1 | //===-- MinidumpParser.cpp ------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "MinidumpParser.h" |
10 | #include "NtStructures.h" |
11 | #include "RegisterContextMinidump_x86_32.h" |
12 | |
13 | #include "Plugins/Process/Utility/LinuxProcMaps.h" |
14 | #include "lldb/Utility/LLDBAssert.h" |
15 | #include "lldb/Utility/LLDBLog.h" |
16 | #include "lldb/Utility/Log.h" |
17 | |
18 | // C includes |
19 | // C++ includes |
20 | #include <algorithm> |
21 | #include <map> |
22 | #include <optional> |
23 | #include <vector> |
24 | #include <utility> |
25 | |
26 | using namespace lldb_private; |
27 | using namespace minidump; |
28 | |
29 | llvm::Expected<MinidumpParser> |
30 | MinidumpParser::Create(const lldb::DataBufferSP &data_sp) { |
31 | auto ExpectedFile = llvm::object::MinidumpFile::create( |
32 | Source: llvm::MemoryBufferRef(toStringRef(Input: data_sp->GetData()), "minidump" )); |
33 | if (!ExpectedFile) |
34 | return ExpectedFile.takeError(); |
35 | |
36 | return MinidumpParser(data_sp, std::move(*ExpectedFile)); |
37 | } |
38 | |
39 | MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp, |
40 | std::unique_ptr<llvm::object::MinidumpFile> file) |
41 | : m_data_sp(std::move(data_sp)), m_file(std::move(file)) {} |
42 | |
43 | llvm::ArrayRef<uint8_t> MinidumpParser::GetData() { |
44 | return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(), |
45 | m_data_sp->GetByteSize()); |
46 | } |
47 | |
48 | llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) { |
49 | return m_file->getRawStream(Type: stream_type).value_or(u: llvm::ArrayRef<uint8_t>()); |
50 | } |
51 | |
52 | std::optional<llvm::ArrayRef<uint8_t>> |
53 | MinidumpParser::GetRawStream(StreamType stream_type) { |
54 | return m_file->getRawStream(Type: stream_type); |
55 | } |
56 | |
57 | UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) { |
58 | auto cv_record = |
59 | GetData().slice(N: module->CvRecord.RVA, M: module->CvRecord.DataSize); |
60 | |
61 | // Read the CV record signature |
62 | const llvm::support::ulittle32_t *signature = nullptr; |
63 | Status error = consumeObject(Buffer&: cv_record, Object&: signature); |
64 | if (error.Fail()) |
65 | return UUID(); |
66 | |
67 | const CvSignature cv_signature = |
68 | static_cast<CvSignature>(static_cast<uint32_t>(*signature)); |
69 | |
70 | if (cv_signature == CvSignature::Pdb70) { |
71 | const UUID::CvRecordPdb70 *pdb70_uuid = nullptr; |
72 | Status error = consumeObject(Buffer&: cv_record, Object&: pdb70_uuid); |
73 | if (error.Fail()) |
74 | return UUID(); |
75 | if (GetArchitecture().GetTriple().isOSBinFormatELF()) { |
76 | if (pdb70_uuid->Age != 0) |
77 | return UUID(pdb70_uuid, sizeof(*pdb70_uuid)); |
78 | return UUID(&pdb70_uuid->Uuid, |
79 | sizeof(pdb70_uuid->Uuid)); |
80 | } |
81 | return UUID(*pdb70_uuid); |
82 | } else if (cv_signature == CvSignature::ElfBuildId) |
83 | return UUID(cv_record); |
84 | |
85 | return UUID(); |
86 | } |
87 | |
88 | llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() { |
89 | auto ExpectedThreads = GetMinidumpFile().getThreadList(); |
90 | if (ExpectedThreads) |
91 | return *ExpectedThreads; |
92 | |
93 | LLDB_LOG_ERROR(GetLog(LLDBLog::Thread), ExpectedThreads.takeError(), |
94 | "Failed to read thread list: {0}" ); |
95 | return {}; |
96 | } |
97 | |
98 | llvm::ArrayRef<uint8_t> |
99 | MinidumpParser::GetThreadContext(const LocationDescriptor &location) { |
100 | if (location.RVA + location.DataSize > GetData().size()) |
101 | return {}; |
102 | return GetData().slice(N: location.RVA, M: location.DataSize); |
103 | } |
104 | |
105 | llvm::ArrayRef<uint8_t> |
106 | MinidumpParser::GetThreadContext(const minidump::Thread &td) { |
107 | return GetThreadContext(location: td.Context); |
108 | } |
109 | |
110 | llvm::ArrayRef<uint8_t> |
111 | MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) { |
112 | // On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If |
113 | // the minidump was captured with a 64-bit debugger, then the CONTEXT we just |
114 | // grabbed from the mini_dump_thread is the one for the 64-bit "native" |
115 | // process rather than the 32-bit "guest" process we care about. In this |
116 | // case, we can get the 32-bit CONTEXT from the TEB (Thread Environment |
117 | // Block) of the 64-bit process. |
118 | auto teb_mem = GetMemory(addr: td.EnvironmentBlock, size: sizeof(TEB64)); |
119 | if (teb_mem.empty()) |
120 | return {}; |
121 | |
122 | const TEB64 *wow64teb; |
123 | Status error = consumeObject(Buffer&: teb_mem, Object&: wow64teb); |
124 | if (error.Fail()) |
125 | return {}; |
126 | |
127 | // Slot 1 of the thread-local storage in the 64-bit TEB points to a structure |
128 | // that includes the 32-bit CONTEXT (after a ULONG). See: |
129 | // https://msdn.microsoft.com/en-us/library/ms681670.aspx |
130 | auto context = |
131 | GetMemory(addr: wow64teb->tls_slots[1] + 4, size: sizeof(MinidumpContext_x86_32)); |
132 | if (context.size() < sizeof(MinidumpContext_x86_32)) |
133 | return {}; |
134 | |
135 | return context; |
136 | // NOTE: We don't currently use the TEB for anything else. If we |
137 | // need it in the future, the 32-bit TEB is located according to the address |
138 | // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]). |
139 | } |
140 | |
141 | ArchSpec MinidumpParser::GetArchitecture() { |
142 | if (m_arch.IsValid()) |
143 | return m_arch; |
144 | |
145 | // Set the architecture in m_arch |
146 | llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo(); |
147 | |
148 | if (!system_info) { |
149 | LLDB_LOG_ERROR(GetLog(LLDBLog::Process), system_info.takeError(), |
150 | "Failed to read SystemInfo stream: {0}" ); |
151 | return m_arch; |
152 | } |
153 | |
154 | // TODO what to do about big endiand flavors of arm ? |
155 | // TODO set the arm subarch stuff if the minidump has info about it |
156 | |
157 | llvm::Triple triple; |
158 | triple.setVendor(llvm::Triple::VendorType::UnknownVendor); |
159 | |
160 | switch (system_info->ProcessorArch) { |
161 | case ProcessorArchitecture::X86: |
162 | triple.setArch(Kind: llvm::Triple::ArchType::x86); |
163 | break; |
164 | case ProcessorArchitecture::AMD64: |
165 | triple.setArch(Kind: llvm::Triple::ArchType::x86_64); |
166 | break; |
167 | case ProcessorArchitecture::ARM: |
168 | triple.setArch(Kind: llvm::Triple::ArchType::arm); |
169 | break; |
170 | case ProcessorArchitecture::ARM64: |
171 | case ProcessorArchitecture::BP_ARM64: |
172 | triple.setArch(Kind: llvm::Triple::ArchType::aarch64); |
173 | break; |
174 | default: |
175 | triple.setArch(Kind: llvm::Triple::ArchType::UnknownArch); |
176 | break; |
177 | } |
178 | |
179 | // TODO add all of the OSes that Minidump/breakpad distinguishes? |
180 | switch (system_info->PlatformId) { |
181 | case OSPlatform::Win32S: |
182 | case OSPlatform::Win32Windows: |
183 | case OSPlatform::Win32NT: |
184 | case OSPlatform::Win32CE: |
185 | triple.setOS(llvm::Triple::OSType::Win32); |
186 | triple.setVendor(llvm::Triple::VendorType::PC); |
187 | break; |
188 | case OSPlatform::Linux: |
189 | triple.setOS(llvm::Triple::OSType::Linux); |
190 | break; |
191 | case OSPlatform::MacOSX: |
192 | triple.setOS(llvm::Triple::OSType::MacOSX); |
193 | triple.setVendor(llvm::Triple::Apple); |
194 | break; |
195 | case OSPlatform::IOS: |
196 | triple.setOS(llvm::Triple::OSType::IOS); |
197 | triple.setVendor(llvm::Triple::Apple); |
198 | break; |
199 | case OSPlatform::Android: |
200 | triple.setOS(llvm::Triple::OSType::Linux); |
201 | triple.setEnvironment(llvm::Triple::EnvironmentType::Android); |
202 | break; |
203 | default: { |
204 | triple.setOS(llvm::Triple::OSType::UnknownOS); |
205 | auto ExpectedCSD = m_file->getString(Offset: system_info->CSDVersionRVA); |
206 | if (!ExpectedCSD) { |
207 | LLDB_LOG_ERROR(GetLog(LLDBLog::Process), ExpectedCSD.takeError(), |
208 | "Failed to CSD Version string: {0}" ); |
209 | } else { |
210 | if (ExpectedCSD->find(s: "Linux" ) != std::string::npos) |
211 | triple.setOS(llvm::Triple::OSType::Linux); |
212 | } |
213 | break; |
214 | } |
215 | } |
216 | m_arch.SetTriple(triple); |
217 | return m_arch; |
218 | } |
219 | |
220 | const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() { |
221 | llvm::ArrayRef<uint8_t> data = GetStream(stream_type: StreamType::MiscInfo); |
222 | |
223 | if (data.size() == 0) |
224 | return nullptr; |
225 | |
226 | return MinidumpMiscInfo::Parse(data); |
227 | } |
228 | |
229 | std::optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() { |
230 | llvm::ArrayRef<uint8_t> data = GetStream(stream_type: StreamType::LinuxProcStatus); |
231 | |
232 | if (data.size() == 0) |
233 | return std::nullopt; |
234 | |
235 | return LinuxProcStatus::Parse(data); |
236 | } |
237 | |
238 | std::optional<lldb::pid_t> MinidumpParser::GetPid() { |
239 | const MinidumpMiscInfo *misc_info = GetMiscInfo(); |
240 | if (misc_info != nullptr) { |
241 | return misc_info->GetPid(); |
242 | } |
243 | |
244 | std::optional<LinuxProcStatus> proc_status = GetLinuxProcStatus(); |
245 | if (proc_status) { |
246 | return proc_status->GetPid(); |
247 | } |
248 | |
249 | return std::nullopt; |
250 | } |
251 | |
252 | llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() { |
253 | auto ExpectedModules = GetMinidumpFile().getModuleList(); |
254 | if (ExpectedModules) |
255 | return *ExpectedModules; |
256 | |
257 | LLDB_LOG_ERROR(GetLog(LLDBLog::Modules), ExpectedModules.takeError(), |
258 | "Failed to read module list: {0}" ); |
259 | return {}; |
260 | } |
261 | |
262 | static bool |
263 | CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser, |
264 | std::vector<MemoryRegionInfo> ®ions) { |
265 | auto data = parser.GetStream(stream_type: StreamType::LinuxMaps); |
266 | if (data.empty()) |
267 | return false; |
268 | |
269 | Log *log = GetLog(mask: LLDBLog::Expressions); |
270 | ParseLinuxMapRegions( |
271 | linux_map: llvm::toStringRef(Input: data), |
272 | callback: [®ions, &log](llvm::Expected<MemoryRegionInfo> region) -> bool { |
273 | if (region) |
274 | regions.push_back(x: *region); |
275 | else |
276 | LLDB_LOG_ERROR(log, region.takeError(), |
277 | "Reading memory region from minidump failed: {0}" ); |
278 | return true; |
279 | }); |
280 | return !regions.empty(); |
281 | } |
282 | |
283 | /// Check for the memory regions starting at \a load_addr for a contiguous |
284 | /// section that has execute permissions that matches the module path. |
285 | /// |
286 | /// When we load a breakpad generated minidump file, we might have the |
287 | /// /proc/<pid>/maps text for a process that details the memory map of the |
288 | /// process that the minidump is describing. This checks the sorted memory |
289 | /// regions for a section that has execute permissions. A sample maps files |
290 | /// might look like: |
291 | /// |
292 | /// 00400000-00401000 r--p 00000000 fd:01 2838574 /tmp/a.out |
293 | /// 00401000-00402000 r-xp 00001000 fd:01 2838574 /tmp/a.out |
294 | /// 00402000-00403000 r--p 00002000 fd:01 2838574 /tmp/a.out |
295 | /// 00403000-00404000 r--p 00002000 fd:01 2838574 /tmp/a.out |
296 | /// 00404000-00405000 rw-p 00003000 fd:01 2838574 /tmp/a.out |
297 | /// ... |
298 | /// |
299 | /// This function should return true when given 0x00400000 and "/tmp/a.out" |
300 | /// is passed in as the path since it has a consecutive memory region for |
301 | /// "/tmp/a.out" that has execute permissions at 0x00401000. This will help us |
302 | /// differentiate if a file has been memory mapped into a process for reading |
303 | /// and breakpad ends up saving a minidump file that has two module entries for |
304 | /// a given file: one that is read only for the entire file, and then one that |
305 | /// is the real executable that is loaded into memory for execution. For memory |
306 | /// mapped files they will typically show up and r--p permissions and a range |
307 | /// matcning the entire range of the file on disk: |
308 | /// |
309 | /// 00800000-00805000 r--p 00000000 fd:01 2838574 /tmp/a.out |
310 | /// 00805000-00806000 r-xp 00001000 fd:01 1234567 /usr/lib/libc.so |
311 | /// |
312 | /// This function should return false when asked about 0x00800000 with |
313 | /// "/tmp/a.out" as the path. |
314 | /// |
315 | /// \param[in] path |
316 | /// The path to the module to check for in the memory regions. Only sequential |
317 | /// memory regions whose paths match this path will be considered when looking |
318 | /// for execute permissions. |
319 | /// |
320 | /// \param[in] regions |
321 | /// A sorted list of memory regions obtained from a call to |
322 | /// CreateRegionsCacheFromLinuxMaps. |
323 | /// |
324 | /// \param[in] base_of_image |
325 | /// The load address of this module from BaseOfImage in the modules list. |
326 | /// |
327 | /// \return |
328 | /// True if a contiguous region of memory belonging to the module with a |
329 | /// matching path exists that has executable permissions. Returns false if |
330 | /// \a regions is empty or if there are no regions with execute permissions |
331 | /// that match \a path. |
332 | |
333 | static bool CheckForLinuxExecutable(ConstString path, |
334 | const MemoryRegionInfos ®ions, |
335 | lldb::addr_t base_of_image) { |
336 | if (regions.empty()) |
337 | return false; |
338 | lldb::addr_t addr = base_of_image; |
339 | MemoryRegionInfo region = MinidumpParser::GetMemoryRegionInfo(regions, load_addr: addr); |
340 | while (region.GetName() == path) { |
341 | if (region.GetExecutable() == MemoryRegionInfo::eYes) |
342 | return true; |
343 | addr += region.GetRange().GetByteSize(); |
344 | region = MinidumpParser::GetMemoryRegionInfo(regions, load_addr: addr); |
345 | } |
346 | return false; |
347 | } |
348 | |
349 | std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() { |
350 | Log *log = GetLog(mask: LLDBLog::Modules); |
351 | auto ExpectedModules = GetMinidumpFile().getModuleList(); |
352 | if (!ExpectedModules) { |
353 | LLDB_LOG_ERROR(log, ExpectedModules.takeError(), |
354 | "Failed to read module list: {0}" ); |
355 | return {}; |
356 | } |
357 | |
358 | // Create memory regions from the linux maps only. We do this to avoid issues |
359 | // with breakpad generated minidumps where if someone has mmap'ed a shared |
360 | // library into memory to access its data in the object file, we can get a |
361 | // minidump with two mappings for a binary: one whose base image points to a |
362 | // memory region that is read + execute and one that is read only. |
363 | MemoryRegionInfos linux_regions; |
364 | if (CreateRegionsCacheFromLinuxMaps(parser&: *this, regions&: linux_regions)) |
365 | llvm::sort(C&: linux_regions); |
366 | |
367 | // map module_name -> filtered_modules index |
368 | typedef llvm::StringMap<size_t> MapType; |
369 | MapType module_name_to_filtered_index; |
370 | |
371 | std::vector<const minidump::Module *> filtered_modules; |
372 | |
373 | for (const auto &module : *ExpectedModules) { |
374 | auto ExpectedName = m_file->getString(Offset: module.ModuleNameRVA); |
375 | if (!ExpectedName) { |
376 | LLDB_LOG_ERROR(log, ExpectedName.takeError(), |
377 | "Failed to get module name: {0}" ); |
378 | continue; |
379 | } |
380 | |
381 | MapType::iterator iter; |
382 | bool inserted; |
383 | // See if we have inserted this module aready into filtered_modules. If we |
384 | // haven't insert an entry into module_name_to_filtered_index with the |
385 | // index where we will insert it if it isn't in the vector already. |
386 | std::tie(args&: iter, args&: inserted) = module_name_to_filtered_index.try_emplace( |
387 | Key: *ExpectedName, Args: filtered_modules.size()); |
388 | |
389 | if (inserted) { |
390 | // This module has not been seen yet, insert it into filtered_modules at |
391 | // the index that was inserted into module_name_to_filtered_index using |
392 | // "filtered_modules.size()" above. |
393 | filtered_modules.push_back(x: &module); |
394 | } else { |
395 | // We have a duplicate module entry. Check the linux regions to see if |
396 | // either module is not really a mapped executable. If one but not the |
397 | // other is a real mapped executable, prefer the executable one. This |
398 | // can happen when a process mmap's in the file for an executable in |
399 | // order to read bytes from the executable file. A memory region mapping |
400 | // will exist for the mmap'ed version and for the loaded executable, but |
401 | // only one will have a consecutive region that is executable in the |
402 | // memory regions. |
403 | auto dup_module = filtered_modules[iter->second]; |
404 | ConstString name(*ExpectedName); |
405 | bool is_executable = |
406 | CheckForLinuxExecutable(path: name, regions: linux_regions, base_of_image: module.BaseOfImage); |
407 | bool dup_is_executable = |
408 | CheckForLinuxExecutable(path: name, regions: linux_regions, base_of_image: dup_module->BaseOfImage); |
409 | |
410 | if (is_executable != dup_is_executable) { |
411 | if (is_executable) |
412 | filtered_modules[iter->second] = &module; |
413 | continue; |
414 | } |
415 | // This module has been seen. Modules are sometimes mentioned multiple |
416 | // times when they are mapped discontiguously, so find the module with |
417 | // the lowest "base_of_image" and use that as the filtered module. |
418 | if (module.BaseOfImage < dup_module->BaseOfImage) |
419 | filtered_modules[iter->second] = &module; |
420 | } |
421 | } |
422 | return filtered_modules; |
423 | } |
424 | |
425 | llvm::iterator_range<ExceptionStreamsIterator> |
426 | MinidumpParser::GetExceptionStreams() { |
427 | return GetMinidumpFile().getExceptionStreams(); |
428 | } |
429 | |
430 | std::optional<minidump::Range> |
431 | MinidumpParser::FindMemoryRange(lldb::addr_t addr) { |
432 | Log *log = GetLog(mask: LLDBLog::Modules); |
433 | |
434 | auto ExpectedMemory = GetMinidumpFile().getMemoryList(); |
435 | if (!ExpectedMemory) { |
436 | LLDB_LOG_ERROR(log, ExpectedMemory.takeError(), |
437 | "Failed to read memory list: {0}" ); |
438 | } else { |
439 | for (const auto &memory_desc : *ExpectedMemory) { |
440 | const LocationDescriptor &loc_desc = memory_desc.Memory; |
441 | const lldb::addr_t range_start = memory_desc.StartOfMemoryRange; |
442 | const size_t range_size = loc_desc.DataSize; |
443 | |
444 | if (loc_desc.RVA + loc_desc.DataSize > GetData().size()) |
445 | return std::nullopt; |
446 | |
447 | if (range_start <= addr && addr < range_start + range_size) { |
448 | auto ExpectedSlice = GetMinidumpFile().getRawData(Desc: loc_desc); |
449 | if (!ExpectedSlice) { |
450 | LLDB_LOG_ERROR(log, ExpectedSlice.takeError(), |
451 | "Failed to get memory slice: {0}" ); |
452 | return std::nullopt; |
453 | } |
454 | return minidump::Range(range_start, *ExpectedSlice); |
455 | } |
456 | } |
457 | } |
458 | |
459 | if (!GetStream(stream_type: StreamType::Memory64List).empty()) { |
460 | llvm::Error err = llvm::Error::success(); |
461 | for (const auto &memory_desc : GetMinidumpFile().getMemory64List(Err&: err)) { |
462 | if (memory_desc.first.StartOfMemoryRange <= addr |
463 | && addr < memory_desc.first.StartOfMemoryRange + memory_desc.first.DataSize) { |
464 | return minidump::Range(memory_desc.first.StartOfMemoryRange, memory_desc.second); |
465 | } |
466 | } |
467 | |
468 | if (err) |
469 | LLDB_LOG_ERROR(log, std::move(err), "Failed to read memory64 list: {0}" ); |
470 | } |
471 | |
472 | return std::nullopt; |
473 | } |
474 | |
475 | llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr, |
476 | size_t size) { |
477 | // I don't have a sense of how frequently this is called or how many memory |
478 | // ranges a Minidump typically has, so I'm not sure if searching for the |
479 | // appropriate range linearly each time is stupid. Perhaps we should build |
480 | // an index for faster lookups. |
481 | std::optional<minidump::Range> range = FindMemoryRange(addr); |
482 | if (!range) |
483 | return {}; |
484 | |
485 | // There's at least some overlap between the beginning of the desired range |
486 | // (addr) and the current range. Figure out where the overlap begins and how |
487 | // much overlap there is. |
488 | |
489 | const size_t offset = addr - range->start; |
490 | |
491 | if (addr < range->start || offset >= range->range_ref.size()) |
492 | return {}; |
493 | |
494 | const size_t overlap = std::min(a: size, b: range->range_ref.size() - offset); |
495 | return range->range_ref.slice(N: offset, M: overlap); |
496 | } |
497 | |
498 | llvm::iterator_range<FallibleMemory64Iterator> MinidumpParser::GetMemory64Iterator(llvm::Error &err) { |
499 | llvm::ErrorAsOutParameter ErrAsOutParam(&err); |
500 | return m_file->getMemory64List(Err&: err); |
501 | } |
502 | |
503 | static bool |
504 | CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser, |
505 | std::vector<MemoryRegionInfo> ®ions) { |
506 | Log *log = GetLog(mask: LLDBLog::Modules); |
507 | auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList(); |
508 | if (!ExpectedInfo) { |
509 | LLDB_LOG_ERROR(log, ExpectedInfo.takeError(), |
510 | "Failed to read memory info list: {0}" ); |
511 | return false; |
512 | } |
513 | constexpr auto yes = MemoryRegionInfo::eYes; |
514 | constexpr auto no = MemoryRegionInfo::eNo; |
515 | for (const MemoryInfo &entry : *ExpectedInfo) { |
516 | MemoryRegionInfo region; |
517 | region.GetRange().SetRangeBase(entry.BaseAddress); |
518 | region.GetRange().SetByteSize(entry.RegionSize); |
519 | |
520 | MemoryProtection prot = entry.Protect; |
521 | region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes); |
522 | region.SetWritable( |
523 | bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy | |
524 | MemoryProtection::ExecuteReadWrite | |
525 | MemoryProtection::ExeciteWriteCopy)) |
526 | ? yes |
527 | : no); |
528 | region.SetExecutable( |
529 | bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead | |
530 | MemoryProtection::ExecuteReadWrite | |
531 | MemoryProtection::ExeciteWriteCopy)) |
532 | ? yes |
533 | : no); |
534 | region.SetMapped(entry.State != MemoryState::Free ? yes : no); |
535 | regions.push_back(x: region); |
536 | } |
537 | return !regions.empty(); |
538 | } |
539 | |
540 | static bool |
541 | CreateRegionsCacheFromMemoryList(MinidumpParser &parser, |
542 | std::vector<MemoryRegionInfo> ®ions) { |
543 | Log *log = GetLog(mask: LLDBLog::Modules); |
544 | // Cache the expected memory32 into an optional |
545 | // because it is possible to just have a memory64 list |
546 | auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList(); |
547 | if (!ExpectedMemory) { |
548 | LLDB_LOG_ERROR(log, ExpectedMemory.takeError(), |
549 | "Failed to read memory list: {0}" ); |
550 | } else { |
551 | for (const MemoryDescriptor &memory_desc : *ExpectedMemory) { |
552 | if (memory_desc.Memory.DataSize == 0) |
553 | continue; |
554 | MemoryRegionInfo region; |
555 | region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange); |
556 | region.GetRange().SetByteSize(memory_desc.Memory.DataSize); |
557 | region.SetReadable(MemoryRegionInfo::eYes); |
558 | region.SetMapped(MemoryRegionInfo::eYes); |
559 | regions.push_back(x: region); |
560 | } |
561 | } |
562 | |
563 | if (!parser.GetStream(stream_type: StreamType::Memory64List).empty()) { |
564 | llvm::Error err = llvm::Error::success(); |
565 | for (const auto &memory_desc : parser.GetMemory64Iterator(err)) { |
566 | if (memory_desc.first.DataSize == 0) |
567 | continue; |
568 | MemoryRegionInfo region; |
569 | region.GetRange().SetRangeBase(memory_desc.first.StartOfMemoryRange); |
570 | region.GetRange().SetByteSize(memory_desc.first.DataSize); |
571 | region.SetReadable(MemoryRegionInfo::eYes); |
572 | region.SetMapped(MemoryRegionInfo::eYes); |
573 | regions.push_back(x: region); |
574 | } |
575 | |
576 | if (err) { |
577 | LLDB_LOG_ERROR(log, std::move(err), "Failed to read memory64 list: {0}" ); |
578 | return false; |
579 | } |
580 | } |
581 | |
582 | regions.shrink_to_fit(); |
583 | return !regions.empty(); |
584 | } |
585 | |
586 | std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() { |
587 | // We create the region cache using the best source. We start with |
588 | // the linux maps since they are the most complete and have names for the |
589 | // regions. Next we try the MemoryInfoList since it has |
590 | // read/write/execute/map data, and then fall back to the MemoryList and |
591 | // Memory64List to just get a list of the memory that is mapped in this |
592 | // core file |
593 | MemoryRegionInfos result; |
594 | const auto &return_sorted = [&](bool is_complete) { |
595 | llvm::sort(C&: result); |
596 | return std::make_pair(x: std::move(result), y&: is_complete); |
597 | }; |
598 | if (CreateRegionsCacheFromLinuxMaps(parser&: *this, regions&: result)) |
599 | return return_sorted(true); |
600 | if (CreateRegionsCacheFromMemoryInfoList(parser&: *this, regions&: result)) |
601 | return return_sorted(true); |
602 | CreateRegionsCacheFromMemoryList(parser&: *this, regions&: result); |
603 | return return_sorted(false); |
604 | } |
605 | |
606 | #define ENUM_TO_CSTR(ST) \ |
607 | case StreamType::ST: \ |
608 | return #ST |
609 | |
610 | llvm::StringRef |
611 | MinidumpParser::GetStreamTypeAsString(StreamType stream_type) { |
612 | switch (stream_type) { |
613 | ENUM_TO_CSTR(Unused); |
614 | ENUM_TO_CSTR(ThreadList); |
615 | ENUM_TO_CSTR(ModuleList); |
616 | ENUM_TO_CSTR(MemoryList); |
617 | ENUM_TO_CSTR(Exception); |
618 | ENUM_TO_CSTR(SystemInfo); |
619 | ENUM_TO_CSTR(ThreadExList); |
620 | ENUM_TO_CSTR(Memory64List); |
621 | ENUM_TO_CSTR(CommentA); |
622 | ENUM_TO_CSTR(CommentW); |
623 | ENUM_TO_CSTR(HandleData); |
624 | ENUM_TO_CSTR(FunctionTable); |
625 | ENUM_TO_CSTR(UnloadedModuleList); |
626 | ENUM_TO_CSTR(MiscInfo); |
627 | ENUM_TO_CSTR(MemoryInfoList); |
628 | ENUM_TO_CSTR(ThreadInfoList); |
629 | ENUM_TO_CSTR(HandleOperationList); |
630 | ENUM_TO_CSTR(Token); |
631 | ENUM_TO_CSTR(JavascriptData); |
632 | ENUM_TO_CSTR(SystemMemoryInfo); |
633 | ENUM_TO_CSTR(ProcessVMCounters); |
634 | ENUM_TO_CSTR(LastReserved); |
635 | ENUM_TO_CSTR(BreakpadInfo); |
636 | ENUM_TO_CSTR(AssertionInfo); |
637 | ENUM_TO_CSTR(LinuxCPUInfo); |
638 | ENUM_TO_CSTR(LinuxProcStatus); |
639 | ENUM_TO_CSTR(LinuxLSBRelease); |
640 | ENUM_TO_CSTR(LinuxCMDLine); |
641 | ENUM_TO_CSTR(LinuxEnviron); |
642 | ENUM_TO_CSTR(LinuxAuxv); |
643 | ENUM_TO_CSTR(LinuxMaps); |
644 | ENUM_TO_CSTR(LinuxDSODebug); |
645 | ENUM_TO_CSTR(LinuxProcStat); |
646 | ENUM_TO_CSTR(LinuxProcUptime); |
647 | ENUM_TO_CSTR(LinuxProcFD); |
648 | ENUM_TO_CSTR(FacebookAppCustomData); |
649 | ENUM_TO_CSTR(FacebookBuildID); |
650 | ENUM_TO_CSTR(FacebookAppVersionName); |
651 | ENUM_TO_CSTR(FacebookJavaStack); |
652 | ENUM_TO_CSTR(FacebookDalvikInfo); |
653 | ENUM_TO_CSTR(FacebookUnwindSymbols); |
654 | ENUM_TO_CSTR(FacebookDumpErrorLog); |
655 | ENUM_TO_CSTR(FacebookAppStateLog); |
656 | ENUM_TO_CSTR(FacebookAbortReason); |
657 | ENUM_TO_CSTR(FacebookThreadName); |
658 | ENUM_TO_CSTR(FacebookLogcat); |
659 | ENUM_TO_CSTR(LLDBGenerated); |
660 | } |
661 | return "unknown stream type" ; |
662 | } |
663 | |
664 | MemoryRegionInfo |
665 | MinidumpParser::GetMemoryRegionInfo(const MemoryRegionInfos ®ions, |
666 | lldb::addr_t load_addr) { |
667 | MemoryRegionInfo region; |
668 | auto pos = llvm::upper_bound(Range: regions, Value&: load_addr); |
669 | if (pos != regions.begin() && |
670 | std::prev(x: pos)->GetRange().Contains(r: load_addr)) { |
671 | return *std::prev(x: pos); |
672 | } |
673 | |
674 | if (pos == regions.begin()) |
675 | region.GetRange().SetRangeBase(0); |
676 | else |
677 | region.GetRange().SetRangeBase(std::prev(x: pos)->GetRange().GetRangeEnd()); |
678 | |
679 | if (pos == regions.end()) |
680 | region.GetRange().SetRangeEnd(UINT64_MAX); |
681 | else |
682 | region.GetRange().SetRangeEnd(pos->GetRange().GetRangeBase()); |
683 | |
684 | region.SetReadable(MemoryRegionInfo::eNo); |
685 | region.SetWritable(MemoryRegionInfo::eNo); |
686 | region.SetExecutable(MemoryRegionInfo::eNo); |
687 | region.SetMapped(MemoryRegionInfo::eNo); |
688 | return region; |
689 | } |
690 | |