1 | //===-- Process.cpp -------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include <atomic> |
10 | #include <memory> |
11 | #include <mutex> |
12 | #include <optional> |
13 | |
14 | #include "llvm/ADT/ScopeExit.h" |
15 | #include "llvm/Support/ScopedPrinter.h" |
16 | #include "llvm/Support/Threading.h" |
17 | |
18 | #include "lldb/Breakpoint/BreakpointLocation.h" |
19 | #include "lldb/Breakpoint/StoppointCallbackContext.h" |
20 | #include "lldb/Core/Debugger.h" |
21 | #include "lldb/Core/Module.h" |
22 | #include "lldb/Core/ModuleSpec.h" |
23 | #include "lldb/Core/PluginManager.h" |
24 | #include "lldb/Expression/DiagnosticManager.h" |
25 | #include "lldb/Expression/DynamicCheckerFunctions.h" |
26 | #include "lldb/Expression/UserExpression.h" |
27 | #include "lldb/Expression/UtilityFunction.h" |
28 | #include "lldb/Host/ConnectionFileDescriptor.h" |
29 | #include "lldb/Host/FileSystem.h" |
30 | #include "lldb/Host/Host.h" |
31 | #include "lldb/Host/HostInfo.h" |
32 | #include "lldb/Host/OptionParser.h" |
33 | #include "lldb/Host/Pipe.h" |
34 | #include "lldb/Host/Terminal.h" |
35 | #include "lldb/Host/ThreadLauncher.h" |
36 | #include "lldb/Interpreter/CommandInterpreter.h" |
37 | #include "lldb/Interpreter/OptionArgParser.h" |
38 | #include "lldb/Interpreter/OptionValueProperties.h" |
39 | #include "lldb/Symbol/Function.h" |
40 | #include "lldb/Symbol/Symbol.h" |
41 | #include "lldb/Target/ABI.h" |
42 | #include "lldb/Target/AssertFrameRecognizer.h" |
43 | #include "lldb/Target/DynamicLoader.h" |
44 | #include "lldb/Target/InstrumentationRuntime.h" |
45 | #include "lldb/Target/JITLoader.h" |
46 | #include "lldb/Target/JITLoaderList.h" |
47 | #include "lldb/Target/Language.h" |
48 | #include "lldb/Target/LanguageRuntime.h" |
49 | #include "lldb/Target/MemoryHistory.h" |
50 | #include "lldb/Target/MemoryRegionInfo.h" |
51 | #include "lldb/Target/OperatingSystem.h" |
52 | #include "lldb/Target/Platform.h" |
53 | #include "lldb/Target/Process.h" |
54 | #include "lldb/Target/RegisterContext.h" |
55 | #include "lldb/Target/StopInfo.h" |
56 | #include "lldb/Target/StructuredDataPlugin.h" |
57 | #include "lldb/Target/SystemRuntime.h" |
58 | #include "lldb/Target/Target.h" |
59 | #include "lldb/Target/TargetList.h" |
60 | #include "lldb/Target/Thread.h" |
61 | #include "lldb/Target/ThreadPlan.h" |
62 | #include "lldb/Target/ThreadPlanBase.h" |
63 | #include "lldb/Target/ThreadPlanCallFunction.h" |
64 | #include "lldb/Target/ThreadPlanStack.h" |
65 | #include "lldb/Target/UnixSignals.h" |
66 | #include "lldb/Utility/AddressableBits.h" |
67 | #include "lldb/Utility/Event.h" |
68 | #include "lldb/Utility/LLDBLog.h" |
69 | #include "lldb/Utility/Log.h" |
70 | #include "lldb/Utility/NameMatches.h" |
71 | #include "lldb/Utility/ProcessInfo.h" |
72 | #include "lldb/Utility/SelectHelper.h" |
73 | #include "lldb/Utility/State.h" |
74 | #include "lldb/Utility/Timer.h" |
75 | |
76 | using namespace lldb; |
77 | using namespace lldb_private; |
78 | using namespace std::chrono; |
79 | |
80 | // Comment out line below to disable memory caching, overriding the process |
81 | // setting target.process.disable-memory-cache |
82 | #define ENABLE_MEMORY_CACHING |
83 | |
84 | #ifdef ENABLE_MEMORY_CACHING |
85 | #define DISABLE_MEM_CACHE_DEFAULT false |
86 | #else |
87 | #define DISABLE_MEM_CACHE_DEFAULT true |
88 | #endif |
89 | |
90 | class ProcessOptionValueProperties |
91 | : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { |
92 | public: |
93 | ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} |
94 | |
95 | const Property * |
96 | GetPropertyAtIndex(size_t idx, |
97 | const ExecutionContext *exe_ctx) const override { |
98 | // When getting the value for a key from the process options, we will |
99 | // always try and grab the setting from the current process if there is |
100 | // one. Else we just use the one from this instance. |
101 | if (exe_ctx) { |
102 | Process *process = exe_ctx->GetProcessPtr(); |
103 | if (process) { |
104 | ProcessOptionValueProperties *instance_properties = |
105 | static_cast<ProcessOptionValueProperties *>( |
106 | process->GetValueProperties().get()); |
107 | if (this != instance_properties) |
108 | return instance_properties->ProtectedGetPropertyAtIndex(idx); |
109 | } |
110 | } |
111 | return ProtectedGetPropertyAtIndex(idx); |
112 | } |
113 | }; |
114 | |
115 | static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { |
116 | { |
117 | .value: eFollowParent, |
118 | .string_value: "parent" , |
119 | .usage: "Continue tracing the parent process and detach the child." , |
120 | }, |
121 | { |
122 | .value: eFollowChild, |
123 | .string_value: "child" , |
124 | .usage: "Trace the child process and detach the parent." , |
125 | }, |
126 | }; |
127 | |
128 | #define LLDB_PROPERTIES_process |
129 | #include "TargetProperties.inc" |
130 | |
131 | enum { |
132 | #define LLDB_PROPERTIES_process |
133 | #include "TargetPropertiesEnum.inc" |
134 | ePropertyExperimental, |
135 | }; |
136 | |
137 | #define LLDB_PROPERTIES_process_experimental |
138 | #include "TargetProperties.inc" |
139 | |
140 | enum { |
141 | #define LLDB_PROPERTIES_process_experimental |
142 | #include "TargetPropertiesEnum.inc" |
143 | }; |
144 | |
145 | class ProcessExperimentalOptionValueProperties |
146 | : public Cloneable<ProcessExperimentalOptionValueProperties, |
147 | OptionValueProperties> { |
148 | public: |
149 | ProcessExperimentalOptionValueProperties() |
150 | : Cloneable(Properties::GetExperimentalSettingsName()) {} |
151 | }; |
152 | |
153 | ProcessExperimentalProperties::ProcessExperimentalProperties() |
154 | : Properties(OptionValuePropertiesSP( |
155 | new ProcessExperimentalOptionValueProperties())) { |
156 | m_collection_sp->Initialize(setting_definitions: g_process_experimental_properties); |
157 | } |
158 | |
159 | ProcessProperties::ProcessProperties(lldb_private::Process *process) |
160 | : Properties(), |
161 | m_process(process) // Can be nullptr for global ProcessProperties |
162 | { |
163 | if (process == nullptr) { |
164 | // Global process properties, set them up one time |
165 | m_collection_sp = std::make_shared<ProcessOptionValueProperties>(args: "process" ); |
166 | m_collection_sp->Initialize(setting_definitions: g_process_properties); |
167 | m_collection_sp->AppendProperty( |
168 | name: "thread" , desc: "Settings specific to threads." , is_global: true, |
169 | value_sp: Thread::GetGlobalProperties().GetValueProperties()); |
170 | } else { |
171 | m_collection_sp = |
172 | OptionValueProperties::CreateLocalCopy(global_properties: Process::GetGlobalProperties()); |
173 | m_collection_sp->SetValueChangedCallback( |
174 | property_idx: ePropertyPythonOSPluginPath, |
175 | callback: [this] { m_process->LoadOperatingSystemPlugin(flush: true); }); |
176 | } |
177 | |
178 | m_experimental_properties_up = |
179 | std::make_unique<ProcessExperimentalProperties>(); |
180 | m_collection_sp->AppendProperty( |
181 | name: Properties::GetExperimentalSettingsName(), |
182 | desc: "Experimental settings - setting these won't produce " |
183 | "errors if the setting is not present." , |
184 | is_global: true, value_sp: m_experimental_properties_up->GetValueProperties()); |
185 | } |
186 | |
187 | ProcessProperties::~ProcessProperties() = default; |
188 | |
189 | bool ProcessProperties::GetDisableMemoryCache() const { |
190 | const uint32_t idx = ePropertyDisableMemCache; |
191 | return GetPropertyAtIndexAs<bool>( |
192 | idx, g_process_properties[idx].default_uint_value != 0); |
193 | } |
194 | |
195 | uint64_t ProcessProperties::GetMemoryCacheLineSize() const { |
196 | const uint32_t idx = ePropertyMemCacheLineSize; |
197 | return GetPropertyAtIndexAs<uint64_t>( |
198 | idx, g_process_properties[idx].default_uint_value); |
199 | } |
200 | |
201 | Args ProcessProperties::GetExtraStartupCommands() const { |
202 | Args args; |
203 | const uint32_t idx = ePropertyExtraStartCommand; |
204 | m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); |
205 | return args; |
206 | } |
207 | |
208 | void ProcessProperties::SetExtraStartupCommands(const Args &args) { |
209 | const uint32_t idx = ePropertyExtraStartCommand; |
210 | m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); |
211 | } |
212 | |
213 | FileSpec ProcessProperties::GetPythonOSPluginPath() const { |
214 | const uint32_t idx = ePropertyPythonOSPluginPath; |
215 | return GetPropertyAtIndexAs<FileSpec>(idx, default_value: {}); |
216 | } |
217 | |
218 | uint32_t ProcessProperties::GetVirtualAddressableBits() const { |
219 | const uint32_t idx = ePropertyVirtualAddressableBits; |
220 | return GetPropertyAtIndexAs<uint64_t>( |
221 | idx, g_process_properties[idx].default_uint_value); |
222 | } |
223 | |
224 | void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { |
225 | const uint32_t idx = ePropertyVirtualAddressableBits; |
226 | SetPropertyAtIndex(idx, t: static_cast<uint64_t>(bits)); |
227 | } |
228 | |
229 | uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { |
230 | const uint32_t idx = ePropertyHighmemVirtualAddressableBits; |
231 | return GetPropertyAtIndexAs<uint64_t>( |
232 | idx, g_process_properties[idx].default_uint_value); |
233 | } |
234 | |
235 | void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { |
236 | const uint32_t idx = ePropertyHighmemVirtualAddressableBits; |
237 | SetPropertyAtIndex(idx, t: static_cast<uint64_t>(bits)); |
238 | } |
239 | |
240 | void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { |
241 | const uint32_t idx = ePropertyPythonOSPluginPath; |
242 | SetPropertyAtIndex(idx, t: file); |
243 | } |
244 | |
245 | bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { |
246 | const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; |
247 | return GetPropertyAtIndexAs<bool>( |
248 | idx, g_process_properties[idx].default_uint_value != 0); |
249 | } |
250 | |
251 | void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { |
252 | const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; |
253 | SetPropertyAtIndex(idx, t: ignore); |
254 | } |
255 | |
256 | bool ProcessProperties::GetUnwindOnErrorInExpressions() const { |
257 | const uint32_t idx = ePropertyUnwindOnErrorInExpressions; |
258 | return GetPropertyAtIndexAs<bool>( |
259 | idx, g_process_properties[idx].default_uint_value != 0); |
260 | } |
261 | |
262 | void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { |
263 | const uint32_t idx = ePropertyUnwindOnErrorInExpressions; |
264 | SetPropertyAtIndex(idx, t: ignore); |
265 | } |
266 | |
267 | bool ProcessProperties::GetStopOnSharedLibraryEvents() const { |
268 | const uint32_t idx = ePropertyStopOnSharedLibraryEvents; |
269 | return GetPropertyAtIndexAs<bool>( |
270 | idx, g_process_properties[idx].default_uint_value != 0); |
271 | } |
272 | |
273 | void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { |
274 | const uint32_t idx = ePropertyStopOnSharedLibraryEvents; |
275 | SetPropertyAtIndex(idx, t: stop); |
276 | } |
277 | |
278 | bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { |
279 | const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; |
280 | return GetPropertyAtIndexAs<bool>( |
281 | idx, g_process_properties[idx].default_uint_value != 0); |
282 | } |
283 | |
284 | void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { |
285 | const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; |
