1 | //===-- ABISysV_x86_64.cpp ------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABISysV_x86_64.h" |
10 | |
11 | #include "llvm/ADT/STLExtras.h" |
12 | #include "llvm/ADT/StringSwitch.h" |
13 | #include "llvm/TargetParser/Triple.h" |
14 | |
15 | #include "lldb/Core/Module.h" |
16 | #include "lldb/Core/PluginManager.h" |
17 | #include "lldb/Core/Value.h" |
18 | #include "lldb/Symbol/UnwindPlan.h" |
19 | #include "lldb/Target/Process.h" |
20 | #include "lldb/Target/RegisterContext.h" |
21 | #include "lldb/Target/StackFrame.h" |
22 | #include "lldb/Target/Target.h" |
23 | #include "lldb/Target/Thread.h" |
24 | #include "lldb/Utility/ConstString.h" |
25 | #include "lldb/Utility/DataExtractor.h" |
26 | #include "lldb/Utility/LLDBLog.h" |
27 | #include "lldb/Utility/Log.h" |
28 | #include "lldb/Utility/RegisterValue.h" |
29 | #include "lldb/Utility/Status.h" |
30 | #include "lldb/ValueObject/ValueObjectConstResult.h" |
31 | #include "lldb/ValueObject/ValueObjectMemory.h" |
32 | #include "lldb/ValueObject/ValueObjectRegister.h" |
33 | |
34 | #include <optional> |
35 | #include <vector> |
36 | |
37 | using namespace lldb; |
38 | using namespace lldb_private; |
39 | |
40 | LLDB_PLUGIN_DEFINE(ABISysV_x86_64) |
41 | |
42 | enum dwarf_regnums { |
43 | dwarf_rax = 0, |
44 | dwarf_rdx, |
45 | dwarf_rcx, |
46 | dwarf_rbx, |
47 | dwarf_rsi, |
48 | dwarf_rdi, |
49 | dwarf_rbp, |
50 | dwarf_rsp, |
51 | dwarf_r8, |
52 | dwarf_r9, |
53 | dwarf_r10, |
54 | dwarf_r11, |
55 | dwarf_r12, |
56 | dwarf_r13, |
57 | dwarf_r14, |
58 | dwarf_r15, |
59 | dwarf_rip, |
60 | }; |
61 | |
62 | bool ABISysV_x86_64::GetPointerReturnRegister(const char *&name) { |
63 | name = "rax" ; |
64 | return true; |
65 | } |
66 | |
67 | size_t ABISysV_x86_64::GetRedZoneSize() const { return 128; } |
68 | |
69 | // Static Functions |
70 | |
71 | ABISP |
72 | ABISysV_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
73 | const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); |
74 | const llvm::Triple::OSType os_type = arch.GetTriple().getOS(); |
75 | const llvm::Triple::EnvironmentType os_env = |
76 | arch.GetTriple().getEnvironment(); |
77 | if (arch_type == llvm::Triple::x86_64) { |
78 | switch(os_type) { |
79 | case llvm::Triple::OSType::IOS: |
80 | case llvm::Triple::OSType::TvOS: |
81 | case llvm::Triple::OSType::WatchOS: |
82 | case llvm::Triple::OSType::XROS: |
83 | switch (os_env) { |
84 | case llvm::Triple::EnvironmentType::MacABI: |
85 | case llvm::Triple::EnvironmentType::Simulator: |
86 | case llvm::Triple::EnvironmentType::UnknownEnvironment: |
87 | // UnknownEnvironment is needed for older compilers that don't |
88 | // support the simulator environment. |
89 | return ABISP(new ABISysV_x86_64(std::move(process_sp), |
90 | MakeMCRegisterInfo(arch))); |
91 | default: |
92 | return ABISP(); |
93 | } |
94 | case llvm::Triple::OSType::Darwin: |
95 | case llvm::Triple::OSType::FreeBSD: |
96 | case llvm::Triple::OSType::Linux: |
97 | case llvm::Triple::OSType::MacOSX: |
98 | case llvm::Triple::OSType::NetBSD: |
99 | case llvm::Triple::OSType::OpenBSD: |
100 | case llvm::Triple::OSType::Solaris: |
101 | case llvm::Triple::OSType::UnknownOS: |
102 | return ABISP( |
103 | new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); |
104 | default: |
105 | return ABISP(); |
106 | } |
107 | } |
108 | return ABISP(); |
109 | } |
110 | |
111 | bool ABISysV_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp, |
112 | addr_t func_addr, addr_t return_addr, |
113 | llvm::ArrayRef<addr_t> args) const { |
114 | Log *log = GetLog(mask: LLDBLog::Expressions); |
115 | |
116 | if (log) { |
117 | StreamString s; |
118 | s.Printf(format: "ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 |
119 | ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 |
120 | ", return_addr = 0x%" PRIx64, |
121 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
122 | (uint64_t)return_addr); |
123 | |
124 | for (size_t i = 0; i < args.size(); ++i) |
125 | s.Printf(format: ", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), |
126 | args[i]); |
127 | s.PutCString(cstr: ")" ); |
128 | log->PutString(str: s.GetString()); |
129 | } |
130 | |
131 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
132 | if (!reg_ctx) |
133 | return false; |
134 | |
135 | const RegisterInfo *reg_info = nullptr; |
136 | |
137 | if (args.size() > 6) // TODO handle more than 6 arguments |
138 | return false; |
139 | |
140 | for (size_t i = 0; i < args.size(); ++i) { |
141 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
142 | LLDB_REGNUM_GENERIC_ARG1 + i); |
143 | LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s" , |
