1//===-- ObjectFileELF.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ObjectFileELF.h"
10
11#include <algorithm>
12#include <cassert>
13#include <optional>
14#include <unordered_map>
15
16#include "lldb/Core/Module.h"
17#include "lldb/Core/ModuleSpec.h"
18#include "lldb/Core/PluginManager.h"
19#include "lldb/Core/Progress.h"
20#include "lldb/Core/Section.h"
21#include "lldb/Host/FileSystem.h"
22#include "lldb/Host/LZMA.h"
23#include "lldb/Symbol/DWARFCallFrameInfo.h"
24#include "lldb/Symbol/SymbolContext.h"
25#include "lldb/Target/Process.h"
26#include "lldb/Target/SectionLoadList.h"
27#include "lldb/Target/Target.h"
28#include "lldb/Utility/ArchSpec.h"
29#include "lldb/Utility/DataBufferHeap.h"
30#include "lldb/Utility/FileSpecList.h"
31#include "lldb/Utility/LLDBLog.h"
32#include "lldb/Utility/Log.h"
33#include "lldb/Utility/RangeMap.h"
34#include "lldb/Utility/Status.h"
35#include "lldb/Utility/Stream.h"
36#include "lldb/Utility/Timer.h"
37#include "llvm/ADT/IntervalMap.h"
38#include "llvm/ADT/PointerUnion.h"
39#include "llvm/ADT/StringRef.h"
40#include "llvm/BinaryFormat/ELF.h"
41#include "llvm/Object/Decompressor.h"
42#include "llvm/Support/ARMBuildAttributes.h"
43#include "llvm/Support/CRC.h"
44#include "llvm/Support/FormatVariadic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/MemoryBuffer.h"
47#include "llvm/Support/MipsABIFlags.h"
48
49#define CASE_AND_STREAM(s, def, width) \
50 case def: \
51 s->Printf("%-*s", width, #def); \
52 break;
53
54using namespace lldb;
55using namespace lldb_private;
56using namespace elf;
57using namespace llvm::ELF;
58
59LLDB_PLUGIN_DEFINE(ObjectFileELF)
60
61// ELF note owner definitions
62static const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
63static const char *const LLDB_NT_OWNER_GNU = "GNU";
64static const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
65static const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE";
66static const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
67static const char *const LLDB_NT_OWNER_ANDROID = "Android";
68static const char *const LLDB_NT_OWNER_CORE = "CORE";
69static const char *const LLDB_NT_OWNER_LINUX = "LINUX";
70
71// ELF note type definitions
72static const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
73static const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
74
75static const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
76static const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
77
78static const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
79
80static const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1;
81static const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4;
82static const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7;
83static const elf_word LLDB_NT_NETBSD_PROCINFO = 1;
84
85// GNU ABI note OS constants
86static const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
87static const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
88static const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
89
90namespace {
91
92//===----------------------------------------------------------------------===//
93/// \class ELFRelocation
94/// Generic wrapper for ELFRel and ELFRela.
95///
96/// This helper class allows us to parse both ELFRel and ELFRela relocation
97/// entries in a generic manner.
98class ELFRelocation {
99public:
100 /// Constructs an ELFRelocation entry with a personality as given by @p
101 /// type.
102 ///
103 /// \param type Either DT_REL or DT_RELA. Any other value is invalid.
104 ELFRelocation(unsigned type);
105
106 ~ELFRelocation();
107
108 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
109
110 static unsigned RelocType32(const ELFRelocation &rel);
111
112 static unsigned RelocType64(const ELFRelocation &rel);
113
114 static unsigned RelocSymbol32(const ELFRelocation &rel);
115
116 static unsigned RelocSymbol64(const ELFRelocation &rel);
117
118 static elf_addr RelocOffset32(const ELFRelocation &rel);
119
120 static elf_addr RelocOffset64(const ELFRelocation &rel);
121
122 static elf_sxword RelocAddend32(const ELFRelocation &rel);
123
124 static elf_sxword RelocAddend64(const ELFRelocation &rel);
125
126 bool IsRela() { return (llvm::isa<ELFRela *>(Val: reloc)); }
127
128private:
129 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
130
131 RelocUnion reloc;
132};
133} // end anonymous namespace
134
135ELFRelocation::ELFRelocation(unsigned type) {
136 if (type == DT_REL || type == SHT_REL)
137 reloc = new ELFRel();
138 else if (type == DT_RELA || type == SHT_RELA)
139 reloc = new ELFRela();
140 else {
141 assert(false && "unexpected relocation type");
142 reloc = static_cast<ELFRel *>(nullptr);
143 }
144}
145
146ELFRelocation::~ELFRelocation() {
147 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val&: reloc))
148 delete elfrel;
149 else
150 delete llvm::cast<ELFRela *>(Val&: reloc);
151}
152
153bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
154 lldb::offset_t *offset) {
155 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val&: reloc))
156 return elfrel->Parse(data, offset);
157 else
158 return llvm::cast<ELFRela *>(Val&: reloc)->Parse(data, offset);
159}
160
161unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
162 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val: rel.reloc))
163 return ELFRel::RelocType32(rel: *elfrel);
164 else
165 return ELFRela::RelocType32(rela: *llvm::cast<ELFRela *>(Val: rel.reloc));
166}
167
168unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
169 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val: rel.reloc))
170 return ELFRel::RelocType64(rel: *elfrel);
171 else
172 return ELFRela::RelocType64(rela: *llvm::cast<ELFRela *>(Val: rel.reloc));
173}
174
175unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
176 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val: rel.reloc))
177 return ELFRel::RelocSymbol32(rel: *elfrel);
178 else
179 return ELFRela::RelocSymbol32(rela: *llvm::cast<ELFRela *>(Val: rel.reloc));
180}
181
182unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
183 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val: rel.reloc))
184 return ELFRel::RelocSymbol64(rel: *elfrel);
185 else
186 return ELFRela::RelocSymbol64(rela: *llvm::cast<ELFRela *>(Val: rel.reloc));
187}
188
189elf_addr ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
190 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val: rel.reloc))
191 return elfrel->r_offset;
192 else
193 return llvm::cast<ELFRela *>(Val: rel.reloc)->r_offset;
194}
195
196elf_addr ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
197 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(Val: rel.reloc))
198 return elfrel->r_offset;
199 else
200 return llvm::cast<ELFRela *>(Val: rel.reloc)->r_offset;
201}
202
203elf_sxword ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
204 if (llvm::isa<ELFRel *>(Val: rel.reloc))
205 return 0;
206 else
207 return llvm::cast<ELFRela *>(Val: rel.reloc)->r_addend;
208}
209
210elf_sxword ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
211 if (llvm::isa<ELFRel *>(Val: rel.reloc))
212 return 0;
213 else
214 return llvm::cast<ELFRela *>(Val: rel.reloc)->r_addend;
215}
216
217static user_id_t SegmentID(size_t PHdrIndex) {
218 return ~user_id_t(PHdrIndex);
219}
220
221bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
222 // Read all fields.
223 if (data.GetU32(offset_ptr: offset, dst: &n_namesz, count: 3) == nullptr)
224 return false;
225
226 // The name field is required to be nul-terminated, and n_namesz includes the
227 // terminating nul in observed implementations (contrary to the ELF-64 spec).
228 // A special case is needed for cores generated by some older Linux versions,
229 // which write a note named "CORE" without a nul terminator and n_namesz = 4.
230 if (n_namesz == 4) {
231 char buf[4];
232 if (data.ExtractBytes(offset: *offset, length: 4, dst_byte_order: data.GetByteOrder(), dst: buf) != 4)
233 return false;
234 if (strncmp(s1: buf, s2: "CORE", n: 4) == 0) {
235 n_name = "CORE";
236 *offset += 4;
237 return true;
238 }
239 }
240
241 const char *cstr = data.GetCStr(offset_ptr: offset, len: llvm::alignTo(Value: n_namesz, Align: 4));
242 if (cstr == nullptr) {
243 Log *log = GetLog(mask: LLDBLog::Symbols);
244 LLDB_LOGF(log, "Failed to parse note name lacking nul terminator");
245
246 return false;
247 }
248 n_name = cstr;
249 return true;
250}
251
252static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
253 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
254 uint32_t endian = header.e_ident[EI_DATA];
255 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
256 uint32_t fileclass = header.e_ident[EI_CLASS];
257
258 // If there aren't any elf flags available (e.g core elf file) then return
259 // default
260 // 32 or 64 bit arch (without any architecture revision) based on object file's class.
261 if (header.e_type == ET_CORE) {
262 switch (fileclass) {
263 case llvm::ELF::ELFCLASS32:
264 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
265 : ArchSpec::eMIPSSubType_mips32;
266 case llvm::ELF::ELFCLASS64:
267 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
268 : ArchSpec::eMIPSSubType_mips64;
269 default:
270 return arch_variant;
271 }
272 }
273
274 switch (mips_arch) {
275 case llvm::ELF::EF_MIPS_ARCH_1:
276 case llvm::ELF::EF_MIPS_ARCH_2:
277 case llvm::ELF::EF_MIPS_ARCH_32:
278 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
279 : ArchSpec::eMIPSSubType_mips32;
280 case llvm::ELF::EF_MIPS_ARCH_32R2:
281 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
282 : ArchSpec::eMIPSSubType_mips32r2;
283 case llvm::ELF::EF_MIPS_ARCH_32R6:
284 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
285 : ArchSpec::eMIPSSubType_mips32r6;
286 case llvm::ELF::EF_MIPS_ARCH_3:
287 case llvm::ELF::EF_MIPS_ARCH_4:
288 case llvm::ELF::EF_MIPS_ARCH_5:
289 case llvm::ELF::EF_MIPS_ARCH_64:
290 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
291 : ArchSpec::eMIPSSubType_mips64;
292 case llvm::ELF::EF_MIPS_ARCH_64R2:
293 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
294 : ArchSpec::eMIPSSubType_mips64r2;
295 case llvm::ELF::EF_MIPS_ARCH_64R6:
296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
297 : ArchSpec::eMIPSSubType_mips64r6;
298 default:
299 break;
300 }
301
302 return arch_variant;
303}
304
305static uint32_t riscvVariantFromElfFlags(const elf::ELFHeader &header) {
306 uint32_t fileclass = header.e_ident[EI_CLASS];
307 switch (fileclass) {
308 case llvm::ELF::ELFCLASS32:
309 return ArchSpec::eRISCVSubType_riscv32;
310 case llvm::ELF::ELFCLASS64:
311 return ArchSpec::eRISCVSubType_riscv64;
312 default:
313 return ArchSpec::eRISCVSubType_unknown;
314 }
315}
316
317static uint32_t ppc64VariantFromElfFlags(const elf::ELFHeader &header) {
318 uint32_t endian = header.e_ident[EI_DATA];
319 if (endian == ELFDATA2LSB)
320 return ArchSpec::eCore_ppc64le_generic;
321 else
322 return ArchSpec::eCore_ppc64_generic;
323}
324
325static uint32_t loongarchVariantFromElfFlags(const elf::ELFHeader &header) {
326 uint32_t fileclass = header.e_ident[EI_CLASS];
327 switch (fileclass) {
328 case llvm::ELF::ELFCLASS32:
329 return ArchSpec::eLoongArchSubType_loongarch32;
330 case llvm::ELF::ELFCLASS64:
331 return ArchSpec::eLoongArchSubType_loongarch64;
332 default:
333 return ArchSpec::eLoongArchSubType_unknown;
334 }
335}
336
337static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
338 if (header.e_machine == llvm::ELF::EM_MIPS)
339 return mipsVariantFromElfFlags(header);
340 else if (header.e_machine == llvm::ELF::EM_PPC64)
341 return ppc64VariantFromElfFlags(header);
342 else if (header.e_machine == llvm::ELF::EM_RISCV)
343 return riscvVariantFromElfFlags(header);
344 else if (header.e_machine == llvm::ELF::EM_LOONGARCH)
345 return loongarchVariantFromElfFlags(header);
346
347 return LLDB_INVALID_CPUTYPE;
348}
349
350char ObjectFileELF::ID;
351
352// Arbitrary constant used as UUID prefix for core files.
353const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
354
355// Static methods.
356void ObjectFileELF::Initialize() {
357 PluginManager::RegisterPlugin(name: GetPluginNameStatic(),
358 description: GetPluginDescriptionStatic(), create_callback: CreateInstance,
359 create_memory_callback: CreateMemoryInstance, get_module_specifications: GetModuleSpecifications);
360}
361
362void ObjectFileELF::Terminate() {
363 PluginManager::UnregisterPlugin(create_callback: CreateInstance);
364}
365
366ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
367 DataBufferSP data_sp,
368 lldb::offset_t data_offset,
369 const lldb_private::FileSpec *file,
370 lldb::offset_t file_offset,
371 lldb::offset_t length) {
372 bool mapped_writable = false;
373 if (!data_sp) {
374 data_sp = MapFileDataWritable(file: *file, Size: length, Offset: file_offset);
375 if (!data_sp)
376 return nullptr;
377 data_offset = 0;
378 mapped_writable = true;
379 }
380
381 assert(data_sp);
382
383 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
384 return nullptr;
385
386 const uint8_t *magic = data_sp->GetBytes() + data_offset;
387 if (!ELFHeader::MagicBytesMatch(magic))
388 return nullptr;
389
390 // Update the data to contain the entire file if it doesn't already
391 if (data_sp->GetByteSize() < length) {
392 data_sp = MapFileDataWritable(file: *file, Size: length, Offset: file_offset);
393 if (!data_sp)
394 return nullptr;
395 data_offset = 0;
396 mapped_writable = true;
397 magic = data_sp->GetBytes();
398 }
399
400 // If we didn't map the data as writable take ownership of the buffer.
401 if (!mapped_writable) {
402 data_sp = std::make_shared<DataBufferHeap>(args: data_sp->GetBytes(),
403 args: data_sp->GetByteSize());
404 data_offset = 0;
405 magic = data_sp->GetBytes();
406 }
407
408 unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
409 if (address_size == 4 || address_size == 8) {
410 std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF(
411 module_sp, data_sp, data_offset, file, file_offset, length));
412 ArchSpec spec = objfile_up->GetArchitecture();
413 if (spec && objfile_up->SetModulesArchitecture(spec))
414 return objfile_up.release();
415 }
416
417 return nullptr;
418}
419
420ObjectFile *ObjectFileELF::CreateMemoryInstance(
421 const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
422 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
423 if (!data_sp || data_sp->GetByteSize() < (llvm::ELF::EI_NIDENT))
424 return nullptr;
425 const uint8_t *magic = data_sp->GetBytes();
426 if (!ELFHeader::MagicBytesMatch(magic))
427 return nullptr;
428 // Read the ELF header first so we can figure out how many bytes we need
429 // to read to get as least the ELF header + program headers.
430 DataExtractor data;
431 data.SetData(data_sp);
432 elf::ELFHeader hdr;
433 lldb::offset_t offset = 0;
434 if (!hdr.Parse(data, offset: &offset))
435 return nullptr;
436
437 // Make sure the address size is set correctly in the ELF header.
438 if (!hdr.Is32Bit() && !hdr.Is64Bit())
439 return nullptr;
440 // Figure out where the program headers end and read enough bytes to get the
441 // program headers in their entirety.
442 lldb::offset_t end_phdrs = hdr.e_phoff + (hdr.e_phentsize * hdr.e_phnum);
443 if (end_phdrs > data_sp->GetByteSize())
444 data_sp = ReadMemory(process_sp, addr: header_addr, byte_size: end_phdrs);
445
446 std::unique_ptr<ObjectFileELF> objfile_up(
447 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
448 ArchSpec spec = objfile_up->GetArchitecture();
449 if (spec && objfile_up->SetModulesArchitecture(spec))
450 return objfile_up.release();
451
452 return nullptr;
453}
454
455bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
456 lldb::addr_t data_offset,
457 lldb::addr_t data_length) {
458 if (data_sp &&
459 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
460 const uint8_t *magic = data_sp->GetBytes() + data_offset;
461 return ELFHeader::MagicBytesMatch(magic);
462 }
463 return false;
464}
465
466static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) {
467 return llvm::crc32(CRC: init,
468 Data: llvm::ArrayRef(data.GetDataStart(), data.GetByteSize()));
469}
470
471uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
472 const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
473
474 uint32_t core_notes_crc = 0;
475
476 for (const ELFProgramHeader &H : program_headers) {
477 if (H.p_type == llvm::ELF::PT_NOTE) {
478 const elf_off ph_offset = H.p_offset;
479 const size_t ph_size = H.p_filesz;
480
481 DataExtractor segment_data;
482 if (segment_data.SetData(data: object_data, offset: ph_offset, length: ph_size) != ph_size) {
483 // The ELF program header contained incorrect data, probably corefile
484 // is incomplete or corrupted.
485 break;
486 }
487
488 core_notes_crc = calc_crc32(init: core_notes_crc, data: segment_data);
489 }
490 }
491
492 return core_notes_crc;
493}
494
495static const char *OSABIAsCString(unsigned char osabi_byte) {
496#define _MAKE_OSABI_CASE(x) \
497 case x: \
498 return #x
499 switch (osabi_byte) {
500 _MAKE_OSABI_CASE(ELFOSABI_NONE);
501 _MAKE_OSABI_CASE(ELFOSABI_HPUX);
502 _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
503 _MAKE_OSABI_CASE(ELFOSABI_GNU);
504 _MAKE_OSABI_CASE(ELFOSABI_HURD);
505 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
506 _MAKE_OSABI_CASE(ELFOSABI_AIX);
507 _MAKE_OSABI_CASE(ELFOSABI_IRIX);
508 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
509 _MAKE_OSABI_CASE(ELFOSABI_TRU64);
510 _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
511 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
512 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
513 _MAKE_OSABI_CASE(ELFOSABI_NSK);
514 _MAKE_OSABI_CASE(ELFOSABI_AROS);
515 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
516 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
517 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
518 _MAKE_OSABI_CASE(ELFOSABI_ARM);
519 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
520 default:
521 return "<unknown-osabi>";
522 }
523#undef _MAKE_OSABI_CASE
524}
525
526//
527// WARNING : This function is being deprecated
528// It's functionality has moved to ArchSpec::SetArchitecture This function is
529// only being kept to validate the move.