286 | SetPropertyAtIndex(idx, t: disable); |
287 | m_process->Flush(); |
288 | } |
289 | |
290 | bool ProcessProperties::GetDetachKeepsStopped() const { |
291 | const uint32_t idx = ePropertyDetachKeepsStopped; |
292 | return GetPropertyAtIndexAs<bool>( |
293 | idx, g_process_properties[idx].default_uint_value != 0); |
294 | } |
295 | |
296 | void ProcessProperties::SetDetachKeepsStopped(bool stop) { |
297 | const uint32_t idx = ePropertyDetachKeepsStopped; |
298 | SetPropertyAtIndex(idx, t: stop); |
299 | } |
300 | |
301 | bool ProcessProperties::GetWarningsOptimization() const { |
302 | const uint32_t idx = ePropertyWarningOptimization; |
303 | return GetPropertyAtIndexAs<bool>( |
304 | idx, g_process_properties[idx].default_uint_value != 0); |
305 | } |
306 | |
307 | bool ProcessProperties::GetWarningsUnsupportedLanguage() const { |
308 | const uint32_t idx = ePropertyWarningUnsupportedLanguage; |
309 | return GetPropertyAtIndexAs<bool>( |
310 | idx, g_process_properties[idx].default_uint_value != 0); |
311 | } |
312 | |
313 | bool ProcessProperties::GetStopOnExec() const { |
314 | const uint32_t idx = ePropertyStopOnExec; |
315 | return GetPropertyAtIndexAs<bool>( |
316 | idx, g_process_properties[idx].default_uint_value != 0); |
317 | } |
318 | |
319 | std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { |
320 | const uint32_t idx = ePropertyUtilityExpressionTimeout; |
321 | uint64_t value = GetPropertyAtIndexAs<uint64_t>( |
322 | idx, g_process_properties[idx].default_uint_value); |
323 | return std::chrono::seconds(value); |
324 | } |
325 | |
326 | std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { |
327 | const uint32_t idx = ePropertyInterruptTimeout; |
328 | uint64_t value = GetPropertyAtIndexAs<uint64_t>( |
329 | idx, g_process_properties[idx].default_uint_value); |
330 | return std::chrono::seconds(value); |
331 | } |
332 | |
333 | bool ProcessProperties::GetSteppingRunsAllThreads() const { |
334 | const uint32_t idx = ePropertySteppingRunsAllThreads; |
335 | return GetPropertyAtIndexAs<bool>( |
336 | idx, g_process_properties[idx].default_uint_value != 0); |
337 | } |
338 | |
339 | bool ProcessProperties::GetOSPluginReportsAllThreads() const { |
340 | const bool fail_value = true; |
341 | const Property *exp_property = |
342 | m_collection_sp->GetPropertyAtIndex(idx: ePropertyExperimental); |
343 | OptionValueProperties *exp_values = |
344 | exp_property->GetValue()->GetAsProperties(); |
345 | if (!exp_values) |
346 | return fail_value; |
347 | |
348 | return exp_values |
349 | ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) |
350 | .value_or(fail_value); |
351 | } |
352 | |
353 | void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { |
354 | const Property *exp_property = |
355 | m_collection_sp->GetPropertyAtIndex(idx: ePropertyExperimental); |
356 | OptionValueProperties *exp_values = |
357 | exp_property->GetValue()->GetAsProperties(); |
358 | if (exp_values) |
359 | exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, |
360 | does_report); |
361 | } |
362 | |
363 | FollowForkMode ProcessProperties::GetFollowForkMode() const { |
364 | const uint32_t idx = ePropertyFollowForkMode; |
365 | return GetPropertyAtIndexAs<FollowForkMode>( |
366 | idx, static_cast<FollowForkMode>( |
367 | g_process_properties[idx].default_uint_value)); |
368 | } |
369 | |
370 | ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, |
371 | llvm::StringRef plugin_name, |
372 | ListenerSP listener_sp, |
373 | const FileSpec *crash_file_path, |
374 | bool can_connect) { |
375 | static uint32_t g_process_unique_id = 0; |
376 | |
377 | ProcessSP process_sp; |
378 | ProcessCreateInstance create_callback = nullptr; |
379 | if (!plugin_name.empty()) { |
380 | create_callback = |
381 | PluginManager::GetProcessCreateCallbackForPluginName(name: plugin_name); |
382 | if (create_callback) { |
383 | process_sp = create_callback(target_sp, listener_sp, crash_file_path, |
384 | can_connect); |
385 | if (process_sp) { |
386 | if (process_sp->CanDebug(target: target_sp, plugin_specified_by_name: true)) { |
387 | process_sp->m_process_unique_id = ++g_process_unique_id; |
388 | } else |
389 | process_sp.reset(); |
390 | } |
391 | } |
392 | } else { |
393 | for (uint32_t idx = 0; |
394 | (create_callback = |
395 | PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; |
396 | ++idx) { |
397 | process_sp = create_callback(target_sp, listener_sp, crash_file_path, |
398 | can_connect); |
399 | if (process_sp) { |
400 | if (process_sp->CanDebug(target: target_sp, plugin_specified_by_name: false)) { |
401 | process_sp->m_process_unique_id = ++g_process_unique_id; |
402 | break; |
403 | } else |
404 | process_sp.reset(); |
405 | } |
406 | } |
407 | } |
408 | return process_sp; |
409 | } |
410 | |
411 | ConstString &Process::GetStaticBroadcasterClass() { |
412 | static ConstString class_name("lldb.process" ); |
413 | return class_name; |
414 | } |
415 | |
416 | Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) |
417 | : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { |
418 | // This constructor just delegates to the full Process constructor, |
419 | // defaulting to using the Host's UnixSignals. |
420 | } |
421 | |
422 | Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, |
423 | const UnixSignalsSP &unix_signals_sp) |
424 | : ProcessProperties(this), |
425 | Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), |
426 | Process::GetStaticBroadcasterClass().AsCString()), |
427 | m_target_wp(target_sp), m_public_state(eStateUnloaded), |
428 | m_private_state(eStateUnloaded), |
429 | m_private_state_broadcaster(nullptr, |
430 | "lldb.process.internal_state_broadcaster" ), |
431 | m_private_state_control_broadcaster( |
432 | nullptr, "lldb.process.internal_state_control_broadcaster" ), |
433 | m_private_state_listener_sp( |
434 | Listener::MakeListener(name: "lldb.process.internal_state_listener" )), |
435 | m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), |
436 | m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), |
437 | m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), |
438 | m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), |
439 | m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), |
440 | m_watchpoint_resource_list(), m_notifications(), m_image_tokens(), |
441 | m_breakpoint_site_list(), m_dynamic_checkers_up(), |
442 | m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), |
443 | m_stdio_communication("process.stdio" ), m_stdio_communication_mutex(), |
444 | m_stdin_forward(false), m_stdout_data(), m_stderr_data(), |
445 | m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), |
446 | m_memory_cache(*this), m_allocated_memory_cache(*this), |
447 | m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), |
448 | m_private_run_lock(), m_currently_handling_do_on_removals(false), |
449 | m_resume_requested(false), m_finalizing(false), m_destructing(false), |
450 | m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), |
451 | m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), |
452 | m_can_interpret_function_calls(false), m_run_thread_plan_lock(), |
453 | m_can_jit(eCanJITDontKnow) { |
454 | CheckInWithManager(); |
455 | |
456 | Log *log = GetLog(mask: LLDBLog::Object); |
457 | LLDB_LOGF(log, "%p Process::Process()" , static_cast<void *>(this)); |
458 | |
459 | if (!m_unix_signals_sp) |
460 | m_unix_signals_sp = std::make_shared<UnixSignals>(); |
461 | |
462 | SetEventName(event_mask: eBroadcastBitStateChanged, name: "state-changed" ); |
463 | SetEventName(event_mask: eBroadcastBitInterrupt, name: "interrupt" ); |
464 | SetEventName(event_mask: eBroadcastBitSTDOUT, name: "stdout-available" ); |
465 | SetEventName(event_mask: eBroadcastBitSTDERR, name: "stderr-available" ); |
466 | SetEventName(event_mask: eBroadcastBitProfileData, name: "profile-data-available" ); |
467 | SetEventName(event_mask: eBroadcastBitStructuredData, name: "structured-data-available" ); |
468 | |
469 | m_private_state_control_broadcaster.SetEventName( |
470 | event_mask: eBroadcastInternalStateControlStop, name: "control-stop" ); |
471 | m_private_state_control_broadcaster.SetEventName( |
472 | event_mask: eBroadcastInternalStateControlPause, name: "control-pause" ); |
473 | m_private_state_control_broadcaster.SetEventName( |
474 | event_mask: eBroadcastInternalStateControlResume, name: "control-resume" ); |
475 | |
476 | // The listener passed into process creation is the primary listener: |
477 | // It always listens for all the event bits for Process: |
478 | SetPrimaryListener(listener_sp); |
479 | |
480 | m_private_state_listener_sp->StartListeningForEvents( |
481 | broadcaster: &m_private_state_broadcaster, |
482 | event_mask: eBroadcastBitStateChanged | eBroadcastBitInterrupt); |
483 | |
484 | m_private_state_listener_sp->StartListeningForEvents( |
485 | broadcaster: &m_private_state_control_broadcaster, |
486 | event_mask: eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | |
487 | eBroadcastInternalStateControlResume); |
488 | // We need something valid here, even if just the default UnixSignalsSP. |
489 | assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization" ); |
490 | |
491 | // Allow the platform to override the default cache line size |
492 | OptionValueSP value_sp = |
493 | m_collection_sp->GetPropertyAtIndex(idx: ePropertyMemCacheLineSize) |
494 | ->GetValue(); |
495 | uint64_t platform_cache_line_size = |
496 | target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); |
497 | if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) |
498 | value_sp->SetValueAs(platform_cache_line_size); |
499 | |
500 | RegisterAssertFrameRecognizer(process: this); |
501 | } |
502 | |
503 | Process::~Process() { |
504 | Log *log = GetLog(mask: LLDBLog::Object); |
505 | LLDB_LOGF(log, "%p Process::~Process()" , static_cast<void *>(this)); |
506 | StopPrivateStateThread(); |
507 | |
508 | // ThreadList::Clear() will try to acquire this process's mutex, so |
509 | // explicitly clear the thread list here to ensure that the mutex is not |
510 | // destroyed before the thread list. |
511 | m_thread_list.Clear(); |
512 | } |
513 | |
514 | ProcessProperties &Process::GetGlobalProperties() { |
515 | // NOTE: intentional leak so we don't crash if global destructor chain gets |
516 | // called as other threads still use the result of this function |
517 | static ProcessProperties *g_settings_ptr = |
518 | new ProcessProperties(nullptr); |
519 | return *g_settings_ptr; |
520 | } |
521 | |
522 | void Process::Finalize(bool destructing) { |
523 | if (m_finalizing.exchange(i: true)) |
524 | return; |
525 | if (destructing) |
526 | m_destructing.exchange(i: true); |
527 | |
528 | // Destroy the process. This will call the virtual function DoDestroy under |
529 | // the hood, giving our derived class a chance to do the ncessary tear down. |
530 | DestroyImpl(force_kill: false); |
531 | |
532 | // Clear our broadcaster before we proceed with destroying |
533 | Broadcaster::Clear(); |
534 | |
535 | // Do any cleanup needed prior to being destructed... Subclasses that |
536 | // override this method should call this superclass method as well. |
537 | |
538 | // We need to destroy the loader before the derived Process class gets |
539 | // destroyed since it is very likely that undoing the loader will require |
