1 | //===-- ABIWindows_x86_64.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABIWindows_x86_64.h" |
10 | |
11 | #include "llvm/ADT/STLExtras.h" |
12 | #include "llvm/ADT/StringSwitch.h" |
13 | #include "llvm/TargetParser/Triple.h" |
14 | |
15 | #include "lldb/Core/Module.h" |
16 | #include "lldb/Core/PluginManager.h" |
17 | #include "lldb/Core/Value.h" |
18 | #include "lldb/Core/ValueObjectConstResult.h" |
19 | #include "lldb/Core/ValueObjectMemory.h" |
20 | #include "lldb/Core/ValueObjectRegister.h" |
21 | #include "lldb/Symbol/UnwindPlan.h" |
22 | #include "lldb/Target/Process.h" |
23 | #include "lldb/Target/RegisterContext.h" |
24 | #include "lldb/Target/StackFrame.h" |
25 | #include "lldb/Target/Target.h" |
26 | #include "lldb/Target/Thread.h" |
27 | #include "lldb/Utility/ConstString.h" |
28 | #include "lldb/Utility/DataExtractor.h" |
29 | #include "lldb/Utility/LLDBLog.h" |
30 | #include "lldb/Utility/Log.h" |
31 | #include "lldb/Utility/RegisterValue.h" |
32 | #include "lldb/Utility/Status.h" |
33 | #include <optional> |
34 | |
35 | using namespace lldb; |
36 | using namespace lldb_private; |
37 | |
38 | LLDB_PLUGIN_DEFINE(ABIWindows_x86_64) |
39 | |
40 | enum dwarf_regnums { |
41 | dwarf_rax = 0, |
42 | dwarf_rdx, |
43 | dwarf_rcx, |
44 | dwarf_rbx, |
45 | dwarf_rsi, |
46 | dwarf_rdi, |
47 | dwarf_rbp, |
48 | dwarf_rsp, |
49 | dwarf_r8, |
50 | dwarf_r9, |
51 | dwarf_r10, |
52 | dwarf_r11, |
53 | dwarf_r12, |
54 | dwarf_r13, |
55 | dwarf_r14, |
56 | dwarf_r15, |
57 | dwarf_rip, |
58 | dwarf_xmm0, |
59 | dwarf_xmm1, |
60 | dwarf_xmm2, |
61 | dwarf_xmm3, |
62 | dwarf_xmm4, |
63 | dwarf_xmm5, |
64 | dwarf_xmm6, |
65 | dwarf_xmm7, |
66 | dwarf_xmm8, |
67 | dwarf_xmm9, |
68 | dwarf_xmm10, |
69 | dwarf_xmm11, |
70 | dwarf_xmm12, |
71 | dwarf_xmm13, |
72 | dwarf_xmm14, |
73 | dwarf_xmm15, |
74 | dwarf_stmm0, |
75 | dwarf_stmm1, |
76 | dwarf_stmm2, |
77 | dwarf_stmm3, |
78 | dwarf_stmm4, |
79 | dwarf_stmm5, |
80 | dwarf_stmm6, |
81 | dwarf_stmm7, |
82 | dwarf_ymm0, |
83 | dwarf_ymm1, |
84 | dwarf_ymm2, |
85 | dwarf_ymm3, |
86 | dwarf_ymm4, |
87 | dwarf_ymm5, |
88 | dwarf_ymm6, |
89 | dwarf_ymm7, |
90 | dwarf_ymm8, |
91 | dwarf_ymm9, |
92 | dwarf_ymm10, |
93 | dwarf_ymm11, |
94 | dwarf_ymm12, |
95 | dwarf_ymm13, |
96 | dwarf_ymm14, |
97 | dwarf_ymm15, |
98 | dwarf_bnd0 = 126, |
99 | dwarf_bnd1, |
100 | dwarf_bnd2, |
101 | dwarf_bnd3 |
102 | }; |
103 | |
104 | bool ABIWindows_x86_64::GetPointerReturnRegister(const char *&name) { |
105 | name = "rax" ; |
106 | return true; |
107 | } |
108 | |
109 | size_t ABIWindows_x86_64::GetRedZoneSize() const { return 0; } |
110 | |
111 | //------------------------------------------------------------------ |
112 | // Static Functions |
113 | //------------------------------------------------------------------ |
114 | |
115 | ABISP |
116 | ABIWindows_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { |
117 | if (arch.GetTriple().getArch() == llvm::Triple::x86_64 && |
118 | arch.GetTriple().isOSWindows()) { |
119 | return ABISP( |
120 | new ABIWindows_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); |
121 | } |
122 | return ABISP(); |
123 | } |
124 | |
125 | bool ABIWindows_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp, |
126 | addr_t func_addr, addr_t return_addr, |
127 | llvm::ArrayRef<addr_t> args) const { |
128 | Log *log = GetLog(mask: LLDBLog::Expressions); |
129 | |
130 | if (log) { |
131 | StreamString s; |
132 | s.Printf(format: "ABIWindows_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 |
133 | ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 |
134 | ", return_addr = 0x%" PRIx64, |
135 | thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, |
136 | (uint64_t)return_addr); |
137 | |
138 | for (size_t i = 0; i < args.size(); ++i) |
139 | s.Printf(format: ", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), |
140 | args[i]); |
141 | s.PutCString(cstr: ")" ); |
142 | log->PutString(str: s.GetString()); |
143 | } |
144 | |
145 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
146 | if (!reg_ctx) |
147 | return false; |
148 | |
149 | const RegisterInfo *reg_info = nullptr; |
150 | |
151 | if (args.size() > 4) // Windows x64 only put first 4 arguments into registers |
152 | return false; |
153 | |
154 | for (size_t i = 0; i < args.size(); ++i) { |
155 | reg_info = reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, |
156 | LLDB_REGNUM_GENERIC_ARG1 + i); |
157 | LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s" , |
158 | static_cast<uint64_t>(i + 1), args[i], reg_info->name); |
159 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: args[i])) |
160 | return false; |
161 | } |
162 | |
163 | // First, align the SP |
164 | |
165 | LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, |
166 | (uint64_t)sp, (uint64_t)(sp & ~0xfull)); |
167 | |
168 | sp &= ~(0xfull); // 16-byte alignment |
169 | |
170 | sp -= 8; // return address |
171 | |
172 | Status error; |
173 | const RegisterInfo *pc_reg_info = |
174 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); |
175 | const RegisterInfo *sp_reg_info = |
176 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); |
177 | ProcessSP process_sp(thread.GetProcess()); |
178 | |
179 | RegisterValue reg_value; |
180 | LLDB_LOGF(log, |
181 | "Pushing the return address onto the stack: 0x%" PRIx64 |
182 | ": 0x%" PRIx64, |
183 | (uint64_t)sp, (uint64_t)return_addr); |
184 | |
185 | // Save return address onto the stack |
186 | if (!process_sp->WritePointerToMemory(vm_addr: sp, ptr_value: return_addr, error)) |
187 | return false; |
188 | |
189 | // %rsp is set to the actual stack value. |
190 | |
191 | LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); |
192 | |
193 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: sp_reg_info, uval: sp)) |
194 | return false; |
195 | |
196 | // %rip is set to the address of the called function. |
197 | |
198 | LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); |
199 | |
200 | if (!reg_ctx->WriteRegisterFromUnsigned(reg_info: pc_reg_info, uval: func_addr)) |
201 | return false; |
202 | |
203 | return true; |
204 | } |
205 | |
206 | static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, |
207 | bool is_signed, Thread &thread, |
208 | uint32_t *argument_register_ids, |
209 | unsigned int ¤t_argument_register, |
210 | addr_t ¤t_stack_argument) { |
211 | if (bit_width > 64) |
212 | return false; // Scalar can't hold large integer arguments |
213 | |
214 | if (current_argument_register < 4) { // Windows pass first 4 arguments to register |
215 | scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
216 | reg: argument_register_ids[current_argument_register], fail_value: 0); |
217 | current_argument_register++; |
218 | if (is_signed) |
219 | scalar.SignExtend(bit_pos: bit_width); |
220 | return true; |
221 | } |
222 | uint32_t byte_size = (bit_width + (CHAR_BIT - 1)) / CHAR_BIT; |
223 | Status error; |
224 | if (thread.GetProcess()->ReadScalarIntegerFromMemory( |
225 | addr: current_stack_argument, byte_size, is_signed, scalar, error)) { |
226 | current_stack_argument += byte_size; |
227 | return true; |
228 | } |
229 | return false; |
230 | } |
231 | |
232 | bool ABIWindows_x86_64::GetArgumentValues(Thread &thread, |
233 | ValueList &values) const { |
234 | unsigned int num_values = values.GetSize(); |
235 | unsigned int value_index; |
236 | |
237 | // Extract the register context so we can read arguments from registers |
238 | |
239 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
240 | |
241 | if (!reg_ctx) |
242 | return false; |
243 | |
244 | // Get the pointer to the first stack argument so we have a place to start |
245 | // when reading data |
246 | |
247 | addr_t sp = reg_ctx->GetSP(fail_value: 0); |
248 | |
249 | if (!sp) |
250 | return false; |
251 | |
252 | addr_t current_stack_argument = sp + 8; // jump over return address |