144 | static_cast<uint64_t>(i + 1), args[i], reg_info->name); |
145 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
146 | return false; |
147 | } |
148 | |
149 | // First, align the SP |
150 | |
151 | LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, |
152 | (uint64_t)sp, (uint64_t)(sp & ~0xfull)); |
153 | |
154 | sp &= ~(0xfull); // 16-byte alignment |
155 | |
156 | sp -= 8; |
157 | |
158 | Status error; |
159 | const RegisterInfo *pc_reg_info = |
160 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); |
161 | const RegisterInfo *sp_reg_info = |
162 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); |
163 | ProcessSP process_sp(thread.GetProcess()); |
164 | |
165 | RegisterValue reg_value; |
166 | LLDB_LOGF(log, |
167 | "Pushing the return address onto the stack: 0x%" PRIx64 |
168 | ": 0x%" PRIx64, |
169 | (uint64_t)sp, (uint64_t)return_addr); |
170 | |
171 | // Save return address onto the stack |
172 | if (!process_sp->WritePointerToMemory(vm_addr: sp, ptr_value: return_addr, error)) |
173 | return false; |
174 | |
175 | // %rsp is set to the actual stack value. |
176 | |
177 | LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); |
178 | |
179 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: sp_reg_info, uval: sp)) |
180 | return false; |
181 | |
182 | // %rip is set to the address of the called function. |
183 | |
184 | LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); |
185 | |
186 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: pc_reg_info, uval: func_addr)) |
187 | return false; |
188 | |
189 | return true; |
190 | } |
191 | |
192 | static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, |
193 | bool is_signed, Thread &thread, |
194 | uint32_t *argument_register_ids, |
195 | unsigned int ¤t_argument_register, |
196 | addr_t ¤t_stack_argument) { |
197 | if (bit_width > 64) |
198 | return false; // Scalar can't hold large integer arguments |
199 | |
200 | if (current_argument_register < 6) { |
201 | scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
202 | reg: argument_register_ids[current_argument_register], fail_value: 0); |
203 | current_argument_register++; |
204 | if (is_signed) |
205 | scalar.SignExtend(bit_pos: bit_width); |
206 | } else { |
207 | uint32_t byte_size = (bit_width + (8 - 1)) / 8; |
208 | Status error; |
209 | if (thread.GetProcess()->ReadScalarIntegerFromMemory( |
210 | addr: current_stack_argument, byte_size, is_signed, scalar, error)) { |
211 | current_stack_argument += byte_size; |
212 | return true; |
213 | } |
214 | return false; |
215 | } |
216 | return true; |
217 | } |
218 | |
219 | bool ABISysV_x86_64::GetArgumentValues(Thread &thread, |
220 | ValueList &values) const { |
221 | unsigned int num_values = values.GetSize(); |
222 | unsigned int value_index; |
223 | |
224 | // Extract the register context so we can read arguments from registers |
225 | |
226 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
227 | |
228 | if (!reg_ctx) |
229 | return false; |
230 | |
231 | // Get the pointer to the first stack argument so we have a place to start |
232 | // when reading data |
233 | |
234 | addr_t sp = reg_ctx->GetSP(fail_value: 0); |
235 | |
236 | if (!sp) |
237 | return false; |
238 | |
239 | addr_t current_stack_argument = sp + 8; // jump over return address |
240 | |
241 | uint32_t argument_register_ids[6]; |
242 | |
243 | argument_register_ids[0] = |
244 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) |
245 | ->kinds[eRegisterKindLLDB]; |
246 | argument_register_ids[1] = |
247 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) |
248 | ->kinds[eRegisterKindLLDB]; |
249 | argument_register_ids[2] = |
250 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) |
251 | ->kinds[eRegisterKindLLDB]; |
252 | argument_register_ids[3] = |
253 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) |
254 | ->kinds[eRegisterKindLLDB]; |
255 | argument_register_ids[4] = |
256 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5) |
257 | ->kinds[eRegisterKindLLDB]; |
258 | argument_register_ids[5] = |
259 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6) |
260 | ->kinds[eRegisterKindLLDB]; |
261 | |
262 | unsigned int current_argument_register = 0; |
263 | |
264 | for (value_index = 0; value_index < num_values; ++value_index) { |
265 | Value *value = values.GetValueAtIndex(idx: value_index); |
266 | |
267 | if (!value) |
268 | return false; |
269 | |
270 | // We currently only support extracting values with Clang QualTypes. Do we |
271 | // care about others? |
272 | CompilerType compiler_type = value->GetCompilerType(); |
