALID_ADDRESS_MASK) |
779 | return pc; |
780 | lldb::addr_t pac_sign_extension = 0x0080000000000000ULL; |
781 | return (pc & pac_sign_extension) ? pc | mask : pc & (~mask); |
782 | } |
783 | |
784 | // Reads code or data address mask for the current Linux process. |
785 | static lldb::addr_t ReadLinuxProcessAddressMask(lldb::ProcessSP process_sp, |
786 | llvm::StringRef reg_name) { |
787 | // LLDB_INVALID_ADDRESS_MASK means there isn't a mask or it has not been read |
788 | // yet. We do not return the top byte mask unless thread_sp is valid. This |
789 | // prevents calls to this function before the thread is setup locking in the |
790 | // value to just the top byte mask, in cases where pointer authentication |
791 | // might also be active. |
792 | uint64_t address_mask = LLDB_INVALID_ADDRESS_MASK; |
793 | lldb::ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); |
794 | if (thread_sp) { |
795 | // Linux configures user-space virtual addresses with top byte ignored. |
796 | // We set default value of mask such that top byte is masked out. |
797 | address_mask = ~((1ULL << 56) - 1); |
798 | // If Pointer Authentication feature is enabled then Linux exposes |
799 | // PAC data and code mask register. Try reading relevant register |
800 | // below and merge it with default address mask calculated above. |
801 | lldb::RegisterContextSP reg_ctx_sp = thread_sp->GetRegisterContext(); |
802 | if (reg_ctx_sp) { |
803 | const RegisterInfo *reg_info = |
804 | reg_ctx_sp->GetRegisterInfoByName(reg_name, start_idx: 0); |
805 | if (reg_info) { |
806 | lldb::addr_t mask_reg_val = reg_ctx_sp->ReadRegisterAsUnsigned( |
807 | reg: reg_info->kinds[eRegisterKindLLDB], LLDB_INVALID_ADDRESS); |
808 | if (mask_reg_val != LLDB_INVALID_ADDRESS) |
809 | address_mask |= mask_reg_val; |
810 | } |
811 | } |
812 | } |
813 | return address_mask; |
814 | } |
815 | |
816 | lldb::addr_t ABISysV_arm64::FixCodeAddress(lldb::addr_t pc) { |
817 | if (lldb::ProcessSP process_sp = GetProcessSP()) { |
818 | if (process_sp->GetTarget().GetArchitecture().GetTriple().isOSLinux() && |
819 | process_sp->GetCodeAddressMask() == LLDB_INVALID_ADDRESS_MASK) |
820 | process_sp->SetCodeAddressMask( |
821 | ReadLinuxProcessAddressMask(process_sp, reg_name: "code_mask")); |
822 | |
823 | // b55 is the highest bit outside TBI (if it's enabled), use |
824 | // it to determine if the high bits are set to 0 or 1. |
825 | const addr_t pac_sign_extension = 0x0080000000000000ULL; |
826 | addr_t mask = process_sp->GetCodeAddressMask(); |
827 | // Test if the high memory mask has been overriden separately |
828 | if (pc & pac_sign_extension && |
829 | process_sp->GetHighmemCodeAddressMask() != LLDB_INVALID_ADDRESS_MASK) |
830 | mask = process_sp->GetHighmemCodeAddressMask(); |
831 | |
832 | return FixAddress(pc, mask); |
833 | } |
834 | return pc; |
835 | } |
836 | |
837 | lldb::addr_t ABISysV_arm64::FixDataAddress(lldb::addr_t pc) { |
838 | if (lldb::ProcessSP process_sp = GetProcessSP()) { |
839 | if (process_sp->GetTarget().GetArchitecture().GetTriple().isOSLinux() && |
840 | process_sp->GetDataAddressMask() == LLDB_INVALID_ADDRESS_MASK) |
841 | process_sp->SetDataAddressMask( |
842 | ReadLinuxProcessAddressMask(process_sp, reg_name: "data_mask")); |
843 | |
844 | // b55 is the highest bit outside TBI (if it's enabled), use |
845 | // it to determine if the high bits are set to 0 or 1. |
846 | const addr_t pac_sign_extension = 0x0080000000000000ULL; |
847 | addr_t mask = process_sp->GetDataAddressMask(); |
848 | // Test if the high memory mask has been overriden separately |
849 | if (pc & pac_sign_extension && |
850 | process_sp->GetHighmemDataAddressMask() != LLDB_INVALID_ADDRESS_MASK) |
851 | mask = process_sp->GetHighmemDataAddressMask(); |
852 | |
853 | return FixAddress(pc, mask); |
854 | } |
855 | return pc; |
856 | } |
857 | |
858 | void ABISysV_arm64::Initialize() { |
859 | PluginManager::RegisterPlugin(name: GetPluginNameStatic(), |
860 | description: "SysV ABI for AArch64 targets", create_callback: CreateInstance); |
861 | } |
862 | |
863 | void ABISysV_arm64::Terminate() { |
864 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
865 | } |
866 |
Definitions
- GetPointerReturnRegister
- GetRedZoneSize
- CreateInstance
- PrepareTrivialCall
- GetArgumentValues
- SetReturnValueObject
- CreateFunctionEntryUnwindPlan
- CreateDefaultUnwindPlan
- RegisterIsVolatile
- LoadValueFromConsecutiveGPRRegisters
- GetReturnValueObjectImpl
- FixAddress
- ReadLinuxProcessAddressMask
- FixCodeAddress
- FixDataAddress
- Initialize
Learn to use CMake with our Intro Training
Find out more