| 1 | //===-- ABIWindows_x86_64.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIWindows_x86_64.h" |
| 10 | |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/ADT/StringSwitch.h" |
| 13 | #include "llvm/TargetParser/Triple.h" |
| 14 | |
| 15 | #include "lldb/Core/Module.h" |
| 16 | #include "lldb/Core/PluginManager.h" |
| 17 | #include "lldb/Core/Value.h" |
| 18 | #include "lldb/Symbol/UnwindPlan.h" |
| 19 | #include "lldb/Target/Process.h" |
| 20 | #include "lldb/Target/RegisterContext.h" |
| 21 | #include "lldb/Target/StackFrame.h" |
| 22 | #include "lldb/Target/Target.h" |
| 23 | #include "lldb/Target/Thread.h" |
| 24 | #include "lldb/Utility/ConstString.h" |
| 25 | #include "lldb/Utility/DataExtractor.h" |
| 26 | #include "lldb/Utility/LLDBLog.h" |
| 27 | #include "lldb/Utility/Log.h" |
| 28 | #include "lldb/Utility/RegisterValue.h" |
| 29 | #include "lldb/Utility/Status.h" |
| 30 | #include "lldb/ValueObject/ValueObjectConstResult.h" |
| 31 | #include "lldb/ValueObject/ValueObjectMemory.h" |
| 32 | #include "lldb/ValueObject/ValueObjectRegister.h" |
| 33 | #include <optional> |
| 34 | |
| 35 | using namespace lldb; |
| 36 | using namespace lldb_private; |
| 37 | |
| 38 | LLDB_PLUGIN_DEFINE(ABIWindows_x86_64) |
| 39 | |
| 40 | enum dwarf_regnums { |
| 41 | dwarf_rax = 0, |
| 42 | dwarf_rdx, |
| 43 | dwarf_rcx, |
| 44 | dwarf_rbx, |
| 45 | dwarf_rsi, |
| 46 | dwarf_rdi, |
| 47 | dwarf_rbp, |
| 48 | dwarf_rsp, |
| 49 | dwarf_r8, |
| 50 | dwarf_r9, |
| 51 | dwarf_r10, |
| 52 | dwarf_r11, |
| 53 | dwarf_r12, |
| 54 | dwarf_r13, |
| 55 | dwarf_r14, |
| 56 | dwarf_r15, |
| 57 | dwarf_rip, |
| 58 | dwarf_xmm0, |
| 59 | dwarf_xmm1, |
| 60 | dwarf_xmm2, |
| 61 | dwarf_xmm3, |
| 62 | dwarf_xmm4, |
| 63 | dwarf_xmm5, |
| 64 | dwarf_xmm6, |
| 65 | dwarf_xmm7, |
| 66 | dwarf_xmm8, |
| 67 | dwarf_xmm9, |
| 68 | dwarf_xmm10, |
| 69 | dwarf_xmm11, |
| 70 | dwarf_xmm12, |
| 71 | dwarf_xmm13, |
| 72 | dwarf_xmm14, |
| 73 | dwarf_xmm15, |
| 74 | dwarf_stmm0, |
| 75 | dwarf_stmm1, |
| 76 | dwarf_stmm2, |
| 77 | dwarf_stmm3, |
| 78 | dwarf_stmm4, |
| 79 | dwarf_stmm5, |
| 80 | dwarf_stmm6, |
| 81 | dwarf_stmm7, |
| 82 | dwarf_ymm0, |
| 83 | dwarf_ymm1, |
| 84 | dwarf_ymm2, |
| 85 | dwarf_ymm3, |
| 86 | dwarf_ymm4, |
| 87 | dwarf_ymm5, |
| 88 | dwarf_ymm6, |
| 89 | dwarf_ymm7, |
| 90 | dwarf_ymm8, |
| 91 | dwarf_ymm9, |
| 92 | dwarf_ymm10, |
| 93 | dwarf_ymm11, |
| 94 | dwarf_ymm12, |
| 95 | dwarf_ymm13, |
| 96 | dwarf_ymm14, |
| 97 | dwarf_ymm15, |
| 98 | dwarf_bnd0 = 126, |
| 99 | dwarf_bnd1, |
| 100 | dwarf_bnd2, |
| 101 | dwarf_bnd3 |
| 102 | }; |
| 103 | |
| 104 | bool ABIWindows_x86_64::GetPointerReturnRegister(const char *&name) { |
| 105 | name = "rax" ; |
| 106 | return true; |
| 107 | } |
| 108 | |
| 109 | size_t ABIWindows_x86_64::GetRedZoneSize() const { return 0; } |
| 110 | |
| 111 | //------------------------------------------------------------------ |
| 112 | // Static Functions |
| 113 | //------------------------------------------------------------------ |
| 114 | |
| 115 | ABISP |
| 116 | ABIWindows_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
| 117 | if (arch.GetTriple().getArch() == llvm::Triple::x86_64 && |
| 118 | arch.GetTriple().isOSWindows()) { |
| 119 | return ABISP( |
| 120 | new ABIWindows_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); |
| 121 | } |
| 122 | return ABISP(); |
| 123 | } |
| 124 | |
| 125 | bool ABIWindows_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp, |
| 126 | addr_t func_addr, addr_t return_addr, |
| 127 | llvm::ArrayRef<addr_t> args) const { |
| 128 | Log *log = GetLog(mask: LLDBLog::Expressions); |
| 129 | |
| 130 | if (log) { |
| 131 | StreamString s; |
| 132 | s.Printf(format: "ABIWindows_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 |
| 133 | ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 |
| 134 | ", return_addr = 0x%" PRIx64, |
| 135 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
| 136 | (uint64_t)return_addr); |
| 137 | |
| 138 | for (size_t i = 0; i < args.size(); ++i) |
| 139 | s.Printf(format: ", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), |
| 140 | args[i]); |
| 141 | s.PutCString(cstr: ")" ); |
| 142 | log->PutString(str: s.GetString()); |
| 143 | } |
| 144 | |
| 145 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
| 146 | if (!reg_ctx) |
| 147 | return false; |
| 148 | |
| 149 | const RegisterInfo *reg_info = nullptr; |
| 150 | |
| 151 | if (args.size() > 4) // Windows x64 only put first 4 arguments into registers |
| 152 | return false; |
| 153 | |
| 154 | for (size_t i = 0; i < args.size(); ++i) { |
| 155 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
| 156 | LLDB_REGNUM_GENERIC_ARG1 + i); |
| 157 | LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s" , |
| 158 | static_cast<uint64_t>(i + 1), args[i], reg_info->name); |
| 159 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
| 160 | return false; |
| 161 | } |
| 162 | |
| 163 | // First, align the SP |
| 164 | |
| 165 | LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, |
| 166 | (uint64_t)sp, (uint64_t)(sp & ~0xfull)); |
| 167 | |
| 168 | sp &= ~(0xfull); // 16-byte alignment |
| 169 | |
| 170 | sp -= 8; // return address |
| 171 | |
| 172 | Status error; |
| 173 | const RegisterInfo *pc_reg_info = |
| 174 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); |
| 175 | const RegisterInfo *sp_reg_info = |
| 176 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); |
| 177 | ProcessSP process_sp(thread.GetProcess()); |
| 178 | |
| 179 | RegisterValue reg_value; |
| 180 | LLDB_LOGF(log, |
| 181 | "Pushing the return address onto the stack: 0x%" PRIx64 |
| 182 | ": 0x%" PRIx64, |
| 183 | (uint64_t)sp, (uint64_t)return_addr); |
| 184 | |
| 185 | // Save return address onto the stack |
| 186 | if (!process_sp->WritePointerToMemory(vm_addr: sp, ptr_value: return_addr, error)) |
| 187 | return false; |
| 188 | |
| 189 | // %rsp is set to the actual stack value. |
| 190 | |
| 191 | LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); |
| 192 | |
| 193 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: sp_reg_info, uval: sp)) |
| 194 | return false; |
| 195 | |
| 196 | // %rip is set to the address of the called function. |
| 197 | |
| 198 | LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); |
| 199 | |
| 200 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: pc_reg_info, uval: func_addr)) |
| 201 | return false; |
| 202 | |
| 203 | return true; |
| 204 | } |
| 205 | |
| 206 | static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, |
| 207 | bool is_signed, Thread &thread, |
| 208 | uint32_t *argument_register_ids, |
| 209 | unsigned int ¤t_argument_register, |
| 210 | addr_t ¤t_stack_argument) { |
| 211 | if (bit_width > 64) |
| 212 | return false; // Scalar can't hold large integer arguments |
| 213 | |
| 214 | if (current_argument_register < 4) { // Windows pass first 4 arguments to register |
| 215 | scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
| 216 | reg: argument_register_ids[current_argument_register], fail_value: 0); |
| 217 | current_argument_register++; |
| 218 | if (is_signed) |
| 219 | scalar.SignExtend(bit_pos: bit_width); |
| 220 | return true; |
| 221 | } |
| 222 | uint32_t byte_size = (bit_width + (CHAR_BIT - 1)) / CHAR_BIT; |
| 223 | Status error; |
| 224 | if (thread.GetProcess()->ReadScalarIntegerFromMemory( |
| 225 | addr: current_stack_argument, byte_size, is_signed, scalar, error)) { |
| 226 | current_stack_argument += byte_size; |
| 227 | return true; |
| 228 | } |
| 229 | return false; |
| 230 | } |
| 231 | |
| 232 | bool ABIWindows_x86_64::GetArgumentValues(Thread &thread, |
| 233 | ValueList &values) const { |
| 234 | unsigned int num_values = values.GetSize(); |
| 235 | unsigned int value_index; |
| 236 | |
| 237 | // Extract the register context so we can read arguments from registers |
| 238 | |
| 239 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
| 240 | |
| 241 | if (!reg_ctx) |
| 242 | return false; |
| 243 | |
| 244 | // Get the pointer to the first stack argument so we have a place to start |
| 245 | // when reading data |
| 246 | |
| 247 | addr_t sp = reg_ctx->GetSP(fail_value: 0); |
| 248 | |
| 249 | if (!sp) |