273 | std::optional<uint64_t> bit_size = |
274 | llvm::expectedToOptional(E: compiler_type.GetBitSize(exe_scope: &thread)); |
275 | if (!bit_size) |
276 | return false; |
277 | bool is_signed; |
278 | |
279 | if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { |
280 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed, thread, |
281 | argument_register_ids, current_argument_register, |
282 | current_stack_argument); |
283 | } else if (compiler_type.IsPointerType()) { |
284 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed: false, thread, |
285 | argument_register_ids, current_argument_register, |
286 | current_stack_argument); |
287 | } |
288 | } |
289 | |
290 | return true; |
291 | } |
292 | |
293 | Status ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
294 | lldb::ValueObjectSP &new_value_sp) { |
295 | Status error; |
296 | if (!new_value_sp) { |
297 | error = Status::FromErrorString(str: "Empty value object for return value." ); |
298 | return error; |
299 | } |
300 | |
301 | CompilerType compiler_type = new_value_sp->GetCompilerType(); |
302 | if (!compiler_type) { |
303 | error = Status::FromErrorString(str: "Null clang type for return value." ); |
304 | return error; |
305 | } |
306 | |
307 | Thread *thread = frame_sp->GetThread().get(); |
308 | |
309 | bool is_signed; |
310 | uint32_t count; |
311 | bool is_complex; |
312 | |
313 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
314 | |
315 | bool set_it_simple = false; |
316 | if (compiler_type.IsIntegerOrEnumerationType(is_signed) || |
317 | compiler_type.IsPointerType()) { |
318 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
319 | |
320 | DataExtractor data; |
321 | Status data_error; |
322 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
323 | if (data_error.Fail()) { |
324 | error = Status::FromErrorStringWithFormat( |
325 | format: "Couldn't convert return value to raw data: %s" , |
326 | data_error.AsCString()); |
327 | return error; |
328 | } |
329 | lldb::offset_t offset = 0; |
330 | if (num_bytes <= 8) { |
331 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: num_bytes); |
332 | |
333 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: raw_value)) |
334 | set_it_simple = true; |
335 | } else { |
336 | error = Status::FromErrorString( |
337 | str: "We don't support returning longer than 64 bit " |
338 | "integer values at present." ); |
339 | } |
340 | } else if (compiler_type.IsFloatingPointType(count, is_complex)) { |
341 | if (is_complex) |
342 | error = Status::FromErrorString( |
343 | str: "We don't support returning complex values at present" ); |
344 | else { |
345 | std::optional<uint64_t> bit_width = |
346 | llvm::expectedToOptional(E: compiler_type.GetBitSize(exe_scope: frame_sp.get())); |
347 | if (!bit_width) { |
348 | error = Status::FromErrorString(str: "can't get type size" ); |
349 | return error; |
350 | } |
351 | if (*bit_width <= 64) { |
352 | const RegisterInfo *xmm0_info = |
353 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
354 | RegisterValue xmm0_value; |
355 | DataExtractor data; |
356 | Status data_error; |
357 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
358 | if (data_error.Fail()) { |
359 | error = Status::FromErrorStringWithFormat( |
360 | format: "Couldn't convert return value to raw data: %s" , |
361 | data_error.AsCString()); |
362 | return error; |
363 | } |
364 | |
365 | unsigned char buffer[16]; |
366 | ByteOrder byte_order = data.GetByteOrder(); |
367 | |
368 | data.CopyByteOrderedData(src_offset: 0, src_len: num_bytes, dst: buffer, dst_len: 16, dst_byte_order: byte_order); |
369 | xmm0_value.SetBytes(bytes: buffer, length: 16, byte_order); |
370 | reg_ctx->WriteRegister(reg_info: xmm0_info, reg_value: xmm0_value); |
371 | set_it_simple = true; |
372 | } else { |
373 | // FIXME - don't know how to do 80 bit long doubles yet. |
374 | error = Status::FromErrorString( |
375 | str: "We don't support returning float values > 64 bits at present" ); |
376 | } |
377 | } |
378 | } |
379 | |
380 | if (!set_it_simple) { |
381 | // Okay we've got a structure or something that doesn't fit in a simple |
382 | // register. We should figure out where it really goes, but we don't |
383 | // support this yet. |
384 | error = Status::FromErrorString( |
385 | str: "We only support setting simple integer and float " |
386 | "return types at present." ); |
387 | } |
388 | |
389 | return error; |
390 | } |
391 | |
392 | ValueObjectSP ABISysV_x86_64::GetReturnValueObjectSimple( |
393 | Thread &thread, CompilerType &return_compiler_type) const { |
394 | ValueObjectSP return_valobj_sp; |
395 | Value value; |
396 | |
