| 1 | //===-- DWARFCallFrameInfo.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "lldb/Symbol/DWARFCallFrameInfo.h" |
| 10 | #include "lldb/Core/Debugger.h" |
| 11 | #include "lldb/Core/Module.h" |
| 12 | #include "lldb/Core/Section.h" |
| 13 | #include "lldb/Core/dwarf.h" |
| 14 | #include "lldb/Host/Host.h" |
| 15 | #include "lldb/Symbol/ObjectFile.h" |
| 16 | #include "lldb/Symbol/UnwindPlan.h" |
| 17 | #include "lldb/Target/RegisterContext.h" |
| 18 | #include "lldb/Target/Thread.h" |
| 19 | #include "lldb/Utility/ArchSpec.h" |
| 20 | #include "lldb/Utility/LLDBLog.h" |
| 21 | #include "lldb/Utility/Log.h" |
| 22 | #include "lldb/Utility/Timer.h" |
| 23 | #include <cstring> |
| 24 | #include <list> |
| 25 | #include <optional> |
| 26 | |
| 27 | using namespace lldb; |
| 28 | using namespace lldb_private; |
| 29 | using namespace lldb_private::dwarf; |
| 30 | |
| 31 | // GetDwarfEHPtr |
| 32 | // |
| 33 | // Used for calls when the value type is specified by a DWARF EH Frame pointer |
| 34 | // encoding. |
| 35 | static uint64_t |
| 36 | (const DataExtractor &DE, lldb::offset_t *offset_ptr, |
| 37 | uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr, |
| 38 | addr_t data_addr) //, BSDRelocs *data_relocs) const |
| 39 | { |
| 40 | if (eh_ptr_enc == DW_EH_PE_omit) |
| 41 | return ULLONG_MAX; // Value isn't in the buffer... |
| 42 | |
| 43 | uint64_t baseAddress = 0; |
| 44 | uint64_t addressValue = 0; |
| 45 | const uint32_t addr_size = DE.GetAddressByteSize(); |
| 46 | assert(addr_size == 4 || addr_size == 8); |
| 47 | |
| 48 | bool signExtendValue = false; |
| 49 | // Decode the base part or adjust our offset |
| 50 | switch (eh_ptr_enc & 0x70) { |
| 51 | case DW_EH_PE_pcrel: |
| 52 | signExtendValue = true; |
| 53 | baseAddress = *offset_ptr; |
| 54 | if (pc_rel_addr != LLDB_INVALID_ADDRESS) |
| 55 | baseAddress += pc_rel_addr; |
| 56 | // else |
| 57 | // Log::GlobalWarning ("PC relative pointer encoding found with |
| 58 | // invalid pc relative address."); |
| 59 | break; |
| 60 | |
| 61 | case DW_EH_PE_textrel: |
| 62 | signExtendValue = true; |
| 63 | if (text_addr != LLDB_INVALID_ADDRESS) |
| 64 | baseAddress = text_addr; |
| 65 | // else |
| 66 | // Log::GlobalWarning ("text relative pointer encoding being |
| 67 | // decoded with invalid text section address, setting base address |
| 68 | // to zero."); |
| 69 | break; |
| 70 | |
| 71 | case DW_EH_PE_datarel: |
| 72 | signExtendValue = true; |
| 73 | if (data_addr != LLDB_INVALID_ADDRESS) |
| 74 | baseAddress = data_addr; |
| 75 | // else |
| 76 | // Log::GlobalWarning ("data relative pointer encoding being |
| 77 | // decoded with invalid data section address, setting base address |
| 78 | // to zero."); |
| 79 | break; |
| 80 | |
| 81 | case DW_EH_PE_funcrel: |
| 82 | signExtendValue = true; |
| 83 | break; |
| 84 | |
| 85 | case DW_EH_PE_aligned: { |
| 86 | // SetPointerSize should be called prior to extracting these so the pointer |
| 87 | // size is cached |
| 88 | assert(addr_size != 0); |
| 89 | if (addr_size) { |
| 90 | // Align to a address size boundary first |
| 91 | uint32_t alignOffset = *offset_ptr % addr_size; |
| 92 | if (alignOffset) |
| 93 | offset_ptr += addr_size - alignOffset; |
| 94 | } |
| 95 | } break; |
| 96 | |
| 97 | default: |
| 98 | break; |
| 99 | } |
| 100 | |
| 101 | // Decode the value part |
| 102 | switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) { |
| 103 | case DW_EH_PE_absptr: { |
| 104 | addressValue = DE.GetAddress(offset_ptr); |
| 105 | // if (data_relocs) |
| 106 | // addressValue = data_relocs->Relocate(*offset_ptr - |
| 107 | // addr_size, *this, addressValue); |
| 108 | } break; |
| 109 | case DW_EH_PE_uleb128: |
| 110 | addressValue = DE.GetULEB128(offset_ptr); |
| 111 | break; |
| 112 | case DW_EH_PE_udata2: |
| 113 | addressValue = DE.GetU16(offset_ptr); |
| 114 | break; |
| 115 | case DW_EH_PE_udata4: |
| 116 | addressValue = DE.GetU32(offset_ptr); |
| 117 | break; |
| 118 | case DW_EH_PE_udata8: |
| 119 | addressValue = DE.GetU64(offset_ptr); |
| 120 | break; |
| 121 | case DW_EH_PE_sleb128: |
| 122 | addressValue = DE.GetSLEB128(offset_ptr); |
| 123 | break; |
| 124 | case DW_EH_PE_sdata2: |
| 125 | addressValue = (int16_t)DE.GetU16(offset_ptr); |
| 126 | break; |
| 127 | case DW_EH_PE_sdata4: |
| 128 | addressValue = (int32_t)DE.GetU32(offset_ptr); |
| 129 | break; |
| 130 | case DW_EH_PE_sdata8: |
| 131 | addressValue = (int64_t)DE.GetU64(offset_ptr); |
| 132 | break; |
| 133 | default: |
| 134 | // Unhandled encoding type |
| 135 | assert(eh_ptr_enc); |
| 136 | break; |
| 137 | } |
| 138 | |
| 139 | // Since we promote everything to 64 bit, we may need to sign extend |
| 140 | if (signExtendValue && addr_size < sizeof(baseAddress)) { |
| 141 | uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull); |
| 142 | if (sign_bit & addressValue) { |
| 143 | uint64_t mask = ~sign_bit + 1; |
| 144 | addressValue |= mask; |
| 145 | } |
| 146 | } |
| 147 | return baseAddress + addressValue; |
| 148 | } |
| 149 | |
| 150 | DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile, |
| 151 | SectionSP §ion_sp, Type type) |
| 152 | : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {} |
| 153 | |
| 154 | std::unique_ptr<UnwindPlan> |
| 155 | DWARFCallFrameInfo::GetUnwindPlan(const Address &addr) { |
| 156 | return GetUnwindPlan(ranges: {AddressRange(addr, 1)}, addr); |
