| 1 | //===-- NativeProcessLinux.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "NativeProcessLinux.h" |
| 10 | |
| 11 | #include <cerrno> |
| 12 | #include <cstdint> |
| 13 | #include <cstring> |
| 14 | #include <unistd.h> |
| 15 | |
| 16 | #include <fstream> |
| 17 | #include <mutex> |
| 18 | #include <optional> |
| 19 | #include <sstream> |
| 20 | #include <string> |
| 21 | #include <unordered_map> |
| 22 | |
| 23 | #include "NativeThreadLinux.h" |
| 24 | #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" |
| 25 | #include "Plugins/Process/Utility/LinuxProcMaps.h" |
| 26 | #include "Procfs.h" |
| 27 | #include "lldb/Core/ModuleSpec.h" |
| 28 | #include "lldb/Host/Host.h" |
| 29 | #include "lldb/Host/HostProcess.h" |
| 30 | #include "lldb/Host/ProcessLaunchInfo.h" |
| 31 | #include "lldb/Host/PseudoTerminal.h" |
| 32 | #include "lldb/Host/ThreadLauncher.h" |
| 33 | #include "lldb/Host/common/NativeRegisterContext.h" |
| 34 | #include "lldb/Host/linux/Host.h" |
| 35 | #include "lldb/Host/linux/Ptrace.h" |
| 36 | #include "lldb/Host/linux/Uio.h" |
| 37 | #include "lldb/Host/posix/ProcessLauncherPosixFork.h" |
| 38 | #include "lldb/Symbol/ObjectFile.h" |
| 39 | #include "lldb/Target/Process.h" |
| 40 | #include "lldb/Target/Target.h" |
| 41 | #include "lldb/Utility/LLDBAssert.h" |
| 42 | #include "lldb/Utility/LLDBLog.h" |
| 43 | #include "lldb/Utility/State.h" |
| 44 | #include "lldb/Utility/Status.h" |
| 45 | #include "lldb/Utility/StringExtractor.h" |
| 46 | #include "llvm/ADT/ScopeExit.h" |
| 47 | #include "llvm/Support/Errno.h" |
| 48 | #include "llvm/Support/Error.h" |
| 49 | #include "llvm/Support/FileSystem.h" |
| 50 | #include "llvm/Support/Threading.h" |
| 51 | |
| 52 | #include <linux/unistd.h> |
| 53 | #include <sys/socket.h> |
| 54 | #include <sys/syscall.h> |
| 55 | #include <sys/types.h> |
| 56 | #include <sys/user.h> |
| 57 | #include <sys/wait.h> |
| 58 | |
| 59 | #ifdef __aarch64__ |
| 60 | #include <asm/hwcap.h> |
| 61 | #include <sys/auxv.h> |
| 62 | #endif |
| 63 | |
| 64 | // Support hardware breakpoints in case it has not been defined |
| 65 | #ifndef TRAP_HWBKPT |
| 66 | #define TRAP_HWBKPT 4 |
| 67 | #endif |
| 68 | |
| 69 | #ifndef HWCAP2_MTE |
| 70 | #define HWCAP2_MTE (1 << 18) |
| 71 | #endif |
| 72 | |
| 73 | using namespace lldb; |
| 74 | using namespace lldb_private; |
| 75 | using namespace lldb_private::process_linux; |
| 76 | using namespace llvm; |
| 77 | |
| 78 | // Private bits we only need internally. |
| 79 | |
| 80 | static bool ProcessVmReadvSupported() { |
| 81 | static bool is_supported; |
| 82 | static llvm::once_flag flag; |
| 83 | |
| 84 | llvm::call_once(flag, F: [] { |
| 85 | Log *log = GetLog(mask: POSIXLog::Process); |
| 86 | |
| 87 | uint32_t source = 0x47424742; |
| 88 | uint32_t dest = 0; |
| 89 | |
| 90 | struct iovec local, remote; |
| 91 | remote.iov_base = &source; |
| 92 | local.iov_base = &dest; |
| 93 | remote.iov_len = local.iov_len = sizeof source; |
| 94 | |
| 95 | // We shall try if cross-process-memory reads work by attempting to read a |
| 96 | // value from our own process. |
| 97 | ssize_t res = process_vm_readv(pid: getpid(), lvec: &local, liovcnt: 1, rvec: &remote, riovcnt: 1, flags: 0); |
| 98 | is_supported = (res == sizeof(source) && source == dest); |
| 99 | if (is_supported) |
| 100 | LLDB_LOG(log, |
| 101 | "Detected kernel support for process_vm_readv syscall. " |
| 102 | "Fast memory reads enabled." ); |
| 103 | else |
| 104 | LLDB_LOG(log, |
| 105 | "syscall process_vm_readv failed (error: {0}). Fast memory " |
| 106 | "reads disabled." , |
| 107 | llvm::sys::StrError()); |
| 108 | }); |
| 109 | |
| 110 | return is_supported; |
| 111 | } |
| 112 | |
| 113 | static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { |
| 114 | Log *log = GetLog(mask: POSIXLog::Process); |
| 115 | if (!log) |
| 116 | return; |
| 117 | |
| 118 | if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) |
| 119 | LLDB_LOG(log, "setting STDIN to '{0}'" , action->GetFileSpec()); |
| 120 | else |
| 121 | LLDB_LOG(log, "leaving STDIN as is" ); |
| 122 | |
| 123 | if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) |
| 124 | LLDB_LOG(log, "setting STDOUT to '{0}'" , action->GetFileSpec()); |
| 125 | else |
| 126 | LLDB_LOG(log, "leaving STDOUT as is" ); |
| 127 | |
| 128 | if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) |
| 129 | LLDB_LOG(log, "setting STDERR to '{0}'" , action->GetFileSpec()); |
| 130 | else |
| 131 | LLDB_LOG(log, "leaving STDERR as is" ); |
| 132 | |
| 133 | int i = 0; |
| 134 | for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; |
| 135 | ++args, ++i) |
| 136 | LLDB_LOG(log, "arg {0}: '{1}'" , i, *args); |
| 137 | } |
| 138 | |
| 139 | static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { |
| 140 | uint8_t *ptr = (uint8_t *)bytes; |
| 141 | const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, b: count); |
| 142 | for (uint32_t i = 0; i < loop_count; i++) { |
| 143 | s.Printf(format: "[%x]" , *ptr); |
| 144 | ptr++; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { |
| 149 | Log *log = GetLog(mask: POSIXLog::Ptrace); |
| 150 | if (!log) |
| 151 | return; |
| 152 | StreamString buf; |
| 153 | |
| 154 | switch (req) { |
| 155 | case PTRACE_POKETEXT: { |
| 156 | DisplayBytes(s&: buf, bytes: &data, count: 8); |
| 157 | LLDB_LOGV(log, "PTRACE_POKETEXT {0}" , buf.GetData()); |
| 158 | break; |
| 159 | } |
| 160 | case PTRACE_POKEDATA: { |
| 161 | DisplayBytes(s&: buf, bytes: &data, count: 8); |
| 162 | LLDB_LOGV(log, "PTRACE_POKEDATA {0}" , buf.GetData()); |
| 163 | break; |
| 164 | } |
| 165 | case PTRACE_POKEUSER: { |
| 166 | DisplayBytes(s&: buf, bytes: &data, count: 8); |
| 167 | LLDB_LOGV(log, "PTRACE_POKEUSER {0}" , buf.GetData()); |
| 168 | break; |
| 169 | } |
| 170 | case PTRACE_SETREGS: { |
| 171 | DisplayBytes(s&: buf, bytes: data, count: data_size); |
| 172 | LLDB_LOGV(log, "PTRACE_SETREGS {0}" , buf.GetData()); |
| 173 | break; |
| 174 | } |
| 175 | case PTRACE_SETFPREGS: { |
| 176 | DisplayBytes(s&: buf, bytes: data, count: data_size); |
| 177 | LLDB_LOGV(log, "PTRACE_SETFPREGS {0}" , buf.GetData()); |
| 178 | break; |
| 179 | } |
| 180 | case PTRACE_SETSIGINFO: { |
| 181 | DisplayBytes(s&: buf, bytes: data, count: sizeof(siginfo_t)); |
| 182 | LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}" , buf.GetData()); |
| 183 | break; |
| 184 | } |
| 185 | case PTRACE_SETREGSET: { |
| 186 | // Extract iov_base from data, which is a pointer to the struct iovec |
| 187 | DisplayBytes(s&: buf, bytes: *(void **)data, count: data_size); |
| 188 | LLDB_LOGV(log, "PTRACE_SETREGSET {0}" , buf.GetData()); |
| 189 | break; |
| 190 | } |
| 191 | default: {} |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | static constexpr unsigned k_ptrace_word_size = sizeof(void *); |
| 196 | static_assert(sizeof(long) >= k_ptrace_word_size, |
| 197 | "Size of long must be larger than ptrace word size" ); |
| 198 | |
| 199 | // Simple helper function to ensure flags are enabled on the given file |
| 200 | // descriptor. |
| 201 | static Status EnsureFDFlags(int fd, int flags) { |
| 202 | Status error; |
| 203 | |
| 204 | int status = fcntl(fd: fd, F_GETFL); |
| 205 | if (status == -1) { |
| 206 | error = Status::FromErrno(); |
| 207 | return error; |
| 208 | } |
| 209 | |
| 210 | if (fcntl(fd: fd, F_SETFL, status | flags) == -1) { |
| 211 | error = Status::FromErrno(); |
| 212 | return error; |
| 213 | } |
| 214 | |
| 215 | return error; |
| 216 | } |
| 217 | |
| 218 | static llvm::Error AddPtraceScopeNote(llvm::Error original_error) { |
| 219 | Expected<int> ptrace_scope = GetPtraceScope(); |
| 220 | if (auto E = ptrace_scope.takeError()) { |
| 221 | Log *log = GetLog(mask: POSIXLog::Process); |
| 222 | LLDB_LOG(log, "error reading value of ptrace_scope: {0}" , E); |
| 223 | |
| 224 | // The original error is probably more interesting than not being able to |
| 225 | // read or interpret ptrace_scope. |
| 226 | return original_error; |
| 227 | } |
| 228 | |
| 229 | // We only have suggestions to provide for 1-3. |
| 230 | switch (*ptrace_scope) { |
| 231 | case 1: |
| 232 | case 2: |
| 233 | return llvm::createStringError( |
| 234 | EC: std::error_code(errno, std::generic_category()), |
| 235 | Fmt: "The current value of ptrace_scope is %d, which can cause ptrace to " |
| 236 | "fail to attach to a running process. To fix this, run:\n" |
| 237 | "\tsudo sysctl -w kernel.yama.ptrace_scope=0\n" |
| 238 | "For more information, see: " |
| 239 | "https://www.kernel.org/doc/Documentation/security/Yama.txt." , |
| 240 | Vals: *ptrace_scope); |
| 241 | case 3: |
| 242 | return llvm::createStringError( |
| 243 | EC: std::error_code(errno, std::generic_category()), |
| 244 | S: "The current value of ptrace_scope is 3, which will cause ptrace to " |
| 245 | "fail to attach to a running process. This value cannot be changed " |
| 246 | "without rebooting.\n" |
| 247 | "For more information, see: " |
| 248 | "https://www.kernel.org/doc/Documentation/security/Yama.txt." ); |
| 249 | case 0: |
| 250 | default: |
| 251 | return original_error; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | NativeProcessLinux::Manager::Manager(MainLoop &mainloop) |
| 256 | : NativeProcessProtocol::Manager(mainloop) { |
| 257 | Status status; |
| 258 | m_sigchld_handle = mainloop.RegisterSignal( |
| 259 | SIGCHLD, callback: [this](MainLoopBase &) { SigchldHandler(); }, error&: status); |
| 260 | assert(m_sigchld_handle && status.Success()); |
| 261 | } |
| 262 | |
| 263 | llvm::Expected<std::unique_ptr<NativeProcessProtocol>> |
| 264 | NativeProcessLinux::Manager::Launch(ProcessLaunchInfo &launch_info, |
| 265 | NativeDelegate &native_delegate) { |
| 266 | Log *log = GetLog(mask: POSIXLog::Process); |
| 267 | |
| 268 | MaybeLogLaunchInfo(info: launch_info); |
| 269 | |
| 270 | Status status; |
| 271 | ::pid_t pid = ProcessLauncherPosixFork() |
| 272 | .LaunchProcess(launch_info, error&: status) |
| 273 | .GetProcessId(); |
| 274 | LLDB_LOG(log, "pid = {0:x}" , pid); |
| 275 | if (status.Fail()) { |
| 276 | LLDB_LOG(log, "failed to launch process: {0}" , status); |
| 277 | return status.ToError(); |
| 278 | } |
| 279 | |
| 280 | // Wait for the child process to trap on its call to execve. |
| 281 | int wstatus = 0; |
| 282 | ::pid_t wpid = llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: pid, As: &wstatus, As: 0); |
| 283 | assert(wpid == pid); |
| 284 | UNUSED_IF_ASSERT_DISABLED(wpid); |
| 285 | if (!WIFSTOPPED(wstatus)) { |
| 286 | LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}" , |
| 287 | WaitStatus::Decode(wstatus)); |
| 288 | return llvm::make_error<StringError>(Args: "Could not sync with inferior process" , |
| 289 | Args: llvm::inconvertibleErrorCode()); |
| 290 | } |
| 291 | LLDB_LOG(log, "inferior started, now in stopped state" ); |
| 292 | |
| 293 | status = SetDefaultPtraceOpts(pid); |
| 294 | if (status.Fail()) { |
| 295 | LLDB_LOG(log, "failed to set default ptrace options: {0}" , status); |
| 296 | return status.ToError(); |
| 297 | } |
| 298 | |
| 299 | llvm::Expected<ArchSpec> arch_or = |
| 300 | NativeRegisterContextLinux::DetermineArchitecture(tid: pid); |
| 301 | if (!arch_or) |
| 302 | return arch_or.takeError(); |
| 303 | |
| 304 | return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( |
| 305 | pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, |
| 306 | *arch_or, *this, {pid})); |
| 307 | } |
| 308 | |
| 309 | llvm::Expected<std::unique_ptr<NativeProcessProtocol>> |
| 310 | NativeProcessLinux::Manager::Attach( |
| 311 | lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate) { |
| 312 | Log *log = GetLog(mask: POSIXLog::Process); |
| 313 | LLDB_LOG(log, "pid = {0:x}" , pid); |
| 314 | |
| 315 | auto tids_or = NativeProcessLinux::Attach(pid); |
| 316 | if (!tids_or) |
| 317 | return tids_or.takeError(); |
| 318 | ArrayRef<::pid_t> tids = *tids_or; |
| 319 | llvm::Expected<ArchSpec> arch_or = |
| 320 | NativeRegisterContextLinux::DetermineArchitecture(tid: tids[0]); |
| 321 | if (!arch_or) |
| 322 | return arch_or.takeError(); |
| 323 | |
| 324 | return std::unique_ptr<NativeProcessLinux>( |
| 325 | new NativeProcessLinux(pid, -1, native_delegate, *arch_or, *this, tids)); |
| 326 | } |
| 327 | |
| 328 | NativeProcessLinux::Extension |
| 329 | NativeProcessLinux::Manager::GetSupportedExtensions() const { |
| 330 | NativeProcessLinux::Extension supported = |
| 331 | Extension::multiprocess | Extension::fork | Extension::vfork | |
| 332 | Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | |
| 333 | Extension::siginfo_read; |
| 334 | |
| 335 | #ifdef __aarch64__ |
| 336 | // At this point we do not have a process so read auxv directly. |
| 337 | if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) |
| 338 | supported |= Extension::memory_tagging; |
| 339 | #endif |
| 340 | |
| 341 | return supported; |
| 342 | } |
| 343 | |
| 344 | static std::optional<std::pair<lldb::pid_t, WaitStatus>> WaitPid() { |
| 345 | Log *log = GetLog(mask: POSIXLog::Process); |
| 346 | |
| 347 | int status; |
| 348 | ::pid_t wait_pid = llvm::sys::RetryAfterSignal( |
| 349 | Fail: -1, F&: ::waitpid, As: -1, As: &status, __WALL | __WNOTHREAD | WNOHANG); |
| 350 | |
| 351 | if (wait_pid == 0) |
| 352 | return std::nullopt; |
| 353 | |
| 354 | if (wait_pid == -1) { |
| 355 | Status error(errno, eErrorTypePOSIX); |
| 356 | LLDB_LOG(log, "waitpid(-1, &status, _) failed: {0}" , error); |
| 357 | return std::nullopt; |
| 358 | } |
| 359 | |
| 360 | WaitStatus wait_status = WaitStatus::Decode(wstatus: status); |
| 361 | |
| 362 | LLDB_LOG(log, "waitpid(-1, &status, _) = {0}, status = {1}" , wait_pid, |
| 363 | wait_status); |
| 364 | return std::make_pair(x&: wait_pid, y&: wait_status); |
| 365 | } |
| 366 | |
| 367 | void NativeProcessLinux::Manager::SigchldHandler() { |
| 368 | Log *log = GetLog(mask: POSIXLog::Process); |
| 369 | while (true) { |
| 370 | auto wait_result = WaitPid(); |
| 371 | if (!wait_result) |
| 372 | return; |
| 373 | lldb::pid_t pid = wait_result->first; |
| 374 | WaitStatus status = wait_result->second; |
| 375 | |
| 376 | // Ask each process whether it wants to handle the event. Each event should |
| 377 | // be handled by exactly one process, but thread creation events require |
| 378 | // special handling. |
| 379 | // Thread creation consists of two events (one on the parent and one on the |
| 380 | // child thread) and they can arrive in any order nondeterministically. The |
| 381 | // parent event carries the information about the child thread, but not |
| 382 | // vice-versa. This means that if the child event arrives first, it may not |
| 383 | // be handled by any process (because it doesn't know the thread belongs to |
| 384 | // it). |
| 385 | bool handled = llvm::any_of(Range&: m_processes, P: [&](NativeProcessLinux *process) { |
| 386 | return process->TryHandleWaitStatus(pid, status); |
| 387 | }); |
| 388 | if (!handled) { |
| 389 | if (status.type == WaitStatus::Stop && status.status == SIGSTOP) { |
| 390 | // Store the thread creation event for later collection. |
| 391 | m_unowned_threads.insert(V: pid); |
| 392 | } else { |
| 393 | LLDB_LOG(log, "Ignoring waitpid event {0} for pid {1}" , status, pid); |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | void NativeProcessLinux::Manager::CollectThread(::pid_t tid) { |
| 400 | Log *log = GetLog(mask: POSIXLog::Process); |
| 401 | |
| 402 | if (m_unowned_threads.erase(V: tid)) |
| 403 | return; // We've encountered this thread already. |
| 404 | |
| 405 | // The TID is not tracked yet, let's wait for it to appear. |
| 406 | int status = -1; |
| 407 | LLDB_LOG(log, |
| 408 | "received clone event for tid {0}. tid not tracked yet, " |
| 409 | "waiting for it to appear..." , |
| 410 | tid); |
| 411 | ::pid_t wait_pid = |
| 412 | llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: tid, As: &status, __WALL); |
| 413 | |
| 414 | // It's theoretically possible to get other events if the entire process was |
| 415 | // SIGKILLed before we got a chance to check this. In that case, we'll just |
| 416 | // clean everything up when we get the process exit event. |
| 417 | |
| 418 | LLDB_LOG(log, |
| 419 | "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})" , |
| 420 | tid, wait_pid, errno, WaitStatus::Decode(status)); |
| 421 | } |
| 422 | |
| 423 | // Public Instance Methods |
| 424 | |
| 425 | NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, |
| 426 | NativeDelegate &delegate, |
| 427 | const ArchSpec &arch, Manager &manager, |
| 428 | llvm::ArrayRef<::pid_t> tids) |
| 429 | : NativeProcessELF(pid, terminal_fd, delegate), m_manager(manager), |
| 430 | m_arch(arch), m_intel_pt_collector(*this) { |
| 431 | manager.AddProcess(process&: *this); |
| 432 | if (m_terminal_fd != -1) { |
| 433 | Status status = EnsureFDFlags(fd: m_terminal_fd, O_NONBLOCK); |
| 434 | assert(status.Success()); |
| 435 | } |
| 436 | |
| 437 | for (const auto &tid : tids) { |
| 438 | NativeThreadLinux &thread = AddThread(thread_id: tid, /*resume*/ false); |
| 439 | ThreadWasCreated(thread); |
| 440 | } |
| 441 | |
| 442 | // Let our process instance know the thread has stopped. |
| 443 | SetCurrentThreadID(tids[0]); |
| 444 | SetState(state: StateType::eStateStopped, notify_delegates: false); |
| 445 | } |
| 446 | |
| 447 | llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { |
| 448 | Log *log = GetLog(mask: POSIXLog::Process); |
| 449 | |
| 450 | Status status; |
| 451 | // Use a map to keep track of the threads which we have attached/need to |
| 452 | // attach. |
| 453 | Host::TidMap tids_to_attach; |
| 454 | while (Host::FindProcessThreads(pid, tids_to_attach)) { |
| 455 | for (Host::TidMap::iterator it = tids_to_attach.begin(); |
| 456 | it != tids_to_attach.end();) { |
| 457 | if (it->second == false) { |
| 458 | lldb::tid_t tid = it->first; |
| 459 | |
| 460 | // Attach to the requested process. |
| 461 | // An attach will cause the thread to stop with a SIGSTOP. |
| 462 | if ((status = PtraceWrapper(req: PTRACE_ATTACH, pid: tid)).Fail()) { |
| 463 | // No such thread. The thread may have exited. More error handling |
| 464 | // may be needed. |
| 465 | if (status.GetError() == ESRCH) { |
| 466 | it = tids_to_attach.erase(position: it); |
| 467 | continue; |
| 468 | } |
| 469 | if (status.GetError() == EPERM) { |
| 470 | // Depending on the value of ptrace_scope, we can return a different |
| 471 | // error that suggests how to fix it. |
| 472 | return AddPtraceScopeNote(original_error: status.ToError()); |
| 473 | } |
| 474 | return status.ToError(); |
| 475 | } |
| 476 | |
| 477 | int wpid = |
| 478 | llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: tid, As: nullptr, __WALL); |
| 479 | // Need to use __WALL otherwise we receive an error with errno=ECHLD At |
| 480 | // this point we should have a thread stopped if waitpid succeeds. |
| 481 | if (wpid < 0) { |
| 482 | // No such thread. The thread may have exited. More error handling |
| 483 | // may be needed. |
| 484 | if (errno == ESRCH) { |
| 485 | it = tids_to_attach.erase(position: it); |
| 486 | continue; |
| 487 | } |
| 488 | return llvm::errorCodeToError( |
| 489 | EC: std::error_code(errno, std::generic_category())); |
| 490 | } |
| 491 | |
| 492 | if ((status = SetDefaultPtraceOpts(tid)).Fail()) |
| 493 | return status.ToError(); |
| 494 | |
| 495 | LLDB_LOG(log, "adding tid = {0}" , tid); |
| 496 | it->second = true; |
| 497 | } |
| 498 | |
| 499 | // move the loop forward |
| 500 | ++it; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | size_t tid_count = tids_to_attach.size(); |
| 505 | if (tid_count == 0) |
| 506 | return llvm::make_error<StringError>(Args: "No such process" , |
| 507 | Args: llvm::inconvertibleErrorCode()); |
| 508 | |
| 509 | std::vector<::pid_t> tids; |
| 510 | tids.reserve(n: tid_count); |
| 511 | for (const auto &p : tids_to_attach) |
| 512 | tids.push_back(x: p.first); |
| 513 | return std::move(tids); |
| 514 | } |
| 515 | |
| 516 | Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { |
| 517 | long ptrace_opts = 0; |
| 518 | |
| 519 | // Have the child raise an event on exit. This is used to keep the child in |
| 520 | // limbo until it is destroyed. |
| 521 | ptrace_opts |= PTRACE_O_TRACEEXIT; |
| 522 | |
| 523 | // Have the tracer trace threads which spawn in the inferior process. |
| 524 | ptrace_opts |= PTRACE_O_TRACECLONE; |
| 525 | |
| 526 | // Have the tracer notify us before execve returns (needed to disable legacy |
| 527 | // SIGTRAP generation) |
| 528 | ptrace_opts |= PTRACE_O_TRACEEXEC; |
| 529 | |
| 530 | // Have the tracer trace forked children. |
| 531 | ptrace_opts |= PTRACE_O_TRACEFORK; |
| 532 | |
| 533 | // Have the tracer trace vforks. |
| 534 | ptrace_opts |= PTRACE_O_TRACEVFORK; |
| 535 | |
| 536 | // Have the tracer trace vfork-done in order to restore breakpoints after |
| 537 | // the child finishes sharing memory. |
| 538 | ptrace_opts |= PTRACE_O_TRACEVFORKDONE; |
| 539 | |
| 540 | return PtraceWrapper(req: PTRACE_SETOPTIONS, pid, addr: nullptr, data: (void *)ptrace_opts); |
| 541 | } |
| 542 | |
| 543 | bool NativeProcessLinux::TryHandleWaitStatus(lldb::pid_t pid, |
| 544 | WaitStatus status) { |
| 545 | if (pid == GetID() && |
| 546 | (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal)) { |
| 547 | // The process exited. We're done monitoring. Report to delegate. |
| 548 | SetExitStatus(status, bNotifyStateChange: true); |
| 549 | return true; |
| 550 | } |
| 551 | if (NativeThreadLinux *thread = GetThreadByID(id: pid)) { |
| 552 | MonitorCallback(thread&: *thread, status); |
| 553 | return true; |
| 554 | } |
| 555 | return false; |
| 556 | } |
| 557 | |
| 558 | void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, |
| 559 | WaitStatus status) { |
| 560 | Log *log = GetLog(mask: LLDBLog::Process); |
| 561 | |
| 562 | // Certain activities differ based on whether the pid is the tid of the main |
| 563 | // thread. |
| 564 | const bool is_main_thread = (thread.GetID() == GetID()); |
| 565 | |
| 566 | // Handle when the thread exits. |
| 567 | if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { |
| 568 | LLDB_LOG(log, |
| 569 | "got exit status({0}) , tid = {1} ({2} main thread), process " |
| 570 | "state = {3}" , |
| 571 | status, thread.GetID(), is_main_thread ? "is" : "is not" , |
| 572 | GetState()); |
| 573 | |
| 574 | // This is a thread that exited. Ensure we're not tracking it anymore. |
| 575 | StopTrackingThread(thread); |
| 576 | |
| 577 | assert(!is_main_thread && "Main thread exits handled elsewhere" ); |
| 578 | return; |
| 579 | } |
| 580 | |
| 581 | siginfo_t info; |
| 582 | const auto info_err = GetSignalInfo(tid: thread.GetID(), siginfo: &info); |
| 583 | |
| 584 | // Get details on the signal raised. |
| 585 | if (info_err.Success()) { |
| 586 | // We have retrieved the signal info. Dispatch appropriately. |
| 587 | if (info.si_signo == SIGTRAP) |
| 588 | MonitorSIGTRAP(info, thread); |
| 589 | else |
| 590 | MonitorSignal(info, thread); |
| 591 | } else { |
| 592 | if (info_err.GetError() == EINVAL) { |
| 593 | // This is a group stop reception for this tid. We can reach here if we |
| 594 | // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, |
| 595 | // triggering the group-stop mechanism. Normally receiving these would |
| 596 | // stop the process, pending a SIGCONT. Simulating this state in a |
| 597 | // debugger is hard and is generally not needed (one use case is |
| 598 | // debugging background task being managed by a shell). For general use, |
| 599 | // it is sufficient to stop the process in a signal-delivery stop which |
| 600 | // happens before the group stop. This done by MonitorSignal and works |
| 601 | // correctly for all signals. |
| 602 | LLDB_LOG(log, |
| 603 | "received a group stop for pid {0} tid {1}. Transparent " |
| 604 | "handling of group stops not supported, resuming the " |
| 605 | "thread." , |
| 606 | GetID(), thread.GetID()); |
| 607 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
| 608 | } else { |
| 609 | // ptrace(GETSIGINFO) failed (but not due to group-stop). |
| 610 | |
| 611 | // A return value of ESRCH means the thread/process has died in the mean |
| 612 | // time. This can (e.g.) happen when another thread does an exit_group(2) |
| 613 | // or the entire process get SIGKILLed. |
| 614 | // We can't do anything with this thread anymore, but we keep it around |
| 615 | // until we get the WIFEXITED event. |
| 616 | |
| 617 | LLDB_LOG(log, |
| 618 | "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " |
| 619 | "{3}. Expecting WIFEXITED soon." , |
| 620 | thread.GetID(), info_err, status, is_main_thread); |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, |
| 626 | NativeThreadLinux &thread) { |
| 627 | Log *log = GetLog(mask: POSIXLog::Process); |
| 628 | const bool is_main_thread = (thread.GetID() == GetID()); |
| 629 | |
| 630 | assert(info.si_signo == SIGTRAP && "Unexpected child signal!" ); |
| 631 | |
| 632 | switch (info.si_code) { |
| 633 | case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): |
| 634 | case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): |
| 635 | case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { |
| 636 | // This can either mean a new thread or a new process spawned via |
| 637 | // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) |
| 638 | // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one |
| 639 | // of these flags are passed. |
| 640 | |
| 641 | unsigned long event_message = 0; |
| 642 | if (GetEventMessage(tid: thread.GetID(), message: &event_message).Fail()) { |
| 643 | LLDB_LOG(log, |
| 644 | "pid {0} received clone() event but GetEventMessage failed " |
| 645 | "so we don't know the new pid/tid" , |
| 646 | thread.GetID()); |
| 647 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
| 648 | } else { |
| 649 | MonitorClone(parent&: thread, child_pid: event_message, event: info.si_code >> 8); |
| 650 | } |
| 651 | |
| 652 | break; |
| 653 | } |
| 654 | |
| 655 | case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { |
| 656 | LLDB_LOG(log, "received exec event, code = {0}" , info.si_code ^ SIGTRAP); |
| 657 | |
| 658 | // Exec clears any pending notifications. |
| 659 | m_pending_notification_tid = LLDB_INVALID_THREAD_ID; |
| 660 | |
| 661 | // Remove all but the main thread here. Linux fork creates a new process |
| 662 | // which only copies the main thread. |
| 663 | LLDB_LOG(log, "exec received, stop tracking all but main thread" ); |
| 664 | |
| 665 | llvm::erase_if(C&: m_threads, P: [&](std::unique_ptr<NativeThreadProtocol> &t) { |
| 666 | return t->GetID() != GetID(); |
| 667 | }); |
| 668 | assert(m_threads.size() == 1); |
| 669 | auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); |
| 670 | |
| 671 | SetCurrentThreadID(main_thread->GetID()); |
| 672 | main_thread->SetStoppedByExec(); |
| 673 | |
| 674 | // Tell coordinator about the "new" (since exec) stopped main thread. |
| 675 | ThreadWasCreated(thread&: *main_thread); |
| 676 | |
| 677 | // Let our delegate know we have just exec'd. |
| 678 | NotifyDidExec(); |
| 679 | |
| 680 | // Let the process know we're stopped. |
| 681 | StopRunningThreads(triggering_tid: main_thread->GetID()); |
| 682 | |
| 683 | break; |
| 684 | } |
| 685 | |
| 686 | case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { |
| 687 | // The inferior process or one of its threads is about to exit. We don't |
| 688 | // want to do anything with the thread so we just resume it. In case we |
| 689 | // want to implement "break on thread exit" functionality, we would need to |
| 690 | // stop here. |
| 691 | |
| 692 | unsigned long data = 0; |
| 693 | if (GetEventMessage(tid: thread.GetID(), message: &data).Fail()) |
| 694 | data = -1; |
| 695 | |
| 696 | LLDB_LOG(log, |
| 697 | "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " |
| 698 | "WIFSIGNALED={2}, pid = {3}, main_thread = {4}" , |
| 699 | data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), |
| 700 | is_main_thread); |
| 701 | |
| 702 | |
| 703 | StateType state = thread.GetState(); |
| 704 | if (!StateIsRunningState(state)) { |
| 705 | // Due to a kernel bug, we may sometimes get this stop after the inferior |
| 706 | // gets a SIGKILL. This confuses our state tracking logic in |
| 707 | // ResumeThread(), since normally, we should not be receiving any ptrace |
| 708 | // events while the inferior is stopped. This makes sure that the |
| 709 | // inferior is resumed and exits normally. |
| 710 | state = eStateRunning; |
| 711 | } |
| 712 | ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); |
| 713 | |
| 714 | if (is_main_thread) { |
| 715 | // Main thread report the read (WIFEXITED) event only after all threads in |
| 716 | // the process exit, so we need to stop tracking it here instead of in |
| 717 | // MonitorCallback |
| 718 | StopTrackingThread(thread); |
| 719 | } |
| 720 | |
| 721 | break; |
| 722 | } |
| 723 | |
| 724 | case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { |
| 725 | if (bool(m_enabled_extensions & Extension::vfork)) { |
| 726 | thread.SetStoppedByVForkDone(); |
| 727 | StopRunningThreads(triggering_tid: thread.GetID()); |
| 728 | } |
| 729 | else |
| 730 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
| 731 | break; |
| 732 | } |
| 733 | |
| 734 | case 0: |
| 735 | case TRAP_TRACE: // We receive this on single stepping. |
| 736 | case TRAP_HWBKPT: // We receive this on watchpoint hit |
| 737 | { |
| 738 | // If a watchpoint was hit, report it |
| 739 | uint32_t wp_index; |
| 740 | Status error = thread.GetRegisterContext().GetWatchpointHitIndex( |
| 741 | wp_index, trap_addr: (uintptr_t)info.si_addr); |
| 742 | if (error.Fail()) |
| 743 | LLDB_LOG(log, |
| 744 | "received error while checking for watchpoint hits, pid = " |
| 745 | "{0}, error = {1}" , |
| 746 | thread.GetID(), error); |
| 747 | if (wp_index != LLDB_INVALID_INDEX32) { |
| 748 | MonitorWatchpoint(thread, wp_index); |
| 749 | break; |
| 750 | } |
| 751 | |
| 752 | // If a breakpoint was hit, report it |
| 753 | uint32_t bp_index; |
| 754 | error = thread.GetRegisterContext().GetHardwareBreakHitIndex( |
| 755 | bp_index, trap_addr: (uintptr_t)info.si_addr); |
| 756 | if (error.Fail()) |
| 757 | LLDB_LOG(log, "received error while checking for hardware " |
| 758 | "breakpoint hits, pid = {0}, error = {1}" , |
| 759 | thread.GetID(), error); |
| 760 | if (bp_index != LLDB_INVALID_INDEX32) { |
| 761 | MonitorBreakpoint(thread); |
| 762 | break; |
| 763 | } |
| 764 | |
| 765 | // Otherwise, report step over |
| 766 | MonitorTrace(thread); |
| 767 | break; |
| 768 | } |
| 769 | |
| 770 | case SI_KERNEL: |
| 771 | #if defined __mips__ |
| 772 | // For mips there is no special signal for watchpoint So we check for |
| 773 | // watchpoint in kernel trap |
| 774 | { |
| 775 | // If a watchpoint was hit, report it |
| 776 | uint32_t wp_index; |
| 777 | Status error = thread.GetRegisterContext().GetWatchpointHitIndex( |
| 778 | wp_index, LLDB_INVALID_ADDRESS); |
| 779 | if (error.Fail()) |
| 780 | LLDB_LOG(log, |
| 781 | "received error while checking for watchpoint hits, pid = " |
| 782 | "{0}, error = {1}" , |
| 783 | thread.GetID(), error); |
| 784 | if (wp_index != LLDB_INVALID_INDEX32) { |
| 785 | MonitorWatchpoint(thread, wp_index); |
| 786 | break; |
| 787 | } |
| 788 | } |
| 789 | // NO BREAK |
| 790 | #endif |
| 791 | case TRAP_BRKPT: |
| 792 | MonitorBreakpoint(thread); |
| 793 | break; |
| 794 | |
| 795 | case SIGTRAP: |
| 796 | case (SIGTRAP | 0x80): |
| 797 | LLDB_LOG( |
| 798 | log, |
| 799 | "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming" , |
| 800 | info.si_code, GetID(), thread.GetID()); |
| 801 | |
| 802 | // Ignore these signals until we know more about them. |
| 803 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
| 804 | break; |
| 805 | |
| 806 | default: |
| 807 | LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}" , |
| 808 | info.si_code, GetID(), thread.GetID()); |
| 809 | MonitorSignal(info, thread); |
| 810 | break; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { |
| 815 | Log *log = GetLog(mask: POSIXLog::Process); |
| 816 | LLDB_LOG(log, "received trace event, pid = {0}" , thread.GetID()); |
| 817 | |
| 818 | // This thread is currently stopped. |
| 819 | thread.SetStoppedByTrace(); |
| 820 | |
| 821 | StopRunningThreads(triggering_tid: thread.GetID()); |
| 822 | } |
| 823 | |
| 824 | void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { |
| 825 | Log *log = GetLog(mask: LLDBLog::Process | LLDBLog::Breakpoints); |
| 826 | LLDB_LOG(log, "received breakpoint event, pid = {0}" , thread.GetID()); |
| 827 | |
| 828 | // Mark the thread as stopped at breakpoint. |
| 829 | thread.SetStoppedByBreakpoint(); |
| 830 | FixupBreakpointPCAsNeeded(thread); |
| 831 | |
| 832 | NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); |
| 833 | auto stepping_with_bp_it = |
| 834 | m_threads_stepping_with_breakpoint.find(x: thread.GetID()); |
| 835 | if (stepping_with_bp_it != m_threads_stepping_with_breakpoint.end() && |
| 836 | stepping_with_bp_it->second == reg_ctx.GetPC()) |
| 837 | thread.SetStoppedByTrace(); |
| 838 | |
| 839 | StopRunningThreads(triggering_tid: thread.GetID()); |
| 840 | } |
| 841 | |
| 842 | void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, |
| 843 | uint32_t wp_index) { |
| 844 | Log *log = GetLog(mask: LLDBLog::Process | LLDBLog::Watchpoints); |
| 845 | LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}" , |
| 846 | thread.GetID(), wp_index); |
| 847 | |
| 848 | // Mark the thread as stopped at watchpoint. The address is at |
| 849 | // (lldb::addr_t)info->si_addr if we need it. |
| 850 | thread.SetStoppedByWatchpoint(wp_index); |
| 851 | |
| 852 | // We need to tell all other running threads before we notify the delegate |
| 853 | // about this stop. |
| 854 | StopRunningThreads(triggering_tid: thread.GetID()); |
| 855 | } |
| 856 | |
| 857 | void NativeProcessLinux::MonitorSignal(const siginfo_t &info, |
| 858 | NativeThreadLinux &thread) { |
| 859 | const int signo = info.si_signo; |
| 860 | const bool is_from_llgs = info.si_pid == getpid(); |
| 861 | |
| 862 | Log *log = GetLog(mask: POSIXLog::Process); |
| 863 | |
| 864 | // POSIX says that process behaviour is undefined after it ignores a SIGFPE, |
| 865 | // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) |
| 866 | // or raise(3). Similarly for tgkill(2) on Linux. |
| 867 | // |
| 868 | // IOW, user generated signals never generate what we consider to be a |
| 869 | // "crash". |
| 870 | // |
| 871 | // Similarly, ACK signals generated by this monitor. |
| 872 | |
| 873 | // Handle the signal. |
| 874 | LLDB_LOG(log, |
| 875 | "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " |
| 876 | "waitpid pid = {4})" , |
| 877 | Host::GetSignalAsCString(signo), signo, info.si_code, info.si_pid, |
| 878 | thread.GetID()); |
| 879 | |
| 880 | // Check for thread stop notification. |
| 881 | if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { |
| 882 | // This is a tgkill()-based stop. |
| 883 | LLDB_LOG(log, "pid {0} tid {1}, thread stopped" , GetID(), thread.GetID()); |
| 884 | |
| 885 | // Check that we're not already marked with a stop reason. Note this thread |
| 886 | // really shouldn't already be marked as stopped - if we were, that would |
| 887 | // imply that the kernel signaled us with the thread stopping which we |
| 888 | // handled and marked as stopped, and that, without an intervening resume, |
| 889 | // we received another stop. It is more likely that we are missing the |
| 890 | // marking of a run state somewhere if we find that the thread was marked |
| 891 | // as stopped. |
| 892 | const StateType thread_state = thread.GetState(); |
| 893 | if (!StateIsStoppedState(state: thread_state, must_exist: false)) { |
| 894 | // An inferior thread has stopped because of a SIGSTOP we have sent it. |
| 895 | // Generally, these are not important stops and we don't want to report |
| 896 | // them as they are just used to stop other threads when one thread (the |
| 897 | // one with the *real* stop reason) hits a breakpoint (watchpoint, |
| 898 | // etc...). However, in the case of an asynchronous Interrupt(), this |
| 899 | // *is* the real stop reason, so we leave the signal intact if this is |
| 900 | // the thread that was chosen as the triggering thread. |
| 901 | if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { |
| 902 | if (m_pending_notification_tid == thread.GetID()) |
| 903 | thread.SetStoppedBySignal(SIGSTOP, info: &info); |
| 904 | else |
| 905 | thread.SetStoppedWithNoReason(); |
| 906 | |
| 907 | SetCurrentThreadID(thread.GetID()); |
| 908 | SignalIfAllThreadsStopped(); |
| 909 | } else { |
| 910 | // We can end up here if stop was initiated by LLGS but by this time a |
| 911 | // thread stop has occurred - maybe initiated by another event. |
| 912 | Status error = ResumeThread(thread, state: thread.GetState(), signo: 0); |
| 913 | if (error.Fail()) |
| 914 | LLDB_LOG(log, "failed to resume thread {0}: {1}" , thread.GetID(), |
| 915 | error); |
| 916 | } |
| 917 | } else { |
| 918 | LLDB_LOG(log, |
| 919 | "pid {0} tid {1}, thread was already marked as a stopped " |
| 920 | "state (state={2}), leaving stop signal as is" , |
| 921 | GetID(), thread.GetID(), thread_state); |
| 922 | SignalIfAllThreadsStopped(); |
| 923 | } |
| 924 | |
| 925 | // Done handling. |
| 926 | return; |
| 927 | } |
| 928 | |
| 929 | // Check if debugger should stop at this signal or just ignore it and resume |
| 930 | // the inferior. |
| 931 | if (m_signals_to_ignore.contains(V: signo)) { |
| 932 | ResumeThread(thread, state: thread.GetState(), signo); |
| 933 | return; |
| 934 | } |
| 935 | |
| 936 | // This thread is stopped. |
| 937 | LLDB_LOG(log, "received signal {0}" , Host::GetSignalAsCString(signo)); |
| 938 | thread.SetStoppedBySignal(signo, info: &info); |
| 939 | |
| 940 | // Send a stop to the debugger after we get all other threads to stop. |
| 941 | StopRunningThreads(triggering_tid: thread.GetID()); |
| 942 | } |
| 943 | |
| 944 | bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, |
| 945 | lldb::pid_t child_pid, int event) { |
| 946 | Log *log = GetLog(mask: POSIXLog::Process); |
| 947 | LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}" , parent.GetID(), |
| 948 | child_pid, event); |
| 949 | |
| 950 | m_manager.CollectThread(tid: child_pid); |
| 951 | |
| 952 | switch (event) { |
| 953 | case PTRACE_EVENT_CLONE: { |
| 954 | // PTRACE_EVENT_CLONE can either mean a new thread or a new process. |
| 955 | // Try to grab the new process' PGID to figure out which one it is. |
| 956 | // If PGID is the same as the PID, then it's a new process. Otherwise, |
| 957 | // it's a thread. |
| 958 | auto tgid_ret = getPIDForTID(tid: child_pid); |
| 959 | if (tgid_ret != child_pid) { |
| 960 | // A new thread should have PGID matching our process' PID. |
| 961 | assert(!tgid_ret || *tgid_ret == GetID()); |
| 962 | |
| 963 | NativeThreadLinux &child_thread = AddThread(thread_id: child_pid, /*resume*/ true); |
| 964 | ThreadWasCreated(thread&: child_thread); |
| 965 | |
| 966 | // Resume the parent. |
| 967 | ResumeThread(thread&: parent, state: parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
| 968 | break; |
| 969 | } |
| 970 | } |
| 971 | [[fallthrough]]; |
| 972 | case PTRACE_EVENT_FORK: |
| 973 | case PTRACE_EVENT_VFORK: { |
| 974 | bool is_vfork = event == PTRACE_EVENT_VFORK; |
| 975 | std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( |
| 976 | static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, |
| 977 | m_manager, {static_cast<::pid_t>(child_pid)})}; |
| 978 | if (!is_vfork) |
| 979 | child_process->m_software_breakpoints = m_software_breakpoints; |
| 980 | |
| 981 | Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; |
| 982 | if (bool(m_enabled_extensions & expected_ext)) { |
| 983 | m_delegate.NewSubprocess(parent_process: this, child_process: std::move(child_process)); |
| 984 | // NB: non-vfork clone() is reported as fork |
| 985 | parent.SetStoppedByFork(is_vfork, child_pid); |
| 986 | StopRunningThreads(triggering_tid: parent.GetID()); |
| 987 | } else { |
| 988 | child_process->Detach(); |
| 989 | ResumeThread(thread&: parent, state: parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
| 990 | } |
| 991 | break; |
| 992 | } |
| 993 | default: |
| 994 | llvm_unreachable("unknown clone_info.event" ); |
| 995 | } |
| 996 | |
| 997 | return true; |
| 998 | } |
| 999 | |
| 1000 | bool NativeProcessLinux::SupportHardwareSingleStepping() const { |
| 1001 | if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm || |
| 1002 | m_arch.GetTriple().isRISCV() || m_arch.GetTriple().isLoongArch()) |
| 1003 | return false; |
| 1004 | return true; |
| 1005 | } |
| 1006 | |
| 1007 | Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { |
| 1008 | Log *log = GetLog(mask: POSIXLog::Process); |
| 1009 | LLDB_LOG(log, "pid {0}" , GetID()); |
| 1010 | |
| 1011 | NotifyTracersProcessWillResume(); |
| 1012 | |
| 1013 | bool software_single_step = !SupportHardwareSingleStepping(); |
| 1014 | |
| 1015 | if (software_single_step) { |
| 1016 | for (const auto &thread : m_threads) { |
| 1017 | assert(thread && "thread list should not contain NULL threads" ); |
| 1018 | |
| 1019 | const ResumeAction *const action = |
| 1020 | resume_actions.GetActionForThread(tid: thread->GetID(), default_ok: true); |
| 1021 | if (action == nullptr) |
| 1022 | continue; |
| 1023 | |
| 1024 | if (action->state == eStateStepping) { |
| 1025 | Status error = SetupSoftwareSingleStepping( |
| 1026 | static_cast<NativeThreadLinux &>(*thread)); |
| 1027 | if (error.Fail()) |
| 1028 | return error; |
| 1029 | } |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | for (const auto &thread : m_threads) { |
| 1034 | assert(thread && "thread list should not contain NULL threads" ); |
| 1035 | |
| 1036 | const ResumeAction *const action = |
| 1037 | resume_actions.GetActionForThread(tid: thread->GetID(), default_ok: true); |
| 1038 | |
| 1039 | if (action == nullptr) { |
| 1040 | LLDB_LOG(log, "no action specified for pid {0} tid {1}" , GetID(), |
| 1041 | thread->GetID()); |
| 1042 | continue; |
| 1043 | } |
| 1044 | |
| 1045 | LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}" , |
| 1046 | action->state, GetID(), thread->GetID()); |
| 1047 | |
| 1048 | switch (action->state) { |
| 1049 | case eStateRunning: |
| 1050 | case eStateStepping: { |
| 1051 | // Run the thread, possibly feeding it the signal. |
| 1052 | const int signo = action->signal; |
| 1053 | Status error = ResumeThread(thread&: static_cast<NativeThreadLinux &>(*thread), |
| 1054 | state: action->state, signo); |
| 1055 | if (error.Fail()) |
| 1056 | return Status::FromErrorStringWithFormat( |
| 1057 | format: "NativeProcessLinux::%s: failed to resume thread " |
| 1058 | "for pid %" PRIu64 ", tid %" PRIu64 ", error = %s" , |
| 1059 | __FUNCTION__, GetID(), thread->GetID(), error.AsCString()); |
| 1060 | |
| 1061 | break; |
| 1062 | } |
| 1063 | |
| 1064 | case eStateSuspended: |
| 1065 | case eStateStopped: |
| 1066 | break; |
| 1067 | |
| 1068 | default: |
| 1069 | return Status::FromErrorStringWithFormat( |
| 1070 | format: "NativeProcessLinux::%s (): unexpected state %s specified " |
| 1071 | "for pid %" PRIu64 ", tid %" PRIu64, |
| 1072 | __FUNCTION__, StateAsCString(state: action->state), GetID(), |
| 1073 | thread->GetID()); |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | return Status(); |
| 1078 | } |
| 1079 | |
| 1080 | Status NativeProcessLinux::Halt() { |
| 1081 | Status error; |
| 1082 | |
| 1083 | if (kill(pid: GetID(), SIGSTOP) != 0) |
| 1084 | error = Status::FromErrno(); |
| 1085 | |
| 1086 | return error; |
| 1087 | } |
| 1088 | |
| 1089 | Status NativeProcessLinux::Detach() { |
| 1090 | Status error; |
| 1091 | |
| 1092 | // Tell ptrace to detach from the process. |
| 1093 | if (GetID() == LLDB_INVALID_PROCESS_ID) |
| 1094 | return error; |
| 1095 | |
| 1096 | // Cancel out any SIGSTOPs we may have sent while stopping the process. |
| 1097 | // Otherwise, the process may stop as soon as we detach from it. |
| 1098 | kill(pid: GetID(), SIGCONT); |
| 1099 | |
| 1100 | for (const auto &thread : m_threads) { |
| 1101 | Status e = Detach(tid: thread->GetID()); |
| 1102 | // Save the error, but still attempt to detach from other threads. |
| 1103 | if (e.Fail()) |
| 1104 | error = e.Clone(); |
| 1105 | } |
| 1106 | |
| 1107 | m_intel_pt_collector.Clear(); |
| 1108 | |
| 1109 | return error; |
| 1110 | } |
| 1111 | |
| 1112 | Status NativeProcessLinux::Signal(int signo) { |
| 1113 | Status error; |
| 1114 | |
| 1115 | Log *log = GetLog(mask: POSIXLog::Process); |
| 1116 | LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}" , signo, |
| 1117 | Host::GetSignalAsCString(signo), GetID()); |
| 1118 | |
| 1119 | if (kill(pid: GetID(), sig: signo)) |
| 1120 | error = Status::FromErrno(); |
| 1121 | |
| 1122 | return error; |
| 1123 | } |
| 1124 | |
| 1125 | Status NativeProcessLinux::Interrupt() { |
| 1126 | // Pick a running thread (or if none, a not-dead stopped thread) as the |
| 1127 | // chosen thread that will be the stop-reason thread. |
| 1128 | Log *log = GetLog(mask: POSIXLog::Process); |
| 1129 | |
| 1130 | NativeThreadProtocol *running_thread = nullptr; |
| 1131 | NativeThreadProtocol *stopped_thread = nullptr; |
| 1132 | |
| 1133 | LLDB_LOG(log, "selecting running thread for interrupt target" ); |
| 1134 | for (const auto &thread : m_threads) { |
| 1135 | // If we have a running or stepping thread, we'll call that the target of |
| 1136 | // the interrupt. |
| 1137 | const auto thread_state = thread->GetState(); |
| 1138 | if (thread_state == eStateRunning || thread_state == eStateStepping) { |
| 1139 | running_thread = thread.get(); |
| 1140 | break; |
| 1141 | } else if (!stopped_thread && StateIsStoppedState(state: thread_state, must_exist: true)) { |
| 1142 | // Remember the first non-dead stopped thread. We'll use that as a |
| 1143 | // backup if there are no running threads. |
| 1144 | stopped_thread = thread.get(); |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | if (!running_thread && !stopped_thread) { |
| 1149 | Status error("found no running/stepping or live stopped threads as target " |
| 1150 | "for interrupt" ); |
| 1151 | LLDB_LOG(log, "skipping due to error: {0}" , error); |
| 1152 | |
| 1153 | return error; |
| 1154 | } |
| 1155 | |
| 1156 | NativeThreadProtocol *deferred_signal_thread = |
| 1157 | running_thread ? running_thread : stopped_thread; |
| 1158 | |
| 1159 | LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target" , GetID(), |
| 1160 | running_thread ? "running" : "stopped" , |
| 1161 | deferred_signal_thread->GetID()); |
| 1162 | |
| 1163 | StopRunningThreads(triggering_tid: deferred_signal_thread->GetID()); |
| 1164 | |
| 1165 | return Status(); |
| 1166 | } |
| 1167 | |
| 1168 | Status NativeProcessLinux::Kill() { |
| 1169 | Log *log = GetLog(mask: POSIXLog::Process); |
| 1170 | LLDB_LOG(log, "pid {0}" , GetID()); |
| 1171 | |
| 1172 | Status error; |
| 1173 | |
| 1174 | switch (m_state) { |
| 1175 | case StateType::eStateInvalid: |
| 1176 | case StateType::eStateExited: |
| 1177 | case StateType::eStateCrashed: |
| 1178 | case StateType::eStateDetached: |
| 1179 | case StateType::eStateUnloaded: |
| 1180 | // Nothing to do - the process is already dead. |
| 1181 | LLDB_LOG(log, "ignored for PID {0} due to current state: {1}" , GetID(), |
| 1182 | m_state); |
| 1183 | return error; |
| 1184 | |
| 1185 | case StateType::eStateConnected: |
| 1186 | case StateType::eStateAttaching: |
| 1187 | case StateType::eStateLaunching: |
| 1188 | case StateType::eStateStopped: |
| 1189 | case StateType::eStateRunning: |
| 1190 | case StateType::eStateStepping: |
| 1191 | case StateType::eStateSuspended: |
| 1192 | // We can try to kill a process in these states. |
| 1193 | break; |
| 1194 | } |
| 1195 | |
| 1196 | if (kill(pid: GetID(), SIGKILL) != 0) { |
| 1197 | error = Status::FromErrno(); |
| 1198 | return error; |
| 1199 | } |
| 1200 | |
| 1201 | return error; |
| 1202 | } |
| 1203 | |
| 1204 | Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, |
| 1205 | MemoryRegionInfo &range_info) { |
| 1206 | // FIXME review that the final memory region returned extends to the end of |
| 1207 | // the virtual address space, |
| 1208 | // with no perms if it is not mapped. |
| 1209 | |
| 1210 | // Use an approach that reads memory regions from /proc/{pid}/maps. Assume |
| 1211 | // proc maps entries are in ascending order. |
| 1212 | // FIXME assert if we find differently. |
| 1213 | |
| 1214 | if (m_supports_mem_region == LazyBool::eLazyBoolNo) { |
| 1215 | // We're done. |
| 1216 | return Status::FromErrorString(str: "unsupported" ); |
| 1217 | } |
| 1218 | |
| 1219 | Status error = PopulateMemoryRegionCache(); |
| 1220 | if (error.Fail()) { |
| 1221 | return error; |
| 1222 | } |
| 1223 | |
| 1224 | lldb::addr_t prev_base_address = 0; |
| 1225 | |
| 1226 | // FIXME start by finding the last region that is <= target address using |
| 1227 | // binary search. Data is sorted. |
| 1228 | // There can be a ton of regions on pthreads apps with lots of threads. |
| 1229 | for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); |
| 1230 | ++it) { |
| 1231 | MemoryRegionInfo &proc_entry_info = it->first; |
| 1232 | |
| 1233 | // Sanity check assumption that /proc/{pid}/maps entries are ascending. |
| 1234 | assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && |
| 1235 | "descending /proc/pid/maps entries detected, unexpected" ); |
| 1236 | prev_base_address = proc_entry_info.GetRange().GetRangeBase(); |
| 1237 | UNUSED_IF_ASSERT_DISABLED(prev_base_address); |
| 1238 | |
| 1239 | // If the target address comes before this entry, indicate distance to next |
| 1240 | // region. |
| 1241 | if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { |
| 1242 | range_info.GetRange().SetRangeBase(load_addr); |
| 1243 | range_info.GetRange().SetByteSize( |
| 1244 | proc_entry_info.GetRange().GetRangeBase() - load_addr); |
| 1245 | range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); |
| 1246 | range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); |
| 1247 | range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); |
| 1248 | range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); |
| 1249 | |
| 1250 | return error; |
| 1251 | } else if (proc_entry_info.GetRange().Contains(r: load_addr)) { |
| 1252 | // The target address is within the memory region we're processing here. |
| 1253 | range_info = proc_entry_info; |
| 1254 | return error; |
| 1255 | } |
| 1256 | |
| 1257 | // The target memory address comes somewhere after the region we just |
| 1258 | // parsed. |
| 1259 | } |
| 1260 | |
| 1261 | // If we made it here, we didn't find an entry that contained the given |
| 1262 | // address. Return the load_addr as start and the amount of bytes betwwen |
| 1263 | // load address and the end of the memory as size. |
| 1264 | range_info.GetRange().SetRangeBase(load_addr); |
| 1265 | range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); |
| 1266 | range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); |
| 1267 | range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); |
| 1268 | range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); |
| 1269 | range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); |
| 1270 | return error; |
| 1271 | } |
| 1272 | |
| 1273 | Status NativeProcessLinux::PopulateMemoryRegionCache() { |
| 1274 | Log *log = GetLog(mask: POSIXLog::Process); |
| 1275 | |
| 1276 | // If our cache is empty, pull the latest. There should always be at least |
| 1277 | // one memory region if memory region handling is supported. |
| 1278 | if (!m_mem_region_cache.empty()) { |
| 1279 | LLDB_LOG(log, "reusing {0} cached memory region entries" , |
| 1280 | m_mem_region_cache.size()); |
| 1281 | return Status(); |
| 1282 | } |
| 1283 | |
| 1284 | Status Result; |
| 1285 | LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { |
| 1286 | if (Info) { |
| 1287 | FileSpec file_spec(Info->GetName().GetCString()); |
| 1288 | FileSystem::Instance().Resolve(file_spec); |
| 1289 | m_mem_region_cache.emplace_back(args&: *Info, args&: file_spec); |
| 1290 | return true; |
| 1291 | } |
| 1292 | |
| 1293 | Result = Status::FromError(error: Info.takeError()); |
| 1294 | m_supports_mem_region = LazyBool::eLazyBoolNo; |
| 1295 | LLDB_LOG(log, "failed to parse proc maps: {0}" , Result); |
| 1296 | return false; |
| 1297 | }; |
| 1298 | |
| 1299 | // Linux kernel since 2.6.14 has /proc/{pid}/smaps |
| 1300 | // if CONFIG_PROC_PAGE_MONITOR is enabled |
| 1301 | auto BufferOrError = getProcFile(pid: GetID(), tid: GetCurrentThreadID(), file: "smaps" ); |
| 1302 | if (BufferOrError) |
| 1303 | ParseLinuxSMapRegions(linux_smap: BufferOrError.get()->getBuffer(), callback); |
| 1304 | else { |
| 1305 | BufferOrError = getProcFile(pid: GetID(), tid: GetCurrentThreadID(), file: "maps" ); |
| 1306 | if (!BufferOrError) { |
| 1307 | m_supports_mem_region = LazyBool::eLazyBoolNo; |
| 1308 | return BufferOrError.getError(); |
| 1309 | } |
| 1310 | |
| 1311 | ParseLinuxMapRegions(linux_map: BufferOrError.get()->getBuffer(), callback); |
| 1312 | } |
| 1313 | |
| 1314 | if (Result.Fail()) |
| 1315 | return Result; |
| 1316 | |
| 1317 | if (m_mem_region_cache.empty()) { |
| 1318 | // No entries after attempting to read them. This shouldn't happen if |
| 1319 | // /proc/{pid}/maps is supported. Assume we don't support map entries via |
| 1320 | // procfs. |
| 1321 | m_supports_mem_region = LazyBool::eLazyBoolNo; |
| 1322 | LLDB_LOG(log, |
| 1323 | "failed to find any procfs maps entries, assuming no support " |
| 1324 | "for memory region metadata retrieval" ); |
| 1325 | return Status::FromErrorString(str: "not supported" ); |
| 1326 | } |
| 1327 | |
| 1328 | LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps" , |
| 1329 | m_mem_region_cache.size(), GetID()); |
| 1330 | |
| 1331 | // We support memory retrieval, remember that. |
| 1332 | m_supports_mem_region = LazyBool::eLazyBoolYes; |
| 1333 | return Status(); |
| 1334 | } |
| 1335 | |
| 1336 | void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { |
| 1337 | Log *log = GetLog(mask: POSIXLog::Process); |
| 1338 | LLDB_LOG(log, "newBumpId={0}" , newBumpId); |
| 1339 | LLDB_LOG(log, "clearing {0} entries from memory region cache" , |
| 1340 | m_mem_region_cache.size()); |
| 1341 | m_mem_region_cache.clear(); |
| 1342 | } |
| 1343 | |
| 1344 | llvm::Expected<uint64_t> |
| 1345 | NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { |
| 1346 | PopulateMemoryRegionCache(); |
| 1347 | auto region_it = llvm::find_if(Range&: m_mem_region_cache, P: [](const auto &pair) { |
| 1348 | return pair.first.GetExecutable() == MemoryRegionInfo::eYes && |
| 1349 | pair.first.GetShared() != MemoryRegionInfo::eYes; |
| 1350 | }); |
| 1351 | if (region_it == m_mem_region_cache.end()) |
| 1352 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
| 1353 | S: "No executable memory region found!" ); |
| 1354 | |
| 1355 | addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); |
| 1356 | |
| 1357 | NativeThreadLinux &thread = *GetCurrentThread(); |
| 1358 | assert(thread.GetState() == eStateStopped); |
| 1359 | NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); |
| 1360 | |
| 1361 | NativeRegisterContextLinux::SyscallData syscall_data = |
| 1362 | *reg_ctx.GetSyscallData(); |
| 1363 | |
| 1364 | WritableDataBufferSP registers_sp; |
| 1365 | if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(data_sp&: registers_sp).ToError()) |
| 1366 | return std::move(Err); |
| 1367 | auto restore_regs = llvm::make_scope_exit( |
| 1368 | F: [&] { reg_ctx.WriteAllRegisterValues(data_sp: registers_sp); }); |
| 1369 | |
| 1370 | llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); |
| 1371 | size_t bytes_read; |
| 1372 | if (llvm::Error Err = |
| 1373 | ReadMemory(addr: exe_addr, buf: memory.data(), size: memory.size(), bytes_read) |
| 1374 | .ToError()) { |
| 1375 | return std::move(Err); |
| 1376 | } |
| 1377 | |
| 1378 | auto restore_mem = llvm::make_scope_exit( |
| 1379 | F: [&] { WriteMemory(addr: exe_addr, buf: memory.data(), size: memory.size(), bytes_written&: bytes_read); }); |
| 1380 | |
| 1381 | if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) |
| 1382 | return std::move(Err); |
| 1383 | |
| 1384 | for (const auto &zip : llvm::zip_first(t&: args, u&: syscall_data.Args)) { |
| 1385 | if (llvm::Error Err = |
| 1386 | reg_ctx |
| 1387 | .WriteRegisterFromUnsigned(reg: std::get<1>(t: zip), uval: std::get<0>(t: zip)) |
| 1388 | .ToError()) { |
| 1389 | return std::move(Err); |
| 1390 | } |
| 1391 | } |
| 1392 | if (llvm::Error Err = WriteMemory(addr: exe_addr, buf: syscall_data.Insn.data(), |
| 1393 | size: syscall_data.Insn.size(), bytes_written&: bytes_read) |
| 1394 | .ToError()) |
| 1395 | return std::move(Err); |
| 1396 | |
| 1397 | m_mem_region_cache.clear(); |
| 1398 | |
| 1399 | // With software single stepping the syscall insn buffer must also include a |
| 1400 | // trap instruction to stop the process. |
| 1401 | int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; |
| 1402 | if (llvm::Error Err = |
| 1403 | PtraceWrapper(req, pid: thread.GetID(), addr: nullptr, data: nullptr).ToError()) |
| 1404 | return std::move(Err); |
| 1405 | |
| 1406 | int status; |
| 1407 | ::pid_t wait_pid = llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: thread.GetID(), |
| 1408 | As: &status, __WALL); |
| 1409 | if (wait_pid == -1) { |
| 1410 | return llvm::errorCodeToError( |
| 1411 | EC: std::error_code(errno, std::generic_category())); |
| 1412 | } |
| 1413 | assert((unsigned)wait_pid == thread.GetID()); |
| 1414 | |
| 1415 | uint64_t result = reg_ctx.ReadRegisterAsUnsigned(reg: syscall_data.Result, fail_value: -ESRCH); |
| 1416 | |
| 1417 | // Values larger than this are actually negative errno numbers. |
| 1418 | uint64_t errno_threshold = |
| 1419 | (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; |
| 1420 | if (result > errno_threshold) { |
| 1421 | return llvm::errorCodeToError( |
| 1422 | EC: std::error_code(-result & 0xfff, std::generic_category())); |
| 1423 | } |
| 1424 | |
| 1425 | return result; |
| 1426 | } |
| 1427 | |
| 1428 | llvm::Expected<addr_t> |
| 1429 | NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { |
| 1430 | |
| 1431 | std::optional<NativeRegisterContextLinux::MmapData> mmap_data = |
| 1432 | GetCurrentThread()->GetRegisterContext().GetMmapData(); |
| 1433 | if (!mmap_data) |
| 1434 | return llvm::make_error<UnimplementedError>(); |
| 1435 | |
| 1436 | unsigned prot = PROT_NONE; |
| 1437 | assert((permissions & (ePermissionsReadable | ePermissionsWritable | |
| 1438 | ePermissionsExecutable)) == permissions && |
| 1439 | "Unknown permission!" ); |
| 1440 | if (permissions & ePermissionsReadable) |
| 1441 | prot |= PROT_READ; |
| 1442 | if (permissions & ePermissionsWritable) |
| 1443 | prot |= PROT_WRITE; |
| 1444 | if (permissions & ePermissionsExecutable) |
| 1445 | prot |= PROT_EXEC; |
| 1446 | |
| 1447 | llvm::Expected<uint64_t> Result = |
| 1448 | Syscall(args: {mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, |
| 1449 | uint64_t(-1), 0}); |
| 1450 | if (Result) |
| 1451 | m_allocated_memory.try_emplace(Key: *Result, Args&: size); |
| 1452 | return Result; |
| 1453 | } |
| 1454 | |
| 1455 | llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { |
| 1456 | std::optional<NativeRegisterContextLinux::MmapData> mmap_data = |
| 1457 | GetCurrentThread()->GetRegisterContext().GetMmapData(); |
| 1458 | if (!mmap_data) |
| 1459 | return llvm::make_error<UnimplementedError>(); |
| 1460 | |
| 1461 | auto it = m_allocated_memory.find(Val: addr); |
| 1462 | if (it == m_allocated_memory.end()) |
| 1463 | return llvm::createStringError(EC: llvm::errc::invalid_argument, |
| 1464 | S: "Memory not allocated by the debugger." ); |
| 1465 | |
| 1466 | llvm::Expected<uint64_t> Result = |
| 1467 | Syscall(args: {mmap_data->SysMunmap, addr, it->second}); |
| 1468 | if (!Result) |
| 1469 | return Result.takeError(); |
| 1470 | |
| 1471 | m_allocated_memory.erase(I: it); |
| 1472 | return llvm::Error::success(); |
| 1473 | } |
| 1474 | |
| 1475 | Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, |
| 1476 | size_t len, |
| 1477 | std::vector<uint8_t> &tags) { |
| 1478 | llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = |
| 1479 | GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); |
| 1480 | if (!details) |
| 1481 | return Status::FromError(error: details.takeError()); |
| 1482 | |
| 1483 | // Ignore 0 length read |
| 1484 | if (!len) |
| 1485 | return Status(); |
| 1486 | |
| 1487 | // lldb will align the range it requests but it is not required to by |
| 1488 | // the protocol so we'll do it again just in case. |
| 1489 | // Remove tag bits too. Ptrace calls may work regardless but that |
| 1490 | // is not a guarantee. |
| 1491 | MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); |
| 1492 | range = details->manager->ExpandToGranule(range); |
| 1493 | |
| 1494 | // Allocate enough space for all tags to be read |
| 1495 | size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); |
| 1496 | tags.resize(new_size: num_tags * details->manager->GetTagSizeInBytes()); |
| 1497 | |
| 1498 | struct iovec tags_iovec; |
| 1499 | uint8_t *dest = tags.data(); |
| 1500 | lldb::addr_t read_addr = range.GetRangeBase(); |
| 1501 | |
| 1502 | // This call can return partial data so loop until we error or |
| 1503 | // get all tags back. |
| 1504 | while (num_tags) { |
| 1505 | tags_iovec.iov_base = dest; |
| 1506 | tags_iovec.iov_len = num_tags; |
| 1507 | |
| 1508 | Status error = NativeProcessLinux::PtraceWrapper( |
| 1509 | req: details->ptrace_read_req, pid: GetCurrentThreadID(), |
| 1510 | addr: reinterpret_cast<void *>(read_addr), data: static_cast<void *>(&tags_iovec), |
| 1511 | data_size: 0, result: nullptr); |
| 1512 | |
| 1513 | if (error.Fail()) { |
| 1514 | // Discard partial reads |
| 1515 | tags.resize(new_size: 0); |
| 1516 | return error; |
| 1517 | } |
| 1518 | |
| 1519 | size_t tags_read = tags_iovec.iov_len; |
| 1520 | assert(tags_read && (tags_read <= num_tags)); |
| 1521 | |
| 1522 | dest += tags_read * details->manager->GetTagSizeInBytes(); |
| 1523 | read_addr += details->manager->GetGranuleSize() * tags_read; |
| 1524 | num_tags -= tags_read; |
| 1525 | } |
| 1526 | |
| 1527 | return Status(); |
| 1528 | } |
| 1529 | |
| 1530 | Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, |
| 1531 | size_t len, |
| 1532 | const std::vector<uint8_t> &tags) { |
| 1533 | llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = |
| 1534 | GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); |
| 1535 | if (!details) |
| 1536 | return Status::FromError(error: details.takeError()); |
| 1537 | |
| 1538 | // Ignore 0 length write |
| 1539 | if (!len) |
| 1540 | return Status(); |
| 1541 | |
| 1542 | // lldb will align the range it requests but it is not required to by |
| 1543 | // the protocol so we'll do it again just in case. |
| 1544 | // Remove tag bits too. Ptrace calls may work regardless but that |
| 1545 | // is not a guarantee. |
| 1546 | MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); |
| 1547 | range = details->manager->ExpandToGranule(range); |
| 1548 | |
| 1549 | // Not checking number of tags here, we may repeat them below |
| 1550 | llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = |
| 1551 | details->manager->UnpackTagsData(tags); |
| 1552 | if (!unpacked_tags_or_err) |
| 1553 | return Status::FromError(error: unpacked_tags_or_err.takeError()); |
| 1554 | |
| 1555 | llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = |
| 1556 | details->manager->RepeatTagsForRange(tags: *unpacked_tags_or_err, range); |
| 1557 | if (!repeated_tags_or_err) |
| 1558 | return Status::FromError(error: repeated_tags_or_err.takeError()); |
| 1559 | |
| 1560 | // Repack them for ptrace to use |
| 1561 | llvm::Expected<std::vector<uint8_t>> final_tag_data = |
| 1562 | details->manager->PackTags(tags: *repeated_tags_or_err); |
| 1563 | if (!final_tag_data) |
| 1564 | return Status::FromError(error: final_tag_data.takeError()); |
| 1565 | |
| 1566 | struct iovec tags_vec; |
| 1567 | uint8_t *src = final_tag_data->data(); |
| 1568 | lldb::addr_t write_addr = range.GetRangeBase(); |
| 1569 | // unpacked tags size because the number of bytes per tag might not be 1 |
| 1570 | size_t num_tags = repeated_tags_or_err->size(); |
| 1571 | |
| 1572 | // This call can partially write tags, so we loop until we |
| 1573 | // error or all tags have been written. |
| 1574 | while (num_tags > 0) { |
| 1575 | tags_vec.iov_base = src; |
| 1576 | tags_vec.iov_len = num_tags; |
| 1577 | |
| 1578 | Status error = NativeProcessLinux::PtraceWrapper( |
| 1579 | req: details->ptrace_write_req, pid: GetCurrentThreadID(), |
| 1580 | addr: reinterpret_cast<void *>(write_addr), data: static_cast<void *>(&tags_vec), data_size: 0, |
| 1581 | result: nullptr); |
| 1582 | |
| 1583 | if (error.Fail()) { |
| 1584 | // Don't attempt to restore the original values in the case of a partial |
| 1585 | // write |
| 1586 | return error; |
| 1587 | } |
| 1588 | |
| 1589 | size_t tags_written = tags_vec.iov_len; |
| 1590 | assert(tags_written && (tags_written <= num_tags)); |
| 1591 | |
| 1592 | src += tags_written * details->manager->GetTagSizeInBytes(); |
| 1593 | write_addr += details->manager->GetGranuleSize() * tags_written; |
| 1594 | num_tags -= tags_written; |
| 1595 | } |
| 1596 | |
| 1597 | return Status(); |
| 1598 | } |
| 1599 | |
| 1600 | size_t NativeProcessLinux::UpdateThreads() { |
| 1601 | // The NativeProcessLinux monitoring threads are always up to date with |
| 1602 | // respect to thread state and they keep the thread list populated properly. |
| 1603 | // All this method needs to do is return the thread count. |
| 1604 | return m_threads.size(); |
| 1605 | } |
| 1606 | |
| 1607 | Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, |
| 1608 | bool hardware) { |
| 1609 | if (hardware) |
| 1610 | return SetHardwareBreakpoint(addr, size); |
| 1611 | else |
| 1612 | return SetSoftwareBreakpoint(addr, size_hint: size); |
| 1613 | } |
| 1614 | |
| 1615 | Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { |
| 1616 | if (hardware) |
| 1617 | return RemoveHardwareBreakpoint(addr); |
| 1618 | else |
| 1619 | return NativeProcessProtocol::RemoveBreakpoint(addr); |
| 1620 | } |
| 1621 | |
| 1622 | llvm::Expected<llvm::ArrayRef<uint8_t>> |
| 1623 | NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { |
| 1624 | // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the |
| 1625 | // linux kernel does otherwise. |
| 1626 | static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; |
| 1627 | static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; |
| 1628 | |
| 1629 | switch (GetArchitecture().GetMachine()) { |
| 1630 | case llvm::Triple::arm: |
| 1631 | switch (size_hint) { |
| 1632 | case 2: |
| 1633 | return llvm::ArrayRef(g_thumb_opcode); |
| 1634 | case 4: |
| 1635 | return llvm::ArrayRef(g_arm_opcode); |
| 1636 | default: |
| 1637 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
| 1638 | S: "Unrecognised trap opcode size hint!" ); |
| 1639 | } |
| 1640 | default: |
| 1641 | return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, |
| 1646 | size_t &bytes_read) { |
| 1647 | Log *log = GetLog(mask: POSIXLog::Memory); |
| 1648 | LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}" , addr, buf, size); |
| 1649 | |
| 1650 | bytes_read = 0; |
| 1651 | if (ProcessVmReadvSupported()) { |
| 1652 | // The process_vm_readv path is about 50 times faster than ptrace api. We |
| 1653 | // want to use this syscall if it is supported. |
| 1654 | |
| 1655 | struct iovec local_iov, remote_iov; |
| 1656 | local_iov.iov_base = buf; |
| 1657 | local_iov.iov_len = size; |
| 1658 | remote_iov.iov_base = reinterpret_cast<void *>(addr); |
| 1659 | remote_iov.iov_len = size; |
| 1660 | |
| 1661 | ssize_t read_result = process_vm_readv(pid: GetCurrentThreadID(), lvec: &local_iov, liovcnt: 1, |
| 1662 | rvec: &remote_iov, riovcnt: 1, flags: 0); |
| 1663 | int error = 0; |
| 1664 | if (read_result < 0) |
| 1665 | error = errno; |
| 1666 | else |
| 1667 | bytes_read = read_result; |
| 1668 | |
| 1669 | LLDB_LOG(log, |
| 1670 | "process_vm_readv({0}, [iovec({1}, {2})], [iovec({3:x}, {2})], 1, " |
| 1671 | "0) => {4} ({5})" , |
| 1672 | GetCurrentThreadID(), buf, size, addr, read_result, |
| 1673 | error > 0 ? llvm::sys::StrError(errno) : "sucesss" ); |
| 1674 | } |
| 1675 | |
| 1676 | unsigned char *dst = static_cast<unsigned char *>(buf); |
| 1677 | size_t remainder; |
| 1678 | long data; |
| 1679 | |
| 1680 | for (; bytes_read < size; bytes_read += remainder) { |
| 1681 | Status error = NativeProcessLinux::PtraceWrapper( |
| 1682 | req: PTRACE_PEEKDATA, pid: GetCurrentThreadID(), |
| 1683 | addr: reinterpret_cast<void *>(addr + bytes_read), data: nullptr, data_size: 0, result: &data); |
| 1684 | if (error.Fail()) |
| 1685 | return error; |
| 1686 | |
| 1687 | remainder = size - bytes_read; |
| 1688 | remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; |
| 1689 | |
| 1690 | // Copy the data into our buffer |
| 1691 | memcpy(dest: dst + bytes_read, src: &data, n: remainder); |
| 1692 | } |
| 1693 | return Status(); |
| 1694 | } |
| 1695 | |
| 1696 | Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, |
| 1697 | size_t size, size_t &bytes_written) { |
| 1698 | const unsigned char *src = static_cast<const unsigned char *>(buf); |
| 1699 | size_t remainder; |
| 1700 | Status error; |
| 1701 | |
| 1702 | Log *log = GetLog(mask: POSIXLog::Memory); |
| 1703 | LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}" , addr, buf, size); |
| 1704 | |
| 1705 | for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { |
| 1706 | remainder = size - bytes_written; |
| 1707 | remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; |
| 1708 | |
| 1709 | if (remainder == k_ptrace_word_size) { |
| 1710 | unsigned long data = 0; |
| 1711 | memcpy(dest: &data, src: src, n: k_ptrace_word_size); |
| 1712 | |
| 1713 | LLDB_LOG(log, "[{0:x}]:{1:x}" , addr, data); |
| 1714 | error = NativeProcessLinux::PtraceWrapper( |
| 1715 | req: PTRACE_POKEDATA, pid: GetCurrentThreadID(), addr: (void *)addr, data: (void *)data); |
| 1716 | if (error.Fail()) |
| 1717 | return error; |
| 1718 | } else { |
| 1719 | unsigned char buff[8]; |
| 1720 | size_t bytes_read; |
| 1721 | error = ReadMemory(addr, buf: buff, size: k_ptrace_word_size, bytes_read); |
| 1722 | if (error.Fail()) |
| 1723 | return error; |
| 1724 | |
| 1725 | memcpy(dest: buff, src: src, n: remainder); |
| 1726 | |
| 1727 | size_t bytes_written_rec; |
| 1728 | error = WriteMemory(addr, buf: buff, size: k_ptrace_word_size, bytes_written&: bytes_written_rec); |
| 1729 | if (error.Fail()) |
| 1730 | return error; |
| 1731 | |
| 1732 | LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})" , addr, *(const unsigned long *)src, |
| 1733 | *(unsigned long *)buff); |
| 1734 | } |
| 1735 | |
| 1736 | addr += k_ptrace_word_size; |
| 1737 | src += k_ptrace_word_size; |
| 1738 | } |
| 1739 | return error; |
| 1740 | } |
| 1741 | |
| 1742 | Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { |
| 1743 | return PtraceWrapper(req: PTRACE_GETSIGINFO, pid: tid, addr: nullptr, data: siginfo); |
| 1744 | } |
| 1745 | |
| 1746 | Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, |
| 1747 | unsigned long *message) { |
| 1748 | return PtraceWrapper(req: PTRACE_GETEVENTMSG, pid: tid, addr: nullptr, data: message); |
| 1749 | } |
| 1750 | |
| 1751 | Status NativeProcessLinux::Detach(lldb::tid_t tid) { |
| 1752 | if (tid == LLDB_INVALID_THREAD_ID) |
| 1753 | return Status(); |
| 1754 | |
| 1755 | return PtraceWrapper(req: PTRACE_DETACH, pid: tid); |
| 1756 | } |
| 1757 | |
| 1758 | bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { |
| 1759 | for (const auto &thread : m_threads) { |
| 1760 | assert(thread && "thread list should not contain NULL threads" ); |
| 1761 | if (thread->GetID() == thread_id) { |
| 1762 | // We have this thread. |
| 1763 | return true; |
| 1764 | } |
| 1765 | } |
| 1766 | |
| 1767 | // We don't have this thread. |
| 1768 | return false; |
| 1769 | } |
| 1770 | |
| 1771 | void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { |
| 1772 | Log *const log = GetLog(mask: POSIXLog::Thread); |
| 1773 | lldb::tid_t thread_id = thread.GetID(); |
| 1774 | LLDB_LOG(log, "tid: {0}" , thread_id); |
| 1775 | |
| 1776 | auto it = llvm::find_if(Range&: m_threads, P: [&](const auto &thread_up) { |
| 1777 | return thread_up.get() == &thread; |
| 1778 | }); |
| 1779 | assert(it != m_threads.end()); |
| 1780 | m_threads.erase(position: it); |
| 1781 | |
| 1782 | NotifyTracersOfThreadDestroyed(tid: thread_id); |
| 1783 | SignalIfAllThreadsStopped(); |
| 1784 | } |
| 1785 | |
| 1786 | void NativeProcessLinux::NotifyTracersProcessDidStop() { |
| 1787 | m_intel_pt_collector.ProcessDidStop(); |
| 1788 | } |
| 1789 | |
| 1790 | void NativeProcessLinux::NotifyTracersProcessWillResume() { |
| 1791 | m_intel_pt_collector.ProcessWillResume(); |
| 1792 | } |
| 1793 | |
| 1794 | Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { |
| 1795 | Log *log = GetLog(mask: POSIXLog::Thread); |
| 1796 | Status error = Status::FromError(error: m_intel_pt_collector.OnThreadCreated(tid)); |
| 1797 | if (error.Fail()) |
| 1798 | LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}" , |
| 1799 | tid, error.AsCString()); |
| 1800 | return error; |
| 1801 | } |
| 1802 | |
| 1803 | Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { |
| 1804 | Log *log = GetLog(mask: POSIXLog::Thread); |
| 1805 | Status error = Status::FromError(error: m_intel_pt_collector.OnThreadDestroyed(tid)); |
| 1806 | if (error.Fail()) |
| 1807 | LLDB_LOG(log, |
| 1808 | "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}" , |
| 1809 | tid, error.AsCString()); |
| 1810 | return error; |
| 1811 | } |
| 1812 | |
| 1813 | NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, |
| 1814 | bool resume) { |
| 1815 | Log *log = GetLog(mask: POSIXLog::Thread); |
| 1816 | LLDB_LOG(log, "pid {0} adding thread with tid {1}" , GetID(), thread_id); |
| 1817 | |
| 1818 | assert(!HasThreadNoLock(thread_id) && |
| 1819 | "attempted to add a thread by id that already exists" ); |
| 1820 | |
| 1821 | // If this is the first thread, save it as the current thread |
| 1822 | if (m_threads.empty()) |
| 1823 | SetCurrentThreadID(thread_id); |
| 1824 | |
| 1825 | m_threads.push_back(x: std::make_unique<NativeThreadLinux>(args&: *this, args&: thread_id)); |
| 1826 | NativeThreadLinux &thread = |
| 1827 | static_cast<NativeThreadLinux &>(*m_threads.back()); |
| 1828 | |
| 1829 | Status tracing_error = NotifyTracersOfNewThread(tid: thread.GetID()); |
| 1830 | if (tracing_error.Fail()) { |
| 1831 | thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); |
| 1832 | StopRunningThreads(triggering_tid: thread.GetID()); |
| 1833 | } else if (resume) |
| 1834 | ResumeThread(thread, state: eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); |
| 1835 | else |
| 1836 | thread.SetStoppedBySignal(SIGSTOP); |
| 1837 | |
| 1838 | return thread; |
| 1839 | } |
| 1840 | |
| 1841 | Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, |
| 1842 | FileSpec &file_spec) { |
| 1843 | Status error = PopulateMemoryRegionCache(); |
| 1844 | if (error.Fail()) |
| 1845 | return error; |
| 1846 | |
| 1847 | FileSpec module_file_spec(module_path); |
| 1848 | FileSystem::Instance().Resolve(file_spec&: module_file_spec); |
| 1849 | |
| 1850 | file_spec.Clear(); |
| 1851 | for (const auto &it : m_mem_region_cache) { |
| 1852 | if (it.second.GetFilename() == module_file_spec.GetFilename()) { |
| 1853 | file_spec = it.second; |
| 1854 | return Status(); |
| 1855 | } |
| 1856 | } |
| 1857 | return Status::FromErrorStringWithFormat( |
| 1858 | format: "Module file (%s) not found in /proc/%" PRIu64 "/maps file!" , |
| 1859 | module_file_spec.GetFilename().AsCString(), GetID()); |
| 1860 | } |
| 1861 | |
| 1862 | Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, |
| 1863 | lldb::addr_t &load_addr) { |
| 1864 | load_addr = LLDB_INVALID_ADDRESS; |
| 1865 | Status error = PopulateMemoryRegionCache(); |
| 1866 | if (error.Fail()) |
| 1867 | return error; |
| 1868 | |
| 1869 | FileSpec file(file_name); |
| 1870 | for (const auto &it : m_mem_region_cache) { |
| 1871 | if (it.second == file) { |
| 1872 | load_addr = it.first.GetRange().GetRangeBase(); |
| 1873 | return Status(); |
| 1874 | } |
| 1875 | } |
| 1876 | return Status::FromErrorString(str: "No load address found for specified file." ); |
| 1877 | } |
| 1878 | |
| 1879 | NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { |
| 1880 | return static_cast<NativeThreadLinux *>( |
| 1881 | NativeProcessProtocol::GetThreadByID(tid)); |
| 1882 | } |
| 1883 | |
| 1884 | NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { |
| 1885 | return static_cast<NativeThreadLinux *>( |
| 1886 | NativeProcessProtocol::GetCurrentThread()); |
| 1887 | } |
| 1888 | |
| 1889 | Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, |
| 1890 | lldb::StateType state, int signo) { |
| 1891 | Log *const log = GetLog(mask: POSIXLog::Thread); |
| 1892 | LLDB_LOG(log, "tid: {0}" , thread.GetID()); |
| 1893 | |
| 1894 | // Before we do the resume below, first check if we have a pending stop |
| 1895 | // notification that is currently waiting for all threads to stop. This is |
| 1896 | // potentially a buggy situation since we're ostensibly waiting for threads |
| 1897 | // to stop before we send out the pending notification, and here we are |
| 1898 | // resuming one before we send out the pending stop notification. |
| 1899 | if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { |
| 1900 | LLDB_LOG(log, |
| 1901 | "about to resume tid {0} per explicit request but we have a " |
| 1902 | "pending stop notification (tid {1}) that is actively " |
| 1903 | "waiting for this thread to stop. Valid sequence of events?" , |
| 1904 | thread.GetID(), m_pending_notification_tid); |
| 1905 | } |
| 1906 | |
| 1907 | // Request a resume. We expect this to be synchronous and the system to |
| 1908 | // reflect it is running after this completes. |
| 1909 | switch (state) { |
| 1910 | case eStateRunning: { |
| 1911 | Status resume_result = thread.Resume(signo); |
| 1912 | if (resume_result.Success()) |
| 1913 | SetState(state: eStateRunning, notify_delegates: true); |
| 1914 | return resume_result; |
| 1915 | } |
| 1916 | case eStateStepping: { |
| 1917 | Status step_result = thread.SingleStep(signo); |
| 1918 | if (step_result.Success()) |
| 1919 | SetState(state: eStateRunning, notify_delegates: true); |
| 1920 | return step_result; |
| 1921 | } |
| 1922 | default: |
| 1923 | LLDB_LOG(log, "Unhandled state {0}." , state); |
| 1924 | llvm_unreachable("Unhandled state for resume" ); |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | //===----------------------------------------------------------------------===// |
| 1929 | |
| 1930 | void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { |
| 1931 | Log *const log = GetLog(mask: POSIXLog::Thread); |
| 1932 | LLDB_LOG(log, "about to process event: (triggering_tid: {0})" , |
| 1933 | triggering_tid); |
| 1934 | |
| 1935 | m_pending_notification_tid = triggering_tid; |
| 1936 | |
| 1937 | // Request a stop for all the thread stops that need to be stopped and are |
| 1938 | // not already known to be stopped. |
| 1939 | for (const auto &thread : m_threads) { |
| 1940 | if (StateIsRunningState(state: thread->GetState())) |
| 1941 | static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); |
| 1942 | } |
| 1943 | |
| 1944 | SignalIfAllThreadsStopped(); |
| 1945 | LLDB_LOG(log, "event processing done" ); |
| 1946 | } |
| 1947 | |
| 1948 | void NativeProcessLinux::SignalIfAllThreadsStopped() { |
| 1949 | if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) |
| 1950 | return; // No pending notification. Nothing to do. |
| 1951 | |
| 1952 | for (const auto &thread_sp : m_threads) { |
| 1953 | if (StateIsRunningState(state: thread_sp->GetState())) |
| 1954 | return; // Some threads are still running. Don't signal yet. |
| 1955 | } |
| 1956 | |
| 1957 | // We have a pending notification and all threads have stopped. |
| 1958 | Log *log = GetLog(mask: LLDBLog::Process | LLDBLog::Breakpoints); |
| 1959 | |
| 1960 | // Clear any temporary breakpoints we used to implement software single |
| 1961 | // stepping. |
| 1962 | for (const auto &thread_info : m_threads_stepping_with_breakpoint) { |
| 1963 | Status error = RemoveBreakpoint(addr: thread_info.second); |
| 1964 | if (error.Fail()) |
| 1965 | LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}" , |
| 1966 | thread_info.first, error); |
| 1967 | } |
| 1968 | m_threads_stepping_with_breakpoint.clear(); |
| 1969 | |
| 1970 | // Notify the delegate about the stop |
| 1971 | SetCurrentThreadID(m_pending_notification_tid); |
| 1972 | SetState(state: StateType::eStateStopped, notify_delegates: true); |
| 1973 | m_pending_notification_tid = LLDB_INVALID_THREAD_ID; |
| 1974 | } |
| 1975 | |
| 1976 | void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { |
| 1977 | Log *const log = GetLog(mask: POSIXLog::Thread); |
| 1978 | LLDB_LOG(log, "tid: {0}" , thread.GetID()); |
| 1979 | |
| 1980 | if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && |
| 1981 | StateIsRunningState(state: thread.GetState())) { |
| 1982 | // We will need to wait for this new thread to stop as well before firing |
| 1983 | // the notification. |
| 1984 | thread.RequestStop(); |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets |
| 1989 | // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) |
| 1990 | Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, |
| 1991 | void *data, size_t data_size, |
| 1992 | long *result) { |
| 1993 | Status error; |
| 1994 | long int ret; |
| 1995 | |
| 1996 | Log *log = GetLog(mask: POSIXLog::Ptrace); |
| 1997 | |
| 1998 | PtraceDisplayBytes(req, data, data_size); |
| 1999 | |
| 2000 | errno = 0; |
| 2001 | if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) |
| 2002 | ret = ptrace(request: static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), |
| 2003 | *(unsigned int *)addr, data); |
| 2004 | else |
| 2005 | ret = ptrace(request: static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), |
| 2006 | addr, data); |
| 2007 | |
| 2008 | if (ret == -1) |
| 2009 | error = Status::FromErrno(); |
| 2010 | |
| 2011 | if (result) |
| 2012 | *result = ret; |
| 2013 | |
| 2014 | LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}" , req, pid, addr, data, |
| 2015 | data_size, ret); |
| 2016 | |
| 2017 | PtraceDisplayBytes(req, data, data_size); |
| 2018 | |
| 2019 | if (error.Fail()) |
| 2020 | LLDB_LOG(log, "ptrace() failed: {0}" , error); |
| 2021 | |
| 2022 | return error; |
| 2023 | } |
| 2024 | |
| 2025 | llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { |
| 2026 | if (IntelPTCollector::IsSupported()) |
| 2027 | return TraceSupportedResponse{.name: "intel-pt" , .description: "Intel Processor Trace" }; |
| 2028 | return NativeProcessProtocol::TraceSupported(); |
| 2029 | } |
| 2030 | |
| 2031 | Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { |
| 2032 | if (type == "intel-pt" ) { |
| 2033 | if (Expected<TraceIntelPTStartRequest> request = |
| 2034 | json::parse<TraceIntelPTStartRequest>(JSON: json_request, |
| 2035 | RootName: "TraceIntelPTStartRequest" )) { |
| 2036 | return m_intel_pt_collector.TraceStart(request: *request); |
| 2037 | } else |
| 2038 | return request.takeError(); |
| 2039 | } |
| 2040 | |
| 2041 | return NativeProcessProtocol::TraceStart(json_params: json_request, type); |
| 2042 | } |
| 2043 | |
| 2044 | Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { |
| 2045 | if (request.type == "intel-pt" ) |
| 2046 | return m_intel_pt_collector.TraceStop(request); |
| 2047 | return NativeProcessProtocol::TraceStop(request); |
| 2048 | } |
| 2049 | |
| 2050 | Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { |
| 2051 | if (type == "intel-pt" ) |
| 2052 | return m_intel_pt_collector.GetState(); |
| 2053 | return NativeProcessProtocol::TraceGetState(type); |
| 2054 | } |
| 2055 | |
| 2056 | Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( |
| 2057 | const TraceGetBinaryDataRequest &request) { |
| 2058 | if (request.type == "intel-pt" ) |
| 2059 | return m_intel_pt_collector.GetBinaryData(request); |
| 2060 | return NativeProcessProtocol::TraceGetBinaryData(request); |
| 2061 | } |
| 2062 | |