397 | if (!return_compiler_type) |
398 | return return_valobj_sp; |
399 | |
400 | // value.SetContext (Value::eContextTypeClangType, return_value_type); |
401 | value.SetCompilerType(return_compiler_type); |
402 | |
403 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
404 | if (!reg_ctx) |
405 | return return_valobj_sp; |
406 | |
407 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(); |
408 | if (type_flags & eTypeIsScalar) { |
409 | value.SetValueType(Value::ValueType::Scalar); |
410 | |
411 | bool success = false; |
412 | if (type_flags & eTypeIsInteger) { |
413 | // Extract the register context so we can read arguments from registers |
414 | |
415 | std::optional<uint64_t> byte_size = |
416 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
417 | if (!byte_size) |
418 | return return_valobj_sp; |
419 | uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
420 | reg_info: reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0), fail_value: 0); |
421 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
422 | switch (*byte_size) { |
423 | default: |
424 | break; |
425 | |
426 | case sizeof(uint64_t): |
427 | if (is_signed) |
428 | value.GetScalar() = (int64_t)(raw_value); |
429 | else |
430 | value.GetScalar() = (uint64_t)(raw_value); |
431 | success = true; |
432 | break; |
433 | |
434 | case sizeof(uint32_t): |
435 | if (is_signed) |
436 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
437 | else |
438 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
439 | success = true; |
440 | break; |
441 | |
442 | case sizeof(uint16_t): |
443 | if (is_signed) |
444 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
445 | else |
446 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
447 | success = true; |
448 | break; |
449 | |
450 | case sizeof(uint8_t): |
451 | if (is_signed) |
452 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
453 | else |
454 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
455 | success = true; |
456 | break; |
457 | } |
458 | } else if (type_flags & eTypeIsFloat) { |
459 | if (type_flags & eTypeIsComplex) { |
460 | // Don't handle complex yet. |
461 | } else { |
462 | std::optional<uint64_t> byte_size = |
463 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
464 | if (byte_size && *byte_size <= sizeof(long double)) { |
465 | const RegisterInfo *xmm0_info = |
466 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
467 | RegisterValue xmm0_value; |
468 | if (reg_ctx->ReadRegister(reg_info: xmm0_info, reg_value&: xmm0_value)) { |
469 | DataExtractor data; |
470 | if (xmm0_value.GetData(data)) { |
471 | lldb::offset_t offset = 0; |
472 | if (*byte_size == sizeof(float)) { |
473 | value.GetScalar() = (float)data.GetFloat(offset_ptr: &offset); |
474 | success = true; |
475 | } else if (*byte_size == sizeof(double)) { |
476 | value.GetScalar() = (double)data.GetDouble(offset_ptr: &offset); |
477 | success = true; |
478 | } else if (*byte_size == sizeof(long double)) { |
479 | // Don't handle long double since that can be encoded as 80 bit |
480 | // floats... |
481 | } |
482 | } |
483 | } |
484 | } |
485 | } |
486 | } |
487 | |
488 | if (success) |
489 | return_valobj_sp = ValueObjectConstResult::Create( |
490 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
491 | } else if (type_flags & eTypeIsPointer) { |
492 | unsigned rax_id = |
493 | reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
494 | value.GetScalar() = |
495 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
496 | fail_value: 0); |
497 | value.SetValueType(Value::ValueType::Scalar); |
498 | return_valobj_sp = ValueObjectConstResult::Create( |
499 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
500 | } else if (type_flags & eTypeIsVector) { |
501 | std::optional<uint64_t> byte_size = |
502 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
503 | if (byte_size && *byte_size > 0) { |
504 | const RegisterInfo *altivec_reg = |
505 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
506 | if (altivec_reg == nullptr) |
507 | altivec_reg = reg_ctx->GetRegisterInfoByName(reg_name: "mm0" , start_idx: 0); |
508 | |
509 | if (altivec_reg) { |
510 | if (*byte_size <= altivec_reg->byte_size) { |
511 | ProcessSP process_sp(thread.GetProcess()); |
512 | if (process_sp) { |
513 | std::unique_ptr<DataBufferHeap> heap_data_up( |
514 | new DataBufferHeap(*byte_size, 0)); |
515 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
516 | RegisterValue reg_value; |
517 | if (reg_ctx->ReadRegister(reg_info: altivec_reg, reg_value)) { |
518 | Status error; |
519 | if (reg_value.GetAsMemoryData( |
520 | reg_info: *altivec_reg, dst: heap_data_up->GetBytes(), |
521 | dst_len: heap_data_up->GetByteSize(), dst_byte_order: byte_order, error)) { |
522 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
523 | byte_order, |
524 | process_sp->GetTarget() |
525 | .GetArchitecture() |
526 | .GetAddressByteSize()); |
527 | return_valobj_sp = ValueObjectConstResult::Create( |
528 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
529 | } |
530 | } |
531 | } |
532 | } else if (*byte_size <= altivec_reg->byte_size * 2) { |
533 | const RegisterInfo *altivec_reg2 = |
534 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm1" , start_idx: 0); |
535 | if (altivec_reg2) { |
536 | ProcessSP process_sp(thread.GetProcess()); |
537 | if (process_sp) { |
538 | std::unique_ptr<DataBufferHeap> heap_data_up( |
539 | new DataBufferHeap(*byte_size, 0)); |
540 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
541 | RegisterValue reg_value; |
542 | RegisterValue reg_value2; |
543 | if (reg_ctx->ReadRegister(reg_info: altivec_reg, reg_value) && |
544 | reg_ctx->ReadRegister(reg_info: altivec_reg2, reg_value&: reg_value2)) { |
545 | |
546 | Status error; |
547 | if (reg_value.GetAsMemoryData( |
548 | reg_info: *altivec_reg, dst: heap_data_up->GetBytes(), |
549 | dst_len: altivec_reg->byte_size, dst_byte_order: byte_order, error) && |
550 | reg_value2.GetAsMemoryData( |
551 | reg_info: *altivec_reg2, |
552 | dst: heap_data_up->GetBytes() + altivec_reg->byte_size, |
553 | dst_len: heap_data_up->GetByteSize() - altivec_reg->byte_size, |
554 | dst_byte_order: byte_order, error)) { |
555 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
556 | byte_order, |
557 | process_sp->GetTarget() |
558 | .GetArchitecture() |
559 | .GetAddressByteSize()); |
560 | return_valobj_sp = ValueObjectConstResult::Create( |
561 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
562 | } |
563 | } |
564 | } |
565 | } |
566 | } |
567 | } |
568 | } |
569 | } |
570 | |
571 | return return_valobj_sp; |
572 | } |
573 | |
574 | // The compiler will flatten the nested aggregate type into single |
575 | // layer and push the value to stack |
576 | // This helper function will flatten an aggregate type |
577 | // and return true if it can be returned in register(s) by value |
578 | // return false if the aggregate is in memory |
579 | static bool FlattenAggregateType( |
580 | Thread &thread, ExecutionContext &exe_ctx, |
581 | CompilerType &return_compiler_type, |
582 | uint32_t data_byte_offset, |
583 | std::vector<uint32_t> &aggregate_field_offsets, |
584 | std::vector<CompilerType> &aggregate_compiler_types) { |
585 | |
586 | const uint32_t num_children = return_compiler_type.GetNumFields(); |
587 | for (uint32_t idx = 0; idx < num_children; ++idx) { |
588 | std::string name; |
589 | bool is_signed; |
590 | uint32_t count; |
591 | bool is_complex; |
592 | |
593 | uint64_t field_bit_offset = 0; |
594 | CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( |
595 | idx, name, bit_offset_ptr: &field_bit_offset, bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
596 | std::optional<uint64_t> field_bit_width = |
597 | llvm::expectedToOptional(E: field_compiler_type.GetBitSize(exe_scope: &thread)); |
598 | |
599 | // if we don't know the size of the field (e.g. invalid type), exit |
600 | if (!field_bit_width || *field_bit_width == 0) { |
601 | return false; |
602 | } |
603 | |
604 | uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset; |
605 | |
606 | const uint32_t field_type_flags = field_compiler_type.GetTypeInfo(); |
607 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
608 | field_compiler_type.IsPointerType() || |
609 | field_compiler_type.IsFloatingPointType(count, is_complex)) { |
610 | aggregate_field_offsets.push_back(x: field_byte_offset); |
611 | aggregate_compiler_types.push_back(x: field_compiler_type); |
612 | } else if (field_type_flags & eTypeHasChildren) { |
613 | if (!FlattenAggregateType(thread, exe_ctx, return_compiler_type&: field_compiler_type, |
614 | data_byte_offset: field_byte_offset, aggregate_field_offsets, |
615 | aggregate_compiler_types)) { |
616 | return false; |
617 | } |
618 | } |
619 | } |
620 | return true; |
621 | } |
622 | |
623 | ValueObjectSP ABISysV_x86_64::GetReturnValueObjectImpl( |
624 | Thread &thread, CompilerType &return_compiler_type) const { |
625 | ValueObjectSP return_valobj_sp; |
626 | |
627 | if (!return_compiler_type) |
628 | return return_valobj_sp; |
629 | |
630 | ExecutionContext exe_ctx(thread.shared_from_this()); |
631 | return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); |
632 | if (return_valobj_sp) |
633 | return return_valobj_sp; |
634 | |
635 | RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); |
636 | if (!reg_ctx_sp) |
637 | return return_valobj_sp; |
638 | |
639 | std::optional<uint64_t> bit_width = |
640 | llvm::expectedToOptional(E: return_compiler_type.GetBitSize(exe_scope: &thread)); |
641 | if (!bit_width) |
642 | return return_valobj_sp; |
643 | if (return_compiler_type.IsAggregateType()) { |
644 | Target *target = exe_ctx.GetTargetPtr(); |
645 | bool is_memory = true; |
646 | std::vector<uint32_t> aggregate_field_offsets; |
647 | std::vector<CompilerType> aggregate_compiler_types; |
648 | auto ts = return_compiler_type.GetTypeSystem(); |
649 | if (ts && ts->CanPassInRegisters(type: return_compiler_type) && |
650 | *bit_width <= 128 && |
651 | FlattenAggregateType(thread, exe_ctx, return_compiler_type, data_byte_offset: 0, |
652 | aggregate_field_offsets, |
653 | aggregate_compiler_types)) { |
654 | ByteOrder byte_order = target->GetArchitecture().GetByteOrder(); |
655 | WritableDataBufferSP data_sp(new DataBufferHeap(16, 0)); |
656 | DataExtractor return_ext(data_sp, byte_order, |
657 | target->GetArchitecture().GetAddressByteSize()); |
658 | |
659 | const RegisterInfo *rax_info = |
660 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
661 | const RegisterInfo *rdx_info = |
662 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rdx" , start_idx: 0); |
663 | const RegisterInfo *xmm0_info = |
664 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
665 | const RegisterInfo *xmm1_info = |
666 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "xmm1" , start_idx: 0); |
667 | |
668 | RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value; |
669 | reg_ctx_sp->ReadRegister(reg_info: rax_info, reg_value&: rax_value); |
670 | reg_ctx_sp->ReadRegister(reg_info: rdx_info, reg_value&: rdx_value); |
671 | reg_ctx_sp->ReadRegister(reg_info: xmm0_info, reg_value&: xmm0_value); |
672 | reg_ctx_sp->ReadRegister(reg_info: xmm1_info, reg_value&: xmm1_value); |
673 | |
674 | DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data; |
675 | |
676 | rax_value.GetData(data&: rax_data); |
677 | rdx_value.GetData(data&: rdx_data); |
678 | xmm0_value.GetData(data&: xmm0_data); |
679 | xmm1_value.GetData(data&: xmm1_data); |
680 | |
681 | uint32_t fp_bytes = |
682 | 0; // Tracks how much of the xmm registers we've consumed so far |
683 | uint32_t integer_bytes = |
684 | 0; // Tracks how much of the rax/rds registers we've consumed so far |
685 | |
686 | // in case of the returned type is a subclass of non-abstract-base class |
687 | // it will have a padding to skip the base content |
688 | if (aggregate_field_offsets.size()) { |
689 | fp_bytes = aggregate_field_offsets[0]; |
690 | integer_bytes = aggregate_field_offsets[0]; |
691 | } |
692 | |
693 | const uint32_t num_children = aggregate_compiler_types.size(); |
694 | |
695 | // Since we are in the small struct regime, assume we are not in memory. |
696 | is_memory = false; |
697 | for (uint32_t idx = 0; idx < num_children; idx++) { |
698 | bool is_signed; |
699 | uint32_t count; |
700 | bool is_complex; |
701 | |
702 | CompilerType field_compiler_type = aggregate_compiler_types[idx]; |
703 | uint32_t field_byte_width = |
704 | (uint32_t)(llvm::expectedToOptional( |
705 | E: field_compiler_type.GetByteSize(exe_scope: &thread)) |
706 | .value_or(u: 0)); |
707 | uint32_t field_byte_offset = aggregate_field_offsets[idx]; |
708 | |
709 | uint32_t field_bit_width = field_byte_width * 8; |
710 | |
711 | DataExtractor * = nullptr; |
712 | uint32_t copy_from_offset = 0; |
713 | |
714 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
715 | field_compiler_type.IsPointerType()) { |
716 | if (integer_bytes < 8) { |
717 | if (integer_bytes + field_byte_width <= 8) { |
718 | // This is in RAX, copy from register to our result structure: |
719 | copy_from_extractor = &rax_data; |
720 | copy_from_offset = integer_bytes; |
721 | integer_bytes += field_byte_width; |
722 | } else { |
723 | // The next field wouldn't fit in the remaining space, so we |
724 | // pushed it to rdx. |
725 | copy_from_extractor = &rdx_data; |
726 | copy_from_offset = 0; |
727 | integer_bytes = 8 + field_byte_width; |
728 | } |
729 | } else if (integer_bytes + field_byte_width <= 16) { |
730 | copy_from_extractor = &rdx_data; |
731 | copy_from_offset = integer_bytes - 8; |
732 | integer_bytes += field_byte_width; |
733 | } else { |
734 | // The last field didn't fit. I can't see how that would happen |
735 | // w/o the overall size being greater than 16 bytes. For now, |
736 | // return a nullptr return value object. |
737 | return return_valobj_sp; |