530//
531// TODO : Remove this function
532static bool GetOsFromOSABI(unsigned char osabi_byte,
533 llvm::Triple::OSType &ostype) {
534 switch (osabi_byte) {
535 case ELFOSABI_AIX:
536 ostype = llvm::Triple::OSType::AIX;
537 break;
538 case ELFOSABI_FREEBSD:
539 ostype = llvm::Triple::OSType::FreeBSD;
540 break;
541 case ELFOSABI_GNU:
542 ostype = llvm::Triple::OSType::Linux;
543 break;
544 case ELFOSABI_NETBSD:
545 ostype = llvm::Triple::OSType::NetBSD;
546 break;
547 case ELFOSABI_OPENBSD:
548 ostype = llvm::Triple::OSType::OpenBSD;
549 break;
550 case ELFOSABI_SOLARIS:
551 ostype = llvm::Triple::OSType::Solaris;
552 break;
553 default:
554 ostype = llvm::Triple::OSType::UnknownOS;
555 }
556 return ostype != llvm::Triple::OSType::UnknownOS;
557}
558
559size_t ObjectFileELF::GetModuleSpecifications(
560 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
561 lldb::offset_t data_offset, lldb::offset_t file_offset,
562 lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
563 Log *log = GetLog(mask: LLDBLog::Modules);
564
565 const size_t initial_count = specs.GetSize();
566
567 if (ObjectFileELF::MagicBytesMatch(data_sp, data_offset: 0, data_length: data_sp->GetByteSize())) {
568 DataExtractor data;
569 data.SetData(data_sp);
570 elf::ELFHeader header;
571 lldb::offset_t header_offset = data_offset;
572 if (header.Parse(data, offset: &header_offset)) {
573 if (data_sp) {
574 ModuleSpec spec(file);
575 // In Android API level 23 and above, bionic dynamic linker is able to
576 // load .so file directly from zip file. In that case, .so file is
577 // page aligned and uncompressed, and this module spec should retain the
578 // .so file offset and file size to pass through the information from
579 // lldb-server to LLDB. For normal file, file_offset should be 0,
580 // length should be the size of the file.
581 spec.SetObjectOffset(file_offset);
582 spec.SetObjectSize(length);
583
584 const uint32_t sub_type = subTypeFromElfHeader(header);
585 spec.GetArchitecture().SetArchitecture(
586 arch_type: eArchTypeELF, cpu: header.e_machine, sub: sub_type, os: header.e_ident[EI_OSABI]);
587
588 if (spec.GetArchitecture().IsValid()) {
589 llvm::Triple::OSType ostype;
590 llvm::Triple::VendorType vendor;
591 llvm::Triple::OSType spec_ostype =
592 spec.GetArchitecture().GetTriple().getOS();
593
594 LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s",
595 __FUNCTION__, file.GetPath().c_str(),
596 OSABIAsCString(header.e_ident[EI_OSABI]));
597
598 // SetArchitecture should have set the vendor to unknown
599 vendor = spec.GetArchitecture().GetTriple().getVendor();
600 assert(vendor == llvm::Triple::UnknownVendor);
601 UNUSED_IF_ASSERT_DISABLED(vendor);
602
603 //
604 // Validate it is ok to remove GetOsFromOSABI
605 GetOsFromOSABI(osabi_byte: header.e_ident[EI_OSABI], ostype);
606 assert(spec_ostype == ostype);
607 if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
608 LLDB_LOGF(log,
609 "ObjectFileELF::%s file '%s' set ELF module OS type "
610 "from ELF header OSABI.",
611 __FUNCTION__, file.GetPath().c_str());
612 }
613
614 // When ELF file does not contain GNU build ID, the later code will
615 // calculate CRC32 with this data_sp file_offset and length. It is
616 // important for Android zip .so file, which is a slice of a file,
617 // to not access the outside of the file slice range.
618 if (data_sp->GetByteSize() < length)
619 data_sp = MapFileData(file, Size: length, Offset: file_offset);
620 if (data_sp)
621 data.SetData(data_sp);
622 // In case there is header extension in the section #0, the header we
623 // parsed above could have sentinel values for e_phnum, e_shnum, and
624 // e_shstrndx. In this case we need to reparse the header with a
625 // bigger data source to get the actual values.
626 if (header.HasHeaderExtension()) {
627 lldb::offset_t header_offset = data_offset;
628 header.Parse(data, offset: &header_offset);
629 }
630
631 uint32_t gnu_debuglink_crc = 0;
632 std::string gnu_debuglink_file;
633 SectionHeaderColl section_headers;
634 lldb_private::UUID &uuid = spec.GetUUID();
635
636 GetSectionHeaderInfo(section_headers, object_data&: data, header, uuid,
637 gnu_debuglink_file, gnu_debuglink_crc,
638 arch_spec&: spec.GetArchitecture());
639
640 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
641
642 LLDB_LOGF(log,
643 "ObjectFileELF::%s file '%s' module set to triple: %s "
644 "(architecture %s)",
645 __FUNCTION__, file.GetPath().c_str(),
646 spec_triple.getTriple().c_str(),
647 spec.GetArchitecture().GetArchitectureName());
648
649 if (!uuid.IsValid()) {
650 uint32_t core_notes_crc = 0;
651
652 if (!gnu_debuglink_crc) {
653 LLDB_SCOPED_TIMERF(
654 "Calculating module crc32 %s with size %" PRIu64 " KiB",
655 file.GetFilename().AsCString(),
656 (length - file_offset) / 1024);
657
658 // For core files - which usually don't happen to have a
659 // gnu_debuglink, and are pretty bulky - calculating whole
660 // contents crc32 would be too much of luxury. Thus we will need
661 // to fallback to something simpler.
662 if (header.e_type == llvm::ELF::ET_CORE) {
663 ProgramHeaderColl program_headers;
664 GetProgramHeaderInfo(program_headers, object_data&: data, header);
665
666 core_notes_crc =
667 CalculateELFNotesSegmentsCRC32(program_headers, object_data&: data);
668 } else {
669 gnu_debuglink_crc = calc_crc32(init: 0, data);
670 }
671 }
672 using u32le = llvm::support::ulittle32_t;
673 if (gnu_debuglink_crc) {
674 // Use 4 bytes of crc from the .gnu_debuglink section.
675 u32le data(gnu_debuglink_crc);
676 uuid = UUID(&data, sizeof(data));
677 } else if (core_notes_crc) {
678 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
679 // it look different form .gnu_debuglink crc followed by 4 bytes
680 // of note segments crc.
681 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
682 uuid = UUID(data, sizeof(data));
683 }
684 }
685
686 specs.Append(spec);
687 }
688 }
689 }
690 }
691
692 return specs.GetSize() - initial_count;
693}
694
695// ObjectFile protocol
696
697ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
698 DataBufferSP data_sp, lldb::offset_t data_offset,
699 const FileSpec *file, lldb::offset_t file_offset,
700 lldb::offset_t length)
701 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) {
702 if (file)
703 m_file = *file;
704}
705
706ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
707 DataBufferSP header_data_sp,
708 const lldb::ProcessSP &process_sp,
709 addr_t header_addr)
710 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {}
711
712bool ObjectFileELF::IsExecutable() const {
713 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
714}
715
716bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
717 bool value_is_offset) {
718 ModuleSP module_sp = GetModule();
719 if (module_sp) {
720 size_t num_loaded_sections = 0;
721 SectionList *section_list = GetSectionList();
722 if (section_list) {
723 if (!value_is_offset) {
724 addr_t base = GetBaseAddress().GetFileAddress();
725 if (base == LLDB_INVALID_ADDRESS)
726 return false;
727 value -= base;
728 }
729
730 const size_t num_sections = section_list->GetSize();
731 size_t sect_idx = 0;
732
733 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
734 // Iterate through the object file sections to find all of the sections
735 // that have SHF_ALLOC in their flag bits.
736 SectionSP section_sp(section_list->GetSectionAtIndex(idx: sect_idx));
737
738 // PT_TLS segments can have the same p_vaddr and p_paddr as other
739 // PT_LOAD segments so we shouldn't load them. If we do load them, then
740 // the SectionLoadList will incorrectly fill in the instance variable
741 // SectionLoadList::m_addr_to_sect with the same address as a PT_LOAD
742 // segment and we won't be able to resolve addresses in the PT_LOAD
743 // segment whose p_vaddr entry matches that of the PT_TLS. Any variables
744 // that appear in the PT_TLS segments get resolved by the DWARF
745 // expressions. If this ever changes we will need to fix all object
746 // file plug-ins, but until then, we don't want PT_TLS segments to
747 // remove the entry from SectionLoadList::m_addr_to_sect when we call
748 // SetSectionLoadAddress() below.
749 if (section_sp->IsThreadSpecific())
750 continue;
751 if (section_sp->Test(bit: SHF_ALLOC) ||
752 section_sp->GetType() == eSectionTypeContainer) {
753 lldb::addr_t load_addr = section_sp->GetFileAddress();
754 // We don't want to update the load address of a section with type
755 // eSectionTypeAbsoluteAddress as they already have the absolute load
756 // address already specified
757 if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
758 load_addr += value;
759
760 // On 32-bit systems the load address have to fit into 4 bytes. The
761 // rest of the bytes are the overflow from the addition.
762 if (GetAddressByteSize() == 4)
763 load_addr &= 0xFFFFFFFF;
764
765 if (target.SetSectionLoadAddress(section: section_sp, load_addr))
766 ++num_loaded_sections;
767 }
768 }
769 return num_loaded_sections > 0;
770 }
771 }
772 return false;
773}
774
775ByteOrder ObjectFileELF::GetByteOrder() const {
776 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
777 return eByteOrderBig;
778 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
779 return eByteOrderLittle;
780 return eByteOrderInvalid;
781}
782
783uint32_t ObjectFileELF::GetAddressByteSize() const {
784 return m_data.GetAddressByteSize();
785}
786
787AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
788 Symtab *symtab = GetSymtab();
789 if (!symtab)
790 return AddressClass::eUnknown;
791
792 // The address class is determined based on the symtab. Ask it from the
793 // object file what contains the symtab information.
794 ObjectFile *symtab_objfile = symtab->GetObjectFile();
795 if (symtab_objfile != nullptr && symtab_objfile != this)
796 return symtab_objfile->GetAddressClass(file_addr);
797
798 auto res = ObjectFile::GetAddressClass(file_addr);
799 if (res != AddressClass::eCode)
800 return res;
801
802 auto ub = m_address_class_map.upper_bound(x: file_addr);
803 if (ub == m_address_class_map.begin()) {
804 // No entry in the address class map before the address. Return default
805 // address class for an address in a code section.
806 return AddressClass::eCode;
807 }
808
809 // Move iterator to the address class entry preceding address
810 --ub;
811
812 return ub->second;
813}
814
815size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
816 return std::distance(first: m_section_headers.begin(), last: I);
817}
818
819size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
820 return std::distance(first: m_section_headers.begin(), last: I);
821}
822
823bool ObjectFileELF::ParseHeader() {
824 lldb::offset_t offset = 0;
825 return m_header.Parse(data&: m_data, offset: &offset);
826}
827
828UUID ObjectFileELF::GetUUID() {
829 // Need to parse the section list to get the UUIDs, so make sure that's been
830 // done.
831 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
832 return UUID();
833
834 if (!m_uuid) {
835 using u32le = llvm::support::ulittle32_t;
836 if (GetType() == ObjectFile::eTypeCoreFile) {
837 uint32_t core_notes_crc = 0;
838
839 if (!ParseProgramHeaders())
840 return UUID();
841
842 core_notes_crc =
843 CalculateELFNotesSegmentsCRC32(program_headers: m_program_headers, object_data&: m_data);
844
845 if (core_notes_crc) {
846 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
847 // look different form .gnu_debuglink crc - followed by 4 bytes of note
848 // segments crc.
849 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
850 m_uuid = UUID(data, sizeof(data));
851 }
852 } else {
853 if (!m_gnu_debuglink_crc)
854 m_gnu_debuglink_crc = calc_crc32(init: 0, data: m_data);
855 if (m_gnu_debuglink_crc) {
856 // Use 4 bytes of crc from the .gnu_debuglink section.
857 u32le data(m_gnu_debuglink_crc);
858 m_uuid = UUID(&data, sizeof(data));
859 }
860 }
861 }
862
863 return m_uuid;
864}
865
866std::optional<FileSpec> ObjectFileELF::GetDebugLink() {
867 if (m_gnu_debuglink_file.empty())
868 return std::nullopt;
869 return FileSpec(m_gnu_debuglink_file);
870}
871
872uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
873 size_t num_modules = ParseDependentModules();
874 uint32_t num_specs = 0;
875
876 for (unsigned i = 0; i < num_modules; ++i) {
877 if (files.AppendIfUnique(file: m_filespec_up->GetFileSpecAtIndex(idx: i)))
878 num_specs++;
879 }
880
881 return num_specs;
882}
883
884Address ObjectFileELF::GetImageInfoAddress(Target *target) {
885 if (!ParseDynamicSymbols())
886 return Address();
887
888 SectionList *section_list = GetSectionList();
889 if (!section_list)
890 return Address();
891
892 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
893 const ELFDynamic &symbol = m_dynamic_symbols[i].symbol;
894
895 if (symbol.d_tag != DT_DEBUG && symbol.d_tag != DT_MIPS_RLD_MAP &&
896 symbol.d_tag != DT_MIPS_RLD_MAP_REL)
897 continue;
898
899 // Compute the offset as the number of previous entries plus the size of
900 // d_tag.
901 const addr_t offset = (i * 2 + 1) * GetAddressByteSize();
902 const addr_t d_file_addr = m_dynamic_base_addr + offset;
903 Address d_addr;
904 if (!d_addr.ResolveAddressUsingFileSections(addr: d_file_addr, sections: GetSectionList()))
905 return Address();
906 if (symbol.d_tag == DT_DEBUG)
907 return d_addr;
908
909 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
910 // exists in non-PIE.
911 if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
912 symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
913 target) {
914 const addr_t d_load_addr = d_addr.GetLoadAddress(target);
915 if (d_load_addr == LLDB_INVALID_ADDRESS)
916 return Address();
917
918 Status error;
919 if (symbol.d_tag == DT_MIPS_RLD_MAP) {
920 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
921 Address addr;
922 if (target->ReadPointerFromMemory(addr: d_load_addr, error, pointer_addr&: addr, force_live_memory: true))
923 return addr;
924 }
925 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
926 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
927 // relative to the address of the tag.
928 uint64_t rel_offset;
929 rel_offset = target->ReadUnsignedIntegerFromMemory(
930 addr: d_load_addr, integer_byte_size: GetAddressByteSize(), UINT64_MAX, error, force_live_memory: true);
931 if (error.Success() && rel_offset != UINT64_MAX) {
932 Address addr;
933 addr_t debug_ptr_address =
934 d_load_addr - GetAddressByteSize() + rel_offset;
935 addr.SetOffset(debug_ptr_address);
936 return addr;
937 }
938 }
939 }
940 }
941 return Address();
942}
943
944lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
945 if (m_entry_point_address.IsValid())
946 return m_entry_point_address;
947
948 if (!ParseHeader() || !IsExecutable())
949 return m_entry_point_address;
950
951 SectionList *section_list = GetSectionList();
952 addr_t offset = m_header.e_entry;
953
954 if (!section_list)
955 m_entry_point_address.SetOffset(offset);
956 else
957 m_entry_point_address.ResolveAddressUsingFileSections(addr: offset, sections: section_list);
958 return m_entry_point_address;
959}
960
961Address ObjectFileELF::GetBaseAddress() {
962 if (GetType() == ObjectFile::eTypeObjectFile) {
963 for (SectionHeaderCollIter I = std::next(x: m_section_headers.begin());
964 I != m_section_headers.end(); ++I) {
965 const ELFSectionHeaderInfo &header = *I;
966 if (header.sh_flags & SHF_ALLOC)
967 return Address(GetSectionList()->FindSectionByID(sect_id: SectionIndex(I)), 0);
968 }
969 return LLDB_INVALID_ADDRESS;
970 }
971
972 for (const auto &EnumPHdr : llvm::enumerate(First: ProgramHeaders())) {
973 const ELFProgramHeader &H = EnumPHdr.value();
974 if (H.p_type != PT_LOAD)
975 continue;
976
977 return Address(
978 GetSectionList()->FindSectionByID(sect_id: SegmentID(PHdrIndex: EnumPHdr.index())), 0);
979 }
980 return LLDB_INVALID_ADDRESS;
981}
982
983size_t ObjectFileELF::ParseDependentModules() {
984 if (m_filespec_up)
985 return m_filespec_up->GetSize();
986
987 m_filespec_up = std::make_unique<FileSpecList>();
988
989 if (ParseDynamicSymbols()) {
990 for (const auto &entry : m_dynamic_symbols) {
991 if (entry.symbol.d_tag != DT_NEEDED)
992 continue;
993 if (!entry.name.empty()) {
994 FileSpec file_spec(entry.name);
995 FileSystem::Instance().Resolve(file_spec);
996 m_filespec_up->Append(file: file_spec);
997 }
998 }
999 }
1000 return m_filespec_up->GetSize();
1001}
1002
1003// GetProgramHeaderInfo
1004size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1005 DataExtractor &object_data,
1006 const ELFHeader &header) {
1007 // We have already parsed the program headers
1008 if (!program_headers.empty())
1009 return program_headers.size();
1010
1011 // If there are no program headers to read we are done.
1012 if (header.e_phnum == 0)
1013 return 0;
1014
1015 program_headers.resize(new_size: header.e_phnum);
1016 if (program_headers.size() != header.e_phnum)
1017 return 0;
1018
1019 const size_t ph_size = header.e_phnum * header.e_phentsize;
1020 const elf_off ph_offset = header.e_phoff;
1021 DataExtractor data;
1022 if (data.SetData(data: object_data, offset: ph_offset, length: ph_size) != ph_size)
1023 return 0;
1024
1025 uint32_t idx;
1026 lldb::offset_t offset;
1027 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1028 if (!program_headers[idx].Parse(data, offset: &offset))
1029 break;
1030 }
1031
1032 if (idx < program_headers.size())
1033 program_headers.resize(new_size: idx);
1034
1035 return program_headers.size();
1036}
1037
1038// ParseProgramHeaders
1039bool ObjectFileELF::ParseProgramHeaders() {
1040 return GetProgramHeaderInfo(program_headers&: m_program_headers, object_data&: m_data, header: m_header) != 0;
1041}
1042
1043lldb_private::Status
1044ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
1045 lldb_private::ArchSpec &arch_spec,
1046 lldb_private::UUID &uuid) {
1047 Log *log = GetLog(mask: LLDBLog::Modules);
1048 Status error;
1049
1050 lldb::offset_t offset = 0;
1051
1052 while (true) {
1053 // Parse the note header. If this fails, bail out.
1054 const lldb::offset_t note_offset = offset;
1055 ELFNote note = ELFNote();
1056 if (!note.Parse(data, offset: &offset)) {
1057 // We're done.
1058 return error;
1059 }
1060
1061 LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1062 __FUNCTION__, note.n_name.c_str(), note.n_type);
1063
1064 // Process FreeBSD ELF notes.
1065 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1066 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1067 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1068 // Pull out the min version info.
1069 uint32_t version_info;
1070 if (data.GetU32(offset_ptr: &offset, dst: &version_info, count: 1) == nullptr) {
1071 error =
1072 Status::FromErrorString(str: "failed to read FreeBSD ABI note payload");
1073 return error;
1074 }
1075
1076 // Convert the version info into a major/minor number.
1077 const uint32_t version_major = version_info / 100000;
1078 const uint32_t version_minor = (version_info / 1000) % 100;
1079
1080 char os_name[32];
1081 snprintf(s: os_name, maxlen: sizeof(os_name), format: "freebsd%" PRIu32 ".%" PRIu32,
1082 version_major, version_minor);
1083
1084 // Set the elf OS version to FreeBSD. Also clear the vendor.