| 250 | return false; |
| 251 | |
| 252 | addr_t current_stack_argument = sp + 8; // jump over return address |
| 253 | |
| 254 | uint32_t argument_register_ids[4]; |
| 255 | |
| 256 | argument_register_ids[0] = |
| 257 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) |
| 258 | ->kinds[eRegisterKindLLDB]; |
| 259 | argument_register_ids[1] = |
| 260 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) |
| 261 | ->kinds[eRegisterKindLLDB]; |
| 262 | argument_register_ids[2] = |
| 263 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) |
| 264 | ->kinds[eRegisterKindLLDB]; |
| 265 | argument_register_ids[3] = |
| 266 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) |
| 267 | ->kinds[eRegisterKindLLDB]; |
| 268 | |
| 269 | unsigned int current_argument_register = 0; |
| 270 | |
| 271 | for (value_index = 0; value_index < num_values; ++value_index) { |
| 272 | Value *value = values.GetValueAtIndex(idx: value_index); |
| 273 | |
| 274 | if (!value) |
| 275 | return false; |
| 276 | |
| 277 | CompilerType compiler_type = value->GetCompilerType(); |
| 278 | std::optional<uint64_t> bit_size = |
| 279 | llvm::expectedToOptional(E: compiler_type.GetBitSize(exe_scope: &thread)); |
| 280 | if (!bit_size) |
| 281 | return false; |
| 282 | bool is_signed; |
| 283 | |
| 284 | if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { |
| 285 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed, thread, |
| 286 | argument_register_ids, current_argument_register, |
| 287 | current_stack_argument); |
| 288 | } else if (compiler_type.IsPointerType()) { |
| 289 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed: false, thread, |
| 290 | argument_register_ids, current_argument_register, |
| 291 | current_stack_argument); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | return true; |
| 296 | } |
| 297 | |
| 298 | Status ABIWindows_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
| 299 | lldb::ValueObjectSP &new_value_sp) { |
| 300 | Status error; |
| 301 | if (!new_value_sp) { |
| 302 | error = Status::FromErrorString(str: "Empty value object for return value." ); |
| 303 | return error; |
| 304 | } |
| 305 | |
| 306 | CompilerType compiler_type = new_value_sp->GetCompilerType(); |
| 307 | if (!compiler_type) { |
| 308 | error = Status::FromErrorString(str: "Null clang type for return value." ); |
| 309 | return error; |
| 310 | } |
| 311 | |
| 312 | Thread *thread = frame_sp->GetThread().get(); |
| 313 | |
| 314 | bool is_signed; |
| 315 | uint32_t count; |
| 316 | bool is_complex; |
| 317 | |
| 318 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
| 319 | |
| 320 | bool set_it_simple = false; |
| 321 | if (compiler_type.IsIntegerOrEnumerationType(is_signed) || |
| 322 | compiler_type.IsPointerType()) { |
| 323 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
| 324 | |
| 325 | DataExtractor data; |
| 326 | Status data_error; |
| 327 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
| 328 | if (data_error.Fail()) { |
| 329 | error = Status::FromErrorStringWithFormat( |
| 330 | format: "Couldn't convert return value to raw data: %s" , |
| 331 | data_error.AsCString()); |
| 332 | return error; |
| 333 | } |
| 334 | lldb::offset_t offset = 0; |
| 335 | if (num_bytes <= 8) { |
| 336 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: num_bytes); |
| 337 | |
| 338 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: raw_value)) |
| 339 | set_it_simple = true; |
| 340 | } else { |
| 341 | error = Status::FromErrorString( |
| 342 | str: "We don't support returning longer than 64 bit " |
| 343 | "integer values at present." ); |
| 344 | } |
| 345 | } else if (compiler_type.IsFloatingPointType(count, is_complex)) { |
| 346 | if (is_complex) |
| 347 | error = Status::FromErrorString( |
| 348 | str: "We don't support returning complex values at present" ); |
| 349 | else { |
| 350 | std::optional<uint64_t> bit_width = |
| 351 | llvm::expectedToOptional(E: compiler_type.GetBitSize(exe_scope: frame_sp.get())); |
| 352 | if (!bit_width) { |
| 353 | error = Status::FromErrorString(str: "can't get type size" ); |