540 | // access to the real process. |
541 | m_dynamic_checkers_up.reset(); |
542 | m_abi_sp.reset(); |
543 | m_os_up.reset(); |
544 | m_system_runtime_up.reset(); |
545 | m_dyld_up.reset(); |
546 | m_jit_loaders_up.reset(); |
547 | m_thread_plans.Clear(); |
548 | m_thread_list_real.Destroy(); |
549 | m_thread_list.Destroy(); |
550 | m_extended_thread_list.Destroy(); |
551 | m_queue_list.Clear(); |
552 | m_queue_list_stop_id = 0; |
553 | m_watchpoint_resource_list.Clear(); |
554 | std::vector<Notifications> empty_notifications; |
555 | m_notifications.swap(x&: empty_notifications); |
556 | m_image_tokens.clear(); |
557 | m_memory_cache.Clear(); |
558 | m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); |
559 | { |
560 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
561 | m_language_runtimes.clear(); |
562 | } |
563 | m_instrumentation_runtimes.clear(); |
564 | m_next_event_action_up.reset(); |
565 | // Clear the last natural stop ID since it has a strong reference to this |
566 | // process |
567 | m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); |
568 | // We have to be very careful here as the m_private_state_listener might |
569 | // contain events that have ProcessSP values in them which can keep this |
570 | // process around forever. These events need to be cleared out. |
571 | m_private_state_listener_sp->Clear(); |
572 | m_public_run_lock.TrySetRunning(); // This will do nothing if already locked |
573 | m_public_run_lock.SetStopped(); |
574 | m_private_run_lock.TrySetRunning(); // This will do nothing if already locked |
575 | m_private_run_lock.SetStopped(); |
576 | m_structured_data_plugin_map.clear(); |
577 | } |
578 | |
579 | void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { |
580 | m_notifications.push_back(x: callbacks); |
581 | if (callbacks.initialize != nullptr) |
582 | callbacks.initialize(callbacks.baton, this); |
583 | } |
584 | |
585 | bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { |
586 | std::vector<Notifications>::iterator pos, end = m_notifications.end(); |
587 | for (pos = m_notifications.begin(); pos != end; ++pos) { |
588 | if (pos->baton == callbacks.baton && |
589 | pos->initialize == callbacks.initialize && |
590 | pos->process_state_changed == callbacks.process_state_changed) { |
591 | m_notifications.erase(position: pos); |
592 | return true; |
593 | } |
594 | } |
595 | return false; |
596 | } |
597 | |
598 | void Process::SynchronouslyNotifyStateChanged(StateType state) { |
599 | std::vector<Notifications>::iterator notification_pos, |
600 | notification_end = m_notifications.end(); |
601 | for (notification_pos = m_notifications.begin(); |
602 | notification_pos != notification_end; ++notification_pos) { |
603 | if (notification_pos->process_state_changed) |
604 | notification_pos->process_state_changed(notification_pos->baton, this, |
605 | state); |
606 | } |
607 | } |
608 | |
609 | // FIXME: We need to do some work on events before the general Listener sees |
610 | // them. |
611 | // For instance if we are continuing from a breakpoint, we need to ensure that |
612 | // we do the little "insert real insn, step & stop" trick. But we can't do |
613 | // that when the event is delivered by the broadcaster - since that is done on |
614 | // the thread that is waiting for new events, so if we needed more than one |
615 | // event for our handling, we would stall. So instead we do it when we fetch |
616 | // the event off of the queue. |
617 | // |
618 | |
619 | StateType Process::GetNextEvent(EventSP &event_sp) { |
620 | StateType state = eStateInvalid; |
621 | |
622 | if (GetPrimaryListener()->GetEventForBroadcaster(broadcaster: this, event_sp, |
623 | timeout: std::chrono::seconds(0)) && |
624 | event_sp) |
625 | state = Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
626 | |
627 | return state; |
628 | } |
629 | |
630 | void Process::SyncIOHandler(uint32_t iohandler_id, |
631 | const Timeout<std::micro> &timeout) { |
632 | // don't sync (potentially context switch) in case where there is no process |
633 | // IO |
634 | if (!ProcessIOHandlerExists()) |
635 | return; |
636 | |
637 | auto Result = m_iohandler_sync.WaitForValueNotEqualTo(value: iohandler_id, timeout); |
638 | |
639 | Log *log = GetLog(mask: LLDBLog::Process); |
640 | if (Result) { |
641 | LLDB_LOG( |
642 | log, |
643 | "waited from m_iohandler_sync to change from {0}. New value is {1}." , |
644 | iohandler_id, *Result); |
645 | } else { |
646 | LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}." , |
647 | iohandler_id); |
648 | } |
649 | } |
650 | |
651 | StateType Process::WaitForProcessToStop( |
652 | const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, |
653 | ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, |
654 | SelectMostRelevant select_most_relevant) { |
655 | // We can't just wait for a "stopped" event, because the stopped event may |
656 | // have restarted the target. We have to actually check each event, and in |
657 | // the case of a stopped event check the restarted flag on the event. |
658 | if (event_sp_ptr) |
659 | event_sp_ptr->reset(); |
660 | StateType state = GetState(); |
661 | // If we are exited or detached, we won't ever get back to any other valid |
662 | // state... |
663 | if (state == eStateDetached || state == eStateExited) |
664 | return state; |
665 | |
666 | Log *log = GetLog(mask: LLDBLog::Process); |
667 | LLDB_LOG(log, "timeout = {0}" , timeout); |
668 | |
669 | if (!wait_always && StateIsStoppedState(state, must_exist: true) && |
670 | StateIsStoppedState(state: GetPrivateState(), must_exist: true)) { |
671 | LLDB_LOGF(log, |
672 | "Process::%s returning without waiting for events; process " |
673 | "private and public states are already 'stopped'." , |
674 | __FUNCTION__); |
675 | // We need to toggle the run lock as this won't get done in |
676 | // SetPublicState() if the process is hijacked. |
677 | if (hijack_listener_sp && use_run_lock) |
678 | m_public_run_lock.SetStopped(); |
679 | return state; |
680 | } |
681 | |
682 | while (state != eStateInvalid) { |
683 | EventSP event_sp; |
684 | state = GetStateChangedEvents(event_sp, timeout, hijack_listener: hijack_listener_sp); |
685 | if (event_sp_ptr && event_sp) |
686 | *event_sp_ptr = event_sp; |
687 | |
688 | bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); |
689 | Process::HandleProcessStateChangedEvent( |
690 | event_sp, stream, select_most_relevant, pop_process_io_handler); |
691 | |
692 | switch (state) { |
693 | case eStateCrashed: |
694 | case eStateDetached: |
695 | case eStateExited: |
696 | case eStateUnloaded: |
697 | // We need to toggle the run lock as this won't get done in |
698 | // SetPublicState() if the process is hijacked. |
699 | if (hijack_listener_sp && use_run_lock) |
700 | m_public_run_lock.SetStopped(); |
701 | return state; |
702 | case eStateStopped: |
703 | if (Process::ProcessEventData::GetRestartedFromEvent(event_ptr: event_sp.get())) |
704 | continue; |
705 | else { |
706 | // We need to toggle the run lock as this won't get done in |
707 | // SetPublicState() if the process is hijacked. |
708 | if (hijack_listener_sp && use_run_lock) |
709 | m_public_run_lock.SetStopped(); |
710 | return state; |
711 | } |
712 | default: |
713 | continue; |
714 | } |
715 | } |
716 | return state; |
717 | } |
718 | |
719 | bool Process::HandleProcessStateChangedEvent( |
720 | const EventSP &event_sp, Stream *stream, |
721 | SelectMostRelevant select_most_relevant, |
722 | bool &pop_process_io_handler) { |
723 | const bool handle_pop = pop_process_io_handler; |
724 | |
725 | pop_process_io_handler = false; |
726 | ProcessSP process_sp = |
727 | Process::ProcessEventData::GetProcessFromEvent(event_ptr: event_sp.get()); |
728 | |
729 | if (!process_sp) |
730 | return false; |
731 | |
732 | StateType event_state = |
733 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
734 | if (event_state == eStateInvalid) |
735 | return false; |
736 | |
737 | switch (event_state) { |
738 | case eStateInvalid: |
739 | case eStateUnloaded: |
740 | case eStateAttaching: |
741 | case eStateLaunching: |
742 | case eStateStepping: |
743 | case eStateDetached: |
744 | if (stream) |
745 | stream->Printf(format: "Process %" PRIu64 " %s\n" , process_sp->GetID(), |
746 | StateAsCString(state: event_state)); |
747 | if (event_state == eStateDetached) |
748 | pop_process_io_handler = true; |
749 | break; |
750 | |
751 | case eStateConnected: |
752 | case eStateRunning: |
753 | // Don't be chatty when we run... |
754 | break; |
755 | |
756 | case eStateExited: |
757 | if (stream) |
758 | process_sp->GetStatus(ostrm&: *stream); |
759 | pop_process_io_handler = true; |
760 | break; |
761 | |
762 | case eStateStopped: |
763 | case eStateCrashed: |
764 | case eStateSuspended: |
765 | // Make sure the program hasn't been auto-restarted: |
766 | if (Process::ProcessEventData::GetRestartedFromEvent(event_ptr: event_sp.get())) { |
767 | if (stream) { |
768 | size_t num_reasons = |
769 | Process::ProcessEventData::GetNumRestartedReasons(event_ptr: event_sp.get()); |
770 | if (num_reasons > 0) { |
771 | // FIXME: Do we want to report this, or would that just be annoyingly |
772 | // chatty? |
773 | if (num_reasons == 1) { |
774 | const char *reason = |
775 | Process::ProcessEventData::GetRestartedReasonAtIndex( |
776 | event_ptr: event_sp.get(), idx: 0); |
777 | stream->Printf(format: "Process %" PRIu64 " stopped and restarted: %s\n" , |
778 | process_sp->GetID(), |
779 | reason ? reason : "<UNKNOWN REASON>" ); |
780 | } else { |
781 | stream->Printf(format: "Process %" PRIu64 |
782 | " stopped and restarted, reasons:\n" , |
783 | process_sp->GetID()); |
784 | |
785 | for (size_t i = 0; i < num_reasons; i++) { |
786 | const char *reason = |
787 | Process::ProcessEventData::GetRestartedReasonAtIndex( |
788 | event_ptr: event_sp.get(), idx: i); |
789 | stream->Printf(format: "\t%s\n" , reason ? reason : "<UNKNOWN REASON>" ); |
790 | } |
791 | } |
792 | } |
793 | } |
794 | } else { |
795 | StopInfoSP curr_thread_stop_info_sp; |
796 | // Lock the thread list so it doesn't change on us, this is the scope for |
797 | // the locker: |
798 | { |
799 | ThreadList &thread_list = process_sp->GetThreadList(); |
800 | std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); |
801 | |
802 | ThreadSP curr_thread(thread_list.GetSelectedThread()); |
803 | ThreadSP thread; |
804 | StopReason curr_thread_stop_reason = eStopReasonInvalid; |
805 | bool prefer_curr_thread = false; |
806 | if (curr_thread && curr_thread->IsValid()) { |
807 | curr_thread_stop_reason = curr_thread->GetStopReason(); |
808 | switch (curr_thread_stop_reason) { |
809 | case eStopReasonNone: |
810 | case eStopReasonInvalid: |
811 | // Don't prefer the current thread if it didn't stop for a reason. |
812 | break; |
813 | case eStopReasonSignal: { |
814 | // We need to do the same computation we do for other threads |
815 | // below in case the current thread happens to be the one that |
816 | // stopped for the no-stop signal. |
817 | uint64_t signo = curr_thread->GetStopInfo()->GetValue(); |
818 | if (process_sp->GetUnixSignals()->GetShouldStop(signo)) |
819 | prefer_curr_thread = true; |
820 | } break; |
821 | default: |
822 | prefer_curr_thread = true; |
823 | break; |
824 | } |
825 | curr_thread_stop_info_sp = curr_thread->GetStopInfo(); |
826 | } |
827 | |
828 | if (!prefer_curr_thread) { |
829 | // Prefer a thread that has just completed its plan over another |
830 | // thread as current thread. |
831 | ThreadSP plan_thread; |
832 | ThreadSP other_thread; |
833 | |
834 | const size_t num_threads = thread_list.GetSize(); |
835 | size_t i; |
836 | for (i = 0; i < num_threads; ++i) { |
837 | thread = thread_list.GetThreadAtIndex(idx: i); |
838 | StopReason thread_stop_reason = thread->GetStopReason(); |
839 | switch (thread_stop_reason) { |
840 | case eStopReasonInvalid: |
841 | case eStopReasonNone: |
842 | break; |
843 | |
844 | case eStopReasonSignal: { |
845 | // Don't select a signal thread if we weren't going to stop at |
846 | // that signal. We have to have had another reason for stopping |
847 | // here, and the user doesn't want to see this thread. |
848 | uint64_t signo = thread->GetStopInfo()->GetValue(); |
849 | if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { |
850 | if (!other_thread) |
851 | other_thread = thread; |
852 | } |
853 | break; |
854 | } |
855 | case eStopReasonTrace: |
856 | case eStopReasonBreakpoint: |
857 | case eStopReasonWatchpoint: |
858 | case eStopReasonException: |
859 | case eStopReasonExec: |
860 | case eStopReasonFork: |
861 | case eStopReasonVFork: |
862 | case eStopReasonVForkDone: |
863 | case eStopReasonThreadExiting: |
864 | case eStopReasonInstrumentation: |
865 | case eStopReasonProcessorTrace: |
866 | if (!other_thread) |
867 | other_thread = thread; |
868 | break; |
869 | case eStopReasonPlanComplete: |
870 | if (!plan_thread) |
871 | plan_thread = thread; |
872 | break; |
873 | } |
874 | } |
875 | if (plan_thread) |
876 | thread_list.SetSelectedThreadByID(tid: plan_thread->GetID()); |
877 | else if (other_thread) |
878 | thread_list.SetSelectedThreadByID(tid: other_thread->GetID()); |
879 | else { |
880 | if (curr_thread && curr_thread->IsValid()) |
881 | thread = curr_thread; |
882 | else |
883 | thread = thread_list.GetThreadAtIndex(idx: 0); |
884 | |
885 | if (thread) |
886 | thread_list.SetSelectedThreadByID(tid: thread->GetID()); |
887 | } |
888 | } |
889 | } |
890 | // Drop the ThreadList mutex by here, since GetThreadStatus below might |
891 | // have to run code, e.g. for Data formatters, and if we hold the |
892 | // ThreadList mutex, then the process is going to have a hard time |
893 | // restarting the process. |
894 | if (stream) { |
895 | Debugger &debugger = process_sp->GetTarget().GetDebugger(); |
896 | if (debugger.GetTargetList().GetSelectedTarget().get() == |
897 | &process_sp->GetTarget()) { |
898 | ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); |
899 | |
900 | if (!thread_sp || !thread_sp->IsValid()) |
901 | return false; |
902 | |
903 | const bool only_threads_with_stop_reason = true; |
904 | const uint32_t start_frame = |
905 | thread_sp->GetSelectedFrameIndex(select_most_relevant); |
906 | const uint32_t num_frames = 1; |
907 | const uint32_t num_frames_with_source = 1; |
908 | const bool stop_format = true; |
909 | |
910 | process_sp->GetStatus(ostrm&: *stream); |
911 | process_sp->GetThreadStatus(ostrm&: *stream, only_threads_with_stop_reason, |
912 | start_frame, num_frames, |
913 | num_frames_with_source, |
914 | stop_format); |
915 | if (curr_thread_stop_info_sp) { |
916 | lldb::addr_t crashing_address; |
917 | ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( |
918 | stop_info_sp&: curr_thread_stop_info_sp, crashing_address: &crashing_address); |
919 | if (valobj_sp) { |
920 | const ValueObject::GetExpressionPathFormat format = |
921 | ValueObject::GetExpressionPathFormat:: |
922 | eGetExpressionPathFormatHonorPointers; |
923 | stream->PutCString(cstr: "Likely cause: " ); |
924 | valobj_sp->GetExpressionPath(s&: *stream, format); |
925 | stream->Printf(format: " accessed 0x%" PRIx64 "\n" , crashing_address); |
926 | } |
927 | } |
928 | } else { |
929 | uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( |
930 | target_sp: process_sp->GetTarget().shared_from_this()); |
931 | if (target_idx != UINT32_MAX) |
932 | stream->Printf(format: "Target %d: (" , target_idx); |
933 | else |
934 | stream->Printf(format: "Target <unknown index>: (" ); |
935 | process_sp->GetTarget().Dump(s: stream, description_level: eDescriptionLevelBrief); |
936 | stream->Printf(format: ") stopped.\n" ); |
937 | } |
938 | } |
939 | |
940 | // Pop the process IO handler |
941 | pop_process_io_handler = true; |
942 | } |
943 | break; |
944 | } |
945 | |
946 | if (handle_pop && pop_process_io_handler) |
947 | process_sp->PopProcessIOHandler(); |
948 | |
949 | return true; |
950 | } |
951 | |
952 | bool Process::HijackProcessEvents(ListenerSP listener_sp) { |
953 | if (listener_sp) { |
954 | return HijackBroadcaster(listener_sp, event_mask: eBroadcastBitStateChanged | |
955 | eBroadcastBitInterrupt); |
956 | } else |
957 | return false; |
958 | } |
959 | |
960 | void Process::RestoreProcessEvents() { RestoreBroadcaster(); } |
961 | |
962 | StateType Process::GetStateChangedEvents(EventSP &event_sp, |
963 | const Timeout<std::micro> &timeout, |
964 | ListenerSP hijack_listener_sp) { |
965 | Log *log = GetLog(mask: LLDBLog::Process); |
966 | LLDB_LOG(log, "timeout = {0}, event_sp)..." , timeout); |
967 | |
968 | ListenerSP listener_sp = hijack_listener_sp; |
969 | if (!listener_sp) |
970 | listener_sp = GetPrimaryListener(); |
971 | |
972 | StateType state = eStateInvalid; |
973 | if (listener_sp->GetEventForBroadcasterWithType( |
974 | broadcaster: this, event_type_mask: eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, |
975 | timeout)) { |
976 | if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) |
977 | state = Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
978 | else |
979 | LLDB_LOG(log, "got no event or was interrupted." ); |
980 | } |
981 | |
982 | LLDB_LOG(log, "timeout = {0}, event_sp) => {1}" , timeout, state); |
983 | return state; |
984 | } |
985 | |
986 | Event *Process::PeekAtStateChangedEvents() { |
987 | Log *log = GetLog(mask: LLDBLog::Process); |
988 | |
989 | LLDB_LOGF(log, "Process::%s..." , __FUNCTION__); |
990 | |
991 | Event *event_ptr; |
992 | event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( |
993 | broadcaster: this, event_type_mask: eBroadcastBitStateChanged); |
994 | if (log) { |
995 | if (event_ptr) { |
996 | LLDB_LOGF(log, "Process::%s (event_ptr) => %s" , __FUNCTION__, |
997 | StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); |
998 | } else { |
999 | LLDB_LOGF(log, "Process::%s no events found" , __FUNCTION__); |
1000 | } |
1001 | } |
1002 | return event_ptr; |
1003 | } |
1004 | |
1005 | StateType |
1006 | Process::GetStateChangedEventsPrivate(EventSP &event_sp, |
1007 | const Timeout<std::micro> &timeout) { |
1008 | Log *log = GetLog(mask: LLDBLog::Process); |
1009 | LLDB_LOG(log, "timeout = {0}, event_sp)..." , timeout); |
1010 | |
1011 | StateType state = eStateInvalid; |
1012 | if (m_private_state_listener_sp->GetEventForBroadcasterWithType( |
1013 | broadcaster: &m_private_state_broadcaster, |
1014 | event_type_mask: eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, |
1015 | timeout)) |
1016 | if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) |
1017 | state = Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
1018 | |
1019 | LLDB_LOG(log, "timeout = {0}, event_sp) => {1}" , timeout, |
1020 | state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); |
1021 | return state; |
1022 | } |
1023 | |
1024 | bool Process::GetEventsPrivate(EventSP &event_sp, |
1025 | const Timeout<std::micro> &timeout, |
1026 | bool control_only) { |
1027 | Log *log = GetLog(mask: LLDBLog::Process); |
1028 | LLDB_LOG(log, "timeout = {0}, event_sp)..." , timeout); |
1029 | |
1030 | if (control_only) |
1031 | return m_private_state_listener_sp->GetEventForBroadcaster( |
1032 | broadcaster: &m_private_state_control_broadcaster, event_sp, timeout); |
1033 | else |
1034 | return m_private_state_listener_sp->GetEvent(event_sp, timeout); |
1035 | } |
1036 | |
1037 | bool Process::IsRunning() const { |
1038 | return StateIsRunningState(state: m_public_state.GetValue()); |
1039 | } |
1040 | |
1041 | int Process::GetExitStatus() { |
1042 | std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
1043 | |
1044 | if (m_public_state.GetValue() == eStateExited) |
1045 | return m_exit_status; |
1046 | return -1; |
1047 | } |
1048 | |
1049 | const char *Process::GetExitDescription() { |
1050 | std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
1051 | |
1052 | if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) |
1053 | return m_exit_string.c_str(); |
1054 | return nullptr; |
1055 | } |
1056 | |
1057 | bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { |
1058 | // Use a mutex to protect setting the exit status. |
1059 | std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
1060 | |
1061 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1062 | LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")" , |
1063 | GetPluginName(), status, exit_string); |
1064 | |
1065 | // We were already in the exited state |
1066 | if (m_private_state.GetValue() == eStateExited) { |
1067 | LLDB_LOG( |
1068 | log, |
1069 | "(plugin = {0}) ignoring exit status because state was already set " |
1070 | "to eStateExited" , |
1071 | GetPluginName()); |
1072 | return false; |
1073 | } |
1074 | |
1075 | m_exit_status = status; |
1076 | if (!exit_string.empty()) |
1077 | m_exit_string = exit_string.str(); |
1078 | else |
1079 | m_exit_string.clear(); |
1080 | |
1081 | // Clear the last natural stop ID since it has a strong reference to this |
1082 | // process |
1083 | m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); |
1084 | |
1085 | SetPrivateState(eStateExited); |
1086 | |
1087 | // Allow subclasses to do some cleanup |
1088 | DidExit(); |
1089 | |
1090 | return true; |
1091 | } |
1092 | |
1093 | bool Process::IsAlive() { |
1094 | switch (m_private_state.GetValue()) { |
1095 | case eStateConnected: |
1096 | case eStateAttaching: |
1097 | case eStateLaunching: |
1098 | case eStateStopped: |
1099 | case eStateRunning: |
1100 | case eStateStepping: |
1101 | case eStateCrashed: |
1102 | case eStateSuspended: |
1103 | return true; |
1104 | default: |
1105 | return false; |
1106 | } |
1107 | } |
1108 | |
1109 | // This static callback can be used to watch for local child processes on the |
1110 | // current host. The child process exits, the process will be found in the |
1111 | // global target list (we want to be completely sure that the |
1112 | // lldb_private::Process doesn't go away before we can deliver the signal. |
1113 | bool Process::SetProcessExitStatus( |
1114 | lldb::pid_t pid, bool exited, |
1115 | int signo, // Zero for no signal |
1116 | int exit_status // Exit value of process if signal is zero |
1117 | ) { |
1118 | Log *log = GetLog(mask: LLDBLog::Process); |
1119 | LLDB_LOGF(log, |
1120 | "Process::SetProcessExitStatus (pid=%" PRIu64 |
1121 | ", exited=%i, signal=%i, exit_status=%i)\n" , |
1122 | pid, exited, signo, exit_status); |
1123 | |
1124 | if (exited) { |
1125 | TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); |
1126 | if (target_sp) { |
1127 | ProcessSP process_sp(target_sp->GetProcessSP()); |
1128 | if (process_sp) { |
1129 | llvm::StringRef signal_str = |
1130 | process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); |