738 | } |
739 | } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) { |
740 | // Structs with long doubles are always passed in memory. |
741 | if (field_bit_width == 128) { |
742 | is_memory = true; |
743 | break; |
744 | } else if (field_bit_width == 64) { |
745 | // These have to be in a single xmm register. |
746 | if (fp_bytes == 0) |
747 | copy_from_extractor = &xmm0_data; |
748 | else |
749 | copy_from_extractor = &xmm1_data; |
750 | |
751 | copy_from_offset = 0; |
752 | fp_bytes += field_byte_width; |
753 | } else if (field_bit_width == 32) { |
754 | // This one is kind of complicated. If we are in an "eightbyte" |
755 | // with another float, we'll be stuffed into an xmm register with |
756 | // it. If we are in an "eightbyte" with one or more ints, then we |
757 | // will be stuffed into the appropriate GPR with them. |
758 | bool in_gpr; |
759 | if (field_byte_offset % 8 == 0) { |
760 | // We are at the beginning of one of the eightbytes, so check the |
761 | // next element (if any) |
762 | if (idx == num_children - 1) { |
763 | in_gpr = false; |
764 | } else { |
765 | CompilerType next_field_compiler_type = |
766 | aggregate_compiler_types[idx + 1]; |
767 | if (next_field_compiler_type.IsIntegerOrEnumerationType( |
768 | is_signed)) { |
769 | in_gpr = true; |
770 | } else { |
771 | copy_from_offset = 0; |
772 | in_gpr = false; |
773 | } |
774 | } |
775 | } else if (field_byte_offset % 4 == 0) { |
776 | // We are inside of an eightbyte, so see if the field before us |
777 | // is floating point: This could happen if somebody put padding |
778 | // in the structure. |
779 | if (idx == 0) { |
780 | in_gpr = false; |
781 | } else { |
782 | CompilerType prev_field_compiler_type = |
783 | aggregate_compiler_types[idx - 1]; |
784 | if (prev_field_compiler_type.IsIntegerOrEnumerationType( |
785 | is_signed)) { |
786 | in_gpr = true; |
787 | } else { |
788 | copy_from_offset = 4; |
789 | in_gpr = false; |
790 | } |
791 | } |
792 | } else { |
793 | is_memory = true; |
794 | continue; |
795 | } |
796 | |
797 | // Okay, we've figured out whether we are in GPR or XMM, now figure |
798 | // out which one. |
799 | if (in_gpr) { |
800 | if (integer_bytes < 8) { |
801 | // This is in RAX, copy from register to our result structure: |
802 | copy_from_extractor = &rax_data; |
803 | copy_from_offset = integer_bytes; |
804 | integer_bytes += field_byte_width; |
805 | } else { |
806 | copy_from_extractor = &rdx_data; |
807 | copy_from_offset = integer_bytes - 8; |
808 | integer_bytes += field_byte_width; |
809 | } |
810 | } else { |
811 | if (fp_bytes < 8) |
812 | copy_from_extractor = &xmm0_data; |
813 | else |
814 | copy_from_extractor = &xmm1_data; |
815 | |
816 | fp_bytes += field_byte_width; |
817 | } |
818 | } |
819 | } |
820 | // These two tests are just sanity checks. If I somehow get the type |
821 | // calculation wrong above it is better to just return nothing than to |
822 | // assert or crash. |
823 | if (!copy_from_extractor) |
824 | return return_valobj_sp; |
825 | if (copy_from_offset + field_byte_width > |
826 | copy_from_extractor->GetByteSize()) |
827 | return return_valobj_sp; |
828 | copy_from_extractor->CopyByteOrderedData( |
829 | src_offset: copy_from_offset, src_len: field_byte_width, |
830 | dst: data_sp->GetBytes() + field_byte_offset, dst_len: field_byte_width, |
831 | dst_byte_order: byte_order); |
832 | } |
833 | if (!is_memory) { |
834 | // The result is in our data buffer. Let's make a variable object out |
835 | // of it: |
836 | return_valobj_sp = ValueObjectConstResult::Create( |
837 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data: return_ext); |
838 | } |
839 | } |
840 | |
841 | // FIXME: This is just taking a guess, rax may very well no longer hold the |
842 | // return storage location. |
843 | // If we are going to do this right, when we make a new frame we should |
844 | // check to see if it uses a memory return, and if we are at the first |
845 | // instruction and if so stash away the return location. Then we would |
846 | // only return the memory return value if we know it is valid. |
847 | |
848 | if (is_memory) { |
849 | unsigned rax_id = |
850 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
851 | lldb::addr_t storage_addr = |
852 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
853 | fail_value: 0); |
854 | return_valobj_sp = ValueObjectMemory::Create( |
855 | exe_scope: &thread, name: "" , address: Address(storage_addr, nullptr), ast_type: return_compiler_type); |
856 | } |
857 | } |
858 | |
859 | return return_valobj_sp; |
860 | } |
861 | |
862 | // This defines the CFA as rsp+8 |
863 | // the saved pc is at CFA-8 (i.e. rsp+0) |
864 | // The saved rsp is CFA+0 |
865 | |
866 | UnwindPlanSP ABISysV_x86_64::CreateFunctionEntryUnwindPlan() { |
867 | uint32_t sp_reg_num = dwarf_rsp; |
868 | uint32_t pc_reg_num = dwarf_rip; |
869 | |
870 | UnwindPlan::Row row; |
871 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num: sp_reg_num, offset: 8); |
872 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: -8, can_replace: false); |
873 | row.SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
874 | |
875 | auto plan_sp = std::make_shared<UnwindPlan>(args: eRegisterKindDWARF); |
876 | plan_sp->AppendRow(row: std::move(row)); |
877 | plan_sp->SetSourceName("x86_64 at-func-entry default" ); |
878 | plan_sp->SetSourcedFromCompiler(eLazyBoolNo); |
879 | return plan_sp; |
880 | } |
881 | |
882 | // This defines the CFA as rbp+16 |
883 | // The saved pc is at CFA-8 (i.e. rbp+8) |
884 | // The saved rbp is at CFA-16 (i.e. rbp+0) |
885 | // The saved rsp is CFA+0 |
886 | |
887 | UnwindPlanSP ABISysV_x86_64::CreateDefaultUnwindPlan() { |
888 | uint32_t fp_reg_num = dwarf_rbp; |
889 | uint32_t sp_reg_num = dwarf_rsp; |
890 | uint32_t pc_reg_num = dwarf_rip; |
891 | |
892 | UnwindPlan::Row row; |
893 | |
894 | const int32_t ptr_size = 8; |
895 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num: dwarf_rbp, offset: 2 * ptr_size); |
896 | row.SetOffset(0); |
897 | row.SetUnspecifiedRegistersAreUndefined(true); |
898 | |
899 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: fp_reg_num, offset: ptr_size * -2, can_replace: true); |
900 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: ptr_size * -1, can_replace: true); |
901 | row.SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
902 | |
903 | auto plan_sp = std::make_shared<UnwindPlan>(args: eRegisterKindDWARF); |
904 | plan_sp->AppendRow(row: std::move(row)); |
905 | plan_sp->SetSourceName("x86_64 default unwind plan" ); |
906 | plan_sp->SetSourcedFromCompiler(eLazyBoolNo); |
907 | plan_sp->SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
908 | plan_sp->SetUnwindPlanForSignalTrap(eLazyBoolNo); |
909 | return plan_sp; |
910 | } |
911 | |
912 | bool ABISysV_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) { |
913 | return !RegisterIsCalleeSaved(reg_info); |
914 | } |
915 | |
916 | // See "Register Usage" in the |
917 | // "System V Application Binary Interface" |
918 | // "AMD64 Architecture Processor Supplement" (or "x86-64(tm) Architecture |
919 | // Processor Supplement" in earlier revisions) (this doc is also commonly |
920 | // referred to as the x86-64/AMD64 psABI) Edited by Michael Matz, Jan Hubicka, |
921 | // Andreas Jaeger, and Mark Mitchell current version is 0.99.6 released |
922 | // 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf |
923 | // It's being revised & updated at https://github.com/hjl-tools/x86-psABI/ |
924 | |
925 | bool ABISysV_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { |
926 | if (!reg_info) |
927 | return false; |
928 | assert(reg_info->name != nullptr && "unnamed register?" ); |
929 | std::string Name = std::string(reg_info->name); |
930 | bool IsCalleeSaved = |
931 | llvm::StringSwitch<bool>(Name) |
932 | .Cases(S0: "r12" , S1: "r13" , S2: "r14" , S3: "r15" , S4: "rbp" , S5: "ebp" , S6: "rbx" , S7: "ebx" , Value: true) |
933 | .Cases(S0: "rip" , S1: "eip" , S2: "rsp" , S3: "esp" , S4: "sp" , S5: "fp" , S6: "pc" , Value: true) |
934 | .Default(Value: false); |
935 | return IsCalleeSaved; |
936 | } |
937 | |
938 | uint32_t ABISysV_x86_64::GetGenericNum(llvm::StringRef name) { |
939 | return llvm::StringSwitch<uint32_t>(name) |
940 | .Case(S: "rip" , LLDB_REGNUM_GENERIC_PC) |
941 | .Case(S: "rsp" , LLDB_REGNUM_GENERIC_SP) |
942 | .Case(S: "rbp" , LLDB_REGNUM_GENERIC_FP) |
943 | .Case(S: "rflags" , LLDB_REGNUM_GENERIC_FLAGS) |
944 | // gdbserver uses eflags |
945 | .Case(S: "eflags" , LLDB_REGNUM_GENERIC_FLAGS) |
946 | .Case(S: "rdi" , LLDB_REGNUM_GENERIC_ARG1) |
947 | .Case(S: "rsi" , LLDB_REGNUM_GENERIC_ARG2) |
948 | .Case(S: "rdx" , LLDB_REGNUM_GENERIC_ARG3) |
949 | .Case(S: "rcx" , LLDB_REGNUM_GENERIC_ARG4) |
950 | .Case(S: "r8" , LLDB_REGNUM_GENERIC_ARG5) |
951 | .Case(S: "r9" , LLDB_REGNUM_GENERIC_ARG6) |
952 | .Default(LLDB_INVALID_REGNUM); |
953 | } |
954 | |
955 | void ABISysV_x86_64::Initialize() { |
956 | PluginManager::RegisterPlugin( |
957 | name: GetPluginNameStatic(), description: "System V ABI for x86_64 targets" , create_callback: CreateInstance); |
958 | } |
959 | |
960 | void ABISysV_x86_64::Terminate() { |
961 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
962 | } |
963 | |