1085 arch_spec.GetTriple().setOSName(os_name);
1086 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1087
1088 LLDB_LOGF(log,
1089 "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1090 ".%" PRIu32,
1091 __FUNCTION__, version_major, version_minor,
1092 static_cast<uint32_t>(version_info % 1000));
1093 }
1094 // Process GNU ELF notes.
1095 else if (note.n_name == LLDB_NT_OWNER_GNU) {
1096 switch (note.n_type) {
1097 case LLDB_NT_GNU_ABI_TAG:
1098 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1099 // Pull out the min OS version supporting the ABI.
1100 uint32_t version_info[4];
1101 if (data.GetU32(offset_ptr: &offset, dst: &version_info[0], count: note.n_descsz / 4) ==
1102 nullptr) {
1103 error =
1104 Status::FromErrorString(str: "failed to read GNU ABI note payload");
1105 return error;
1106 }
1107
1108 // Set the OS per the OS field.
1109 switch (version_info[0]) {
1110 case LLDB_NT_GNU_ABI_OS_LINUX:
1111 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1112 arch_spec.GetTriple().setVendor(
1113 llvm::Triple::VendorType::UnknownVendor);
1114 LLDB_LOGF(log,
1115 "ObjectFileELF::%s detected Linux, min version %" PRIu32
1116 ".%" PRIu32 ".%" PRIu32,
1117 __FUNCTION__, version_info[1], version_info[2],
1118 version_info[3]);
1119 // FIXME we have the minimal version number, we could be propagating
1120 // that. version_info[1] = OS Major, version_info[2] = OS Minor,
1121 // version_info[3] = Revision.
1122 break;
1123 case LLDB_NT_GNU_ABI_OS_HURD:
1124 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1125 arch_spec.GetTriple().setVendor(
1126 llvm::Triple::VendorType::UnknownVendor);
1127 LLDB_LOGF(log,
1128 "ObjectFileELF::%s detected Hurd (unsupported), min "
1129 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1130 __FUNCTION__, version_info[1], version_info[2],
1131 version_info[3]);
1132 break;
1133 case LLDB_NT_GNU_ABI_OS_SOLARIS:
1134 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1135 arch_spec.GetTriple().setVendor(
1136 llvm::Triple::VendorType::UnknownVendor);
1137 LLDB_LOGF(log,
1138 "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1139 ".%" PRIu32 ".%" PRIu32,
1140 __FUNCTION__, version_info[1], version_info[2],
1141 version_info[3]);
1142 break;
1143 default:
1144 LLDB_LOGF(log,
1145 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1146 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1147 __FUNCTION__, version_info[0], version_info[1],
1148 version_info[2], version_info[3]);
1149 break;
1150 }
1151 }
1152 break;
1153
1154 case LLDB_NT_GNU_BUILD_ID_TAG:
1155 // Only bother processing this if we don't already have the uuid set.
1156 if (!uuid.IsValid()) {
1157 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1158 // build-id of a different length. Accept it as long as it's at least
1159 // 4 bytes as it will be better than our own crc32.
1160 if (note.n_descsz >= 4) {
1161 if (const uint8_t *buf = data.PeekData(offset, length: note.n_descsz)) {
1162 // Save the build id as the UUID for the module.
1163 uuid = UUID(buf, note.n_descsz);
1164 } else {
1165 error = Status::FromErrorString(
1166 str: "failed to read GNU_BUILD_ID note payload");
1167 return error;
1168 }
1169 }
1170 }
1171 break;
1172 }
1173 if (arch_spec.IsMIPS() &&
1174 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1175 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1176 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1177 }
1178 // Process NetBSD ELF executables and shared libraries
1179 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1180 (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) &&
1181 (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) &&
1182 (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) {
1183 // Pull out the version info.
1184 uint32_t version_info;
1185 if (data.GetU32(offset_ptr: &offset, dst: &version_info, count: 1) == nullptr) {
1186 error =
1187 Status::FromErrorString(str: "failed to read NetBSD ABI note payload");
1188 return error;
1189 }
1190 // Convert the version info into a major/minor/patch number.
1191 // #define __NetBSD_Version__ MMmmrrpp00
1192 //
1193 // M = major version
1194 // m = minor version; a minor number of 99 indicates current.
1195 // r = 0 (since NetBSD 3.0 not used)
1196 // p = patchlevel
1197 const uint32_t version_major = version_info / 100000000;
1198 const uint32_t version_minor = (version_info % 100000000) / 1000000;
1199 const uint32_t version_patch = (version_info % 10000) / 100;
1200 // Set the elf OS version to NetBSD. Also clear the vendor.
1201 arch_spec.GetTriple().setOSName(
1202 llvm::formatv(Fmt: "netbsd{0}.{1}.{2}", Vals: version_major, Vals: version_minor,
1203 Vals: version_patch).str());
1204 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1205 }
1206 // Process NetBSD ELF core(5) notes
1207 else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) &&
1208 (note.n_type == LLDB_NT_NETBSD_PROCINFO)) {
1209 // Set the elf OS version to NetBSD. Also clear the vendor.
1210 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1211 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1212 }
1213 // Process OpenBSD ELF notes.
1214 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1215 // Set the elf OS version to OpenBSD. Also clear the vendor.
1216 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1217 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1218 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1219 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1220 arch_spec.GetTriple().setEnvironment(
1221 llvm::Triple::EnvironmentType::Android);
1222 } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1223 // This is sometimes found in core files and usually contains extended
1224 // register info
1225 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1226 } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1227 // Parse the NT_FILE to look for stuff in paths to shared libraries
1228 // The contents look like this in a 64 bit ELF core file:
1229 //
1230 // count = 0x000000000000000a (10)
1231 // page_size = 0x0000000000001000 (4096)
1232 // Index start end file_ofs path
1233 // ===== ------------------ ------------------ ------------------ -------------------------------------
1234 // [ 0] 0x0000000000401000 0x0000000000000000 /tmp/a.out
1235 // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out
1236 // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1237 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so
1238 // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so
1239 // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so
1240 // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so
1241 // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so
1242 // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so
1243 // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so
1244 //
1245 // In the 32 bit ELFs the count, page_size, start, end, file_ofs are
1246 // uint32_t.
1247 //
1248 // For reference: see readelf source code (in binutils).
1249 if (note.n_type == NT_FILE) {
1250 uint64_t count = data.GetAddress(offset_ptr: &offset);
1251 const char *cstr;
1252 data.GetAddress(offset_ptr: &offset); // Skip page size
1253 offset += count * 3 *
1254 data.GetAddressByteSize(); // Skip all start/end/file_ofs
1255 for (size_t i = 0; i < count; ++i) {
1256 cstr = data.GetCStr(offset_ptr: &offset);
1257 if (cstr == nullptr) {
1258 error = Status::FromErrorStringWithFormat(
1259 format: "ObjectFileELF::%s trying to read "
1260 "at an offset after the end "
1261 "(GetCStr returned nullptr)",
1262 __FUNCTION__);
1263 return error;
1264 }
1265 llvm::StringRef path(cstr);
1266 if (path.contains(Other: "/lib/x86_64-linux-gnu") || path.contains(Other: "/lib/i386-linux-gnu")) {
1267 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1268 break;
1269 }
1270 }
1271 if (arch_spec.IsMIPS() &&
1272 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1273 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1274 // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1275 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1276 }
1277 }
1278
1279 // Calculate the offset of the next note just in case "offset" has been
1280 // used to poke at the contents of the note data
1281 offset = note_offset + note.GetByteSize();
1282 }
1283
1284 return error;
1285}
1286
1287void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1288 ArchSpec &arch_spec) {
1289 lldb::offset_t Offset = 0;
1290
1291 uint8_t FormatVersion = data.GetU8(offset_ptr: &Offset);
1292 if (FormatVersion != llvm::ELFAttrs::Format_Version)
1293 return;
1294
1295 Offset = Offset + sizeof(uint32_t); // Section Length
1296 llvm::StringRef VendorName = data.GetCStr(offset_ptr: &Offset);
1297
1298 if (VendorName != "aeabi")
1299 return;
1300
1301 if (arch_spec.GetTriple().getEnvironment() ==
1302 llvm::Triple::UnknownEnvironment)
1303 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1304
1305 while (Offset < length) {
1306 uint8_t Tag = data.GetU8(offset_ptr: &Offset);
1307 uint32_t Size = data.GetU32(offset_ptr: &Offset);
1308
1309 if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1310 continue;
1311
1312 while (Offset < length) {
1313 uint64_t Tag = data.GetULEB128(offset_ptr: &Offset);
1314 switch (Tag) {
1315 default:
1316 if (Tag < 32)
1317 data.GetULEB128(offset_ptr: &Offset);
1318 else if (Tag % 2 == 0)
1319 data.GetULEB128(offset_ptr: &Offset);
1320 else
1321 data.GetCStr(offset_ptr: &Offset);
1322
1323 break;
1324
1325 case llvm::ARMBuildAttrs::CPU_raw_name:
1326 case llvm::ARMBuildAttrs::CPU_name:
1327 data.GetCStr(offset_ptr: &Offset);
1328
1329 break;
1330
1331 case llvm::ARMBuildAttrs::ABI_VFP_args: {
1332 uint64_t VFPArgs = data.GetULEB128(offset_ptr: &Offset);
1333
1334 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1335 if (arch_spec.GetTriple().getEnvironment() ==
1336 llvm::Triple::UnknownEnvironment ||
1337 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1338 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1339
1340 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1341 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1342 if (arch_spec.GetTriple().getEnvironment() ==
1343 llvm::Triple::UnknownEnvironment ||
1344 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1345 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1346
1347 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1348 }
1349
1350 break;
1351 }
1352 }
1353 }
1354 }
1355}
1356
1357// GetSectionHeaderInfo
1358size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1359 DataExtractor &object_data,
1360 const elf::ELFHeader &header,
1361 lldb_private::UUID &uuid,
1362 std::string &gnu_debuglink_file,
1363 uint32_t &gnu_debuglink_crc,
1364 ArchSpec &arch_spec) {
1365 // Don't reparse the section headers if we already did that.
1366 if (!section_headers.empty())
1367 return section_headers.size();
1368
1369 // Only initialize the arch_spec to okay defaults if they're not already set.
1370 // We'll refine this with note data as we parse the notes.
1371 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1372 llvm::Triple::OSType ostype;
1373 llvm::Triple::OSType spec_ostype;
1374 const uint32_t sub_type = subTypeFromElfHeader(header);
1375 arch_spec.SetArchitecture(arch_type: eArchTypeELF, cpu: header.e_machine, sub: sub_type,
1376 os: header.e_ident[EI_OSABI]);
1377
1378 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1379 // determined based on EI_OSABI flag and the info extracted from ELF notes
1380 // (see RefineModuleDetailsFromNote). However in some cases that still
1381 // might be not enough: for example a shared library might not have any
1382 // notes at all and have EI_OSABI flag set to System V, as result the OS
1383 // will be set to UnknownOS.
1384 GetOsFromOSABI(osabi_byte: header.e_ident[EI_OSABI], ostype);
1385 spec_ostype = arch_spec.GetTriple().getOS();
1386 assert(spec_ostype == ostype);
1387 UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1388 }
1389
1390 if (arch_spec.GetMachine() == llvm::Triple::mips ||
1391 arch_spec.GetMachine() == llvm::Triple::mipsel ||
1392 arch_spec.GetMachine() == llvm::Triple::mips64 ||
1393 arch_spec.GetMachine() == llvm::Triple::mips64el) {
1394 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1395 case llvm::ELF::EF_MIPS_MICROMIPS:
1396 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1397 break;
1398 case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1399 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1400 break;
1401 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1402 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1403 break;
1404 default:
1405 break;
1406 }
1407 }
1408
1409 if (arch_spec.GetMachine() == llvm::Triple::arm ||
1410 arch_spec.GetMachine() == llvm::Triple::thumb) {
1411 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1412 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1413 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1414 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1415 }
1416
1417 if (arch_spec.GetMachine() == llvm::Triple::riscv32 ||
1418 arch_spec.GetMachine() == llvm::Triple::riscv64) {
1419 uint32_t flags = arch_spec.GetFlags();
1420
1421 if (header.e_flags & llvm::ELF::EF_RISCV_RVC)
1422 flags |= ArchSpec::eRISCV_rvc;
1423 if (header.e_flags & llvm::ELF::EF_RISCV_RVE)
1424 flags |= ArchSpec::eRISCV_rve;
1425
1426 if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE) ==
1427 llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE)
1428 flags |= ArchSpec::eRISCV_float_abi_single;
1429 else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE) ==
1430 llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE)
1431 flags |= ArchSpec::eRISCV_float_abi_double;
1432 else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD) ==
1433 llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD)
1434 flags |= ArchSpec::eRISCV_float_abi_quad;
1435
1436 arch_spec.SetFlags(flags);
1437 }
1438
1439 if (arch_spec.GetMachine() == llvm::Triple::loongarch32 ||
1440 arch_spec.GetMachine() == llvm::Triple::loongarch64) {
1441 uint32_t flags = arch_spec.GetFlags();
1442 switch (header.e_flags & llvm::ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
1443 case llvm::ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
1444 flags |= ArchSpec::eLoongArch_abi_single_float;
1445 break;
1446 case llvm::ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
1447 flags |= ArchSpec::eLoongArch_abi_double_float;
1448 break;
1449 case llvm::ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
1450 break;
1451 }
1452
1453 arch_spec.SetFlags(flags);
1454 }
1455
1456 // If there are no section headers we are done.
1457 if (header.e_shnum == 0)
1458 return 0;
1459
1460 Log *log = GetLog(mask: LLDBLog::Modules);
1461
1462 section_headers.resize(new_size: header.e_shnum);
1463 if (section_headers.size() != header.e_shnum)
1464 return 0;
1465
1466 const size_t sh_size = header.e_shnum * header.e_shentsize;
1467 const elf_off sh_offset = header.e_shoff;
1468 DataExtractor sh_data;
1469 if (sh_data.SetData(data: object_data, offset: sh_offset, length: sh_size) != sh_size)
1470 return 0;
1471
1472 uint32_t idx;
1473 lldb::offset_t offset;
1474 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1475 if (!section_headers[idx].Parse(data: sh_data, offset: &offset))
1476 break;
1477 }
1478 if (idx < section_headers.size())
1479 section_headers.resize(new_size: idx);
1480
1481 const unsigned strtab_idx = header.e_shstrndx;
1482 if (strtab_idx && strtab_idx < section_headers.size()) {
1483 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1484 const size_t byte_size = sheader.sh_size;
1485 const Elf64_Off offset = sheader.sh_offset;
1486 lldb_private::DataExtractor shstr_data;
1487
1488 if (shstr_data.SetData(data: object_data, offset, length: byte_size) == byte_size) {
1489 for (SectionHeaderCollIter I = section_headers.begin();
1490 I != section_headers.end(); ++I) {
1491 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1492 const ELFSectionHeaderInfo &sheader = *I;
1493 const uint64_t section_size =
1494 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1495 ConstString name(shstr_data.PeekCStr(offset: I->sh_name));
1496
1497 I->section_name = name;
1498
1499 if (arch_spec.IsMIPS()) {
1500 uint32_t arch_flags = arch_spec.GetFlags();
1501 DataExtractor data;
1502 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1503
1504 if (section_size && (data.SetData(data: object_data, offset: sheader.sh_offset,
1505 length: section_size) == section_size)) {
1506 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1507 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1508 arch_flags |= data.GetU32(offset_ptr: &offset);
1509
1510 // The floating point ABI is at offset 7
1511 offset = 7;
1512 switch (data.GetU8(offset_ptr: &offset)) {
1513 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1514 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1515 break;
1516 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1517 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1518 break;
1519 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1520 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1521 break;
1522 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1523 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1524 break;
1525 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1526 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1527 break;
1528 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1529 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1530 break;
1531 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1532 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1533 break;
1534 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1535 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1536 break;
1537 }
1538 }
1539 }
1540 // Settings appropriate ArchSpec ABI Flags
1541 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1542 case llvm::ELF::EF_MIPS_ABI_O32:
1543 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1544 break;
1545 case EF_MIPS_ABI_O64:
1546 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1547 break;
1548 case EF_MIPS_ABI_EABI32:
1549 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1550 break;
1551 case EF_MIPS_ABI_EABI64:
1552 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1553 break;
1554 default:
1555 // ABI Mask doesn't cover N32 and N64 ABI.
1556 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1557 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1558 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1559 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1560 break;
1561 }
1562 arch_spec.SetFlags(arch_flags);
1563 }
1564
1565 if (arch_spec.GetMachine() == llvm::Triple::arm ||
1566 arch_spec.GetMachine() == llvm::Triple::thumb) {
1567 DataExtractor data;
1568
1569 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1570 data.SetData(data: object_data, offset: sheader.sh_offset, length: section_size) == section_size)
1571 ParseARMAttributes(data, length: section_size, arch_spec);
1572 }
1573
1574 if (name == g_sect_name_gnu_debuglink) {
1575 DataExtractor data;
1576 if (section_size && (data.SetData(data: object_data, offset: sheader.sh_offset,
1577 length: section_size) == section_size)) {
1578 lldb::offset_t gnu_debuglink_offset = 0;
1579 gnu_debuglink_file = data.GetCStr(offset_ptr: &gnu_debuglink_offset);
1580 gnu_debuglink_offset = llvm::alignTo(Value: gnu_debuglink_offset, Align: 4);
1581 data.GetU32(offset_ptr: &gnu_debuglink_offset, dst: &gnu_debuglink_crc, count: 1);
1582 }
1583 }
1584
1585 // Process ELF note section entries.
1586 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1587
1588 // The section header ".note.android.ident" is stored as a
1589 // PROGBITS type header but it is actually a note header.
1590 static ConstString g_sect_name_android_ident(".note.android.ident");
1591 if (!is_note_header && name == g_sect_name_android_ident)
1592 is_note_header = true;
1593
1594 if (is_note_header) {
1595 // Allow notes to refine module info.
1596 DataExtractor data;
1597 if (section_size && (data.SetData(data: object_data, offset: sheader.sh_offset,
1598 length: section_size) == section_size)) {
1599 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1600 if (error.Fail()) {
1601 LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s",
1602 __FUNCTION__, error.AsCString());
1603 }
1604 }
1605 }
1606 }
1607
1608 // Make any unknown triple components to be unspecified unknowns.
1609 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1610 arch_spec.GetTriple().setVendorName(llvm::StringRef());
1611 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1612 arch_spec.GetTriple().setOSName(llvm::StringRef());
1613
1614 return section_headers.size();
1615 }
1616 }
1617
1618 section_headers.clear();
1619 return 0;
1620}
1621
1622llvm::StringRef
1623ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1624 size_t pos = symbol_name.find(C: '@');
1625 return symbol_name.substr(Start: 0, N: pos);
1626}
1627
1628// ParseSectionHeaders
1629size_t ObjectFileELF::ParseSectionHeaders() {
1630 return GetSectionHeaderInfo(section_headers&: m_section_headers, object_data&: m_data, header: m_header, uuid&: m_uuid,
1631 gnu_debuglink_file&: m_gnu_debuglink_file, gnu_debuglink_crc&: m_gnu_debuglink_crc,
1632 arch_spec&: m_arch_spec);
1633}
1634
1635const ObjectFileELF::ELFSectionHeaderInfo *
1636ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1637 if (!ParseSectionHeaders())
1638 return nullptr;
1639
1640 if (id < m_section_headers.size())
1641 return &m_section_headers[id];
1642
1643 return nullptr;
1644}
1645
1646lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1647 if (!name || !name[0] || !ParseSectionHeaders())
1648 return 0;
1649 for (size_t i = 1; i < m_section_headers.size(); ++i)
1650 if (m_section_headers[i].section_name == ConstString(name))
1651 return i;
1652 return 0;
1653}
1654
1655static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1656 if (Name.consume_front(Prefix: ".debug_"))
1657 return ObjectFile::GetDWARFSectionTypeFromName(name: Name);
1658
1659 return llvm::StringSwitch<SectionType>(Name)
1660 .Case(S: ".ARM.exidx", Value: eSectionTypeARMexidx)
1661 .Case(S: ".ARM.extab", Value: eSectionTypeARMextab)
1662 .Case(S: ".ctf", Value: eSectionTypeDebug)
1663 .Cases(S0: ".data", S1: ".tdata", Value: eSectionTypeData)
1664 .Case(S: ".eh_frame", Value: eSectionTypeEHFrame)
1665 .Case(S: ".gnu_debugaltlink", Value: eSectionTypeDWARFGNUDebugAltLink)
1666 .Case(S: ".gosymtab", Value: eSectionTypeGoSymtab)
1667 .Case(S: ".text", Value: eSectionTypeCode)
1668 .Case(S: ".lldbsummaries", Value: lldb::eSectionTypeLLDBTypeSummaries)
1669 .Case(S: ".lldbformatters", Value: lldb::eSectionTypeLLDBFormatters)
1670 .Case(S: ".swift_ast", Value: eSectionTypeSwiftModules)
1671 .Default(Value: eSectionTypeOther);
1672}
1673
1674SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
1675 switch (H.sh_type) {
1676 case SHT_PROGBITS:
1677 if (H.sh_flags & SHF_EXECINSTR)
1678 return eSectionTypeCode;
1679 break;
1680 case SHT_NOBITS:
1681 if (H.sh_flags & SHF_ALLOC)
1682 return eSectionTypeZeroFill;
1683 break;
1684 case SHT_SYMTAB:
1685 return eSectionTypeELFSymbolTable;
1686 case SHT_DYNSYM:
1687 return eSectionTypeELFDynamicSymbols;
1688 case SHT_RELA:
1689 case SHT_REL:
1690 return eSectionTypeELFRelocationEntries;
1691 case SHT_DYNAMIC:
1692 return eSectionTypeELFDynamicLinkInfo;
1693 }
1694 return GetSectionTypeFromName(Name: H.section_name.GetStringRef());
1695}
1696
1697static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1698 switch (Type) {
1699 case eSectionTypeData:
1700 case eSectionTypeZeroFill:
1701 return arch.GetDataByteSize();
1702 case eSectionTypeCode:
1703 return arch.GetCodeByteSize();
1704 default:
1705 return 1;
1706 }
1707}
1708
1709static Permissions GetPermissions(const ELFSectionHeader &H) {
1710 Permissions Perm = Permissions(0);
1711 if (H.sh_flags & SHF_ALLOC)
1712 Perm |= ePermissionsReadable;
1713 if (H.sh_flags & SHF_WRITE)
1714 Perm |= ePermissionsWritable;
1715 if (H.sh_flags & SHF_EXECINSTR)
1716 Perm |= ePermissionsExecutable;
1717 return Perm;
1718}
1719
1720static Permissions GetPermissions(const ELFProgramHeader &H) {
1721 Permissions Perm = Permissions(0);
1722 if (H.p_flags & PF_R)
1723 Perm |= ePermissionsReadable;
1724 if (H.p_flags & PF_W)
1725 Perm |= ePermissionsWritable;
1726 if (H.p_flags & PF_X)
1727 Perm |= ePermissionsExecutable;
1728 return Perm;
1729}
1730
1731namespace {
1732
1733using VMRange = lldb_private::Range<addr_t, addr_t>;
1734
1735struct SectionAddressInfo {
1736 SectionSP Segment;
1737 VMRange Range;
1738};
1739
1740// (Unlinked) ELF object files usually have 0 for every section address, meaning
1741// we need to compute synthetic addresses in order for "file addresses" from
1742// different sections to not overlap. This class handles that logic.
1743class VMAddressProvider {
1744 using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4,
1745 llvm::IntervalMapHalfOpenInfo<addr_t>>;
1746
1747 ObjectFile::Type ObjectType;
1748 addr_t NextVMAddress = 0;
1749 VMMap::Allocator Alloc;
1750 VMMap Segments{Alloc};
1751 VMMap Sections{Alloc};
1752 lldb_private::Log *Log = GetLog(mask: LLDBLog::Modules);
1753 size_t SegmentCount = 0;
1754 std::string SegmentName;
1755
1756 VMRange GetVMRange(const ELFSectionHeader &H) {
1757 addr_t Address = H.sh_addr;
1758 addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1759
1760 // When this is a debug file for relocatable file, the address is all zero
1761 // and thus needs to use accumulate method
1762 if ((ObjectType == ObjectFile::Type::eTypeObjectFile ||
1763 (ObjectType == ObjectFile::Type::eTypeDebugInfo && H.sh_addr == 0)) &&
1764 Segments.empty() && (H.sh_flags & SHF_ALLOC)) {
1765 NextVMAddress =
1766 llvm::alignTo(Value: NextVMAddress, Align: std::max<addr_t>(a: H.sh_addralign, b: 1));
1767 Address = NextVMAddress;
1768 NextVMAddress += Size;
1769 }
1770 return VMRange(Address, Size);
1771 }
1772
1773public:
1774 VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName)
1775 : ObjectType(Type), SegmentName(std::string(SegmentName)) {}
1776
1777 std::string GetNextSegmentName() const {
1778 return llvm::formatv(Fmt: "{0}[{1}]", Vals: SegmentName, Vals: SegmentCount).str();
1779 }
1780
1781 std::optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) {
1782 if (H.p_memsz == 0) {
1783 LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?",
1784 SegmentName);
1785 return std::nullopt;
1786 }
1787
1788 if (Segments.overlaps(a: H.p_vaddr, b: H.p_vaddr + H.p_memsz)) {
1789 LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?",
1790 SegmentName);
1791 return std::nullopt;
1792 }
1793 return VMRange(H.p_vaddr, H.p_memsz);
1794 }
1795
1796 std::optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) {
1797 VMRange Range = GetVMRange(H);
1798 SectionSP Segment;
1799 auto It = Segments.find(x: Range.GetRangeBase());
1800 if ((H.sh_flags & SHF_ALLOC) && It.valid()) {
1801 addr_t MaxSize;
1802 if (It.start() <= Range.GetRangeBase()) {
1803 MaxSize = It.stop() - Range.GetRangeBase();
1804 Segment = *It;
1805 } else
1806 MaxSize = It.start() - Range.GetRangeBase();
1807 if (Range.GetByteSize() > MaxSize) {
1808 LLDB_LOG(Log, "Shortening section crossing segment boundaries. "
1809 "Corrupt object file?");
1810 Range.SetByteSize(MaxSize);
1811 }
1812 }
1813 if (Range.GetByteSize() > 0 &&
1814 Sections.overlaps(a: Range.GetRangeBase(), b: Range.GetRangeEnd())) {
1815 LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?");
1816 return std::nullopt;
1817 }
1818 if (Segment)
1819 Range.Slide(slide: -Segment->GetFileAddress());
1820 return SectionAddressInfo{.Segment: Segment, .Range: Range};
1821 }
1822
1823 void AddSegment(const VMRange &Range, SectionSP Seg) {
1824 Segments.insert(a: Range.GetRangeBase(), b: Range.GetRangeEnd(), y: std::move(Seg));
1825 ++SegmentCount;
1826 }
1827
1828 void AddSection(SectionAddressInfo Info, SectionSP Sect) {
1829 if (Info.Range.GetByteSize() == 0)
1830 return;
1831 if (Info.Segment)
1832 Info.Range.Slide(slide: Info.Segment->GetFileAddress());
1833 Sections.insert(a: Info.Range.GetRangeBase(), b: Info.Range.GetRangeEnd(),
1834 y: std::move(Sect));
1835 }
1836};
1837}
1838
1839// We have to do this because ELF doesn't have section IDs, and also
1840// doesn't require section names to be unique. (We use the section index
1841// for section IDs, but that isn't guaranteed to be the same in separate
1842// debug images.)
1843static SectionSP FindMatchingSection(const SectionList &section_list,
1844 SectionSP section) {
1845 SectionSP sect_sp;
1846
1847 addr_t vm_addr = section->GetFileAddress();
1848 ConstString name = section->GetName();
1849 offset_t byte_size = section->GetByteSize();
1850 bool thread_specific = section->IsThreadSpecific();
1851 uint32_t permissions = section->GetPermissions();
1852 uint32_t alignment = section->GetLog2Align();
1853
1854 for (auto sect : section_list) {
1855 if (sect->GetName() == name &&
1856 sect->IsThreadSpecific() == thread_specific &&
1857 sect->GetPermissions() == permissions &&
1858 sect->GetByteSize() == byte_size && sect->GetFileAddress() == vm_addr &&
1859 sect->GetLog2Align() == alignment) {
1860 sect_sp = sect;
1861 break;
1862 } else {
1863 sect_sp = FindMatchingSection(section_list: sect->GetChildren(), section);
1864 if (sect_sp)
1865 break;
1866 }
1867 }
1868
1869 return sect_sp;
1870}
1871
1872void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1873 if (m_sections_up)
1874 return;
1875
1876 m_sections_up = std::make_unique<SectionList>();
1877 VMAddressProvider regular_provider(GetType(), "PT_LOAD");
1878 VMAddressProvider tls_provider(GetType(), "PT_TLS");
1879
1880 for (const auto &EnumPHdr : llvm::enumerate(First: ProgramHeaders())) {
1881 const ELFProgramHeader &PHdr = EnumPHdr.value();
1882 if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS)
1883 continue;
1884
1885 VMAddressProvider &provider =
1886 PHdr.p_type == PT_TLS ? tls_provider : regular_provider;
1887 auto InfoOr = provider.GetAddressInfo(H: PHdr);
1888 if (!InfoOr)
1889 continue;
1890
1891 uint32_t Log2Align = llvm::Log2_64(Value: std::max<elf_xword>(a: PHdr.p_align, b: 1));
1892 SectionSP Segment = std::make_shared<Section>(
1893 args: GetModule(), args: this, args: SegmentID(PHdrIndex: EnumPHdr.index()),
1894 args: ConstString(provider.GetNextSegmentName()), args: eSectionTypeContainer,
1895 args: InfoOr->GetRangeBase(), args: InfoOr->GetByteSize(), args: PHdr.p_offset,
1896 args: PHdr.p_filesz, args&: Log2Align, /*flags*/ args: 0);
1897 Segment->SetPermissions(GetPermissions(H: PHdr));
1898 Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS);
1899 m_sections_up->AddSection(section_sp: Segment);
1900
1901 provider.AddSegment(Range: *InfoOr, Seg: std::move(Segment));
1902 }
1903
1904 ParseSectionHeaders();
1905 if (m_section_headers.empty())
1906 return;
1907
1908 for (SectionHeaderCollIter I = std::next(x: m_section_headers.begin());
1909 I != m_section_headers.end(); ++I) {
1910 const ELFSectionHeaderInfo &header = *I;
1911
1912 ConstString &name = I->section_name;
1913 const uint64_t file_size =
1914 header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1915
1916 VMAddressProvider &provider =
1917 header.sh_flags & SHF_TLS ? tls_provider : regular_provider;
1918 auto InfoOr = provider.GetAddressInfo(H: header);
1919 if (!InfoOr)
1920 continue;
1921
1922 SectionType sect_type = GetSectionType(H: header);
1923
1924 const uint32_t target_bytes_size =
1925 GetTargetByteSize(Type: sect_type, arch: m_arch_spec);
1926
1927 elf::elf_xword log2align =
1928 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(Value: header.sh_addralign);
1929
1930 SectionSP section_sp(new Section(
1931 InfoOr->Segment, GetModule(), // Module to which this section belongs.
1932 this, // ObjectFile to which this section belongs and should
1933 // read section data from.
1934 SectionIndex(I), // Section ID.
1935 name, // Section name.
1936 sect_type, // Section type.
1937 InfoOr->Range.GetRangeBase(), // VM address.
1938 InfoOr->Range.GetByteSize(), // VM size in bytes of this section.
1939 header.sh_offset, // Offset of this section in the file.
1940 file_size, // Size of the section as found in the file.
1941 log2align, // Alignment of the section
1942 header.sh_flags, // Flags for this section.
1943 target_bytes_size)); // Number of host bytes per target byte
1944
1945 section_sp->SetPermissions(GetPermissions(H: header));
1946 section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1947 (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up)
1948 .AddSection(section_sp);
1949 provider.AddSection(Info: std::move(*InfoOr), Sect: std::move(section_sp));
1950 }
1951
1952 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1953 // unified section list.
1954 if (GetType() != eTypeDebugInfo)
1955 unified_section_list = *m_sections_up;
1956
1957 // If there's a .gnu_debugdata section, we'll try to read the .symtab that's
1958 // embedded in there and replace the one in the original object file (if any).
1959 // If there's none in the orignal object file, we add it to it.
1960 if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) {
1961 if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) {
1962 if (SectionSP symtab_section_sp =
1963 gdd_objfile_section_list->FindSectionByType(
1964 sect_type: eSectionTypeELFSymbolTable, check_children: true)) {
1965 SectionSP module_section_sp = unified_section_list.FindSectionByType(
1966 sect_type: eSectionTypeELFSymbolTable, check_children: true);
1967 if (module_section_sp)
1968 unified_section_list.ReplaceSection(sect_id: module_section_sp->GetID(),
1969 section_sp: symtab_section_sp);
1970 else
1971 unified_section_list.AddSection(section_sp: symtab_section_sp);
1972 }
1973 }
1974 }
1975}
1976
1977std::shared_ptr<ObjectFileELF> ObjectFileELF::GetGnuDebugDataObjectFile() {
1978 if (m_gnu_debug_data_object_file != nullptr)
1979 return m_gnu_debug_data_object_file;
1980
1981 SectionSP section =
1982 GetSectionList()->FindSectionByName(section_dstr: ConstString(".gnu_debugdata"));
1983 if (!section)
1984 return nullptr;
1985
1986 if (!lldb_private::lzma::isAvailable()) {
1987 GetModule()->ReportWarning(
1988 format: "No LZMA support found for reading .gnu_debugdata section");
1989 return nullptr;
1990 }
1991
1992 // Uncompress the data
1993 DataExtractor data;
1994 section->GetSectionData(data);
1995 llvm::SmallVector<uint8_t, 0> uncompressedData;
1996 auto err = lldb_private::lzma::uncompress(InputBuffer: data.GetData(), Uncompressed&: uncompressedData);
1997 if (err) {
1998 GetModule()->ReportWarning(
1999 format: "An error occurred while decompression the section {0}: {1}",
2000 args: section->GetName().AsCString(), args: llvm::toString(E: std::move(err)).c_str());
2001 return nullptr;
2002 }
2003
2004 // Construct ObjectFileELF object from decompressed buffer
2005 DataBufferSP gdd_data_buf(
2006 new DataBufferHeap(uncompressedData.data(), uncompressedData.size()));
2007 auto fspec = GetFileSpec().CopyByAppendingPathComponent(
2008 component: llvm::StringRef("gnu_debugdata"));
2009 m_gnu_debug_data_object_file.reset(p: new ObjectFileELF(
2010 GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize()));
2011
2012 // This line is essential; otherwise a breakpoint can be set but not hit.
2013 m_gnu_debug_data_object_file->SetType(ObjectFile::eTypeDebugInfo);
2014
2015 ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture();
2016 if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec))
2017 return m_gnu_debug_data_object_file;
2018
2019 return nullptr;
2020}
2021
2022// Find the arm/aarch64 mapping symbol character in the given symbol name.
2023// Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
2024// recognize cases when the mapping symbol prefixed by an arbitrary string
2025// because if a symbol prefix added to each symbol in the object file with
2026// objcopy then the mapping symbols are also prefixed.
2027static char FindArmAarch64MappingSymbol(const char *symbol_name) {
2028 if (!symbol_name)
2029 return '\0';
2030
2031 const char *dollar_pos = ::strchr(s: symbol_name, c: '$');
2032 if (!dollar_pos || dollar_pos[1] == '\0')
2033 return '\0';
2034
2035 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
2036 return dollar_pos[1];
2037 return '\0';
2038}
2039
2040#define STO_MIPS_ISA (3 << 6)
2041#define STO_MICROMIPS (2 << 6)
2042#define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
2043
2044// private
2045std::pair<unsigned, ObjectFileELF::FileAddressToAddressClassMap>
2046ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
2047 SectionList *section_list, const size_t num_symbols,
2048 const DataExtractor &symtab_data,
2049 const DataExtractor &strtab_data) {
2050 ELFSymbol symbol;
2051 lldb::offset_t offset = 0;
2052 // The changes these symbols would make to the class map. We will also update
2053 // m_address_class_map but need to tell the caller what changed because the
2054 // caller may be another object file.
2055 FileAddressToAddressClassMap address_class_map;
2056
2057 static ConstString text_section_name(".text");
2058 static ConstString init_section_name(".init");
2059 static ConstString fini_section_name(".fini");
2060 static ConstString ctors_section_name(".ctors");
2061 static ConstString dtors_section_name(".dtors");
2062
2063 static ConstString data_section_name(".data");
2064 static ConstString rodata_section_name(".rodata");
2065 static ConstString rodata1_section_name(".rodata1");
2066 static ConstString data2_section_name(".data1");
2067 static ConstString bss_section_name(".bss");
2068 static ConstString opd_section_name(".opd"); // For ppc64
2069
2070 // On Android the oatdata and the oatexec symbols in the oat and odex files
2071 // covers the full .text section what causes issues with displaying unusable
2072 // symbol name to the user and very slow unwinding speed because the
2073 // instruction emulation based unwind plans try to emulate all instructions
2074 // in these symbols. Don't add these symbols to the symbol list as they have
2075 // no use for the debugger and they are causing a lot of trouble. Filtering
2076 // can't be restricted to Android because this special object file don't
2077 // contain the note section specifying the environment to Android but the
2078 // custom extension and file name makes it highly unlikely that this will
2079 // collide with anything else.
2080 llvm::StringRef file_extension = m_file.GetFileNameExtension();
2081 bool skip_oatdata_oatexec =
2082 file_extension == ".oat" || file_extension == ".odex";
2083
2084 ArchSpec arch = GetArchitecture();
2085 ModuleSP module_sp(GetModule());
2086 SectionList *module_section_list =
2087 module_sp ? module_sp->GetSectionList() : nullptr;
2088
2089 // We might have debug information in a separate object, in which case
2090 // we need to map the sections from that object to the sections in the
2091 // main object during symbol lookup. If we had to compare the sections
2092 // for every single symbol, that would be expensive, so this map is
2093 // used to accelerate the process.
2094 std::unordered_map<lldb::SectionSP, lldb::SectionSP> section_map;
2095
2096 unsigned i;
2097 for (i = 0; i < num_symbols; ++i) {
2098 if (!symbol.Parse(data: symtab_data, offset: &offset))
2099 break;
2100
2101 const char *symbol_name = strtab_data.PeekCStr(offset: symbol.st_name);
2102 if (!symbol_name)
2103 symbol_name = "";
2104
2105 // No need to add non-section symbols that have no names
2106 if (symbol.getType() != STT_SECTION &&
2107 (symbol_name == nullptr || symbol_name[0] == '\0'))
2108 continue;
2109
2110 // Skipping oatdata and oatexec sections if it is requested. See details
2111 // above the definition of skip_oatdata_oatexec for the reasons.
2112 if (skip_oatdata_oatexec && (::strcmp(s1: symbol_name, s2: "oatdata") == 0 ||
2113 ::strcmp(s1: symbol_name, s2: "oatexec") == 0))
2114 continue;
2115
2116 SectionSP symbol_section_sp;
2117 SymbolType symbol_type = eSymbolTypeInvalid;
2118 Elf64_Half shndx = symbol.st_shndx;
2119
2120 switch (shndx) {
2121 case SHN_ABS:
2122 symbol_type = eSymbolTypeAbsolute;
2123 break;
2124 case SHN_UNDEF:
2125 symbol_type = eSymbolTypeUndefined;
2126 break;
2127 default:
2128 symbol_section_sp = section_list->FindSectionByID(sect_id: shndx);
2129 break;
2130 }
2131
2132 // If a symbol is undefined do not process it further even if it has a STT
2133 // type
2134 if (symbol_type != eSymbolTypeUndefined) {
2135 switch (symbol.getType()) {
2136 default:
2137 case STT_NOTYPE:
2138 // The symbol's type is not specified.
2139 break;
2140
2141 case STT_OBJECT:
2142 // The symbol is associated with a data object, such as a variable, an
2143 // array, etc.
2144 symbol_type = eSymbolTypeData;
2145 break;
2146
2147 case STT_FUNC:
2148 // The symbol is associated with a function or other executable code.
2149 symbol_type = eSymbolTypeCode;
2150 break;
2151
2152 case STT_SECTION:
2153 // The symbol is associated with a section. Symbol table entries of
2154 // this type exist primarily for relocation and normally have STB_LOCAL
2155 // binding.
2156 break;
2157
2158 case STT_FILE:
2159 // Conventionally, the symbol's name gives the name of the source file
2160 // associated with the object file. A file symbol has STB_LOCAL
2161 // binding, its section index is SHN_ABS, and it precedes the other
2162 // STB_LOCAL symbols for the file, if it is present.
2163 symbol_type = eSymbolTypeSourceFile;
2164 break;
2165
2166 case STT_GNU_IFUNC:
2167 // The symbol is associated with an indirect function. The actual
2168 // function will be resolved if it is referenced.
2169 symbol_type = eSymbolTypeResolver;
2170 break;
2171 }
2172 }
2173
2174 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2175 if (symbol_section_sp) {
2176 ConstString sect_name = symbol_section_sp->GetName();
2177 if (sect_name == text_section_name || sect_name == init_section_name ||
2178 sect_name == fini_section_name || sect_name == ctors_section_name ||
2179 sect_name == dtors_section_name) {
2180 symbol_type = eSymbolTypeCode;
2181 } else if (sect_name == data_section_name ||
2182 sect_name == data2_section_name ||
2183 sect_name == rodata_section_name ||
2184 sect_name == rodata1_section_name ||
2185 sect_name == bss_section_name) {
2186 symbol_type = eSymbolTypeData;
2187 }
2188 }
2189 }
2190
2191 int64_t symbol_value_offset = 0;
2192 uint32_t additional_flags = 0;
2193
2194 if (arch.IsValid()) {
2195 if (arch.GetMachine() == llvm::Triple::arm) {
2196 if (symbol.getBinding() == STB_LOCAL) {
2197 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2198 if (symbol_type == eSymbolTypeCode) {
2199 switch (mapping_symbol) {
2200 case 'a':
2201 // $a[.<any>]* - marks an ARM instruction sequence
2202 address_class_map[symbol.st_value] = AddressClass::eCode;
2203 break;
2204 case 'b':
2205 case 't':
2206 // $b[.<any>]* - marks a THUMB BL instruction sequence
2207 // $t[.<any>]* - marks a THUMB instruction sequence
2208 address_class_map[symbol.st_value] =
2209 AddressClass::eCodeAlternateISA;
2210 break;
2211 case 'd':
2212 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2213 address_class_map[symbol.st_value] = AddressClass::eData;
2214 break;
2215 }
2216 }
2217 if (mapping_symbol)
2218 continue;
2219 }
2220 } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2221 if (symbol.getBinding() == STB_LOCAL) {
2222 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2223 if (symbol_type == eSymbolTypeCode) {
2224 switch (mapping_symbol) {
2225 case 'x':
2226 // $x[.<any>]* - marks an A64 instruction sequence
2227 address_class_map[symbol.st_value] = AddressClass::eCode;
2228 break;
2229 case 'd':
2230 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2231 address_class_map[symbol.st_value] = AddressClass::eData;
2232 break;
2233 }
2234 }
2235 if (mapping_symbol)
2236 continue;
2237 }
2238 }
2239
2240 if (arch.GetMachine() == llvm::Triple::arm) {
2241 if (symbol_type == eSymbolTypeCode) {
2242 if (symbol.st_value & 1) {
2243 // Subtracting 1 from the address effectively unsets the low order
2244 // bit, which results in the address actually pointing to the
2245 // beginning of the symbol. This delta will be used below in
2246 // conjunction with symbol.st_value to produce the final
2247 // symbol_value that we store in the symtab.
2248 symbol_value_offset = -1;
2249 address_class_map[symbol.st_value ^ 1] =
2250 AddressClass::eCodeAlternateISA;
2251 } else {
2252 // This address is ARM
2253 address_class_map[symbol.st_value] = AddressClass::eCode;
2254 }
2255 }
2256 }
2257
2258 /*
2259 * MIPS:
2260 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2261 * MIPS).
2262 * This allows processor to switch between microMIPS and MIPS without any
2263 * need
2264 * for special mode-control register. However, apart from .debug_line,
2265 * none of
2266 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2267 * st_other
2268 * flag to check whether the symbol is microMIPS and then set the address
2269 * class
2270 * accordingly.
2271 */
2272 if (arch.IsMIPS()) {
2273 if (IS_MICROMIPS(symbol.st_other))
2274 address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2275 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2276 symbol.st_value = symbol.st_value & (~1ull);
2277 address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2278 } else {
2279 if (symbol_type == eSymbolTypeCode)
2280 address_class_map[symbol.st_value] = AddressClass::eCode;
2281 else if (symbol_type == eSymbolTypeData)
2282 address_class_map[symbol.st_value] = AddressClass::eData;
2283 else
2284 address_class_map[symbol.st_value] = AddressClass::eUnknown;
2285 }
2286 }
2287 }
2288
2289 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2290 // symbols. See above for more details.
2291 uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2292
2293 if (symbol_section_sp &&
2294 CalculateType() != ObjectFile::Type::eTypeObjectFile)
2295 symbol_value -= symbol_section_sp->GetFileAddress();
2296
2297 if (symbol_section_sp && module_section_list &&
2298 module_section_list != section_list) {
2299 auto section_it = section_map.find(x: symbol_section_sp);
2300 if (section_it == section_map.end()) {
2301 section_it = section_map
2302 .emplace(args&: symbol_section_sp,
2303 args: FindMatchingSection(section_list: *module_section_list,
2304 section: symbol_section_sp))
2305 .first;
2306 }
2307 if (section_it->second)
2308 symbol_section_sp = section_it->second;
2309 }
2310
2311 bool is_global = symbol.getBinding() == STB_GLOBAL;
2312 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2313 llvm::StringRef symbol_ref(symbol_name);
2314
2315 // Symbol names may contain @VERSION suffixes. Find those and strip them
2316 // temporarily.
2317 size_t version_pos = symbol_ref.find(C: '@');
2318 bool has_suffix = version_pos != llvm::StringRef::npos;
2319 llvm::StringRef symbol_bare = symbol_ref.substr(Start: 0, N: version_pos);
2320 Mangled mangled(symbol_bare);
2321
2322 // Now append the suffix back to mangled and unmangled names. Only do it if
2323 // the demangling was successful (string is not empty).
2324 if (has_suffix) {
2325 llvm::StringRef suffix = symbol_ref.substr(Start: version_pos);
2326
2327 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2328 if (!mangled_name.empty())
2329 mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2330
2331 ConstString demangled = mangled.GetDemangledName();
2332 llvm::StringRef demangled_name = demangled.GetStringRef();
2333 if (!demangled_name.empty())
2334 mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2335 }
2336
2337 // In ELF all symbol should have a valid size but it is not true for some
2338 // function symbols coming from hand written assembly. As none of the
2339 // function symbol should have 0 size we try to calculate the size for
2340 // these symbols in the symtab with saying that their original size is not
2341 // valid.
2342 bool symbol_size_valid =
2343 symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2344
2345 bool is_trampoline = false;
2346 if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64)) {
2347 // On AArch64, trampolines are registered as code.
2348 // If we detect a trampoline (which starts with __AArch64ADRPThunk_ or
2349 // __AArch64AbsLongThunk_) we register the symbol as a trampoline. This
2350 // way we will be able to detect the trampoline when we step in a function
2351 // and step through the trampoline.
2352 if (symbol_type == eSymbolTypeCode) {
2353 llvm::StringRef trampoline_name = mangled.GetName().GetStringRef();
2354 if (trampoline_name.starts_with(Prefix: "__AArch64ADRPThunk_") ||
2355 trampoline_name.starts_with(Prefix: "__AArch64AbsLongThunk_")) {
2356 symbol_type = eSymbolTypeTrampoline;
2357 is_trampoline = true;
2358 }
2359 }
2360 }
2361
2362 Symbol dc_symbol(
2363 i + start_id, // ID is the original symbol table index.
2364 mangled,
2365 symbol_type, // Type of this symbol
2366 is_global, // Is this globally visible?
2367 false, // Is this symbol debug info?
2368 is_trampoline, // Is this symbol a trampoline?
2369 false, // Is this symbol artificial?
2370 AddressRange(symbol_section_sp, // Section in which this symbol is
2371 // defined or null.
2372 symbol_value, // Offset in section or symbol value.
2373 symbol.st_size), // Size in bytes of this symbol.
2374 symbol_size_valid, // Symbol size is valid
2375 has_suffix, // Contains linker annotations?
2376 flags); // Symbol flags.
2377 if (symbol.getBinding() == STB_WEAK)
2378 dc_symbol.SetIsWeak(true);
2379 symtab->AddSymbol(symbol: dc_symbol);
2380 }
2381
2382 m_address_class_map.merge(source&: address_class_map);
2383 return {i, address_class_map};
2384}
2385
2386std::pair<unsigned, ObjectFileELF::FileAddressToAddressClassMap>
2387ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id,
2388 lldb_private::Section *symtab) {
2389 if (symtab->GetObjectFile() != this) {
2390 // If the symbol table section is owned by a different object file, have it
2391 // do the parsing.
2392 ObjectFileELF *obj_file_elf =
2393 static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2394 auto [num_symbols, address_class_map] =
2395 obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2396
2397 // The other object file returned the changes it made to its address
2398 // class map, make the same changes to ours.
2399 m_address_class_map.merge(source&: address_class_map);
2400
2401 return {num_symbols, address_class_map};
2402 }
2403
2404 // Get section list for this object file.
2405 SectionList *section_list = m_sections_up.get();
2406 if (!section_list)
2407 return {};
2408
2409 user_id_t symtab_id = symtab->GetID();
2410 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(id: symtab_id);
2411 assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2412 symtab_hdr->sh_type == SHT_DYNSYM);
2413
2414 // sh_link: section header index of associated string table.
2415 user_id_t strtab_id = symtab_hdr->sh_link;
2416 Section *strtab = section_list->FindSectionByID(sect_id: strtab_id).get();
2417
2418 if (symtab && strtab) {
2419 assert(symtab->GetObjectFile() == this);
2420 assert(strtab->GetObjectFile() == this);
2421
2422 DataExtractor symtab_data;
2423 DataExtractor strtab_data;
2424 if (ReadSectionData(section: symtab, section_data&: symtab_data) &&
2425 ReadSectionData(section: strtab, section_data&: strtab_data)) {
2426 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2427
2428 return ParseSymbols(symtab: symbol_table, start_id, section_list, num_symbols,
2429 symtab_data, strtab_data);
2430 }
2431 }
2432
2433 return {0, {}};
2434}
2435
2436size_t ObjectFileELF::ParseDynamicSymbols() {
2437 if (m_dynamic_symbols.size())
2438 return m_dynamic_symbols.size();
2439
2440 std::optional<DataExtractor> dynamic_data = GetDynamicData();
2441 if (!dynamic_data)
2442 return 0;
2443
2444 ELFDynamicWithName e;
2445 lldb::offset_t cursor = 0;
2446 while (e.symbol.Parse(data: *dynamic_data, offset: &cursor)) {
2447 m_dynamic_symbols.push_back(x: e);
2448 if (e.symbol.d_tag == DT_NULL)
2449 break;
2450 }
2451 if (std::optional<DataExtractor> dynstr_data = GetDynstrData()) {
2452 for (ELFDynamicWithName &entry : m_dynamic_symbols) {
2453 switch (entry.symbol.d_tag) {
2454 case DT_NEEDED:
2455 case DT_SONAME:
2456 case DT_RPATH:
2457 case DT_RUNPATH:
2458 case DT_AUXILIARY:
2459 case DT_FILTER: {
2460 lldb::offset_t cursor = entry.symbol.d_val;
2461 const char *name = dynstr_data->GetCStr(offset_ptr: &cursor);
2462 if (name)
2463 entry.name = std::string(name);
2464 break;
2465 }
2466 default:
2467 break;
2468 }
2469 }
2470 }
2471 return m_dynamic_symbols.size();
2472}
2473
2474const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2475 if (!ParseDynamicSymbols())
2476 return nullptr;
2477 for (const auto &entry : m_dynamic_symbols) {
2478 if (entry.symbol.d_tag == tag)
2479 return &entry.symbol;
2480 }
2481 return nullptr;
2482}
2483
2484unsigned ObjectFileELF::PLTRelocationType() {
2485 // DT_PLTREL
2486 // This member specifies the type of relocation entry to which the
2487 // procedure linkage table refers. The d_val member holds DT_REL or
2488 // DT_RELA, as appropriate. All relocations in a procedure linkage table
2489 // must use the same relocation.
2490 const ELFDynamic *symbol = FindDynamicSymbol(tag: DT_PLTREL);
2491
2492 if (symbol)
2493 return symbol->d_val;
2494
2495 return 0;
2496}
2497
2498// Returns the size of the normal plt entries and the offset of the first
2499// normal plt entry. The 0th entry in the plt table is usually a resolution
2500// entry which have different size in some architectures then the rest of the
2501// plt entries.
2502static std::pair<uint64_t, uint64_t>
2503GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2504 const ELFSectionHeader *plt_hdr) {
2505 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2506
2507 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2508 // 16 bytes. So round the entsize up by the alignment if addralign is set.
2509 elf_xword plt_entsize =
2510 plt_hdr->sh_addralign
2511 ? llvm::alignTo(Value: plt_hdr->sh_entsize, Align: plt_hdr->sh_addralign)
2512 : plt_hdr->sh_entsize;
2513
2514 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2515 // PLT entries relocation code in general requires multiple instruction and
2516 // should be greater than 4 bytes in most cases. Try to guess correct size
2517 // just in case.
2518 if (plt_entsize <= 4) {
2519 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2520 // size of the plt entries based on the number of entries and the size of
2521 // the plt section with the assumption that the size of the 0th entry is at
2522 // least as big as the size of the normal entries and it isn't much bigger
2523 // then that.
2524 if (plt_hdr->sh_addralign)
2525 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2526 (num_relocations + 1) * plt_hdr->sh_addralign;
2527 else
2528 plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2529 }
2530
2531 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2532
2533 return std::make_pair(x&: plt_entsize, y&: plt_offset);
2534}
2535
2536static unsigned ParsePLTRelocations(
2537 Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2538 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2539 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2540 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2541 DataExtractor &symtab_data, DataExtractor &strtab_data) {
2542 ELFRelocation rel(rel_type);
2543 ELFSymbol symbol;
2544 lldb::offset_t offset = 0;
2545
2546 uint64_t plt_offset, plt_entsize;
2547 std::tie(args&: plt_entsize, args&: plt_offset) =
2548 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2549 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2550
2551 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2552 reloc_info_fn reloc_type;
2553 reloc_info_fn reloc_symbol;
2554
2555 if (hdr->Is32Bit()) {
2556 reloc_type = ELFRelocation::RelocType32;
2557 reloc_symbol = ELFRelocation::RelocSymbol32;
2558 } else {
2559 reloc_type = ELFRelocation::RelocType64;
2560 reloc_symbol = ELFRelocation::RelocSymbol64;
2561 }
2562
2563 unsigned slot_type = hdr->GetRelocationJumpSlotType();
2564 unsigned i;
2565 for (i = 0; i < num_relocations; ++i) {
2566 if (!rel.Parse(data: rel_data, offset: &offset))
2567 break;
2568
2569 if (reloc_type(rel) != slot_type)
2570 continue;
2571
2572 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2573 if (!symbol.Parse(data: symtab_data, offset: &symbol_offset))
2574 break;
2575
2576 const char *symbol_name = strtab_data.PeekCStr(offset: symbol.st_name);
2577 uint64_t plt_index = plt_offset + i * plt_entsize;
2578
2579 Symbol jump_symbol(
2580 i + start_id, // Symbol table index
2581 symbol_name, // symbol name.
2582 eSymbolTypeTrampoline, // Type of this symbol
2583 false, // Is this globally visible?
2584 false, // Is this symbol debug info?
2585 true, // Is this symbol a trampoline?
2586 true, // Is this symbol artificial?
2587 plt_section_sp, // Section in which this symbol is defined or null.
2588 plt_index, // Offset in section or symbol value.
2589 plt_entsize, // Size in bytes of this symbol.
2590 true, // Size is valid
2591 false, // Contains linker annotations?
2592 0); // Symbol flags.
2593
2594 symbol_table->AddSymbol(symbol: jump_symbol);
2595 }
2596
2597 return i;
2598}
2599
2600unsigned
2601ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2602 const ELFSectionHeaderInfo *rel_hdr,
2603 user_id_t rel_id) {
2604 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2605
2606 // The link field points to the associated symbol table.
2607 user_id_t symtab_id = rel_hdr->sh_link;
2608
2609 // If the link field doesn't point to the appropriate symbol name table then
2610 // try to find it by name as some compiler don't fill in the link fields.
2611 if (!symtab_id)
2612 symtab_id = GetSectionIndexByName(name: ".dynsym");
2613
2614 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers
2615 // point that to the .got.plt or .got section instead of .plt.
2616 user_id_t plt_id = GetSectionIndexByName(name: ".plt");
2617
2618 if (!symtab_id || !plt_id)
2619 return 0;
2620
2621 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(id: plt_id);
2622 if (!plt_hdr)
2623 return 0;
2624
2625 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(id: symtab_id);
2626 if (!sym_hdr)
2627 return 0;
2628
2629 SectionList *section_list = m_sections_up.get();
2630 if (!section_list)
2631 return 0;
2632
2633 Section *rel_section = section_list->FindSectionByID(sect_id: rel_id).get();
2634 if (!rel_section)
2635 return 0;
2636
2637 SectionSP plt_section_sp(section_list->FindSectionByID(sect_id: plt_id));
2638 if (!plt_section_sp)
2639 return 0;
2640
2641 Section *symtab = section_list->FindSectionByID(sect_id: symtab_id).get();
2642 if (!symtab)
2643 return 0;
2644
2645 // sh_link points to associated string table.
2646 Section *strtab = section_list->FindSectionByID(sect_id: sym_hdr->sh_link).get();
2647 if (!strtab)
2648 return 0;
2649
2650 DataExtractor rel_data;
2651 if (!ReadSectionData(section: rel_section, section_data&: rel_data))
2652 return 0;
2653
2654 DataExtractor symtab_data;
2655 if (!ReadSectionData(section: symtab, section_data&: symtab_data))
2656 return 0;
2657
2658 DataExtractor strtab_data;
2659 if (!ReadSectionData(section: strtab, section_data&: strtab_data))
2660 return 0;
2661
2662 unsigned rel_type = PLTRelocationType();
2663 if (!rel_type)
2664 return 0;
2665
2666 return ParsePLTRelocations(symbol_table, start_id, rel_type, hdr: &m_header,
2667 rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2668 rel_data, symtab_data, strtab_data);
2669}
2670
2671static void ApplyELF64ABS64Relocation(Symtab *symtab, ELFRelocation &rel,
2672 DataExtractor &debug_data,
2673 Section *rel_section) {
2674 Symbol *symbol = symtab->FindSymbolByID(uid: ELFRelocation::RelocSymbol64(rel));
2675 if (symbol) {
2676 addr_t value = symbol->GetAddressRef().GetFileAddress();
2677 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2678 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2679 WritableDataBuffer *data_buffer =
2680 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2681 uint64_t *dst = reinterpret_cast<uint64_t *>(
2682 data_buffer->GetBytes() + rel_section->GetFileOffset() +
2683 ELFRelocation::RelocOffset64(rel));
2684 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2685 memcpy(dest: dst, src: &val_offset, n: sizeof(uint64_t));
2686 }
2687}
2688
2689static void ApplyELF64ABS32Relocation(Symtab *symtab, ELFRelocation &rel,
2690 DataExtractor &debug_data,
2691 Section *rel_section, bool is_signed) {
2692 Symbol *symbol = symtab->FindSymbolByID(uid: ELFRelocation::RelocSymbol64(rel));
2693 if (symbol) {
2694 addr_t value = symbol->GetAddressRef().GetFileAddress();
2695 value += ELFRelocation::RelocAddend32(rel);
2696 if ((!is_signed && (value > UINT32_MAX)) ||
2697 (is_signed &&
2698 ((int64_t)value > INT32_MAX || (int64_t)value < INT32_MIN))) {
2699 Log *log = GetLog(mask: LLDBLog::Modules);
2700 LLDB_LOGF(log, "Failed to apply debug info relocations");
2701 return;
2702 }
2703 uint32_t truncated_addr = (value & 0xFFFFFFFF);
2704 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2705 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2706 WritableDataBuffer *data_buffer =
2707 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2708 uint32_t *dst = reinterpret_cast<uint32_t *>(
2709 data_buffer->GetBytes() + rel_section->GetFileOffset() +
2710 ELFRelocation::RelocOffset32(rel));
2711 memcpy(dest: dst, src: &truncated_addr, n: sizeof(uint32_t));
2712 }
2713}
2714
2715static void ApplyELF32ABS32RelRelocation(Symtab *symtab, ELFRelocation &rel,
2716 DataExtractor &debug_data,
2717 Section *rel_section) {
2718 Log *log = GetLog(mask: LLDBLog::Modules);
2719 Symbol *symbol = symtab->FindSymbolByID(uid: ELFRelocation::RelocSymbol32(rel));
2720 if (symbol) {
2721 addr_t value = symbol->GetAddressRef().GetFileAddress();
2722 if (value == LLDB_INVALID_ADDRESS) {
2723 const char *name = symbol->GetName().GetCString();
2724 LLDB_LOGF(log, "Debug info symbol invalid: %s", name);
2725 return;
2726 }
2727 assert(llvm::isUInt<32>(value) && "Valid addresses are 32-bit");
2728 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2729 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2730 WritableDataBuffer *data_buffer =
2731 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2732 uint8_t *dst = data_buffer->GetBytes() + rel_section->GetFileOffset() +
2733 ELFRelocation::RelocOffset32(rel);
2734 // Implicit addend is stored inline as a signed value.
2735 int32_t addend;
2736 memcpy(dest: &addend, src: dst, n: sizeof(int32_t));
2737 // The sum must be positive. This extra check prevents UB from overflow in
2738 // the actual range check below.
2739 if (addend < 0 && static_cast<uint32_t>(-addend) > value) {
2740 LLDB_LOGF(log, "Debug info relocation overflow: 0x%" PRIx64,
2741 static_cast<int64_t>(value) + addend);
2742 return;
2743 }
2744 if (!llvm::isUInt<32>(x: value + addend)) {
2745 LLDB_LOGF(log, "Debug info relocation out of range: 0x%" PRIx64, value);
2746 return;
2747 }
2748 uint32_t addr = value + addend;
2749 memcpy(dest: dst, src: &addr, n: sizeof(uint32_t));
2750 }
2751}
2752
2753unsigned ObjectFileELF::ApplyRelocations(
2754 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2755 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2756 DataExtractor &rel_data, DataExtractor &symtab_data,
2757 DataExtractor &debug_data, Section *rel_section) {
2758 ELFRelocation rel(rel_hdr->sh_type);
2759 lldb::addr_t offset = 0;
2760 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2761 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2762 reloc_info_fn reloc_type;
2763 reloc_info_fn reloc_symbol;
2764
2765 if (hdr->Is32Bit()) {
2766 reloc_type = ELFRelocation::RelocType32;
2767 reloc_symbol = ELFRelocation::RelocSymbol32;
2768 } else {
2769 reloc_type = ELFRelocation::RelocType64;
2770 reloc_symbol = ELFRelocation::RelocSymbol64;
2771 }
2772
2773 for (unsigned i = 0; i < num_relocations; ++i) {
2774 if (!rel.Parse(data: rel_data, offset: &offset)) {
2775 GetModule()->ReportError(format: ".rel{0}[{1:d}] failed to parse relocation",
2776 args: rel_section->GetName().AsCString(), args&: i);
2777 break;
2778 }
2779 Symbol *symbol = nullptr;
2780
2781 if (hdr->Is32Bit()) {
2782 switch (hdr->e_machine) {
2783 case llvm::ELF::EM_ARM:
2784 switch (reloc_type(rel)) {
2785 case R_ARM_ABS32:
2786 ApplyELF32ABS32RelRelocation(symtab, rel, debug_data, rel_section);
2787 break;
2788 case R_ARM_REL32:
2789 GetModule()->ReportError(format: "unsupported AArch32 relocation:"
2790 " .rel{0}[{1}], type {2}",
2791 args: rel_section->GetName().AsCString(), args&: i,
2792 args: reloc_type(rel));
2793 break;
2794 default:
2795 assert(false && "unexpected relocation type");
2796 }
2797 break;
2798 case llvm::ELF::EM_386:
2799 switch (reloc_type(rel)) {
2800 case R_386_32:
2801 symbol = symtab->FindSymbolByID(uid: reloc_symbol(rel));
2802 if (symbol) {
2803 addr_t f_offset =
2804 rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel);
2805 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2806 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2807 WritableDataBuffer *data_buffer =
2808 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2809 uint32_t *dst = reinterpret_cast<uint32_t *>(
2810 data_buffer->GetBytes() + f_offset);
2811
2812 addr_t value = symbol->GetAddressRef().GetFileAddress();
2813 if (rel.IsRela()) {
2814 value += ELFRelocation::RelocAddend32(rel);
2815 } else {
2816 value += *dst;
2817 }
2818 *dst = value;
2819 } else {
2820 GetModule()->ReportError(format: ".rel{0}[{1}] unknown symbol id: {2:d}",
2821 args: rel_section->GetName().AsCString(), args&: i,
2822 args: reloc_symbol(rel));
2823 }
2824 break;
2825 case R_386_NONE:
2826 case R_386_PC32:
2827 GetModule()->ReportError(format: "unsupported i386 relocation:"
2828 " .rel{0}[{1}], type {2}",
2829 args: rel_section->GetName().AsCString(), args&: i,
2830 args: reloc_type(rel));
2831 break;
2832 default:
2833 assert(false && "unexpected relocation type");
2834 break;
2835 }
2836 break;
2837 default:
2838 GetModule()->ReportError(format: "unsupported 32-bit ELF machine arch: {0}", args: hdr->e_machine);
2839 break;
2840 }
2841 } else {
2842 switch (hdr->e_machine) {
2843 case llvm::ELF::EM_AARCH64:
2844 switch (reloc_type(rel)) {
2845 case R_AARCH64_ABS64:
2846 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2847 break;
2848 case R_AARCH64_ABS32:
2849 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, is_signed: true);
2850 break;
2851 default:
2852 assert(false && "unexpected relocation type");
2853 }
2854 break;
2855 case llvm::ELF::EM_LOONGARCH:
2856 switch (reloc_type(rel)) {
2857 case R_LARCH_64:
2858 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2859 break;
2860 case R_LARCH_32:
2861 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, is_signed: true);
2862 break;
2863 default:
2864 assert(false && "unexpected relocation type");
2865 }
2866 break;
2867 case llvm::ELF::EM_X86_64:
2868 switch (reloc_type(rel)) {
2869 case R_X86_64_64:
2870 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2871 break;
2872 case R_X86_64_32:
2873 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section,
2874 is_signed: false);
2875 break;
2876 case R_X86_64_32S:
2877 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, is_signed: true);
2878 break;
2879 case R_X86_64_PC32:
2880 default:
2881 assert(false && "unexpected relocation type");
2882 }
2883 break;
2884 default:
2885 GetModule()->ReportError(format: "unsupported 64-bit ELF machine arch: {0}", args: hdr->e_machine);
2886 break;
2887 }
2888 }
2889 }
2890
2891 return 0;
2892}
2893
2894unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2895 user_id_t rel_id,
2896 lldb_private::Symtab *thetab) {
2897 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2898
2899 // Parse in the section list if needed.
2900 SectionList *section_list = GetSectionList();
2901 if (!section_list)
2902 return 0;
2903
2904 user_id_t symtab_id = rel_hdr->sh_link;
2905 user_id_t debug_id = rel_hdr->sh_info;
2906
2907 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(id: symtab_id);
2908 if (!symtab_hdr)
2909 return 0;
2910
2911 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(id: debug_id);
2912 if (!debug_hdr)
2913 return 0;
2914
2915 Section *rel = section_list->FindSectionByID(sect_id: rel_id).get();
2916 if (!rel)
2917 return 0;
2918
2919 Section *symtab = section_list->FindSectionByID(sect_id: symtab_id).get();
2920 if (!symtab)
2921 return 0;
2922
2923 Section *debug = section_list->FindSectionByID(sect_id: debug_id).get();
2924 if (!debug)
2925 return 0;
2926
2927 DataExtractor rel_data;
2928 DataExtractor symtab_data;
2929 DataExtractor debug_data;
2930
2931 if (GetData(offset: rel->GetFileOffset(), length: rel->GetFileSize(), data&: rel_data) &&
2932 GetData(offset: symtab->GetFileOffset(), length: symtab->GetFileSize(), data&: symtab_data) &&
2933 GetData(offset: debug->GetFileOffset(), length: debug->GetFileSize(), data&: debug_data)) {
2934 ApplyRelocations(symtab: thetab, hdr: &m_header, rel_hdr, symtab_hdr, debug_hdr,
2935 rel_data, symtab_data, debug_data, rel_section: debug);
2936 }
2937
2938 return 0;
2939}
2940
2941void ObjectFileELF::ParseSymtab(Symtab &lldb_symtab) {
2942 ModuleSP module_sp(GetModule());
2943 if (!module_sp)
2944 return;
2945
2946 Progress progress("Parsing symbol table",
2947 m_file.GetFilename().AsCString(value_if_empty: "<Unknown>"));
2948 ElapsedTime elapsed(module_sp->GetSymtabParseTime());
2949
2950 // We always want to use the main object file so we (hopefully) only have one
2951 // cached copy of our symtab, dynamic sections, etc.
2952 ObjectFile *module_obj_file = module_sp->GetObjectFile();
2953 if (module_obj_file && module_obj_file != this)
2954 return module_obj_file->ParseSymtab(symtab&: lldb_symtab);
2955
2956 SectionList *section_list = module_sp->GetSectionList();
2957 if (!section_list)
2958 return;
2959
2960 uint64_t symbol_id = 0;
2961
2962 // Sharable objects and dynamic executables usually have 2 distinct symbol
2963 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2964 // smaller version of the symtab that only contains global symbols. The
2965 // information found in the dynsym is therefore also found in the symtab,
2966 // while the reverse is not necessarily true.
2967 Section *symtab =
2968 section_list->FindSectionByType(sect_type: eSectionTypeELFSymbolTable, check_children: true).get();
2969 if (symtab) {
2970 auto [num_symbols, address_class_map] =
2971 ParseSymbolTable(symbol_table: &lldb_symtab, start_id: symbol_id, symtab);
2972 m_address_class_map.merge(source&: address_class_map);
2973 symbol_id += num_symbols;
2974 }
2975
2976 // The symtab section is non-allocable and can be stripped, while the
2977 // .dynsym section which should always be always be there. To support the
2978 // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo
2979 // section, nomatter if .symtab was already parsed or not. This is because
2980 // minidebuginfo normally removes the .symtab symbols which have their
2981 // matching .dynsym counterparts.
2982 if (!symtab ||
2983 GetSectionList()->FindSectionByName(section_dstr: ConstString(".gnu_debugdata"))) {
2984 Section *dynsym =
2985 section_list->FindSectionByType(sect_type: eSectionTypeELFDynamicSymbols, check_children: true)
2986 .get();
2987 if (dynsym) {
2988 auto [num_symbols, address_class_map] =
2989 ParseSymbolTable(symbol_table: &lldb_symtab, start_id: symbol_id, symtab: dynsym);
2990 symbol_id += num_symbols;
2991 m_address_class_map.merge(source&: address_class_map);
2992 } else {
2993 // Try and read the dynamic symbol table from the .dynamic section.
2994 uint32_t dynamic_num_symbols = 0;
2995 std::optional<DataExtractor> symtab_data =
2996 GetDynsymDataFromDynamic(num_symbols&: dynamic_num_symbols);
2997 std::optional<DataExtractor> strtab_data = GetDynstrData();
2998 if (symtab_data && strtab_data) {
2999 auto [num_symbols_parsed, address_class_map] = ParseSymbols(
3000 symtab: &lldb_symtab, start_id: symbol_id, section_list, num_symbols: dynamic_num_symbols,
3001 symtab_data: symtab_data.value(), strtab_data: strtab_data.value());
3002 symbol_id += num_symbols_parsed;
3003 m_address_class_map.merge(source&: address_class_map);
3004 }
3005 }
3006 }
3007
3008 // DT_JMPREL
3009 // If present, this entry's d_ptr member holds the address of
3010 // relocation
3011 // entries associated solely with the procedure linkage table.
3012 // Separating
3013 // these relocation entries lets the dynamic linker ignore them during
3014 // process initialization, if lazy binding is enabled. If this entry is
3015 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
3016 // also be present.
3017 const ELFDynamic *symbol = FindDynamicSymbol(tag: DT_JMPREL);
3018 if (symbol) {
3019 // Synthesize trampoline symbols to help navigate the PLT.
3020 addr_t addr = symbol->d_ptr;
3021 Section *reloc_section =
3022 section_list->FindSectionContainingFileAddress(addr).get();
3023 if (reloc_section) {
3024 user_id_t reloc_id = reloc_section->GetID();
3025 const ELFSectionHeaderInfo *reloc_header =
3026 GetSectionHeaderByIndex(id: reloc_id);
3027 if (reloc_header)
3028 ParseTrampolineSymbols(symbol_table: &lldb_symtab, start_id: symbol_id, rel_hdr: reloc_header, rel_id: reloc_id);
3029 }
3030 }
3031
3032 if (DWARFCallFrameInfo *eh_frame =
3033 GetModule()->GetUnwindTable().GetEHFrameInfo()) {
3034 ParseUnwindSymbols(symbol_table: &lldb_symtab, eh_frame);
3035 }
3036
3037 // In the event that there's no symbol entry for the entry point we'll
3038 // artificially create one. We delegate to the symtab object the figuring
3039 // out of the proper size, this will usually make it span til the next
3040 // symbol it finds in the section. This means that if there are missing
3041 // symbols the entry point might span beyond its function definition.
3042 // We're fine with this as it doesn't make it worse than not having a
3043 // symbol entry at all.
3044 if (CalculateType() == eTypeExecutable) {
3045 ArchSpec arch = GetArchitecture();
3046 auto entry_point_addr = GetEntryPointAddress();
3047 bool is_valid_entry_point =
3048 entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset();
3049 addr_t entry_point_file_addr = entry_point_addr.GetFileAddress();
3050 if (is_valid_entry_point && !lldb_symtab.FindSymbolContainingFileAddress(
3051 file_addr: entry_point_file_addr)) {
3052 uint64_t symbol_id = lldb_symtab.GetNumSymbols();
3053 // Don't set the name for any synthetic symbols, the Symbol
3054 // object will generate one if needed when the name is accessed
3055 // via accessors.
3056 SectionSP section_sp = entry_point_addr.GetSection();
3057 Symbol symbol(
3058 /*symID=*/symbol_id,
3059 /*name=*/llvm::StringRef(), // Name will be auto generated.
3060 /*type=*/eSymbolTypeCode,
3061 /*external=*/true,
3062 /*is_debug=*/false,
3063 /*is_trampoline=*/false,
3064 /*is_artificial=*/true,
3065 /*section_sp=*/section_sp,
3066 /*offset=*/0,
3067 /*size=*/0, // FDE can span multiple symbols so don't use its size.
3068 /*size_is_valid=*/false,
3069 /*contains_linker_annotations=*/false,
3070 /*flags=*/0);
3071 // When the entry point is arm thumb we need to explicitly set its
3072 // class address to reflect that. This is important because expression
3073 // evaluation relies on correctly setting a breakpoint at this
3074 // address.
3075 if (arch.GetMachine() == llvm::Triple::arm &&
3076 (entry_point_file_addr & 1)) {
3077 symbol.GetAddressRef().SetOffset(entry_point_addr.GetOffset() ^ 1);
3078 m_address_class_map[entry_point_file_addr ^ 1] =
3079 AddressClass::eCodeAlternateISA;
3080 } else {
3081 m_address_class_map[entry_point_file_addr] = AddressClass::eCode;
3082 }
3083 lldb_symtab.AddSymbol(symbol);
3084 }
3085 }
3086}
3087
3088void ObjectFileELF::RelocateSection(lldb_private::Section *section)
3089{
3090 static const char *debug_prefix = ".debug";
3091
3092 // Set relocated bit so we stop getting called, regardless of whether we
3093 // actually relocate.
3094 section->SetIsRelocated(true);
3095
3096 // We only relocate in ELF relocatable files
3097 if (CalculateType() != eTypeObjectFile)
3098 return;
3099
3100 const char *section_name = section->GetName().GetCString();
3101 // Can't relocate that which can't be named
3102 if (section_name == nullptr)
3103 return;
3104
3105 // We don't relocate non-debug sections at the moment
3106 if (strncmp(s1: section_name, s2: debug_prefix, n: strlen(s: debug_prefix)))
3107 return;
3108
3109 // Relocation section names to look for
3110 std::string needle = std::string(".rel") + section_name;
3111 std::string needlea = std::string(".rela") + section_name;
3112
3113 for (SectionHeaderCollIter I = m_section_headers.begin();
3114 I != m_section_headers.end(); ++I) {
3115 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
3116 const char *hay_name = I->section_name.GetCString();
3117 if (hay_name == nullptr)
3118 continue;
3119 if (needle == hay_name || needlea == hay_name) {
3120 const ELFSectionHeader &reloc_header = *I;
3121 user_id_t reloc_id = SectionIndex(I);
3122 RelocateDebugSections(rel_hdr: &reloc_header, rel_id: reloc_id, thetab: GetSymtab());
3123 break;
3124 }
3125 }
3126 }
3127}
3128
3129void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
3130 DWARFCallFrameInfo *eh_frame) {
3131 SectionList *section_list = GetSectionList();
3132 if (!section_list)
3133 return;
3134
3135 // First we save the new symbols into a separate list and add them to the
3136 // symbol table after we collected all symbols we want to add. This is
3137 // neccessary because adding a new symbol invalidates the internal index of
3138 // the symtab what causing the next lookup to be slow because it have to
3139 // recalculate the index first.
3140 std::vector<Symbol> new_symbols;
3141
3142 size_t num_symbols = symbol_table->GetNumSymbols();
3143 uint64_t last_symbol_id =
3144 num_symbols ? symbol_table->SymbolAtIndex(idx: num_symbols - 1)->GetID() : 0;
3145 eh_frame->ForEachFDEEntries(callback: [&](lldb::addr_t file_addr, uint32_t size,
3146 dw_offset_t) {
3147 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
3148 if (symbol) {
3149 if (!symbol->GetByteSizeIsValid()) {
3150 symbol->SetByteSize(size);
3151 symbol->SetSizeIsSynthesized(true);
3152 }
3153 } else {
3154 SectionSP section_sp =
3155 section_list->FindSectionContainingFileAddress(addr: file_addr);
3156 if (section_sp) {
3157 addr_t offset = file_addr - section_sp->GetFileAddress();
3158 uint64_t symbol_id = ++last_symbol_id;
3159 // Don't set the name for any synthetic symbols, the Symbol
3160 // object will generate one if needed when the name is accessed
3161 // via accessors.
3162 Symbol eh_symbol(
3163 /*symID=*/symbol_id,
3164 /*name=*/llvm::StringRef(), // Name will be auto generated.
3165 /*type=*/eSymbolTypeCode,
3166 /*external=*/true,
3167 /*is_debug=*/false,
3168 /*is_trampoline=*/false,
3169 /*is_artificial=*/true,
3170 /*section_sp=*/section_sp,
3171 /*offset=*/offset,
3172 /*size=*/0, // FDE can span multiple symbols so don't use its size.
3173 /*size_is_valid=*/false,
3174 /*contains_linker_annotations=*/false,
3175 /*flags=*/0);
3176 new_symbols.push_back(x: eh_symbol);
3177 }
3178 }
3179 return true;
3180 });
3181
3182 for (const Symbol &s : new_symbols)
3183 symbol_table->AddSymbol(symbol: s);
3184}
3185
3186bool ObjectFileELF::IsStripped() {
3187 // TODO: determine this for ELF
3188 return false;
3189}
3190
3191//===----------------------------------------------------------------------===//
3192// Dump
3193//
3194// Dump the specifics of the runtime file container (such as any headers
3195// segments, sections, etc).
3196void ObjectFileELF::Dump(Stream *s) {
3197 ModuleSP module_sp(GetModule());
3198 if (!module_sp) {
3199 return;
3200 }
3201
3202 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
3203 s->Printf(format: "%p: ", static_cast<void *>(this));
3204 s->Indent();
3205 s->PutCString(cstr: "ObjectFileELF");
3206
3207 ArchSpec header_arch = GetArchitecture();
3208
3209 *s << ", file = '" << m_file
3210 << "', arch = " << header_arch.GetArchitectureName();
3211 if (m_memory_addr != LLDB_INVALID_ADDRESS)
3212 s->Printf(format: ", addr = %#16.16" PRIx64, m_memory_addr);
3213 s->EOL();
3214
3215 DumpELFHeader(s, header: m_header);
3216 s->EOL();
3217 DumpELFProgramHeaders(s);
3218 s->EOL();
3219 DumpELFSectionHeaders(s);
3220 s->EOL();
3221 SectionList *section_list = GetSectionList();
3222 if (section_list)
3223 section_list->Dump(s&: s->AsRawOstream(), indent: s->GetIndentLevel(), target: nullptr, show_header: true,
3224 UINT32_MAX);
3225 Symtab *symtab = GetSymtab();
3226 if (symtab)
3227 symtab->Dump(s, target: nullptr, sort_type: eSortOrderNone);
3228 s->EOL();
3229 DumpDependentModules(s);
3230 s->EOL();
3231 DumpELFDynamic(s);
3232 s->EOL();
3233 Address image_info_addr = GetImageInfoAddress(target: nullptr);
3234 if (image_info_addr.IsValid())
3235 s->Printf(format: "image_info_address = %#16.16" PRIx64 "\n",
3236 image_info_addr.GetFileAddress());
3237}
3238
3239// DumpELFHeader
3240//
3241// Dump the ELF header to the specified output stream
3242void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
3243 s->PutCString(cstr: "ELF Header\n");
3244 s->Printf(format: "e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
3245 s->Printf(format: "e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
3246 header.e_ident[EI_MAG1]);
3247 s->Printf(format: "e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
3248 header.e_ident[EI_MAG2]);
3249 s->Printf(format: "e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
3250 header.e_ident[EI_MAG3]);
3251
3252 s->Printf(format: "e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
3253 s->Printf(format: "e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]);
3254 DumpELFHeader_e_ident_EI_DATA(s, ei_data: header.e_ident[EI_DATA]);
3255 s->Printf(format: "\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
3256 s->Printf(format: "e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
3257
3258 s->Printf(format: "e_type = 0x%4.4x ", header.e_type);
3259 DumpELFHeader_e_type(s, e_type: header.e_type);
3260 s->Printf(format: "\ne_machine = 0x%4.4x\n", header.e_machine);
3261 s->Printf(format: "e_version = 0x%8.8x\n", header.e_version);
3262 s->Printf(format: "e_entry = 0x%8.8" PRIx64 "\n", header.e_entry);
3263 s->Printf(format: "e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff);
3264 s->Printf(format: "e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff);
3265 s->Printf(format: "e_flags = 0x%8.8x\n", header.e_flags);
3266 s->Printf(format: "e_ehsize = 0x%4.4x\n", header.e_ehsize);
3267 s->Printf(format: "e_phentsize = 0x%4.4x\n", header.e_phentsize);
3268 s->Printf(format: "e_phnum = 0x%8.8x\n", header.e_phnum);
3269 s->Printf(format: "e_shentsize = 0x%4.4x\n", header.e_shentsize);
3270 s->Printf(format: "e_shnum = 0x%8.8x\n", header.e_shnum);
3271 s->Printf(format: "e_shstrndx = 0x%8.8x\n", header.e_shstrndx);
3272}
3273
3274// DumpELFHeader_e_type
3275//
3276// Dump an token value for the ELF header member e_type
3277void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
3278 switch (e_type) {
3279 case ET_NONE:
3280 *s << "ET_NONE";
3281 break;
3282 case ET_REL:
3283 *s << "ET_REL";
3284 break;
3285 case ET_EXEC:
3286 *s << "ET_EXEC";
3287 break;
3288 case ET_DYN:
3289 *s << "ET_DYN";
3290 break;
3291 case ET_CORE:
3292 *s << "ET_CORE";
3293 break;
3294 default:
3295 break;
3296 }
3297}
3298
3299// DumpELFHeader_e_ident_EI_DATA
3300//
3301// Dump an token value for the ELF header member e_ident[EI_DATA]
3302void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
3303 unsigned char ei_data) {
3304 switch (ei_data) {
3305 case ELFDATANONE:
3306 *s << "ELFDATANONE";
3307 break;
3308 case ELFDATA2LSB:
3309 *s << "ELFDATA2LSB - Little Endian";
3310 break;
3311 case ELFDATA2MSB:
3312 *s << "ELFDATA2MSB - Big Endian";
3313 break;
3314 default:
3315 break;
3316 }
3317}
3318
3319// DumpELFProgramHeader
3320//
3321// Dump a single ELF program header to the specified output stream
3322void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3323 const ELFProgramHeader &ph) {
3324 DumpELFProgramHeader_p_type(s, p_type: ph.p_type);
3325 s->Printf(format: " %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3326 ph.p_vaddr, ph.p_paddr);
3327 s->Printf(format: " %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3328 ph.p_flags);
3329
3330 DumpELFProgramHeader_p_flags(s, p_flags: ph.p_flags);
3331 s->Printf(format: ") %8.8" PRIx64, ph.p_align);
3332}
3333
3334// DumpELFProgramHeader_p_type
3335//
3336// Dump an token value for the ELF program header member p_type which describes
3337// the type of the program header
3338void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3339 const int kStrWidth = 15;
3340 switch (p_type) {
3341 CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3342 CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3343 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3344 CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3345 CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3346 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3347 CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3348 CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3349 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3350 default:
3351 s->Printf(format: "0x%8.8x%*s", p_type, kStrWidth - 10, "");
3352 break;
3353 }
3354}
3355
3356// DumpELFProgramHeader_p_flags
3357//
3358// Dump an token value for the ELF program header member p_flags
3359void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3360 *s << ((p_flags & PF_X) ? "PF_X" : " ")
3361 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3362 << ((p_flags & PF_W) ? "PF_W" : " ")
3363 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3364 << ((p_flags & PF_R) ? "PF_R" : " ");
3365}
3366
3367// DumpELFProgramHeaders
3368//
3369// Dump all of the ELF program header to the specified output stream
3370void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3371 if (!ParseProgramHeaders())
3372 return;
3373
3374 s->PutCString(cstr: "Program Headers\n");
3375 s->PutCString(cstr: "IDX p_type p_offset p_vaddr p_paddr "
3376 "p_filesz p_memsz p_flags p_align\n");
3377 s->PutCString(cstr: "==== --------------- -------- -------- -------- "
3378 "-------- -------- ------------------------- --------\n");
3379
3380 for (const auto &H : llvm::enumerate(First&: m_program_headers)) {
3381 s->Format(format: "[{0,2}] ", args: H.index());
3382 ObjectFileELF::DumpELFProgramHeader(s, ph: H.value());
3383 s->EOL();
3384 }
3385}
3386
3387// DumpELFSectionHeader
3388//
3389// Dump a single ELF section header to the specified output stream
3390void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3391 const ELFSectionHeaderInfo &sh) {
3392 s->Printf(format: "%8.8x ", sh.sh_name);
3393 DumpELFSectionHeader_sh_type(s, sh_type: sh.sh_type);
3394 s->Printf(format: " %8.8" PRIx64 " (", sh.sh_flags);
3395 DumpELFSectionHeader_sh_flags(s, sh_flags: sh.sh_flags);
3396 s->Printf(format: ") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3397 sh.sh_offset, sh.sh_size);
3398 s->Printf(format: " %8.8x %8.8x", sh.sh_link, sh.sh_info);
3399 s->Printf(format: " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3400}
3401
3402// DumpELFSectionHeader_sh_type
3403//
3404// Dump an token value for the ELF section header member sh_type which
3405// describes the type of the section
3406void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3407 const int kStrWidth = 12;
3408 switch (sh_type) {
3409 CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3410 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3411 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3412 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3413 CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3414 CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3415 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3416 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3417 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3418 CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3419 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3420 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3421 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3422 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3423 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3424 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3425 default:
3426 s->Printf(format: "0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3427 break;
3428 }
3429}
3430
3431// DumpELFSectionHeader_sh_flags
3432//
3433// Dump an token value for the ELF section header member sh_flags
3434void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3435 elf_xword sh_flags) {
3436 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ")
3437 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3438 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ")
3439 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3440 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " ");
3441}
3442
3443// DumpELFSectionHeaders
3444//
3445// Dump all of the ELF section header to the specified output stream
3446void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3447 if (!ParseSectionHeaders())
3448 return;
3449
3450 s->PutCString(cstr: "Section Headers\n");
3451 s->PutCString(cstr: "IDX name type flags "
3452 "addr offset size link info addralgn "
3453 "entsize Name\n");
3454 s->PutCString(cstr: "==== -------- ------------ -------------------------------- "
3455 "-------- -------- -------- -------- -------- -------- "
3456 "-------- ====================\n");
3457
3458 uint32_t idx = 0;
3459 for (SectionHeaderCollConstIter I = m_section_headers.begin();
3460 I != m_section_headers.end(); ++I, ++idx) {
3461 s->Printf(format: "[%2u] ", idx);
3462 ObjectFileELF::DumpELFSectionHeader(s, sh: *I);
3463 const char *section_name = I->section_name.AsCString(value_if_empty: "");
3464 if (section_name)
3465 *s << ' ' << section_name << "\n";
3466 }
3467}
3468
3469void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3470 size_t num_modules = ParseDependentModules();
3471
3472 if (num_modules > 0) {
3473 s->PutCString(cstr: "Dependent Modules:\n");
3474 for (unsigned i = 0; i < num_modules; ++i) {
3475 const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(idx: i);
3476 s->Printf(format: " %s\n", spec.GetFilename().GetCString());
3477 }
3478 }
3479}
3480
3481std::string static getDynamicTagAsString(uint16_t Arch, uint64_t Type) {
3482#define DYNAMIC_STRINGIFY_ENUM(tag, value) \
3483 case value: \
3484 return #tag;
3485
3486#define DYNAMIC_TAG(n, v)
3487 switch (Arch) {
3488 case llvm::ELF::EM_AARCH64:
3489 switch (Type) {
3490#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3491#include "llvm/BinaryFormat/DynamicTags.def"
3492#undef AARCH64_DYNAMIC_TAG
3493 }
3494 break;
3495
3496 case llvm::ELF::EM_HEXAGON:
3497 switch (Type) {
3498#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3499#include "llvm/BinaryFormat/DynamicTags.def"
3500#undef HEXAGON_DYNAMIC_TAG
3501 }
3502 break;
3503
3504 case llvm::ELF::EM_MIPS:
3505 switch (Type) {
3506#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3507#include "llvm/BinaryFormat/DynamicTags.def"
3508#undef MIPS_DYNAMIC_TAG
3509 }
3510 break;
3511
3512 case llvm::ELF::EM_PPC:
3513 switch (Type) {
3514#define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3515#include "llvm/BinaryFormat/DynamicTags.def"
3516#undef PPC_DYNAMIC_TAG
3517 }
3518 break;
3519
3520 case llvm::ELF::EM_PPC64:
3521 switch (Type) {
3522#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3523#include "llvm/BinaryFormat/DynamicTags.def"
3524#undef PPC64_DYNAMIC_TAG
3525 }
3526 break;
3527
3528 case llvm::ELF::EM_RISCV:
3529 switch (Type) {
3530#define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3531#include "llvm/BinaryFormat/DynamicTags.def"
3532#undef RISCV_DYNAMIC_TAG
3533 }
3534 break;
3535 }
3536#undef DYNAMIC_TAG
3537 switch (Type) {
3538// Now handle all dynamic tags except the architecture specific ones
3539#define AARCH64_DYNAMIC_TAG(name, value)
3540#define MIPS_DYNAMIC_TAG(name, value)
3541#define HEXAGON_DYNAMIC_TAG(name, value)
3542#define PPC_DYNAMIC_TAG(name, value)
3543#define PPC64_DYNAMIC_TAG(name, value)
3544#define RISCV_DYNAMIC_TAG(name, value)
3545// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
3546#define DYNAMIC_TAG_MARKER(name, value)
3547#define DYNAMIC_TAG(name, value) \
3548 case value: \
3549 return #name;
3550#include "llvm/BinaryFormat/DynamicTags.def"
3551#undef DYNAMIC_TAG
3552#undef AARCH64_DYNAMIC_TAG
3553#undef MIPS_DYNAMIC_TAG
3554#undef HEXAGON_DYNAMIC_TAG
3555#undef PPC_DYNAMIC_TAG
3556#undef PPC64_DYNAMIC_TAG
3557#undef RISCV_DYNAMIC_TAG
3558#undef DYNAMIC_TAG_MARKER
3559#undef DYNAMIC_STRINGIFY_ENUM
3560 default:
3561 return "<unknown:>0x" + llvm::utohexstr(X: Type, LowerCase: true);
3562 }
3563}
3564
3565void ObjectFileELF::DumpELFDynamic(lldb_private::Stream *s) {
3566 ParseDynamicSymbols();
3567 if (m_dynamic_symbols.empty())
3568 return;
3569
3570 s->PutCString(cstr: ".dynamic:\n");
3571 s->PutCString(cstr: "IDX d_tag d_val/d_ptr\n");
3572 s->PutCString(cstr: "==== ---------------- ------------------\n");
3573 uint32_t idx = 0;
3574 for (const auto &entry : m_dynamic_symbols) {
3575 s->Printf(format: "[%2u] ", idx++);
3576 s->Printf(
3577 format: "%-16s 0x%16.16" PRIx64,
3578 getDynamicTagAsString(Arch: m_header.e_machine, Type: entry.symbol.d_tag).c_str(),
3579 entry.symbol.d_ptr);
3580 if (!entry.name.empty())
3581 s->Printf(format: " \"%s\"", entry.name.c_str());
3582 s->EOL();
3583 }
3584}
3585
3586ArchSpec ObjectFileELF::GetArchitecture() {
3587 if (!ParseHeader())
3588 return ArchSpec();
3589
3590 if (m_section_headers.empty()) {
3591 // Allow elf notes to be parsed which may affect the detected architecture.