| 354 | return error; |
| 355 | } |
| 356 | if (*bit_width <= 64) { |
| 357 | const RegisterInfo *xmm0_info = |
| 358 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
| 359 | RegisterValue xmm0_value; |
| 360 | DataExtractor data; |
| 361 | Status data_error; |
| 362 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
| 363 | if (data_error.Fail()) { |
| 364 | error = Status::FromErrorStringWithFormat( |
| 365 | format: "Couldn't convert return value to raw data: %s" , |
| 366 | data_error.AsCString()); |
| 367 | return error; |
| 368 | } |
| 369 | |
| 370 | unsigned char buffer[16]; |
| 371 | ByteOrder byte_order = data.GetByteOrder(); |
| 372 | |
| 373 | data.CopyByteOrderedData(src_offset: 0, src_len: num_bytes, dst: buffer, dst_len: 16, dst_byte_order: byte_order); |
| 374 | xmm0_value.SetBytes(bytes: buffer, length: 16, byte_order); |
| 375 | reg_ctx->WriteRegister(reg_info: xmm0_info, reg_value: xmm0_value); |
| 376 | set_it_simple = true; |
| 377 | } else { |
| 378 | // Windows doesn't support 80 bit FP |
| 379 | error = Status::FromErrorString( |
| 380 | str: "Windows-x86_64 doesn't allow FP larger than 64 bits." ); |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | if (!set_it_simple) { |
| 386 | // Okay we've got a structure or something that doesn't fit in a simple |
| 387 | // register. |
| 388 | // TODO(wanyi): On Windows, if the return type is a struct: |
| 389 | // 1) smaller that 64 bits and return by value -> RAX |
| 390 | // 2) bigger than 64 bits, the caller will allocate memory for that struct |
| 391 | // and pass the struct pointer in RCX then return the pointer in RAX |
| 392 | error = Status::FromErrorString( |
| 393 | str: "We only support setting simple integer and float " |
| 394 | "return types at present." ); |
| 395 | } |
| 396 | |
| 397 | return error; |
| 398 | } |
| 399 | |
| 400 | ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectSimple( |
| 401 | Thread &thread, CompilerType &return_compiler_type) const { |
| 402 | ValueObjectSP return_valobj_sp; |
| 403 | Value value; |
| 404 | |
| 405 | if (!return_compiler_type) |
| 406 | return return_valobj_sp; |
| 407 | |
| 408 | value.SetCompilerType(return_compiler_type); |
| 409 | |
| 410 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
| 411 | if (!reg_ctx) |
| 412 | return return_valobj_sp; |
| 413 | |
| 414 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(); |
| 415 | if (type_flags & eTypeIsScalar) { |
| 416 | value.SetValueType(Value::ValueType::Scalar); |
| 417 | |
| 418 | bool success = false; |
| 419 | if (type_flags & eTypeIsInteger) { |
| 420 | // Extract the register context so we can read arguments from registers |
| 421 | std::optional<uint64_t> byte_size = |
| 422 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
| 423 | if (!byte_size) |
| 424 | return return_valobj_sp; |
| 425 | uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
| 426 | reg_info: reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0), fail_value: 0); |
| 427 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
| 428 | switch (*byte_size) { |
| 429 | default: |
| 430 | break; |
| 431 | |
| 432 | case sizeof(uint64_t): |
| 433 | if (is_signed) |
| 434 | value.GetScalar() = (int64_t)(raw_value); |
| 435 | else |
| 436 | value.GetScalar() = (uint64_t)(raw_value); |
| 437 | success = true; |
| 438 | break; |
| 439 | |
| 440 | case sizeof(uint32_t): |
| 441 | if (is_signed) |
| 442 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
| 443 | else |
| 444 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
| 445 | success = true; |
| 446 | break; |
| 447 | |
| 448 | case sizeof(uint16_t): |
| 449 | if (is_signed) |
| 450 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
| 451 | else |
| 452 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
| 453 | success = true; |
| 454 | break; |
| 455 | |
| 456 | case sizeof(uint8_t): |
| 457 | if (is_signed) |
| 458 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
| 459 | else |
| 460 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
| 461 | success = true; |
| 462 | break; |
| 463 | } |
| 464 | } else if (type_flags & eTypeIsFloat) { |
| 465 | if (type_flags & eTypeIsComplex) { |
| 466 | // Don't handle complex yet. |
| 467 | } else { |
| 468 | std::optional<uint64_t> byte_size = |
| 469 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
| 470 | if (byte_size && *byte_size <= sizeof(long double)) { |
| 471 | const RegisterInfo *xmm0_info = |
| 472 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
| 473 | RegisterValue xmm0_value; |
| 474 | if (reg_ctx->ReadRegister(reg_info: xmm0_info, reg_value&: xmm0_value)) { |
| 475 | DataExtractor data; |
| 476 | if (xmm0_value.GetData(data)) { |
| 477 | lldb::offset_t offset = 0; |
| 478 | if (*byte_size == sizeof(float)) { |
| 479 | value.GetScalar() = (float)data.GetFloat(offset_ptr: &offset); |
| 480 | success = true; |
| 481 | } else if (*byte_size == sizeof(double)) { |
| 482 | // double and long double are the same on windows |
| 483 | value.GetScalar() = (double)data.GetDouble(offset_ptr: &offset); |
| 484 | success = true; |
| 485 | } |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | if (success) |
| 493 | return_valobj_sp = ValueObjectConstResult::Create( |
| 494 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
| 495 | } else if ((type_flags & eTypeIsPointer) || |
| 496 | (type_flags & eTypeInstanceIsPointer)) { |
| 497 | unsigned rax_id = |
| 498 | reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
| 499 | value.GetScalar() = |
| 500 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
| 501 | fail_value: 0); |
| 502 | value.SetValueType(Value::ValueType::Scalar); |
| 503 | return_valobj_sp = ValueObjectConstResult::Create( |
| 504 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
| 505 | } else if (type_flags & eTypeIsVector) { |
| 506 | std::optional<uint64_t> byte_size = |
| 507 | llvm::expectedToOptional(E: return_compiler_type.GetByteSize(exe_scope: &thread)); |
| 508 | if (byte_size && *byte_size > 0) { |
| 509 | const RegisterInfo *xmm_reg = |
| 510 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
| 511 | if (xmm_reg == nullptr) |
| 512 | xmm_reg = reg_ctx->GetRegisterInfoByName(reg_name: "mm0" , start_idx: 0); |
| 513 | |
| 514 | if (xmm_reg) { |
| 515 | if (*byte_size <= xmm_reg->byte_size) { |
| 516 | ProcessSP process_sp(thread.GetProcess()); |
| 517 | if (process_sp) { |
| 518 | std::unique_ptr<DataBufferHeap> heap_data_up( |
| 519 | new DataBufferHeap(*byte_size, 0)); |
| 520 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
| 521 | RegisterValue reg_value; |
| 522 | if (reg_ctx->ReadRegister(reg_info: xmm_reg, reg_value)) { |
| 523 | Status error; |
| 524 | if (reg_value.GetAsMemoryData(reg_info: *xmm_reg, dst: heap_data_up->GetBytes(), |
| 525 | dst_len: heap_data_up->GetByteSize(), |
| 526 | dst_byte_order: byte_order, error)) { |
| 527 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
| 528 | byte_order, |
| 529 | process_sp->GetTarget() |
| 530 | .GetArchitecture() |
| 531 | .GetAddressByteSize()); |
| 532 | return_valobj_sp = ValueObjectConstResult::Create( |
| 533 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | return return_valobj_sp; |
| 543 | } |
| 544 | |
| 545 | // The compiler will flatten the nested aggregate type into single |
| 546 | // layer and push the value to stack |
| 547 | // This helper function will flatten an aggregate type |
| 548 | // and return true if it can be returned in register(s) by value |
| 549 | // return false if the aggregate is in memory |
| 550 | static bool FlattenAggregateType( |
| 551 | Thread &thread, ExecutionContext &exe_ctx, |
| 552 | CompilerType &return_compiler_type, |
| 553 | uint32_t data_byte_offset, |
| 554 | std::vector<uint32_t> &aggregate_field_offsets, |
| 555 | std::vector<CompilerType> &aggregate_compiler_types) { |
| 556 | |
| 557 | const uint32_t num_children = return_compiler_type.GetNumFields(); |
| 558 | for (uint32_t idx = 0; idx < num_children; ++idx) { |
| 559 | std::string name; |
| 560 | bool is_signed; |
| 561 | uint32_t count; |
| 562 | bool is_complex; |
| 563 | |
| 564 | uint64_t field_bit_offset = 0; |
| 565 | CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( |