253 | |
254 | uint32_t argument_register_ids[4]; |
255 | |
256 | argument_register_ids[0] = |
257 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) |
258 | ->kinds[eRegisterKindLLDB]; |
259 | argument_register_ids[1] = |
260 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) |
261 | ->kinds[eRegisterKindLLDB]; |
262 | argument_register_ids[2] = |
263 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) |
264 | ->kinds[eRegisterKindLLDB]; |
265 | argument_register_ids[3] = |
266 | reg_ctx->GetRegisterInfo(reg_kind: eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) |
267 | ->kinds[eRegisterKindLLDB]; |
268 | |
269 | unsigned int current_argument_register = 0; |
270 | |
271 | for (value_index = 0; value_index < num_values; ++value_index) { |
272 | Value *value = values.GetValueAtIndex(idx: value_index); |
273 | |
274 | if (!value) |
275 | return false; |
276 | |
277 | CompilerType compiler_type = value->GetCompilerType(); |
278 | std::optional<uint64_t> bit_size = compiler_type.GetBitSize(exe_scope: &thread); |
279 | if (!bit_size) |
280 | return false; |
281 | bool is_signed; |
282 | |
283 | if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { |
284 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed, thread, |
285 | argument_register_ids, current_argument_register, |
286 | current_stack_argument); |
287 | } else if (compiler_type.IsPointerType()) { |
288 | ReadIntegerArgument(scalar&: value->GetScalar(), bit_width: *bit_size, is_signed: false, thread, |
289 | argument_register_ids, current_argument_register, |
290 | current_stack_argument); |
291 | } |
292 | } |
293 | |
294 | return true; |
295 | } |
296 | |
297 | Status ABIWindows_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, |
298 | lldb::ValueObjectSP &new_value_sp) { |
299 | Status error; |
300 | if (!new_value_sp) { |
301 | error.SetErrorString("Empty value object for return value." ); |
302 | return error; |
303 | } |
304 | |
305 | CompilerType compiler_type = new_value_sp->GetCompilerType(); |
306 | if (!compiler_type) { |
307 | error.SetErrorString("Null clang type for return value." ); |
308 | return error; |
309 | } |
310 | |
311 | Thread *thread = frame_sp->GetThread().get(); |
312 | |
313 | bool is_signed; |
314 | uint32_t count; |
315 | bool is_complex; |
316 | |
317 | RegisterContext *reg_ctx = thread->GetRegisterContext().get(); |
318 | |
319 | bool set_it_simple = false; |
320 | if (compiler_type.IsIntegerOrEnumerationType(is_signed) || |
321 | compiler_type.IsPointerType()) { |
322 | const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
323 | |
324 | DataExtractor data; |
325 | Status data_error; |
326 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
327 | if (data_error.Fail()) { |
328 | error.SetErrorStringWithFormat( |
329 | "Couldn't convert return value to raw data: %s" , |
330 | data_error.AsCString()); |
331 | return error; |
332 | } |
333 | lldb::offset_t offset = 0; |
334 | if (num_bytes <= 8) { |
335 | uint64_t raw_value = data.GetMaxU64(offset_ptr: &offset, byte_size: num_bytes); |
336 | |
337 | if (reg_ctx->WriteRegisterFromUnsigned(reg_info, uval: raw_value)) |
338 | set_it_simple = true; |
339 | } else { |
340 | error.SetErrorString("We don't support returning longer than 64 bit " |
341 | "integer values at present." ); |
342 | } |
343 | } else if (compiler_type.IsFloatingPointType(count, is_complex)) { |
344 | if (is_complex) |
345 | error.SetErrorString( |
346 | "We don't support returning complex values at present" ); |
347 | else { |
348 | std::optional<uint64_t> bit_width = |
349 | compiler_type.GetBitSize(exe_scope: frame_sp.get()); |
350 | if (!bit_width) { |
351 | error.SetErrorString("can't get type size" ); |
352 | return error; |
353 | } |
354 | if (*bit_width <= 64) { |
355 | const RegisterInfo *xmm0_info = |
356 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
357 | RegisterValue xmm0_value; |
358 | DataExtractor data; |
359 | Status data_error; |
360 | size_t num_bytes = new_value_sp->GetData(data, error&: data_error); |
361 | if (data_error.Fail()) { |
362 | error.SetErrorStringWithFormat( |
363 | "Couldn't convert return value to raw data: %s" , |
364 | data_error.AsCString()); |
365 | return error; |
366 | } |
367 | |
368 | unsigned char buffer[16]; |
369 | ByteOrder byte_order = data.GetByteOrder(); |
370 | |
371 | data.CopyByteOrderedData(src_offset: 0, src_len: num_bytes, dst: buffer, dst_len: 16, dst_byte_order: byte_order); |
372 | xmm0_value.SetBytes(bytes: buffer, length: 16, byte_order); |
373 | reg_ctx->WriteRegister(reg_info: xmm0_info, reg_value: xmm0_value); |
374 | set_it_simple = true; |
375 | } else { |
376 | // Windows doesn't support 80 bit FP |
377 | error.SetErrorString( |
378 | "Windows-x86_64 doesn't allow FP larger than 64 bits." ); |
379 | } |
380 | } |
381 | } |
382 | |
383 | if (!set_it_simple) { |
384 | // Okay we've got a structure or something that doesn't fit in a simple |
385 | // register. |
386 | // TODO(wanyi): On Windows, if the return type is a struct: |
387 | // 1) smaller that 64 bits and return by value -> RAX |
388 | // 2) bigger than 64 bits, the caller will allocate memory for that struct |
389 | // and pass the struct pointer in RCX then return the pointer in RAX |
390 | error.SetErrorString("We only support setting simple integer and float " |
391 | "return types at present." ); |
392 | } |
393 | |
394 | return error; |
395 | } |
396 | |
397 | ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectSimple( |
398 | Thread &thread, CompilerType &return_compiler_type) const { |
399 | ValueObjectSP return_valobj_sp; |
400 | Value value; |
401 | |
402 | if (!return_compiler_type) |
403 | return return_valobj_sp; |
404 | |
405 | value.SetCompilerType(return_compiler_type); |
406 | |
407 | RegisterContext *reg_ctx = thread.GetRegisterContext().get(); |
408 | if (!reg_ctx) |
409 | return return_valobj_sp; |
410 | |
411 | const uint32_t type_flags = return_compiler_type.GetTypeInfo(); |
412 | if (type_flags & eTypeIsScalar) { |
413 | value.SetValueType(Value::ValueType::Scalar); |
414 | |
415 | bool success = false; |
416 | if (type_flags & eTypeIsInteger) { |
417 | // Extract the register context so we can read arguments from registers |
418 | std::optional<uint64_t> byte_size = |
419 | return_compiler_type.GetByteSize(exe_scope: &thread); |
420 | if (!byte_size) |
421 | return return_valobj_sp; |
422 | uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( |
423 | reg_info: reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0), fail_value: 0); |
424 | const bool is_signed = (type_flags & eTypeIsSigned) != 0; |
425 | switch (*byte_size) { |
426 | default: |
427 | break; |
428 | |
429 | case sizeof(uint64_t): |
430 | if (is_signed) |
431 | value.GetScalar() = (int64_t)(raw_value); |
432 | else |
433 | value.GetScalar() = (uint64_t)(raw_value); |
434 | success = true; |
435 | break; |
436 | |
437 | case sizeof(uint32_t): |
438 | if (is_signed) |
439 | value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); |
440 | else |
441 | value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); |
442 | success = true; |
443 | break; |
444 | |
445 | case sizeof(uint16_t): |
446 | if (is_signed) |
447 | value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); |
448 | else |
449 | value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); |
450 | success = true; |
451 | break; |
452 | |
453 | case sizeof(uint8_t): |
454 | if (is_signed) |
455 | value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); |
456 | else |
457 | value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); |
458 | success = true; |
459 | break; |
460 | } |
461 | } else if (type_flags & eTypeIsFloat) { |
462 | if (type_flags & eTypeIsComplex) { |
463 | // Don't handle complex yet. |
464 | } else { |
465 | std::optional<uint64_t> byte_size = |
466 | return_compiler_type.GetByteSize(exe_scope: &thread); |
467 | if (byte_size && *byte_size <= sizeof(long double)) { |
468 | const RegisterInfo *xmm0_info = |
469 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
470 | RegisterValue xmm0_value; |
471 | if (reg_ctx->ReadRegister(reg_info: xmm0_info, reg_value&: xmm0_value)) { |
472 | DataExtractor data; |
473 | if (xmm0_value.GetData(data)) { |
474 | lldb::offset_t offset = 0; |
475 | if (*byte_size == sizeof(float)) { |
476 | value.GetScalar() = (float)data.GetFloat(offset_ptr: &offset); |
477 | success = true; |
478 | } else if (*byte_size == sizeof(double)) { |
479 | // double and long double are the same on windows |
480 | value.GetScalar() = (double)data.GetDouble(offset_ptr: &offset); |
481 | success = true; |
482 | } |
483 | } |
484 | } |
485 | } |
486 | } |
487 | } |
488 | |
489 | if (success) |
490 | return_valobj_sp = ValueObjectConstResult::Create( |
491 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
492 | } else if ((type_flags & eTypeIsPointer) || |
493 | (type_flags & eTypeInstanceIsPointer)) { |
494 | unsigned rax_id = |
495 | reg_ctx->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
496 | value.GetScalar() = |
497 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
498 | fail_value: 0); |
499 | value.SetValueType(Value::ValueType::Scalar); |
500 | return_valobj_sp = ValueObjectConstResult::Create( |
501 | exe_scope: thread.GetStackFrameAtIndex(idx: 0).get(), value, name: ConstString("" )); |
502 | } else if (type_flags & eTypeIsVector) { |
503 | std::optional<uint64_t> byte_size = |
504 | return_compiler_type.GetByteSize(exe_scope: &thread); |
505 | if (byte_size && *byte_size > 0) { |
506 | const RegisterInfo *xmm_reg = |
507 | reg_ctx->GetRegisterInfoByName(reg_name: "xmm0" , start_idx: 0); |
508 | if (xmm_reg == nullptr) |
509 | xmm_reg = reg_ctx->GetRegisterInfoByName(reg_name: "mm0" , start_idx: 0); |
510 | |
511 | if (xmm_reg) { |
512 | if (*byte_size <= xmm_reg->byte_size) { |
513 | ProcessSP process_sp(thread.GetProcess()); |
514 | if (process_sp) { |
515 | std::unique_ptr<DataBufferHeap> heap_data_up( |
516 | new DataBufferHeap(*byte_size, 0)); |
517 | const ByteOrder byte_order = process_sp->GetByteOrder(); |
518 | RegisterValue reg_value; |
519 | if (reg_ctx->ReadRegister(reg_info: xmm_reg, reg_value)) { |
520 | Status error; |
521 | if (reg_value.GetAsMemoryData(reg_info: *xmm_reg, dst: heap_data_up->GetBytes(), |
522 | dst_len: heap_data_up->GetByteSize(), |
523 | dst_byte_order: byte_order, error)) { |
524 | DataExtractor data(DataBufferSP(heap_data_up.release()), |
525 | byte_order, |
526 | process_sp->GetTarget() |
527 | .GetArchitecture() |
528 | .GetAddressByteSize()); |
529 | return_valobj_sp = ValueObjectConstResult::Create( |
530 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data); |
531 | } |
532 | } |
533 | } |
534 | } |
535 | } |
536 | } |
537 | } |
538 | |
539 | return return_valobj_sp; |
540 | } |
541 | |
542 | // The compiler will flatten the nested aggregate type into single |
543 | // layer and push the value to stack |
544 | // This helper function will flatten an aggregate type |
545 | // and return true if it can be returned in register(s) by value |
546 | // return false if the aggregate is in memory |
547 | static bool FlattenAggregateType( |
548 | Thread &thread, ExecutionContext &exe_ctx, |
549 | CompilerType &return_compiler_type, |
550 | uint32_t data_byte_offset, |
551 | std::vector<uint32_t> &aggregate_field_offsets, |
552 | std::vector<CompilerType> &aggregate_compiler_types) { |
553 | |
554 | const uint32_t num_children = return_compiler_type.GetNumFields(); |
555 | for (uint32_t idx = 0; idx < num_children; ++idx) { |
556 | std::string name; |
557 | bool is_signed; |
558 | uint32_t count; |
559 | bool is_complex; |
560 | |
561 | uint64_t field_bit_offset = 0; |
562 | CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( |
563 | idx, name, bit_offset_ptr: &field_bit_offset, bitfield_bit_size_ptr: nullptr, is_bitfield_ptr: nullptr); |
564 | std::optional<uint64_t> field_bit_width = |
565 | field_compiler_type.GetBitSize(exe_scope: &thread); |
566 | |
567 | // if we don't know the size of the field (e.g. invalid type), exit |
568 | if (!field_bit_width || *field_bit_width == 0) { |
569 | return false; |
570 | } |
571 | // If there are any unaligned fields, this is stored in memory. |
572 | if (field_bit_offset % *field_bit_width != 0) { |
573 | return false; |
574 | } |
575 | |
576 | // add overall offset |
577 | uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset; |
578 | |
579 | const uint32_t field_type_flags = field_compiler_type.GetTypeInfo(); |
580 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
581 | field_compiler_type.IsPointerType() || |
582 | field_compiler_type.IsFloatingPointType(count, is_complex)) { |
583 | aggregate_field_offsets.push_back(x: field_byte_offset); |
584 | aggregate_compiler_types.push_back(x: field_compiler_type); |
585 | } else if (field_type_flags & eTypeHasChildren) { |
586 | if (!FlattenAggregateType(thread, exe_ctx, return_compiler_type&: field_compiler_type, |
587 | data_byte_offset: field_byte_offset, aggregate_field_offsets, |
588 | aggregate_compiler_types)) { |
589 | return false; |
590 | } |
591 | } |
592 | } |
593 | return true; |
594 | } |
595 | |
596 | ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectImpl( |
597 | Thread &thread, CompilerType &return_compiler_type) const { |
598 | ValueObjectSP return_valobj_sp; |
599 | |
600 | if (!return_compiler_type) { |
601 | return return_valobj_sp; |
602 | } |
603 | |
604 | // try extract value as if it's a simple type |
605 | return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); |
606 | if (return_valobj_sp) { |
607 | return return_valobj_sp; |
608 | } |
609 | |
610 | RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); |
611 | if (!reg_ctx_sp) { |
612 | return return_valobj_sp; |
613 | } |
614 | |
615 | std::optional<uint64_t> bit_width = return_compiler_type.GetBitSize(exe_scope: &thread); |
616 | if (!bit_width) { |
617 | return return_valobj_sp; |
618 | } |
619 | |
620 | // if it's not simple or aggregate type, then we don't know how to handle it |
621 | if (!return_compiler_type.IsAggregateType()) { |
622 | return return_valobj_sp; |
623 | } |
624 | |
625 | ExecutionContext exe_ctx(thread.shared_from_this()); |
626 | Target *target = exe_ctx.GetTargetPtr(); |
627 | uint32_t max_register_value_bit_width = 64; |
628 | |
629 | // The scenario here is to have a struct/class which is POD |
630 | // if the return struct/class size is larger than 64 bits, |
631 | // the caller will allocate memory for it and pass the return addr in RCX |
632 | // then return the address in RAX |
633 | |
634 | // if the struct is returned by value in register (RAX) |
635 | // its size has to be: 1, 2, 4, 8, 16, 32, or 64 bits (aligned) |
636 | // for floating point, the return value will be copied over to RAX |
637 | bool is_memory = *bit_width > max_register_value_bit_width || |
638 | *bit_width & (*bit_width - 1); |
639 | std::vector<uint32_t> aggregate_field_offsets; |
640 | std::vector<CompilerType> aggregate_compiler_types; |
641 | if (!is_memory && |
642 | FlattenAggregateType(thread, exe_ctx, return_compiler_type, |
643 | data_byte_offset: 0, aggregate_field_offsets, |
644 | aggregate_compiler_types)) { |
645 | ByteOrder byte_order = target->GetArchitecture().GetByteOrder(); |
646 | WritableDataBufferSP data_sp( |
647 | new DataBufferHeap(max_register_value_bit_width / 8, 0)); |
648 | DataExtractor return_ext(data_sp, byte_order, |
649 | target->GetArchitecture().GetAddressByteSize()); |
650 | |
651 | // The only register used to return struct/class by value |
652 | const RegisterInfo *rax_info = |
653 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0); |
654 | RegisterValue rax_value; |
655 | reg_ctx_sp->ReadRegister(reg_info: rax_info, reg_value&: rax_value); |
656 | DataExtractor rax_data; |
657 | rax_value.GetData(data&: rax_data); |
658 | |
659 | uint32_t used_bytes = |
660 | 0; // Tracks how much of the rax registers we've consumed so far |
661 | |
662 | // in case of the returned type is a subclass of non-abstract-base class |
663 | // it will have a padding to skip the base content |
664 | if (aggregate_field_offsets.size()) |
665 | used_bytes = aggregate_field_offsets[0]; |
666 | |
667 | const uint32_t num_children = aggregate_compiler_types.size(); |
668 | for (uint32_t idx = 0; idx < num_children; idx++) { |
669 | bool is_signed; |
670 | bool is_complex; |
671 | uint32_t count; |
672 | |
673 | CompilerType field_compiler_type = aggregate_compiler_types[idx]; |
674 | uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(exe_scope: &thread)); |
675 | uint32_t field_byte_offset = aggregate_field_offsets[idx]; |
676 | |
677 | // this is unlikely w/o the overall size being greater than 8 bytes |
678 | // For now, return a nullptr return value object. |
679 | if (used_bytes >= 8 || used_bytes + field_byte_width > 8) { |
680 | return return_valobj_sp; |
681 | } |
682 | |
683 | DataExtractor * = nullptr; |
684 | uint32_t copy_from_offset = 0; |
685 | if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || |
686 | field_compiler_type.IsPointerType() || |
687 | field_compiler_type.IsFloatingPointType(count, is_complex)) { |
688 | copy_from_extractor = &rax_data; |
689 | copy_from_offset = used_bytes; |
690 | used_bytes += field_byte_width; |
691 | } |
692 | // These two tests are just sanity checks. If I somehow get the type |
693 | // calculation wrong above it is better to just return nothing than to |
694 | // assert or crash. |
695 | if (!copy_from_extractor) { |
696 | return return_valobj_sp; |
697 | } |
698 | if (copy_from_offset + field_byte_width > |
699 | copy_from_extractor->GetByteSize()) { |
700 | return return_valobj_sp; |
701 | } |
702 | copy_from_extractor->CopyByteOrderedData(src_offset: copy_from_offset, |
703 | src_len: field_byte_width, dst: data_sp->GetBytes() + field_byte_offset, |
704 | dst_len: field_byte_width, dst_byte_order: byte_order); |
705 | } |
706 | if (!is_memory) { |
707 | // The result is in our data buffer. Let's make a variable object out |
708 | // of it: |
709 | return_valobj_sp = ValueObjectConstResult::Create( |
710 | exe_scope: &thread, compiler_type: return_compiler_type, name: ConstString("" ), data: return_ext); |
711 | } |
712 | } |
713 | |
714 | // The Windows x86_64 ABI specifies that the return address for MEMORY |
715 | // objects be placed in rax on exit from the function. |
716 | |
717 | // FIXME: This is just taking a guess, rax may very well no longer hold the |
718 | // return storage location. |
719 | // If we are going to do this right, when we make a new frame we should |
720 | // check to see if it uses a memory return, and if we are at the first |
721 | // instruction and if so stash away the return location. Then we would |
722 | // only return the memory return value if we know it is valid. |
723 | if (is_memory) { |
724 | unsigned rax_id = |
725 | reg_ctx_sp->GetRegisterInfoByName(reg_name: "rax" , start_idx: 0)->kinds[eRegisterKindLLDB]; |
726 | lldb::addr_t storage_addr = |
727 | (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg: rax_id, |
728 | fail_value: 0); |
729 | return_valobj_sp = ValueObjectMemory::Create( |
730 | exe_scope: &thread, name: "" , address: Address(storage_addr, nullptr), ast_type: return_compiler_type); |
731 | } |
732 | return return_valobj_sp; |
733 | } |
734 | |
735 | // This defines the CFA as rsp+8 |
736 | // the saved pc is at CFA-8 (i.e. rsp+0) |
737 | // The saved rsp is CFA+0 |
738 | |
739 | bool ABIWindows_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { |
740 | unwind_plan.Clear(); |
741 | unwind_plan.SetRegisterKind(eRegisterKindDWARF); |
742 | |
743 | uint32_t sp_reg_num = dwarf_rsp; |
744 | uint32_t pc_reg_num = dwarf_rip; |
745 | |
746 | UnwindPlan::RowSP row(new UnwindPlan::Row); |
747 | row->GetCFAValue().SetIsRegisterPlusOffset(reg_num: sp_reg_num, offset: 8); |
748 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: -8, can_replace: false); |
749 | row->SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
750 | unwind_plan.AppendRow(row_sp: row); |
751 | unwind_plan.SetSourceName("x86_64 at-func-entry default" ); |
752 | unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); |
753 | return true; |
754 | } |
755 | |
756 | // Windows-x86_64 doesn't use %rbp |
757 | // No available Unwind information for Windows-x86_64 (section .pdata) |
758 | // Let's use SysV-x86_64 one for now |
759 | bool ABIWindows_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { |
760 | unwind_plan.Clear(); |
761 | unwind_plan.SetRegisterKind(eRegisterKindDWARF); |
762 | |
763 | uint32_t fp_reg_num = dwarf_rbp; |
764 | uint32_t sp_reg_num = dwarf_rsp; |
765 | uint32_t pc_reg_num = dwarf_rip; |
766 | |
767 | UnwindPlan::RowSP row(new UnwindPlan::Row); |
768 | |
769 | const int32_t ptr_size = 8; |
770 | row->GetCFAValue().SetIsRegisterPlusOffset(reg_num: dwarf_rbp, offset: 2 * ptr_size); |
771 | row->SetOffset(0); |
772 | row->SetUnspecifiedRegistersAreUndefined(true); |
773 | |
774 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: fp_reg_num, offset: ptr_size * -2, can_replace: true); |
775 | row->SetRegisterLocationToAtCFAPlusOffset(reg_num: pc_reg_num, offset: ptr_size * -1, can_replace: true); |
776 | row->SetRegisterLocationToIsCFAPlusOffset(reg_num: sp_reg_num, offset: 0, can_replace: true); |
777 | |
778 | unwind_plan.AppendRow(row_sp: row); |
779 | unwind_plan.SetSourceName("x86_64 default unwind plan" ); |
780 | unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); |
781 | unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
782 | |
783 | return true; |
784 | } |
785 | |
786 | bool ABIWindows_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) { |
787 | return !RegisterIsCalleeSaved(reg_info); |
788 | } |
789 | |
790 | bool ABIWindows_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { |
791 | if (!reg_info) |
792 | return false; |
793 | assert(reg_info->name != nullptr && "unnamed register?" ); |
794 | std::string Name = std::string(reg_info->name); |
795 | bool IsCalleeSaved = |
796 | llvm::StringSwitch<bool>(Name) |
797 | .Cases(S0: "rbx" , S1: "ebx" , S2: "rbp" , S3: "ebp" , S4: "rdi" , S5: "edi" , S6: "rsi" , S7: "esi" , Value: true) |
798 | .Cases(S0: "rsp" , S1: "esp" , S2: "r12" , S3: "r13" , S4: "r14" , S5: "r15" , S6: "sp" , S7: "fp" , Value: true) |
799 | .Cases(S0: "xmm6" , S1: "xmm7" , S2: "xmm8" , S3: "xmm9" , S4: "xmm10" , S5: "xmm11" , S6: "xmm12" , |
800 | S7: "xmm13" , S8: "xmm14" , S9: "xmm15" , Value: true) |
801 | .Default(Value: false); |
802 | return IsCalleeSaved; |
803 | } |
804 | |
805 | uint32_t ABIWindows_x86_64::GetGenericNum(llvm::StringRef reg) { |
806 | return llvm::StringSwitch<uint32_t>(reg) |
807 | .Case(S: "rip" , LLDB_REGNUM_GENERIC_PC) |
808 | .Case(S: "rsp" , LLDB_REGNUM_GENERIC_SP) |
809 | .Case(S: "rbp" , LLDB_REGNUM_GENERIC_FP) |
810 | .Case(S: "rflags" , LLDB_REGNUM_GENERIC_FLAGS) |
811 | // gdbserver uses eflags |
812 | .Case(S: "eflags" , LLDB_REGNUM_GENERIC_FLAGS) |
813 | .Case(S: "rcx" , LLDB_REGNUM_GENERIC_ARG1) |
814 | .Case(S: "rdx" , LLDB_REGNUM_GENERIC_ARG2) |
815 | .Case(S: "r8" , LLDB_REGNUM_GENERIC_ARG3) |
816 | .Case(S: "r9" , LLDB_REGNUM_GENERIC_ARG4) |
817 | .Default(LLDB_INVALID_REGNUM); |
818 | } |
819 | |
820 | void ABIWindows_x86_64::Initialize() { |
821 | PluginManager::RegisterPlugin( |
822 | name: GetPluginNameStatic(), description: "Windows ABI for x86_64 targets" , create_callback: CreateInstance); |
823 | } |
824 | |
825 | void ABIWindows_x86_64::Terminate() { |
826 | PluginManager::UnregisterPlugin(create_callback: CreateInstance); |
827 | } |
828 | |