| 157 | } |
| 158 | |
| 159 | std::unique_ptr<UnwindPlan> |
| 160 | DWARFCallFrameInfo::GetUnwindPlan(llvm::ArrayRef<AddressRange> ranges, |
| 161 | const Address &addr) { |
| 162 | FDEEntryMap::Entry fde_entry; |
| 163 | |
| 164 | // Make sure that the Address we're searching for is the same object file as |
| 165 | // this DWARFCallFrameInfo, we only store File offsets in m_fde_index. |
| 166 | ModuleSP module_sp = addr.GetModule(); |
| 167 | if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || |
| 168 | module_sp->GetObjectFile() != &m_objfile) |
| 169 | return nullptr; |
| 170 | |
| 171 | std::vector<AddressRange> valid_ranges; |
| 172 | |
| 173 | auto result = std::make_unique<UnwindPlan>(args: GetRegisterKind()); |
| 174 | result->SetSourceName(m_type == EH ? "eh_frame CFI" : "DWARF CFI" ); |
| 175 | // In theory the debug_frame info should be valid at all call sites |
| 176 | // ("asynchronous unwind info" as it is sometimes called) but in practice |
| 177 | // gcc et al all emit call frame info for the prologue and call sites, but |
| 178 | // not for the epilogue or all the other locations during the function |
| 179 | // reliably. |
| 180 | result->SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); |
| 181 | result->SetSourcedFromCompiler(eLazyBoolYes); |
| 182 | result->SetUnwindPlanForSignalTrap(eLazyBoolNo); |
| 183 | for (const AddressRange &range : ranges) { |
| 184 | std::optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range); |
| 185 | if (!entry) |
| 186 | continue; |
| 187 | std::optional<FDE> fde = ParseFDE(offset: entry->data, startaddr: addr); |
| 188 | if (!fde) |
| 189 | continue; |
| 190 | int64_t slide = |
| 191 | fde->range.GetBaseAddress().GetFileAddress() - addr.GetFileAddress(); |
| 192 | valid_ranges.push_back(x: std::move(fde->range)); |
| 193 | if (fde->for_signal_trap) |
| 194 | result->SetUnwindPlanForSignalTrap(eLazyBoolYes); |
| 195 | result->SetReturnAddressRegister(fde->return_addr_reg_num); |
| 196 | for (UnwindPlan::Row &row : fde->rows) { |
| 197 | row.SlideOffset(offset: slide); |
| 198 | result->AppendRow(row: std::move(row)); |
| 199 | } |
| 200 | } |
| 201 | result->SetPlanValidAddressRanges(std::move(valid_ranges)); |
| 202 | if (result->GetRowCount() == 0) |
| 203 | return nullptr; |
| 204 | return result; |
| 205 | } |
| 206 | |
| 207 | bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) { |
| 208 | |
| 209 | // Make sure that the Address we're searching for is the same object file as |
| 210 | // this DWARFCallFrameInfo, we only store File offsets in m_fde_index. |
| 211 | ModuleSP module_sp = addr.GetModule(); |
| 212 | if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || |
| 213 | module_sp->GetObjectFile() != &m_objfile) |
| 214 | return false; |
| 215 | |
| 216 | if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) |
| 217 | return false; |
| 218 | GetFDEIndex(); |
| 219 | FDEEntryMap::Entry *fde_entry = |
| 220 | m_fde_index.FindEntryThatContains(addr: addr.GetFileAddress()); |
| 221 | if (!fde_entry) |
| 222 | return false; |
| 223 | |
| 224 | range = AddressRange(fde_entry->base, fde_entry->size, |
| 225 | m_objfile.GetSectionList()); |
| 226 | return true; |
| 227 | } |
| 228 | |
| 229 | std::optional<DWARFCallFrameInfo::FDEEntryMap::Entry> |
| 230 | DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) { |
| 231 | if (!m_section_sp || m_section_sp->IsEncrypted()) |
| 232 | return std::nullopt; |
| 233 | |
| 234 | GetFDEIndex(); |
| 235 | |
| 236 | addr_t start_file_addr = range.GetBaseAddress().GetFileAddress(); |
| 237 | const FDEEntryMap::Entry *fde = |
| 238 | m_fde_index.FindEntryThatContainsOrFollows(addr: start_file_addr); |
| 239 | if (fde && fde->DoesIntersect( |
| 240 | rhs: FDEEntryMap::Range(start_file_addr, range.GetByteSize()))) |
| 241 | return *fde; |
| 242 | |
| 243 | return std::nullopt; |
| 244 | } |
| 245 | |
| 246 | void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector( |
| 247 | FunctionAddressAndSizeVector &function_info) { |
| 248 | GetFDEIndex(); |
| 249 | const size_t count = m_fde_index.GetSize(); |
| 250 | function_info.Clear(); |
| 251 | if (count > 0) |
| 252 | function_info.Reserve(size: count); |
| 253 | for (size_t i = 0; i < count; ++i) { |
| 254 | const FDEEntryMap::Entry *func_offset_data_entry = |
| 255 | m_fde_index.GetEntryAtIndex(i); |
| 256 | if (func_offset_data_entry) { |
| 257 | FunctionAddressAndSizeVector::Entry function_offset_entry( |
| 258 | func_offset_data_entry->base, func_offset_data_entry->size); |
| 259 | function_info.Append(entry: function_offset_entry); |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | const DWARFCallFrameInfo::CIE * |
| 265 | DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) { |
| 266 | cie_map_t::iterator pos = m_cie_map.find(x: cie_offset); |
| 267 | |
| 268 | if (pos != m_cie_map.end()) { |
| 269 | // Parse and cache the CIE |
| 270 | if (pos->second == nullptr) |
| 271 | pos->second = ParseCIE(cie_offset); |
| 272 | |
| 273 | return pos->second.get(); |
| 274 | } |
| 275 | return nullptr; |
| 276 | } |
| 277 | |
| 278 | DWARFCallFrameInfo::CIESP |
| 279 | DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) { |
| 280 | CIESP cie_sp(new CIE(cie_offset)); |
| 281 | lldb::offset_t offset = cie_offset; |
| 282 | if (!m_cfi_data_initialized) |
| 283 | GetCFIData(); |