| 566 | idx, name, bit_offset_ptr: &field_bit_offset, bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
| 567 | std::optional<uint64_t> field_bit_width = |
| 568 | llvm::expectedToOptional(E: field_compiler_type.GetBitSize(exe_scope: &thread)); |
| 569 | |
| 570 | // if we don't know the size of the field (e.g. invalid type), exit |
| 571 | if (!field_bit_width || *field_bit_width == 0) { |
| 572 | return false; |
| 573 | } |
| 574 | // If there are any unaligned fields, this is stored in memory. |
| 575 | if (field_bit_offset % *field_bit_width != 0) { |
| 576 | return false; |
| 577 | } |
| 578 | |
| 579 | // add overall offset |
| 580 | uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset; |
| 581 | |
| 582 | const uint32_t field_type_flags = field_compiler_type.GetTypeInfo(); |
| 583 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
| 584 | field_compiler_type.IsPointerType() || |
| 585 | field_compiler_type.IsFloatingPointType(count, is_complex)) { |
| 586 | aggregate_field_offsets.push_back(x: field_byte_offset); |
| 587 | aggregate_compiler_types.push_back(x: field_compiler_type); |
| 588 | } else if (field_type_flags & eTypeHasChildren) { |
| 589 | if (!FlattenAggregateType(thread, exe_ctx, return_compiler_type&: field_compiler_type, |
| 590 | data_byte_offset: field_byte_offset, aggregate_field_offsets, |
| 591 | aggregate_compiler_types)) { |
| 592 | return false; |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | return true; |
| 597 | } |
| 598 | |
| 599 | ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectImpl( |
| 600 | Thread &thread, CompilerType &return_compiler_type) const { |
| 601 | ValueObjectSP return_valobj_sp; |
| 602 | |
| 603 | if (!return_compiler_type) { |
| 604 | return return_valobj_sp; |
| 605 | } |
| 606 | |
| 607 | // try extract value as if it's a simple type |
| 608 | return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); |
| 609 | if (return_valobj_sp) { |
| 610 | return return_valobj_sp; |
| 611 | } |
| 612 | |
| 613 | RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); |
| 614 | if (!reg_ctx_sp) { |
| 615 | return return_valobj_sp; |
| 616 | } |
| 617 | |
| 618 | std::optional<uint64_t> bit_width = |
| 619 | llvm::expectedToOptional(E: return_compiler_type.GetBitSize(exe_scope: &thread)); |
| 620 | if (!bit_width) { |
| 621 | return return_valobj_sp; |
| 622 | } |
| 623 | |
| 624 | // if it's not simple or aggregate type, then we don't know how to handle it |
| 625 | if (!return_compiler_type.IsAggregateType()) { |
| 626 | return return_valobj_sp; |
| 627 | } |
| 628 | |
| 629 | ExecutionContext exe_ctx(thread.shared_from_this()); |
| 630 | Target *target = exe_ctx.GetTargetPtr(); |
| 631 | uint32_t max_register_value_bit_width = 64; |
| 632 | |
| 633 | // The scenario here is to have a struct/class which is POD |
| 634 | // if the return struct/class size is larger than 64 bits, |
| 635 | // the caller will allocate memory for it and pass the return addr in RCX |
| 636 | // then return the address in RAX |
| 637 | |
| 638 | // if the struct is returned by value in register (RAX) |
| 639 | // its size has to be: 1, 2, 4, 8, 16, 32, or 64 bits (aligned) |
| 640 | // for floating point, the return value will be copied over to RAX |
| 641 | bool is_memory = *bit_width > max_register_value_bit_width || |
| 642 | *bit_width & (*bit_width - 1); |
| 643 | std::vector<uint32_t> aggregate_field_offsets; |
| 644 | std::vector<CompilerType> aggregate_compiler_types; |
| 645 | if (!is_memory && |
| 646 | FlattenAggregateType(thread, exe_ctx, return_compiler_type, |
| 647 | data_byte_offset: 0, aggregate_field_offsets, |
| 648 | aggregate_compiler_types)) { |
| 649 | ByteOrder byte_order = target->GetArchitecture().GetByteOrder(); |
| 650 | WritableDataBufferSP data_sp( |
| 651 | new DataBufferHeap(max_register_value_bit_width / 8, 0)); |
| 652 | DataExtractor return_ext(data_sp, byte_order, |
| 653 | target->GetArchitecture().GetAddressByteSize()); |
| 654 | |
| 655 | // The only register used to return struct/class by value |
| 656 | const RegisterInfo *rax_info = |
| 657 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
| 658 | RegisterValue rax_value; |
| 659 | reg_ctx_sp->ReadRegister(reg_info: rax_info, reg_value&: rax_value); |
| 660 | DataExtractor rax_data; |
| 661 | rax_value.GetData(data&: rax_data); |
| 662 | |
| 663 | uint32_t used_bytes = |
| 664 | 0; // Tracks how much of the rax registers we've consumed so far |
| 665 | |
| 666 | // in case of the returned type is a subclass of non-abstract-base class |
| 667 | // it will have a padding to skip the base content |
| 668 | if (aggregate_field_offsets.size()) |
| 669 | used_bytes = aggregate_field_offsets[0]; |
| 670 | |
| 671 | const uint32_t num_children = aggregate_compiler_types.size(); |
| 672 | for (uint32_t idx = 0; idx < num_children; idx++) { |
| 673 | bool is_signed; |
| 674 | bool is_complex; |
| 675 | uint32_t count; |
| 676 | |
| 677 | CompilerType field_compiler_type = aggregate_compiler_types[idx]; |
| 678 | uint32_t field_byte_width = |
| 679 | (uint32_t)(llvm::expectedToOptional( |
| 680 | E: field_compiler_type.GetByteSize(exe_scope: &thread)) |
| 681 | .value_or(u: 0)); |
| 682 | uint32_t field_byte_offset = aggregate_field_offsets[idx]; |
| 683 | |
| 684 | // this is unlikely w/o the overall size being greater than 8 bytes |
| 685 | // For now, return a nullptr return value object. |
| 686 | if (used_bytes >= 8 || used_bytes + field_byte_width > 8) { |
| 687 | return return_valobj_sp; |
| 688 | } |
| 689 | |
| 690 | DataExtractor * = nullptr; |
| 691 | uint32_t copy_from_offset = 0; |
| 692 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
| 693 | field_compiler_type.IsPointerType() || |
| 694 | field_compiler_type.IsFloatingPointType(count, is_complex)) { |
| 695 | copy_from_extractor = &rax_data; |
| 696 | copy_from_offset = used_bytes; |
| 697 | used_bytes += field_byte_width; |
| 698 | } |
| 699 | // These two tests are just sanity checks. If I somehow get the type |
| 700 | // calculation wrong above it is better to just return nothing than to |
| 701 | // assert or crash. |
| 702 | if (!copy_from_extractor) { |
| 703 | return return_valobj_sp; |
| 704 | } |
| 705 | if (copy_from_offset + field_byte_width > |
| 706 | copy_from_extractor->GetByteSize()) { |
| 707 | return return_valobj_sp; |
| 708 | } |
| 709 | copy_from_extractor->CopyByteOrderedData(src_offset: copy_from_offset, |
| 710 | src_len: field_byte_width, dst: data_sp->GetBytes() + field_byte_offset, |
| 711 | dst_len: field_byte_width, dst_byte_order: byte_order); |
| 712 | } |
| 713 | if (!is_memory) { |
| 714 | // The result is in our data buffer. Let's make a variable object out |
| 715 | // of it: |
| 716 | return_valobj_sp = ValueObjectConstResult::Create( |
| 717 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data: return_ext); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | // The Windows x86_64 ABI specifies that the return address for MEMORY |
| 722 | // objects be placed in rax on exit from the function. |
| 723 | |
| 724 | // FIXME: This is just taking a guess, rax may very well no longer hold the |
| 725 | // return storage location. |
| 726 | // If we are going to do this right, when we make a new frame we should |
| 727 | // check to see if it uses a memory return, and if we are at the first |
| 728 | // instruction and if so stash away the return location. Then we would |
| 729 | // only return the memory return value if we know it is valid. |
| 730 | if (is_memory) { |
| 731 | unsigned rax_id = |
| 732 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
| 733 | lldb::addr_t storage_addr = |
| 734 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
| 735 | fail_value: 0); |
| 736 | return_valobj_sp = ValueObjectMemory::Create( |
| 737 | exe_scope: &thread, name: "" , address: Address(storage_addr, nullptr), ast_type: return_compiler_type); |
| 738 | } |
| 739 | return return_valobj_sp; |
| 740 | } |
| 741 | |
| 742 | // This defines the CFA as rsp+8 |
| 743 | // the saved pc is at CFA-8 (i.e. rsp+0) |
| 744 | // The saved rsp is CFA+0 |
| 745 | |
| 746 | UnwindPlanSP ABIWindows_x86_64::CreateFunctionEntryUnwindPlan() { |
| 747 | uint32_t sp_reg_num = dwarf_rsp; |
| 748 | uint32_t pc_reg_num = dwarf_rip; |
| 749 | |
| 750 | UnwindPlan::Row row; |
| 751 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num: sp_reg_num, offset: 8); |
| 752 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: -8, can_replace: false); |
| 753 | row.SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
| 754 | |
| 755 | auto plan_sp = std::make_shared<UnwindPlan>(args: eRegisterKindDWARF); |
| 756 | plan_sp->AppendRow(row: std::move(row)); |
| 757 | plan_sp->SetSourceName("x86_64 at-func-entry default" ); |
| 758 | plan_sp->SetSourcedFromCompiler(eLazyBoolNo); |
| 759 | return plan_sp; |
| 760 | } |
| 761 | |
| 762 | // Windows-x86_64 doesn't use %rbp |
| 763 | // No available Unwind information for Windows-x86_64 (section .pdata) |
| 764 | // Let's use SysV-x86_64 one for now |
| 765 | UnwindPlanSP ABIWindows_x86_64::CreateDefaultUnwindPlan() { |
| 766 | uint32_t fp_reg_num = dwarf_rbp; |
| 767 | uint32_t sp_reg_num = dwarf_rsp; |
| 768 | uint32_t pc_reg_num = dwarf_rip; |
| 769 | |
| 770 | UnwindPlan::Row row; |
| 771 | |
| 772 | const int32_t ptr_size = 8; |
| 773 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num: dwarf_rbp, offset: 2 * ptr_size); |
| 774 | row.SetOffset(0); |
| 775 | row.SetUnspecifiedRegistersAreUndefined(true); |
| 776 | |
| 777 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: fp_reg_num, offset: ptr_size * -2, can_replace: true); |
| 778 | row.SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: ptr_size * -1, can_replace: true); |
| 779 | row.SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
| 780 | |
| 781 | auto plan_sp = std::make_shared<UnwindPlan>(args: eRegisterKindDWARF); |
| 782 | plan_sp->AppendRow(row: std::move(row)); |
| 783 | plan_sp->SetSourceName("x86_64 default unwind plan" ); |
| 784 | plan_sp->SetSourcedFromCompiler(eLazyBoolNo); |
| 785 | plan_sp->SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
| 786 | return plan_sp; |
| 787 | } |
| 788 | |
| 789 | bool ABIWindows_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) { |
| 790 | return !RegisterIsCalleeSaved(reg_info); |
| 791 | } |
| 792 | |
| 793 | bool ABIWindows_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { |
| 794 | if (!reg_info) |
| 795 | return false; |
| 796 | assert(reg_info->name != nullptr && "unnamed register?" ); |
| 797 | std::string Name = std::string(reg_info->name); |
| 798 | bool IsCalleeSaved = |
| 799 | llvm::StringSwitch<bool>(Name) |
| 800 | .Cases(S0: "rbx" , S1: "ebx" , S2: "rbp" , S3: "ebp" , S4: "rdi" , S5: "edi" , S6: "rsi" , S7: "esi" , Value: true) |
| 801 | .Cases(S0: "rsp" , S1: "esp" , S2: "r12" , S3: "r13" , S4: "r14" , S5: "r15" , S6: "sp" , S7: "fp" , Value: true) |
| 802 | .Cases(S0: "xmm6" , S1: "xmm7" , S2: "xmm8" , S3: "xmm9" , S4: "xmm10" , S5: "xmm11" , S6: "xmm12" , |
| 803 | S7: "xmm13" , S8: "xmm14" , S9: "xmm15" , Value: true) |
| 804 | .Default(Value: false); |
| 805 | return IsCalleeSaved; |
| 806 | } |
| 807 | |
| 808 | uint32_t ABIWindows_x86_64::GetGenericNum(llvm::StringRef reg) { |
| 809 | return llvm::StringSwitch<uint32_t>(reg) |
| 810 | .Case(S: "rip" , LLDB_REGNUM_GENERIC_PC) |
| 811 | .Case(S: "rsp" , LLDB_REGNUM_GENERIC_SP) |
| 812 | .Case(S: "rbp" , LLDB_REGNUM_GENERIC_FP) |
| 813 | .Case(S: "rflags" , LLDB_REGNUM_GENERIC_FLAGS) |
| 814 | // gdbserver uses eflags |
| 815 | .Case(S: "eflags" , LLDB_REGNUM_GENERIC_FLAGS) |
| 816 | .Case(S: "rcx" , LLDB_REGNUM_GENERIC_ARG1) |
| 817 | .Case(S: "rdx" , LLDB_REGNUM_GENERIC_ARG2) |
| 818 | .Case(S: "r8" , LLDB_REGNUM_GENERIC_ARG3) |
| 819 | .Case(S: "r9" , LLDB_REGNUM_GENERIC_ARG4) |
| 820 | .Default(LLDB_INVALID_REGNUM); |
| 821 | } |
| 822 | |
| 823 | void ABIWindows_x86_64::Initialize() { |
| 824 | PluginManager::RegisterPlugin( |
| 825 | name: GetPluginNameStatic(), description: "Windows ABI for x86_64 targets" , create_callback: CreateInstance); |
| 826 | } |
| 827 | |
| 828 | void ABIWindows_x86_64::Terminate() { |
| 829 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
| 830 | } |
| 831 | |