1//===-- ObjectFileELF.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ObjectFileELF.h"
10
11#include <algorithm>
12#include <cassert>
13#include <optional>
14#include <unordered_map>
15
16#include "lldb/Core/Module.h"
17#include "lldb/Core/ModuleSpec.h"
18#include "lldb/Core/PluginManager.h"
19#include "lldb/Core/Progress.h"
20#include "lldb/Core/Section.h"
21#include "lldb/Host/FileSystem.h"
22#include "lldb/Host/LZMA.h"
23#include "lldb/Symbol/DWARFCallFrameInfo.h"
24#include "lldb/Symbol/SymbolContext.h"
25#include "lldb/Target/SectionLoadList.h"
26#include "lldb/Target/Target.h"
27#include "lldb/Utility/ArchSpec.h"
28#include "lldb/Utility/DataBufferHeap.h"
29#include "lldb/Utility/FileSpecList.h"
30#include "lldb/Utility/LLDBLog.h"
31#include "lldb/Utility/Log.h"
32#include "lldb/Utility/RangeMap.h"
33#include "lldb/Utility/Status.h"
34#include "lldb/Utility/Stream.h"
35#include "lldb/Utility/Timer.h"
36#include "llvm/ADT/IntervalMap.h"
37#include "llvm/ADT/PointerUnion.h"
38#include "llvm/ADT/StringRef.h"
39#include "llvm/BinaryFormat/ELF.h"
40#include "llvm/Object/Decompressor.h"
41#include "llvm/Support/ARMBuildAttributes.h"
42#include "llvm/Support/CRC.h"
43#include "llvm/Support/FormatVariadic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/MemoryBuffer.h"
46#include "llvm/Support/MipsABIFlags.h"
47
48#define CASE_AND_STREAM(s, def, width) \
49 case def: \
50 s->Printf("%-*s", width, #def); \
51 break;
52
53using namespace lldb;
54using namespace lldb_private;
55using namespace elf;
56using namespace llvm::ELF;
57
58LLDB_PLUGIN_DEFINE(ObjectFileELF)
59
60// ELF note owner definitions
61static const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
62static const char *const LLDB_NT_OWNER_GNU = "GNU";
63static const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
64static const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE";
65static const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
66static const char *const LLDB_NT_OWNER_ANDROID = "Android";
67static const char *const LLDB_NT_OWNER_CORE = "CORE";
68static const char *const LLDB_NT_OWNER_LINUX = "LINUX";
69
70// ELF note type definitions
71static const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
72static const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
73
74static const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
75static const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
76
77static const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
78
79static const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1;
80static const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4;
81static const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7;
82static const elf_word LLDB_NT_NETBSD_PROCINFO = 1;
83
84// GNU ABI note OS constants
85static const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
86static const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
87static const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
88
89namespace {
90
91//===----------------------------------------------------------------------===//
92/// \class ELFRelocation
93/// Generic wrapper for ELFRel and ELFRela.
94///
95/// This helper class allows us to parse both ELFRel and ELFRela relocation
96/// entries in a generic manner.
97class ELFRelocation {
98public:
99 /// Constructs an ELFRelocation entry with a personality as given by @p
100 /// type.
101 ///
102 /// \param type Either DT_REL or DT_RELA. Any other value is invalid.
103 ELFRelocation(unsigned type);
104
105 ~ELFRelocation();
106
107 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
108
109 static unsigned RelocType32(const ELFRelocation &rel);
110
111 static unsigned RelocType64(const ELFRelocation &rel);
112
113 static unsigned RelocSymbol32(const ELFRelocation &rel);
114
115 static unsigned RelocSymbol64(const ELFRelocation &rel);
116
117 static elf_addr RelocOffset32(const ELFRelocation &rel);
118
119 static elf_addr RelocOffset64(const ELFRelocation &rel);
120
121 static elf_sxword RelocAddend32(const ELFRelocation &rel);
122
123 static elf_sxword RelocAddend64(const ELFRelocation &rel);
124
125 bool IsRela() { return (reloc.is<ELFRela *>()); }
126
127private:
128 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
129
130 RelocUnion reloc;
131};
132} // end anonymous namespace
133
134ELFRelocation::ELFRelocation(unsigned type) {
135 if (type == DT_REL || type == SHT_REL)
136 reloc = new ELFRel();
137 else if (type == DT_RELA || type == SHT_RELA)
138 reloc = new ELFRela();
139 else {
140 assert(false && "unexpected relocation type");
141 reloc = static_cast<ELFRel *>(nullptr);
142 }
143}
144
145ELFRelocation::~ELFRelocation() {
146 if (reloc.is<ELFRel *>())
147 delete reloc.get<ELFRel *>();
148 else
149 delete reloc.get<ELFRela *>();
150}
151
152bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
153 lldb::offset_t *offset) {
154 if (reloc.is<ELFRel *>())
155 return reloc.get<ELFRel *>()->Parse(data, offset);
156 else
157 return reloc.get<ELFRela *>()->Parse(data, offset);
158}
159
160unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
161 if (rel.reloc.is<ELFRel *>())
162 return ELFRel::RelocType32(rel: *rel.reloc.get<ELFRel *>());
163 else
164 return ELFRela::RelocType32(rela: *rel.reloc.get<ELFRela *>());
165}
166
167unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
168 if (rel.reloc.is<ELFRel *>())
169 return ELFRel::RelocType64(rel: *rel.reloc.get<ELFRel *>());
170 else
171 return ELFRela::RelocType64(rela: *rel.reloc.get<ELFRela *>());
172}
173
174unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
175 if (rel.reloc.is<ELFRel *>())
176 return ELFRel::RelocSymbol32(rel: *rel.reloc.get<ELFRel *>());
177 else
178 return ELFRela::RelocSymbol32(rela: *rel.reloc.get<ELFRela *>());
179}
180
181unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
182 if (rel.reloc.is<ELFRel *>())
183 return ELFRel::RelocSymbol64(rel: *rel.reloc.get<ELFRel *>());
184 else
185 return ELFRela::RelocSymbol64(rela: *rel.reloc.get<ELFRela *>());
186}
187
188elf_addr ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
189 if (rel.reloc.is<ELFRel *>())
190 return rel.reloc.get<ELFRel *>()->r_offset;
191 else
192 return rel.reloc.get<ELFRela *>()->r_offset;
193}
194
195elf_addr ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
196 if (rel.reloc.is<ELFRel *>())
197 return rel.reloc.get<ELFRel *>()->r_offset;
198 else
199 return rel.reloc.get<ELFRela *>()->r_offset;
200}
201
202elf_sxword ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
203 if (rel.reloc.is<ELFRel *>())
204 return 0;
205 else
206 return rel.reloc.get<ELFRela *>()->r_addend;
207}
208
209elf_sxword ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
210 if (rel.reloc.is<ELFRel *>())
211 return 0;
212 else
213 return rel.reloc.get<ELFRela *>()->r_addend;
214}
215
216static user_id_t SegmentID(size_t PHdrIndex) {
217 return ~user_id_t(PHdrIndex);
218}
219
220bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
221 // Read all fields.
222 if (data.GetU32(offset_ptr: offset, dst: &n_namesz, count: 3) == nullptr)
223 return false;
224
225 // The name field is required to be nul-terminated, and n_namesz includes the
226 // terminating nul in observed implementations (contrary to the ELF-64 spec).
227 // A special case is needed for cores generated by some older Linux versions,
228 // which write a note named "CORE" without a nul terminator and n_namesz = 4.
229 if (n_namesz == 4) {
230 char buf[4];
231 if (data.ExtractBytes(offset: *offset, length: 4, dst_byte_order: data.GetByteOrder(), dst: buf) != 4)
232 return false;
233 if (strncmp(s1: buf, s2: "CORE", n: 4) == 0) {
234 n_name = "CORE";
235 *offset += 4;
236 return true;
237 }
238 }
239
240 const char *cstr = data.GetCStr(offset_ptr: offset, len: llvm::alignTo(Value: n_namesz, Align: 4));
241 if (cstr == nullptr) {
242 Log *log = GetLog(mask: LLDBLog::Symbols);
243 LLDB_LOGF(log, "Failed to parse note name lacking nul terminator");
244
245 return false;
246 }
247 n_name = cstr;
248 return true;
249}
250
251static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
252 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
253 uint32_t endian = header.e_ident[EI_DATA];
254 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
255 uint32_t fileclass = header.e_ident[EI_CLASS];
256
257 // If there aren't any elf flags available (e.g core elf file) then return
258 // default
259 // 32 or 64 bit arch (without any architecture revision) based on object file's class.
260 if (header.e_type == ET_CORE) {
261 switch (fileclass) {
262 case llvm::ELF::ELFCLASS32:
263 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
264 : ArchSpec::eMIPSSubType_mips32;
265 case llvm::ELF::ELFCLASS64:
266 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
267 : ArchSpec::eMIPSSubType_mips64;
268 default:
269 return arch_variant;
270 }
271 }
272
273 switch (mips_arch) {
274 case llvm::ELF::EF_MIPS_ARCH_1:
275 case llvm::ELF::EF_MIPS_ARCH_2:
276 case llvm::ELF::EF_MIPS_ARCH_32:
277 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
278 : ArchSpec::eMIPSSubType_mips32;
279 case llvm::ELF::EF_MIPS_ARCH_32R2:
280 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
281 : ArchSpec::eMIPSSubType_mips32r2;
282 case llvm::ELF::EF_MIPS_ARCH_32R6:
283 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
284 : ArchSpec::eMIPSSubType_mips32r6;
285 case llvm::ELF::EF_MIPS_ARCH_3:
286 case llvm::ELF::EF_MIPS_ARCH_4:
287 case llvm::ELF::EF_MIPS_ARCH_5:
288 case llvm::ELF::EF_MIPS_ARCH_64:
289 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
290 : ArchSpec::eMIPSSubType_mips64;
291 case llvm::ELF::EF_MIPS_ARCH_64R2:
292 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
293 : ArchSpec::eMIPSSubType_mips64r2;
294 case llvm::ELF::EF_MIPS_ARCH_64R6:
295 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
296 : ArchSpec::eMIPSSubType_mips64r6;
297 default:
298 break;
299 }
300
301 return arch_variant;
302}
303
304static uint32_t riscvVariantFromElfFlags(const elf::ELFHeader &header) {
305 uint32_t fileclass = header.e_ident[EI_CLASS];
306 switch (fileclass) {
307 case llvm::ELF::ELFCLASS32:
308 return ArchSpec::eRISCVSubType_riscv32;
309 case llvm::ELF::ELFCLASS64:
310 return ArchSpec::eRISCVSubType_riscv64;
311 default:
312 return ArchSpec::eRISCVSubType_unknown;
313 }
314}
315
316static uint32_t ppc64VariantFromElfFlags(const elf::ELFHeader &header) {
317 uint32_t endian = header.e_ident[EI_DATA];
318 if (endian == ELFDATA2LSB)
319 return ArchSpec::eCore_ppc64le_generic;
320 else
321 return ArchSpec::eCore_ppc64_generic;
322}
323
324static uint32_t loongarchVariantFromElfFlags(const elf::ELFHeader &header) {
325 uint32_t fileclass = header.e_ident[EI_CLASS];
326 switch (fileclass) {
327 case llvm::ELF::ELFCLASS32:
328 return ArchSpec::eLoongArchSubType_loongarch32;
329 case llvm::ELF::ELFCLASS64:
330 return ArchSpec::eLoongArchSubType_loongarch64;
331 default:
332 return ArchSpec::eLoongArchSubType_unknown;
333 }
334}
335
336static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
337 if (header.e_machine == llvm::ELF::EM_MIPS)
338 return mipsVariantFromElfFlags(header);
339 else if (header.e_machine == llvm::ELF::EM_PPC64)
340 return ppc64VariantFromElfFlags(header);
341 else if (header.e_machine == llvm::ELF::EM_RISCV)
342 return riscvVariantFromElfFlags(header);
343 else if (header.e_machine == llvm::ELF::EM_LOONGARCH)
344 return loongarchVariantFromElfFlags(header);
345
346 return LLDB_INVALID_CPUTYPE;
347}
348
349char ObjectFileELF::ID;
350
351// Arbitrary constant used as UUID prefix for core files.
352const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
353
354// Static methods.
355void ObjectFileELF::Initialize() {
356 PluginManager::RegisterPlugin(name: GetPluginNameStatic(),
357 description: GetPluginDescriptionStatic(), create_callback: CreateInstance,
358 create_memory_callback: CreateMemoryInstance, get_module_specifications: GetModuleSpecifications);
359}
360
361void ObjectFileELF::Terminate() {
362 PluginManager::UnregisterPlugin(create_callback: CreateInstance);
363}
364
365ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
366 DataBufferSP data_sp,
367 lldb::offset_t data_offset,
368 const lldb_private::FileSpec *file,
369 lldb::offset_t file_offset,
370 lldb::offset_t length) {
371 bool mapped_writable = false;
372 if (!data_sp) {
373 data_sp = MapFileDataWritable(file: *file, Size: length, Offset: file_offset);
374 if (!data_sp)
375 return nullptr;
376 data_offset = 0;
377 mapped_writable = true;
378 }
379
380 assert(data_sp);
381
382 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
383 return nullptr;
384
385 const uint8_t *magic = data_sp->GetBytes() + data_offset;
386 if (!ELFHeader::MagicBytesMatch(magic))
387 return nullptr;
388
389 // Update the data to contain the entire file if it doesn't already
390 if (data_sp->GetByteSize() < length) {
391 data_sp = MapFileDataWritable(file: *file, Size: length, Offset: file_offset);
392 if (!data_sp)
393 return nullptr;
394 data_offset = 0;
395 mapped_writable = true;
396 magic = data_sp->GetBytes();
397 }
398
399 // If we didn't map the data as writable take ownership of the buffer.
400 if (!mapped_writable) {
401 data_sp = std::make_shared<DataBufferHeap>(args: data_sp->GetBytes(),
402 args: data_sp->GetByteSize());
403 data_offset = 0;
404 magic = data_sp->GetBytes();
405 }
406
407 unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
408 if (address_size == 4 || address_size == 8) {
409 std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF(
410 module_sp, data_sp, data_offset, file, file_offset, length));
411 ArchSpec spec = objfile_up->GetArchitecture();
412 if (spec && objfile_up->SetModulesArchitecture(spec))
413 return objfile_up.release();
414 }
415
416 return nullptr;
417}
418
419ObjectFile *ObjectFileELF::CreateMemoryInstance(
420 const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
421 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
422 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
423 const uint8_t *magic = data_sp->GetBytes();
424 if (ELFHeader::MagicBytesMatch(magic)) {
425 unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
426 if (address_size == 4 || address_size == 8) {
427 std::unique_ptr<ObjectFileELF> objfile_up(
428 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
429 ArchSpec spec = objfile_up->GetArchitecture();
430 if (spec && objfile_up->SetModulesArchitecture(spec))
431 return objfile_up.release();
432 }
433 }
434 }
435 return nullptr;
436}
437
438bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
439 lldb::addr_t data_offset,
440 lldb::addr_t data_length) {
441 if (data_sp &&
442 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
443 const uint8_t *magic = data_sp->GetBytes() + data_offset;
444 return ELFHeader::MagicBytesMatch(magic);
445 }
446 return false;
447}
448
449static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) {
450 return llvm::crc32(CRC: init,
451 Data: llvm::ArrayRef(data.GetDataStart(), data.GetByteSize()));
452}
453
454uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
455 const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
456
457 uint32_t core_notes_crc = 0;
458
459 for (const ELFProgramHeader &H : program_headers) {
460 if (H.p_type == llvm::ELF::PT_NOTE) {
461 const elf_off ph_offset = H.p_offset;
462 const size_t ph_size = H.p_filesz;
463
464 DataExtractor segment_data;
465 if (segment_data.SetData(data: object_data, offset: ph_offset, length: ph_size) != ph_size) {
466 // The ELF program header contained incorrect data, probably corefile
467 // is incomplete or corrupted.
468 break;
469 }
470
471 core_notes_crc = calc_crc32(init: core_notes_crc, data: segment_data);
472 }
473 }
474
475 return core_notes_crc;
476}
477
478static const char *OSABIAsCString(unsigned char osabi_byte) {
479#define _MAKE_OSABI_CASE(x) \
480 case x: \
481 return #x
482 switch (osabi_byte) {
483 _MAKE_OSABI_CASE(ELFOSABI_NONE);
484 _MAKE_OSABI_CASE(ELFOSABI_HPUX);
485 _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
486 _MAKE_OSABI_CASE(ELFOSABI_GNU);
487 _MAKE_OSABI_CASE(ELFOSABI_HURD);
488 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
489 _MAKE_OSABI_CASE(ELFOSABI_AIX);
490 _MAKE_OSABI_CASE(ELFOSABI_IRIX);
491 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
492 _MAKE_OSABI_CASE(ELFOSABI_TRU64);
493 _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
494 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
495 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
496 _MAKE_OSABI_CASE(ELFOSABI_NSK);
497 _MAKE_OSABI_CASE(ELFOSABI_AROS);
498 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
499 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
500 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
501 _MAKE_OSABI_CASE(ELFOSABI_ARM);
502 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
503 default:
504 return "<unknown-osabi>";
505 }
506#undef _MAKE_OSABI_CASE
507}
508
509//
510// WARNING : This function is being deprecated
511// It's functionality has moved to ArchSpec::SetArchitecture This function is
512// only being kept to validate the move.
513//
514// TODO : Remove this function
515static bool GetOsFromOSABI(unsigned char osabi_byte,
516 llvm::Triple::OSType &ostype) {
517 switch (osabi_byte) {
518 case ELFOSABI_AIX:
519 ostype = llvm::Triple::OSType::AIX;
520 break;
521 case ELFOSABI_FREEBSD:
522 ostype = llvm::Triple::OSType::FreeBSD;
523 break;
524 case ELFOSABI_GNU:
525 ostype = llvm::Triple::OSType::Linux;
526 break;
527 case ELFOSABI_NETBSD:
528 ostype = llvm::Triple::OSType::NetBSD;
529 break;
530 case ELFOSABI_OPENBSD:
531 ostype = llvm::Triple::OSType::OpenBSD;
532 break;
533 case ELFOSABI_SOLARIS:
534 ostype = llvm::Triple::OSType::Solaris;
535 break;
536 default:
537 ostype = llvm::Triple::OSType::UnknownOS;
538 }
539 return ostype != llvm::Triple::OSType::UnknownOS;
540}
541
542size_t ObjectFileELF::GetModuleSpecifications(
543 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
544 lldb::offset_t data_offset, lldb::offset_t file_offset,
545 lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
546 Log *log = GetLog(mask: LLDBLog::Modules);
547
548 const size_t initial_count = specs.GetSize();
549
550 if (ObjectFileELF::MagicBytesMatch(data_sp, data_offset: 0, data_length: data_sp->GetByteSize())) {
551 DataExtractor data;
552 data.SetData(data_sp);
553 elf::ELFHeader header;
554 lldb::offset_t header_offset = data_offset;
555 if (header.Parse(data, offset: &header_offset)) {
556 if (data_sp) {
557 ModuleSpec spec(file);
558 // In Android API level 23 and above, bionic dynamic linker is able to
559 // load .so file directly from zip file. In that case, .so file is
560 // page aligned and uncompressed, and this module spec should retain the
561 // .so file offset and file size to pass through the information from
562 // lldb-server to LLDB. For normal file, file_offset should be 0,
563 // length should be the size of the file.
564 spec.SetObjectOffset(file_offset);
565 spec.SetObjectSize(length);
566
567 const uint32_t sub_type = subTypeFromElfHeader(header);
568 spec.GetArchitecture().SetArchitecture(
569 arch_type: eArchTypeELF, cpu: header.e_machine, sub: sub_type, os: header.e_ident[EI_OSABI]);
570
571 if (spec.GetArchitecture().IsValid()) {
572 llvm::Triple::OSType ostype;
573 llvm::Triple::VendorType vendor;
574 llvm::Triple::OSType spec_ostype =
575 spec.GetArchitecture().GetTriple().getOS();
576
577 LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s",
578 __FUNCTION__, file.GetPath().c_str(),
579 OSABIAsCString(header.e_ident[EI_OSABI]));
580
581 // SetArchitecture should have set the vendor to unknown
582 vendor = spec.GetArchitecture().GetTriple().getVendor();
583 assert(vendor == llvm::Triple::UnknownVendor);
584 UNUSED_IF_ASSERT_DISABLED(vendor);
585
586 //
587 // Validate it is ok to remove GetOsFromOSABI
588 GetOsFromOSABI(osabi_byte: header.e_ident[EI_OSABI], ostype);
589 assert(spec_ostype == ostype);
590 if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
591 LLDB_LOGF(log,
592 "ObjectFileELF::%s file '%s' set ELF module OS type "
593 "from ELF header OSABI.",
594 __FUNCTION__, file.GetPath().c_str());
595 }
596
597 // When ELF file does not contain GNU build ID, the later code will
598 // calculate CRC32 with this data_sp file_offset and length. It is
599 // important for Android zip .so file, which is a slice of a file,
600 // to not access the outside of the file slice range.
601 if (data_sp->GetByteSize() < length)
602 data_sp = MapFileData(file, Size: length, Offset: file_offset);
603 if (data_sp)
604 data.SetData(data_sp);
605 // In case there is header extension in the section #0, the header we
606 // parsed above could have sentinel values for e_phnum, e_shnum, and
607 // e_shstrndx. In this case we need to reparse the header with a
608 // bigger data source to get the actual values.
609 if (header.HasHeaderExtension()) {
610 lldb::offset_t header_offset = data_offset;
611 header.Parse(data, offset: &header_offset);
612 }
613
614 uint32_t gnu_debuglink_crc = 0;
615 std::string gnu_debuglink_file;
616 SectionHeaderColl section_headers;
617 lldb_private::UUID &uuid = spec.GetUUID();
618
619 GetSectionHeaderInfo(section_headers, object_data&: data, header, uuid,
620 gnu_debuglink_file, gnu_debuglink_crc,
621 arch_spec&: spec.GetArchitecture());
622
623 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
624
625 LLDB_LOGF(log,
626 "ObjectFileELF::%s file '%s' module set to triple: %s "
627 "(architecture %s)",
628 __FUNCTION__, file.GetPath().c_str(),
629 spec_triple.getTriple().c_str(),
630 spec.GetArchitecture().GetArchitectureName());
631
632 if (!uuid.IsValid()) {
633 uint32_t core_notes_crc = 0;
634
635 if (!gnu_debuglink_crc) {
636 LLDB_SCOPED_TIMERF(
637 "Calculating module crc32 %s with size %" PRIu64 " KiB",
638 file.GetFilename().AsCString(),
639 (length - file_offset) / 1024);
640
641 // For core files - which usually don't happen to have a
642 // gnu_debuglink, and are pretty bulky - calculating whole
643 // contents crc32 would be too much of luxury. Thus we will need
644 // to fallback to something simpler.
645 if (header.e_type == llvm::ELF::ET_CORE) {
646 ProgramHeaderColl program_headers;
647 GetProgramHeaderInfo(program_headers, object_data&: data, header);
648
649 core_notes_crc =
650 CalculateELFNotesSegmentsCRC32(program_headers, object_data&: data);
651 } else {
652 gnu_debuglink_crc = calc_crc32(init: 0, data);
653 }
654 }
655 using u32le = llvm::support::ulittle32_t;
656 if (gnu_debuglink_crc) {
657 // Use 4 bytes of crc from the .gnu_debuglink section.
658 u32le data(gnu_debuglink_crc);
659 uuid = UUID(&data, sizeof(data));
660 } else if (core_notes_crc) {
661 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
662 // it look different form .gnu_debuglink crc followed by 4 bytes
663 // of note segments crc.
664 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
665 uuid = UUID(data, sizeof(data));
666 }
667 }
668
669 specs.Append(spec);
670 }
671 }
672 }
673 }
674
675 return specs.GetSize() - initial_count;
676}
677
678// ObjectFile protocol
679
680ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
681 DataBufferSP data_sp, lldb::offset_t data_offset,
682 const FileSpec *file, lldb::offset_t file_offset,
683 lldb::offset_t length)
684 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) {
685 if (file)
686 m_file = *file;
687}
688
689ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
690 DataBufferSP header_data_sp,
691 const lldb::ProcessSP &process_sp,
692 addr_t header_addr)
693 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {}
694
695bool ObjectFileELF::IsExecutable() const {
696 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
697}
698
699bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
700 bool value_is_offset) {
701 ModuleSP module_sp = GetModule();
702 if (module_sp) {
703 size_t num_loaded_sections = 0;
704 SectionList *section_list = GetSectionList();
705 if (section_list) {
706 if (!value_is_offset) {
707 addr_t base = GetBaseAddress().GetFileAddress();
708 if (base == LLDB_INVALID_ADDRESS)
709 return false;
710 value -= base;
711 }
712
713 const size_t num_sections = section_list->GetSize();
714 size_t sect_idx = 0;
715
716 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
717 // Iterate through the object file sections to find all of the sections
718 // that have SHF_ALLOC in their flag bits.
719 SectionSP section_sp(section_list->GetSectionAtIndex(idx: sect_idx));
720 if (section_sp->Test(bit: SHF_ALLOC) ||
721 section_sp->GetType() == eSectionTypeContainer) {
722 lldb::addr_t load_addr = section_sp->GetFileAddress();
723 // We don't want to update the load address of a section with type
724 // eSectionTypeAbsoluteAddress as they already have the absolute load
725 // address already specified
726 if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
727 load_addr += value;
728
729 // On 32-bit systems the load address have to fit into 4 bytes. The
730 // rest of the bytes are the overflow from the addition.
731 if (GetAddressByteSize() == 4)
732 load_addr &= 0xFFFFFFFF;
733
734 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
735 load_addr))
736 ++num_loaded_sections;
737 }
738 }
739 return num_loaded_sections > 0;
740 }
741 }
742 return false;
743}
744
745ByteOrder ObjectFileELF::GetByteOrder() const {
746 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
747 return eByteOrderBig;
748 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
749 return eByteOrderLittle;
750 return eByteOrderInvalid;
751}
752
753uint32_t ObjectFileELF::GetAddressByteSize() const {
754 return m_data.GetAddressByteSize();
755}
756
757AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
758 Symtab *symtab = GetSymtab();
759 if (!symtab)
760 return AddressClass::eUnknown;
761
762 // The address class is determined based on the symtab. Ask it from the
763 // object file what contains the symtab information.
764 ObjectFile *symtab_objfile = symtab->GetObjectFile();
765 if (symtab_objfile != nullptr && symtab_objfile != this)
766 return symtab_objfile->GetAddressClass(file_addr);
767
768 auto res = ObjectFile::GetAddressClass(file_addr);
769 if (res != AddressClass::eCode)
770 return res;
771
772 auto ub = m_address_class_map.upper_bound(x: file_addr);
773 if (ub == m_address_class_map.begin()) {
774 // No entry in the address class map before the address. Return default
775 // address class for an address in a code section.
776 return AddressClass::eCode;
777 }
778
779 // Move iterator to the address class entry preceding address
780 --ub;
781
782 return ub->second;
783}
784
785size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
786 return std::distance(first: m_section_headers.begin(), last: I);
787}
788
789size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
790 return std::distance(first: m_section_headers.begin(), last: I);
791}
792
793bool ObjectFileELF::ParseHeader() {
794 lldb::offset_t offset = 0;
795 return m_header.Parse(data&: m_data, offset: &offset);
796}
797
798UUID ObjectFileELF::GetUUID() {
799 // Need to parse the section list to get the UUIDs, so make sure that's been
800 // done.
801 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
802 return UUID();
803
804 if (!m_uuid) {
805 using u32le = llvm::support::ulittle32_t;
806 if (GetType() == ObjectFile::eTypeCoreFile) {
807 uint32_t core_notes_crc = 0;
808
809 if (!ParseProgramHeaders())
810 return UUID();
811
812 core_notes_crc =
813 CalculateELFNotesSegmentsCRC32(program_headers: m_program_headers, object_data&: m_data);
814
815 if (core_notes_crc) {
816 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
817 // look different form .gnu_debuglink crc - followed by 4 bytes of note
818 // segments crc.
819 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
820 m_uuid = UUID(data, sizeof(data));
821 }
822 } else {
823 if (!m_gnu_debuglink_crc)
824 m_gnu_debuglink_crc = calc_crc32(init: 0, data: m_data);
825 if (m_gnu_debuglink_crc) {
826 // Use 4 bytes of crc from the .gnu_debuglink section.
827 u32le data(m_gnu_debuglink_crc);
828 m_uuid = UUID(&data, sizeof(data));
829 }
830 }
831 }
832
833 return m_uuid;
834}
835
836std::optional<FileSpec> ObjectFileELF::GetDebugLink() {
837 if (m_gnu_debuglink_file.empty())
838 return std::nullopt;
839 return FileSpec(m_gnu_debuglink_file);
840}
841
842uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
843 size_t num_modules = ParseDependentModules();
844 uint32_t num_specs = 0;
845
846 for (unsigned i = 0; i < num_modules; ++i) {
847 if (files.AppendIfUnique(file: m_filespec_up->GetFileSpecAtIndex(idx: i)))
848 num_specs++;
849 }
850
851 return num_specs;
852}
853
854Address ObjectFileELF::GetImageInfoAddress(Target *target) {
855 if (!ParseDynamicSymbols())
856 return Address();
857
858 SectionList *section_list = GetSectionList();
859 if (!section_list)
860 return Address();
861
862 // Find the SHT_DYNAMIC (.dynamic) section.
863 SectionSP dynsym_section_sp(
864 section_list->FindSectionByType(sect_type: eSectionTypeELFDynamicLinkInfo, check_children: true));
865 if (!dynsym_section_sp)
866 return Address();
867 assert(dynsym_section_sp->GetObjectFile() == this);
868
869 user_id_t dynsym_id = dynsym_section_sp->GetID();
870 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(id: dynsym_id);
871 if (!dynsym_hdr)
872 return Address();
873
874 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
875 ELFDynamic &symbol = m_dynamic_symbols[i];
876
877 if (symbol.d_tag == DT_DEBUG) {
878 // Compute the offset as the number of previous entries plus the size of
879 // d_tag.
880 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
881 return Address(dynsym_section_sp, offset);
882 }
883 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
884 // exists in non-PIE.
885 else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
886 symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
887 target) {
888 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
889 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
890 if (dyn_base == LLDB_INVALID_ADDRESS)
891 return Address();
892
893 Status error;
894 if (symbol.d_tag == DT_MIPS_RLD_MAP) {
895 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
896 Address addr;
897 if (target->ReadPointerFromMemory(addr: dyn_base + offset, error, pointer_addr&: addr, force_live_memory: true))
898 return addr;
899 }
900 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
901 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
902 // relative to the address of the tag.
903 uint64_t rel_offset;
904 rel_offset = target->ReadUnsignedIntegerFromMemory(
905 addr: dyn_base + offset, integer_byte_size: GetAddressByteSize(), UINT64_MAX, error, force_live_memory: true);
906 if (error.Success() && rel_offset != UINT64_MAX) {
907 Address addr;
908 addr_t debug_ptr_address =
909 dyn_base + (offset - GetAddressByteSize()) + rel_offset;
910 addr.SetOffset(debug_ptr_address);
911 return addr;
912 }
913 }
914 }
915 }
916
917 return Address();
918}
919
920lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
921 if (m_entry_point_address.IsValid())
922 return m_entry_point_address;
923
924 if (!ParseHeader() || !IsExecutable())
925 return m_entry_point_address;
926
927 SectionList *section_list = GetSectionList();
928 addr_t offset = m_header.e_entry;
929
930 if (!section_list)
931 m_entry_point_address.SetOffset(offset);
932 else
933 m_entry_point_address.ResolveAddressUsingFileSections(addr: offset, sections: section_list);
934 return m_entry_point_address;
935}
936
937Address ObjectFileELF::GetBaseAddress() {
938 if (GetType() == ObjectFile::eTypeObjectFile) {
939 for (SectionHeaderCollIter I = std::next(x: m_section_headers.begin());
940 I != m_section_headers.end(); ++I) {
941 const ELFSectionHeaderInfo &header = *I;
942 if (header.sh_flags & SHF_ALLOC)
943 return Address(GetSectionList()->FindSectionByID(sect_id: SectionIndex(I)), 0);
944 }
945 return LLDB_INVALID_ADDRESS;
946 }
947
948 for (const auto &EnumPHdr : llvm::enumerate(First: ProgramHeaders())) {
949 const ELFProgramHeader &H = EnumPHdr.value();
950 if (H.p_type != PT_LOAD)
951 continue;
952
953 return Address(
954 GetSectionList()->FindSectionByID(sect_id: SegmentID(PHdrIndex: EnumPHdr.index())), 0);
955 }
956 return LLDB_INVALID_ADDRESS;
957}
958
959// ParseDependentModules
960size_t ObjectFileELF::ParseDependentModules() {
961 if (m_filespec_up)
962 return m_filespec_up->GetSize();
963
964 m_filespec_up = std::make_unique<FileSpecList>();
965
966 if (!ParseSectionHeaders())
967 return 0;
968
969 SectionList *section_list = GetSectionList();
970 if (!section_list)
971 return 0;
972
973 // Find the SHT_DYNAMIC section.
974 Section *dynsym =
975 section_list->FindSectionByType(sect_type: eSectionTypeELFDynamicLinkInfo, check_children: true)
976 .get();
977 if (!dynsym)
978 return 0;
979 assert(dynsym->GetObjectFile() == this);
980
981 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(id: dynsym->GetID());
982 if (!header)
983 return 0;
984 // sh_link: section header index of string table used by entries in the
985 // section.
986 Section *dynstr = section_list->FindSectionByID(sect_id: header->sh_link).get();
987 if (!dynstr)
988 return 0;
989
990 DataExtractor dynsym_data;
991 DataExtractor dynstr_data;
992 if (ReadSectionData(section: dynsym, section_data&: dynsym_data) &&
993 ReadSectionData(section: dynstr, section_data&: dynstr_data)) {
994 ELFDynamic symbol;
995 const lldb::offset_t section_size = dynsym_data.GetByteSize();
996 lldb::offset_t offset = 0;
997
998 // The only type of entries we are concerned with are tagged DT_NEEDED,
999 // yielding the name of a required library.
1000 while (offset < section_size) {
1001 if (!symbol.Parse(data: dynsym_data, offset: &offset))
1002 break;
1003
1004 if (symbol.d_tag != DT_NEEDED)
1005 continue;
1006
1007 uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1008 const char *lib_name = dynstr_data.PeekCStr(offset: str_index);
1009 FileSpec file_spec(lib_name);
1010 FileSystem::Instance().Resolve(file_spec);
1011 m_filespec_up->Append(file: file_spec);
1012 }
1013 }
1014
1015 return m_filespec_up->GetSize();
1016}
1017
1018// GetProgramHeaderInfo
1019size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1020 DataExtractor &object_data,
1021 const ELFHeader &header) {
1022 // We have already parsed the program headers
1023 if (!program_headers.empty())
1024 return program_headers.size();
1025
1026 // If there are no program headers to read we are done.
1027 if (header.e_phnum == 0)
1028 return 0;
1029
1030 program_headers.resize(new_size: header.e_phnum);
1031 if (program_headers.size() != header.e_phnum)
1032 return 0;
1033
1034 const size_t ph_size = header.e_phnum * header.e_phentsize;
1035 const elf_off ph_offset = header.e_phoff;
1036 DataExtractor data;
1037 if (data.SetData(data: object_data, offset: ph_offset, length: ph_size) != ph_size)
1038 return 0;
1039
1040 uint32_t idx;
1041 lldb::offset_t offset;
1042 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1043 if (!program_headers[idx].Parse(data, offset: &offset))
1044 break;
1045 }
1046
1047 if (idx < program_headers.size())
1048 program_headers.resize(new_size: idx);
1049
1050 return program_headers.size();
1051}
1052
1053// ParseProgramHeaders
1054bool ObjectFileELF::ParseProgramHeaders() {
1055 return GetProgramHeaderInfo(program_headers&: m_program_headers, object_data&: m_data, header: m_header) != 0;
1056}
1057
1058lldb_private::Status
1059ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
1060 lldb_private::ArchSpec &arch_spec,
1061 lldb_private::UUID &uuid) {
1062 Log *log = GetLog(mask: LLDBLog::Modules);
1063 Status error;
1064
1065 lldb::offset_t offset = 0;
1066
1067 while (true) {
1068 // Parse the note header. If this fails, bail out.
1069 const lldb::offset_t note_offset = offset;
1070 ELFNote note = ELFNote();
1071 if (!note.Parse(data, offset: &offset)) {
1072 // We're done.
1073 return error;
1074 }
1075
1076 LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1077 __FUNCTION__, note.n_name.c_str(), note.n_type);
1078
1079 // Process FreeBSD ELF notes.
1080 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1081 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1082 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1083 // Pull out the min version info.
1084 uint32_t version_info;
1085 if (data.GetU32(offset_ptr: &offset, dst: &version_info, count: 1) == nullptr) {
1086 error.SetErrorString("failed to read FreeBSD ABI note payload");
1087 return error;
1088 }
1089
1090 // Convert the version info into a major/minor number.
1091 const uint32_t version_major = version_info / 100000;
1092 const uint32_t version_minor = (version_info / 1000) % 100;
1093
1094 char os_name[32];
1095 snprintf(s: os_name, maxlen: sizeof(os_name), format: "freebsd%" PRIu32 ".%" PRIu32,
1096 version_major, version_minor);
1097
1098 // Set the elf OS version to FreeBSD. Also clear the vendor.
1099 arch_spec.GetTriple().setOSName(os_name);
1100 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1101
1102 LLDB_LOGF(log,
1103 "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1104 ".%" PRIu32,
1105 __FUNCTION__, version_major, version_minor,
1106 static_cast<uint32_t>(version_info % 1000));
1107 }
1108 // Process GNU ELF notes.
1109 else if (note.n_name == LLDB_NT_OWNER_GNU) {
1110 switch (note.n_type) {
1111 case LLDB_NT_GNU_ABI_TAG:
1112 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1113 // Pull out the min OS version supporting the ABI.
1114 uint32_t version_info[4];
1115 if (data.GetU32(offset_ptr: &offset, dst: &version_info[0], count: note.n_descsz / 4) ==
1116 nullptr) {
1117 error.SetErrorString("failed to read GNU ABI note payload");
1118 return error;
1119 }
1120
1121 // Set the OS per the OS field.
1122 switch (version_info[0]) {
1123 case LLDB_NT_GNU_ABI_OS_LINUX:
1124 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1125 arch_spec.GetTriple().setVendor(
1126 llvm::Triple::VendorType::UnknownVendor);
1127 LLDB_LOGF(log,
1128 "ObjectFileELF::%s detected Linux, min version %" PRIu32
1129 ".%" PRIu32 ".%" PRIu32,
1130 __FUNCTION__, version_info[1], version_info[2],
1131 version_info[3]);
1132 // FIXME we have the minimal version number, we could be propagating
1133 // that. version_info[1] = OS Major, version_info[2] = OS Minor,
1134 // version_info[3] = Revision.
1135 break;
1136 case LLDB_NT_GNU_ABI_OS_HURD:
1137 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1138 arch_spec.GetTriple().setVendor(
1139 llvm::Triple::VendorType::UnknownVendor);
1140 LLDB_LOGF(log,
1141 "ObjectFileELF::%s detected Hurd (unsupported), min "
1142 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1143 __FUNCTION__, version_info[1], version_info[2],
1144 version_info[3]);
1145 break;
1146 case LLDB_NT_GNU_ABI_OS_SOLARIS:
1147 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1148 arch_spec.GetTriple().setVendor(
1149 llvm::Triple::VendorType::UnknownVendor);
1150 LLDB_LOGF(log,
1151 "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1152 ".%" PRIu32 ".%" PRIu32,
1153 __FUNCTION__, version_info[1], version_info[2],
1154 version_info[3]);
1155 break;
1156 default:
1157 LLDB_LOGF(log,
1158 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1159 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1160 __FUNCTION__, version_info[0], version_info[1],
1161 version_info[2], version_info[3]);
1162 break;
1163 }
1164 }
1165 break;
1166
1167 case LLDB_NT_GNU_BUILD_ID_TAG:
1168 // Only bother processing this if we don't already have the uuid set.
1169 if (!uuid.IsValid()) {
1170 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1171 // build-id of a different length. Accept it as long as it's at least
1172 // 4 bytes as it will be better than our own crc32.
1173 if (note.n_descsz >= 4) {
1174 if (const uint8_t *buf = data.PeekData(offset, length: note.n_descsz)) {
1175 // Save the build id as the UUID for the module.
1176 uuid = UUID(buf, note.n_descsz);
1177 } else {
1178 error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1179 return error;
1180 }
1181 }
1182 }
1183 break;
1184 }
1185 if (arch_spec.IsMIPS() &&
1186 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1187 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1188 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1189 }
1190 // Process NetBSD ELF executables and shared libraries
1191 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1192 (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) &&
1193 (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) &&
1194 (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) {
1195 // Pull out the version info.
1196 uint32_t version_info;
1197 if (data.GetU32(offset_ptr: &offset, dst: &version_info, count: 1) == nullptr) {
1198 error.SetErrorString("failed to read NetBSD ABI note payload");
1199 return error;
1200 }
1201 // Convert the version info into a major/minor/patch number.
1202 // #define __NetBSD_Version__ MMmmrrpp00
1203 //
1204 // M = major version
1205 // m = minor version; a minor number of 99 indicates current.
1206 // r = 0 (since NetBSD 3.0 not used)
1207 // p = patchlevel
1208 const uint32_t version_major = version_info / 100000000;
1209 const uint32_t version_minor = (version_info % 100000000) / 1000000;
1210 const uint32_t version_patch = (version_info % 10000) / 100;
1211 // Set the elf OS version to NetBSD. Also clear the vendor.
1212 arch_spec.GetTriple().setOSName(
1213 llvm::formatv(Fmt: "netbsd{0}.{1}.{2}", Vals: version_major, Vals: version_minor,
1214 Vals: version_patch).str());
1215 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1216 }
1217 // Process NetBSD ELF core(5) notes
1218 else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) &&
1219 (note.n_type == LLDB_NT_NETBSD_PROCINFO)) {
1220 // Set the elf OS version to NetBSD. Also clear the vendor.
1221 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1222 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1223 }
1224 // Process OpenBSD ELF notes.
1225 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1226 // Set the elf OS version to OpenBSD. Also clear the vendor.
1227 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1228 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1229 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1230 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1231 arch_spec.GetTriple().setEnvironment(
1232 llvm::Triple::EnvironmentType::Android);
1233 } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1234 // This is sometimes found in core files and usually contains extended
1235 // register info
1236 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1237 } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1238 // Parse the NT_FILE to look for stuff in paths to shared libraries
1239 // The contents look like this in a 64 bit ELF core file:
1240 //
1241 // count = 0x000000000000000a (10)
1242 // page_size = 0x0000000000001000 (4096)
1243 // Index start end file_ofs path
1244 // ===== ------------------ ------------------ ------------------ -------------------------------------
1245 // [ 0] 0x0000000000401000 0x0000000000000000 /tmp/a.out
1246 // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out
1247 // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1248 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so
1249 // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so
1250 // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so
1251 // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so
1252 // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so
1253 // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so
1254 // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so
1255 //
1256 // In the 32 bit ELFs the count, page_size, start, end, file_ofs are
1257 // uint32_t.
1258 //
1259 // For reference: see readelf source code (in binutils).
1260 if (note.n_type == NT_FILE) {
1261 uint64_t count = data.GetAddress(offset_ptr: &offset);
1262 const char *cstr;
1263 data.GetAddress(offset_ptr: &offset); // Skip page size
1264 offset += count * 3 *
1265 data.GetAddressByteSize(); // Skip all start/end/file_ofs
1266 for (size_t i = 0; i < count; ++i) {
1267 cstr = data.GetCStr(offset_ptr: &offset);
1268 if (cstr == nullptr) {
1269 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1270 "at an offset after the end "
1271 "(GetCStr returned nullptr)",
1272 __FUNCTION__);
1273 return error;
1274 }
1275 llvm::StringRef path(cstr);
1276 if (path.contains(Other: "/lib/x86_64-linux-gnu") || path.contains(Other: "/lib/i386-linux-gnu")) {
1277 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1278 break;
1279 }
1280 }
1281 if (arch_spec.IsMIPS() &&
1282 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1283 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1284 // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1285 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1286 }
1287 }
1288
1289 // Calculate the offset of the next note just in case "offset" has been
1290 // used to poke at the contents of the note data
1291 offset = note_offset + note.GetByteSize();
1292 }
1293
1294 return error;
1295}
1296
1297void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1298 ArchSpec &arch_spec) {
1299 lldb::offset_t Offset = 0;
1300
1301 uint8_t FormatVersion = data.GetU8(offset_ptr: &Offset);
1302 if (FormatVersion != llvm::ELFAttrs::Format_Version)
1303 return;
1304
1305 Offset = Offset + sizeof(uint32_t); // Section Length
1306 llvm::StringRef VendorName = data.GetCStr(offset_ptr: &Offset);
1307
1308 if (VendorName != "aeabi")
1309 return;
1310
1311 if (arch_spec.GetTriple().getEnvironment() ==
1312 llvm::Triple::UnknownEnvironment)
1313 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1314
1315 while (Offset < length) {
1316 uint8_t Tag = data.GetU8(offset_ptr: &Offset);
1317 uint32_t Size = data.GetU32(offset_ptr: &Offset);
1318
1319 if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1320 continue;
1321
1322 while (Offset < length) {
1323 uint64_t Tag = data.GetULEB128(offset_ptr: &Offset);
1324 switch (Tag) {
1325 default:
1326 if (Tag < 32)
1327 data.GetULEB128(offset_ptr: &Offset);
1328 else if (Tag % 2 == 0)
1329 data.GetULEB128(offset_ptr: &Offset);
1330 else
1331 data.GetCStr(offset_ptr: &Offset);
1332
1333 break;
1334
1335 case llvm::ARMBuildAttrs::CPU_raw_name:
1336 case llvm::ARMBuildAttrs::CPU_name:
1337 data.GetCStr(offset_ptr: &Offset);
1338
1339 break;
1340
1341 case llvm::ARMBuildAttrs::ABI_VFP_args: {
1342 uint64_t VFPArgs = data.GetULEB128(offset_ptr: &Offset);
1343
1344 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1345 if (arch_spec.GetTriple().getEnvironment() ==
1346 llvm::Triple::UnknownEnvironment ||
1347 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1348 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1349
1350 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1351 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1352 if (arch_spec.GetTriple().getEnvironment() ==
1353 llvm::Triple::UnknownEnvironment ||
1354 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1355 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1356
1357 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1358 }
1359
1360 break;
1361 }
1362 }
1363 }
1364 }
1365}
1366
1367// GetSectionHeaderInfo
1368size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1369 DataExtractor &object_data,
1370 const elf::ELFHeader &header,
1371 lldb_private::UUID &uuid,
1372 std::string &gnu_debuglink_file,
1373 uint32_t &gnu_debuglink_crc,
1374 ArchSpec &arch_spec) {
1375 // Don't reparse the section headers if we already did that.
1376 if (!section_headers.empty())
1377 return section_headers.size();
1378
1379 // Only initialize the arch_spec to okay defaults if they're not already set.
1380 // We'll refine this with note data as we parse the notes.
1381 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1382 llvm::Triple::OSType ostype;
1383 llvm::Triple::OSType spec_ostype;
1384 const uint32_t sub_type = subTypeFromElfHeader(header);
1385 arch_spec.SetArchitecture(arch_type: eArchTypeELF, cpu: header.e_machine, sub: sub_type,
1386 os: header.e_ident[EI_OSABI]);
1387
1388 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1389 // determined based on EI_OSABI flag and the info extracted from ELF notes
1390 // (see RefineModuleDetailsFromNote). However in some cases that still
1391 // might be not enough: for example a shared library might not have any
1392 // notes at all and have EI_OSABI flag set to System V, as result the OS
1393 // will be set to UnknownOS.
1394 GetOsFromOSABI(osabi_byte: header.e_ident[EI_OSABI], ostype);
1395 spec_ostype = arch_spec.GetTriple().getOS();
1396 assert(spec_ostype == ostype);
1397 UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1398 }
1399
1400 if (arch_spec.GetMachine() == llvm::Triple::mips ||
1401 arch_spec.GetMachine() == llvm::Triple::mipsel ||
1402 arch_spec.GetMachine() == llvm::Triple::mips64 ||
1403 arch_spec.GetMachine() == llvm::Triple::mips64el) {
1404 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1405 case llvm::ELF::EF_MIPS_MICROMIPS:
1406 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1407 break;
1408 case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1409 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1410 break;
1411 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1412 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1413 break;
1414 default:
1415 break;
1416 }
1417 }
1418
1419 if (arch_spec.GetMachine() == llvm::Triple::arm ||
1420 arch_spec.GetMachine() == llvm::Triple::thumb) {
1421 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1422 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1423 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1424 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1425 }
1426
1427 if (arch_spec.GetMachine() == llvm::Triple::riscv32 ||
1428 arch_spec.GetMachine() == llvm::Triple::riscv64) {
1429 uint32_t flags = arch_spec.GetFlags();
1430
1431 if (header.e_flags & llvm::ELF::EF_RISCV_RVC)
1432 flags |= ArchSpec::eRISCV_rvc;
1433 if (header.e_flags & llvm::ELF::EF_RISCV_RVE)
1434 flags |= ArchSpec::eRISCV_rve;
1435
1436 if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE) ==
1437 llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE)
1438 flags |= ArchSpec::eRISCV_float_abi_single;
1439 else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE) ==
1440 llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE)
1441 flags |= ArchSpec::eRISCV_float_abi_double;
1442 else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD) ==
1443 llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD)
1444 flags |= ArchSpec::eRISCV_float_abi_quad;
1445
1446 arch_spec.SetFlags(flags);
1447 }
1448
1449 // If there are no section headers we are done.
1450 if (header.e_shnum == 0)
1451 return 0;
1452
1453 Log *log = GetLog(mask: LLDBLog::Modules);
1454
1455 section_headers.resize(new_size: header.e_shnum);
1456 if (section_headers.size() != header.e_shnum)
1457 return 0;
1458
1459 const size_t sh_size = header.e_shnum * header.e_shentsize;
1460 const elf_off sh_offset = header.e_shoff;
1461 DataExtractor sh_data;
1462 if (sh_data.SetData(data: object_data, offset: sh_offset, length: sh_size) != sh_size)
1463 return 0;
1464
1465 uint32_t idx;
1466 lldb::offset_t offset;
1467 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1468 if (!section_headers[idx].Parse(data: sh_data, offset: &offset))
1469 break;
1470 }
1471 if (idx < section_headers.size())
1472 section_headers.resize(new_size: idx);
1473
1474 const unsigned strtab_idx = header.e_shstrndx;
1475 if (strtab_idx && strtab_idx < section_headers.size()) {
1476 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1477 const size_t byte_size = sheader.sh_size;
1478 const Elf64_Off offset = sheader.sh_offset;
1479 lldb_private::DataExtractor shstr_data;
1480
1481 if (shstr_data.SetData(data: object_data, offset, length: byte_size) == byte_size) {
1482 for (SectionHeaderCollIter I = section_headers.begin();
1483 I != section_headers.end(); ++I) {
1484 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1485 const ELFSectionHeaderInfo &sheader = *I;
1486 const uint64_t section_size =
1487 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1488 ConstString name(shstr_data.PeekCStr(offset: I->sh_name));
1489
1490 I->section_name = name;
1491
1492 if (arch_spec.IsMIPS()) {
1493 uint32_t arch_flags = arch_spec.GetFlags();
1494 DataExtractor data;
1495 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1496
1497 if (section_size && (data.SetData(data: object_data, offset: sheader.sh_offset,
1498 length: section_size) == section_size)) {
1499 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1500 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1501 arch_flags |= data.GetU32(offset_ptr: &offset);
1502
1503 // The floating point ABI is at offset 7
1504 offset = 7;
1505 switch (data.GetU8(offset_ptr: &offset)) {
1506 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1507 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1508 break;
1509 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1510 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1511 break;
1512 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1513 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1514 break;
1515 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1516 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1517 break;
1518 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1519 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1520 break;
1521 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1522 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1523 break;
1524 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1525 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1526 break;
1527 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1528 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1529 break;
1530 }
1531 }
1532 }
1533 // Settings appropriate ArchSpec ABI Flags
1534 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1535 case llvm::ELF::EF_MIPS_ABI_O32:
1536 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1537 break;
1538 case EF_MIPS_ABI_O64:
1539 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1540 break;
1541 case EF_MIPS_ABI_EABI32:
1542 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1543 break;
1544 case EF_MIPS_ABI_EABI64:
1545 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1546 break;
1547 default:
1548 // ABI Mask doesn't cover N32 and N64 ABI.
1549 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1550 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1551 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1552 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1553 break;
1554 }
1555 arch_spec.SetFlags(arch_flags);
1556 }
1557
1558 if (arch_spec.GetMachine() == llvm::Triple::arm ||
1559 arch_spec.GetMachine() == llvm::Triple::thumb) {
1560 DataExtractor data;
1561
1562 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1563 data.SetData(data: object_data, offset: sheader.sh_offset, length: section_size) == section_size)
1564 ParseARMAttributes(data, length: section_size, arch_spec);
1565 }
1566
1567 if (name == g_sect_name_gnu_debuglink) {
1568 DataExtractor data;
1569 if (section_size && (data.SetData(data: object_data, offset: sheader.sh_offset,
1570 length: section_size) == section_size)) {
1571 lldb::offset_t gnu_debuglink_offset = 0;
1572 gnu_debuglink_file = data.GetCStr(offset_ptr: &gnu_debuglink_offset);
1573 gnu_debuglink_offset = llvm::alignTo(Value: gnu_debuglink_offset, Align: 4);
1574 data.GetU32(offset_ptr: &gnu_debuglink_offset, dst: &gnu_debuglink_crc, count: 1);
1575 }
1576 }
1577
1578 // Process ELF note section entries.
1579 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1580
1581 // The section header ".note.android.ident" is stored as a
1582 // PROGBITS type header but it is actually a note header.
1583 static ConstString g_sect_name_android_ident(".note.android.ident");
1584 if (!is_note_header && name == g_sect_name_android_ident)
1585 is_note_header = true;
1586
1587 if (is_note_header) {
1588 // Allow notes to refine module info.
1589 DataExtractor data;
1590 if (section_size && (data.SetData(data: object_data, offset: sheader.sh_offset,
1591 length: section_size) == section_size)) {
1592 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1593 if (error.Fail()) {
1594 LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s",
1595 __FUNCTION__, error.AsCString());
1596 }
1597 }
1598 }
1599 }
1600
1601 // Make any unknown triple components to be unspecified unknowns.
1602 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1603 arch_spec.GetTriple().setVendorName(llvm::StringRef());
1604 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1605 arch_spec.GetTriple().setOSName(llvm::StringRef());
1606
1607 return section_headers.size();
1608 }
1609 }
1610
1611 section_headers.clear();
1612 return 0;
1613}
1614
1615llvm::StringRef
1616ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1617 size_t pos = symbol_name.find(C: '@');
1618 return symbol_name.substr(Start: 0, N: pos);
1619}
1620
1621// ParseSectionHeaders
1622size_t ObjectFileELF::ParseSectionHeaders() {
1623 return GetSectionHeaderInfo(section_headers&: m_section_headers, object_data&: m_data, header: m_header, uuid&: m_uuid,
1624 gnu_debuglink_file&: m_gnu_debuglink_file, gnu_debuglink_crc&: m_gnu_debuglink_crc,
1625 arch_spec&: m_arch_spec);
1626}
1627
1628const ObjectFileELF::ELFSectionHeaderInfo *
1629ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1630 if (!ParseSectionHeaders())
1631 return nullptr;
1632
1633 if (id < m_section_headers.size())
1634 return &m_section_headers[id];
1635
1636 return nullptr;
1637}
1638
1639lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1640 if (!name || !name[0] || !ParseSectionHeaders())
1641 return 0;
1642 for (size_t i = 1; i < m_section_headers.size(); ++i)
1643 if (m_section_headers[i].section_name == ConstString(name))
1644 return i;
1645 return 0;
1646}
1647
1648static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1649 if (Name.consume_front(Prefix: ".debug_")) {
1650 return llvm::StringSwitch<SectionType>(Name)
1651 .Case(S: "abbrev", Value: eSectionTypeDWARFDebugAbbrev)
1652 .Case(S: "abbrev.dwo", Value: eSectionTypeDWARFDebugAbbrevDwo)
1653 .Case(S: "addr", Value: eSectionTypeDWARFDebugAddr)
1654 .Case(S: "aranges", Value: eSectionTypeDWARFDebugAranges)
1655 .Case(S: "cu_index", Value: eSectionTypeDWARFDebugCuIndex)
1656 .Case(S: "frame", Value: eSectionTypeDWARFDebugFrame)
1657 .Case(S: "info", Value: eSectionTypeDWARFDebugInfo)
1658 .Case(S: "info.dwo", Value: eSectionTypeDWARFDebugInfoDwo)
1659 .Cases(S0: "line", S1: "line.dwo", Value: eSectionTypeDWARFDebugLine)
1660 .Cases(S0: "line_str", S1: "line_str.dwo", Value: eSectionTypeDWARFDebugLineStr)
1661 .Case(S: "loc", Value: eSectionTypeDWARFDebugLoc)
1662 .Case(S: "loc.dwo", Value: eSectionTypeDWARFDebugLocDwo)
1663 .Case(S: "loclists", Value: eSectionTypeDWARFDebugLocLists)
1664 .Case(S: "loclists.dwo", Value: eSectionTypeDWARFDebugLocListsDwo)
1665 .Case(S: "macinfo", Value: eSectionTypeDWARFDebugMacInfo)
1666 .Cases(S0: "macro", S1: "macro.dwo", Value: eSectionTypeDWARFDebugMacro)
1667 .Case(S: "names", Value: eSectionTypeDWARFDebugNames)
1668 .Case(S: "pubnames", Value: eSectionTypeDWARFDebugPubNames)
1669 .Case(S: "pubtypes", Value: eSectionTypeDWARFDebugPubTypes)
1670 .Case(S: "ranges", Value: eSectionTypeDWARFDebugRanges)
1671 .Case(S: "rnglists", Value: eSectionTypeDWARFDebugRngLists)
1672 .Case(S: "rnglists.dwo", Value: eSectionTypeDWARFDebugRngListsDwo)
1673 .Case(S: "str", Value: eSectionTypeDWARFDebugStr)
1674 .Case(S: "str.dwo", Value: eSectionTypeDWARFDebugStrDwo)
1675 .Case(S: "str_offsets", Value: eSectionTypeDWARFDebugStrOffsets)
1676 .Case(S: "str_offsets.dwo", Value: eSectionTypeDWARFDebugStrOffsetsDwo)
1677 .Case(S: "tu_index", Value: eSectionTypeDWARFDebugTuIndex)
1678 .Case(S: "types", Value: eSectionTypeDWARFDebugTypes)
1679 .Case(S: "types.dwo", Value: eSectionTypeDWARFDebugTypesDwo)
1680 .Default(Value: eSectionTypeOther);
1681 }
1682 return llvm::StringSwitch<SectionType>(Name)
1683 .Case(S: ".ARM.exidx", Value: eSectionTypeARMexidx)
1684 .Case(S: ".ARM.extab", Value: eSectionTypeARMextab)
1685 .Cases(S0: ".bss", S1: ".tbss", Value: eSectionTypeZeroFill)
1686 .Case(S: ".ctf", Value: eSectionTypeDebug)
1687 .Cases(S0: ".data", S1: ".tdata", Value: eSectionTypeData)
1688 .Case(S: ".eh_frame", Value: eSectionTypeEHFrame)
1689 .Case(S: ".gnu_debugaltlink", Value: eSectionTypeDWARFGNUDebugAltLink)
1690 .Case(S: ".gosymtab", Value: eSectionTypeGoSymtab)
1691 .Case(S: ".text", Value: eSectionTypeCode)
1692 .Case(S: ".swift_ast", Value: eSectionTypeSwiftModules)
1693 .Default(Value: eSectionTypeOther);
1694}
1695
1696SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
1697 switch (H.sh_type) {
1698 case SHT_PROGBITS:
1699 if (H.sh_flags & SHF_EXECINSTR)
1700 return eSectionTypeCode;
1701 break;
1702 case SHT_SYMTAB:
1703 return eSectionTypeELFSymbolTable;
1704 case SHT_DYNSYM:
1705 return eSectionTypeELFDynamicSymbols;
1706 case SHT_RELA:
1707 case SHT_REL:
1708 return eSectionTypeELFRelocationEntries;
1709 case SHT_DYNAMIC:
1710 return eSectionTypeELFDynamicLinkInfo;
1711 }
1712 return GetSectionTypeFromName(Name: H.section_name.GetStringRef());
1713}
1714
1715static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1716 switch (Type) {
1717 case eSectionTypeData:
1718 case eSectionTypeZeroFill:
1719 return arch.GetDataByteSize();
1720 case eSectionTypeCode:
1721 return arch.GetCodeByteSize();
1722 default:
1723 return 1;
1724 }
1725}
1726
1727static Permissions GetPermissions(const ELFSectionHeader &H) {
1728 Permissions Perm = Permissions(0);
1729 if (H.sh_flags & SHF_ALLOC)
1730 Perm |= ePermissionsReadable;
1731 if (H.sh_flags & SHF_WRITE)
1732 Perm |= ePermissionsWritable;
1733 if (H.sh_flags & SHF_EXECINSTR)
1734 Perm |= ePermissionsExecutable;
1735 return Perm;
1736}
1737
1738static Permissions GetPermissions(const ELFProgramHeader &H) {
1739 Permissions Perm = Permissions(0);
1740 if (H.p_flags & PF_R)
1741 Perm |= ePermissionsReadable;
1742 if (H.p_flags & PF_W)
1743 Perm |= ePermissionsWritable;
1744 if (H.p_flags & PF_X)
1745 Perm |= ePermissionsExecutable;
1746 return Perm;
1747}
1748
1749namespace {
1750
1751using VMRange = lldb_private::Range<addr_t, addr_t>;
1752
1753struct SectionAddressInfo {
1754 SectionSP Segment;
1755 VMRange Range;
1756};
1757
1758// (Unlinked) ELF object files usually have 0 for every section address, meaning
1759// we need to compute synthetic addresses in order for "file addresses" from
1760// different sections to not overlap. This class handles that logic.
1761class VMAddressProvider {
1762 using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4,
1763 llvm::IntervalMapHalfOpenInfo<addr_t>>;
1764
1765 ObjectFile::Type ObjectType;
1766 addr_t NextVMAddress = 0;
1767 VMMap::Allocator Alloc;
1768 VMMap Segments{Alloc};
1769 VMMap Sections{Alloc};
1770 lldb_private::Log *Log = GetLog(mask: LLDBLog::Modules);
1771 size_t SegmentCount = 0;
1772 std::string SegmentName;
1773
1774 VMRange GetVMRange(const ELFSectionHeader &H) {
1775 addr_t Address = H.sh_addr;
1776 addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1777
1778 // When this is a debug file for relocatable file, the address is all zero
1779 // and thus needs to use accumulate method
1780 if ((ObjectType == ObjectFile::Type::eTypeObjectFile ||
1781 (ObjectType == ObjectFile::Type::eTypeDebugInfo && H.sh_addr == 0)) &&
1782 Segments.empty() && (H.sh_flags & SHF_ALLOC)) {
1783 NextVMAddress =
1784 llvm::alignTo(Value: NextVMAddress, Align: std::max<addr_t>(a: H.sh_addralign, b: 1));
1785 Address = NextVMAddress;
1786 NextVMAddress += Size;
1787 }
1788 return VMRange(Address, Size);
1789 }
1790
1791public:
1792 VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName)
1793 : ObjectType(Type), SegmentName(std::string(SegmentName)) {}
1794
1795 std::string GetNextSegmentName() const {
1796 return llvm::formatv(Fmt: "{0}[{1}]", Vals: SegmentName, Vals: SegmentCount).str();
1797 }
1798
1799 std::optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) {
1800 if (H.p_memsz == 0) {
1801 LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?",
1802 SegmentName);
1803 return std::nullopt;
1804 }
1805
1806 if (Segments.overlaps(a: H.p_vaddr, b: H.p_vaddr + H.p_memsz)) {
1807 LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?",
1808 SegmentName);
1809 return std::nullopt;
1810 }
1811 return VMRange(H.p_vaddr, H.p_memsz);
1812 }
1813
1814 std::optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) {
1815 VMRange Range = GetVMRange(H);
1816 SectionSP Segment;
1817 auto It = Segments.find(x: Range.GetRangeBase());
1818 if ((H.sh_flags & SHF_ALLOC) && It.valid()) {
1819 addr_t MaxSize;
1820 if (It.start() <= Range.GetRangeBase()) {
1821 MaxSize = It.stop() - Range.GetRangeBase();
1822 Segment = *It;
1823 } else
1824 MaxSize = It.start() - Range.GetRangeBase();
1825 if (Range.GetByteSize() > MaxSize) {
1826 LLDB_LOG(Log, "Shortening section crossing segment boundaries. "
1827 "Corrupt object file?");
1828 Range.SetByteSize(MaxSize);
1829 }
1830 }
1831 if (Range.GetByteSize() > 0 &&
1832 Sections.overlaps(a: Range.GetRangeBase(), b: Range.GetRangeEnd())) {
1833 LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?");
1834 return std::nullopt;
1835 }
1836 if (Segment)
1837 Range.Slide(slide: -Segment->GetFileAddress());
1838 return SectionAddressInfo{.Segment: Segment, .Range: Range};
1839 }
1840
1841 void AddSegment(const VMRange &Range, SectionSP Seg) {
1842 Segments.insert(a: Range.GetRangeBase(), b: Range.GetRangeEnd(), y: std::move(Seg));
1843 ++SegmentCount;
1844 }
1845
1846 void AddSection(SectionAddressInfo Info, SectionSP Sect) {
1847 if (Info.Range.GetByteSize() == 0)
1848 return;
1849 if (Info.Segment)
1850 Info.Range.Slide(slide: Info.Segment->GetFileAddress());
1851 Sections.insert(a: Info.Range.GetRangeBase(), b: Info.Range.GetRangeEnd(),
1852 y: std::move(Sect));
1853 }
1854};
1855}
1856
1857void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1858 if (m_sections_up)
1859 return;
1860
1861 m_sections_up = std::make_unique<SectionList>();
1862 VMAddressProvider regular_provider(GetType(), "PT_LOAD");
1863 VMAddressProvider tls_provider(GetType(), "PT_TLS");
1864
1865 for (const auto &EnumPHdr : llvm::enumerate(First: ProgramHeaders())) {
1866 const ELFProgramHeader &PHdr = EnumPHdr.value();
1867 if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS)
1868 continue;
1869
1870 VMAddressProvider &provider =
1871 PHdr.p_type == PT_TLS ? tls_provider : regular_provider;
1872 auto InfoOr = provider.GetAddressInfo(H: PHdr);
1873 if (!InfoOr)
1874 continue;
1875
1876 uint32_t Log2Align = llvm::Log2_64(Value: std::max<elf_xword>(a: PHdr.p_align, b: 1));
1877 SectionSP Segment = std::make_shared<Section>(
1878 args: GetModule(), args: this, args: SegmentID(PHdrIndex: EnumPHdr.index()),
1879 args: ConstString(provider.GetNextSegmentName()), args: eSectionTypeContainer,
1880 args: InfoOr->GetRangeBase(), args: InfoOr->GetByteSize(), args: PHdr.p_offset,
1881 args: PHdr.p_filesz, args&: Log2Align, /*flags*/ args: 0);
1882 Segment->SetPermissions(GetPermissions(H: PHdr));
1883 Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS);
1884 m_sections_up->AddSection(section_sp: Segment);
1885
1886 provider.AddSegment(Range: *InfoOr, Seg: std::move(Segment));
1887 }
1888
1889 ParseSectionHeaders();
1890 if (m_section_headers.empty())
1891 return;
1892
1893 for (SectionHeaderCollIter I = std::next(x: m_section_headers.begin());
1894 I != m_section_headers.end(); ++I) {
1895 const ELFSectionHeaderInfo &header = *I;
1896
1897 ConstString &name = I->section_name;
1898 const uint64_t file_size =
1899 header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1900
1901 VMAddressProvider &provider =
1902 header.sh_flags & SHF_TLS ? tls_provider : regular_provider;
1903 auto InfoOr = provider.GetAddressInfo(H: header);
1904 if (!InfoOr)
1905 continue;
1906
1907 SectionType sect_type = GetSectionType(H: header);
1908
1909 const uint32_t target_bytes_size =
1910 GetTargetByteSize(Type: sect_type, arch: m_arch_spec);
1911
1912 elf::elf_xword log2align =
1913 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(Value: header.sh_addralign);
1914
1915 SectionSP section_sp(new Section(
1916 InfoOr->Segment, GetModule(), // Module to which this section belongs.
1917 this, // ObjectFile to which this section belongs and should
1918 // read section data from.
1919 SectionIndex(I), // Section ID.
1920 name, // Section name.
1921 sect_type, // Section type.
1922 InfoOr->Range.GetRangeBase(), // VM address.
1923 InfoOr->Range.GetByteSize(), // VM size in bytes of this section.
1924 header.sh_offset, // Offset of this section in the file.
1925 file_size, // Size of the section as found in the file.
1926 log2align, // Alignment of the section
1927 header.sh_flags, // Flags for this section.
1928 target_bytes_size)); // Number of host bytes per target byte
1929
1930 section_sp->SetPermissions(GetPermissions(H: header));
1931 section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1932 (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up)
1933 .AddSection(section_sp);
1934 provider.AddSection(Info: std::move(*InfoOr), Sect: std::move(section_sp));
1935 }
1936
1937 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1938 // unified section list.
1939 if (GetType() != eTypeDebugInfo)
1940 unified_section_list = *m_sections_up;
1941
1942 // If there's a .gnu_debugdata section, we'll try to read the .symtab that's
1943 // embedded in there and replace the one in the original object file (if any).
1944 // If there's none in the orignal object file, we add it to it.
1945 if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) {
1946 if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) {
1947 if (SectionSP symtab_section_sp =
1948 gdd_objfile_section_list->FindSectionByType(
1949 sect_type: eSectionTypeELFSymbolTable, check_children: true)) {
1950 SectionSP module_section_sp = unified_section_list.FindSectionByType(
1951 sect_type: eSectionTypeELFSymbolTable, check_children: true);
1952 if (module_section_sp)
1953 unified_section_list.ReplaceSection(sect_id: module_section_sp->GetID(),
1954 section_sp: symtab_section_sp);
1955 else
1956 unified_section_list.AddSection(section_sp: symtab_section_sp);
1957 }
1958 }
1959 }
1960}
1961
1962std::shared_ptr<ObjectFileELF> ObjectFileELF::GetGnuDebugDataObjectFile() {
1963 if (m_gnu_debug_data_object_file != nullptr)
1964 return m_gnu_debug_data_object_file;
1965
1966 SectionSP section =
1967 GetSectionList()->FindSectionByName(section_dstr: ConstString(".gnu_debugdata"));
1968 if (!section)
1969 return nullptr;
1970
1971 if (!lldb_private::lzma::isAvailable()) {
1972 GetModule()->ReportWarning(
1973 format: "No LZMA support found for reading .gnu_debugdata section");
1974 return nullptr;
1975 }
1976
1977 // Uncompress the data
1978 DataExtractor data;
1979 section->GetSectionData(data);
1980 llvm::SmallVector<uint8_t, 0> uncompressedData;
1981 auto err = lldb_private::lzma::uncompress(InputBuffer: data.GetData(), Uncompressed&: uncompressedData);
1982 if (err) {
1983 GetModule()->ReportWarning(
1984 format: "An error occurred while decompression the section {0}: {1}",
1985 args: section->GetName().AsCString(), args: llvm::toString(E: std::move(err)).c_str());
1986 return nullptr;
1987 }
1988
1989 // Construct ObjectFileELF object from decompressed buffer
1990 DataBufferSP gdd_data_buf(
1991 new DataBufferHeap(uncompressedData.data(), uncompressedData.size()));
1992 auto fspec = GetFileSpec().CopyByAppendingPathComponent(
1993 component: llvm::StringRef("gnu_debugdata"));
1994 m_gnu_debug_data_object_file.reset(p: new ObjectFileELF(
1995 GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize()));
1996
1997 // This line is essential; otherwise a breakpoint can be set but not hit.
1998 m_gnu_debug_data_object_file->SetType(ObjectFile::eTypeDebugInfo);
1999
2000 ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture();
2001 if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec))
2002 return m_gnu_debug_data_object_file;
2003
2004 return nullptr;
2005}
2006
2007// Find the arm/aarch64 mapping symbol character in the given symbol name.
2008// Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
2009// recognize cases when the mapping symbol prefixed by an arbitrary string
2010// because if a symbol prefix added to each symbol in the object file with
2011// objcopy then the mapping symbols are also prefixed.
2012static char FindArmAarch64MappingSymbol(const char *symbol_name) {
2013 if (!symbol_name)
2014 return '\0';
2015
2016 const char *dollar_pos = ::strchr(s: symbol_name, c: '$');
2017 if (!dollar_pos || dollar_pos[1] == '\0')
2018 return '\0';
2019
2020 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
2021 return dollar_pos[1];
2022 return '\0';
2023}
2024
2025#define STO_MIPS_ISA (3 << 6)
2026#define STO_MICROMIPS (2 << 6)
2027#define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
2028
2029// private
2030unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
2031 SectionList *section_list,
2032 const size_t num_symbols,
2033 const DataExtractor &symtab_data,
2034 const DataExtractor &strtab_data) {
2035 ELFSymbol symbol;
2036 lldb::offset_t offset = 0;
2037
2038 static ConstString text_section_name(".text");
2039 static ConstString init_section_name(".init");
2040 static ConstString fini_section_name(".fini");
2041 static ConstString ctors_section_name(".ctors");
2042 static ConstString dtors_section_name(".dtors");
2043
2044 static ConstString data_section_name(".data");
2045 static ConstString rodata_section_name(".rodata");
2046 static ConstString rodata1_section_name(".rodata1");
2047 static ConstString data2_section_name(".data1");
2048 static ConstString bss_section_name(".bss");
2049 static ConstString opd_section_name(".opd"); // For ppc64
2050
2051 // On Android the oatdata and the oatexec symbols in the oat and odex files
2052 // covers the full .text section what causes issues with displaying unusable
2053 // symbol name to the user and very slow unwinding speed because the
2054 // instruction emulation based unwind plans try to emulate all instructions
2055 // in these symbols. Don't add these symbols to the symbol list as they have
2056 // no use for the debugger and they are causing a lot of trouble. Filtering
2057 // can't be restricted to Android because this special object file don't
2058 // contain the note section specifying the environment to Android but the
2059 // custom extension and file name makes it highly unlikely that this will
2060 // collide with anything else.
2061 llvm::StringRef file_extension = m_file.GetFileNameExtension();
2062 bool skip_oatdata_oatexec =
2063 file_extension == ".oat" || file_extension == ".odex";
2064
2065 ArchSpec arch = GetArchitecture();
2066 ModuleSP module_sp(GetModule());
2067 SectionList *module_section_list =
2068 module_sp ? module_sp->GetSectionList() : nullptr;
2069
2070 // Local cache to avoid doing a FindSectionByName for each symbol. The "const
2071 // char*" key must came from a ConstString object so they can be compared by
2072 // pointer
2073 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
2074
2075 unsigned i;
2076 for (i = 0; i < num_symbols; ++i) {
2077 if (!symbol.Parse(data: symtab_data, offset: &offset))
2078 break;
2079
2080 const char *symbol_name = strtab_data.PeekCStr(offset: symbol.st_name);
2081 if (!symbol_name)
2082 symbol_name = "";
2083
2084 // No need to add non-section symbols that have no names
2085 if (symbol.getType() != STT_SECTION &&
2086 (symbol_name == nullptr || symbol_name[0] == '\0'))
2087 continue;
2088
2089 // Skipping oatdata and oatexec sections if it is requested. See details
2090 // above the definition of skip_oatdata_oatexec for the reasons.
2091 if (skip_oatdata_oatexec && (::strcmp(s1: symbol_name, s2: "oatdata") == 0 ||
2092 ::strcmp(s1: symbol_name, s2: "oatexec") == 0))
2093 continue;
2094
2095 SectionSP symbol_section_sp;
2096 SymbolType symbol_type = eSymbolTypeInvalid;
2097 Elf64_Half shndx = symbol.st_shndx;
2098
2099 switch (shndx) {
2100 case SHN_ABS:
2101 symbol_type = eSymbolTypeAbsolute;
2102 break;
2103 case SHN_UNDEF:
2104 symbol_type = eSymbolTypeUndefined;
2105 break;
2106 default:
2107 symbol_section_sp = section_list->FindSectionByID(sect_id: shndx);
2108 break;
2109 }
2110
2111 // If a symbol is undefined do not process it further even if it has a STT
2112 // type
2113 if (symbol_type != eSymbolTypeUndefined) {
2114 switch (symbol.getType()) {
2115 default:
2116 case STT_NOTYPE:
2117 // The symbol's type is not specified.
2118 break;
2119
2120 case STT_OBJECT:
2121 // The symbol is associated with a data object, such as a variable, an
2122 // array, etc.
2123 symbol_type = eSymbolTypeData;
2124 break;
2125
2126 case STT_FUNC:
2127 // The symbol is associated with a function or other executable code.
2128 symbol_type = eSymbolTypeCode;
2129 break;
2130
2131 case STT_SECTION:
2132 // The symbol is associated with a section. Symbol table entries of
2133 // this type exist primarily for relocation and normally have STB_LOCAL
2134 // binding.
2135 break;
2136
2137 case STT_FILE:
2138 // Conventionally, the symbol's name gives the name of the source file
2139 // associated with the object file. A file symbol has STB_LOCAL
2140 // binding, its section index is SHN_ABS, and it precedes the other
2141 // STB_LOCAL symbols for the file, if it is present.
2142 symbol_type = eSymbolTypeSourceFile;
2143 break;
2144
2145 case STT_GNU_IFUNC:
2146 // The symbol is associated with an indirect function. The actual
2147 // function will be resolved if it is referenced.
2148 symbol_type = eSymbolTypeResolver;
2149 break;
2150 }
2151 }
2152
2153 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2154 if (symbol_section_sp) {
2155 ConstString sect_name = symbol_section_sp->GetName();
2156 if (sect_name == text_section_name || sect_name == init_section_name ||
2157 sect_name == fini_section_name || sect_name == ctors_section_name ||
2158 sect_name == dtors_section_name) {
2159 symbol_type = eSymbolTypeCode;
2160 } else if (sect_name == data_section_name ||
2161 sect_name == data2_section_name ||
2162 sect_name == rodata_section_name ||
2163 sect_name == rodata1_section_name ||
2164 sect_name == bss_section_name) {
2165 symbol_type = eSymbolTypeData;
2166 }
2167 }
2168 }
2169
2170 int64_t symbol_value_offset = 0;
2171 uint32_t additional_flags = 0;
2172
2173 if (arch.IsValid()) {
2174 if (arch.GetMachine() == llvm::Triple::arm) {
2175 if (symbol.getBinding() == STB_LOCAL) {
2176 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2177 if (symbol_type == eSymbolTypeCode) {
2178 switch (mapping_symbol) {
2179 case 'a':
2180 // $a[.<any>]* - marks an ARM instruction sequence
2181 m_address_class_map[symbol.st_value] = AddressClass::eCode;
2182 break;
2183 case 'b':
2184 case 't':
2185 // $b[.<any>]* - marks a THUMB BL instruction sequence
2186 // $t[.<any>]* - marks a THUMB instruction sequence
2187 m_address_class_map[symbol.st_value] =
2188 AddressClass::eCodeAlternateISA;
2189 break;
2190 case 'd':
2191 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2192 m_address_class_map[symbol.st_value] = AddressClass::eData;
2193 break;
2194 }
2195 }
2196 if (mapping_symbol)
2197 continue;
2198 }
2199 } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2200 if (symbol.getBinding() == STB_LOCAL) {
2201 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2202 if (symbol_type == eSymbolTypeCode) {
2203 switch (mapping_symbol) {
2204 case 'x':
2205 // $x[.<any>]* - marks an A64 instruction sequence
2206 m_address_class_map[symbol.st_value] = AddressClass::eCode;
2207 break;
2208 case 'd':
2209 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2210 m_address_class_map[symbol.st_value] = AddressClass::eData;
2211 break;
2212 }
2213 }
2214 if (mapping_symbol)
2215 continue;
2216 }
2217 }
2218
2219 if (arch.GetMachine() == llvm::Triple::arm) {
2220 if (symbol_type == eSymbolTypeCode) {
2221 if (symbol.st_value & 1) {
2222 // Subtracting 1 from the address effectively unsets the low order
2223 // bit, which results in the address actually pointing to the
2224 // beginning of the symbol. This delta will be used below in
2225 // conjunction with symbol.st_value to produce the final
2226 // symbol_value that we store in the symtab.
2227 symbol_value_offset = -1;
2228 m_address_class_map[symbol.st_value ^ 1] =
2229 AddressClass::eCodeAlternateISA;
2230 } else {
2231 // This address is ARM
2232 m_address_class_map[symbol.st_value] = AddressClass::eCode;
2233 }
2234 }
2235 }
2236
2237 /*
2238 * MIPS:
2239 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2240 * MIPS).
2241 * This allows processor to switch between microMIPS and MIPS without any
2242 * need
2243 * for special mode-control register. However, apart from .debug_line,
2244 * none of
2245 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2246 * st_other
2247 * flag to check whether the symbol is microMIPS and then set the address
2248 * class
2249 * accordingly.
2250 */
2251 if (arch.IsMIPS()) {
2252 if (IS_MICROMIPS(symbol.st_other))
2253 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2254 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2255 symbol.st_value = symbol.st_value & (~1ull);
2256 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2257 } else {
2258 if (symbol_type == eSymbolTypeCode)
2259 m_address_class_map[symbol.st_value] = AddressClass::eCode;
2260 else if (symbol_type == eSymbolTypeData)
2261 m_address_class_map[symbol.st_value] = AddressClass::eData;
2262 else
2263 m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
2264 }
2265 }
2266 }
2267
2268 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2269 // symbols. See above for more details.
2270 uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2271
2272 if (symbol_section_sp &&
2273 CalculateType() != ObjectFile::Type::eTypeObjectFile)
2274 symbol_value -= symbol_section_sp->GetFileAddress();
2275
2276 if (symbol_section_sp && module_section_list &&
2277 module_section_list != section_list) {
2278 ConstString sect_name = symbol_section_sp->GetName();
2279 auto section_it = section_name_to_section.find(x: sect_name.GetCString());
2280 if (section_it == section_name_to_section.end())
2281 section_it =
2282 section_name_to_section
2283 .emplace(args: sect_name.GetCString(),
2284 args: module_section_list->FindSectionByName(section_dstr: sect_name))
2285 .first;
2286 if (section_it->second)
2287 symbol_section_sp = section_it->second;
2288 }
2289
2290 bool is_global = symbol.getBinding() == STB_GLOBAL;
2291 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2292 llvm::StringRef symbol_ref(symbol_name);
2293
2294 // Symbol names may contain @VERSION suffixes. Find those and strip them
2295 // temporarily.
2296 size_t version_pos = symbol_ref.find(C: '@');
2297 bool has_suffix = version_pos != llvm::StringRef::npos;
2298 llvm::StringRef symbol_bare = symbol_ref.substr(Start: 0, N: version_pos);
2299 Mangled mangled(symbol_bare);
2300
2301 // Now append the suffix back to mangled and unmangled names. Only do it if
2302 // the demangling was successful (string is not empty).
2303 if (has_suffix) {
2304 llvm::StringRef suffix = symbol_ref.substr(Start: version_pos);
2305
2306 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2307 if (!mangled_name.empty())
2308 mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2309
2310 ConstString demangled = mangled.GetDemangledName();
2311 llvm::StringRef demangled_name = demangled.GetStringRef();
2312 if (!demangled_name.empty())
2313 mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2314 }
2315
2316 // In ELF all symbol should have a valid size but it is not true for some
2317 // function symbols coming from hand written assembly. As none of the
2318 // function symbol should have 0 size we try to calculate the size for
2319 // these symbols in the symtab with saying that their original size is not
2320 // valid.
2321 bool symbol_size_valid =
2322 symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2323
2324 Symbol dc_symbol(
2325 i + start_id, // ID is the original symbol table index.
2326 mangled,
2327 symbol_type, // Type of this symbol
2328 is_global, // Is this globally visible?
2329 false, // Is this symbol debug info?
2330 false, // Is this symbol a trampoline?
2331 false, // Is this symbol artificial?
2332 AddressRange(symbol_section_sp, // Section in which this symbol is
2333 // defined or null.
2334 symbol_value, // Offset in section or symbol value.
2335 symbol.st_size), // Size in bytes of this symbol.
2336 symbol_size_valid, // Symbol size is valid
2337 has_suffix, // Contains linker annotations?
2338 flags); // Symbol flags.
2339 if (symbol.getBinding() == STB_WEAK)
2340 dc_symbol.SetIsWeak(true);
2341 symtab->AddSymbol(symbol: dc_symbol);
2342 }
2343 return i;
2344}
2345
2346unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2347 user_id_t start_id,
2348 lldb_private::Section *symtab) {
2349 if (symtab->GetObjectFile() != this) {
2350 // If the symbol table section is owned by a different object file, have it
2351 // do the parsing.
2352 ObjectFileELF *obj_file_elf =
2353 static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2354 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2355 }
2356
2357 // Get section list for this object file.
2358 SectionList *section_list = m_sections_up.get();
2359 if (!section_list)
2360 return 0;
2361
2362 user_id_t symtab_id = symtab->GetID();
2363 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(id: symtab_id);
2364 assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2365 symtab_hdr->sh_type == SHT_DYNSYM);
2366
2367 // sh_link: section header index of associated string table.
2368 user_id_t strtab_id = symtab_hdr->sh_link;
2369 Section *strtab = section_list->FindSectionByID(sect_id: strtab_id).get();
2370
2371 if (symtab && strtab) {
2372 assert(symtab->GetObjectFile() == this);
2373 assert(strtab->GetObjectFile() == this);
2374
2375 DataExtractor symtab_data;
2376 DataExtractor strtab_data;
2377 if (ReadSectionData(section: symtab, section_data&: symtab_data) &&
2378 ReadSectionData(section: strtab, section_data&: strtab_data)) {
2379 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2380
2381 return ParseSymbols(symtab: symbol_table, start_id, section_list, num_symbols,
2382 symtab_data, strtab_data);
2383 }
2384 }
2385
2386 return 0;
2387}
2388
2389size_t ObjectFileELF::ParseDynamicSymbols() {
2390 if (m_dynamic_symbols.size())
2391 return m_dynamic_symbols.size();
2392
2393 SectionList *section_list = GetSectionList();
2394 if (!section_list)
2395 return 0;
2396
2397 // Find the SHT_DYNAMIC section.
2398 Section *dynsym =
2399 section_list->FindSectionByType(sect_type: eSectionTypeELFDynamicLinkInfo, check_children: true)
2400 .get();
2401 if (!dynsym)
2402 return 0;
2403 assert(dynsym->GetObjectFile() == this);
2404
2405 ELFDynamic symbol;
2406 DataExtractor dynsym_data;
2407 if (ReadSectionData(section: dynsym, section_data&: dynsym_data)) {
2408 const lldb::offset_t section_size = dynsym_data.GetByteSize();
2409 lldb::offset_t cursor = 0;
2410
2411 while (cursor < section_size) {
2412 if (!symbol.Parse(data: dynsym_data, offset: &cursor))
2413 break;
2414
2415 m_dynamic_symbols.push_back(x: symbol);
2416 }
2417 }
2418
2419 return m_dynamic_symbols.size();
2420}
2421
2422const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2423 if (!ParseDynamicSymbols())
2424 return nullptr;
2425
2426 DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2427 DynamicSymbolCollIter E = m_dynamic_symbols.end();
2428 for (; I != E; ++I) {
2429 ELFDynamic *symbol = &*I;
2430
2431 if (symbol->d_tag == tag)
2432 return symbol;
2433 }
2434
2435 return nullptr;
2436}
2437
2438unsigned ObjectFileELF::PLTRelocationType() {
2439 // DT_PLTREL
2440 // This member specifies the type of relocation entry to which the
2441 // procedure linkage table refers. The d_val member holds DT_REL or
2442 // DT_RELA, as appropriate. All relocations in a procedure linkage table
2443 // must use the same relocation.
2444 const ELFDynamic *symbol = FindDynamicSymbol(tag: DT_PLTREL);
2445
2446 if (symbol)
2447 return symbol->d_val;
2448
2449 return 0;
2450}
2451
2452// Returns the size of the normal plt entries and the offset of the first
2453// normal plt entry. The 0th entry in the plt table is usually a resolution
2454// entry which have different size in some architectures then the rest of the
2455// plt entries.
2456static std::pair<uint64_t, uint64_t>
2457GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2458 const ELFSectionHeader *plt_hdr) {
2459 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2460
2461 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2462 // 16 bytes. So round the entsize up by the alignment if addralign is set.
2463 elf_xword plt_entsize =
2464 plt_hdr->sh_addralign
2465 ? llvm::alignTo(Value: plt_hdr->sh_entsize, Align: plt_hdr->sh_addralign)
2466 : plt_hdr->sh_entsize;
2467
2468 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2469 // PLT entries relocation code in general requires multiple instruction and
2470 // should be greater than 4 bytes in most cases. Try to guess correct size
2471 // just in case.
2472 if (plt_entsize <= 4) {
2473 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2474 // size of the plt entries based on the number of entries and the size of
2475 // the plt section with the assumption that the size of the 0th entry is at
2476 // least as big as the size of the normal entries and it isn't much bigger
2477 // then that.
2478 if (plt_hdr->sh_addralign)
2479 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2480 (num_relocations + 1) * plt_hdr->sh_addralign;
2481 else
2482 plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2483 }
2484
2485 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2486
2487 return std::make_pair(x&: plt_entsize, y&: plt_offset);
2488}
2489
2490static unsigned ParsePLTRelocations(
2491 Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2492 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2493 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2494 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2495 DataExtractor &symtab_data, DataExtractor &strtab_data) {
2496 ELFRelocation rel(rel_type);
2497 ELFSymbol symbol;
2498 lldb::offset_t offset = 0;
2499
2500 uint64_t plt_offset, plt_entsize;
2501 std::tie(args&: plt_entsize, args&: plt_offset) =
2502 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2503 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2504
2505 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2506 reloc_info_fn reloc_type;
2507 reloc_info_fn reloc_symbol;
2508
2509 if (hdr->Is32Bit()) {
2510 reloc_type = ELFRelocation::RelocType32;
2511 reloc_symbol = ELFRelocation::RelocSymbol32;
2512 } else {
2513 reloc_type = ELFRelocation::RelocType64;
2514 reloc_symbol = ELFRelocation::RelocSymbol64;
2515 }
2516
2517 unsigned slot_type = hdr->GetRelocationJumpSlotType();
2518 unsigned i;
2519 for (i = 0; i < num_relocations; ++i) {
2520 if (!rel.Parse(data: rel_data, offset: &offset))
2521 break;
2522
2523 if (reloc_type(rel) != slot_type)
2524 continue;
2525
2526 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2527 if (!symbol.Parse(data: symtab_data, offset: &symbol_offset))
2528 break;
2529
2530 const char *symbol_name = strtab_data.PeekCStr(offset: symbol.st_name);
2531 uint64_t plt_index = plt_offset + i * plt_entsize;
2532
2533 Symbol jump_symbol(
2534 i + start_id, // Symbol table index
2535 symbol_name, // symbol name.
2536 eSymbolTypeTrampoline, // Type of this symbol
2537 false, // Is this globally visible?
2538 false, // Is this symbol debug info?
2539 true, // Is this symbol a trampoline?
2540 true, // Is this symbol artificial?
2541 plt_section_sp, // Section in which this symbol is defined or null.
2542 plt_index, // Offset in section or symbol value.
2543 plt_entsize, // Size in bytes of this symbol.
2544 true, // Size is valid
2545 false, // Contains linker annotations?
2546 0); // Symbol flags.
2547
2548 symbol_table->AddSymbol(symbol: jump_symbol);
2549 }
2550
2551 return i;
2552}
2553
2554unsigned
2555ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2556 const ELFSectionHeaderInfo *rel_hdr,
2557 user_id_t rel_id) {
2558 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2559
2560 // The link field points to the associated symbol table.
2561 user_id_t symtab_id = rel_hdr->sh_link;
2562
2563 // If the link field doesn't point to the appropriate symbol name table then
2564 // try to find it by name as some compiler don't fill in the link fields.
2565 if (!symtab_id)
2566 symtab_id = GetSectionIndexByName(name: ".dynsym");
2567
2568 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers
2569 // point that to the .got.plt or .got section instead of .plt.
2570 user_id_t plt_id = GetSectionIndexByName(name: ".plt");
2571
2572 if (!symtab_id || !plt_id)
2573 return 0;
2574
2575 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(id: plt_id);
2576 if (!plt_hdr)
2577 return 0;
2578
2579 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(id: symtab_id);
2580 if (!sym_hdr)
2581 return 0;
2582
2583 SectionList *section_list = m_sections_up.get();
2584 if (!section_list)
2585 return 0;
2586
2587 Section *rel_section = section_list->FindSectionByID(sect_id: rel_id).get();
2588 if (!rel_section)
2589 return 0;
2590
2591 SectionSP plt_section_sp(section_list->FindSectionByID(sect_id: plt_id));
2592 if (!plt_section_sp)
2593 return 0;
2594
2595 Section *symtab = section_list->FindSectionByID(sect_id: symtab_id).get();
2596 if (!symtab)
2597 return 0;
2598
2599 // sh_link points to associated string table.
2600 Section *strtab = section_list->FindSectionByID(sect_id: sym_hdr->sh_link).get();
2601 if (!strtab)
2602 return 0;
2603
2604 DataExtractor rel_data;
2605 if (!ReadSectionData(section: rel_section, section_data&: rel_data))
2606 return 0;
2607
2608 DataExtractor symtab_data;
2609 if (!ReadSectionData(section: symtab, section_data&: symtab_data))
2610 return 0;
2611
2612 DataExtractor strtab_data;
2613 if (!ReadSectionData(section: strtab, section_data&: strtab_data))
2614 return 0;
2615
2616 unsigned rel_type = PLTRelocationType();
2617 if (!rel_type)
2618 return 0;
2619
2620 return ParsePLTRelocations(symbol_table, start_id, rel_type, hdr: &m_header,
2621 rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2622 rel_data, symtab_data, strtab_data);
2623}
2624
2625static void ApplyELF64ABS64Relocation(Symtab *symtab, ELFRelocation &rel,
2626 DataExtractor &debug_data,
2627 Section *rel_section) {
2628 Symbol *symbol = symtab->FindSymbolByID(uid: ELFRelocation::RelocSymbol64(rel));
2629 if (symbol) {
2630 addr_t value = symbol->GetAddressRef().GetFileAddress();
2631 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2632 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2633 WritableDataBuffer *data_buffer =
2634 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2635 uint64_t *dst = reinterpret_cast<uint64_t *>(
2636 data_buffer->GetBytes() + rel_section->GetFileOffset() +
2637 ELFRelocation::RelocOffset64(rel));
2638 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2639 memcpy(dest: dst, src: &val_offset, n: sizeof(uint64_t));
2640 }
2641}
2642
2643static void ApplyELF64ABS32Relocation(Symtab *symtab, ELFRelocation &rel,
2644 DataExtractor &debug_data,
2645 Section *rel_section, bool is_signed) {
2646 Symbol *symbol = symtab->FindSymbolByID(uid: ELFRelocation::RelocSymbol64(rel));
2647 if (symbol) {
2648 addr_t value = symbol->GetAddressRef().GetFileAddress();
2649 value += ELFRelocation::RelocAddend32(rel);
2650 if ((!is_signed && (value > UINT32_MAX)) ||
2651 (is_signed &&
2652 ((int64_t)value > INT32_MAX || (int64_t)value < INT32_MIN))) {
2653 Log *log = GetLog(mask: LLDBLog::Modules);
2654 LLDB_LOGF(log, "Failed to apply debug info relocations");
2655 return;
2656 }
2657 uint32_t truncated_addr = (value & 0xFFFFFFFF);
2658 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2659 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2660 WritableDataBuffer *data_buffer =
2661 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2662 uint32_t *dst = reinterpret_cast<uint32_t *>(
2663 data_buffer->GetBytes() + rel_section->GetFileOffset() +
2664 ELFRelocation::RelocOffset32(rel));
2665 memcpy(dest: dst, src: &truncated_addr, n: sizeof(uint32_t));
2666 }
2667}
2668
2669static void ApplyELF32ABS32RelRelocation(Symtab *symtab, ELFRelocation &rel,
2670 DataExtractor &debug_data,
2671 Section *rel_section) {
2672 Log *log = GetLog(mask: LLDBLog::Modules);
2673 Symbol *symbol = symtab->FindSymbolByID(uid: ELFRelocation::RelocSymbol32(rel));
2674 if (symbol) {
2675 addr_t value = symbol->GetAddressRef().GetFileAddress();
2676 if (value == LLDB_INVALID_ADDRESS) {
2677 const char *name = symbol->GetName().GetCString();
2678 LLDB_LOGF(log, "Debug info symbol invalid: %s", name);
2679 return;
2680 }
2681 assert(llvm::isUInt<32>(value) && "Valid addresses are 32-bit");
2682 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2683 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2684 WritableDataBuffer *data_buffer =
2685 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2686 uint8_t *dst = data_buffer->GetBytes() + rel_section->GetFileOffset() +
2687 ELFRelocation::RelocOffset32(rel);
2688 // Implicit addend is stored inline as a signed value.
2689 int32_t addend;
2690 memcpy(dest: &addend, src: dst, n: sizeof(int32_t));
2691 // The sum must be positive. This extra check prevents UB from overflow in
2692 // the actual range check below.
2693 if (addend < 0 && static_cast<uint32_t>(-addend) > value) {
2694 LLDB_LOGF(log, "Debug info relocation overflow: 0x%" PRIx64,
2695 static_cast<int64_t>(value) + addend);
2696 return;
2697 }
2698 if (!llvm::isUInt<32>(x: value + addend)) {
2699 LLDB_LOGF(log, "Debug info relocation out of range: 0x%" PRIx64, value);
2700 return;
2701 }
2702 uint32_t addr = value + addend;
2703 memcpy(dest: dst, src: &addr, n: sizeof(uint32_t));
2704 }
2705}
2706
2707unsigned ObjectFileELF::ApplyRelocations(
2708 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2709 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2710 DataExtractor &rel_data, DataExtractor &symtab_data,
2711 DataExtractor &debug_data, Section *rel_section) {
2712 ELFRelocation rel(rel_hdr->sh_type);
2713 lldb::addr_t offset = 0;
2714 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2715 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2716 reloc_info_fn reloc_type;
2717 reloc_info_fn reloc_symbol;
2718
2719 if (hdr->Is32Bit()) {
2720 reloc_type = ELFRelocation::RelocType32;
2721 reloc_symbol = ELFRelocation::RelocSymbol32;
2722 } else {
2723 reloc_type = ELFRelocation::RelocType64;
2724 reloc_symbol = ELFRelocation::RelocSymbol64;
2725 }
2726
2727 for (unsigned i = 0; i < num_relocations; ++i) {
2728 if (!rel.Parse(data: rel_data, offset: &offset)) {
2729 GetModule()->ReportError(format: ".rel{0}[{1:d}] failed to parse relocation",
2730 args: rel_section->GetName().AsCString(), args&: i);
2731 break;
2732 }
2733 Symbol *symbol = nullptr;
2734
2735 if (hdr->Is32Bit()) {
2736 switch (hdr->e_machine) {
2737 case llvm::ELF::EM_ARM:
2738 switch (reloc_type(rel)) {
2739 case R_ARM_ABS32:
2740 ApplyELF32ABS32RelRelocation(symtab, rel, debug_data, rel_section);
2741 break;
2742 case R_ARM_REL32:
2743 GetModule()->ReportError(format: "unsupported AArch32 relocation:"
2744 " .rel{0}[{1}], type {2}",
2745 args: rel_section->GetName().AsCString(), args&: i,
2746 args: reloc_type(rel));
2747 break;
2748 default:
2749 assert(false && "unexpected relocation type");
2750 }
2751 break;
2752 case llvm::ELF::EM_386:
2753 switch (reloc_type(rel)) {
2754 case R_386_32:
2755 symbol = symtab->FindSymbolByID(uid: reloc_symbol(rel));
2756 if (symbol) {
2757 addr_t f_offset =
2758 rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel);
2759 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2760 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2761 WritableDataBuffer *data_buffer =
2762 llvm::cast<WritableDataBuffer>(Val: data_buffer_sp.get());
2763 uint32_t *dst = reinterpret_cast<uint32_t *>(
2764 data_buffer->GetBytes() + f_offset);
2765
2766 addr_t value = symbol->GetAddressRef().GetFileAddress();
2767 if (rel.IsRela()) {
2768 value += ELFRelocation::RelocAddend32(rel);
2769 } else {
2770 value += *dst;
2771 }
2772 *dst = value;
2773 } else {
2774 GetModule()->ReportError(format: ".rel{0}[{1}] unknown symbol id: {2:d}",
2775 args: rel_section->GetName().AsCString(), args&: i,
2776 args: reloc_symbol(rel));
2777 }
2778 break;
2779 case R_386_NONE:
2780 case R_386_PC32:
2781 GetModule()->ReportError(format: "unsupported i386 relocation:"
2782 " .rel{0}[{1}], type {2}",
2783 args: rel_section->GetName().AsCString(), args&: i,
2784 args: reloc_type(rel));
2785 break;
2786 default:
2787 assert(false && "unexpected relocation type");
2788 break;
2789 }
2790 break;
2791 default:
2792 GetModule()->ReportError(format: "unsupported 32-bit ELF machine arch: {0}", args: hdr->e_machine);
2793 break;
2794 }
2795 } else {
2796 switch (hdr->e_machine) {
2797 case llvm::ELF::EM_AARCH64:
2798 switch (reloc_type(rel)) {
2799 case R_AARCH64_ABS64:
2800 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2801 break;
2802 case R_AARCH64_ABS32:
2803 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, is_signed: true);
2804 break;
2805 default:
2806 assert(false && "unexpected relocation type");
2807 }
2808 break;
2809 case llvm::ELF::EM_LOONGARCH:
2810 switch (reloc_type(rel)) {
2811 case R_LARCH_64:
2812 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2813 break;
2814 case R_LARCH_32:
2815 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, is_signed: true);
2816 break;
2817 default:
2818 assert(false && "unexpected relocation type");
2819 }
2820 break;
2821 case llvm::ELF::EM_X86_64:
2822 switch (reloc_type(rel)) {
2823 case R_X86_64_64:
2824 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2825 break;
2826 case R_X86_64_32:
2827 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section,
2828 is_signed: false);
2829 break;
2830 case R_X86_64_32S:
2831 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, is_signed: true);
2832 break;
2833 case R_X86_64_PC32:
2834 default:
2835 assert(false && "unexpected relocation type");
2836 }
2837 break;
2838 default:
2839 GetModule()->ReportError(format: "unsupported 64-bit ELF machine arch: {0}", args: hdr->e_machine);
2840 break;
2841 }
2842 }
2843 }
2844
2845 return 0;
2846}
2847
2848unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2849 user_id_t rel_id,
2850 lldb_private::Symtab *thetab) {
2851 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2852
2853 // Parse in the section list if needed.
2854 SectionList *section_list = GetSectionList();
2855 if (!section_list)
2856 return 0;
2857
2858 user_id_t symtab_id = rel_hdr->sh_link;
2859 user_id_t debug_id = rel_hdr->sh_info;
2860
2861 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(id: symtab_id);
2862 if (!symtab_hdr)
2863 return 0;
2864
2865 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(id: debug_id);
2866 if (!debug_hdr)
2867 return 0;
2868
2869 Section *rel = section_list->FindSectionByID(sect_id: rel_id).get();
2870 if (!rel)
2871 return 0;
2872
2873 Section *symtab = section_list->FindSectionByID(sect_id: symtab_id).get();
2874 if (!symtab)
2875 return 0;
2876
2877 Section *debug = section_list->FindSectionByID(sect_id: debug_id).get();
2878 if (!debug)
2879 return 0;
2880
2881 DataExtractor rel_data;
2882 DataExtractor symtab_data;
2883 DataExtractor debug_data;
2884
2885 if (GetData(offset: rel->GetFileOffset(), length: rel->GetFileSize(), data&: rel_data) &&
2886 GetData(offset: symtab->GetFileOffset(), length: symtab->GetFileSize(), data&: symtab_data) &&
2887 GetData(offset: debug->GetFileOffset(), length: debug->GetFileSize(), data&: debug_data)) {
2888 ApplyRelocations(symtab: thetab, hdr: &m_header, rel_hdr, symtab_hdr, debug_hdr,
2889 rel_data, symtab_data, debug_data, rel_section: debug);
2890 }
2891
2892 return 0;
2893}
2894
2895void ObjectFileELF::ParseSymtab(Symtab &lldb_symtab) {
2896 ModuleSP module_sp(GetModule());
2897 if (!module_sp)
2898 return;
2899
2900 Progress progress("Parsing symbol table",
2901 m_file.GetFilename().AsCString(value_if_empty: "<Unknown>"));
2902 ElapsedTime elapsed(module_sp->GetSymtabParseTime());
2903
2904 // We always want to use the main object file so we (hopefully) only have one
2905 // cached copy of our symtab, dynamic sections, etc.
2906 ObjectFile *module_obj_file = module_sp->GetObjectFile();
2907 if (module_obj_file && module_obj_file != this)
2908 return module_obj_file->ParseSymtab(symtab&: lldb_symtab);
2909
2910 SectionList *section_list = module_sp->GetSectionList();
2911 if (!section_list)
2912 return;
2913
2914 uint64_t symbol_id = 0;
2915
2916 // Sharable objects and dynamic executables usually have 2 distinct symbol
2917 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2918 // smaller version of the symtab that only contains global symbols. The
2919 // information found in the dynsym is therefore also found in the symtab,
2920 // while the reverse is not necessarily true.
2921 Section *symtab =
2922 section_list->FindSectionByType(sect_type: eSectionTypeELFSymbolTable, check_children: true).get();
2923 if (symtab)
2924 symbol_id += ParseSymbolTable(symbol_table: &lldb_symtab, start_id: symbol_id, symtab);
2925
2926 // The symtab section is non-allocable and can be stripped, while the
2927 // .dynsym section which should always be always be there. To support the
2928 // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo
2929 // section, nomatter if .symtab was already parsed or not. This is because
2930 // minidebuginfo normally removes the .symtab symbols which have their
2931 // matching .dynsym counterparts.
2932 if (!symtab ||
2933 GetSectionList()->FindSectionByName(section_dstr: ConstString(".gnu_debugdata"))) {
2934 Section *dynsym =
2935 section_list->FindSectionByType(sect_type: eSectionTypeELFDynamicSymbols, check_children: true)
2936 .get();
2937 if (dynsym)
2938 symbol_id += ParseSymbolTable(symbol_table: &lldb_symtab, start_id: symbol_id, symtab: dynsym);
2939 }
2940
2941 // DT_JMPREL
2942 // If present, this entry's d_ptr member holds the address of
2943 // relocation
2944 // entries associated solely with the procedure linkage table.
2945 // Separating
2946 // these relocation entries lets the dynamic linker ignore them during
2947 // process initialization, if lazy binding is enabled. If this entry is
2948 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2949 // also be present.
2950 const ELFDynamic *symbol = FindDynamicSymbol(tag: DT_JMPREL);
2951 if (symbol) {
2952 // Synthesize trampoline symbols to help navigate the PLT.
2953 addr_t addr = symbol->d_ptr;
2954 Section *reloc_section =
2955 section_list->FindSectionContainingFileAddress(addr).get();
2956 if (reloc_section) {
2957 user_id_t reloc_id = reloc_section->GetID();
2958 const ELFSectionHeaderInfo *reloc_header =
2959 GetSectionHeaderByIndex(id: reloc_id);
2960 if (reloc_header)
2961 ParseTrampolineSymbols(symbol_table: &lldb_symtab, start_id: symbol_id, rel_hdr: reloc_header, rel_id: reloc_id);
2962 }
2963 }
2964
2965 if (DWARFCallFrameInfo *eh_frame =
2966 GetModule()->GetUnwindTable().GetEHFrameInfo()) {
2967 ParseUnwindSymbols(symbol_table: &lldb_symtab, eh_frame);
2968 }
2969
2970 // In the event that there's no symbol entry for the entry point we'll
2971 // artificially create one. We delegate to the symtab object the figuring
2972 // out of the proper size, this will usually make it span til the next
2973 // symbol it finds in the section. This means that if there are missing
2974 // symbols the entry point might span beyond its function definition.
2975 // We're fine with this as it doesn't make it worse than not having a
2976 // symbol entry at all.
2977 if (CalculateType() == eTypeExecutable) {
2978 ArchSpec arch = GetArchitecture();
2979 auto entry_point_addr = GetEntryPointAddress();
2980 bool is_valid_entry_point =
2981 entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset();
2982 addr_t entry_point_file_addr = entry_point_addr.GetFileAddress();
2983 if (is_valid_entry_point && !lldb_symtab.FindSymbolContainingFileAddress(
2984 file_addr: entry_point_file_addr)) {
2985 uint64_t symbol_id = lldb_symtab.GetNumSymbols();
2986 // Don't set the name for any synthetic symbols, the Symbol
2987 // object will generate one if needed when the name is accessed
2988 // via accessors.
2989 SectionSP section_sp = entry_point_addr.GetSection();
2990 Symbol symbol(
2991 /*symID=*/symbol_id,
2992 /*name=*/llvm::StringRef(), // Name will be auto generated.
2993 /*type=*/eSymbolTypeCode,
2994 /*external=*/true,
2995 /*is_debug=*/false,
2996 /*is_trampoline=*/false,
2997 /*is_artificial=*/true,
2998 /*section_sp=*/section_sp,
2999 /*offset=*/0,
3000 /*size=*/0, // FDE can span multiple symbols so don't use its size.
3001 /*size_is_valid=*/false,
3002 /*contains_linker_annotations=*/false,
3003 /*flags=*/0);
3004 // When the entry point is arm thumb we need to explicitly set its
3005 // class address to reflect that. This is important because expression
3006 // evaluation relies on correctly setting a breakpoint at this
3007 // address.
3008 if (arch.GetMachine() == llvm::Triple::arm &&
3009 (entry_point_file_addr & 1)) {
3010 symbol.GetAddressRef().SetOffset(entry_point_addr.GetOffset() ^ 1);
3011 m_address_class_map[entry_point_file_addr ^ 1] =
3012 AddressClass::eCodeAlternateISA;
3013 } else {
3014 m_address_class_map[entry_point_file_addr] = AddressClass::eCode;
3015 }
3016 lldb_symtab.AddSymbol(symbol);
3017 }
3018 }
3019}
3020
3021void ObjectFileELF::RelocateSection(lldb_private::Section *section)
3022{
3023 static const char *debug_prefix = ".debug";
3024
3025 // Set relocated bit so we stop getting called, regardless of whether we
3026 // actually relocate.
3027 section->SetIsRelocated(true);
3028
3029 // We only relocate in ELF relocatable files
3030 if (CalculateType() != eTypeObjectFile)
3031 return;
3032
3033 const char *section_name = section->GetName().GetCString();
3034 // Can't relocate that which can't be named
3035 if (section_name == nullptr)
3036 return;
3037
3038 // We don't relocate non-debug sections at the moment
3039 if (strncmp(s1: section_name, s2: debug_prefix, n: strlen(s: debug_prefix)))
3040 return;
3041
3042 // Relocation section names to look for
3043 std::string needle = std::string(".rel") + section_name;
3044 std::string needlea = std::string(".rela") + section_name;
3045
3046 for (SectionHeaderCollIter I = m_section_headers.begin();
3047 I != m_section_headers.end(); ++I) {
3048 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
3049 const char *hay_name = I->section_name.GetCString();
3050 if (hay_name == nullptr)
3051 continue;
3052 if (needle == hay_name || needlea == hay_name) {
3053 const ELFSectionHeader &reloc_header = *I;
3054 user_id_t reloc_id = SectionIndex(I);
3055 RelocateDebugSections(rel_hdr: &reloc_header, rel_id: reloc_id, thetab: GetSymtab());
3056 break;
3057 }
3058 }
3059 }
3060}
3061
3062void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
3063 DWARFCallFrameInfo *eh_frame) {
3064 SectionList *section_list = GetSectionList();
3065 if (!section_list)
3066 return;
3067
3068 // First we save the new symbols into a separate list and add them to the
3069 // symbol table after we collected all symbols we want to add. This is
3070 // neccessary because adding a new symbol invalidates the internal index of
3071 // the symtab what causing the next lookup to be slow because it have to
3072 // recalculate the index first.
3073 std::vector<Symbol> new_symbols;
3074
3075 size_t num_symbols = symbol_table->GetNumSymbols();
3076 uint64_t last_symbol_id =
3077 num_symbols ? symbol_table->SymbolAtIndex(idx: num_symbols - 1)->GetID() : 0;
3078 eh_frame->ForEachFDEEntries(callback: [&](lldb::addr_t file_addr, uint32_t size,
3079 dw_offset_t) {
3080 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
3081 if (symbol) {
3082 if (!symbol->GetByteSizeIsValid()) {
3083 symbol->SetByteSize(size);
3084 symbol->SetSizeIsSynthesized(true);
3085 }
3086 } else {
3087 SectionSP section_sp =
3088 section_list->FindSectionContainingFileAddress(addr: file_addr);
3089 if (section_sp) {
3090 addr_t offset = file_addr - section_sp->GetFileAddress();
3091 uint64_t symbol_id = ++last_symbol_id;
3092 // Don't set the name for any synthetic symbols, the Symbol
3093 // object will generate one if needed when the name is accessed
3094 // via accessors.
3095 Symbol eh_symbol(
3096 /*symID=*/symbol_id,
3097 /*name=*/llvm::StringRef(), // Name will be auto generated.
3098 /*type=*/eSymbolTypeCode,
3099 /*external=*/true,
3100 /*is_debug=*/false,
3101 /*is_trampoline=*/false,
3102 /*is_artificial=*/true,
3103 /*section_sp=*/section_sp,
3104 /*offset=*/offset,
3105 /*size=*/0, // FDE can span multiple symbols so don't use its size.
3106 /*size_is_valid=*/false,
3107 /*contains_linker_annotations=*/false,
3108 /*flags=*/0);
3109 new_symbols.push_back(x: eh_symbol);
3110 }
3111 }
3112 return true;
3113 });
3114
3115 for (const Symbol &s : new_symbols)
3116 symbol_table->AddSymbol(symbol: s);
3117}
3118
3119bool ObjectFileELF::IsStripped() {
3120 // TODO: determine this for ELF
3121 return false;
3122}
3123
3124//===----------------------------------------------------------------------===//
3125// Dump
3126//
3127// Dump the specifics of the runtime file container (such as any headers
3128// segments, sections, etc).
3129void ObjectFileELF::Dump(Stream *s) {
3130 ModuleSP module_sp(GetModule());
3131 if (!module_sp) {
3132 return;
3133 }
3134
3135 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
3136 s->Printf(format: "%p: ", static_cast<void *>(this));
3137 s->Indent();
3138 s->PutCString(cstr: "ObjectFileELF");
3139
3140 ArchSpec header_arch = GetArchitecture();
3141
3142 *s << ", file = '" << m_file
3143 << "', arch = " << header_arch.GetArchitectureName() << "\n";
3144
3145 DumpELFHeader(s, header: m_header);
3146 s->EOL();
3147 DumpELFProgramHeaders(s);
3148 s->EOL();
3149 DumpELFSectionHeaders(s);
3150 s->EOL();
3151 SectionList *section_list = GetSectionList();
3152 if (section_list)
3153 section_list->Dump(s&: s->AsRawOstream(), indent: s->GetIndentLevel(), target: nullptr, show_header: true,
3154 UINT32_MAX);
3155 Symtab *symtab = GetSymtab();
3156 if (symtab)
3157 symtab->Dump(s, target: nullptr, sort_type: eSortOrderNone);
3158 s->EOL();
3159 DumpDependentModules(s);
3160 s->EOL();
3161}
3162
3163// DumpELFHeader
3164//
3165// Dump the ELF header to the specified output stream
3166void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
3167 s->PutCString(cstr: "ELF Header\n");
3168 s->Printf(format: "e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
3169 s->Printf(format: "e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
3170 header.e_ident[EI_MAG1]);
3171 s->Printf(format: "e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
3172 header.e_ident[EI_MAG2]);
3173 s->Printf(format: "e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
3174 header.e_ident[EI_MAG3]);
3175
3176 s->Printf(format: "e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
3177 s->Printf(format: "e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]);
3178 DumpELFHeader_e_ident_EI_DATA(s, ei_data: header.e_ident[EI_DATA]);
3179 s->Printf(format: "\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
3180 s->Printf(format: "e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
3181
3182 s->Printf(format: "e_type = 0x%4.4x ", header.e_type);
3183 DumpELFHeader_e_type(s, e_type: header.e_type);
3184 s->Printf(format: "\ne_machine = 0x%4.4x\n", header.e_machine);
3185 s->Printf(format: "e_version = 0x%8.8x\n", header.e_version);
3186 s->Printf(format: "e_entry = 0x%8.8" PRIx64 "\n", header.e_entry);
3187 s->Printf(format: "e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff);
3188 s->Printf(format: "e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff);
3189 s->Printf(format: "e_flags = 0x%8.8x\n", header.e_flags);
3190 s->Printf(format: "e_ehsize = 0x%4.4x\n", header.e_ehsize);
3191 s->Printf(format: "e_phentsize = 0x%4.4x\n", header.e_phentsize);
3192 s->Printf(format: "e_phnum = 0x%8.8x\n", header.e_phnum);
3193 s->Printf(format: "e_shentsize = 0x%4.4x\n", header.e_shentsize);
3194 s->Printf(format: "e_shnum = 0x%8.8x\n", header.e_shnum);
3195 s->Printf(format: "e_shstrndx = 0x%8.8x\n", header.e_shstrndx);
3196}
3197
3198// DumpELFHeader_e_type
3199//
3200// Dump an token value for the ELF header member e_type
3201void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
3202 switch (e_type) {
3203 case ET_NONE:
3204 *s << "ET_NONE";
3205 break;
3206 case ET_REL:
3207 *s << "ET_REL";
3208 break;
3209 case ET_EXEC:
3210 *s << "ET_EXEC";
3211 break;
3212 case ET_DYN:
3213 *s << "ET_DYN";
3214 break;
3215 case ET_CORE:
3216 *s << "ET_CORE";
3217 break;
3218 default:
3219 break;
3220 }
3221}
3222
3223// DumpELFHeader_e_ident_EI_DATA
3224//
3225// Dump an token value for the ELF header member e_ident[EI_DATA]
3226void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
3227 unsigned char ei_data) {
3228 switch (ei_data) {
3229 case ELFDATANONE:
3230 *s << "ELFDATANONE";
3231 break;
3232 case ELFDATA2LSB:
3233 *s << "ELFDATA2LSB - Little Endian";
3234 break;
3235 case ELFDATA2MSB:
3236 *s << "ELFDATA2MSB - Big Endian";
3237 break;
3238 default:
3239 break;
3240 }
3241}
3242
3243// DumpELFProgramHeader
3244//
3245// Dump a single ELF program header to the specified output stream
3246void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3247 const ELFProgramHeader &ph) {
3248 DumpELFProgramHeader_p_type(s, p_type: ph.p_type);
3249 s->Printf(format: " %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3250 ph.p_vaddr, ph.p_paddr);
3251 s->Printf(format: " %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3252 ph.p_flags);
3253
3254 DumpELFProgramHeader_p_flags(s, p_flags: ph.p_flags);
3255 s->Printf(format: ") %8.8" PRIx64, ph.p_align);
3256}
3257
3258// DumpELFProgramHeader_p_type
3259//
3260// Dump an token value for the ELF program header member p_type which describes
3261// the type of the program header
3262void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3263 const int kStrWidth = 15;
3264 switch (p_type) {
3265 CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3266 CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3267 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3268 CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3269 CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3270 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3271 CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3272 CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3273 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3274 default:
3275 s->Printf(format: "0x%8.8x%*s", p_type, kStrWidth - 10, "");
3276 break;
3277 }
3278}
3279
3280// DumpELFProgramHeader_p_flags
3281//
3282// Dump an token value for the ELF program header member p_flags
3283void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3284 *s << ((p_flags & PF_X) ? "PF_X" : " ")
3285 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3286 << ((p_flags & PF_W) ? "PF_W" : " ")
3287 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3288 << ((p_flags & PF_R) ? "PF_R" : " ");
3289}
3290
3291// DumpELFProgramHeaders
3292//
3293// Dump all of the ELF program header to the specified output stream
3294void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3295 if (!ParseProgramHeaders())
3296 return;
3297
3298 s->PutCString(cstr: "Program Headers\n");
3299 s->PutCString(cstr: "IDX p_type p_offset p_vaddr p_paddr "
3300 "p_filesz p_memsz p_flags p_align\n");
3301 s->PutCString(cstr: "==== --------------- -------- -------- -------- "
3302 "-------- -------- ------------------------- --------\n");
3303
3304 for (const auto &H : llvm::enumerate(First&: m_program_headers)) {
3305 s->Format(format: "[{0,2}] ", args: H.index());
3306 ObjectFileELF::DumpELFProgramHeader(s, ph: H.value());
3307 s->EOL();
3308 }
3309}
3310
3311// DumpELFSectionHeader
3312//
3313// Dump a single ELF section header to the specified output stream
3314void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3315 const ELFSectionHeaderInfo &sh) {
3316 s->Printf(format: "%8.8x ", sh.sh_name);
3317 DumpELFSectionHeader_sh_type(s, sh_type: sh.sh_type);
3318 s->Printf(format: " %8.8" PRIx64 " (", sh.sh_flags);
3319 DumpELFSectionHeader_sh_flags(s, sh_flags: sh.sh_flags);
3320 s->Printf(format: ") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3321 sh.sh_offset, sh.sh_size);
3322 s->Printf(format: " %8.8x %8.8x", sh.sh_link, sh.sh_info);
3323 s->Printf(format: " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3324}
3325
3326// DumpELFSectionHeader_sh_type
3327//
3328// Dump an token value for the ELF section header member sh_type which
3329// describes the type of the section
3330void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3331 const int kStrWidth = 12;
3332 switch (sh_type) {
3333 CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3334 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3335 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3336 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3337 CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3338 CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3339 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3340 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3341 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3342 CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3343 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3344 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3345 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3346 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3347 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3348 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3349 default:
3350 s->Printf(format: "0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3351 break;
3352 }
3353}
3354
3355// DumpELFSectionHeader_sh_flags
3356//
3357// Dump an token value for the ELF section header member sh_flags
3358void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3359 elf_xword sh_flags) {
3360 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ")
3361 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3362 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ")
3363 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3364 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " ");
3365}
3366
3367// DumpELFSectionHeaders
3368//
3369// Dump all of the ELF section header to the specified output stream
3370void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3371 if (!ParseSectionHeaders())
3372 return;
3373
3374 s->PutCString(cstr: "Section Headers\n");
3375 s->PutCString(cstr: "IDX name type flags "
3376 "addr offset size link info addralgn "
3377 "entsize Name\n");
3378 s->PutCString(cstr: "==== -------- ------------ -------------------------------- "
3379 "-------- -------- -------- -------- -------- -------- "
3380 "-------- ====================\n");
3381
3382 uint32_t idx = 0;
3383 for (SectionHeaderCollConstIter I = m_section_headers.begin();
3384 I != m_section_headers.end(); ++I, ++idx) {
3385 s->Printf(format: "[%2u] ", idx);
3386 ObjectFileELF::DumpELFSectionHeader(s, sh: *I);
3387 const char *section_name = I->section_name.AsCString(value_if_empty: "");
3388 if (section_name)
3389 *s << ' ' << section_name << "\n";
3390 }
3391}
3392
3393void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3394 size_t num_modules = ParseDependentModules();
3395
3396 if (num_modules > 0) {
3397 s->PutCString(cstr: "Dependent Modules:\n");
3398 for (unsigned i = 0; i < num_modules; ++i) {
3399 const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(idx: i);
3400 s->Printf(format: " %s\n", spec.GetFilename().GetCString());
3401 }
3402 }
3403}
3404
3405ArchSpec ObjectFileELF::GetArchitecture() {
3406 if (!ParseHeader())
3407 return ArchSpec();
3408
3409 if (m_section_headers.empty()) {
3410 // Allow elf notes to be parsed which may affect the detected architecture.
3411 ParseSectionHeaders();
3412 }
3413
3414 if (CalculateType() == eTypeCoreFile &&
3415 !m_arch_spec.TripleOSWasSpecified()) {
3416 // Core files don't have section headers yet they have PT_NOTE program
3417 // headers that might shed more light on the architecture
3418 for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3419 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3420 continue;
3421 DataExtractor data;
3422 if (data.SetData(data: m_data, offset: H.p_offset, length: H.p_filesz) == H.p_filesz) {
3423 UUID uuid;
3424 RefineModuleDetailsFromNote(data, arch_spec&: m_arch_spec, uuid);
3425 }
3426 }
3427 }
3428 return m_arch_spec;
3429}
3430
3431ObjectFile::Type ObjectFileELF::CalculateType() {
3432 switch (m_header.e_type) {
3433 case llvm::ELF::ET_NONE:
3434 // 0 - No file type
3435 return eTypeUnknown;
3436
3437 case llvm::ELF::ET_REL:
3438 // 1 - Relocatable file
3439 return eTypeObjectFile;
3440
3441 case llvm::ELF::ET_EXEC:
3442 // 2 - Executable file
3443 return eTypeExecutable;
3444
3445 case llvm::ELF::ET_DYN:
3446 // 3 - Shared object file
3447 return eTypeSharedLibrary;
3448
3449 case ET_CORE:
3450 // 4 - Core file
3451 return eTypeCoreFile;
3452
3453 default:
3454 break;
3455 }
3456 return eTypeUnknown;
3457}
3458
3459ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3460 switch (m_header.e_type) {
3461 case llvm::ELF::ET_NONE:
3462 // 0 - No file type
3463 return eStrataUnknown;
3464
3465 case llvm::ELF::ET_REL:
3466 // 1 - Relocatable file
3467 return eStrataUnknown;
3468
3469 case llvm::ELF::ET_EXEC:
3470 // 2 - Executable file
3471 {
3472 SectionList *section_list = GetSectionList();
3473 if (section_list) {
3474 static ConstString loader_section_name(".interp");
3475 SectionSP loader_section =
3476 section_list->FindSectionByName(section_dstr: loader_section_name);
3477 if (loader_section) {
3478 char buffer[256];
3479 size_t read_size =
3480 ReadSectionData(section: loader_section.get(), section_offset: 0, dst: buffer, dst_len: sizeof(buffer));
3481
3482 // We compare the content of .interp section
3483 // It will contains \0 when counting read_size, so the size needs to
3484 // decrease by one
3485 llvm::StringRef loader_name(buffer, read_size - 1);
3486 llvm::StringRef freebsd_kernel_loader_name("/red/herring");
3487 if (loader_name.equals(RHS: freebsd_kernel_loader_name))
3488 return eStrataKernel;
3489 }
3490 }
3491 return eStrataUser;
3492 }
3493
3494 case llvm::ELF::ET_DYN:
3495 // 3 - Shared object file
3496 // TODO: is there any way to detect that an shared library is a kernel
3497 // related executable by inspecting the program headers, section headers,
3498 // symbols, or any other flag bits???
3499 return eStrataUnknown;
3500
3501 case ET_CORE:
3502 // 4 - Core file
3503 // TODO: is there any way to detect that an core file is a kernel
3504 // related executable by inspecting the program headers, section headers,
3505 // symbols, or any other flag bits???
3506 return eStrataUnknown;
3507
3508 default:
3509 break;
3510 }
3511 return eStrataUnknown;
3512}
3513
3514size_t ObjectFileELF::ReadSectionData(Section *section,
3515 lldb::offset_t section_offset, void *dst,
3516 size_t dst_len) {
3517 // If some other objectfile owns this data, pass this to them.
3518 if (section->GetObjectFile() != this)
3519 return section->GetObjectFile()->ReadSectionData(section, section_offset,
3520 dst, dst_len);
3521
3522 if (!section->Test(bit: SHF_COMPRESSED))
3523 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3524
3525 // For compressed sections we need to read to full data to be able to
3526 // decompress.
3527 DataExtractor data;
3528 ReadSectionData(section, section_data&: data);
3529 return data.CopyData(offset: section_offset, length: dst_len, dst);
3530}
3531
3532size_t ObjectFileELF::ReadSectionData(Section *section,
3533 DataExtractor &section_data) {
3534 // If some other objectfile owns this data, pass this to them.
3535 if (section->GetObjectFile() != this)
3536 return section->GetObjectFile()->ReadSectionData(section, section_data);
3537
3538 size_t result = ObjectFile::ReadSectionData(section, section_data);
3539 if (result == 0 || !(section->Get() & llvm::ELF::SHF_COMPRESSED))
3540 return result;
3541
3542 auto Decompressor = llvm::object::Decompressor::create(
3543 Name: section->GetName().GetStringRef(),
3544 Data: {reinterpret_cast<const char *>(section_data.GetDataStart()),
3545 size_t(section_data.GetByteSize())},
3546 IsLE: GetByteOrder() == eByteOrderLittle, Is64Bit: GetAddressByteSize() == 8);
3547 if (!Decompressor) {
3548 GetModule()->ReportWarning(
3549 format: "Unable to initialize decompressor for section '{0}': {1}",
3550 args: section->GetName().GetCString(),
3551 args: llvm::toString(E: Decompressor.takeError()).c_str());
3552 section_data.Clear();
3553 return 0;
3554 }
3555
3556 auto buffer_sp =
3557 std::make_shared<DataBufferHeap>(args: Decompressor->getDecompressedSize(), args: 0);
3558 if (auto error = Decompressor->decompress(
3559 Output: {buffer_sp->GetBytes(), size_t(buffer_sp->GetByteSize())})) {
3560 GetModule()->ReportWarning(format: "Decompression of section '{0}' failed: {1}",
3561 args: section->GetName().GetCString(),
3562 args: llvm::toString(E: std::move(error)).c_str());
3563 section_data.Clear();
3564 return 0;
3565 }
3566
3567 section_data.SetData(data_sp: buffer_sp);
3568 return buffer_sp->GetByteSize();
3569}
3570
3571llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3572 ParseProgramHeaders();
3573 return m_program_headers;
3574}
3575
3576DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3577 return DataExtractor(m_data, H.p_offset, H.p_filesz);
3578}
3579
3580bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3581 for (const ELFProgramHeader &H : ProgramHeaders()) {
3582 if (H.p_paddr != 0)
3583 return true;
3584 }
3585 return false;
3586}
3587
3588std::vector<ObjectFile::LoadableData>
3589ObjectFileELF::GetLoadableData(Target &target) {
3590 // Create a list of loadable data from loadable segments, using physical
3591 // addresses if they aren't all null
3592 std::vector<LoadableData> loadables;
3593 bool should_use_paddr = AnySegmentHasPhysicalAddress();
3594 for (const ELFProgramHeader &H : ProgramHeaders()) {
3595 LoadableData loadable;
3596 if (H.p_type != llvm::ELF::PT_LOAD)
3597 continue;
3598 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3599 if (loadable.Dest == LLDB_INVALID_ADDRESS)
3600 continue;
3601 if (H.p_filesz == 0)
3602 continue;
3603 auto segment_data = GetSegmentData(H);
3604 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3605 segment_data.GetByteSize());
3606 loadables.push_back(x: loadable);
3607 }
3608 return loadables;
3609}
3610
3611lldb::WritableDataBufferSP
3612ObjectFileELF::MapFileDataWritable(const FileSpec &file, uint64_t Size,
3613 uint64_t Offset) {
3614 return FileSystem::Instance().CreateWritableDataBuffer(path: file.GetPath(), size: Size,
3615 offset: Offset);
3616}
3617

source code of lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp