1 | //===-- NativeProcessLinux.cpp --------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "NativeProcessLinux.h" |
10 | |
11 | #include <cerrno> |
12 | #include <cstdint> |
13 | #include <cstring> |
14 | #include <unistd.h> |
15 | |
16 | #include <fstream> |
17 | #include <mutex> |
18 | #include <optional> |
19 | #include <sstream> |
20 | #include <string> |
21 | #include <unordered_map> |
22 | |
23 | #include "NativeThreadLinux.h" |
24 | #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" |
25 | #include "Plugins/Process/Utility/LinuxProcMaps.h" |
26 | #include "Procfs.h" |
27 | #include "lldb/Core/ModuleSpec.h" |
28 | #include "lldb/Host/Host.h" |
29 | #include "lldb/Host/HostProcess.h" |
30 | #include "lldb/Host/ProcessLaunchInfo.h" |
31 | #include "lldb/Host/PseudoTerminal.h" |
32 | #include "lldb/Host/ThreadLauncher.h" |
33 | #include "lldb/Host/common/NativeRegisterContext.h" |
34 | #include "lldb/Host/linux/Host.h" |
35 | #include "lldb/Host/linux/Ptrace.h" |
36 | #include "lldb/Host/linux/Uio.h" |
37 | #include "lldb/Host/posix/ProcessLauncherPosixFork.h" |
38 | #include "lldb/Symbol/ObjectFile.h" |
39 | #include "lldb/Target/Process.h" |
40 | #include "lldb/Target/Target.h" |
41 | #include "lldb/Utility/LLDBAssert.h" |
42 | #include "lldb/Utility/LLDBLog.h" |
43 | #include "lldb/Utility/State.h" |
44 | #include "lldb/Utility/Status.h" |
45 | #include "lldb/Utility/StringExtractor.h" |
46 | #include "llvm/ADT/ScopeExit.h" |
47 | #include "llvm/Support/Errno.h" |
48 | #include "llvm/Support/Error.h" |
49 | #include "llvm/Support/FileSystem.h" |
50 | #include "llvm/Support/Threading.h" |
51 | |
52 | #include <linux/unistd.h> |
53 | #include <sys/socket.h> |
54 | #include <sys/syscall.h> |
55 | #include <sys/types.h> |
56 | #include <sys/user.h> |
57 | #include <sys/wait.h> |
58 | |
59 | #ifdef __aarch64__ |
60 | #include <asm/hwcap.h> |
61 | #include <sys/auxv.h> |
62 | #endif |
63 | |
64 | // Support hardware breakpoints in case it has not been defined |
65 | #ifndef TRAP_HWBKPT |
66 | #define TRAP_HWBKPT 4 |
67 | #endif |
68 | |
69 | #ifndef HWCAP2_MTE |
70 | #define HWCAP2_MTE (1 << 18) |
71 | #endif |
72 | |
73 | using namespace lldb; |
74 | using namespace lldb_private; |
75 | using namespace lldb_private::process_linux; |
76 | using namespace llvm; |
77 | |
78 | // Private bits we only need internally. |
79 | |
80 | static bool ProcessVmReadvSupported() { |
81 | static bool is_supported; |
82 | static llvm::once_flag flag; |
83 | |
84 | llvm::call_once(flag, F: [] { |
85 | Log *log = GetLog(mask: POSIXLog::Process); |
86 | |
87 | uint32_t source = 0x47424742; |
88 | uint32_t dest = 0; |
89 | |
90 | struct iovec local, remote; |
91 | remote.iov_base = &source; |
92 | local.iov_base = &dest; |
93 | remote.iov_len = local.iov_len = sizeof source; |
94 | |
95 | // We shall try if cross-process-memory reads work by attempting to read a |
96 | // value from our own process. |
97 | ssize_t res = process_vm_readv(pid: getpid(), lvec: &local, liovcnt: 1, rvec: &remote, riovcnt: 1, flags: 0); |
98 | is_supported = (res == sizeof(source) && source == dest); |
99 | if (is_supported) |
100 | LLDB_LOG(log, |
101 | "Detected kernel support for process_vm_readv syscall. " |
102 | "Fast memory reads enabled." ); |
103 | else |
104 | LLDB_LOG(log, |
105 | "syscall process_vm_readv failed (error: {0}). Fast memory " |
106 | "reads disabled." , |
107 | llvm::sys::StrError()); |
108 | }); |
109 | |
110 | return is_supported; |
111 | } |
112 | |
113 | static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { |
114 | Log *log = GetLog(mask: POSIXLog::Process); |
115 | if (!log) |
116 | return; |
117 | |
118 | if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) |
119 | LLDB_LOG(log, "setting STDIN to '{0}'" , action->GetFileSpec()); |
120 | else |
121 | LLDB_LOG(log, "leaving STDIN as is" ); |
122 | |
123 | if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) |
124 | LLDB_LOG(log, "setting STDOUT to '{0}'" , action->GetFileSpec()); |
125 | else |
126 | LLDB_LOG(log, "leaving STDOUT as is" ); |
127 | |
128 | if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) |
129 | LLDB_LOG(log, "setting STDERR to '{0}'" , action->GetFileSpec()); |
130 | else |
131 | LLDB_LOG(log, "leaving STDERR as is" ); |
132 | |
133 | int i = 0; |
134 | for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; |
135 | ++args, ++i) |
136 | LLDB_LOG(log, "arg {0}: '{1}'" , i, *args); |
137 | } |
138 | |
139 | static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { |
140 | uint8_t *ptr = (uint8_t *)bytes; |
141 | const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, b: count); |
142 | for (uint32_t i = 0; i < loop_count; i++) { |
143 | s.Printf(format: "[%x]" , *ptr); |
144 | ptr++; |
145 | } |
146 | } |
147 | |
148 | static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { |
149 | Log *log = GetLog(mask: POSIXLog::Ptrace); |
150 | if (!log) |
151 | return; |
152 | StreamString buf; |
153 | |
154 | switch (req) { |
155 | case PTRACE_POKETEXT: { |
156 | DisplayBytes(s&: buf, bytes: &data, count: 8); |
157 | LLDB_LOGV(log, "PTRACE_POKETEXT {0}" , buf.GetData()); |
158 | break; |
159 | } |
160 | case PTRACE_POKEDATA: { |
161 | DisplayBytes(s&: buf, bytes: &data, count: 8); |
162 | LLDB_LOGV(log, "PTRACE_POKEDATA {0}" , buf.GetData()); |
163 | break; |
164 | } |
165 | case PTRACE_POKEUSER: { |
166 | DisplayBytes(s&: buf, bytes: &data, count: 8); |
167 | LLDB_LOGV(log, "PTRACE_POKEUSER {0}" , buf.GetData()); |
168 | break; |
169 | } |
170 | case PTRACE_SETREGS: { |
171 | DisplayBytes(s&: buf, bytes: data, count: data_size); |
172 | LLDB_LOGV(log, "PTRACE_SETREGS {0}" , buf.GetData()); |
173 | break; |
174 | } |
175 | case PTRACE_SETFPREGS: { |
176 | DisplayBytes(s&: buf, bytes: data, count: data_size); |
177 | LLDB_LOGV(log, "PTRACE_SETFPREGS {0}" , buf.GetData()); |
178 | break; |
179 | } |
180 | case PTRACE_SETSIGINFO: { |
181 | DisplayBytes(s&: buf, bytes: data, count: sizeof(siginfo_t)); |
182 | LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}" , buf.GetData()); |
183 | break; |
184 | } |
185 | case PTRACE_SETREGSET: { |
186 | // Extract iov_base from data, which is a pointer to the struct iovec |
187 | DisplayBytes(s&: buf, bytes: *(void **)data, count: data_size); |
188 | LLDB_LOGV(log, "PTRACE_SETREGSET {0}" , buf.GetData()); |
189 | break; |
190 | } |
191 | default: {} |
192 | } |
193 | } |
194 | |
195 | static constexpr unsigned k_ptrace_word_size = sizeof(void *); |
196 | static_assert(sizeof(long) >= k_ptrace_word_size, |
197 | "Size of long must be larger than ptrace word size" ); |
198 | |
199 | // Simple helper function to ensure flags are enabled on the given file |
200 | // descriptor. |
201 | static Status EnsureFDFlags(int fd, int flags) { |
202 | Status error; |
203 | |
204 | int status = fcntl(fd: fd, F_GETFL); |
205 | if (status == -1) { |
206 | error.SetErrorToErrno(); |
207 | return error; |
208 | } |
209 | |
210 | if (fcntl(fd: fd, F_SETFL, status | flags) == -1) { |
211 | error.SetErrorToErrno(); |
212 | return error; |
213 | } |
214 | |
215 | return error; |
216 | } |
217 | |
218 | static llvm::Error AddPtraceScopeNote(llvm::Error original_error) { |
219 | Expected<int> ptrace_scope = GetPtraceScope(); |
220 | if (auto E = ptrace_scope.takeError()) { |
221 | Log *log = GetLog(mask: POSIXLog::Process); |
222 | LLDB_LOG(log, "error reading value of ptrace_scope: {0}" , E); |
223 | |
224 | // The original error is probably more interesting than not being able to |
225 | // read or interpret ptrace_scope. |
226 | return original_error; |
227 | } |
228 | |
229 | // We only have suggestions to provide for 1-3. |
230 | switch (*ptrace_scope) { |
231 | case 1: |
232 | case 2: |
233 | return llvm::createStringError( |
234 | EC: std::error_code(errno, std::generic_category()), |
235 | Fmt: "The current value of ptrace_scope is %d, which can cause ptrace to " |
236 | "fail to attach to a running process. To fix this, run:\n" |
237 | "\tsudo sysctl -w kernel.yama.ptrace_scope=0\n" |
238 | "For more information, see: " |
239 | "https://www.kernel.org/doc/Documentation/security/Yama.txt." , |
240 | Vals: *ptrace_scope); |
241 | case 3: |
242 | return llvm::createStringError( |
243 | EC: std::error_code(errno, std::generic_category()), |
244 | Msg: "The current value of ptrace_scope is 3, which will cause ptrace to " |
245 | "fail to attach to a running process. This value cannot be changed " |
246 | "without rebooting.\n" |
247 | "For more information, see: " |
248 | "https://www.kernel.org/doc/Documentation/security/Yama.txt." ); |
249 | case 0: |
250 | default: |
251 | return original_error; |
252 | } |
253 | } |
254 | |
255 | NativeProcessLinux::Manager::Manager(MainLoop &mainloop) |
256 | : NativeProcessProtocol::Manager(mainloop) { |
257 | Status status; |
258 | m_sigchld_handle = mainloop.RegisterSignal( |
259 | SIGCHLD, callback: [this](MainLoopBase &) { SigchldHandler(); }, error&: status); |
260 | assert(m_sigchld_handle && status.Success()); |
261 | } |
262 | |
263 | llvm::Expected<std::unique_ptr<NativeProcessProtocol>> |
264 | NativeProcessLinux::Manager::Launch(ProcessLaunchInfo &launch_info, |
265 | NativeDelegate &native_delegate) { |
266 | Log *log = GetLog(mask: POSIXLog::Process); |
267 | |
268 | MaybeLogLaunchInfo(info: launch_info); |
269 | |
270 | Status status; |
271 | ::pid_t pid = ProcessLauncherPosixFork() |
272 | .LaunchProcess(launch_info, error&: status) |
273 | .GetProcessId(); |
274 | LLDB_LOG(log, "pid = {0:x}" , pid); |
275 | if (status.Fail()) { |
276 | LLDB_LOG(log, "failed to launch process: {0}" , status); |
277 | return status.ToError(); |
278 | } |
279 | |
280 | // Wait for the child process to trap on its call to execve. |
281 | int wstatus = 0; |
282 | ::pid_t wpid = llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: pid, As: &wstatus, As: 0); |
283 | assert(wpid == pid); |
284 | UNUSED_IF_ASSERT_DISABLED(wpid); |
285 | if (!WIFSTOPPED(wstatus)) { |
286 | LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}" , |
287 | WaitStatus::Decode(wstatus)); |
288 | return llvm::make_error<StringError>(Args: "Could not sync with inferior process" , |
289 | Args: llvm::inconvertibleErrorCode()); |
290 | } |
291 | LLDB_LOG(log, "inferior started, now in stopped state" ); |
292 | |
293 | status = SetDefaultPtraceOpts(pid); |
294 | if (status.Fail()) { |
295 | LLDB_LOG(log, "failed to set default ptrace options: {0}" , status); |
296 | return status.ToError(); |
297 | } |
298 | |
299 | llvm::Expected<ArchSpec> arch_or = |
300 | NativeRegisterContextLinux::DetermineArchitecture(tid: pid); |
301 | if (!arch_or) |
302 | return arch_or.takeError(); |
303 | |
304 | return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( |
305 | pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, |
306 | *arch_or, *this, {pid})); |
307 | } |
308 | |
309 | llvm::Expected<std::unique_ptr<NativeProcessProtocol>> |
310 | NativeProcessLinux::Manager::Attach( |
311 | lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate) { |
312 | Log *log = GetLog(mask: POSIXLog::Process); |
313 | LLDB_LOG(log, "pid = {0:x}" , pid); |
314 | |
315 | auto tids_or = NativeProcessLinux::Attach(pid); |
316 | if (!tids_or) |
317 | return tids_or.takeError(); |
318 | ArrayRef<::pid_t> tids = *tids_or; |
319 | llvm::Expected<ArchSpec> arch_or = |
320 | NativeRegisterContextLinux::DetermineArchitecture(tid: tids[0]); |
321 | if (!arch_or) |
322 | return arch_or.takeError(); |
323 | |
324 | return std::unique_ptr<NativeProcessLinux>( |
325 | new NativeProcessLinux(pid, -1, native_delegate, *arch_or, *this, tids)); |
326 | } |
327 | |
328 | NativeProcessLinux::Extension |
329 | NativeProcessLinux::Manager::GetSupportedExtensions() const { |
330 | NativeProcessLinux::Extension supported = |
331 | Extension::multiprocess | Extension::fork | Extension::vfork | |
332 | Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | |
333 | Extension::siginfo_read; |
334 | |
335 | #ifdef __aarch64__ |
336 | // At this point we do not have a process so read auxv directly. |
337 | if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) |
338 | supported |= Extension::memory_tagging; |
339 | #endif |
340 | |
341 | return supported; |
342 | } |
343 | |
344 | static std::optional<std::pair<lldb::pid_t, WaitStatus>> WaitPid() { |
345 | Log *log = GetLog(mask: POSIXLog::Process); |
346 | |
347 | int status; |
348 | ::pid_t wait_pid = llvm::sys::RetryAfterSignal( |
349 | Fail: -1, F&: ::waitpid, As: -1, As: &status, __WALL | __WNOTHREAD | WNOHANG); |
350 | |
351 | if (wait_pid == 0) |
352 | return std::nullopt; |
353 | |
354 | if (wait_pid == -1) { |
355 | Status error(errno, eErrorTypePOSIX); |
356 | LLDB_LOG(log, "waitpid(-1, &status, _) failed: {1}" , error); |
357 | return std::nullopt; |
358 | } |
359 | |
360 | WaitStatus wait_status = WaitStatus::Decode(wstatus: status); |
361 | |
362 | LLDB_LOG(log, "waitpid(-1, &status, _) = {0}, status = {1}" , wait_pid, |
363 | wait_status); |
364 | return std::make_pair(x&: wait_pid, y&: wait_status); |
365 | } |
366 | |
367 | void NativeProcessLinux::Manager::SigchldHandler() { |
368 | Log *log = GetLog(mask: POSIXLog::Process); |
369 | while (true) { |
370 | auto wait_result = WaitPid(); |
371 | if (!wait_result) |
372 | return; |
373 | lldb::pid_t pid = wait_result->first; |
374 | WaitStatus status = wait_result->second; |
375 | |
376 | // Ask each process whether it wants to handle the event. Each event should |
377 | // be handled by exactly one process, but thread creation events require |
378 | // special handling. |
379 | // Thread creation consists of two events (one on the parent and one on the |
380 | // child thread) and they can arrive in any order nondeterministically. The |
381 | // parent event carries the information about the child thread, but not |
382 | // vice-versa. This means that if the child event arrives first, it may not |
383 | // be handled by any process (because it doesn't know the thread belongs to |
384 | // it). |
385 | bool handled = llvm::any_of(Range&: m_processes, P: [&](NativeProcessLinux *process) { |
386 | return process->TryHandleWaitStatus(pid, status); |
387 | }); |
388 | if (!handled) { |
389 | if (status.type == WaitStatus::Stop && status.status == SIGSTOP) { |
390 | // Store the thread creation event for later collection. |
391 | m_unowned_threads.insert(V: pid); |
392 | } else { |
393 | LLDB_LOG(log, "Ignoring waitpid event {0} for pid {1}" , status, pid); |
394 | } |
395 | } |
396 | } |
397 | } |
398 | |
399 | void NativeProcessLinux::Manager::CollectThread(::pid_t tid) { |
400 | Log *log = GetLog(mask: POSIXLog::Process); |
401 | |
402 | if (m_unowned_threads.erase(V: tid)) |
403 | return; // We've encountered this thread already. |
404 | |
405 | // The TID is not tracked yet, let's wait for it to appear. |
406 | int status = -1; |
407 | LLDB_LOG(log, |
408 | "received clone event for tid {0}. tid not tracked yet, " |
409 | "waiting for it to appear..." , |
410 | tid); |
411 | ::pid_t wait_pid = |
412 | llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: tid, As: &status, __WALL); |
413 | |
414 | // It's theoretically possible to get other events if the entire process was |
415 | // SIGKILLed before we got a chance to check this. In that case, we'll just |
416 | // clean everything up when we get the process exit event. |
417 | |
418 | LLDB_LOG(log, |
419 | "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})" , |
420 | tid, wait_pid, errno, WaitStatus::Decode(status)); |
421 | } |
422 | |
423 | // Public Instance Methods |
424 | |
425 | NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, |
426 | NativeDelegate &delegate, |
427 | const ArchSpec &arch, Manager &manager, |
428 | llvm::ArrayRef<::pid_t> tids) |
429 | : NativeProcessELF(pid, terminal_fd, delegate), m_manager(manager), |
430 | m_arch(arch), m_intel_pt_collector(*this) { |
431 | manager.AddProcess(process&: *this); |
432 | if (m_terminal_fd != -1) { |
433 | Status status = EnsureFDFlags(fd: m_terminal_fd, O_NONBLOCK); |
434 | assert(status.Success()); |
435 | } |
436 | |
437 | for (const auto &tid : tids) { |
438 | NativeThreadLinux &thread = AddThread(thread_id: tid, /*resume*/ false); |
439 | ThreadWasCreated(thread); |
440 | } |
441 | |
442 | // Let our process instance know the thread has stopped. |
443 | SetCurrentThreadID(tids[0]); |
444 | SetState(state: StateType::eStateStopped, notify_delegates: false); |
445 | } |
446 | |
447 | llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { |
448 | Log *log = GetLog(mask: POSIXLog::Process); |
449 | |
450 | Status status; |
451 | // Use a map to keep track of the threads which we have attached/need to |
452 | // attach. |
453 | Host::TidMap tids_to_attach; |
454 | while (Host::FindProcessThreads(pid, tids_to_attach)) { |
455 | for (Host::TidMap::iterator it = tids_to_attach.begin(); |
456 | it != tids_to_attach.end();) { |
457 | if (it->second == false) { |
458 | lldb::tid_t tid = it->first; |
459 | |
460 | // Attach to the requested process. |
461 | // An attach will cause the thread to stop with a SIGSTOP. |
462 | if ((status = PtraceWrapper(req: PTRACE_ATTACH, pid: tid)).Fail()) { |
463 | // No such thread. The thread may have exited. More error handling |
464 | // may be needed. |
465 | if (status.GetError() == ESRCH) { |
466 | it = tids_to_attach.erase(position: it); |
467 | continue; |
468 | } |
469 | if (status.GetError() == EPERM) { |
470 | // Depending on the value of ptrace_scope, we can return a different |
471 | // error that suggests how to fix it. |
472 | return AddPtraceScopeNote(original_error: status.ToError()); |
473 | } |
474 | return status.ToError(); |
475 | } |
476 | |
477 | int wpid = |
478 | llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: tid, As: nullptr, __WALL); |
479 | // Need to use __WALL otherwise we receive an error with errno=ECHLD At |
480 | // this point we should have a thread stopped if waitpid succeeds. |
481 | if (wpid < 0) { |
482 | // No such thread. The thread may have exited. More error handling |
483 | // may be needed. |
484 | if (errno == ESRCH) { |
485 | it = tids_to_attach.erase(position: it); |
486 | continue; |
487 | } |
488 | return llvm::errorCodeToError( |
489 | EC: std::error_code(errno, std::generic_category())); |
490 | } |
491 | |
492 | if ((status = SetDefaultPtraceOpts(tid)).Fail()) |
493 | return status.ToError(); |
494 | |
495 | LLDB_LOG(log, "adding tid = {0}" , tid); |
496 | it->second = true; |
497 | } |
498 | |
499 | // move the loop forward |
500 | ++it; |
501 | } |
502 | } |
503 | |
504 | size_t tid_count = tids_to_attach.size(); |
505 | if (tid_count == 0) |
506 | return llvm::make_error<StringError>(Args: "No such process" , |
507 | Args: llvm::inconvertibleErrorCode()); |
508 | |
509 | std::vector<::pid_t> tids; |
510 | tids.reserve(n: tid_count); |
511 | for (const auto &p : tids_to_attach) |
512 | tids.push_back(x: p.first); |
513 | return std::move(tids); |
514 | } |
515 | |
516 | Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { |
517 | long ptrace_opts = 0; |
518 | |
519 | // Have the child raise an event on exit. This is used to keep the child in |
520 | // limbo until it is destroyed. |
521 | ptrace_opts |= PTRACE_O_TRACEEXIT; |
522 | |
523 | // Have the tracer trace threads which spawn in the inferior process. |
524 | ptrace_opts |= PTRACE_O_TRACECLONE; |
525 | |
526 | // Have the tracer notify us before execve returns (needed to disable legacy |
527 | // SIGTRAP generation) |
528 | ptrace_opts |= PTRACE_O_TRACEEXEC; |
529 | |
530 | // Have the tracer trace forked children. |
531 | ptrace_opts |= PTRACE_O_TRACEFORK; |
532 | |
533 | // Have the tracer trace vforks. |
534 | ptrace_opts |= PTRACE_O_TRACEVFORK; |
535 | |
536 | // Have the tracer trace vfork-done in order to restore breakpoints after |
537 | // the child finishes sharing memory. |
538 | ptrace_opts |= PTRACE_O_TRACEVFORKDONE; |
539 | |
540 | return PtraceWrapper(req: PTRACE_SETOPTIONS, pid, addr: nullptr, data: (void *)ptrace_opts); |
541 | } |
542 | |
543 | bool NativeProcessLinux::TryHandleWaitStatus(lldb::pid_t pid, |
544 | WaitStatus status) { |
545 | if (pid == GetID() && |
546 | (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal)) { |
547 | // The process exited. We're done monitoring. Report to delegate. |
548 | SetExitStatus(status, bNotifyStateChange: true); |
549 | return true; |
550 | } |
551 | if (NativeThreadLinux *thread = GetThreadByID(id: pid)) { |
552 | MonitorCallback(thread&: *thread, status); |
553 | return true; |
554 | } |
555 | return false; |
556 | } |
557 | |
558 | void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, |
559 | WaitStatus status) { |
560 | Log *log = GetLog(mask: LLDBLog::Process); |
561 | |
562 | // Certain activities differ based on whether the pid is the tid of the main |
563 | // thread. |
564 | const bool is_main_thread = (thread.GetID() == GetID()); |
565 | |
566 | // Handle when the thread exits. |
567 | if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { |
568 | LLDB_LOG(log, |
569 | "got exit status({0}) , tid = {1} ({2} main thread), process " |
570 | "state = {3}" , |
571 | status, thread.GetID(), is_main_thread ? "is" : "is not" , |
572 | GetState()); |
573 | |
574 | // This is a thread that exited. Ensure we're not tracking it anymore. |
575 | StopTrackingThread(thread); |
576 | |
577 | assert(!is_main_thread && "Main thread exits handled elsewhere" ); |
578 | return; |
579 | } |
580 | |
581 | siginfo_t info; |
582 | const auto info_err = GetSignalInfo(tid: thread.GetID(), siginfo: &info); |
583 | |
584 | // Get details on the signal raised. |
585 | if (info_err.Success()) { |
586 | // We have retrieved the signal info. Dispatch appropriately. |
587 | if (info.si_signo == SIGTRAP) |
588 | MonitorSIGTRAP(info, thread); |
589 | else |
590 | MonitorSignal(info, thread); |
591 | } else { |
592 | if (info_err.GetError() == EINVAL) { |
593 | // This is a group stop reception for this tid. We can reach here if we |
594 | // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, |
595 | // triggering the group-stop mechanism. Normally receiving these would |
596 | // stop the process, pending a SIGCONT. Simulating this state in a |
597 | // debugger is hard and is generally not needed (one use case is |
598 | // debugging background task being managed by a shell). For general use, |
599 | // it is sufficient to stop the process in a signal-delivery stop which |
600 | // happens before the group stop. This done by MonitorSignal and works |
601 | // correctly for all signals. |
602 | LLDB_LOG(log, |
603 | "received a group stop for pid {0} tid {1}. Transparent " |
604 | "handling of group stops not supported, resuming the " |
605 | "thread." , |
606 | GetID(), thread.GetID()); |
607 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
608 | } else { |
609 | // ptrace(GETSIGINFO) failed (but not due to group-stop). |
610 | |
611 | // A return value of ESRCH means the thread/process has died in the mean |
612 | // time. This can (e.g.) happen when another thread does an exit_group(2) |
613 | // or the entire process get SIGKILLed. |
614 | // We can't do anything with this thread anymore, but we keep it around |
615 | // until we get the WIFEXITED event. |
616 | |
617 | LLDB_LOG(log, |
618 | "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " |
619 | "{3}. Expecting WIFEXITED soon." , |
620 | thread.GetID(), info_err, status, is_main_thread); |
621 | } |
622 | } |
623 | } |
624 | |
625 | void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, |
626 | NativeThreadLinux &thread) { |
627 | Log *log = GetLog(mask: POSIXLog::Process); |
628 | const bool is_main_thread = (thread.GetID() == GetID()); |
629 | |
630 | assert(info.si_signo == SIGTRAP && "Unexpected child signal!" ); |
631 | |
632 | switch (info.si_code) { |
633 | case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): |
634 | case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): |
635 | case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { |
636 | // This can either mean a new thread or a new process spawned via |
637 | // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) |
638 | // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one |
639 | // of these flags are passed. |
640 | |
641 | unsigned long event_message = 0; |
642 | if (GetEventMessage(tid: thread.GetID(), message: &event_message).Fail()) { |
643 | LLDB_LOG(log, |
644 | "pid {0} received clone() event but GetEventMessage failed " |
645 | "so we don't know the new pid/tid" , |
646 | thread.GetID()); |
647 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
648 | } else { |
649 | MonitorClone(parent&: thread, child_pid: event_message, event: info.si_code >> 8); |
650 | } |
651 | |
652 | break; |
653 | } |
654 | |
655 | case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { |
656 | LLDB_LOG(log, "received exec event, code = {0}" , info.si_code ^ SIGTRAP); |
657 | |
658 | // Exec clears any pending notifications. |
659 | m_pending_notification_tid = LLDB_INVALID_THREAD_ID; |
660 | |
661 | // Remove all but the main thread here. Linux fork creates a new process |
662 | // which only copies the main thread. |
663 | LLDB_LOG(log, "exec received, stop tracking all but main thread" ); |
664 | |
665 | llvm::erase_if(C&: m_threads, P: [&](std::unique_ptr<NativeThreadProtocol> &t) { |
666 | return t->GetID() != GetID(); |
667 | }); |
668 | assert(m_threads.size() == 1); |
669 | auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); |
670 | |
671 | SetCurrentThreadID(main_thread->GetID()); |
672 | main_thread->SetStoppedByExec(); |
673 | |
674 | // Tell coordinator about the "new" (since exec) stopped main thread. |
675 | ThreadWasCreated(thread&: *main_thread); |
676 | |
677 | // Let our delegate know we have just exec'd. |
678 | NotifyDidExec(); |
679 | |
680 | // Let the process know we're stopped. |
681 | StopRunningThreads(triggering_tid: main_thread->GetID()); |
682 | |
683 | break; |
684 | } |
685 | |
686 | case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { |
687 | // The inferior process or one of its threads is about to exit. We don't |
688 | // want to do anything with the thread so we just resume it. In case we |
689 | // want to implement "break on thread exit" functionality, we would need to |
690 | // stop here. |
691 | |
692 | unsigned long data = 0; |
693 | if (GetEventMessage(tid: thread.GetID(), message: &data).Fail()) |
694 | data = -1; |
695 | |
696 | LLDB_LOG(log, |
697 | "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " |
698 | "WIFSIGNALED={2}, pid = {3}, main_thread = {4}" , |
699 | data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), |
700 | is_main_thread); |
701 | |
702 | |
703 | StateType state = thread.GetState(); |
704 | if (!StateIsRunningState(state)) { |
705 | // Due to a kernel bug, we may sometimes get this stop after the inferior |
706 | // gets a SIGKILL. This confuses our state tracking logic in |
707 | // ResumeThread(), since normally, we should not be receiving any ptrace |
708 | // events while the inferior is stopped. This makes sure that the |
709 | // inferior is resumed and exits normally. |
710 | state = eStateRunning; |
711 | } |
712 | ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); |
713 | |
714 | if (is_main_thread) { |
715 | // Main thread report the read (WIFEXITED) event only after all threads in |
716 | // the process exit, so we need to stop tracking it here instead of in |
717 | // MonitorCallback |
718 | StopTrackingThread(thread); |
719 | } |
720 | |
721 | break; |
722 | } |
723 | |
724 | case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { |
725 | if (bool(m_enabled_extensions & Extension::vfork)) { |
726 | thread.SetStoppedByVForkDone(); |
727 | StopRunningThreads(triggering_tid: thread.GetID()); |
728 | } |
729 | else |
730 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
731 | break; |
732 | } |
733 | |
734 | case 0: |
735 | case TRAP_TRACE: // We receive this on single stepping. |
736 | case TRAP_HWBKPT: // We receive this on watchpoint hit |
737 | { |
738 | // If a watchpoint was hit, report it |
739 | uint32_t wp_index; |
740 | Status error = thread.GetRegisterContext().GetWatchpointHitIndex( |
741 | wp_index, trap_addr: (uintptr_t)info.si_addr); |
742 | if (error.Fail()) |
743 | LLDB_LOG(log, |
744 | "received error while checking for watchpoint hits, pid = " |
745 | "{0}, error = {1}" , |
746 | thread.GetID(), error); |
747 | if (wp_index != LLDB_INVALID_INDEX32) { |
748 | MonitorWatchpoint(thread, wp_index); |
749 | break; |
750 | } |
751 | |
752 | // If a breakpoint was hit, report it |
753 | uint32_t bp_index; |
754 | error = thread.GetRegisterContext().GetHardwareBreakHitIndex( |
755 | bp_index, trap_addr: (uintptr_t)info.si_addr); |
756 | if (error.Fail()) |
757 | LLDB_LOG(log, "received error while checking for hardware " |
758 | "breakpoint hits, pid = {0}, error = {1}" , |
759 | thread.GetID(), error); |
760 | if (bp_index != LLDB_INVALID_INDEX32) { |
761 | MonitorBreakpoint(thread); |
762 | break; |
763 | } |
764 | |
765 | // Otherwise, report step over |
766 | MonitorTrace(thread); |
767 | break; |
768 | } |
769 | |
770 | case SI_KERNEL: |
771 | #if defined __mips__ |
772 | // For mips there is no special signal for watchpoint So we check for |
773 | // watchpoint in kernel trap |
774 | { |
775 | // If a watchpoint was hit, report it |
776 | uint32_t wp_index; |
777 | Status error = thread.GetRegisterContext().GetWatchpointHitIndex( |
778 | wp_index, LLDB_INVALID_ADDRESS); |
779 | if (error.Fail()) |
780 | LLDB_LOG(log, |
781 | "received error while checking for watchpoint hits, pid = " |
782 | "{0}, error = {1}" , |
783 | thread.GetID(), error); |
784 | if (wp_index != LLDB_INVALID_INDEX32) { |
785 | MonitorWatchpoint(thread, wp_index); |
786 | break; |
787 | } |
788 | } |
789 | // NO BREAK |
790 | #endif |
791 | case TRAP_BRKPT: |
792 | MonitorBreakpoint(thread); |
793 | break; |
794 | |
795 | case SIGTRAP: |
796 | case (SIGTRAP | 0x80): |
797 | LLDB_LOG( |
798 | log, |
799 | "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming" , |
800 | info.si_code, GetID(), thread.GetID()); |
801 | |
802 | // Ignore these signals until we know more about them. |
803 | ResumeThread(thread, state: thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
804 | break; |
805 | |
806 | default: |
807 | LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}" , |
808 | info.si_code, GetID(), thread.GetID()); |
809 | MonitorSignal(info, thread); |
810 | break; |
811 | } |
812 | } |
813 | |
814 | void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { |
815 | Log *log = GetLog(mask: POSIXLog::Process); |
816 | LLDB_LOG(log, "received trace event, pid = {0}" , thread.GetID()); |
817 | |
818 | // This thread is currently stopped. |
819 | thread.SetStoppedByTrace(); |
820 | |
821 | StopRunningThreads(triggering_tid: thread.GetID()); |
822 | } |
823 | |
824 | void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { |
825 | Log *log = GetLog(mask: LLDBLog::Process | LLDBLog::Breakpoints); |
826 | LLDB_LOG(log, "received breakpoint event, pid = {0}" , thread.GetID()); |
827 | |
828 | // Mark the thread as stopped at breakpoint. |
829 | thread.SetStoppedByBreakpoint(); |
830 | FixupBreakpointPCAsNeeded(thread); |
831 | |
832 | if (m_threads_stepping_with_breakpoint.find(x: thread.GetID()) != |
833 | m_threads_stepping_with_breakpoint.end()) |
834 | thread.SetStoppedByTrace(); |
835 | |
836 | StopRunningThreads(triggering_tid: thread.GetID()); |
837 | } |
838 | |
839 | void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, |
840 | uint32_t wp_index) { |
841 | Log *log = GetLog(mask: LLDBLog::Process | LLDBLog::Watchpoints); |
842 | LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}" , |
843 | thread.GetID(), wp_index); |
844 | |
845 | // Mark the thread as stopped at watchpoint. The address is at |
846 | // (lldb::addr_t)info->si_addr if we need it. |
847 | thread.SetStoppedByWatchpoint(wp_index); |
848 | |
849 | // We need to tell all other running threads before we notify the delegate |
850 | // about this stop. |
851 | StopRunningThreads(triggering_tid: thread.GetID()); |
852 | } |
853 | |
854 | void NativeProcessLinux::MonitorSignal(const siginfo_t &info, |
855 | NativeThreadLinux &thread) { |
856 | const int signo = info.si_signo; |
857 | const bool is_from_llgs = info.si_pid == getpid(); |
858 | |
859 | Log *log = GetLog(mask: POSIXLog::Process); |
860 | |
861 | // POSIX says that process behaviour is undefined after it ignores a SIGFPE, |
862 | // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) |
863 | // or raise(3). Similarly for tgkill(2) on Linux. |
864 | // |
865 | // IOW, user generated signals never generate what we consider to be a |
866 | // "crash". |
867 | // |
868 | // Similarly, ACK signals generated by this monitor. |
869 | |
870 | // Handle the signal. |
871 | LLDB_LOG(log, |
872 | "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " |
873 | "waitpid pid = {4})" , |
874 | Host::GetSignalAsCString(signo), signo, info.si_code, |
875 | thread.GetID()); |
876 | |
877 | // Check for thread stop notification. |
878 | if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { |
879 | // This is a tgkill()-based stop. |
880 | LLDB_LOG(log, "pid {0} tid {1}, thread stopped" , GetID(), thread.GetID()); |
881 | |
882 | // Check that we're not already marked with a stop reason. Note this thread |
883 | // really shouldn't already be marked as stopped - if we were, that would |
884 | // imply that the kernel signaled us with the thread stopping which we |
885 | // handled and marked as stopped, and that, without an intervening resume, |
886 | // we received another stop. It is more likely that we are missing the |
887 | // marking of a run state somewhere if we find that the thread was marked |
888 | // as stopped. |
889 | const StateType thread_state = thread.GetState(); |
890 | if (!StateIsStoppedState(state: thread_state, must_exist: false)) { |
891 | // An inferior thread has stopped because of a SIGSTOP we have sent it. |
892 | // Generally, these are not important stops and we don't want to report |
893 | // them as they are just used to stop other threads when one thread (the |
894 | // one with the *real* stop reason) hits a breakpoint (watchpoint, |
895 | // etc...). However, in the case of an asynchronous Interrupt(), this |
896 | // *is* the real stop reason, so we leave the signal intact if this is |
897 | // the thread that was chosen as the triggering thread. |
898 | if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { |
899 | if (m_pending_notification_tid == thread.GetID()) |
900 | thread.SetStoppedBySignal(SIGSTOP, info: &info); |
901 | else |
902 | thread.SetStoppedWithNoReason(); |
903 | |
904 | SetCurrentThreadID(thread.GetID()); |
905 | SignalIfAllThreadsStopped(); |
906 | } else { |
907 | // We can end up here if stop was initiated by LLGS but by this time a |
908 | // thread stop has occurred - maybe initiated by another event. |
909 | Status error = ResumeThread(thread, state: thread.GetState(), signo: 0); |
910 | if (error.Fail()) |
911 | LLDB_LOG(log, "failed to resume thread {0}: {1}" , thread.GetID(), |
912 | error); |
913 | } |
914 | } else { |
915 | LLDB_LOG(log, |
916 | "pid {0} tid {1}, thread was already marked as a stopped " |
917 | "state (state={2}), leaving stop signal as is" , |
918 | GetID(), thread.GetID(), thread_state); |
919 | SignalIfAllThreadsStopped(); |
920 | } |
921 | |
922 | // Done handling. |
923 | return; |
924 | } |
925 | |
926 | // Check if debugger should stop at this signal or just ignore it and resume |
927 | // the inferior. |
928 | if (m_signals_to_ignore.contains(V: signo)) { |
929 | ResumeThread(thread, state: thread.GetState(), signo); |
930 | return; |
931 | } |
932 | |
933 | // This thread is stopped. |
934 | LLDB_LOG(log, "received signal {0}" , Host::GetSignalAsCString(signo)); |
935 | thread.SetStoppedBySignal(signo, info: &info); |
936 | |
937 | // Send a stop to the debugger after we get all other threads to stop. |
938 | StopRunningThreads(triggering_tid: thread.GetID()); |
939 | } |
940 | |
941 | bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, |
942 | lldb::pid_t child_pid, int event) { |
943 | Log *log = GetLog(mask: POSIXLog::Process); |
944 | LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}" , parent.GetID(), |
945 | child_pid, event); |
946 | |
947 | m_manager.CollectThread(tid: child_pid); |
948 | |
949 | switch (event) { |
950 | case PTRACE_EVENT_CLONE: { |
951 | // PTRACE_EVENT_CLONE can either mean a new thread or a new process. |
952 | // Try to grab the new process' PGID to figure out which one it is. |
953 | // If PGID is the same as the PID, then it's a new process. Otherwise, |
954 | // it's a thread. |
955 | auto tgid_ret = getPIDForTID(tid: child_pid); |
956 | if (tgid_ret != child_pid) { |
957 | // A new thread should have PGID matching our process' PID. |
958 | assert(!tgid_ret || *tgid_ret == GetID()); |
959 | |
960 | NativeThreadLinux &child_thread = AddThread(thread_id: child_pid, /*resume*/ true); |
961 | ThreadWasCreated(thread&: child_thread); |
962 | |
963 | // Resume the parent. |
964 | ResumeThread(thread&: parent, state: parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
965 | break; |
966 | } |
967 | } |
968 | [[fallthrough]]; |
969 | case PTRACE_EVENT_FORK: |
970 | case PTRACE_EVENT_VFORK: { |
971 | bool is_vfork = event == PTRACE_EVENT_VFORK; |
972 | std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( |
973 | static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, |
974 | m_manager, {static_cast<::pid_t>(child_pid)})}; |
975 | if (!is_vfork) |
976 | child_process->m_software_breakpoints = m_software_breakpoints; |
977 | |
978 | Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; |
979 | if (bool(m_enabled_extensions & expected_ext)) { |
980 | m_delegate.NewSubprocess(parent_process: this, child_process: std::move(child_process)); |
981 | // NB: non-vfork clone() is reported as fork |
982 | parent.SetStoppedByFork(is_vfork, child_pid); |
983 | StopRunningThreads(triggering_tid: parent.GetID()); |
984 | } else { |
985 | child_process->Detach(); |
986 | ResumeThread(thread&: parent, state: parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); |
987 | } |
988 | break; |
989 | } |
990 | default: |
991 | llvm_unreachable("unknown clone_info.event" ); |
992 | } |
993 | |
994 | return true; |
995 | } |
996 | |
997 | bool NativeProcessLinux::SupportHardwareSingleStepping() const { |
998 | if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm || |
999 | m_arch.GetTriple().isRISCV() || m_arch.GetTriple().isLoongArch()) |
1000 | return false; |
1001 | return true; |
1002 | } |
1003 | |
1004 | Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { |
1005 | Log *log = GetLog(mask: POSIXLog::Process); |
1006 | LLDB_LOG(log, "pid {0}" , GetID()); |
1007 | |
1008 | NotifyTracersProcessWillResume(); |
1009 | |
1010 | bool software_single_step = !SupportHardwareSingleStepping(); |
1011 | |
1012 | if (software_single_step) { |
1013 | for (const auto &thread : m_threads) { |
1014 | assert(thread && "thread list should not contain NULL threads" ); |
1015 | |
1016 | const ResumeAction *const action = |
1017 | resume_actions.GetActionForThread(tid: thread->GetID(), default_ok: true); |
1018 | if (action == nullptr) |
1019 | continue; |
1020 | |
1021 | if (action->state == eStateStepping) { |
1022 | Status error = SetupSoftwareSingleStepping( |
1023 | static_cast<NativeThreadLinux &>(*thread)); |
1024 | if (error.Fail()) |
1025 | return error; |
1026 | } |
1027 | } |
1028 | } |
1029 | |
1030 | for (const auto &thread : m_threads) { |
1031 | assert(thread && "thread list should not contain NULL threads" ); |
1032 | |
1033 | const ResumeAction *const action = |
1034 | resume_actions.GetActionForThread(tid: thread->GetID(), default_ok: true); |
1035 | |
1036 | if (action == nullptr) { |
1037 | LLDB_LOG(log, "no action specified for pid {0} tid {1}" , GetID(), |
1038 | thread->GetID()); |
1039 | continue; |
1040 | } |
1041 | |
1042 | LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}" , |
1043 | action->state, GetID(), thread->GetID()); |
1044 | |
1045 | switch (action->state) { |
1046 | case eStateRunning: |
1047 | case eStateStepping: { |
1048 | // Run the thread, possibly feeding it the signal. |
1049 | const int signo = action->signal; |
1050 | Status error = ResumeThread(thread&: static_cast<NativeThreadLinux &>(*thread), |
1051 | state: action->state, signo); |
1052 | if (error.Fail()) |
1053 | return Status("NativeProcessLinux::%s: failed to resume thread " |
1054 | "for pid %" PRIu64 ", tid %" PRIu64 ", error = %s" , |
1055 | __FUNCTION__, GetID(), thread->GetID(), |
1056 | error.AsCString()); |
1057 | |
1058 | break; |
1059 | } |
1060 | |
1061 | case eStateSuspended: |
1062 | case eStateStopped: |
1063 | break; |
1064 | |
1065 | default: |
1066 | return Status("NativeProcessLinux::%s (): unexpected state %s specified " |
1067 | "for pid %" PRIu64 ", tid %" PRIu64, |
1068 | __FUNCTION__, StateAsCString(state: action->state), GetID(), |
1069 | thread->GetID()); |
1070 | } |
1071 | } |
1072 | |
1073 | return Status(); |
1074 | } |
1075 | |
1076 | Status NativeProcessLinux::Halt() { |
1077 | Status error; |
1078 | |
1079 | if (kill(pid: GetID(), SIGSTOP) != 0) |
1080 | error.SetErrorToErrno(); |
1081 | |
1082 | return error; |
1083 | } |
1084 | |
1085 | Status NativeProcessLinux::Detach() { |
1086 | Status error; |
1087 | |
1088 | // Tell ptrace to detach from the process. |
1089 | if (GetID() == LLDB_INVALID_PROCESS_ID) |
1090 | return error; |
1091 | |
1092 | // Cancel out any SIGSTOPs we may have sent while stopping the process. |
1093 | // Otherwise, the process may stop as soon as we detach from it. |
1094 | kill(pid: GetID(), SIGCONT); |
1095 | |
1096 | for (const auto &thread : m_threads) { |
1097 | Status e = Detach(tid: thread->GetID()); |
1098 | if (e.Fail()) |
1099 | error = |
1100 | e; // Save the error, but still attempt to detach from other threads. |
1101 | } |
1102 | |
1103 | m_intel_pt_collector.Clear(); |
1104 | |
1105 | return error; |
1106 | } |
1107 | |
1108 | Status NativeProcessLinux::Signal(int signo) { |
1109 | Status error; |
1110 | |
1111 | Log *log = GetLog(mask: POSIXLog::Process); |
1112 | LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}" , signo, |
1113 | Host::GetSignalAsCString(signo), GetID()); |
1114 | |
1115 | if (kill(pid: GetID(), sig: signo)) |
1116 | error.SetErrorToErrno(); |
1117 | |
1118 | return error; |
1119 | } |
1120 | |
1121 | Status NativeProcessLinux::Interrupt() { |
1122 | // Pick a running thread (or if none, a not-dead stopped thread) as the |
1123 | // chosen thread that will be the stop-reason thread. |
1124 | Log *log = GetLog(mask: POSIXLog::Process); |
1125 | |
1126 | NativeThreadProtocol *running_thread = nullptr; |
1127 | NativeThreadProtocol *stopped_thread = nullptr; |
1128 | |
1129 | LLDB_LOG(log, "selecting running thread for interrupt target" ); |
1130 | for (const auto &thread : m_threads) { |
1131 | // If we have a running or stepping thread, we'll call that the target of |
1132 | // the interrupt. |
1133 | const auto thread_state = thread->GetState(); |
1134 | if (thread_state == eStateRunning || thread_state == eStateStepping) { |
1135 | running_thread = thread.get(); |
1136 | break; |
1137 | } else if (!stopped_thread && StateIsStoppedState(state: thread_state, must_exist: true)) { |
1138 | // Remember the first non-dead stopped thread. We'll use that as a |
1139 | // backup if there are no running threads. |
1140 | stopped_thread = thread.get(); |
1141 | } |
1142 | } |
1143 | |
1144 | if (!running_thread && !stopped_thread) { |
1145 | Status error("found no running/stepping or live stopped threads as target " |
1146 | "for interrupt" ); |
1147 | LLDB_LOG(log, "skipping due to error: {0}" , error); |
1148 | |
1149 | return error; |
1150 | } |
1151 | |
1152 | NativeThreadProtocol *deferred_signal_thread = |
1153 | running_thread ? running_thread : stopped_thread; |
1154 | |
1155 | LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target" , GetID(), |
1156 | running_thread ? "running" : "stopped" , |
1157 | deferred_signal_thread->GetID()); |
1158 | |
1159 | StopRunningThreads(triggering_tid: deferred_signal_thread->GetID()); |
1160 | |
1161 | return Status(); |
1162 | } |
1163 | |
1164 | Status NativeProcessLinux::Kill() { |
1165 | Log *log = GetLog(mask: POSIXLog::Process); |
1166 | LLDB_LOG(log, "pid {0}" , GetID()); |
1167 | |
1168 | Status error; |
1169 | |
1170 | switch (m_state) { |
1171 | case StateType::eStateInvalid: |
1172 | case StateType::eStateExited: |
1173 | case StateType::eStateCrashed: |
1174 | case StateType::eStateDetached: |
1175 | case StateType::eStateUnloaded: |
1176 | // Nothing to do - the process is already dead. |
1177 | LLDB_LOG(log, "ignored for PID {0} due to current state: {1}" , GetID(), |
1178 | m_state); |
1179 | return error; |
1180 | |
1181 | case StateType::eStateConnected: |
1182 | case StateType::eStateAttaching: |
1183 | case StateType::eStateLaunching: |
1184 | case StateType::eStateStopped: |
1185 | case StateType::eStateRunning: |
1186 | case StateType::eStateStepping: |
1187 | case StateType::eStateSuspended: |
1188 | // We can try to kill a process in these states. |
1189 | break; |
1190 | } |
1191 | |
1192 | if (kill(pid: GetID(), SIGKILL) != 0) { |
1193 | error.SetErrorToErrno(); |
1194 | return error; |
1195 | } |
1196 | |
1197 | return error; |
1198 | } |
1199 | |
1200 | Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, |
1201 | MemoryRegionInfo &range_info) { |
1202 | // FIXME review that the final memory region returned extends to the end of |
1203 | // the virtual address space, |
1204 | // with no perms if it is not mapped. |
1205 | |
1206 | // Use an approach that reads memory regions from /proc/{pid}/maps. Assume |
1207 | // proc maps entries are in ascending order. |
1208 | // FIXME assert if we find differently. |
1209 | |
1210 | if (m_supports_mem_region == LazyBool::eLazyBoolNo) { |
1211 | // We're done. |
1212 | return Status("unsupported" ); |
1213 | } |
1214 | |
1215 | Status error = PopulateMemoryRegionCache(); |
1216 | if (error.Fail()) { |
1217 | return error; |
1218 | } |
1219 | |
1220 | lldb::addr_t prev_base_address = 0; |
1221 | |
1222 | // FIXME start by finding the last region that is <= target address using |
1223 | // binary search. Data is sorted. |
1224 | // There can be a ton of regions on pthreads apps with lots of threads. |
1225 | for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); |
1226 | ++it) { |
1227 | MemoryRegionInfo &proc_entry_info = it->first; |
1228 | |
1229 | // Sanity check assumption that /proc/{pid}/maps entries are ascending. |
1230 | assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && |
1231 | "descending /proc/pid/maps entries detected, unexpected" ); |
1232 | prev_base_address = proc_entry_info.GetRange().GetRangeBase(); |
1233 | UNUSED_IF_ASSERT_DISABLED(prev_base_address); |
1234 | |
1235 | // If the target address comes before this entry, indicate distance to next |
1236 | // region. |
1237 | if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { |
1238 | range_info.GetRange().SetRangeBase(load_addr); |
1239 | range_info.GetRange().SetByteSize( |
1240 | proc_entry_info.GetRange().GetRangeBase() - load_addr); |
1241 | range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); |
1242 | range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); |
1243 | range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); |
1244 | range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); |
1245 | |
1246 | return error; |
1247 | } else if (proc_entry_info.GetRange().Contains(r: load_addr)) { |
1248 | // The target address is within the memory region we're processing here. |
1249 | range_info = proc_entry_info; |
1250 | return error; |
1251 | } |
1252 | |
1253 | // The target memory address comes somewhere after the region we just |
1254 | // parsed. |
1255 | } |
1256 | |
1257 | // If we made it here, we didn't find an entry that contained the given |
1258 | // address. Return the load_addr as start and the amount of bytes betwwen |
1259 | // load address and the end of the memory as size. |
1260 | range_info.GetRange().SetRangeBase(load_addr); |
1261 | range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); |
1262 | range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); |
1263 | range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); |
1264 | range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); |
1265 | range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); |
1266 | return error; |
1267 | } |
1268 | |
1269 | Status NativeProcessLinux::PopulateMemoryRegionCache() { |
1270 | Log *log = GetLog(mask: POSIXLog::Process); |
1271 | |
1272 | // If our cache is empty, pull the latest. There should always be at least |
1273 | // one memory region if memory region handling is supported. |
1274 | if (!m_mem_region_cache.empty()) { |
1275 | LLDB_LOG(log, "reusing {0} cached memory region entries" , |
1276 | m_mem_region_cache.size()); |
1277 | return Status(); |
1278 | } |
1279 | |
1280 | Status Result; |
1281 | LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { |
1282 | if (Info) { |
1283 | FileSpec file_spec(Info->GetName().GetCString()); |
1284 | FileSystem::Instance().Resolve(file_spec); |
1285 | m_mem_region_cache.emplace_back(args&: *Info, args&: file_spec); |
1286 | return true; |
1287 | } |
1288 | |
1289 | Result = Info.takeError(); |
1290 | m_supports_mem_region = LazyBool::eLazyBoolNo; |
1291 | LLDB_LOG(log, "failed to parse proc maps: {0}" , Result); |
1292 | return false; |
1293 | }; |
1294 | |
1295 | // Linux kernel since 2.6.14 has /proc/{pid}/smaps |
1296 | // if CONFIG_PROC_PAGE_MONITOR is enabled |
1297 | auto BufferOrError = getProcFile(pid: GetID(), tid: GetCurrentThreadID(), file: "smaps" ); |
1298 | if (BufferOrError) |
1299 | ParseLinuxSMapRegions(linux_smap: BufferOrError.get()->getBuffer(), callback); |
1300 | else { |
1301 | BufferOrError = getProcFile(pid: GetID(), tid: GetCurrentThreadID(), file: "maps" ); |
1302 | if (!BufferOrError) { |
1303 | m_supports_mem_region = LazyBool::eLazyBoolNo; |
1304 | return BufferOrError.getError(); |
1305 | } |
1306 | |
1307 | ParseLinuxMapRegions(linux_map: BufferOrError.get()->getBuffer(), callback); |
1308 | } |
1309 | |
1310 | if (Result.Fail()) |
1311 | return Result; |
1312 | |
1313 | if (m_mem_region_cache.empty()) { |
1314 | // No entries after attempting to read them. This shouldn't happen if |
1315 | // /proc/{pid}/maps is supported. Assume we don't support map entries via |
1316 | // procfs. |
1317 | m_supports_mem_region = LazyBool::eLazyBoolNo; |
1318 | LLDB_LOG(log, |
1319 | "failed to find any procfs maps entries, assuming no support " |
1320 | "for memory region metadata retrieval" ); |
1321 | return Status("not supported" ); |
1322 | } |
1323 | |
1324 | LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps" , |
1325 | m_mem_region_cache.size(), GetID()); |
1326 | |
1327 | // We support memory retrieval, remember that. |
1328 | m_supports_mem_region = LazyBool::eLazyBoolYes; |
1329 | return Status(); |
1330 | } |
1331 | |
1332 | void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { |
1333 | Log *log = GetLog(mask: POSIXLog::Process); |
1334 | LLDB_LOG(log, "newBumpId={0}" , newBumpId); |
1335 | LLDB_LOG(log, "clearing {0} entries from memory region cache" , |
1336 | m_mem_region_cache.size()); |
1337 | m_mem_region_cache.clear(); |
1338 | } |
1339 | |
1340 | llvm::Expected<uint64_t> |
1341 | NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { |
1342 | PopulateMemoryRegionCache(); |
1343 | auto region_it = llvm::find_if(Range&: m_mem_region_cache, P: [](const auto &pair) { |
1344 | return pair.first.GetExecutable() == MemoryRegionInfo::eYes && |
1345 | pair.first.GetShared() != MemoryRegionInfo::eYes; |
1346 | }); |
1347 | if (region_it == m_mem_region_cache.end()) |
1348 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
1349 | Msg: "No executable memory region found!" ); |
1350 | |
1351 | addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); |
1352 | |
1353 | NativeThreadLinux &thread = *GetCurrentThread(); |
1354 | assert(thread.GetState() == eStateStopped); |
1355 | NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); |
1356 | |
1357 | NativeRegisterContextLinux::SyscallData syscall_data = |
1358 | *reg_ctx.GetSyscallData(); |
1359 | |
1360 | WritableDataBufferSP registers_sp; |
1361 | if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(data_sp&: registers_sp).ToError()) |
1362 | return std::move(Err); |
1363 | auto restore_regs = llvm::make_scope_exit( |
1364 | F: [&] { reg_ctx.WriteAllRegisterValues(data_sp: registers_sp); }); |
1365 | |
1366 | llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); |
1367 | size_t bytes_read; |
1368 | if (llvm::Error Err = |
1369 | ReadMemory(addr: exe_addr, buf: memory.data(), size: memory.size(), bytes_read) |
1370 | .ToError()) { |
1371 | return std::move(Err); |
1372 | } |
1373 | |
1374 | auto restore_mem = llvm::make_scope_exit( |
1375 | F: [&] { WriteMemory(addr: exe_addr, buf: memory.data(), size: memory.size(), bytes_written&: bytes_read); }); |
1376 | |
1377 | if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) |
1378 | return std::move(Err); |
1379 | |
1380 | for (const auto &zip : llvm::zip_first(t&: args, u&: syscall_data.Args)) { |
1381 | if (llvm::Error Err = |
1382 | reg_ctx |
1383 | .WriteRegisterFromUnsigned(reg: std::get<1>(t: zip), uval: std::get<0>(t: zip)) |
1384 | .ToError()) { |
1385 | return std::move(Err); |
1386 | } |
1387 | } |
1388 | if (llvm::Error Err = WriteMemory(addr: exe_addr, buf: syscall_data.Insn.data(), |
1389 | size: syscall_data.Insn.size(), bytes_written&: bytes_read) |
1390 | .ToError()) |
1391 | return std::move(Err); |
1392 | |
1393 | m_mem_region_cache.clear(); |
1394 | |
1395 | // With software single stepping the syscall insn buffer must also include a |
1396 | // trap instruction to stop the process. |
1397 | int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; |
1398 | if (llvm::Error Err = |
1399 | PtraceWrapper(req, pid: thread.GetID(), addr: nullptr, data: nullptr).ToError()) |
1400 | return std::move(Err); |
1401 | |
1402 | int status; |
1403 | ::pid_t wait_pid = llvm::sys::RetryAfterSignal(Fail: -1, F&: ::waitpid, As: thread.GetID(), |
1404 | As: &status, __WALL); |
1405 | if (wait_pid == -1) { |
1406 | return llvm::errorCodeToError( |
1407 | EC: std::error_code(errno, std::generic_category())); |
1408 | } |
1409 | assert((unsigned)wait_pid == thread.GetID()); |
1410 | |
1411 | uint64_t result = reg_ctx.ReadRegisterAsUnsigned(reg: syscall_data.Result, fail_value: -ESRCH); |
1412 | |
1413 | // Values larger than this are actually negative errno numbers. |
1414 | uint64_t errno_threshold = |
1415 | (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; |
1416 | if (result > errno_threshold) { |
1417 | return llvm::errorCodeToError( |
1418 | EC: std::error_code(-result & 0xfff, std::generic_category())); |
1419 | } |
1420 | |
1421 | return result; |
1422 | } |
1423 | |
1424 | llvm::Expected<addr_t> |
1425 | NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { |
1426 | |
1427 | std::optional<NativeRegisterContextLinux::MmapData> mmap_data = |
1428 | GetCurrentThread()->GetRegisterContext().GetMmapData(); |
1429 | if (!mmap_data) |
1430 | return llvm::make_error<UnimplementedError>(); |
1431 | |
1432 | unsigned prot = PROT_NONE; |
1433 | assert((permissions & (ePermissionsReadable | ePermissionsWritable | |
1434 | ePermissionsExecutable)) == permissions && |
1435 | "Unknown permission!" ); |
1436 | if (permissions & ePermissionsReadable) |
1437 | prot |= PROT_READ; |
1438 | if (permissions & ePermissionsWritable) |
1439 | prot |= PROT_WRITE; |
1440 | if (permissions & ePermissionsExecutable) |
1441 | prot |= PROT_EXEC; |
1442 | |
1443 | llvm::Expected<uint64_t> Result = |
1444 | Syscall(args: {mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, |
1445 | uint64_t(-1), 0}); |
1446 | if (Result) |
1447 | m_allocated_memory.try_emplace(Key: *Result, Args&: size); |
1448 | return Result; |
1449 | } |
1450 | |
1451 | llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { |
1452 | std::optional<NativeRegisterContextLinux::MmapData> mmap_data = |
1453 | GetCurrentThread()->GetRegisterContext().GetMmapData(); |
1454 | if (!mmap_data) |
1455 | return llvm::make_error<UnimplementedError>(); |
1456 | |
1457 | auto it = m_allocated_memory.find(Val: addr); |
1458 | if (it == m_allocated_memory.end()) |
1459 | return llvm::createStringError(EC: llvm::errc::invalid_argument, |
1460 | Msg: "Memory not allocated by the debugger." ); |
1461 | |
1462 | llvm::Expected<uint64_t> Result = |
1463 | Syscall(args: {mmap_data->SysMunmap, addr, it->second}); |
1464 | if (!Result) |
1465 | return Result.takeError(); |
1466 | |
1467 | m_allocated_memory.erase(I: it); |
1468 | return llvm::Error::success(); |
1469 | } |
1470 | |
1471 | Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, |
1472 | size_t len, |
1473 | std::vector<uint8_t> &tags) { |
1474 | llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = |
1475 | GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); |
1476 | if (!details) |
1477 | return Status(details.takeError()); |
1478 | |
1479 | // Ignore 0 length read |
1480 | if (!len) |
1481 | return Status(); |
1482 | |
1483 | // lldb will align the range it requests but it is not required to by |
1484 | // the protocol so we'll do it again just in case. |
1485 | // Remove tag bits too. Ptrace calls may work regardless but that |
1486 | // is not a guarantee. |
1487 | MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); |
1488 | range = details->manager->ExpandToGranule(range); |
1489 | |
1490 | // Allocate enough space for all tags to be read |
1491 | size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); |
1492 | tags.resize(new_size: num_tags * details->manager->GetTagSizeInBytes()); |
1493 | |
1494 | struct iovec tags_iovec; |
1495 | uint8_t *dest = tags.data(); |
1496 | lldb::addr_t read_addr = range.GetRangeBase(); |
1497 | |
1498 | // This call can return partial data so loop until we error or |
1499 | // get all tags back. |
1500 | while (num_tags) { |
1501 | tags_iovec.iov_base = dest; |
1502 | tags_iovec.iov_len = num_tags; |
1503 | |
1504 | Status error = NativeProcessLinux::PtraceWrapper( |
1505 | req: details->ptrace_read_req, pid: GetCurrentThreadID(), |
1506 | addr: reinterpret_cast<void *>(read_addr), data: static_cast<void *>(&tags_iovec), |
1507 | data_size: 0, result: nullptr); |
1508 | |
1509 | if (error.Fail()) { |
1510 | // Discard partial reads |
1511 | tags.resize(new_size: 0); |
1512 | return error; |
1513 | } |
1514 | |
1515 | size_t tags_read = tags_iovec.iov_len; |
1516 | assert(tags_read && (tags_read <= num_tags)); |
1517 | |
1518 | dest += tags_read * details->manager->GetTagSizeInBytes(); |
1519 | read_addr += details->manager->GetGranuleSize() * tags_read; |
1520 | num_tags -= tags_read; |
1521 | } |
1522 | |
1523 | return Status(); |
1524 | } |
1525 | |
1526 | Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, |
1527 | size_t len, |
1528 | const std::vector<uint8_t> &tags) { |
1529 | llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = |
1530 | GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); |
1531 | if (!details) |
1532 | return Status(details.takeError()); |
1533 | |
1534 | // Ignore 0 length write |
1535 | if (!len) |
1536 | return Status(); |
1537 | |
1538 | // lldb will align the range it requests but it is not required to by |
1539 | // the protocol so we'll do it again just in case. |
1540 | // Remove tag bits too. Ptrace calls may work regardless but that |
1541 | // is not a guarantee. |
1542 | MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); |
1543 | range = details->manager->ExpandToGranule(range); |
1544 | |
1545 | // Not checking number of tags here, we may repeat them below |
1546 | llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = |
1547 | details->manager->UnpackTagsData(tags); |
1548 | if (!unpacked_tags_or_err) |
1549 | return Status(unpacked_tags_or_err.takeError()); |
1550 | |
1551 | llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = |
1552 | details->manager->RepeatTagsForRange(tags: *unpacked_tags_or_err, range); |
1553 | if (!repeated_tags_or_err) |
1554 | return Status(repeated_tags_or_err.takeError()); |
1555 | |
1556 | // Repack them for ptrace to use |
1557 | llvm::Expected<std::vector<uint8_t>> final_tag_data = |
1558 | details->manager->PackTags(tags: *repeated_tags_or_err); |
1559 | if (!final_tag_data) |
1560 | return Status(final_tag_data.takeError()); |
1561 | |
1562 | struct iovec tags_vec; |
1563 | uint8_t *src = final_tag_data->data(); |
1564 | lldb::addr_t write_addr = range.GetRangeBase(); |
1565 | // unpacked tags size because the number of bytes per tag might not be 1 |
1566 | size_t num_tags = repeated_tags_or_err->size(); |
1567 | |
1568 | // This call can partially write tags, so we loop until we |
1569 | // error or all tags have been written. |
1570 | while (num_tags > 0) { |
1571 | tags_vec.iov_base = src; |
1572 | tags_vec.iov_len = num_tags; |
1573 | |
1574 | Status error = NativeProcessLinux::PtraceWrapper( |
1575 | req: details->ptrace_write_req, pid: GetCurrentThreadID(), |
1576 | addr: reinterpret_cast<void *>(write_addr), data: static_cast<void *>(&tags_vec), data_size: 0, |
1577 | result: nullptr); |
1578 | |
1579 | if (error.Fail()) { |
1580 | // Don't attempt to restore the original values in the case of a partial |
1581 | // write |
1582 | return error; |
1583 | } |
1584 | |
1585 | size_t tags_written = tags_vec.iov_len; |
1586 | assert(tags_written && (tags_written <= num_tags)); |
1587 | |
1588 | src += tags_written * details->manager->GetTagSizeInBytes(); |
1589 | write_addr += details->manager->GetGranuleSize() * tags_written; |
1590 | num_tags -= tags_written; |
1591 | } |
1592 | |
1593 | return Status(); |
1594 | } |
1595 | |
1596 | size_t NativeProcessLinux::UpdateThreads() { |
1597 | // The NativeProcessLinux monitoring threads are always up to date with |
1598 | // respect to thread state and they keep the thread list populated properly. |
1599 | // All this method needs to do is return the thread count. |
1600 | return m_threads.size(); |
1601 | } |
1602 | |
1603 | Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, |
1604 | bool hardware) { |
1605 | if (hardware) |
1606 | return SetHardwareBreakpoint(addr, size); |
1607 | else |
1608 | return SetSoftwareBreakpoint(addr, size_hint: size); |
1609 | } |
1610 | |
1611 | Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { |
1612 | if (hardware) |
1613 | return RemoveHardwareBreakpoint(addr); |
1614 | else |
1615 | return NativeProcessProtocol::RemoveBreakpoint(addr); |
1616 | } |
1617 | |
1618 | llvm::Expected<llvm::ArrayRef<uint8_t>> |
1619 | NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { |
1620 | // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the |
1621 | // linux kernel does otherwise. |
1622 | static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; |
1623 | static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; |
1624 | |
1625 | switch (GetArchitecture().GetMachine()) { |
1626 | case llvm::Triple::arm: |
1627 | switch (size_hint) { |
1628 | case 2: |
1629 | return llvm::ArrayRef(g_thumb_opcode); |
1630 | case 4: |
1631 | return llvm::ArrayRef(g_arm_opcode); |
1632 | default: |
1633 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
1634 | Msg: "Unrecognised trap opcode size hint!" ); |
1635 | } |
1636 | default: |
1637 | return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); |
1638 | } |
1639 | } |
1640 | |
1641 | Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, |
1642 | size_t &bytes_read) { |
1643 | if (ProcessVmReadvSupported()) { |
1644 | // The process_vm_readv path is about 50 times faster than ptrace api. We |
1645 | // want to use this syscall if it is supported. |
1646 | |
1647 | struct iovec local_iov, remote_iov; |
1648 | local_iov.iov_base = buf; |
1649 | local_iov.iov_len = size; |
1650 | remote_iov.iov_base = reinterpret_cast<void *>(addr); |
1651 | remote_iov.iov_len = size; |
1652 | |
1653 | bytes_read = process_vm_readv(pid: GetCurrentThreadID(), lvec: &local_iov, liovcnt: 1, |
1654 | rvec: &remote_iov, riovcnt: 1, flags: 0); |
1655 | const bool success = bytes_read == size; |
1656 | |
1657 | Log *log = GetLog(mask: POSIXLog::Process); |
1658 | LLDB_LOG(log, |
1659 | "using process_vm_readv to read {0} bytes from inferior " |
1660 | "address {1:x}: {2}" , |
1661 | size, addr, success ? "Success" : llvm::sys::StrError(errno)); |
1662 | |
1663 | if (success) |
1664 | return Status(); |
1665 | // else the call failed for some reason, let's retry the read using ptrace |
1666 | // api. |
1667 | } |
1668 | |
1669 | unsigned char *dst = static_cast<unsigned char *>(buf); |
1670 | size_t remainder; |
1671 | long data; |
1672 | |
1673 | Log *log = GetLog(mask: POSIXLog::Memory); |
1674 | LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}" , addr, buf, size); |
1675 | |
1676 | for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { |
1677 | Status error = NativeProcessLinux::PtraceWrapper( |
1678 | req: PTRACE_PEEKDATA, pid: GetCurrentThreadID(), addr: (void *)addr, data: nullptr, data_size: 0, result: &data); |
1679 | if (error.Fail()) |
1680 | return error; |
1681 | |
1682 | remainder = size - bytes_read; |
1683 | remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; |
1684 | |
1685 | // Copy the data into our buffer |
1686 | memcpy(dest: dst, src: &data, n: remainder); |
1687 | |
1688 | LLDB_LOG(log, "[{0:x}]:{1:x}" , addr, data); |
1689 | addr += k_ptrace_word_size; |
1690 | dst += k_ptrace_word_size; |
1691 | } |
1692 | return Status(); |
1693 | } |
1694 | |
1695 | Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, |
1696 | size_t size, size_t &bytes_written) { |
1697 | const unsigned char *src = static_cast<const unsigned char *>(buf); |
1698 | size_t remainder; |
1699 | Status error; |
1700 | |
1701 | Log *log = GetLog(mask: POSIXLog::Memory); |
1702 | LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}" , addr, buf, size); |
1703 | |
1704 | for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { |
1705 | remainder = size - bytes_written; |
1706 | remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; |
1707 | |
1708 | if (remainder == k_ptrace_word_size) { |
1709 | unsigned long data = 0; |
1710 | memcpy(dest: &data, src: src, n: k_ptrace_word_size); |
1711 | |
1712 | LLDB_LOG(log, "[{0:x}]:{1:x}" , addr, data); |
1713 | error = NativeProcessLinux::PtraceWrapper( |
1714 | req: PTRACE_POKEDATA, pid: GetCurrentThreadID(), addr: (void *)addr, data: (void *)data); |
1715 | if (error.Fail()) |
1716 | return error; |
1717 | } else { |
1718 | unsigned char buff[8]; |
1719 | size_t bytes_read; |
1720 | error = ReadMemory(addr, buf: buff, size: k_ptrace_word_size, bytes_read); |
1721 | if (error.Fail()) |
1722 | return error; |
1723 | |
1724 | memcpy(dest: buff, src: src, n: remainder); |
1725 | |
1726 | size_t bytes_written_rec; |
1727 | error = WriteMemory(addr, buf: buff, size: k_ptrace_word_size, bytes_written&: bytes_written_rec); |
1728 | if (error.Fail()) |
1729 | return error; |
1730 | |
1731 | LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})" , addr, *(const unsigned long *)src, |
1732 | *(unsigned long *)buff); |
1733 | } |
1734 | |
1735 | addr += k_ptrace_word_size; |
1736 | src += k_ptrace_word_size; |
1737 | } |
1738 | return error; |
1739 | } |
1740 | |
1741 | Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { |
1742 | return PtraceWrapper(req: PTRACE_GETSIGINFO, pid: tid, addr: nullptr, data: siginfo); |
1743 | } |
1744 | |
1745 | Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, |
1746 | unsigned long *message) { |
1747 | return PtraceWrapper(req: PTRACE_GETEVENTMSG, pid: tid, addr: nullptr, data: message); |
1748 | } |
1749 | |
1750 | Status NativeProcessLinux::Detach(lldb::tid_t tid) { |
1751 | if (tid == LLDB_INVALID_THREAD_ID) |
1752 | return Status(); |
1753 | |
1754 | return PtraceWrapper(req: PTRACE_DETACH, pid: tid); |
1755 | } |
1756 | |
1757 | bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { |
1758 | for (const auto &thread : m_threads) { |
1759 | assert(thread && "thread list should not contain NULL threads" ); |
1760 | if (thread->GetID() == thread_id) { |
1761 | // We have this thread. |
1762 | return true; |
1763 | } |
1764 | } |
1765 | |
1766 | // We don't have this thread. |
1767 | return false; |
1768 | } |
1769 | |
1770 | void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { |
1771 | Log *const log = GetLog(mask: POSIXLog::Thread); |
1772 | lldb::tid_t thread_id = thread.GetID(); |
1773 | LLDB_LOG(log, "tid: {0}" , thread_id); |
1774 | |
1775 | auto it = llvm::find_if(Range&: m_threads, P: [&](const auto &thread_up) { |
1776 | return thread_up.get() == &thread; |
1777 | }); |
1778 | assert(it != m_threads.end()); |
1779 | m_threads.erase(position: it); |
1780 | |
1781 | NotifyTracersOfThreadDestroyed(tid: thread_id); |
1782 | SignalIfAllThreadsStopped(); |
1783 | } |
1784 | |
1785 | void NativeProcessLinux::NotifyTracersProcessDidStop() { |
1786 | m_intel_pt_collector.ProcessDidStop(); |
1787 | } |
1788 | |
1789 | void NativeProcessLinux::NotifyTracersProcessWillResume() { |
1790 | m_intel_pt_collector.ProcessWillResume(); |
1791 | } |
1792 | |
1793 | Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { |
1794 | Log *log = GetLog(mask: POSIXLog::Thread); |
1795 | Status error(m_intel_pt_collector.OnThreadCreated(tid)); |
1796 | if (error.Fail()) |
1797 | LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}" , |
1798 | tid, error.AsCString()); |
1799 | return error; |
1800 | } |
1801 | |
1802 | Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { |
1803 | Log *log = GetLog(mask: POSIXLog::Thread); |
1804 | Status error(m_intel_pt_collector.OnThreadDestroyed(tid)); |
1805 | if (error.Fail()) |
1806 | LLDB_LOG(log, |
1807 | "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}" , |
1808 | tid, error.AsCString()); |
1809 | return error; |
1810 | } |
1811 | |
1812 | NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, |
1813 | bool resume) { |
1814 | Log *log = GetLog(mask: POSIXLog::Thread); |
1815 | LLDB_LOG(log, "pid {0} adding thread with tid {1}" , GetID(), thread_id); |
1816 | |
1817 | assert(!HasThreadNoLock(thread_id) && |
1818 | "attempted to add a thread by id that already exists" ); |
1819 | |
1820 | // If this is the first thread, save it as the current thread |
1821 | if (m_threads.empty()) |
1822 | SetCurrentThreadID(thread_id); |
1823 | |
1824 | m_threads.push_back(x: std::make_unique<NativeThreadLinux>(args&: *this, args&: thread_id)); |
1825 | NativeThreadLinux &thread = |
1826 | static_cast<NativeThreadLinux &>(*m_threads.back()); |
1827 | |
1828 | Status tracing_error = NotifyTracersOfNewThread(tid: thread.GetID()); |
1829 | if (tracing_error.Fail()) { |
1830 | thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); |
1831 | StopRunningThreads(triggering_tid: thread.GetID()); |
1832 | } else if (resume) |
1833 | ResumeThread(thread, state: eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); |
1834 | else |
1835 | thread.SetStoppedBySignal(SIGSTOP); |
1836 | |
1837 | return thread; |
1838 | } |
1839 | |
1840 | Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, |
1841 | FileSpec &file_spec) { |
1842 | Status error = PopulateMemoryRegionCache(); |
1843 | if (error.Fail()) |
1844 | return error; |
1845 | |
1846 | FileSpec module_file_spec(module_path); |
1847 | FileSystem::Instance().Resolve(file_spec&: module_file_spec); |
1848 | |
1849 | file_spec.Clear(); |
1850 | for (const auto &it : m_mem_region_cache) { |
1851 | if (it.second.GetFilename() == module_file_spec.GetFilename()) { |
1852 | file_spec = it.second; |
1853 | return Status(); |
1854 | } |
1855 | } |
1856 | return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!" , |
1857 | module_file_spec.GetFilename().AsCString(), GetID()); |
1858 | } |
1859 | |
1860 | Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, |
1861 | lldb::addr_t &load_addr) { |
1862 | load_addr = LLDB_INVALID_ADDRESS; |
1863 | Status error = PopulateMemoryRegionCache(); |
1864 | if (error.Fail()) |
1865 | return error; |
1866 | |
1867 | FileSpec file(file_name); |
1868 | for (const auto &it : m_mem_region_cache) { |
1869 | if (it.second == file) { |
1870 | load_addr = it.first.GetRange().GetRangeBase(); |
1871 | return Status(); |
1872 | } |
1873 | } |
1874 | return Status("No load address found for specified file." ); |
1875 | } |
1876 | |
1877 | NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { |
1878 | return static_cast<NativeThreadLinux *>( |
1879 | NativeProcessProtocol::GetThreadByID(tid)); |
1880 | } |
1881 | |
1882 | NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { |
1883 | return static_cast<NativeThreadLinux *>( |
1884 | NativeProcessProtocol::GetCurrentThread()); |
1885 | } |
1886 | |
1887 | Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, |
1888 | lldb::StateType state, int signo) { |
1889 | Log *const log = GetLog(mask: POSIXLog::Thread); |
1890 | LLDB_LOG(log, "tid: {0}" , thread.GetID()); |
1891 | |
1892 | // Before we do the resume below, first check if we have a pending stop |
1893 | // notification that is currently waiting for all threads to stop. This is |
1894 | // potentially a buggy situation since we're ostensibly waiting for threads |
1895 | // to stop before we send out the pending notification, and here we are |
1896 | // resuming one before we send out the pending stop notification. |
1897 | if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { |
1898 | LLDB_LOG(log, |
1899 | "about to resume tid {0} per explicit request but we have a " |
1900 | "pending stop notification (tid {1}) that is actively " |
1901 | "waiting for this thread to stop. Valid sequence of events?" , |
1902 | thread.GetID(), m_pending_notification_tid); |
1903 | } |
1904 | |
1905 | // Request a resume. We expect this to be synchronous and the system to |
1906 | // reflect it is running after this completes. |
1907 | switch (state) { |
1908 | case eStateRunning: { |
1909 | const auto resume_result = thread.Resume(signo); |
1910 | if (resume_result.Success()) |
1911 | SetState(state: eStateRunning, notify_delegates: true); |
1912 | return resume_result; |
1913 | } |
1914 | case eStateStepping: { |
1915 | const auto step_result = thread.SingleStep(signo); |
1916 | if (step_result.Success()) |
1917 | SetState(state: eStateRunning, notify_delegates: true); |
1918 | return step_result; |
1919 | } |
1920 | default: |
1921 | LLDB_LOG(log, "Unhandled state {0}." , state); |
1922 | llvm_unreachable("Unhandled state for resume" ); |
1923 | } |
1924 | } |
1925 | |
1926 | //===----------------------------------------------------------------------===// |
1927 | |
1928 | void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { |
1929 | Log *const log = GetLog(mask: POSIXLog::Thread); |
1930 | LLDB_LOG(log, "about to process event: (triggering_tid: {0})" , |
1931 | triggering_tid); |
1932 | |
1933 | m_pending_notification_tid = triggering_tid; |
1934 | |
1935 | // Request a stop for all the thread stops that need to be stopped and are |
1936 | // not already known to be stopped. |
1937 | for (const auto &thread : m_threads) { |
1938 | if (StateIsRunningState(state: thread->GetState())) |
1939 | static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); |
1940 | } |
1941 | |
1942 | SignalIfAllThreadsStopped(); |
1943 | LLDB_LOG(log, "event processing done" ); |
1944 | } |
1945 | |
1946 | void NativeProcessLinux::SignalIfAllThreadsStopped() { |
1947 | if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) |
1948 | return; // No pending notification. Nothing to do. |
1949 | |
1950 | for (const auto &thread_sp : m_threads) { |
1951 | if (StateIsRunningState(state: thread_sp->GetState())) |
1952 | return; // Some threads are still running. Don't signal yet. |
1953 | } |
1954 | |
1955 | // We have a pending notification and all threads have stopped. |
1956 | Log *log = GetLog(mask: LLDBLog::Process | LLDBLog::Breakpoints); |
1957 | |
1958 | // Clear any temporary breakpoints we used to implement software single |
1959 | // stepping. |
1960 | for (const auto &thread_info : m_threads_stepping_with_breakpoint) { |
1961 | Status error = RemoveBreakpoint(addr: thread_info.second); |
1962 | if (error.Fail()) |
1963 | LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}" , |
1964 | thread_info.first, error); |
1965 | } |
1966 | m_threads_stepping_with_breakpoint.clear(); |
1967 | |
1968 | // Notify the delegate about the stop |
1969 | SetCurrentThreadID(m_pending_notification_tid); |
1970 | SetState(state: StateType::eStateStopped, notify_delegates: true); |
1971 | m_pending_notification_tid = LLDB_INVALID_THREAD_ID; |
1972 | } |
1973 | |
1974 | void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { |
1975 | Log *const log = GetLog(mask: POSIXLog::Thread); |
1976 | LLDB_LOG(log, "tid: {0}" , thread.GetID()); |
1977 | |
1978 | if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && |
1979 | StateIsRunningState(state: thread.GetState())) { |
1980 | // We will need to wait for this new thread to stop as well before firing |
1981 | // the notification. |
1982 | thread.RequestStop(); |
1983 | } |
1984 | } |
1985 | |
1986 | // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets |
1987 | // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) |
1988 | Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, |
1989 | void *data, size_t data_size, |
1990 | long *result) { |
1991 | Status error; |
1992 | long int ret; |
1993 | |
1994 | Log *log = GetLog(mask: POSIXLog::Ptrace); |
1995 | |
1996 | PtraceDisplayBytes(req, data, data_size); |
1997 | |
1998 | errno = 0; |
1999 | if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) |
2000 | ret = ptrace(request: static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), |
2001 | *(unsigned int *)addr, data); |
2002 | else |
2003 | ret = ptrace(request: static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), |
2004 | addr, data); |
2005 | |
2006 | if (ret == -1) |
2007 | error.SetErrorToErrno(); |
2008 | |
2009 | if (result) |
2010 | *result = ret; |
2011 | |
2012 | LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}" , req, pid, addr, data, |
2013 | data_size, ret); |
2014 | |
2015 | PtraceDisplayBytes(req, data, data_size); |
2016 | |
2017 | if (error.Fail()) |
2018 | LLDB_LOG(log, "ptrace() failed: {0}" , error); |
2019 | |
2020 | return error; |
2021 | } |
2022 | |
2023 | llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { |
2024 | if (IntelPTCollector::IsSupported()) |
2025 | return TraceSupportedResponse{.name: "intel-pt" , .description: "Intel Processor Trace" }; |
2026 | return NativeProcessProtocol::TraceSupported(); |
2027 | } |
2028 | |
2029 | Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { |
2030 | if (type == "intel-pt" ) { |
2031 | if (Expected<TraceIntelPTStartRequest> request = |
2032 | json::parse<TraceIntelPTStartRequest>(JSON: json_request, |
2033 | RootName: "TraceIntelPTStartRequest" )) { |
2034 | return m_intel_pt_collector.TraceStart(request: *request); |
2035 | } else |
2036 | return request.takeError(); |
2037 | } |
2038 | |
2039 | return NativeProcessProtocol::TraceStart(json_params: json_request, type); |
2040 | } |
2041 | |
2042 | Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { |
2043 | if (request.type == "intel-pt" ) |
2044 | return m_intel_pt_collector.TraceStop(request); |
2045 | return NativeProcessProtocol::TraceStop(request); |
2046 | } |
2047 | |
2048 | Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { |
2049 | if (type == "intel-pt" ) |
2050 | return m_intel_pt_collector.GetState(); |
2051 | return NativeProcessProtocol::TraceGetState(type); |
2052 | } |
2053 | |
2054 | Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( |
2055 | const TraceGetBinaryDataRequest &request) { |
2056 | if (request.type == "intel-pt" ) |
2057 | return m_intel_pt_collector.GetBinaryData(request); |
2058 | return NativeProcessProtocol::TraceGetBinaryData(request); |
2059 | } |
2060 | |