| 284 | uint32_t length = m_cfi_data.GetU32(offset_ptr: &offset); |
| 285 | dw_offset_t cie_id, end_offset; |
| 286 | bool is_64bit = (length == UINT32_MAX); |
| 287 | if (is_64bit) { |
| 288 | length = m_cfi_data.GetU64(offset_ptr: &offset); |
| 289 | cie_id = m_cfi_data.GetU64(offset_ptr: &offset); |
| 290 | end_offset = cie_offset + length + 12; |
| 291 | } else { |
| 292 | cie_id = m_cfi_data.GetU32(offset_ptr: &offset); |
| 293 | end_offset = cie_offset + length + 4; |
| 294 | } |
| 295 | if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) || |
| 296 | (m_type == EH && cie_id == 0ul))) { |
| 297 | size_t i; |
| 298 | // cie.offset = cie_offset; |
| 299 | // cie.length = length; |
| 300 | // cie.cieID = cieID; |
| 301 | cie_sp->ptr_encoding = DW_EH_PE_absptr; // default |
| 302 | cie_sp->version = m_cfi_data.GetU8(offset_ptr: &offset); |
| 303 | if (cie_sp->version > CFI_VERSION4) { |
| 304 | Debugger::ReportError( |
| 305 | message: llvm::formatv(Fmt: "CIE parse error: CFI version {0} is not supported" , |
| 306 | Vals&: cie_sp->version)); |
| 307 | return nullptr; |
| 308 | } |
| 309 | |
| 310 | for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) { |
| 311 | cie_sp->augmentation[i] = m_cfi_data.GetU8(offset_ptr: &offset); |
| 312 | if (cie_sp->augmentation[i] == '\0') { |
| 313 | // Zero out remaining bytes in augmentation string |
| 314 | for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j) |
| 315 | cie_sp->augmentation[j] = '\0'; |
| 316 | |
| 317 | break; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | if (i == CFI_AUG_MAX_SIZE && |
| 322 | cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') { |
| 323 | Debugger::ReportError(message: llvm::formatv( |
| 324 | Fmt: "CIE parse error: CIE augmentation string was too large " |
| 325 | "for the fixed sized buffer of {0} bytes." , |
| 326 | Vals: CFI_AUG_MAX_SIZE)); |
| 327 | return nullptr; |
| 328 | } |
| 329 | |
| 330 | // m_cfi_data uses address size from target architecture of the process may |
| 331 | // ignore these fields? |
| 332 | if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) { |
| 333 | cie_sp->address_size = m_cfi_data.GetU8(offset_ptr: &offset); |
| 334 | cie_sp->segment_size = m_cfi_data.GetU8(offset_ptr: &offset); |
| 335 | } |
| 336 | |
| 337 | cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 338 | cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(offset_ptr: &offset); |
| 339 | |
| 340 | cie_sp->return_addr_reg_num = |
| 341 | m_type == DWARF && cie_sp->version >= CFI_VERSION3 |
| 342 | ? static_cast<uint32_t>(m_cfi_data.GetULEB128(offset_ptr: &offset)) |
| 343 | : m_cfi_data.GetU8(offset_ptr: &offset); |
| 344 | |
| 345 | if (cie_sp->augmentation[0]) { |
| 346 | // Get the length of the eh_frame augmentation data which starts with a |
| 347 | // ULEB128 length in bytes |
| 348 | const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 349 | const size_t aug_data_end = offset + aug_data_len; |
| 350 | const size_t aug_str_len = strlen(s: cie_sp->augmentation); |
| 351 | // A 'z' may be present as the first character of the string. |
| 352 | // If present, the Augmentation Data field shall be present. The contents |
| 353 | // of the Augmentation Data shall be interpreted according to other |
| 354 | // characters in the Augmentation String. |
| 355 | if (cie_sp->augmentation[0] == 'z') { |
| 356 | // Extract the Augmentation Data |
| 357 | size_t aug_str_idx = 0; |
| 358 | for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) { |
| 359 | char aug = cie_sp->augmentation[aug_str_idx]; |
| 360 | switch (aug) { |
| 361 | case 'L': |
| 362 | // Indicates the presence of one argument in the Augmentation Data |
| 363 | // of the CIE, and a corresponding argument in the Augmentation |
| 364 | // Data of the FDE. The argument in the Augmentation Data of the |
| 365 | // CIE is 1-byte and represents the pointer encoding used for the |
| 366 | // argument in the Augmentation Data of the FDE, which is the |
| 367 | // address of a language-specific data area (LSDA). The size of the |
| 368 | // LSDA pointer is specified by the pointer encoding used. |
| 369 | cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(offset_ptr: &offset); |
| 370 | break; |
| 371 | |
| 372 | case 'P': |
| 373 | // Indicates the presence of two arguments in the Augmentation Data |
| 374 | // of the CIE. The first argument is 1-byte and represents the |
| 375 | // pointer encoding used for the second argument, which is the |
| 376 | // address of a personality routine handler. The size of the |
| 377 | // personality routine pointer is specified by the pointer encoding |
| 378 | // used. |
| 379 | // |
| 380 | // The address of the personality function will be stored at this |
| 381 | // location. Pre-execution, it will be all zero's so don't read it |
| 382 | // until we're trying to do an unwind & the reloc has been |
| 383 | // resolved. |
| 384 | { |
| 385 | uint8_t arg_ptr_encoding = m_cfi_data.GetU8(offset_ptr: &offset); |
| 386 | const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); |
| 387 | cie_sp->personality_loc = GetGNUEHPointer( |
| 388 | DE: m_cfi_data, offset_ptr: &offset, eh_ptr_enc: arg_ptr_encoding, pc_rel_addr, |
| 389 | LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS); |
| 390 | } |
| 391 | break; |
| 392 | |
| 393 | case 'R': |
| 394 | // A 'R' may be present at any position after the |
| 395 | // first character of the string. The Augmentation Data shall |
| 396 | // include a 1 byte argument that represents the pointer encoding |
| 397 | // for the address pointers used in the FDE. Example: 0x1B == |
| 398 | // DW_EH_PE_pcrel | DW_EH_PE_sdata4 |
| 399 | cie_sp->ptr_encoding = m_cfi_data.GetU8(offset_ptr: &offset); |
| 400 | break; |
| 401 | } |
| 402 | } |
| 403 | } else if (strcmp(s1: cie_sp->augmentation, s2: "eh" ) == 0) { |
| 404 | // If the Augmentation string has the value "eh", then the EH Data |
| 405 | // field shall be present |
| 406 | } |
| 407 | |
| 408 | // Set the offset to be the end of the augmentation data just in case we |
| 409 | // didn't understand any of the data. |
| 410 | offset = (uint32_t)aug_data_end; |
| 411 | } |
| 412 | |
| 413 | if (end_offset > offset) { |
| 414 | cie_sp->inst_offset = offset; |
| 415 | cie_sp->inst_length = end_offset - offset; |
| 416 | } |
| 417 | while (offset < end_offset) { |
| 418 | uint8_t inst = m_cfi_data.GetU8(offset_ptr: &offset); |
| 419 | uint8_t primary_opcode = inst & 0xC0; |
| 420 | uint8_t extended_opcode = inst & 0x3F; |
| 421 | |
| 422 | if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, |
| 423 | data_align: cie_sp->data_align, offset, |
| 424 | row&: cie_sp->initial_row)) |
| 425 | break; // Stop if we hit an unrecognized opcode |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | return cie_sp; |
| 430 | } |
| 431 | |
| 432 | void DWARFCallFrameInfo::GetCFIData() { |
| 433 | if (!m_cfi_data_initialized) { |
| 434 | Log *log = GetLog(mask: LLDBLog::Unwind); |
| 435 | if (log) |
| 436 | m_objfile.GetModule()->LogMessage(log, format: "Reading EH frame info" ); |
| 437 | m_objfile.ReadSectionData(section: m_section_sp.get(), section_data&: m_cfi_data); |
| 438 | m_cfi_data_initialized = true; |
| 439 | } |
| 440 | } |
| 441 | // Scan through the eh_frame or debug_frame section looking for FDEs and noting |
| 442 | // the start/end addresses of the functions and a pointer back to the |
| 443 | // function's FDE for later expansion. Internalize CIEs as we come across them. |
| 444 | |
| 445 | void DWARFCallFrameInfo::GetFDEIndex() { |
| 446 | if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) |
| 447 | return; |
| 448 | |
| 449 | if (m_fde_index_initialized) |
| 450 | return; |
| 451 | |
| 452 | std::lock_guard<std::mutex> guard(m_fde_index_mutex); |
| 453 | |
| 454 | if (m_fde_index_initialized) // if two threads hit the locker |
| 455 | return; |
| 456 | |
| 457 | LLDB_SCOPED_TIMERF("%s" , m_objfile.GetFileSpec().GetFilename().AsCString("" )); |
| 458 | |
| 459 | bool clear_address_zeroth_bit = false; |
| 460 | if (ArchSpec arch = m_objfile.GetArchitecture()) { |
| 461 | if (arch.GetTriple().getArch() == llvm::Triple::arm || |
| 462 | arch.GetTriple().getArch() == llvm::Triple::thumb) |
| 463 | clear_address_zeroth_bit = true; |
| 464 | } |
| 465 | |
| 466 | lldb::offset_t offset = 0; |
| 467 | if (!m_cfi_data_initialized) |
| 468 | GetCFIData(); |
| 469 | while (m_cfi_data.ValidOffsetForDataOfSize(offset, length: 8)) { |
| 470 | const dw_offset_t current_entry = offset; |
| 471 | dw_offset_t cie_id, next_entry, cie_offset; |
| 472 | uint32_t len = m_cfi_data.GetU32(offset_ptr: &offset); |
| 473 | bool is_64bit = (len == UINT32_MAX); |
| 474 | if (is_64bit) { |
| 475 | len = m_cfi_data.GetU64(offset_ptr: &offset); |
| 476 | cie_id = m_cfi_data.GetU64(offset_ptr: &offset); |
| 477 | next_entry = current_entry + len + 12; |
| 478 | cie_offset = current_entry + 12 - cie_id; |
| 479 | } else { |
| 480 | cie_id = m_cfi_data.GetU32(offset_ptr: &offset); |
| 481 | next_entry = current_entry + len + 4; |
| 482 | cie_offset = current_entry + 4 - cie_id; |
| 483 | } |
| 484 | |
| 485 | if (next_entry > m_cfi_data.GetByteSize() + 1) { |
| 486 | Debugger::ReportError(message: llvm::formatv(Fmt: "Invalid fde/cie next entry offset " |
| 487 | "of {0:x} found in cie/fde at {1:x}" , |
| 488 | Vals&: next_entry, Vals: current_entry)); |
| 489 | // Don't trust anything in this eh_frame section if we find blatantly |
| 490 | // invalid data. |
| 491 | m_fde_index.Clear(); |
| 492 | m_fde_index_initialized = true; |
| 493 | return; |
| 494 | } |
| 495 | |
| 496 | // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id |
| 497 | // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So, |
| 498 | // variable cie_offset should be equal to cie_id for debug_frame. |
| 499 | // FDE entries with cie_id == 0 shouldn't be ignored for it. |
| 500 | if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) { |
| 501 | auto cie_sp = ParseCIE(cie_offset: current_entry); |
| 502 | if (!cie_sp) { |
| 503 | // Cannot parse, the reason is already logged |
| 504 | m_fde_index.Clear(); |
| 505 | m_fde_index_initialized = true; |
| 506 | return; |
| 507 | } |
| 508 | |
| 509 | m_cie_map[current_entry] = std::move(cie_sp); |
| 510 | offset = next_entry; |
| 511 | continue; |
| 512 | } |
| 513 | |
| 514 | if (m_type == DWARF) |
| 515 | cie_offset = cie_id; |
| 516 | |
| 517 | if (cie_offset > m_cfi_data.GetByteSize()) { |
| 518 | Debugger::ReportError(message: llvm::formatv(Fmt: "Invalid cie offset of {0:x} " |
| 519 | "found in cie/fde at {1:x}" , |
| 520 | Vals&: cie_offset, Vals: current_entry)); |
| 521 | // Don't trust anything in this eh_frame section if we find blatantly |
| 522 | // invalid data. |
| 523 | m_fde_index.Clear(); |
| 524 | m_fde_index_initialized = true; |
| 525 | return; |
| 526 | } |
| 527 | |
| 528 | const CIE *cie = GetCIE(cie_offset); |
| 529 | if (cie) { |
| 530 | const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); |
| 531 | const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; |
| 532 | const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; |
| 533 | |
| 534 | lldb::addr_t addr = |
| 535 | GetGNUEHPointer(DE: m_cfi_data, offset_ptr: &offset, eh_ptr_enc: cie->ptr_encoding, pc_rel_addr, |
| 536 | text_addr, data_addr); |
| 537 | if (clear_address_zeroth_bit) |
| 538 | addr &= ~1ull; |
| 539 | |
| 540 | lldb::addr_t length = GetGNUEHPointer( |
| 541 | DE: m_cfi_data, offset_ptr: &offset, eh_ptr_enc: cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, |
| 542 | pc_rel_addr, text_addr, data_addr); |
| 543 | FDEEntryMap::Entry fde(addr, length, current_entry); |
| 544 | m_fde_index.Append(entry: fde); |
| 545 | } else { |
| 546 | Debugger::ReportError(message: llvm::formatv( |
| 547 | Fmt: "unable to find CIE at {0:x} for cie_id = {1:x} for entry at {2:x}." , |
| 548 | Vals&: cie_offset, Vals&: cie_id, Vals: current_entry)); |
| 549 | } |
| 550 | offset = next_entry; |
| 551 | } |
| 552 | m_fde_index.Sort(); |
| 553 | m_fde_index_initialized = true; |
| 554 | } |
| 555 | |
| 556 | std::optional<DWARFCallFrameInfo::FDE> |
| 557 | DWARFCallFrameInfo::ParseFDE(dw_offset_t dwarf_offset, |
| 558 | const Address &startaddr) { |
| 559 | Log *log = GetLog(mask: LLDBLog::Unwind); |
| 560 | lldb::offset_t offset = dwarf_offset; |
| 561 | lldb::offset_t current_entry = offset; |
| 562 | |
| 563 | if (!m_section_sp || m_section_sp->IsEncrypted()) |
| 564 | return std::nullopt; |
| 565 | |
| 566 | if (!m_cfi_data_initialized) |
| 567 | GetCFIData(); |
| 568 | |
| 569 | uint32_t length = m_cfi_data.GetU32(offset_ptr: &offset); |
| 570 | dw_offset_t cie_offset; |
| 571 | bool is_64bit = (length == UINT32_MAX); |
| 572 | if (is_64bit) { |
| 573 | length = m_cfi_data.GetU64(offset_ptr: &offset); |
| 574 | cie_offset = m_cfi_data.GetU64(offset_ptr: &offset); |
| 575 | } else { |
| 576 | cie_offset = m_cfi_data.GetU32(offset_ptr: &offset); |
| 577 | } |
| 578 | |
| 579 | // FDE entries with zeroth cie_offset may occur for debug_frame. |
| 580 | assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX); |
| 581 | |
| 582 | // Translate the CIE_id from the eh_frame format, which is relative to the |
| 583 | // FDE offset, into a __eh_frame section offset |
| 584 | if (m_type == EH) |
| 585 | cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset; |
| 586 | |
| 587 | const CIE *cie = GetCIE(cie_offset); |
| 588 | assert(cie != nullptr); |
| 589 | |
| 590 | const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4); |
| 591 | |
| 592 | const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); |
| 593 | const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; |
| 594 | const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; |
| 595 | lldb::addr_t range_base = |
| 596 | GetGNUEHPointer(DE: m_cfi_data, offset_ptr: &offset, eh_ptr_enc: cie->ptr_encoding, pc_rel_addr, |
| 597 | text_addr, data_addr); |
| 598 | lldb::addr_t range_len = GetGNUEHPointer( |
| 599 | DE: m_cfi_data, offset_ptr: &offset, eh_ptr_enc: cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, |
| 600 | pc_rel_addr, text_addr, data_addr); |
| 601 | AddressRange range(range_base, m_objfile.GetAddressByteSize(), |
| 602 | m_objfile.GetSectionList()); |
| 603 | range.SetByteSize(range_len); |
| 604 | |
| 605 | // Skip the LSDA, if present. |
| 606 | if (cie->augmentation[0] == 'z') |
| 607 | offset += (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 608 | |
| 609 | FDE fde; |
| 610 | fde.for_signal_trap = strchr(s: cie->augmentation, c: 'S') != nullptr; |
| 611 | fde.range = range; |
| 612 | fde.return_addr_reg_num = cie->return_addr_reg_num; |
| 613 | |
| 614 | uint32_t code_align = cie->code_align; |
| 615 | int32_t data_align = cie->data_align; |
| 616 | |
| 617 | UnwindPlan::Row row = cie->initial_row; |
| 618 | std::vector<UnwindPlan::Row> stack; |
| 619 | |
| 620 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 621 | while (m_cfi_data.ValidOffset(offset) && offset < end_offset) { |
| 622 | uint8_t inst = m_cfi_data.GetU8(offset_ptr: &offset); |
| 623 | uint8_t primary_opcode = inst & 0xC0; |
| 624 | uint8_t extended_opcode = inst & 0x3F; |
| 625 | |
| 626 | if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align, |
| 627 | offset, row)) { |
| 628 | if (primary_opcode) { |
| 629 | switch (primary_opcode) { |
| 630 | case DW_CFA_advance_loc: // (Row Creation Instruction) |
| 631 | { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta |
| 632 | // takes a single argument that represents a constant delta. The |
| 633 | // required action is to create a new table row with a location value |
| 634 | // that is computed by taking the current entry's location value and |
| 635 | // adding (delta * code_align). All other values in the new row are |
| 636 | // initially identical to the current row. |
| 637 | fde.rows.push_back(x: row); |
| 638 | row.SlideOffset(offset: extended_opcode * code_align); |
| 639 | break; |
| 640 | } |
| 641 | |
| 642 | case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are |
| 643 | // register |
| 644 | // takes a single argument that represents a register number. The |
| 645 | // required action is to change the rule for the indicated register |
| 646 | // to the rule assigned it by the initial_instructions in the CIE. |
| 647 | uint32_t reg_num = extended_opcode; |
| 648 | // We only keep enough register locations around to unwind what is in |
| 649 | // our thread, and these are organized by the register index in that |
| 650 | // state, so we need to convert our eh_frame register number from the |
| 651 | // EH frame info, to a register index |
| 652 | |
| 653 | if (fde.rows[0].GetRegisterInfo(reg_num, register_location&: reg_location)) |
| 654 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 655 | else { |
| 656 | // If the register was not set in the first row, remove the |
| 657 | // register info to keep the unmodified value from the caller. |
| 658 | row.RemoveRegisterInfo(reg_num); |
| 659 | } |
| 660 | break; |
| 661 | } |
| 662 | } |
| 663 | } else { |
| 664 | switch (extended_opcode) { |
| 665 | case DW_CFA_set_loc: // 0x1 (Row Creation Instruction) |
| 666 | { |
| 667 | // DW_CFA_set_loc takes a single argument that represents an address. |
| 668 | // The required action is to create a new table row using the |
| 669 | // specified address as the location. All other values in the new row |
| 670 | // are initially identical to the current row. The new location value |
| 671 | // should always be greater than the current one. |
| 672 | fde.rows.push_back(x: row); |
| 673 | row.SetOffset(m_cfi_data.GetAddress(offset_ptr: &offset) - |
| 674 | startaddr.GetFileAddress()); |
| 675 | break; |
| 676 | } |
| 677 | |
| 678 | case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction) |
| 679 | { |
| 680 | // takes a single uword argument that represents a constant delta. |
| 681 | // This instruction is identical to DW_CFA_advance_loc except for the |
| 682 | // encoding and size of the delta argument. |
| 683 | fde.rows.push_back(x: row); |
| 684 | row.SlideOffset(offset: m_cfi_data.GetU8(offset_ptr: &offset) * code_align); |
| 685 | break; |
| 686 | } |
| 687 | |
| 688 | case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction) |
| 689 | { |
| 690 | // takes a single uword argument that represents a constant delta. |
| 691 | // This instruction is identical to DW_CFA_advance_loc except for the |
| 692 | // encoding and size of the delta argument. |
| 693 | fde.rows.push_back(x: row); |
| 694 | row.SlideOffset(offset: m_cfi_data.GetU16(offset_ptr: &offset) * code_align); |
| 695 | break; |
| 696 | } |
| 697 | |
| 698 | case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction) |
| 699 | { |
| 700 | // takes a single uword argument that represents a constant delta. |
| 701 | // This instruction is identical to DW_CFA_advance_loc except for the |
| 702 | // encoding and size of the delta argument. |
| 703 | fde.rows.push_back(x: row); |
| 704 | row.SlideOffset(offset: m_cfi_data.GetU32(offset_ptr: &offset) * code_align); |
| 705 | break; |
| 706 | } |
| 707 | |
| 708 | case DW_CFA_restore_extended: // 0x6 |
| 709 | { |
| 710 | // takes a single unsigned LEB128 argument that represents a register |
| 711 | // number. This instruction is identical to DW_CFA_restore except for |
| 712 | // the encoding and size of the register argument. |
| 713 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 714 | if (fde.rows[0].GetRegisterInfo(reg_num, register_location&: reg_location)) |
| 715 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 716 | break; |
| 717 | } |
| 718 | |
| 719 | case DW_CFA_remember_state: // 0xA |
| 720 | { |
| 721 | // These instructions define a stack of information. Encountering the |
| 722 | // DW_CFA_remember_state instruction means to save the rules for |
| 723 | // every register on the current row on the stack. Encountering the |
| 724 | // DW_CFA_restore_state instruction means to pop the set of rules off |
| 725 | // the stack and place them in the current row. (This operation is |
| 726 | // useful for compilers that move epilogue code into the body of a |
| 727 | // function.) |
| 728 | stack.push_back(x: row); |
| 729 | break; |
| 730 | } |
| 731 | |
| 732 | case DW_CFA_restore_state: // 0xB |
| 733 | { |
| 734 | // These instructions define a stack of information. Encountering the |
| 735 | // DW_CFA_remember_state instruction means to save the rules for |
| 736 | // every register on the current row on the stack. Encountering the |
| 737 | // DW_CFA_restore_state instruction means to pop the set of rules off |
| 738 | // the stack and place them in the current row. (This operation is |
| 739 | // useful for compilers that move epilogue code into the body of a |
| 740 | // function.) |
| 741 | if (stack.empty()) { |
| 742 | LLDB_LOG(log, |
| 743 | "DWARFCallFrameInfo::{0}(dwarf_offset: " |
| 744 | "{1:x16}, startaddr: [{2:x16}] encountered " |
| 745 | "DW_CFA_restore_state but state stack " |
| 746 | "is empty. Corrupt unwind info?" , |
| 747 | __FUNCTION__, dwarf_offset, startaddr.GetFileAddress()); |
| 748 | break; |
| 749 | } |
| 750 | int64_t offset = row.GetOffset(); |
| 751 | row = std::move(stack.back()); |
| 752 | stack.pop_back(); |
| 753 | row.SetOffset(offset); |
| 754 | break; |
| 755 | } |
| 756 | |
| 757 | case DW_CFA_GNU_args_size: // 0x2e |
| 758 | { |
| 759 | // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128 |
| 760 | // operand representing an argument size. This instruction specifies |
| 761 | // the total of the size of the arguments which have been pushed onto |
| 762 | // the stack. |
| 763 | |
| 764 | // TODO: Figure out how we should handle this. |
| 765 | m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 766 | break; |
| 767 | } |
| 768 | |
| 769 | case DW_CFA_val_offset: // 0x14 |
| 770 | case DW_CFA_val_offset_sf: // 0x15 |
| 771 | default: |
| 772 | break; |
| 773 | } |
| 774 | } |
| 775 | } |
| 776 | } |
| 777 | fde.rows.push_back(x: row); |
| 778 | return fde; |
| 779 | } |
| 780 | |
| 781 | bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode, |
| 782 | uint8_t extended_opcode, |
| 783 | int32_t data_align, |
| 784 | lldb::offset_t &offset, |
| 785 | UnwindPlan::Row &row) { |
| 786 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 787 | |
| 788 | if (primary_opcode) { |
| 789 | switch (primary_opcode) { |
| 790 | case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are |
| 791 | // register |
| 792 | // takes two arguments: an unsigned LEB128 constant representing a |
| 793 | // factored offset and a register number. The required action is to |
| 794 | // change the rule for the register indicated by the register number to |
| 795 | // be an offset(N) rule with a value of (N = factored offset * |
| 796 | // data_align). |
| 797 | uint8_t reg_num = extended_opcode; |
| 798 | int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(offset_ptr: &offset) * data_align; |
| 799 | reg_location.SetAtCFAPlusOffset(op_offset); |
| 800 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 801 | return true; |
| 802 | } |
| 803 | } |
| 804 | } else { |
| 805 | switch (extended_opcode) { |
| 806 | case DW_CFA_nop: // 0x0 |
| 807 | return true; |
| 808 | |
| 809 | case DW_CFA_offset_extended: // 0x5 |
| 810 | { |
| 811 | // takes two unsigned LEB128 arguments representing a register number and |
| 812 | // a factored offset. This instruction is identical to DW_CFA_offset |
| 813 | // except for the encoding and size of the register argument. |
| 814 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 815 | int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(offset_ptr: &offset) * data_align; |
| 816 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 817 | reg_location.SetAtCFAPlusOffset(op_offset); |
| 818 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 819 | return true; |
| 820 | } |
| 821 | |
| 822 | case DW_CFA_undefined: // 0x7 |
| 823 | { |
| 824 | // takes a single unsigned LEB128 argument that represents a register |
| 825 | // number. The required action is to set the rule for the specified |
| 826 | // register to undefined. |
| 827 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 828 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 829 | reg_location.SetUndefined(); |
| 830 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 831 | return true; |
| 832 | } |
| 833 | |
| 834 | case DW_CFA_same_value: // 0x8 |
| 835 | { |
| 836 | // takes a single unsigned LEB128 argument that represents a register |
| 837 | // number. The required action is to set the rule for the specified |
| 838 | // register to same value. |
| 839 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 840 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 841 | reg_location.SetSame(); |
| 842 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 843 | return true; |
| 844 | } |
| 845 | |
| 846 | case DW_CFA_register: // 0x9 |
| 847 | { |
| 848 | // takes two unsigned LEB128 arguments representing register numbers. The |
| 849 | // required action is to set the rule for the first register to be the |
| 850 | // second register. |
| 851 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 852 | uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 853 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 854 | reg_location.SetInRegister(other_reg_num); |
| 855 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 856 | return true; |
| 857 | } |
| 858 | |
| 859 | case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction) |
| 860 | { |
| 861 | // Takes two unsigned LEB128 operands representing a register number and |
| 862 | // a (non-factored) offset. The required action is to define the current |
| 863 | // CFA rule to use the provided register and offset. |
| 864 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 865 | int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 866 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, offset: op_offset); |
| 867 | return true; |
| 868 | } |
| 869 | |
| 870 | case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction) |
| 871 | { |
| 872 | // takes a single unsigned LEB128 argument representing a register |
| 873 | // number. The required action is to define the current CFA rule to use |
| 874 | // the provided register (but to keep the old offset). |
| 875 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 876 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, |
| 877 | offset: row.GetCFAValue().GetOffset()); |
| 878 | return true; |
| 879 | } |
| 880 | |
| 881 | case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction) |
| 882 | { |
| 883 | // Takes a single unsigned LEB128 operand representing a (non-factored) |
| 884 | // offset. The required action is to define the current CFA rule to use |
| 885 | // the provided offset (but to keep the old register). |
| 886 | int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 887 | row.GetCFAValue().SetIsRegisterPlusOffset( |
| 888 | reg_num: row.GetCFAValue().GetRegisterNumber(), offset: op_offset); |
| 889 | return true; |
| 890 | } |
| 891 | |
| 892 | case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction) |
| 893 | { |
| 894 | size_t block_len = (size_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 895 | const uint8_t *block_data = |
| 896 | static_cast<const uint8_t *>(m_cfi_data.GetData(offset_ptr: &offset, length: block_len)); |
| 897 | row.GetCFAValue().SetIsDWARFExpression(opcodes: block_data, len: block_len); |
| 898 | return true; |
| 899 | } |
| 900 | |
| 901 | case DW_CFA_expression: // 0x10 |
| 902 | { |
| 903 | // Takes two operands: an unsigned LEB128 value representing a register |
| 904 | // number, and a DW_FORM_block value representing a DWARF expression. The |
| 905 | // required action is to change the rule for the register indicated by |
| 906 | // the register number to be an expression(E) rule where E is the DWARF |
| 907 | // expression. That is, the DWARF expression computes the address. The |
| 908 | // value of the CFA is pushed on the DWARF evaluation stack prior to |
| 909 | // execution of the DWARF expression. |
| 910 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 911 | uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 912 | const uint8_t *block_data = |
| 913 | static_cast<const uint8_t *>(m_cfi_data.GetData(offset_ptr: &offset, length: block_len)); |
| 914 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 915 | reg_location.SetAtDWARFExpression(opcodes: block_data, len: block_len); |
| 916 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | case DW_CFA_offset_extended_sf: // 0x11 |
| 921 | { |
| 922 | // takes two operands: an unsigned LEB128 value representing a register |
| 923 | // number and a signed LEB128 factored offset. This instruction is |
| 924 | // identical to DW_CFA_offset_extended except that the second operand is |
| 925 | // signed and factored. |
| 926 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 927 | int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(offset_ptr: &offset) * data_align; |
| 928 | UnwindPlan::Row::AbstractRegisterLocation reg_location; |
| 929 | reg_location.SetAtCFAPlusOffset(op_offset); |
| 930 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 931 | return true; |
| 932 | } |
| 933 | |
| 934 | case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction) |
| 935 | { |
| 936 | // Takes two operands: an unsigned LEB128 value representing a register |
| 937 | // number and a signed LEB128 factored offset. This instruction is |
| 938 | // identical to DW_CFA_def_cfa except that the second operand is signed |
| 939 | // and factored. |
| 940 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 941 | int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(offset_ptr: &offset) * data_align; |
| 942 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, offset: op_offset); |
| 943 | return true; |
| 944 | } |
| 945 | |
| 946 | case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction) |
| 947 | { |
| 948 | // takes a signed LEB128 operand representing a factored offset. This |
| 949 | // instruction is identical to DW_CFA_def_cfa_offset except that the |
| 950 | // operand is signed and factored. |
| 951 | int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(offset_ptr: &offset) * data_align; |
| 952 | uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber(); |
| 953 | row.GetCFAValue().SetIsRegisterPlusOffset(reg_num: cfa_regnum, offset: op_offset); |
| 954 | return true; |
| 955 | } |
| 956 | |
| 957 | case DW_CFA_val_expression: // 0x16 |
| 958 | { |
| 959 | // takes two operands: an unsigned LEB128 value representing a register |
| 960 | // number, and a DW_FORM_block value representing a DWARF expression. The |
| 961 | // required action is to change the rule for the register indicated by |
| 962 | // the register number to be a val_expression(E) rule where E is the |
| 963 | // DWARF expression. That is, the DWARF expression computes the value of |
| 964 | // the given register. The value of the CFA is pushed on the DWARF |
| 965 | // evaluation stack prior to execution of the DWARF expression. |
| 966 | uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 967 | uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(offset_ptr: &offset); |
| 968 | const uint8_t *block_data = |
| 969 | (const uint8_t *)m_cfi_data.GetData(offset_ptr: &offset, length: block_len); |
| 970 | reg_location.SetIsDWARFExpression(opcodes: block_data, len: block_len); |
| 971 | row.SetRegisterInfo(reg_num, register_location: reg_location); |
| 972 | return true; |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | return false; |
| 977 | } |
| 978 | |
| 979 | void DWARFCallFrameInfo::ForEachFDEEntries( |
| 980 | const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) { |
| 981 | GetFDEIndex(); |
| 982 | |
| 983 | for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) { |
| 984 | const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i); |
| 985 | if (!callback(entry.base, entry.size, entry.data)) |
| 986 | break; |
| 987 | } |
| 988 | } |
| 989 | |