1 | //===-- ABISysV_x86_64.cpp ------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABISysV_x86_64.h" |
10 | |
11 | #include "llvm/ADT/STLExtras.h" |
12 | #include "llvm/ADT/StringSwitch.h" |
13 | #include "llvm/TargetParser/Triple.h" |
14 | |
15 | #include "lldb/Core/Module.h" |
16 | #include "lldb/Core/PluginManager.h" |
17 | #include "lldb/Core/Value.h" |
18 | #include "lldb/Core/ValueObjectConstResult.h" |
19 | #include "lldb/Core/ValueObjectMemory.h" |
20 | #include "lldb/Core/ValueObjectRegister.h" |
21 | #include "lldb/Symbol/UnwindPlan.h" |
22 | #include "lldb/Target/Process.h" |
23 | #include "lldb/Target/RegisterContext.h" |
24 | #include "lldb/Target/StackFrame.h" |
25 | #include "lldb/Target/Target.h" |
26 | #include "lldb/Target/Thread.h" |
27 | #include "lldb/Utility/ConstString.h" |
28 | #include "lldb/Utility/DataExtractor.h" |
29 | #include "lldb/Utility/LLDBLog.h" |
30 | #include "lldb/Utility/Log.h" |
31 | #include "lldb/Utility/RegisterValue.h" |
32 | #include "lldb/Utility/Status.h" |
33 | |
34 | #include <optional> |
35 | #include <vector> |
36 | |
37 | using namespace lldb; |
38 | using namespace lldb_private; |
39 | |
40 | LLDB_PLUGIN_DEFINE(ABISysV_x86_64) |
41 | |
42 | enum dwarf_regnums { |
43 | dwarf_rax = 0, |
44 | dwarf_rdx, |
45 | dwarf_rcx, |
46 | dwarf_rbx, |
47 | dwarf_rsi, |
48 | dwarf_rdi, |
49 | dwarf_rbp, |
50 | dwarf_rsp, |
51 | dwarf_r8, |
52 | dwarf_r9, |
53 | dwarf_r10, |
54 | dwarf_r11, |
55 | dwarf_r12, |
56 | dwarf_r13, |
57 | dwarf_r14, |
58 | dwarf_r15, |
59 | dwarf_rip, |
60 | }; |
61 | |
62 | bool ABISysV_x86_64::GetPointerReturnRegister(const char *&name) { |
63 | name = "rax" ; |
64 | return true; |
65 | } |
66 | |
67 | size_t ABISysV_x86_64::GetRedZoneSize() const { return 128; } |
68 | |
69 | // Static Functions |
70 | |
71 | ABISP |
72 | ABISysV_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
73 | const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); |
74 | const llvm::Triple::OSType os_type = arch.GetTriple().getOS(); |
75 | const llvm::Triple::EnvironmentType os_env = |
76 | arch.GetTriple().getEnvironment(); |
77 | if (arch_type == llvm::Triple::x86_64) { |
78 | switch(os_type) { |
79 | case llvm::Triple::OSType::IOS: |
80 | case llvm::Triple::OSType::TvOS: |
81 | case llvm::Triple::OSType::WatchOS: |
82 | switch (os_env) { |
83 | case llvm::Triple::EnvironmentType::MacABI: |
84 | case llvm::Triple::EnvironmentType::Simulator: |
85 | case llvm::Triple::EnvironmentType::UnknownEnvironment: |
86 | // UnknownEnvironment is needed for older compilers that don't |
87 | // support the simulator environment. |
88 | return ABISP(new ABISysV_x86_64(std::move(process_sp), |
89 | MakeMCRegisterInfo(arch))); |
90 | default: |
91 | return ABISP(); |
92 | } |
93 | case llvm::Triple::OSType::Darwin: |
94 | case llvm::Triple::OSType::FreeBSD: |
95 | case llvm::Triple::OSType::Linux: |
96 | case llvm::Triple::OSType::MacOSX: |
97 | case llvm::Triple::OSType::NetBSD: |
98 | case llvm::Triple::OSType::Solaris: |
99 | case llvm::Triple::OSType::UnknownOS: |
100 | return ABISP( |
101 | new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); |
102 | default: |
103 | return ABISP(); |
104 | } |
105 | } |
106 | return ABISP(); |
107 | } |
108 | |
109 | bool ABISysV_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp, |
110 | addr_t func_addr, addr_t return_addr, |
111 | llvm::ArrayRef<addr_t> args) const { |
112 | Log *log = GetLog(mask: LLDBLog::Expressions); |
113 | |
114 | if (log) { |
115 | StreamString s; |
116 | s.Printf(format: "ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 |
117 | ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 |
118 | ", return_addr = 0x%" PRIx64, |
119 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
120 | (uint64_t)return_addr); |
121 | |
122 | for (size_t i = 0; i < args.size(); ++i) |
123 | s.Printf(format: ", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), |
124 | args[i]); |
125 | s.PutCString(cstr: ")" ); |
126 | log->PutString(str: s.GetString()); |
127 | } |
128 | |
129 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
130 | if (!reg_ctx) |
131 | return false; |
132 | |
133 | const RegisterInfo *reg_info = nullptr; |
134 | |
135 | if (args.size() > 6) // TODO handle more than 6 arguments |
136 | return false; |
137 | |
138 | for (size_t i = 0; i < args.size(); ++i) { |
139 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
140 | LLDB_REGNUM_GENERIC_ARG1 + i); |
141 | LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s" , |
142 | static_cast<uint64_t>(i + 1), args[i], reg_info->name); |
143 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
144 | return false; |
145 | } |
146 | |
147 | // First, align the SP |
148 | |
149 | LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, |
150 | (uint64_t)sp, (uint64_t)(sp & ~0xfull)); |
151 | |
152 | sp &= ~(0xfull); // 16-byte alignment |
153 | |
154 | sp -= 8; |
155 | |
156 | Status error; |
157 | const RegisterInfo *pc_reg_info = |
158 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); |
159 | const RegisterInfo *sp_reg_info = |
160 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); |
161 | ProcessSP process_sp(thread.GetProcess()); |
162 | |
163 | RegisterValue reg_value; |
164 | LLDB_LOGF(log, |
165 | "Pushing the return address onto the stack: 0x%" PRIx64 |
166 | ": 0x%" PRIx64, |
167 | (uint64_t)sp, (uint64_t)return_addr); |
168 | |
169 | // Save return address onto the stack |
170 | if (!process_sp->WritePointerToMemory(vm_addr: sp, ptr_value: return_addr, error)) |
171 | return false; |
172 | |
173 | // %rsp is set to the actual stack value. |
174 | |
175 | LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); |
176 | |
177 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: sp_reg_info, uval: sp)) |
178 | return false; |
179 | |
180 | // %rip is set to the address of the called function. |
181 | |
182 | LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); |
183 | |
184 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: pc_reg_info, uval: func_addr)) |
185 | return false; |
186 | |
187 | return true; |
188 | } |
189 | |
190 | static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, |
191 | bool is_signed, Thread &thread, |
192 | uint32_t *argument_register_ids, |
193 | unsigned int ¤t_argument_register, |
194 | addr_t ¤t_stack_argument) { |
195 | if (bit_width > 64) |
196 | return false; // Scalar can't hold large integer arguments |
197 | |
198 | if (current_argument_register < 6) { |
199 | scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
200 | reg: argument_register_ids[current_argument_register], fail_value: 0); |
201 | current_argument_register++; |
202 | if (is_signed) |
203 | scalar.SignExtend(bit_pos: bit_width); |
204 | } else { |
205 | uint32_t byte_size = (bit_width + (8 - 1)) / 8; |
206 | Status error; |
207 | if (thread.GetProcess()->ReadScalarIntegerFromMemory( |
208 | addr: current_stack_argument, byte_size, is_signed, scalar, error)) { |
209 | current_stack_argument += byte_size; |
210 | return true; |
211 | } |
212 | return false; |
213 | } |
214 | return true; |
215 | } |
216 | |
217 | bool ABISysV_x86_64::GetArgumentValues(Thread &thread, |
218 | ValueList &values) const { |
219 | unsigned int num_values = values.GetSize(); |
220 | unsigned int value_index; |
221 | |
222 | // Extract the register context so we can read arguments from registers |
223 | |
224 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
225 | |
226 | if (!reg_ctx) |
227 | return false; |
228 | |
229 | // Get the pointer to the first stack argument so we have a place to start |
230 | // when reading data |
231 | |
232 | addr_t sp = reg_ctx->GetSP(fail_value: 0); |
233 | |
234 | if (!sp) |
235 | return false; |
236 | |
237 | addr_t current_stack_argument = sp + 8; // jump over return address |
238 | |
239 | uint32_t argument_register_ids[6]; |
240 | |
241 | argument_register_ids[0] = |
242 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) |
243 | ->kinds[eRegisterKindLLDB]; |
244 | argument_register_ids[1] = |
245 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) |
246 | ->kinds[eRegisterKindLLDB]; |
247 | argument_register_ids[2] = |
248 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) |
249 | ->kinds[eRegisterKindLLDB]; |
250 | argument_register_ids[3] = |
251 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) |
252 | ->kinds[eRegisterKindLLDB]; |
253 | argument_register_ids[4] = |
254 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5) |
255 | ->kinds[eRegisterKindLLDB]; |
256 | argument_register_ids[5] = |
257 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6) |
258 | ->kinds[eRegisterKindLLDB]; |
259 | |
260 | unsigned int current_argument_register = 0; |
261 | |
262 | for (value_index = 0; value_index < num_values; ++value_index) { |
263 | Value *value = values.GetValueAtIndex(idx: value_index); |
264 | |
265 | if (!value) |
266 | return false; |
267 | |
268 | // We currently only support extracting values with Clang QualTypes. Do we |
269 | // care about others? |
270 | CompilerType compiler_type = value->GetCompilerType(); |
271 | std::optional<uint64_t> bit_size = compiler_type.GetBitSize(exe_scope: &thread); |
272 | if (!bit_size) |
273 | return false; |
274 | bool is_signed; |
275 | |
276 | if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { |
277 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed, thread, |
278 | argument_register_ids, current_argument_register, |
279 | current_stack_argument); |
280 | } else if (compiler_type.IsPointerType()) { |
281 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed: false, thread, |
282 | argument_register_ids, current_argument_register, |
283 | current_stack_argument); |
284 | } |
285 | } |
286 | |
287 | return true; |
288 | } |
289 | |
290 | Status ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
291 | lldb::ValueObjectSP &new_value_sp) { |
292 | Status error; |
293 | if (!new_value_sp) { |
294 | error.SetErrorString("Empty value object for return value." ); |
295 | return error; |
296 | } |
297 | |
298 | CompilerType compiler_type = new_value_sp->GetCompilerType(); |
299 | if (!compiler_type) { |
300 | error.SetErrorString("Null clang type for return value." ); |
301 | return error; |
302 | } |
303 | |
304 | Thread *thread = frame_sp->GetThread().get(); |
305 | |
306 | bool is_signed; |
307 | uint32_t count; |
308 | bool is_complex; |
309 | |
310 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
311 | |
312 | bool set_it_simple = false; |
313 | if (compiler_type.IsIntegerOrEnumerationType(is_signed) || |
314 | compiler_type.IsPointerType()) { |
315 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
316 | |
317 | DataExtractor data; |
318 | Status data_error; |
319 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
320 | if (data_error.Fail()) { |
321 | error.SetErrorStringWithFormat( |
322 | "Couldn't convert return value to raw data: %s" , |
323 | data_error.AsCString()); |
324 | return error; |
325 | } |
326 | lldb::offset_t offset = 0; |
327 | if (num_bytes <= 8) { |
328 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: num_bytes); |
329 | |
330 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: raw_value)) |
331 | set_it_simple = true; |
332 | } else { |
333 | error.SetErrorString("We don't support returning longer than 64 bit " |
334 | "integer values at present." ); |
335 | } |
336 | } else if (compiler_type.IsFloatingPointType(count, is_complex)) { |
337 | if (is_complex) |
338 | error.SetErrorString( |
339 | "We don't support returning complex values at present" ); |
340 | else { |
341 | std::optional<uint64_t> bit_width = |
342 | compiler_type.GetBitSize(exe_scope: frame_sp.get()); |
343 | if (!bit_width) { |
344 | error.SetErrorString("can't get type size" ); |
345 | return error; |
346 | } |
347 | if (*bit_width <= 64) { |
348 | const RegisterInfo *xmm0_info = |
349 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
350 | RegisterValue xmm0_value; |
351 | DataExtractor data; |
352 | Status data_error; |
353 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
354 | if (data_error.Fail()) { |
355 | error.SetErrorStringWithFormat( |
356 | "Couldn't convert return value to raw data: %s" , |
357 | data_error.AsCString()); |
358 | return error; |
359 | } |
360 | |
361 | unsigned char buffer[16]; |
362 | ByteOrder byte_order = data.GetByteOrder(); |
363 | |
364 | data.CopyByteOrderedData(src_offset: 0, src_len: num_bytes, dst: buffer, dst_len: 16, dst_byte_order: byte_order); |
365 | xmm0_value.SetBytes(bytes: buffer, length: 16, byte_order); |
366 | reg_ctx->WriteRegister(reg_info: xmm0_info, reg_value: xmm0_value); |
367 | set_it_simple = true; |
368 | } else { |
369 | // FIXME - don't know how to do 80 bit long doubles yet. |
370 | error.SetErrorString( |
371 | "We don't support returning float values > 64 bits at present" ); |
372 | } |
373 | } |
374 | } |
375 | |
376 | if (!set_it_simple) { |
377 | // Okay we've got a structure or something that doesn't fit in a simple |
378 | // register. We should figure out where it really goes, but we don't |
379 | // support this yet. |
380 | error.SetErrorString("We only support setting simple integer and float " |
381 | "return types at present." ); |
382 | } |
383 | |
384 | return error; |
385 | } |
386 | |
387 | ValueObjectSP ABISysV_x86_64::GetReturnValueObjectSimple( |
388 | Thread &thread, CompilerType &return_compiler_type) const { |
389 | ValueObjectSP return_valobj_sp; |
390 | Value value; |
391 | |
392 | if (!return_compiler_type) |
393 | return return_valobj_sp; |
394 | |
395 | // value.SetContext (Value::eContextTypeClangType, return_value_type); |
396 | value.SetCompilerType(return_compiler_type); |
397 | |
398 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
399 | if (!reg_ctx) |
400 | return return_valobj_sp; |
401 | |
402 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(); |
403 | if (type_flags & eTypeIsScalar) { |
404 | value.SetValueType(Value::ValueType::Scalar); |
405 | |
406 | bool success = false; |
407 | if (type_flags & eTypeIsInteger) { |
408 | // Extract the register context so we can read arguments from registers |
409 | |
410 | std::optional<uint64_t> byte_size = |
411 | return_compiler_type.GetByteSize(exe_scope: &thread); |
412 | if (!byte_size) |
413 | return return_valobj_sp; |
414 | uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
415 | reg_info: reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0), fail_value: 0); |
416 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
417 | switch (*byte_size) { |
418 | default: |
419 | break; |
420 | |
421 | case sizeof(uint64_t): |
422 | if (is_signed) |
423 | value.GetScalar() = (int64_t)(raw_value); |
424 | else |
425 | value.GetScalar() = (uint64_t)(raw_value); |
426 | success = true; |
427 | break; |
428 | |
429 | case sizeof(uint32_t): |
430 | if (is_signed) |
431 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
432 | else |
433 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
434 | success = true; |
435 | break; |
436 | |
437 | case sizeof(uint16_t): |
438 | if (is_signed) |
439 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
440 | else |
441 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
442 | success = true; |
443 | break; |
444 | |
445 | case sizeof(uint8_t): |
446 | if (is_signed) |
447 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
448 | else |
449 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
450 | success = true; |
451 | break; |
452 | } |
453 | } else if (type_flags & eTypeIsFloat) { |
454 | if (type_flags & eTypeIsComplex) { |
455 | // Don't handle complex yet. |
456 | } else { |
457 | std::optional<uint64_t> byte_size = |
458 | return_compiler_type.GetByteSize(exe_scope: &thread); |
459 | if (byte_size && *byte_size <= sizeof(long double)) { |
460 | const RegisterInfo *xmm0_info = |
461 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
462 | RegisterValue xmm0_value; |
463 | if (reg_ctx->ReadRegister(reg_info: xmm0_info, reg_value&: xmm0_value)) { |
464 | DataExtractor data; |
465 | if (xmm0_value.GetData(data)) { |
466 | lldb::offset_t offset = 0; |
467 | if (*byte_size == sizeof(float)) { |
468 | value.GetScalar() = (float)data.GetFloat(offset_ptr: &offset); |
469 | success = true; |
470 | } else if (*byte_size == sizeof(double)) { |
471 | value.GetScalar() = (double)data.GetDouble(offset_ptr: &offset); |
472 | success = true; |
473 | } else if (*byte_size == sizeof(long double)) { |
474 | // Don't handle long double since that can be encoded as 80 bit |
475 | // floats... |
476 | } |
477 | } |
478 | } |
479 | } |
480 | } |
481 | } |
482 | |
483 | if (success) |
484 | return_valobj_sp = ValueObjectConstResult::Create( |
485 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
486 | } else if (type_flags & eTypeIsPointer) { |
487 | unsigned rax_id = |
488 | reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
489 | value.GetScalar() = |
490 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
491 | fail_value: 0); |
492 | value.SetValueType(Value::ValueType::Scalar); |
493 | return_valobj_sp = ValueObjectConstResult::Create( |
494 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
495 | } else if (type_flags & eTypeIsVector) { |
496 | std::optional<uint64_t> byte_size = |
497 | return_compiler_type.GetByteSize(exe_scope: &thread); |
498 | if (byte_size && *byte_size > 0) { |
499 | const RegisterInfo *altivec_reg = |
500 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
501 | if (altivec_reg == nullptr) |
502 | altivec_reg = reg_ctx->GetRegisterInfoByName(reg_name: "mm0" , start_idx: 0); |
503 | |
504 | if (altivec_reg) { |
505 | if (*byte_size <= altivec_reg->byte_size) { |
506 | ProcessSP process_sp(thread.GetProcess()); |
507 | if (process_sp) { |
508 | std::unique_ptr<DataBufferHeap> heap_data_up( |
509 | new DataBufferHeap(*byte_size, 0)); |
510 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
511 | RegisterValue reg_value; |
512 | if (reg_ctx->ReadRegister(reg_info: altivec_reg, reg_value)) { |
513 | Status error; |
514 | if (reg_value.GetAsMemoryData( |
515 | reg_info: *altivec_reg, dst: heap_data_up->GetBytes(), |
516 | dst_len: heap_data_up->GetByteSize(), dst_byte_order: byte_order, error)) { |
517 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
518 | byte_order, |
519 | process_sp->GetTarget() |
520 | .GetArchitecture() |
521 | .GetAddressByteSize()); |
522 | return_valobj_sp = ValueObjectConstResult::Create( |
523 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
524 | } |
525 | } |
526 | } |
527 | } else if (*byte_size <= altivec_reg->byte_size * 2) { |
528 | const RegisterInfo *altivec_reg2 = |
529 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm1" , start_idx: 0); |
530 | if (altivec_reg2) { |
531 | ProcessSP process_sp(thread.GetProcess()); |
532 | if (process_sp) { |
533 | std::unique_ptr<DataBufferHeap> heap_data_up( |
534 | new DataBufferHeap(*byte_size, 0)); |
535 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
536 | RegisterValue reg_value; |
537 | RegisterValue reg_value2; |
538 | if (reg_ctx->ReadRegister(reg_info: altivec_reg, reg_value) && |
539 | reg_ctx->ReadRegister(reg_info: altivec_reg2, reg_value&: reg_value2)) { |
540 | |
541 | Status error; |
542 | if (reg_value.GetAsMemoryData( |
543 | reg_info: *altivec_reg, dst: heap_data_up->GetBytes(), |
544 | dst_len: altivec_reg->byte_size, dst_byte_order: byte_order, error) && |
545 | reg_value2.GetAsMemoryData( |
546 | reg_info: *altivec_reg2, |
547 | dst: heap_data_up->GetBytes() + altivec_reg->byte_size, |
548 | dst_len: heap_data_up->GetByteSize() - altivec_reg->byte_size, |
549 | dst_byte_order: byte_order, error)) { |
550 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
551 | byte_order, |
552 | process_sp->GetTarget() |
553 | .GetArchitecture() |
554 | .GetAddressByteSize()); |
555 | return_valobj_sp = ValueObjectConstResult::Create( |
556 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
557 | } |
558 | } |
559 | } |
560 | } |
561 | } |
562 | } |
563 | } |
564 | } |
565 | |
566 | return return_valobj_sp; |
567 | } |
568 | |
569 | // The compiler will flatten the nested aggregate type into single |
570 | // layer and push the value to stack |
571 | // This helper function will flatten an aggregate type |
572 | // and return true if it can be returned in register(s) by value |
573 | // return false if the aggregate is in memory |
574 | static bool FlattenAggregateType( |
575 | Thread &thread, ExecutionContext &exe_ctx, |
576 | CompilerType &return_compiler_type, |
577 | uint32_t data_byte_offset, |
578 | std::vector<uint32_t> &aggregate_field_offsets, |
579 | std::vector<CompilerType> &aggregate_compiler_types) { |
580 | |
581 | const uint32_t num_children = return_compiler_type.GetNumFields(); |
582 | for (uint32_t idx = 0; idx < num_children; ++idx) { |
583 | std::string name; |
584 | bool is_signed; |
585 | uint32_t count; |
586 | bool is_complex; |
587 | |
588 | uint64_t field_bit_offset = 0; |
589 | CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( |
590 | idx, name, bit_offset_ptr: &field_bit_offset, bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
591 | std::optional<uint64_t> field_bit_width = |
592 | field_compiler_type.GetBitSize(exe_scope: &thread); |
593 | |
594 | // if we don't know the size of the field (e.g. invalid type), exit |
595 | if (!field_bit_width || *field_bit_width == 0) { |
596 | return false; |
597 | } |
598 | |
599 | uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset; |
600 | |
601 | const uint32_t field_type_flags = field_compiler_type.GetTypeInfo(); |
602 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
603 | field_compiler_type.IsPointerType() || |
604 | field_compiler_type.IsFloatingPointType(count, is_complex)) { |
605 | aggregate_field_offsets.push_back(x: field_byte_offset); |
606 | aggregate_compiler_types.push_back(x: field_compiler_type); |
607 | } else if (field_type_flags & eTypeHasChildren) { |
608 | if (!FlattenAggregateType(thread, exe_ctx, return_compiler_type&: field_compiler_type, |
609 | data_byte_offset: field_byte_offset, aggregate_field_offsets, |
610 | aggregate_compiler_types)) { |
611 | return false; |
612 | } |
613 | } |
614 | } |
615 | return true; |
616 | } |
617 | |
618 | ValueObjectSP ABISysV_x86_64::GetReturnValueObjectImpl( |
619 | Thread &thread, CompilerType &return_compiler_type) const { |
620 | ValueObjectSP return_valobj_sp; |
621 | |
622 | if (!return_compiler_type) |
623 | return return_valobj_sp; |
624 | |
625 | ExecutionContext exe_ctx(thread.shared_from_this()); |
626 | return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); |
627 | if (return_valobj_sp) |
628 | return return_valobj_sp; |
629 | |
630 | RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); |
631 | if (!reg_ctx_sp) |
632 | return return_valobj_sp; |
633 | |
634 | std::optional<uint64_t> bit_width = return_compiler_type.GetBitSize(exe_scope: &thread); |
635 | if (!bit_width) |
636 | return return_valobj_sp; |
637 | if (return_compiler_type.IsAggregateType()) { |
638 | Target *target = exe_ctx.GetTargetPtr(); |
639 | bool is_memory = true; |
640 | std::vector<uint32_t> aggregate_field_offsets; |
641 | std::vector<CompilerType> aggregate_compiler_types; |
642 | auto ts = return_compiler_type.GetTypeSystem(); |
643 | if (ts && ts->CanPassInRegisters(type: return_compiler_type) && |
644 | *bit_width <= 128 && |
645 | FlattenAggregateType(thread, exe_ctx, return_compiler_type, data_byte_offset: 0, |
646 | aggregate_field_offsets, |
647 | aggregate_compiler_types)) { |
648 | ByteOrder byte_order = target->GetArchitecture().GetByteOrder(); |
649 | WritableDataBufferSP data_sp(new DataBufferHeap(16, 0)); |
650 | DataExtractor return_ext(data_sp, byte_order, |
651 | target->GetArchitecture().GetAddressByteSize()); |
652 | |
653 | const RegisterInfo *rax_info = |
654 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
655 | const RegisterInfo *rdx_info = |
656 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rdx" , start_idx: 0); |
657 | const RegisterInfo *xmm0_info = |
658 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
659 | const RegisterInfo *xmm1_info = |
660 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "xmm1" , start_idx: 0); |
661 | |
662 | RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value; |
663 | reg_ctx_sp->ReadRegister(reg_info: rax_info, reg_value&: rax_value); |
664 | reg_ctx_sp->ReadRegister(reg_info: rdx_info, reg_value&: rdx_value); |
665 | reg_ctx_sp->ReadRegister(reg_info: xmm0_info, reg_value&: xmm0_value); |
666 | reg_ctx_sp->ReadRegister(reg_info: xmm1_info, reg_value&: xmm1_value); |
667 | |
668 | DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data; |
669 | |
670 | rax_value.GetData(data&: rax_data); |
671 | rdx_value.GetData(data&: rdx_data); |
672 | xmm0_value.GetData(data&: xmm0_data); |
673 | xmm1_value.GetData(data&: xmm1_data); |
674 | |
675 | uint32_t fp_bytes = |
676 | 0; // Tracks how much of the xmm registers we've consumed so far |
677 | uint32_t integer_bytes = |
678 | 0; // Tracks how much of the rax/rds registers we've consumed so far |
679 | |
680 | // in case of the returned type is a subclass of non-abstract-base class |
681 | // it will have a padding to skip the base content |
682 | if (aggregate_field_offsets.size()) { |
683 | fp_bytes = aggregate_field_offsets[0]; |
684 | integer_bytes = aggregate_field_offsets[0]; |
685 | } |
686 | |
687 | const uint32_t num_children = aggregate_compiler_types.size(); |
688 | |
689 | // Since we are in the small struct regime, assume we are not in memory. |
690 | is_memory = false; |
691 | for (uint32_t idx = 0; idx < num_children; idx++) { |
692 | bool is_signed; |
693 | uint32_t count; |
694 | bool is_complex; |
695 | |
696 | CompilerType field_compiler_type = aggregate_compiler_types[idx]; |
697 | uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(exe_scope: &thread)); |
698 | uint32_t field_byte_offset = aggregate_field_offsets[idx]; |
699 | |
700 | uint32_t field_bit_width = field_byte_width * 8; |
701 | |
702 | DataExtractor * = nullptr; |
703 | uint32_t copy_from_offset = 0; |
704 | |
705 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
706 | field_compiler_type.IsPointerType()) { |
707 | if (integer_bytes < 8) { |
708 | if (integer_bytes + field_byte_width <= 8) { |
709 | // This is in RAX, copy from register to our result structure: |
710 | copy_from_extractor = &rax_data; |
711 | copy_from_offset = integer_bytes; |
712 | integer_bytes += field_byte_width; |
713 | } else { |
714 | // The next field wouldn't fit in the remaining space, so we |
715 | // pushed it to rdx. |
716 | copy_from_extractor = &rdx_data; |
717 | copy_from_offset = 0; |
718 | integer_bytes = 8 + field_byte_width; |
719 | } |
720 | } else if (integer_bytes + field_byte_width <= 16) { |
721 | copy_from_extractor = &rdx_data; |
722 | copy_from_offset = integer_bytes - 8; |
723 | integer_bytes += field_byte_width; |
724 | } else { |
725 | // The last field didn't fit. I can't see how that would happen |
726 | // w/o the overall size being greater than 16 bytes. For now, |
727 | // return a nullptr return value object. |
728 | return return_valobj_sp; |
729 | } |
730 | } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) { |
731 | // Structs with long doubles are always passed in memory. |
732 | if (field_bit_width == 128) { |
733 | is_memory = true; |
734 | break; |
735 | } else if (field_bit_width == 64) { |
736 | // These have to be in a single xmm register. |
737 | if (fp_bytes == 0) |
738 | copy_from_extractor = &xmm0_data; |
739 | else |
740 | copy_from_extractor = &xmm1_data; |
741 | |
742 | copy_from_offset = 0; |
743 | fp_bytes += field_byte_width; |
744 | } else if (field_bit_width == 32) { |
745 | // This one is kind of complicated. If we are in an "eightbyte" |
746 | // with another float, we'll be stuffed into an xmm register with |
747 | // it. If we are in an "eightbyte" with one or more ints, then we |
748 | // will be stuffed into the appropriate GPR with them. |
749 | bool in_gpr; |
750 | if (field_byte_offset % 8 == 0) { |
751 | // We are at the beginning of one of the eightbytes, so check the |
752 | // next element (if any) |
753 | if (idx == num_children - 1) { |
754 | in_gpr = false; |
755 | } else { |
756 | CompilerType next_field_compiler_type = |
757 | aggregate_compiler_types[idx + 1]; |
758 | if (next_field_compiler_type.IsIntegerOrEnumerationType( |
759 | is_signed)) { |
760 | in_gpr = true; |
761 | } else { |
762 | copy_from_offset = 0; |
763 | in_gpr = false; |
764 | } |
765 | } |
766 | } else if (field_byte_offset % 4 == 0) { |
767 | // We are inside of an eightbyte, so see if the field before us |
768 | // is floating point: This could happen if somebody put padding |
769 | // in the structure. |
770 | if (idx == 0) { |
771 | in_gpr = false; |
772 | } else { |
773 | CompilerType prev_field_compiler_type = |
774 | aggregate_compiler_types[idx - 1]; |
775 | if (prev_field_compiler_type.IsIntegerOrEnumerationType( |
776 | is_signed)) { |
777 | in_gpr = true; |
778 | } else { |
779 | copy_from_offset = 4; |
780 | in_gpr = false; |
781 | } |
782 | } |
783 | } else { |
784 | is_memory = true; |
785 | continue; |
786 | } |
787 | |
788 | // Okay, we've figured out whether we are in GPR or XMM, now figure |
789 | // out which one. |
790 | if (in_gpr) { |
791 | if (integer_bytes < 8) { |
792 | // This is in RAX, copy from register to our result structure: |
793 | copy_from_extractor = &rax_data; |
794 | copy_from_offset = integer_bytes; |
795 | integer_bytes += field_byte_width; |
796 | } else { |
797 | copy_from_extractor = &rdx_data; |
798 | copy_from_offset = integer_bytes - 8; |
799 | integer_bytes += field_byte_width; |
800 | } |
801 | } else { |
802 | if (fp_bytes < 8) |
803 | copy_from_extractor = &xmm0_data; |
804 | else |
805 | copy_from_extractor = &xmm1_data; |
806 | |
807 | fp_bytes += field_byte_width; |
808 | } |
809 | } |
810 | } |
811 | // These two tests are just sanity checks. If I somehow get the type |
812 | // calculation wrong above it is better to just return nothing than to |
813 | // assert or crash. |
814 | if (!copy_from_extractor) |
815 | return return_valobj_sp; |
816 | if (copy_from_offset + field_byte_width > |
817 | copy_from_extractor->GetByteSize()) |
818 | return return_valobj_sp; |
819 | copy_from_extractor->CopyByteOrderedData( |
820 | src_offset: copy_from_offset, src_len: field_byte_width, |
821 | dst: data_sp->GetBytes() + field_byte_offset, dst_len: field_byte_width, |
822 | dst_byte_order: byte_order); |
823 | } |
824 | if (!is_memory) { |
825 | // The result is in our data buffer. Let's make a variable object out |
826 | // of it: |
827 | return_valobj_sp = ValueObjectConstResult::Create( |
828 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data: return_ext); |
829 | } |
830 | } |
831 | |
832 | // FIXME: This is just taking a guess, rax may very well no longer hold the |
833 | // return storage location. |
834 | // If we are going to do this right, when we make a new frame we should |
835 | // check to see if it uses a memory return, and if we are at the first |
836 | // instruction and if so stash away the return location. Then we would |
837 | // only return the memory return value if we know it is valid. |
838 | |
839 | if (is_memory) { |
840 | unsigned rax_id = |
841 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
842 | lldb::addr_t storage_addr = |
843 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
844 | fail_value: 0); |
845 | return_valobj_sp = ValueObjectMemory::Create( |
846 | exe_scope: &thread, name: "" , address: Address(storage_addr, nullptr), ast_type: return_compiler_type); |
847 | } |
848 | } |
849 | |
850 | return return_valobj_sp; |
851 | } |
852 | |
853 | // This defines the CFA as rsp+8 |
854 | // the saved pc is at CFA-8 (i.e. rsp+0) |
855 | // The saved rsp is CFA+0 |
856 | |
857 | bool ABISysV_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { |
858 | unwind_plan.Clear(); |
859 | unwind_plan.SetRegisterKind(eRegisterKindDWARF); |
860 | |
861 | uint32_t sp_reg_num = dwarf_rsp; |
862 | uint32_t pc_reg_num = dwarf_rip; |
863 | |
864 | UnwindPlan::RowSP row(new UnwindPlan::Row); |
865 | row->GetCFAValue().SetIsRegisterPlusOffset(reg_num: sp_reg_num, offset: 8); |
866 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: -8, can_replace: false); |
867 | row->SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
868 | unwind_plan.AppendRow(row_sp: row); |
869 | unwind_plan.SetSourceName("x86_64 at-func-entry default" ); |
870 | unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); |
871 | return true; |
872 | } |
873 | |
874 | // This defines the CFA as rbp+16 |
875 | // The saved pc is at CFA-8 (i.e. rbp+8) |
876 | // The saved rbp is at CFA-16 (i.e. rbp+0) |
877 | // The saved rsp is CFA+0 |
878 | |
879 | bool ABISysV_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { |
880 | unwind_plan.Clear(); |
881 | unwind_plan.SetRegisterKind(eRegisterKindDWARF); |
882 | |
883 | uint32_t fp_reg_num = dwarf_rbp; |
884 | uint32_t sp_reg_num = dwarf_rsp; |
885 | uint32_t pc_reg_num = dwarf_rip; |
886 | |
887 | UnwindPlan::RowSP row(new UnwindPlan::Row); |
888 | |
889 | const int32_t ptr_size = 8; |
890 | row->GetCFAValue().SetIsRegisterPlusOffset(reg_num: dwarf_rbp, offset: 2 * ptr_size); |
891 | row->SetOffset(0); |
892 | row->SetUnspecifiedRegistersAreUndefined(true); |
893 | |
894 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: fp_reg_num, offset: ptr_size * -2, can_replace: true); |
895 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: ptr_size * -1, can_replace: true); |
896 | row->SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
897 | |
898 | unwind_plan.AppendRow(row_sp: row); |
899 | unwind_plan.SetSourceName("x86_64 default unwind plan" ); |
900 | unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); |
901 | unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
902 | unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); |
903 | return true; |
904 | } |
905 | |
906 | bool ABISysV_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) { |
907 | return !RegisterIsCalleeSaved(reg_info); |
908 | } |
909 | |
910 | // See "Register Usage" in the |
911 | // "System V Application Binary Interface" |
912 | // "AMD64 Architecture Processor Supplement" (or "x86-64(tm) Architecture |
913 | // Processor Supplement" in earlier revisions) (this doc is also commonly |
914 | // referred to as the x86-64/AMD64 psABI) Edited by Michael Matz, Jan Hubicka, |
915 | // Andreas Jaeger, and Mark Mitchell current version is 0.99.6 released |
916 | // 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf |
917 | // It's being revised & updated at https://github.com/hjl-tools/x86-psABI/ |
918 | |
919 | bool ABISysV_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { |
920 | if (!reg_info) |
921 | return false; |
922 | assert(reg_info->name != nullptr && "unnamed register?" ); |
923 | std::string Name = std::string(reg_info->name); |
924 | bool IsCalleeSaved = |
925 | llvm::StringSwitch<bool>(Name) |
926 | .Cases(S0: "r12" , S1: "r13" , S2: "r14" , S3: "r15" , S4: "rbp" , S5: "ebp" , S6: "rbx" , S7: "ebx" , Value: true) |
927 | .Cases(S0: "rip" , S1: "eip" , S2: "rsp" , S3: "esp" , S4: "sp" , S5: "fp" , S6: "pc" , Value: true) |
928 | .Default(Value: false); |
929 | return IsCalleeSaved; |
930 | } |
931 | |
932 | uint32_t ABISysV_x86_64::GetGenericNum(llvm::StringRef name) { |
933 | return llvm::StringSwitch<uint32_t>(name) |
934 | .Case(S: "rip" , LLDB_REGNUM_GENERIC_PC) |
935 | .Case(S: "rsp" , LLDB_REGNUM_GENERIC_SP) |
936 | .Case(S: "rbp" , LLDB_REGNUM_GENERIC_FP) |
937 | .Case(S: "rflags" , LLDB_REGNUM_GENERIC_FLAGS) |
938 | // gdbserver uses eflags |
939 | .Case(S: "eflags" , LLDB_REGNUM_GENERIC_FLAGS) |
940 | .Case(S: "rdi" , LLDB_REGNUM_GENERIC_ARG1) |
941 | .Case(S: "rsi" , LLDB_REGNUM_GENERIC_ARG2) |
942 | .Case(S: "rdx" , LLDB_REGNUM_GENERIC_ARG3) |
943 | .Case(S: "rcx" , LLDB_REGNUM_GENERIC_ARG4) |
944 | .Case(S: "r8" , LLDB_REGNUM_GENERIC_ARG5) |
945 | .Case(S: "r9" , LLDB_REGNUM_GENERIC_ARG6) |
946 | .Default(LLDB_INVALID_REGNUM); |
947 | } |
948 | |
949 | void ABISysV_x86_64::Initialize() { |
950 | PluginManager::RegisterPlugin( |
951 | name: GetPluginNameStatic(), description: "System V ABI for x86_64 targets" , create_callback: CreateInstance); |
952 | } |
953 | |
954 | void ABISysV_x86_64::Terminate() { |
955 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
956 | } |
957 | |