3592 ParseSectionHeaders();
3593 }
3594
3595 if (CalculateType() == eTypeCoreFile &&
3596 !m_arch_spec.TripleOSWasSpecified()) {
3597 // Core files don't have section headers yet they have PT_NOTE program
3598 // headers that might shed more light on the architecture
3599 for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3600 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3601 continue;
3602 DataExtractor data;
3603 if (data.SetData(data: m_data, offset: H.p_offset, length: H.p_filesz) == H.p_filesz) {
3604 UUID uuid;
3605 RefineModuleDetailsFromNote(data, arch_spec&: m_arch_spec, uuid);
3606 }
3607 }
3608 }
3609 return m_arch_spec;
3610}
3611
3612ObjectFile::Type ObjectFileELF::CalculateType() {
3613 switch (m_header.e_type) {
3614 case llvm::ELF::ET_NONE:
3615 // 0 - No file type
3616 return eTypeUnknown;
3617
3618 case llvm::ELF::ET_REL:
3619 // 1 - Relocatable file
3620 return eTypeObjectFile;
3621
3622 case llvm::ELF::ET_EXEC:
3623 // 2 - Executable file
3624 return eTypeExecutable;
3625
3626 case llvm::ELF::ET_DYN:
3627 // 3 - Shared object file
3628 return eTypeSharedLibrary;
3629
3630 case ET_CORE:
3631 // 4 - Core file
3632 return eTypeCoreFile;
3633
3634 default:
3635 break;
3636 }
3637 return eTypeUnknown;
3638}
3639
3640ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3641 switch (m_header.e_type) {
3642 case llvm::ELF::ET_NONE:
3643 // 0 - No file type
3644 return eStrataUnknown;
3645
3646 case llvm::ELF::ET_REL:
3647 // 1 - Relocatable file
3648 return eStrataUnknown;
3649
3650 case llvm::ELF::ET_EXEC:
3651 // 2 - Executable file
3652 {
3653 SectionList *section_list = GetSectionList();
3654 if (section_list) {
3655 static ConstString loader_section_name(".interp");
3656 SectionSP loader_section =
3657 section_list->FindSectionByName(section_dstr: loader_section_name);
3658 if (loader_section) {
3659 char buffer[256];
3660 size_t read_size =
3661 ReadSectionData(section: loader_section.get(), section_offset: 0, dst: buffer, dst_len: sizeof(buffer));
3662
3663 // We compare the content of .interp section
3664 // It will contains \0 when counting read_size, so the size needs to
3665 // decrease by one
3666 llvm::StringRef loader_name(buffer, read_size - 1);
3667 llvm::StringRef freebsd_kernel_loader_name("/red/herring");
3668 if (loader_name == freebsd_kernel_loader_name)
3669 return eStrataKernel;
3670 }
3671 }
3672 return eStrataUser;
3673 }
3674
3675 case llvm::ELF::ET_DYN:
3676 // 3 - Shared object file
3677 // TODO: is there any way to detect that an shared library is a kernel
3678 // related executable by inspecting the program headers, section headers,
3679 // symbols, or any other flag bits???
3680 return eStrataUnknown;
3681
3682 case ET_CORE:
3683 // 4 - Core file
3684 // TODO: is there any way to detect that an core file is a kernel
3685 // related executable by inspecting the program headers, section headers,
3686 // symbols, or any other flag bits???
3687 return eStrataUnknown;
3688
3689 default:
3690 break;
3691 }
3692 return eStrataUnknown;
3693}
3694
3695size_t ObjectFileELF::ReadSectionData(Section *section,
3696 lldb::offset_t section_offset, void *dst,
3697 size_t dst_len) {
3698 // If some other objectfile owns this data, pass this to them.
3699 if (section->GetObjectFile() != this)
3700 return section->GetObjectFile()->ReadSectionData(section, section_offset,
3701 dst, dst_len);
3702
3703 if (!section->Test(bit: SHF_COMPRESSED))
3704 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3705
3706 // For compressed sections we need to read to full data to be able to
3707 // decompress.
3708 DataExtractor data;
3709 ReadSectionData(section, section_data&: data);
3710 return data.CopyData(offset: section_offset, length: dst_len, dst);
3711}
3712
3713size_t ObjectFileELF::ReadSectionData(Section *section,
3714 DataExtractor &section_data) {
3715 // If some other objectfile owns this data, pass this to them.
3716 if (section->GetObjectFile() != this)
3717 return section->GetObjectFile()->ReadSectionData(section, section_data);
3718
3719 size_t result = ObjectFile::ReadSectionData(section, section_data);
3720 if (result == 0 || !(section->Get() & llvm::ELF::SHF_COMPRESSED))
3721 return result;
3722
3723 auto Decompressor = llvm::object::Decompressor::create(
3724 Name: section->GetName().GetStringRef(),
3725 Data: {reinterpret_cast<const char *>(section_data.GetDataStart()),
3726 size_t(section_data.GetByteSize())},
3727 IsLE: GetByteOrder() == eByteOrderLittle, Is64Bit: GetAddressByteSize() == 8);
3728 if (!Decompressor) {
3729 GetModule()->ReportWarning(
3730 format: "Unable to initialize decompressor for section '{0}': {1}",
3731 args: section->GetName().GetCString(),
3732 args: llvm::toString(E: Decompressor.takeError()).c_str());
3733 section_data.Clear();
3734 return 0;
3735 }
3736
3737 auto buffer_sp =
3738 std::make_shared<DataBufferHeap>(args: Decompressor->getDecompressedSize(), args: 0);
3739 if (auto error = Decompressor->decompress(
3740 Output: {buffer_sp->GetBytes(), size_t(buffer_sp->GetByteSize())})) {
3741 GetModule()->ReportWarning(format: "Decompression of section '{0}' failed: {1}",
3742 args: section->GetName().GetCString(),
3743 args: llvm::toString(E: std::move(error)).c_str());
3744 section_data.Clear();
3745 return 0;
3746 }
3747
3748 section_data.SetData(data_sp: buffer_sp);
3749 return buffer_sp->GetByteSize();
3750}
3751
3752llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3753 ParseProgramHeaders();
3754 return m_program_headers;
3755}
3756
3757DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3758 // Try and read the program header from our cached m_data which can come from
3759 // the file on disk being mmap'ed or from the initial part of the ELF file we
3760 // read from memory and cached.
3761 DataExtractor data = DataExtractor(m_data, H.p_offset, H.p_filesz);
3762 if (data.GetByteSize() == H.p_filesz)
3763 return data;
3764 if (IsInMemory()) {
3765 // We have a ELF file in process memory, read the program header data from
3766 // the process.
3767 if (ProcessSP process_sp = m_process_wp.lock()) {
3768 const lldb::offset_t base_file_addr = GetBaseAddress().GetFileAddress();
3769 const addr_t load_bias = m_memory_addr - base_file_addr;
3770 const addr_t data_addr = H.p_vaddr + load_bias;
3771 if (DataBufferSP data_sp = ReadMemory(process_sp, addr: data_addr, byte_size: H.p_memsz))
3772 return DataExtractor(data_sp, GetByteOrder(), GetAddressByteSize());
3773 }
3774 }
3775 return DataExtractor();
3776}
3777
3778bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3779 for (const ELFProgramHeader &H : ProgramHeaders()) {
3780 if (H.p_paddr != 0)
3781 return true;
3782 }
3783 return false;
3784}
3785
3786std::vector<ObjectFile::LoadableData>
3787ObjectFileELF::GetLoadableData(Target &target) {
3788 // Create a list of loadable data from loadable segments, using physical
3789 // addresses if they aren't all null
3790 std::vector<LoadableData> loadables;
3791 bool should_use_paddr = AnySegmentHasPhysicalAddress();
3792 for (const ELFProgramHeader &H : ProgramHeaders()) {
3793 LoadableData loadable;
3794 if (H.p_type != llvm::ELF::PT_LOAD)
3795 continue;
3796 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3797 if (loadable.Dest == LLDB_INVALID_ADDRESS)
3798 continue;
3799 if (H.p_filesz == 0)
3800 continue;
3801 auto segment_data = GetSegmentData(H);
3802 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3803 segment_data.GetByteSize());
3804 loadables.push_back(x: loadable);
3805 }
3806 return loadables;
3807}
3808
3809lldb::WritableDataBufferSP
3810ObjectFileELF::MapFileDataWritable(const FileSpec &file, uint64_t Size,
3811 uint64_t Offset) {
3812 return FileSystem::Instance().CreateWritableDataBuffer(path: file.GetPath(), size: Size,
3813 offset: Offset);
3814}
3815
3816std::optional<DataExtractor>
3817ObjectFileELF::ReadDataFromDynamic(const ELFDynamic *dyn, uint64_t length,
3818 uint64_t offset) {
3819 // ELFDynamic values contain a "d_ptr" member that will be a load address if
3820 // we have an ELF file read from memory, or it will be a file address if it
3821 // was read from a ELF file. This function will correctly fetch data pointed
3822 // to by the ELFDynamic::d_ptr, or return std::nullopt if the data isn't
3823 // available.
3824 const lldb::addr_t d_ptr_addr = dyn->d_ptr + offset;
3825 if (ProcessSP process_sp = m_process_wp.lock()) {
3826 if (DataBufferSP data_sp = ReadMemory(process_sp, addr: d_ptr_addr, byte_size: length))
3827 return DataExtractor(data_sp, GetByteOrder(), GetAddressByteSize());
3828 } else {
3829 // We have an ELF file with no section headers or we didn't find the
3830 // .dynamic section. Try and find the .dynstr section.
3831 Address addr;
3832 if (!addr.ResolveAddressUsingFileSections(addr: d_ptr_addr, sections: GetSectionList()))
3833 return std::nullopt;
3834 DataExtractor data;
3835 addr.GetSection()->GetSectionData(data);
3836 return DataExtractor(data, d_ptr_addr - addr.GetSection()->GetFileAddress(),
3837 length);
3838 }
3839 return std::nullopt;
3840}
3841
3842std::optional<DataExtractor> ObjectFileELF::GetDynstrData() {
3843 if (SectionList *section_list = GetSectionList()) {
3844 // Find the SHT_DYNAMIC section.
3845 if (Section *dynamic =
3846 section_list
3847 ->FindSectionByType(sect_type: eSectionTypeELFDynamicLinkInfo, check_children: true)
3848 .get()) {
3849 assert(dynamic->GetObjectFile() == this);
3850 if (const ELFSectionHeaderInfo *header =
3851 GetSectionHeaderByIndex(id: dynamic->GetID())) {
3852 // sh_link: section header index of string table used by entries in
3853 // the section.
3854 if (Section *dynstr =
3855 section_list->FindSectionByID(sect_id: header->sh_link).get()) {
3856 DataExtractor data;
3857 if (ReadSectionData(section: dynstr, section_data&: data))
3858 return data;
3859 }
3860 }
3861 }
3862 }
3863
3864 // Every ELF file which represents an executable or shared library has
3865 // mandatory .dynamic entries. Two of these values are DT_STRTAB and DT_STRSZ
3866 // and represent the dynamic symbol tables's string table. These are needed
3867 // by the dynamic loader and we can read them from a process' address space.
3868 //
3869 // When loading and ELF file from memory, only the program headers are
3870 // guaranteed end up being mapped into memory, and we can find these values in
3871 // the PT_DYNAMIC segment.
3872 const ELFDynamic *strtab = FindDynamicSymbol(tag: DT_STRTAB);
3873 const ELFDynamic *strsz = FindDynamicSymbol(tag: DT_STRSZ);
3874 if (strtab == nullptr || strsz == nullptr)
3875 return std::nullopt;
3876
3877 return ReadDataFromDynamic(dyn: strtab, length: strsz->d_val, /*offset=*/0);
3878}
3879
3880std::optional<lldb_private::DataExtractor> ObjectFileELF::GetDynamicData() {
3881 DataExtractor data;
3882 // The PT_DYNAMIC program header describes where the .dynamic section is and
3883 // doesn't require parsing section headers. The PT_DYNAMIC is required by
3884 // executables and shared libraries so it will always be available.
3885 for (const ELFProgramHeader &H : ProgramHeaders()) {
3886 if (H.p_type == llvm::ELF::PT_DYNAMIC) {
3887 data = GetSegmentData(H);
3888 if (data.GetByteSize() > 0) {
3889 m_dynamic_base_addr = H.p_vaddr;
3890 return data;
3891 }
3892 }
3893 }
3894 // Fall back to using section headers.
3895 if (SectionList *section_list = GetSectionList()) {
3896 // Find the SHT_DYNAMIC section.
3897 if (Section *dynamic =
3898 section_list
3899 ->FindSectionByType(sect_type: eSectionTypeELFDynamicLinkInfo, check_children: true)
3900 .get()) {
3901 assert(dynamic->GetObjectFile() == this);
3902 if (ReadSectionData(section: dynamic, section_data&: data)) {
3903 m_dynamic_base_addr = dynamic->GetFileAddress();
3904 return data;
3905 }
3906 }
3907 }
3908 return std::nullopt;
3909}
3910
3911std::optional<uint32_t> ObjectFileELF::GetNumSymbolsFromDynamicHash() {
3912 const ELFDynamic *hash = FindDynamicSymbol(tag: DT_HASH);
3913 if (hash == nullptr)
3914 return std::nullopt;
3915
3916 // The DT_HASH header looks like this:
3917 struct DtHashHeader {
3918 uint32_t nbucket;
3919 uint32_t nchain;
3920 };
3921 if (auto data = ReadDataFromDynamic(dyn: hash, length: 8)) {
3922 // We don't need the number of buckets value "nbucket", we just need the
3923 // "nchain" value which contains the number of symbols.
3924 offset_t offset = offsetof(DtHashHeader, nchain);
3925 return data->GetU32(offset_ptr: &offset);
3926 }
3927
3928 return std::nullopt;
3929}
3930
3931std::optional<uint32_t> ObjectFileELF::GetNumSymbolsFromDynamicGnuHash() {
3932 const ELFDynamic *gnu_hash = FindDynamicSymbol(tag: DT_GNU_HASH);
3933 if (gnu_hash == nullptr)
3934 return std::nullopt;
3935
3936 // Create a DT_GNU_HASH header
3937 // https://flapenguin.me/elf-dt-gnu-hash
3938 struct DtGnuHashHeader {
3939 uint32_t nbuckets = 0;
3940 uint32_t symoffset = 0;
3941 uint32_t bloom_size = 0;
3942 uint32_t bloom_shift = 0;
3943 };
3944 uint32_t num_symbols = 0;
3945 // Read enogh data for the DT_GNU_HASH header so we can extract the values.
3946 if (auto data = ReadDataFromDynamic(dyn: gnu_hash, length: sizeof(DtGnuHashHeader))) {
3947 offset_t offset = 0;
3948 DtGnuHashHeader header;
3949 header.nbuckets = data->GetU32(offset_ptr: &offset);
3950 header.symoffset = data->GetU32(offset_ptr: &offset);
3951 header.bloom_size = data->GetU32(offset_ptr: &offset);
3952 header.bloom_shift = data->GetU32(offset_ptr: &offset);
3953 const size_t addr_size = GetAddressByteSize();
3954 const addr_t buckets_offset =
3955 sizeof(DtGnuHashHeader) + addr_size * header.bloom_size;
3956 std::vector<uint32_t> buckets;
3957 if (auto bucket_data = ReadDataFromDynamic(dyn: gnu_hash, length: header.nbuckets * 4,
3958 offset: buckets_offset)) {
3959 offset = 0;
3960 for (uint32_t i = 0; i < header.nbuckets; ++i)
3961 buckets.push_back(x: bucket_data->GetU32(offset_ptr: &offset));
3962 // Locate the chain that handles the largest index bucket.
3963 uint32_t last_symbol = 0;
3964 for (uint32_t bucket_value : buckets)
3965 last_symbol = std::max(a: bucket_value, b: last_symbol);
3966 if (last_symbol < header.symoffset) {
3967 num_symbols = header.symoffset;
3968 } else {
3969 // Walk the bucket's chain to add the chain length to the total.
3970 const addr_t chains_base_offset = buckets_offset + header.nbuckets * 4;
3971 for (;;) {
3972 if (auto chain_entry_data = ReadDataFromDynamic(
3973 dyn: gnu_hash, length: 4,
3974 offset: chains_base_offset + (last_symbol - header.symoffset) * 4)) {
3975 offset = 0;
3976 uint32_t chain_entry = chain_entry_data->GetU32(offset_ptr: &offset);
3977 ++last_symbol;
3978 // If the low bit is set, this entry is the end of the chain.
3979 if (chain_entry & 1)
3980 break;
3981 } else {
3982 break;
3983 }
3984 }
3985 num_symbols = last_symbol;
3986 }
3987 }
3988 }
3989 if (num_symbols > 0)
3990 return num_symbols;
3991
3992 return std::nullopt;
3993}
3994
3995std::optional<DataExtractor>
3996ObjectFileELF::GetDynsymDataFromDynamic(uint32_t &num_symbols) {
3997 // Every ELF file which represents an executable or shared library has
3998 // mandatory .dynamic entries. The DT_SYMTAB value contains a pointer to the
3999 // symbol table, and DT_SYMENT contains the size of a symbol table entry.
4000 // We then can use either the DT_HASH or DT_GNU_HASH to find the number of
4001 // symbols in the symbol table as the symbol count is not stored in the
4002 // .dynamic section as a key/value pair.
4003 //
4004 // When loading and ELF file from memory, only the program headers end up
4005 // being mapped into memory, and we can find these values in the PT_DYNAMIC
4006 // segment.
4007 num_symbols = 0;
4008 // Get the process in case this is an in memory ELF file.
4009 ProcessSP process_sp(m_process_wp.lock());
4010 const ELFDynamic *symtab = FindDynamicSymbol(tag: DT_SYMTAB);
4011 const ELFDynamic *syment = FindDynamicSymbol(tag: DT_SYMENT);
4012 // DT_SYMTAB and DT_SYMENT are mandatory.
4013 if (symtab == nullptr || syment == nullptr)
4014 return std::nullopt;
4015
4016 if (std::optional<uint32_t> syms = GetNumSymbolsFromDynamicHash())
4017 num_symbols = *syms;
4018 else if (std::optional<uint32_t> syms = GetNumSymbolsFromDynamicGnuHash())
4019 num_symbols = *syms;
4020 else
4021 return std::nullopt;
4022 if (num_symbols == 0)
4023 return std::nullopt;
4024 return ReadDataFromDynamic(dyn: symtab, length: syment->d_val * num_symbols);
4025}
4026

source code of lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp