1 | //===-- ABISysV_ppc.cpp ---------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABISysV_ppc.h" |
10 | |
11 | #include "llvm/ADT/STLExtras.h" |
12 | #include "llvm/TargetParser/Triple.h" |
13 | |
14 | #include "lldb/Core/Module.h" |
15 | #include "lldb/Core/PluginManager.h" |
16 | #include "lldb/Core/Value.h" |
17 | #include "lldb/Symbol/UnwindPlan.h" |
18 | #include "lldb/Target/Process.h" |
19 | #include "lldb/Target/RegisterContext.h" |
20 | #include "lldb/Target/StackFrame.h" |
21 | #include "lldb/Target/Target.h" |
22 | #include "lldb/Target/Thread.h" |
23 | #include "lldb/Utility/ConstString.h" |
24 | #include "lldb/Utility/DataExtractor.h" |
25 | #include "lldb/Utility/LLDBLog.h" |
26 | #include "lldb/Utility/Log.h" |
27 | #include "lldb/Utility/RegisterValue.h" |
28 | #include "lldb/Utility/Status.h" |
29 | #include "lldb/ValueObject/ValueObjectConstResult.h" |
30 | #include "lldb/ValueObject/ValueObjectMemory.h" |
31 | #include "lldb/ValueObject/ValueObjectRegister.h" |
32 | #include <optional> |
33 | |
34 | using namespace lldb; |
35 | using namespace lldb_private; |
36 | |
37 | LLDB_PLUGIN_DEFINE(ABISysV_ppc) |
38 | |
39 | enum dwarf_regnums { |
40 | dwarf_r0 = 0, |
41 | dwarf_r1, |
42 | dwarf_r2, |
43 | dwarf_r3, |
44 | dwarf_r4, |
45 | dwarf_r5, |
46 | dwarf_r6, |
47 | dwarf_r7, |
48 | dwarf_r8, |
49 | dwarf_r9, |
50 | dwarf_r10, |
51 | dwarf_r11, |
52 | dwarf_r12, |
53 | dwarf_r13, |
54 | dwarf_r14, |
55 | dwarf_r15, |
56 | dwarf_r16, |
57 | dwarf_r17, |
58 | dwarf_r18, |
59 | dwarf_r19, |
60 | dwarf_r20, |
61 | dwarf_r21, |
62 | dwarf_r22, |
63 | dwarf_r23, |
64 | dwarf_r24, |
65 | dwarf_r25, |
66 | dwarf_r26, |
67 | dwarf_r27, |
68 | dwarf_r28, |
69 | dwarf_r29, |
70 | dwarf_r30, |
71 | dwarf_r31, |
72 | dwarf_f0, |
73 | dwarf_f1, |
74 | dwarf_f2, |
75 | dwarf_f3, |
76 | dwarf_f4, |
77 | dwarf_f5, |
78 | dwarf_f6, |
79 | dwarf_f7, |
80 | dwarf_f8, |
81 | dwarf_f9, |
82 | dwarf_f10, |
83 | dwarf_f11, |
84 | dwarf_f12, |
85 | dwarf_f13, |
86 | dwarf_f14, |
87 | dwarf_f15, |
88 | dwarf_f16, |
89 | dwarf_f17, |
90 | dwarf_f18, |
91 | dwarf_f19, |
92 | dwarf_f20, |
93 | dwarf_f21, |
94 | dwarf_f22, |
95 | dwarf_f23, |
96 | dwarf_f24, |
97 | dwarf_f25, |
98 | dwarf_f26, |
99 | dwarf_f27, |
100 | dwarf_f28, |
101 | dwarf_f29, |
102 | dwarf_f30, |
103 | dwarf_f31, |
104 | dwarf_cr, |
105 | dwarf_fpscr, |
106 | dwarf_xer = 101, |
107 | dwarf_lr = 108, |
108 | dwarf_ctr, |
109 | dwarf_pc, |
110 | dwarf_cfa, |
111 | }; |
112 | |
113 | // Note that the size and offset will be updated by platform-specific classes. |
114 | #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \ |
115 | { \ |
116 | #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \ |
117 | nullptr, nullptr, nullptr, \ |
118 | } |
119 | |
120 | static const RegisterInfo g_register_infos[] = { |
121 | // General purpose registers. eh_frame, DWARF, |
122 | // Generic, Process Plugin |
123 | DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, |
124 | LLDB_INVALID_REGNUM), |
125 | DEFINE_GPR(r1, nullptr, dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP, |
126 | LLDB_INVALID_REGNUM), |
127 | DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, |
128 | LLDB_INVALID_REGNUM), |
129 | DEFINE_GPR(r3, nullptr, dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1, |
130 | LLDB_INVALID_REGNUM), |
131 | DEFINE_GPR(r4, nullptr, dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2, |
132 | LLDB_INVALID_REGNUM), |
133 | DEFINE_GPR(r5, nullptr, dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3, |
134 | LLDB_INVALID_REGNUM), |
135 | DEFINE_GPR(r6, nullptr, dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4, |
136 | LLDB_INVALID_REGNUM), |
137 | DEFINE_GPR(r7, nullptr, dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5, |
138 | LLDB_INVALID_REGNUM), |
139 | DEFINE_GPR(r8, nullptr, dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6, |
140 | LLDB_INVALID_REGNUM), |
141 | DEFINE_GPR(r9, nullptr, dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7, |
142 | LLDB_INVALID_REGNUM), |
143 | DEFINE_GPR(r10, nullptr, dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8, |
144 | LLDB_INVALID_REGNUM), |
145 | DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM, |
146 | LLDB_INVALID_REGNUM), |
147 | DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, |
148 | LLDB_INVALID_REGNUM), |
149 | DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, |
150 | LLDB_INVALID_REGNUM), |
151 | DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, |
152 | LLDB_INVALID_REGNUM), |
153 | DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, |
154 | LLDB_INVALID_REGNUM), |
155 | DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, |
156 | LLDB_INVALID_REGNUM), |
157 | DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, |
158 | LLDB_INVALID_REGNUM), |
159 | DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, |
160 | LLDB_INVALID_REGNUM), |
161 | DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, |
162 | LLDB_INVALID_REGNUM), |
163 | DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, |
164 | LLDB_INVALID_REGNUM), |
165 | DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, |
166 | LLDB_INVALID_REGNUM), |
167 | DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, |
168 | LLDB_INVALID_REGNUM), |
169 | DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, |
170 | LLDB_INVALID_REGNUM), |
171 | DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, |
172 | LLDB_INVALID_REGNUM), |
173 | DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, |
174 | LLDB_INVALID_REGNUM), |
175 | DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, |
176 | LLDB_INVALID_REGNUM), |
177 | DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, |
178 | LLDB_INVALID_REGNUM), |
179 | DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, |
180 | LLDB_INVALID_REGNUM), |
181 | DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM, |
182 | LLDB_INVALID_REGNUM), |
183 | DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM, |
184 | LLDB_INVALID_REGNUM), |
185 | DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM, |
186 | LLDB_INVALID_REGNUM), |
187 | DEFINE_GPR(lr, nullptr, dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, |
188 | LLDB_INVALID_REGNUM), |
189 | DEFINE_GPR(cr, nullptr, dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS, |
190 | LLDB_INVALID_REGNUM), |
191 | DEFINE_GPR(xer, nullptr, dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM, |
192 | LLDB_INVALID_REGNUM), |
193 | DEFINE_GPR(ctr, nullptr, dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM, |
194 | LLDB_INVALID_REGNUM), |
195 | DEFINE_GPR(pc, nullptr, dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, |
196 | LLDB_INVALID_REGNUM), |
197 | {.name: nullptr, |
198 | .alt_name: nullptr, |
199 | .byte_size: 8, |
200 | .byte_offset: 0, |
201 | .encoding: eEncodingUint, |
202 | .format: eFormatHex, |
203 | .kinds: {dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM}, |
204 | .value_regs: nullptr, |
205 | .invalidate_regs: nullptr, |
206 | .flags_type: nullptr, |
207 | }}; |
208 | |
209 | static const uint32_t k_num_register_infos = std::size(g_register_infos); |
210 | |
211 | const lldb_private::RegisterInfo * |
212 | ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) { |
213 | count = k_num_register_infos; |
214 | return g_register_infos; |
215 | } |
216 | |
217 | size_t ABISysV_ppc::GetRedZoneSize() const { return 224; } |
218 | |
219 | // Static Functions |
220 | |
221 | ABISP |
222 | ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
223 | if (arch.GetTriple().getArch() == llvm::Triple::ppc) { |
224 | return ABISP( |
225 | new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch))); |
226 | } |
227 | return ABISP(); |
228 | } |
229 | |
230 | bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp, |
231 | addr_t func_addr, addr_t return_addr, |
232 | llvm::ArrayRef<addr_t> args) const { |
233 | Log *log = GetLog(mask: LLDBLog::Expressions); |
234 | |
235 | if (log) { |
236 | StreamString s; |
237 | s.Printf(format: "ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64 |
238 | ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 |
239 | ", return_addr = 0x%" PRIx64, |
240 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
241 | (uint64_t)return_addr); |
242 | |
243 | for (size_t i = 0; i < args.size(); ++i) |
244 | s.Printf(format: ", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), |
245 | args[i]); |
246 | s.PutCString(cstr: ")" ); |
247 | log->PutString(str: s.GetString()); |
248 | } |
249 | |
250 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
251 | if (!reg_ctx) |
252 | return false; |
253 | |
254 | const RegisterInfo *reg_info = nullptr; |
255 | |
256 | if (args.size() > 8) // TODO handle more than 8 arguments |
257 | return false; |
258 | |
259 | for (size_t i = 0; i < args.size(); ++i) { |
260 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
261 | LLDB_REGNUM_GENERIC_ARG1 + i); |
262 | LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s" , |
263 | static_cast<uint64_t>(i + 1), args[i], reg_info->name); |
264 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
265 | return false; |
266 | } |
267 | |
268 | // First, align the SP |
269 | |
270 | LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, |
271 | (uint64_t)sp, (uint64_t)(sp & ~0xfull)); |
272 | |
273 | sp &= ~(0xfull); // 16-byte alignment |
274 | |
275 | sp -= 8; |
276 | |
277 | Status error; |
278 | const RegisterInfo *pc_reg_info = |
279 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); |
280 | const RegisterInfo *sp_reg_info = |
281 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); |
282 | ProcessSP process_sp(thread.GetProcess()); |
283 | |
284 | RegisterValue reg_value; |
285 | |
286 | LLDB_LOGF(log, |
287 | "Pushing the return address onto the stack: 0x%" PRIx64 |
288 | ": 0x%" PRIx64, |
289 | (uint64_t)sp, (uint64_t)return_addr); |
290 | |
291 | // Save return address onto the stack |
292 | if (!process_sp->WritePointerToMemory(vm_addr: sp, ptr_value: return_addr, error)) |
293 | return false; |
294 | |
295 | // %r1 is set to the actual stack value. |
296 | |
297 | LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); |
298 | |
299 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: sp_reg_info, uval: sp)) |
300 | return false; |
301 | |
302 | // %pc is set to the address of the called function. |
303 | |
304 | LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); |
305 | |
306 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: pc_reg_info, uval: func_addr)) |
307 | return false; |
308 | |
309 | return true; |
310 | } |
311 | |
312 | static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, |
313 | bool is_signed, Thread &thread, |
314 | uint32_t *argument_register_ids, |
315 | unsigned int ¤t_argument_register, |
316 | addr_t ¤t_stack_argument) { |
317 | if (bit_width > 64) |
318 | return false; // Scalar can't hold large integer arguments |
319 | |
320 | if (current_argument_register < 6) { |
321 | scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
322 | reg: argument_register_ids[current_argument_register], fail_value: 0); |
323 | current_argument_register++; |
324 | if (is_signed) |
325 | scalar.SignExtend(bit_pos: bit_width); |
326 | } else { |
327 | uint32_t byte_size = (bit_width + (8 - 1)) / 8; |
328 | Status error; |
329 | if (thread.GetProcess()->ReadScalarIntegerFromMemory( |
330 | addr: current_stack_argument, byte_size, is_signed, scalar, error)) { |
331 | current_stack_argument += byte_size; |
332 | return true; |
333 | } |
334 | return false; |
335 | } |
336 | return true; |
337 | } |
338 | |
339 | bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const { |
340 | unsigned int num_values = values.GetSize(); |
341 | unsigned int value_index; |
342 | |
343 | // Extract the register context so we can read arguments from registers |
344 | |
345 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
346 | |
347 | if (!reg_ctx) |
348 | return false; |
349 | |
350 | // Get the pointer to the first stack argument so we have a place to start |
351 | // when reading data |
352 | |
353 | addr_t sp = reg_ctx->GetSP(fail_value: 0); |
354 | |
355 | if (!sp) |
356 | return false; |
357 | |
358 | addr_t current_stack_argument = sp + 48; // jump over return address |
359 | |
360 | uint32_t argument_register_ids[8]; |
361 | |
362 | argument_register_ids[0] = |
363 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) |
364 | ->kinds[eRegisterKindLLDB]; |
365 | argument_register_ids[1] = |
366 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) |
367 | ->kinds[eRegisterKindLLDB]; |
368 | argument_register_ids[2] = |
369 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) |
370 | ->kinds[eRegisterKindLLDB]; |
371 | argument_register_ids[3] = |
372 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) |
373 | ->kinds[eRegisterKindLLDB]; |
374 | argument_register_ids[4] = |
375 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5) |
376 | ->kinds[eRegisterKindLLDB]; |
377 | argument_register_ids[5] = |
378 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6) |
379 | ->kinds[eRegisterKindLLDB]; |
380 | argument_register_ids[6] = |
381 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7) |
382 | ->kinds[eRegisterKindLLDB]; |
383 | argument_register_ids[7] = |
384 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8) |
385 | ->kinds[eRegisterKindLLDB]; |
386 | |
387 | unsigned int current_argument_register = 0; |
388 | |
389 | for (value_index = 0; value_index < num_values; ++value_index) { |
390 | Value *value = values.GetValueAtIndex(idx: value_index); |
391 | |
392 | if (!value) |
393 | return false; |
394 | |
395 | // We currently only support extracting values with Clang QualTypes. Do we |
396 | // care about others? |
397 | CompilerType compiler_type = value->GetCompilerType(); |
398 | std::optional<uint64_t> bit_size = |
399 | llvm::expectedToOptional(E: compiler_type.GetBitSize(exe_scope: &thread)); |
400 | if (!bit_size) |
401 | return false; |
402 | bool is_signed; |
403 | if (compiler_type.IsIntegerOrEnumerationType(is_signed)) |
404 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed, thread, |
405 | argument_register_ids, current_argument_register, |
406 | current_stack_argument); |
407 | else if (compiler_type.IsPointerType()) |
408 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed: false, thread, |
409 | argument_register_ids, current_argument_register, |
410 | current_stack_argument); |
411 | } |
412 | |
413 | return true; |
414 | } |
415 | |
416 | Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
417 | lldb::ValueObjectSP &new_value_sp) { |
418 | Status error; |
419 | if (!new_value_sp) |
420 | return Status::FromErrorString(str: "Empty value object for return value." ); |
421 | |
422 | CompilerType compiler_type = new_value_sp->GetCompilerType(); |
423 | if (!compiler_type) |
424 | return Status::FromErrorString(str: "Null clang type for return value." ); |
425 | |
426 | Thread *thread = frame_sp->GetThread().get(); |
427 | |
428 | bool is_signed; |
429 | uint32_t count; |
430 | bool is_complex; |
431 | |
432 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
433 | |
434 | bool set_it_simple = false; |
435 | if (compiler_type.IsIntegerOrEnumerationType(is_signed) || |
436 | compiler_type.IsPointerType()) { |
437 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name: "r3" , start_idx: 0); |
438 | |
439 | DataExtractor data; |
440 | Status data_error; |
441 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
442 | if (data_error.Fail()) |
443 | return Status::FromErrorStringWithFormat( |
444 | format: "Couldn't convert return value to raw data: %s" , |
445 | data_error.AsCString()); |
446 | lldb::offset_t offset = 0; |
447 | if (num_bytes <= 8) { |
448 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: num_bytes); |
449 | |
450 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: raw_value)) |
451 | set_it_simple = true; |
452 | } else { |
453 | error = Status::FromErrorString( |
454 | str: "We don't support returning longer than 64 bit " |
455 | "integer values at present." ); |
456 | } |
457 | } else if (compiler_type.IsFloatingPointType(count, is_complex)) { |
458 | if (is_complex) |
459 | error = Status::FromErrorString( |
460 | str: "We don't support returning complex values at present" ); |
461 | else { |
462 | std::optional<uint64_t> bit_width = |
463 | llvm::expectedToOptional(E: compiler_type.GetBitSize(exe_scope: frame_sp.get())); |
464 | if (!bit_width) { |
465 | error = Status::FromErrorString(str: "can't get type size" ); |
466 | return error; |
467 | } |
468 | if (*bit_width <= 64) { |
469 | DataExtractor data; |
470 | Status data_error; |
471 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
472 | if (data_error.Fail()) { |
473 | error = Status::FromErrorStringWithFormat( |
474 | format: "Couldn't convert return value to raw data: %s" , |
475 | data_error.AsCString()); |
476 | return error; |
477 | } |
478 | |
479 | unsigned char buffer[16]; |
480 | ByteOrder byte_order = data.GetByteOrder(); |
481 | |
482 | data.CopyByteOrderedData(src_offset: 0, src_len: num_bytes, dst: buffer, dst_len: 16, dst_byte_order: byte_order); |
483 | set_it_simple = true; |
484 | } else { |
485 | // FIXME - don't know how to do 80 bit long doubles yet. |
486 | error = Status::FromErrorString( |
487 | str: "We don't support returning float values > 64 bits at present" ); |
488 | } |
489 | } |
490 | } |
491 | |
492 | if (!set_it_simple) { |
493 | // Okay we've got a structure or something that doesn't fit in a simple |
494 | // register. We should figure out where it really goes, but we don't |
495 | // support this yet. |
496 | error = Status::FromErrorString( |
497 | str: "We only support setting simple integer and float " |
498 | "return types at present." ); |
499 | } |
500 | |
501 | return error; |
502 | } |
503 | |
504 | ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple( |
505 | Thread &thread, CompilerType &return_compiler_type) const { |
506 | ValueObjectSP return_valobj_sp; |
507 | Value value; |
508 | |
509 | if (!return_compiler_type) |
510 | return return_valobj_sp; |
511 | |
512 | // value.SetContext (Value::eContextTypeClangType, return_value_type); |
513 | value.SetCompilerType(return_compiler_type); |
514 | |
515 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
516 | if (!reg_ctx) |
517 | return return_valobj_sp; |
518 | |
519 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(); |
520 | if (type_flags & eTypeIsScalar) { |
521 | value.SetValueType(Value::ValueType::Scalar); |
522 | |
523 | bool success = false; |
524 | if (type_flags & eTypeIsInteger) { |
525 | // Extract the register context so we can read arguments from registers |
526 | |
527 | std::optional<uint64_t> byte_size = |
528 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
529 | if (!byte_size) |
530 | return return_valobj_sp; |
531 | uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
532 | reg_info: reg_ctx->GetRegisterInfoByName(reg_name: "r3" , start_idx: 0), fail_value: 0); |
533 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
534 | switch (*byte_size) { |
535 | default: |
536 | break; |
537 | |
538 | case sizeof(uint64_t): |
539 | if (is_signed) |
540 | value.GetScalar() = (int64_t)(raw_value); |
541 | else |
542 | value.GetScalar() = (uint64_t)(raw_value); |
543 | success = true; |
544 | break; |
545 | |
546 | case sizeof(uint32_t): |
547 | if (is_signed) |
548 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
549 | else |
550 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
551 | success = true; |
552 | break; |
553 | |
554 | case sizeof(uint16_t): |
555 | if (is_signed) |
556 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
557 | else |
558 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
559 | success = true; |
560 | break; |
561 | |
562 | case sizeof(uint8_t): |
563 | if (is_signed) |
564 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
565 | else |
566 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
567 | success = true; |
568 | break; |
569 | } |
570 | } else if (type_flags & eTypeIsFloat) { |
571 | if (type_flags & eTypeIsComplex) { |
572 | // Don't handle complex yet. |
573 | } else { |
574 | std::optional<uint64_t> byte_size = |
575 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
576 | if (byte_size && *byte_size <= sizeof(long double)) { |
577 | const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName(reg_name: "f1" , start_idx: 0); |
578 | RegisterValue f1_value; |
579 | if (reg_ctx->ReadRegister(reg_info: f1_info, reg_value&: f1_value)) { |
580 | DataExtractor data; |
581 | if (f1_value.GetData(data)) { |
582 | lldb::offset_t offset = 0; |
583 | if (*byte_size == sizeof(float)) { |
584 | value.GetScalar() = (float)data.GetFloat(offset_ptr: &offset); |
585 | success = true; |
586 | } else if (*byte_size == sizeof(double)) { |
587 | value.GetScalar() = (double)data.GetDouble(offset_ptr: &offset); |
588 | success = true; |
589 | } |
590 | } |
591 | } |
592 | } |
593 | } |
594 | } |
595 | |
596 | if (success) |
597 | return_valobj_sp = ValueObjectConstResult::Create( |
598 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
599 | } else if (type_flags & eTypeIsPointer) { |
600 | unsigned r3_id = |
601 | reg_ctx->GetRegisterInfoByName(reg_name: "r3" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
602 | value.GetScalar() = |
603 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: r3_id, fail_value: 0); |
604 | value.SetValueType(Value::ValueType::Scalar); |
605 | return_valobj_sp = ValueObjectConstResult::Create( |
606 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
607 | } else if (type_flags & eTypeIsVector) { |
608 | std::optional<uint64_t> byte_size = |
609 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
610 | if (byte_size && *byte_size > 0) { |
611 | const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName(reg_name: "v2" , start_idx: 0); |
612 | if (altivec_reg) { |
613 | if (*byte_size <= altivec_reg->byte_size) { |
614 | ProcessSP process_sp(thread.GetProcess()); |
615 | if (process_sp) { |
616 | std::unique_ptr<DataBufferHeap> heap_data_up( |
617 | new DataBufferHeap(*byte_size, 0)); |
618 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
619 | RegisterValue reg_value; |
620 | if (reg_ctx->ReadRegister(reg_info: altivec_reg, reg_value)) { |
621 | Status error; |
622 | if (reg_value.GetAsMemoryData( |
623 | reg_info: *altivec_reg, dst: heap_data_up->GetBytes(), |
624 | dst_len: heap_data_up->GetByteSize(), dst_byte_order: byte_order, error)) { |
625 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
626 | byte_order, |
627 | process_sp->GetTarget() |
628 | .GetArchitecture() |
629 | .GetAddressByteSize()); |
630 | return_valobj_sp = ValueObjectConstResult::Create( |
631 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
632 | } |
633 | } |
634 | } |
635 | } |
636 | } |
637 | } |
638 | } |
639 | |
640 | return return_valobj_sp; |
641 | } |
642 | |
643 | ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl( |
644 | Thread &thread, CompilerType &return_compiler_type) const { |
645 | ValueObjectSP return_valobj_sp; |
646 | |
647 | if (!return_compiler_type) |
648 | return return_valobj_sp; |
649 | |
650 | ExecutionContext exe_ctx(thread.shared_from_this()); |
651 | return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); |
652 | if (return_valobj_sp) |
653 | return return_valobj_sp; |
654 | |
655 | RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); |
656 | if (!reg_ctx_sp) |
657 | return return_valobj_sp; |
658 | |
659 | std::optional<uint64_t> bit_width = |
660 | llvm::expectedToOptional(E: return_compiler_type.GetBitSize(exe_scope: &thread)); |
661 | if (!bit_width) |
662 | return return_valobj_sp; |
663 | if (return_compiler_type.IsAggregateType()) { |
664 | Target *target = exe_ctx.GetTargetPtr(); |
665 | bool is_memory = true; |
666 | if (*bit_width <= 128) { |
667 | ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder(); |
668 | WritableDataBufferSP data_sp(new DataBufferHeap(16, 0)); |
669 | DataExtractor return_ext(data_sp, target_byte_order, |
670 | target->GetArchitecture().GetAddressByteSize()); |
671 | |
672 | const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName(reg_name: "r3" , start_idx: 0); |
673 | const RegisterInfo *rdx_info = |
674 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rdx" , start_idx: 0); |
675 | |
676 | RegisterValue r3_value, rdx_value; |
677 | reg_ctx_sp->ReadRegister(reg_info: r3_info, reg_value&: r3_value); |
678 | reg_ctx_sp->ReadRegister(reg_info: rdx_info, reg_value&: rdx_value); |
679 | |
680 | DataExtractor r3_data, rdx_data; |
681 | |
682 | r3_value.GetData(data&: r3_data); |
683 | rdx_value.GetData(data&: rdx_data); |
684 | |
685 | uint32_t integer_bytes = |
686 | 0; // Tracks how much of the r3/rds registers we've consumed so far |
687 | |
688 | const uint32_t num_children = return_compiler_type.GetNumFields(); |
689 | |
690 | // Since we are in the small struct regime, assume we are not in memory. |
691 | is_memory = false; |
692 | |
693 | for (uint32_t idx = 0; idx < num_children; idx++) { |
694 | std::string name; |
695 | uint64_t field_bit_offset = 0; |
696 | bool is_signed; |
697 | bool is_complex; |
698 | uint32_t count; |
699 | |
700 | CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( |
701 | idx, name, bit_offset_ptr: &field_bit_offset, bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
702 | std::optional<uint64_t> field_bit_width = |
703 | llvm::expectedToOptional(E: field_compiler_type.GetBitSize(exe_scope: &thread)); |
704 | if (!field_bit_width) |
705 | return return_valobj_sp; |
706 | |
707 | // If there are any unaligned fields, this is stored in memory. |
708 | if (field_bit_offset % *field_bit_width != 0) { |
709 | is_memory = true; |
710 | break; |
711 | } |
712 | |
713 | uint32_t field_byte_width = *field_bit_width / 8; |
714 | uint32_t field_byte_offset = field_bit_offset / 8; |
715 | |
716 | DataExtractor * = nullptr; |
717 | uint32_t copy_from_offset = 0; |
718 | |
719 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
720 | field_compiler_type.IsPointerType()) { |
721 | if (integer_bytes < 8) { |
722 | if (integer_bytes + field_byte_width <= 8) { |
723 | // This is in RAX, copy from register to our result structure: |
724 | copy_from_extractor = &r3_data; |
725 | copy_from_offset = integer_bytes; |
726 | integer_bytes += field_byte_width; |
727 | } else { |
728 | // The next field wouldn't fit in the remaining space, so we |
729 | // pushed it to rdx. |
730 | copy_from_extractor = &rdx_data; |
731 | copy_from_offset = 0; |
732 | integer_bytes = 8 + field_byte_width; |
733 | } |
734 | } else if (integer_bytes + field_byte_width <= 16) { |
735 | copy_from_extractor = &rdx_data; |
736 | copy_from_offset = integer_bytes - 8; |
737 | integer_bytes += field_byte_width; |
738 | } else { |
739 | // The last field didn't fit. I can't see how that would happen |
740 | // w/o the overall size being greater than 16 bytes. For now, |
741 | // return a nullptr return value object. |
742 | return return_valobj_sp; |
743 | } |
744 | } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) { |
745 | // Structs with long doubles are always passed in memory. |
746 | if (*field_bit_width == 128) { |
747 | is_memory = true; |
748 | break; |
749 | } else if (*field_bit_width == 64) { |
750 | copy_from_offset = 0; |
751 | } else if (*field_bit_width == 32) { |
752 | // This one is kind of complicated. If we are in an "eightbyte" |
753 | // with another float, we'll be stuffed into an xmm register with |
754 | // it. If we are in an "eightbyte" with one or more ints, then we |
755 | // will be stuffed into the appropriate GPR with them. |
756 | bool in_gpr; |
757 | if (field_byte_offset % 8 == 0) { |
758 | // We are at the beginning of one of the eightbytes, so check the |
759 | // next element (if any) |
760 | if (idx == num_children - 1) |
761 | in_gpr = false; |
762 | else { |
763 | uint64_t next_field_bit_offset = 0; |
764 | CompilerType next_field_compiler_type = |
765 | return_compiler_type.GetFieldAtIndex(idx: idx + 1, name, |
766 | bit_offset_ptr: &next_field_bit_offset, |
767 | bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
768 | if (next_field_compiler_type.IsIntegerOrEnumerationType( |
769 | is_signed)) |
770 | in_gpr = true; |
771 | else { |
772 | copy_from_offset = 0; |
773 | in_gpr = false; |
774 | } |
775 | } |
776 | } else if (field_byte_offset % 4 == 0) { |
777 | // We are inside of an eightbyte, so see if the field before us |
778 | // is floating point: This could happen if somebody put padding |
779 | // in the structure. |
780 | if (idx == 0) |
781 | in_gpr = false; |
782 | else { |
783 | uint64_t prev_field_bit_offset = 0; |
784 | CompilerType prev_field_compiler_type = |
785 | return_compiler_type.GetFieldAtIndex(idx: idx - 1, name, |
786 | bit_offset_ptr: &prev_field_bit_offset, |
787 | bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
788 | if (prev_field_compiler_type.IsIntegerOrEnumerationType( |
789 | is_signed)) |
790 | in_gpr = true; |
791 | else { |
792 | copy_from_offset = 4; |
793 | in_gpr = false; |
794 | } |
795 | } |
796 | } else { |
797 | is_memory = true; |
798 | continue; |
799 | } |
800 | |
801 | // Okay, we've figured out whether we are in GPR or XMM, now figure |
802 | // out which one. |
803 | if (in_gpr) { |
804 | if (integer_bytes < 8) { |
805 | // This is in RAX, copy from register to our result structure: |
806 | copy_from_extractor = &r3_data; |
807 | copy_from_offset = integer_bytes; |
808 | integer_bytes += field_byte_width; |
809 | } else { |
810 | copy_from_extractor = &rdx_data; |
811 | copy_from_offset = integer_bytes - 8; |
812 | integer_bytes += field_byte_width; |
813 | } |
814 | } |
815 | } |
816 | } |
817 | |
818 | // These two tests are just sanity checks. If I somehow get the type |
819 | // calculation wrong above it is better to just return nothing than to |
820 | // assert or crash. |
821 | if (!copy_from_extractor) |
822 | return return_valobj_sp; |
823 | if (copy_from_offset + field_byte_width > |
824 | copy_from_extractor->GetByteSize()) |
825 | return return_valobj_sp; |
826 | |
827 | copy_from_extractor->CopyByteOrderedData( |
828 | src_offset: copy_from_offset, src_len: field_byte_width, |
829 | dst: data_sp->GetBytes() + field_byte_offset, dst_len: field_byte_width, |
830 | dst_byte_order: target_byte_order); |
831 | } |
832 | |
833 | if (!is_memory) { |
834 | // The result is in our data buffer. Let's make a variable object out |
835 | // of it: |
836 | return_valobj_sp = ValueObjectConstResult::Create( |
837 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data: return_ext); |
838 | } |
839 | } |
840 | |
841 | // FIXME: This is just taking a guess, r3 may very well no longer hold the |
842 | // return storage location. |
843 | // If we are going to do this right, when we make a new frame we should |
844 | // check to see if it uses a memory return, and if we are at the first |
845 | // instruction and if so stash away the return location. Then we would |
846 | // only return the memory return value if we know it is valid. |
847 | |
848 | if (is_memory) { |
849 | unsigned r3_id = |
850 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "r3" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
851 | lldb::addr_t storage_addr = |
852 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: r3_id, |
853 | fail_value: 0); |
854 | return_valobj_sp = ValueObjectMemory::Create( |
855 | exe_scope: &thread, name: "" , address: Address(storage_addr, nullptr), ast_type: return_compiler_type); |
856 | } |
857 | } |
858 | |
859 | return return_valobj_sp; |
860 | } |
861 | |
862 | UnwindPlanSP ABISysV_ppc::CreateFunctionEntryUnwindPlan() { |
863 | uint32_t lr_reg_num = dwarf_lr; |
864 | uint32_t sp_reg_num = dwarf_r1; |
865 | uint32_t pc_reg_num = dwarf_pc; |
866 | |
867 | UnwindPlan::Row row; |
868 | |
869 | // Our Call Frame Address is the stack pointer value |
870 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num: sp_reg_num, offset: 0); |
871 | |
872 | // The previous PC is in the LR, all other registers are the same. |
873 | row.SetRegisterLocationToRegister(reg_num: pc_reg_num, other_reg_num: lr_reg_num, can_replace: true); |
874 | |
875 | auto plan_sp = std::make_shared<UnwindPlan>(args: eRegisterKindDWARF); |
876 | plan_sp->AppendRow(row: std::move(row)); |
877 | plan_sp->SetSourceName("ppc at-func-entry default" ); |
878 | plan_sp->SetSourcedFromCompiler(eLazyBoolNo); |
879 | return plan_sp; |
880 | } |
881 | |
882 | UnwindPlanSP ABISysV_ppc::CreateDefaultUnwindPlan() { |
883 | |
884 | uint32_t sp_reg_num = dwarf_r1; |
885 | uint32_t pc_reg_num = dwarf_lr; |
886 | |
887 | UnwindPlan::Row row; |
888 | |
889 | const int32_t ptr_size = 4; |
890 | row.SetUnspecifiedRegistersAreUndefined(true); |
891 | row.GetCFAValue().SetIsRegisterDereferenced(sp_reg_num); |
892 | |
893 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: ptr_size * 1, can_replace: true); |
894 | row.SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
895 | |
896 | auto plan_sp = std::make_shared<UnwindPlan>(args: eRegisterKindDWARF); |
897 | plan_sp->AppendRow(row: std::move(row)); |
898 | plan_sp->SetSourceName("ppc default unwind plan" ); |
899 | plan_sp->SetSourcedFromCompiler(eLazyBoolNo); |
900 | plan_sp->SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
901 | plan_sp->SetUnwindPlanForSignalTrap(eLazyBoolNo); |
902 | plan_sp->SetReturnAddressRegister(dwarf_lr); |
903 | return plan_sp; |
904 | } |
905 | |
906 | bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) { |
907 | return !RegisterIsCalleeSaved(reg_info); |
908 | } |
909 | |
910 | // See "Register Usage" in the |
911 | // "System V Application Binary Interface" |
912 | // "64-bit PowerPC ELF Application Binary Interface Supplement" current version |
913 | // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC- |
914 | // elf64abi-1.9.pdf |
915 | |
916 | bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { |
917 | if (reg_info) { |
918 | // Preserved registers are : |
919 | // r1,r2,r13-r31 |
920 | // f14-f31 (not yet) |
921 | // v20-v31 (not yet) |
922 | // vrsave (not yet) |
923 | |
924 | const char *name = reg_info->name; |
925 | if (name[0] == 'r') { |
926 | if ((name[1] == '1' || name[1] == '2') && name[2] == '\0') |
927 | return true; |
928 | if (name[1] == '1' && name[2] > '2') |
929 | return true; |
930 | if ((name[1] == '2' || name[1] == '3') && name[2] != '\0') |
931 | return true; |
932 | } |
933 | |
934 | if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') { |
935 | if (name[3] == '1' && name[4] >= '4') |
936 | return true; |
937 | if ((name[3] == '2' || name[3] == '3') && name[4] != '\0') |
938 | return true; |
939 | } |
940 | |
941 | if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp |
942 | return true; |
943 | if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp |
944 | return true; |
945 | if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc |
946 | return true; |
947 | } |
948 | return false; |
949 | } |
950 | |
951 | void ABISysV_ppc::Initialize() { |
952 | PluginManager::RegisterPlugin(name: GetPluginNameStatic(), |
953 | description: "System V ABI for ppc targets" , create_callback: CreateInstance); |
954 | } |
955 | |
956 | void ABISysV_ppc::Terminate() { |
957 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
958 | } |
959 | |