1131 | process_sp->SetExitStatus(status: exit_status, exit_string: signal_str); |
1132 | } |
1133 | } |
1134 | return true; |
1135 | } |
1136 | return false; |
1137 | } |
1138 | |
1139 | bool Process::UpdateThreadList(ThreadList &old_thread_list, |
1140 | ThreadList &new_thread_list) { |
1141 | m_thread_plans.ClearThreadCache(); |
1142 | return DoUpdateThreadList(old_thread_list, new_thread_list); |
1143 | } |
1144 | |
1145 | void Process::UpdateThreadListIfNeeded() { |
1146 | const uint32_t stop_id = GetStopID(); |
1147 | if (m_thread_list.GetSize(can_update: false) == 0 || |
1148 | stop_id != m_thread_list.GetStopID()) { |
1149 | bool clear_unused_threads = true; |
1150 | const StateType state = GetPrivateState(); |
1151 | if (StateIsStoppedState(state, must_exist: true)) { |
1152 | std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); |
1153 | m_thread_list.SetStopID(stop_id); |
1154 | |
1155 | // m_thread_list does have its own mutex, but we need to hold onto the |
1156 | // mutex between the call to UpdateThreadList(...) and the |
1157 | // os->UpdateThreadList(...) so it doesn't change on us |
1158 | ThreadList &old_thread_list = m_thread_list; |
1159 | ThreadList real_thread_list(this); |
1160 | ThreadList new_thread_list(this); |
1161 | // Always update the thread list with the protocol specific thread list, |
1162 | // but only update if "true" is returned |
1163 | if (UpdateThreadList(old_thread_list&: m_thread_list_real, new_thread_list&: real_thread_list)) { |
1164 | // Don't call into the OperatingSystem to update the thread list if we |
1165 | // are shutting down, since that may call back into the SBAPI's, |
1166 | // requiring the API lock which is already held by whoever is shutting |
1167 | // us down, causing a deadlock. |
1168 | OperatingSystem *os = GetOperatingSystem(); |
1169 | if (os && !m_destroy_in_process) { |
1170 | // Clear any old backing threads where memory threads might have been |
1171 | // backed by actual threads from the lldb_private::Process subclass |
1172 | size_t num_old_threads = old_thread_list.GetSize(can_update: false); |
1173 | for (size_t i = 0; i < num_old_threads; ++i) |
1174 | old_thread_list.GetThreadAtIndex(idx: i, can_update: false)->ClearBackingThread(); |
1175 | // See if the OS plugin reports all threads. If it does, then |
1176 | // it is safe to clear unseen thread's plans here. Otherwise we |
1177 | // should preserve them in case they show up again: |
1178 | clear_unused_threads = GetOSPluginReportsAllThreads(); |
1179 | |
1180 | // Turn off dynamic types to ensure we don't run any expressions. |
1181 | // Objective-C can run an expression to determine if a SBValue is a |
1182 | // dynamic type or not and we need to avoid this. OperatingSystem |
1183 | // plug-ins can't run expressions that require running code... |
1184 | |
1185 | Target &target = GetTarget(); |
1186 | const lldb::DynamicValueType saved_prefer_dynamic = |
1187 | target.GetPreferDynamicValue(); |
1188 | if (saved_prefer_dynamic != lldb::eNoDynamicValues) |
1189 | target.SetPreferDynamicValue(lldb::eNoDynamicValues); |
1190 | |
1191 | // Now let the OperatingSystem plug-in update the thread list |
1192 | |
1193 | os->UpdateThreadList( |
1194 | old_thread_list, // Old list full of threads created by OS plug-in |
1195 | real_thread_list, // The actual thread list full of threads |
1196 | // created by each lldb_private::Process |
1197 | // subclass |
1198 | new_thread_list); // The new thread list that we will show to the |
1199 | // user that gets filled in |
1200 | |
1201 | if (saved_prefer_dynamic != lldb::eNoDynamicValues) |
1202 | target.SetPreferDynamicValue(saved_prefer_dynamic); |
1203 | } else { |
1204 | // No OS plug-in, the new thread list is the same as the real thread |
1205 | // list. |
1206 | new_thread_list = real_thread_list; |
1207 | } |
1208 | |
1209 | m_thread_list_real.Update(rhs&: real_thread_list); |
1210 | m_thread_list.Update(rhs&: new_thread_list); |
1211 | m_thread_list.SetStopID(stop_id); |
1212 | |
1213 | if (GetLastNaturalStopID() != m_extended_thread_stop_id) { |
1214 | // Clear any extended threads that we may have accumulated previously |
1215 | m_extended_thread_list.Clear(); |
1216 | m_extended_thread_stop_id = GetLastNaturalStopID(); |
1217 | |
1218 | m_queue_list.Clear(); |
1219 | m_queue_list_stop_id = GetLastNaturalStopID(); |
1220 | } |
1221 | } |
1222 | // Now update the plan stack map. |
1223 | // If we do have an OS plugin, any absent real threads in the |
1224 | // m_thread_list have already been removed from the ThreadPlanStackMap. |
1225 | // So any remaining threads are OS Plugin threads, and those we want to |
1226 | // preserve in case they show up again. |
1227 | m_thread_plans.Update(current_threads&: m_thread_list, delete_missing: clear_unused_threads); |
1228 | } |
1229 | } |
1230 | } |
1231 | |
1232 | ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { |
1233 | return m_thread_plans.Find(tid); |
1234 | } |
1235 | |
1236 | bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { |
1237 | return m_thread_plans.PrunePlansForTID(tid); |
1238 | } |
1239 | |
1240 | void Process::PruneThreadPlans() { |
1241 | m_thread_plans.Update(current_threads&: GetThreadList(), delete_missing: true, check_for_new: false); |
1242 | } |
1243 | |
1244 | bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, |
1245 | lldb::DescriptionLevel desc_level, |
1246 | bool internal, bool condense_trivial, |
1247 | bool skip_unreported_plans) { |
1248 | return m_thread_plans.DumpPlansForTID( |
1249 | strm, tid, desc_level, internal, ignore_boring: condense_trivial, skip_unreported: skip_unreported_plans); |
1250 | } |
1251 | void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, |
1252 | bool internal, bool condense_trivial, |
1253 | bool skip_unreported_plans) { |
1254 | m_thread_plans.DumpPlans(strm, desc_level, internal, ignore_boring: condense_trivial, |
1255 | skip_unreported: skip_unreported_plans); |
1256 | } |
1257 | |
1258 | void Process::UpdateQueueListIfNeeded() { |
1259 | if (m_system_runtime_up) { |
1260 | if (m_queue_list.GetSize() == 0 || |
1261 | m_queue_list_stop_id != GetLastNaturalStopID()) { |
1262 | const StateType state = GetPrivateState(); |
1263 | if (StateIsStoppedState(state, must_exist: true)) { |
1264 | m_system_runtime_up->PopulateQueueList(queue_list&: m_queue_list); |
1265 | m_queue_list_stop_id = GetLastNaturalStopID(); |
1266 | } |
1267 | } |
1268 | } |
1269 | } |
1270 | |
1271 | ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { |
1272 | OperatingSystem *os = GetOperatingSystem(); |
1273 | if (os) |
1274 | return os->CreateThread(tid, context); |
1275 | return ThreadSP(); |
1276 | } |
1277 | |
1278 | uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { |
1279 | return AssignIndexIDToThread(thread_id); |
1280 | } |
1281 | |
1282 | bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { |
1283 | return (m_thread_id_to_index_id_map.find(x: thread_id) != |
1284 | m_thread_id_to_index_id_map.end()); |
1285 | } |
1286 | |
1287 | uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { |
1288 | uint32_t result = 0; |
1289 | std::map<uint64_t, uint32_t>::iterator iterator = |
1290 | m_thread_id_to_index_id_map.find(x: thread_id); |
1291 | if (iterator == m_thread_id_to_index_id_map.end()) { |
1292 | result = ++m_thread_index_id; |
1293 | m_thread_id_to_index_id_map[thread_id] = result; |
1294 | } else { |
1295 | result = iterator->second; |
1296 | } |
1297 | |
1298 | return result; |
1299 | } |
1300 | |
1301 | StateType Process::GetState() { |
1302 | if (CurrentThreadIsPrivateStateThread()) |
1303 | return m_private_state.GetValue(); |
1304 | else |
1305 | return m_public_state.GetValue(); |
1306 | } |
1307 | |
1308 | void Process::SetPublicState(StateType new_state, bool restarted) { |
1309 | const bool new_state_is_stopped = StateIsStoppedState(state: new_state, must_exist: false); |
1310 | if (new_state_is_stopped) { |
1311 | // This will only set the time if the public stop time has no value, so |
1312 | // it is ok to call this multiple times. With a public stop we can't look |
1313 | // at the stop ID because many private stops might have happened, so we |
1314 | // can't check for a stop ID of zero. This allows the "statistics" command |
1315 | // to dump the time it takes to reach somewhere in your code, like a |
1316 | // breakpoint you set. |
1317 | GetTarget().GetStatistics().SetFirstPublicStopTime(); |
1318 | } |
1319 | |
1320 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1321 | LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)" , |
1322 | GetPluginName().data(), StateAsCString(new_state), restarted); |
1323 | const StateType old_state = m_public_state.GetValue(); |
1324 | m_public_state.SetValue(new_state); |
1325 | |
1326 | // On the transition from Run to Stopped, we unlock the writer end of the run |
1327 | // lock. The lock gets locked in Resume, which is the public API to tell the |
1328 | // program to run. |
1329 | if (!StateChangedIsExternallyHijacked()) { |
1330 | if (new_state == eStateDetached) { |
1331 | LLDB_LOGF(log, |
1332 | "(plugin = %s, state = %s) -- unlocking run lock for detach" , |
1333 | GetPluginName().data(), StateAsCString(new_state)); |
1334 | m_public_run_lock.SetStopped(); |
1335 | } else { |
1336 | const bool old_state_is_stopped = StateIsStoppedState(state: old_state, must_exist: false); |
1337 | if ((old_state_is_stopped != new_state_is_stopped)) { |
1338 | if (new_state_is_stopped && !restarted) { |
1339 | LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock" , |
1340 | GetPluginName().data(), StateAsCString(new_state)); |
1341 | m_public_run_lock.SetStopped(); |
1342 | } |
1343 | } |
1344 | } |
1345 | } |
1346 | } |
1347 | |
1348 | Status Process::Resume() { |
1349 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1350 | LLDB_LOGF(log, "(plugin = %s) -- locking run lock" , GetPluginName().data()); |
1351 | if (!m_public_run_lock.TrySetRunning()) { |
1352 | Status error("Resume request failed - process still running." ); |
1353 | LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming." , |
1354 | GetPluginName().data()); |
1355 | return error; |
1356 | } |
1357 | Status error = PrivateResume(); |
1358 | if (!error.Success()) { |
1359 | // Undo running state change |
1360 | m_public_run_lock.SetStopped(); |
1361 | } |
1362 | return error; |
1363 | } |
1364 | |
1365 | Status Process::ResumeSynchronous(Stream *stream) { |
1366 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1367 | LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock" ); |
1368 | if (!m_public_run_lock.TrySetRunning()) { |
1369 | Status error("Resume request failed - process still running." ); |
1370 | LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming." ); |
1371 | return error; |
1372 | } |
1373 | |
1374 | ListenerSP listener_sp( |
1375 | Listener::MakeListener(name: ResumeSynchronousHijackListenerName.data())); |
1376 | HijackProcessEvents(listener_sp); |
1377 | |
1378 | Status error = PrivateResume(); |
1379 | if (error.Success()) { |
1380 | StateType state = |
1381 | WaitForProcessToStop(timeout: std::nullopt, event_sp_ptr: nullptr, wait_always: true, hijack_listener_sp: listener_sp, stream, |
1382 | use_run_lock: true /* use_run_lock */, select_most_relevant: SelectMostRelevantFrame); |
1383 | const bool must_be_alive = |
1384 | false; // eStateExited is ok, so this must be false |
1385 | if (!StateIsStoppedState(state, must_exist: must_be_alive)) |
1386 | error.SetErrorStringWithFormat( |
1387 | "process not in stopped state after synchronous resume: %s" , |
1388 | StateAsCString(state)); |
1389 | } else { |
1390 | // Undo running state change |
1391 | m_public_run_lock.SetStopped(); |
1392 | } |
1393 | |
1394 | // Undo the hijacking of process events... |
1395 | RestoreProcessEvents(); |
1396 | |
1397 | return error; |
1398 | } |
1399 | |
1400 | bool Process::StateChangedIsExternallyHijacked() { |
1401 | if (IsHijackedForEvent(event_mask: eBroadcastBitStateChanged)) { |
1402 | llvm::StringRef hijacking_name = GetHijackingListenerName(); |
1403 | if (!hijacking_name.starts_with(Prefix: "lldb.internal" )) |
1404 | return true; |
1405 | } |
1406 | return false; |
1407 | } |
1408 | |
1409 | bool Process::StateChangedIsHijackedForSynchronousResume() { |
1410 | if (IsHijackedForEvent(event_mask: eBroadcastBitStateChanged)) { |
1411 | llvm::StringRef hijacking_name = GetHijackingListenerName(); |
1412 | if (hijacking_name == ResumeSynchronousHijackListenerName) |
1413 | return true; |
1414 | } |
1415 | return false; |
1416 | } |
1417 | |
1418 | StateType Process::GetPrivateState() { return m_private_state.GetValue(); } |
1419 | |
1420 | void Process::SetPrivateState(StateType new_state) { |
1421 | // Use m_destructing not m_finalizing here. If we are finalizing a process |
1422 | // that we haven't started tearing down, we'd like to be able to nicely |
1423 | // detach if asked, but that requires the event system be live. That will |
1424 | // not be true for an in-the-middle-of-being-destructed Process, since the |
1425 | // event system relies on Process::shared_from_this, which may have already |
1426 | // been destroyed. |
1427 | if (m_destructing) |
1428 | return; |
1429 | |
1430 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); |
1431 | bool state_changed = false; |
1432 | |
1433 | LLDB_LOGF(log, "(plugin = %s, state = %s)" , GetPluginName().data(), |
1434 | StateAsCString(new_state)); |
1435 | |
1436 | std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); |
1437 | std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); |
1438 | |
1439 | const StateType old_state = m_private_state.GetValueNoLock(); |
1440 | state_changed = old_state != new_state; |
1441 | |
1442 | const bool old_state_is_stopped = StateIsStoppedState(state: old_state, must_exist: false); |
1443 | const bool new_state_is_stopped = StateIsStoppedState(state: new_state, must_exist: false); |
1444 | if (old_state_is_stopped != new_state_is_stopped) { |
1445 | if (new_state_is_stopped) |
1446 | m_private_run_lock.SetStopped(); |
1447 | else |
1448 | m_private_run_lock.SetRunning(); |
1449 | } |
1450 | |
1451 | if (state_changed) { |
1452 | m_private_state.SetValueNoLock(new_state); |
1453 | EventSP event_sp( |
1454 | new Event(eBroadcastBitStateChanged, |
1455 | new ProcessEventData(shared_from_this(), new_state))); |
1456 | if (StateIsStoppedState(state: new_state, must_exist: false)) { |
1457 | // Note, this currently assumes that all threads in the list stop when |
1458 | // the process stops. In the future we will want to support a debugging |
1459 | // model where some threads continue to run while others are stopped. |
1460 | // When that happens we will either need a way for the thread list to |
1461 | // identify which threads are stopping or create a special thread list |
1462 | // containing only threads which actually stopped. |
1463 | // |
1464 | // The process plugin is responsible for managing the actual behavior of |
1465 | // the threads and should have stopped any threads that are going to stop |
1466 | // before we get here. |
1467 | m_thread_list.DidStop(); |
1468 | |
1469 | if (m_mod_id.BumpStopID() == 0) |
1470 | GetTarget().GetStatistics().SetFirstPrivateStopTime(); |
1471 | |
1472 | if (!m_mod_id.IsLastResumeForUserExpression()) |
1473 | m_mod_id.SetStopEventForLastNaturalStopID(event_sp); |
1474 | m_memory_cache.Clear(); |
1475 | LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u" , |
1476 | GetPluginName().data(), StateAsCString(new_state), |
1477 | m_mod_id.GetStopID()); |
1478 | } |
1479 | |
1480 | m_private_state_broadcaster.BroadcastEvent(event_sp); |
1481 | } else { |
1482 | LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring..." , |
1483 | GetPluginName().data(), StateAsCString(new_state)); |
1484 | } |
1485 | } |
1486 | |
1487 | void Process::SetRunningUserExpression(bool on) { |
1488 | m_mod_id.SetRunningUserExpression(on); |
1489 | } |
1490 | |
1491 | void Process::SetRunningUtilityFunction(bool on) { |
1492 | m_mod_id.SetRunningUtilityFunction(on); |
1493 | } |
1494 | |
1495 | addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } |
1496 | |
1497 | const lldb::ABISP &Process::GetABI() { |
1498 | if (!m_abi_sp) |
1499 | m_abi_sp = ABI::FindPlugin(process_sp: shared_from_this(), arch: GetTarget().GetArchitecture()); |
1500 | return m_abi_sp; |
1501 | } |
1502 | |
1503 | std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { |
1504 | std::vector<LanguageRuntime *> language_runtimes; |
1505 | |
1506 | if (m_finalizing) |
1507 | return language_runtimes; |
1508 | |
1509 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
1510 | // Before we pass off a copy of the language runtimes, we must make sure that |
1511 | // our collection is properly populated. It's possible that some of the |
1512 | // language runtimes were not loaded yet, either because nobody requested it |
1513 | // yet or the proper condition for loading wasn't yet met (e.g. libc++.so |
1514 | // hadn't been loaded). |
1515 | for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { |
1516 | if (LanguageRuntime *runtime = GetLanguageRuntime(language: lang_type)) |
1517 | language_runtimes.emplace_back(args&: runtime); |
1518 | } |
1519 | |
1520 | return language_runtimes; |
1521 | } |
1522 | |
1523 | LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { |
1524 | if (m_finalizing) |
1525 | return nullptr; |
1526 | |
1527 | LanguageRuntime *runtime = nullptr; |
1528 | |
1529 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
1530 | LanguageRuntimeCollection::iterator pos; |
1531 | pos = m_language_runtimes.find(x: language); |
1532 | if (pos == m_language_runtimes.end() || !pos->second) { |
1533 | lldb::LanguageRuntimeSP runtime_sp( |
1534 | LanguageRuntime::FindPlugin(process: this, language)); |
1535 | |
1536 | m_language_runtimes[language] = runtime_sp; |
1537 | runtime = runtime_sp.get(); |
1538 | } else |
1539 | runtime = pos->second.get(); |
1540 | |
1541 | if (runtime) |
1542 | // It's possible that a language runtime can support multiple LanguageTypes, |
1543 | // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, |
1544 | // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the |
1545 | // primary language type and make sure that our runtime supports it. |
1546 | assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); |
1547 | |
1548 | return runtime; |
1549 | } |
1550 | |
1551 | bool Process::IsPossibleDynamicValue(ValueObject &in_value) { |
1552 | if (m_finalizing) |
1553 | return false; |
1554 | |
1555 | if (in_value.IsDynamic()) |
1556 | return false; |
1557 | LanguageType known_type = in_value.GetObjectRuntimeLanguage(); |
1558 | |
1559 | if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { |
1560 | LanguageRuntime *runtime = GetLanguageRuntime(language: known_type); |
1561 | return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; |
1562 | } |
1563 | |
1564 | for (LanguageRuntime *runtime : GetLanguageRuntimes()) { |
1565 | if (runtime->CouldHaveDynamicValue(in_value)) |
1566 | return true; |
1567 | } |
1568 | |
1569 | return false; |
1570 | } |
1571 | |
1572 | void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { |
1573 | m_dynamic_checkers_up.reset(p: dynamic_checkers); |
1574 | } |
1575 | |
1576 | StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { |
1577 | return m_breakpoint_site_list; |
1578 | } |
1579 | |
1580 | const StopPointSiteList<BreakpointSite> & |
1581 | Process::GetBreakpointSiteList() const { |
1582 | return m_breakpoint_site_list; |
1583 | } |
1584 | |
1585 | void Process::DisableAllBreakpointSites() { |
1586 | m_breakpoint_site_list.ForEach(callback: [this](BreakpointSite *bp_site) -> void { |
1587 | // bp_site->SetEnabled(true); |
1588 | DisableBreakpointSite(bp_site); |
1589 | }); |
1590 | } |
1591 | |
1592 | Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { |
1593 | Status error(DisableBreakpointSiteByID(break_id)); |
1594 | |
1595 | if (error.Success()) |
1596 | m_breakpoint_site_list.Remove(site_id: break_id); |
1597 | |
1598 | return error; |
1599 | } |
1600 | |
1601 | Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { |
1602 | Status error; |
1603 | BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(site_id: break_id); |
1604 | if (bp_site_sp) { |
1605 | if (bp_site_sp->IsEnabled()) |
1606 | error = DisableBreakpointSite(bp_site: bp_site_sp.get()); |
1607 | } else { |
1608 | error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, |
1609 | break_id); |
1610 | } |
1611 | |
1612 | return error; |
1613 | } |
1614 | |
1615 | Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { |
1616 | Status error; |
1617 | BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(site_id: break_id); |
1618 | if (bp_site_sp) { |
1619 | if (!bp_site_sp->IsEnabled()) |
1620 | error = EnableBreakpointSite(bp_site: bp_site_sp.get()); |
1621 | } else { |
1622 | error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, |
1623 | break_id); |
1624 | } |
1625 | return error; |
1626 | } |
1627 | |
1628 | lldb::break_id_t |
1629 | Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, |
1630 | bool use_hardware) { |
1631 | addr_t load_addr = LLDB_INVALID_ADDRESS; |
1632 | |
1633 | bool show_error = true; |
1634 | switch (GetState()) { |
1635 | case eStateInvalid: |
1636 | case eStateUnloaded: |
1637 | case eStateConnected: |
1638 | case eStateAttaching: |
1639 | case eStateLaunching: |
1640 | case eStateDetached: |
1641 | case eStateExited: |
1642 | show_error = false; |
1643 | break; |
1644 | |
1645 | case eStateStopped: |
1646 | case eStateRunning: |
1647 | case eStateStepping: |
1648 | case eStateCrashed: |
1649 | case eStateSuspended: |
1650 | show_error = IsAlive(); |
1651 | break; |
1652 | } |
1653 | |
1654 | // Reset the IsIndirect flag here, in case the location changes from pointing |
1655 | // to a indirect symbol to a regular symbol. |
1656 | constituent->SetIsIndirect(false); |
1657 | |
1658 | if (constituent->ShouldResolveIndirectFunctions()) { |
1659 | Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); |
1660 | if (symbol && symbol->IsIndirect()) { |
1661 | Status error; |
1662 | Address symbol_address = symbol->GetAddress(); |
1663 | load_addr = ResolveIndirectFunction(address: &symbol_address, error); |
1664 | if (!error.Success() && show_error) { |
1665 | GetTarget().GetDebugger().GetErrorStream().Printf( |
1666 | format: "warning: failed to resolve indirect function at 0x%" PRIx64 |
1667 | " for breakpoint %i.%i: %s\n" , |
1668 | symbol->GetLoadAddress(target: &GetTarget()), |
1669 | constituent->GetBreakpoint().GetID(), constituent->GetID(), |
1670 | error.AsCString() ? error.AsCString() : "unknown error" ); |
1671 | return LLDB_INVALID_BREAK_ID; |
1672 | } |
1673 | Address resolved_address(load_addr); |
1674 | load_addr = resolved_address.GetOpcodeLoadAddress(target: &GetTarget()); |
1675 | constituent->SetIsIndirect(true); |
1676 | } else |
1677 | load_addr = constituent->GetAddress().GetOpcodeLoadAddress(target: &GetTarget()); |
1678 | } else |
1679 | load_addr = constituent->GetAddress().GetOpcodeLoadAddress(target: &GetTarget()); |
1680 | |
1681 | if (load_addr != LLDB_INVALID_ADDRESS) { |
1682 | BreakpointSiteSP bp_site_sp; |
1683 | |
1684 | // Look up this breakpoint site. If it exists, then add this new |
1685 | // constituent, otherwise create a new breakpoint site and add it. |
1686 | |
1687 | bp_site_sp = m_breakpoint_site_list.FindByAddress(addr: load_addr); |
1688 | |
1689 | if (bp_site_sp) { |
1690 | bp_site_sp->AddConstituent(constituent); |
1691 | constituent->SetBreakpointSite(bp_site_sp); |
1692 | return bp_site_sp->GetID(); |
1693 | } else { |
1694 | bp_site_sp.reset( |
1695 | p: new BreakpointSite(constituent, load_addr, use_hardware)); |
1696 | if (bp_site_sp) { |
1697 | Status error = EnableBreakpointSite(bp_site: bp_site_sp.get()); |
1698 | if (error.Success()) { |
1699 | constituent->SetBreakpointSite(bp_site_sp); |
1700 | return m_breakpoint_site_list.Add(site_sp: bp_site_sp); |
1701 | } else { |
1702 | if (show_error || use_hardware) { |
1703 | // Report error for setting breakpoint... |
1704 | GetTarget().GetDebugger().GetErrorStream().Printf( |
1705 | format: "warning: failed to set breakpoint site at 0x%" PRIx64 |
1706 | " for breakpoint %i.%i: %s\n" , |
1707 | load_addr, constituent->GetBreakpoint().GetID(), |
1708 | constituent->GetID(), |
1709 | error.AsCString() ? error.AsCString() : "unknown error" ); |
1710 | } |
1711 | } |
1712 | } |
1713 | } |
1714 | } |
1715 | // We failed to enable the breakpoint |
1716 | return LLDB_INVALID_BREAK_ID; |
1717 | } |
1718 | |
1719 | void Process::RemoveConstituentFromBreakpointSite( |
1720 | lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, |
1721 | BreakpointSiteSP &bp_site_sp) { |
1722 | uint32_t num_constituents = |
1723 | bp_site_sp->RemoveConstituent(break_id: constituent_id, break_loc_id: constituent_loc_id); |
1724 | if (num_constituents == 0) { |
1725 | // Don't try to disable the site if we don't have a live process anymore. |
1726 | if (IsAlive()) |
1727 | DisableBreakpointSite(bp_site: bp_site_sp.get()); |
1728 | m_breakpoint_site_list.RemoveByAddress(addr: bp_site_sp->GetLoadAddress()); |
1729 | } |
1730 | } |
1731 | |
1732 | size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, |
1733 | uint8_t *buf) const { |
1734 | size_t bytes_removed = 0; |
1735 | StopPointSiteList<BreakpointSite> bp_sites_in_range; |
1736 | |
1737 | if (m_breakpoint_site_list.FindInRange(lower_bound: bp_addr, upper_bound: bp_addr + size, |
1738 | bp_site_list&: bp_sites_in_range)) { |
1739 | bp_sites_in_range.ForEach(callback: [bp_addr, size, |
1740 | buf](BreakpointSite *bp_site) -> void { |
1741 | if (bp_site->GetType() == BreakpointSite::eSoftware) { |
1742 | addr_t intersect_addr; |
1743 | size_t intersect_size; |
1744 | size_t opcode_offset; |
1745 | if (bp_site->IntersectsRange(addr: bp_addr, size, intersect_addr: &intersect_addr, |
1746 | intersect_size: &intersect_size, opcode_offset: &opcode_offset)) { |
1747 | assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); |
1748 | assert(bp_addr < intersect_addr + intersect_size && |
1749 | intersect_addr + intersect_size <= bp_addr + size); |
1750 | assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); |
1751 | size_t buf_offset = intersect_addr - bp_addr; |
1752 | ::memcpy(dest: buf + buf_offset, |
1753 | src: bp_site->GetSavedOpcodeBytes() + opcode_offset, |
1754 | n: intersect_size); |
1755 | } |
1756 | } |
1757 | }); |
1758 | } |
1759 | return bytes_removed; |
1760 | } |
1761 | |
1762 | size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { |
1763 | PlatformSP platform_sp(GetTarget().GetPlatform()); |
1764 | if (platform_sp) |
1765 | return platform_sp->GetSoftwareBreakpointTrapOpcode(target&: GetTarget(), bp_site); |
1766 | return 0; |
1767 | } |
1768 | |
1769 | Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { |
1770 | Status error; |
1771 | assert(bp_site != nullptr); |
1772 | Log *log = GetLog(mask: LLDBLog::Breakpoints); |
1773 | const addr_t bp_addr = bp_site->GetLoadAddress(); |
1774 | LLDB_LOGF( |
1775 | log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, |
1776 | bp_site->GetID(), (uint64_t)bp_addr); |
1777 | if (bp_site->IsEnabled()) { |
1778 | LLDB_LOGF( |
1779 | log, |
1780 | "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
1781 | " -- already enabled" , |
1782 | bp_site->GetID(), (uint64_t)bp_addr); |
1783 | return error; |
1784 | } |
1785 | |
1786 | if (bp_addr == LLDB_INVALID_ADDRESS) { |
1787 | error.SetErrorString("BreakpointSite contains an invalid load address." ); |
1788 | return error; |
1789 | } |
1790 | // Ask the lldb::Process subclass to fill in the correct software breakpoint |
1791 | // trap for the breakpoint site |
1792 | const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); |
1793 | |
1794 | if (bp_opcode_size == 0) { |
1795 | error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " |
1796 | "returned zero, unable to get breakpoint " |
1797 | "trap for address 0x%" PRIx64, |
1798 | bp_addr); |
1799 | } else { |
1800 | const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); |
1801 | |
1802 | if (bp_opcode_bytes == nullptr) { |
1803 | error.SetErrorString( |
1804 | "BreakpointSite doesn't contain a valid breakpoint trap opcode." ); |
1805 | return error; |
1806 | } |
1807 | |
1808 | // Save the original opcode by reading it |
1809 | if (DoReadMemory(vm_addr: bp_addr, buf: bp_site->GetSavedOpcodeBytes(), size: bp_opcode_size, |
1810 | error) == bp_opcode_size) { |
1811 | // Write a software breakpoint in place of the original opcode |
1812 | if (DoWriteMemory(vm_addr: bp_addr, buf: bp_opcode_bytes, size: bp_opcode_size, error) == |
1813 | bp_opcode_size) { |
1814 | uint8_t verify_bp_opcode_bytes[64]; |
1815 | if (DoReadMemory(vm_addr: bp_addr, buf: verify_bp_opcode_bytes, size: bp_opcode_size, |
1816 | error) == bp_opcode_size) { |
1817 | if (::memcmp(s1: bp_opcode_bytes, s2: verify_bp_opcode_bytes, |
1818 | n: bp_opcode_size) == 0) { |
1819 | bp_site->SetEnabled(true); |
1820 | bp_site->SetType(BreakpointSite::eSoftware); |
1821 | LLDB_LOGF(log, |
1822 | "Process::EnableSoftwareBreakpoint (site_id = %d) " |
1823 | "addr = 0x%" PRIx64 " -- SUCCESS" , |
1824 | bp_site->GetID(), (uint64_t)bp_addr); |
1825 | } else |
1826 | error.SetErrorString( |
1827 | "failed to verify the breakpoint trap in memory." ); |
1828 | } else |
1829 | error.SetErrorString( |
1830 | "Unable to read memory to verify breakpoint trap." ); |
1831 | } else |
1832 | error.SetErrorString("Unable to write breakpoint trap to memory." ); |
1833 | } else |
1834 | error.SetErrorString("Unable to read memory at breakpoint address." ); |
1835 | } |
1836 | if (log && error.Fail()) |
1837 | LLDB_LOGF( |
1838 | log, |
1839 | "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
1840 | " -- FAILED: %s" , |
1841 | bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); |
1842 | return error; |
1843 | } |
1844 | |
1845 | Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { |
1846 | Status error; |
1847 | assert(bp_site != nullptr); |
1848 | Log *log = GetLog(mask: LLDBLog::Breakpoints); |
1849 | addr_t bp_addr = bp_site->GetLoadAddress(); |
1850 | lldb::user_id_t breakID = bp_site->GetID(); |
1851 | LLDB_LOGF(log, |
1852 | "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 |
1853 | ") addr = 0x%" PRIx64, |
1854 | breakID, (uint64_t)bp_addr); |
1855 | |
1856 | if (bp_site->IsHardware()) { |
1857 | error.SetErrorString("Breakpoint site is a hardware breakpoint." ); |
1858 | } else if (bp_site->IsEnabled()) { |
1859 | const size_t break_op_size = bp_site->GetByteSize(); |
1860 | const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); |
1861 | if (break_op_size > 0) { |
1862 | // Clear a software breakpoint instruction |
1863 | uint8_t curr_break_op[8]; |
1864 | assert(break_op_size <= sizeof(curr_break_op)); |
1865 | bool break_op_found = false; |
1866 | |
1867 | // Read the breakpoint opcode |
1868 | if (DoReadMemory(vm_addr: bp_addr, buf: curr_break_op, size: break_op_size, error) == |
1869 | break_op_size) { |
1870 | bool verify = false; |
1871 | // Make sure the breakpoint opcode exists at this address |
1872 | if (::memcmp(s1: curr_break_op, s2: break_op, n: break_op_size) == 0) { |
1873 | break_op_found = true; |
1874 | // We found a valid breakpoint opcode at this address, now restore |
1875 | // the saved opcode. |
1876 | if (DoWriteMemory(vm_addr: bp_addr, buf: bp_site->GetSavedOpcodeBytes(), |
1877 | size: break_op_size, error) == break_op_size) { |
1878 | verify = true; |
1879 | } else |
1880 | error.SetErrorString( |
1881 | "Memory write failed when restoring original opcode." ); |
1882 | } else { |
1883 | error.SetErrorString( |
1884 | "Original breakpoint trap is no longer in memory." ); |
1885 | // Set verify to true and so we can check if the original opcode has |
1886 | // already been restored |
1887 | verify = true; |
1888 | } |
1889 | |
1890 | if (verify) { |
1891 | uint8_t verify_opcode[8]; |
1892 | assert(break_op_size < sizeof(verify_opcode)); |
1893 | // Verify that our original opcode made it back to the inferior |
1894 | if (DoReadMemory(vm_addr: bp_addr, buf: verify_opcode, size: break_op_size, error) == |
1895 | break_op_size) { |
1896 | // compare the memory we just read with the original opcode |
1897 | if (::memcmp(s1: bp_site->GetSavedOpcodeBytes(), s2: verify_opcode, |
1898 | n: break_op_size) == 0) { |
1899 | // SUCCESS |
1900 | bp_site->SetEnabled(false); |
1901 | LLDB_LOGF(log, |
1902 | "Process::DisableSoftwareBreakpoint (site_id = %d) " |
1903 | "addr = 0x%" PRIx64 " -- SUCCESS" , |
1904 | bp_site->GetID(), (uint64_t)bp_addr); |
1905 | return error; |
1906 | } else { |
1907 | if (break_op_found) |
1908 | error.SetErrorString("Failed to restore original opcode." ); |
1909 | } |
1910 | } else |
1911 | error.SetErrorString("Failed to read memory to verify that " |
1912 | "breakpoint trap was restored." ); |
1913 | } |
1914 | } else |
1915 | error.SetErrorString( |
1916 | "Unable to read memory that should contain the breakpoint trap." ); |
1917 | } |
1918 | } else { |
1919 | LLDB_LOGF( |
1920 | log, |
1921 | "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
1922 | " -- already disabled" , |
1923 | bp_site->GetID(), (uint64_t)bp_addr); |
1924 | return error; |
1925 | } |
1926 | |
1927 | LLDB_LOGF( |
1928 | log, |
1929 | "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 |
1930 | " -- FAILED: %s" , |
1931 | bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); |
1932 | return error; |
1933 | } |
1934 | |
1935 | // Uncomment to verify memory caching works after making changes to caching |
1936 | // code |
1937 | //#define VERIFY_MEMORY_READS |
1938 | |
1939 | size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { |
1940 | if (ABISP abi_sp = GetABI()) |
1941 | addr = abi_sp->FixAnyAddress(pc: addr); |
1942 | |
1943 | error.Clear(); |
1944 | if (!GetDisableMemoryCache()) { |
1945 | #if defined(VERIFY_MEMORY_READS) |
1946 | // Memory caching is enabled, with debug verification |
1947 | |
1948 | if (buf && size) { |
1949 | // Uncomment the line below to make sure memory caching is working. |
1950 | // I ran this through the test suite and got no assertions, so I am |
1951 | // pretty confident this is working well. If any changes are made to |
1952 | // memory caching, uncomment the line below and test your changes! |
1953 | |
1954 | // Verify all memory reads by using the cache first, then redundantly |
1955 | // reading the same memory from the inferior and comparing to make sure |
1956 | // everything is exactly the same. |
1957 | std::string verify_buf(size, '\0'); |
1958 | assert(verify_buf.size() == size); |
1959 | const size_t cache_bytes_read = |
1960 | m_memory_cache.Read(this, addr, buf, size, error); |
1961 | Status verify_error; |
1962 | const size_t verify_bytes_read = |
1963 | ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), |
1964 | verify_buf.size(), verify_error); |
1965 | assert(cache_bytes_read == verify_bytes_read); |
1966 | assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); |
1967 | assert(verify_error.Success() == error.Success()); |
1968 | return cache_bytes_read; |
1969 | } |
1970 | return 0; |
1971 | #else // !defined(VERIFY_MEMORY_READS) |
1972 | // Memory caching is enabled, without debug verification |
1973 | |
1974 | return m_memory_cache.Read(addr, dst: buf, dst_len: size, error); |
1975 | #endif // defined (VERIFY_MEMORY_READS) |
1976 | } else { |
1977 | // Memory caching is disabled |
1978 | |
1979 | return ReadMemoryFromInferior(vm_addr: addr, buf, size, error); |
1980 | } |
1981 | } |
1982 | |
1983 | size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, |
1984 | Status &error) { |
1985 | char buf[256]; |
1986 | out_str.clear(); |
1987 | addr_t curr_addr = addr; |
1988 | while (true) { |
1989 | size_t length = ReadCStringFromMemory(vm_addr: curr_addr, cstr: buf, cstr_max_len: sizeof(buf), error); |
1990 | if (length == 0) |
1991 | break; |
1992 | out_str.append(s: buf, n: length); |
1993 | // If we got "length - 1" bytes, we didn't get the whole C string, we need |
1994 | // to read some more characters |
1995 | if (length == sizeof(buf) - 1) |
1996 | curr_addr += length; |
1997 | else |
1998 | break; |
1999 | } |
2000 | return out_str.size(); |
2001 | } |
2002 | |
2003 | // Deprecated in favor of ReadStringFromMemory which has wchar support and |
2004 | // correct code to find null terminators. |
2005 | size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, |
2006 | size_t dst_max_len, |
2007 | Status &result_error) { |
2008 | size_t total_cstr_len = 0; |
2009 | if (dst && dst_max_len) { |
2010 | result_error.Clear(); |
2011 | // NULL out everything just to be safe |
2012 | memset(s: dst, c: 0, n: dst_max_len); |
2013 | Status error; |
2014 | addr_t curr_addr = addr; |
2015 | const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); |
2016 | size_t bytes_left = dst_max_len - 1; |
2017 | char *curr_dst = dst; |
2018 | |
2019 | while (bytes_left > 0) { |
2020 | addr_t cache_line_bytes_left = |
2021 | cache_line_size - (curr_addr % cache_line_size); |
2022 | addr_t bytes_to_read = |
2023 | std::min<addr_t>(a: bytes_left, b: cache_line_bytes_left); |
2024 | size_t bytes_read = ReadMemory(addr: curr_addr, buf: curr_dst, size: bytes_to_read, error); |
2025 | |
2026 | if (bytes_read == 0) { |
2027 | result_error = error; |
2028 | dst[total_cstr_len] = '\0'; |
2029 | break; |
2030 | } |
2031 | const size_t len = strlen(s: curr_dst); |
2032 | |
2033 | total_cstr_len += len; |
2034 | |
2035 | if (len < bytes_to_read) |
2036 | break; |
2037 | |
2038 | curr_dst += bytes_read; |
2039 | curr_addr += bytes_read; |
2040 | bytes_left -= bytes_read; |
2041 | } |
2042 | } else { |
2043 | if (dst == nullptr) |
2044 | result_error.SetErrorString("invalid arguments" ); |
2045 | else |
2046 | result_error.Clear(); |
2047 | } |
2048 | return total_cstr_len; |
2049 | } |
2050 | |
2051 | size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, |
2052 | Status &error) { |
2053 | LLDB_SCOPED_TIMER(); |
2054 | |
2055 | if (ABISP abi_sp = GetABI()) |
2056 | addr = abi_sp->FixAnyAddress(pc: addr); |
2057 | |
2058 | if (buf == nullptr || size == 0) |
2059 | return 0; |
2060 | |
2061 | size_t bytes_read = 0; |
2062 | uint8_t *bytes = (uint8_t *)buf; |
2063 | |
2064 | while (bytes_read < size) { |
2065 | const size_t curr_size = size - bytes_read; |
2066 | const size_t curr_bytes_read = |
2067 | DoReadMemory(vm_addr: addr + bytes_read, buf: bytes + bytes_read, size: curr_size, error); |
2068 | bytes_read += curr_bytes_read; |
2069 | if (curr_bytes_read == curr_size || curr_bytes_read == 0) |
2070 | break; |
2071 | } |
2072 | |
2073 | // Replace any software breakpoint opcodes that fall into this range back |
2074 | // into "buf" before we return |
2075 | if (bytes_read > 0) |
2076 | RemoveBreakpointOpcodesFromBuffer(bp_addr: addr, size: bytes_read, buf: (uint8_t *)buf); |
2077 | return bytes_read; |
2078 | } |
2079 | |
2080 | uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, |
2081 | size_t integer_byte_size, |
2082 | uint64_t fail_value, |
2083 | Status &error) { |
2084 | Scalar scalar; |
2085 | if (ReadScalarIntegerFromMemory(addr: vm_addr, byte_size: integer_byte_size, is_signed: false, scalar, |
2086 | error)) |
2087 | return scalar.ULongLong(fail_value); |
2088 | return fail_value; |
2089 | } |
2090 | |
2091 | int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, |
2092 | size_t integer_byte_size, |
2093 | int64_t fail_value, |
2094 | Status &error) { |
2095 | Scalar scalar; |
2096 | if (ReadScalarIntegerFromMemory(addr: vm_addr, byte_size: integer_byte_size, is_signed: true, scalar, |
2097 | error)) |
2098 | return scalar.SLongLong(fail_value); |
2099 | return fail_value; |
2100 | } |
2101 | |
2102 | addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { |
2103 | Scalar scalar; |
2104 | if (ReadScalarIntegerFromMemory(addr: vm_addr, byte_size: GetAddressByteSize(), is_signed: false, scalar, |
2105 | error)) |
2106 | return scalar.ULongLong(LLDB_INVALID_ADDRESS); |
2107 | return LLDB_INVALID_ADDRESS; |
2108 | } |
2109 | |
2110 | bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, |
2111 | Status &error) { |
2112 | Scalar scalar; |
2113 | const uint32_t addr_byte_size = GetAddressByteSize(); |
2114 | if (addr_byte_size <= 4) |
2115 | scalar = (uint32_t)ptr_value; |
2116 | else |
2117 | scalar = ptr_value; |
2118 | return WriteScalarToMemory(vm_addr, scalar, size: addr_byte_size, error) == |
2119 | addr_byte_size; |
2120 | } |
2121 | |
2122 | size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, |
2123 | Status &error) { |
2124 | size_t bytes_written = 0; |
2125 | const uint8_t *bytes = (const uint8_t *)buf; |
2126 | |
2127 | while (bytes_written < size) { |
2128 | const size_t curr_size = size - bytes_written; |
2129 | const size_t curr_bytes_written = DoWriteMemory( |
2130 | vm_addr: addr + bytes_written, buf: bytes + bytes_written, size: curr_size, error); |
2131 | bytes_written += curr_bytes_written; |
2132 | if (curr_bytes_written == curr_size || curr_bytes_written == 0) |
2133 | break; |
2134 | } |
2135 | return bytes_written; |
2136 | } |
2137 | |
2138 | size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, |
2139 | Status &error) { |
2140 | if (ABISP abi_sp = GetABI()) |
2141 | addr = abi_sp->FixAnyAddress(pc: addr); |
2142 | |
2143 | #if defined(ENABLE_MEMORY_CACHING) |
2144 | m_memory_cache.Flush(addr, size); |
2145 | #endif |
2146 | |
2147 | if (buf == nullptr || size == 0) |
2148 | return 0; |
2149 | |
2150 | m_mod_id.BumpMemoryID(); |
2151 | |
2152 | // We need to write any data that would go where any current software traps |
2153 | // (enabled software breakpoints) any software traps (breakpoints) that we |
2154 | // may have placed in our tasks memory. |
2155 | |
2156 | StopPointSiteList<BreakpointSite> bp_sites_in_range; |
2157 | if (!m_breakpoint_site_list.FindInRange(lower_bound: addr, upper_bound: addr + size, bp_site_list&: bp_sites_in_range)) |
2158 | return WriteMemoryPrivate(addr, buf, size, error); |
2159 | |
2160 | // No breakpoint sites overlap |
2161 | if (bp_sites_in_range.IsEmpty()) |
2162 | return WriteMemoryPrivate(addr, buf, size, error); |
2163 | |
2164 | const uint8_t *ubuf = (const uint8_t *)buf; |
2165 | uint64_t bytes_written = 0; |
2166 | |
2167 | bp_sites_in_range.ForEach(callback: [this, addr, size, &bytes_written, &ubuf, |
2168 | &error](BreakpointSite *bp) -> void { |
2169 | if (error.Fail()) |
2170 | return; |
2171 | |
2172 | if (bp->GetType() != BreakpointSite::eSoftware) |
2173 | return; |
2174 | |
2175 | addr_t intersect_addr; |
2176 | size_t intersect_size; |
2177 | size_t opcode_offset; |
2178 | const bool intersects = bp->IntersectsRange( |
2179 | addr, size, intersect_addr: &intersect_addr, intersect_size: &intersect_size, opcode_offset: &opcode_offset); |
2180 | UNUSED_IF_ASSERT_DISABLED(intersects); |
2181 | assert(intersects); |
2182 | assert(addr <= intersect_addr && intersect_addr < addr + size); |
2183 | assert(addr < intersect_addr + intersect_size && |
2184 | intersect_addr + intersect_size <= addr + size); |
2185 | assert(opcode_offset + intersect_size <= bp->GetByteSize()); |
2186 | |
2187 | // Check for bytes before this breakpoint |
2188 | const addr_t curr_addr = addr + bytes_written; |
2189 | if (intersect_addr > curr_addr) { |
2190 | // There are some bytes before this breakpoint that we need to just |
2191 | // write to memory |
2192 | size_t curr_size = intersect_addr - curr_addr; |
2193 | size_t curr_bytes_written = |
2194 | WriteMemoryPrivate(addr: curr_addr, buf: ubuf + bytes_written, size: curr_size, error); |
2195 | bytes_written += curr_bytes_written; |
2196 | if (curr_bytes_written != curr_size) { |
2197 | // We weren't able to write all of the requested bytes, we are |
2198 | // done looping and will return the number of bytes that we have |
2199 | // written so far. |
2200 | if (error.Success()) |
2201 | error.SetErrorToGenericError(); |
2202 | } |
2203 | } |
2204 | // Now write any bytes that would cover up any software breakpoints |
2205 | // directly into the breakpoint opcode buffer |
2206 | ::memcpy(dest: bp->GetSavedOpcodeBytes() + opcode_offset, src: ubuf + bytes_written, |
2207 | n: intersect_size); |
2208 | bytes_written += intersect_size; |
2209 | }); |
2210 | |
2211 | // Write any remaining bytes after the last breakpoint if we have any left |
2212 | if (bytes_written < size) |
2213 | bytes_written += |
2214 | WriteMemoryPrivate(addr: addr + bytes_written, buf: ubuf + bytes_written, |
2215 | size: size - bytes_written, error); |
2216 | |
2217 | return bytes_written; |
2218 | } |
2219 | |
2220 | size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, |
2221 | size_t byte_size, Status &error) { |
2222 | if (byte_size == UINT32_MAX) |
2223 | byte_size = scalar.GetByteSize(); |
2224 | if (byte_size > 0) { |
2225 | uint8_t buf[32]; |
2226 | const size_t mem_size = |
2227 | scalar.GetAsMemoryData(dst: buf, dst_len: byte_size, dst_byte_order: GetByteOrder(), error); |
2228 | if (mem_size > 0) |
2229 | return WriteMemory(addr, buf, size: mem_size, error); |
2230 | else |
2231 | error.SetErrorString("failed to get scalar as memory data" ); |
2232 | } else { |
2233 | error.SetErrorString("invalid scalar value" ); |
2234 | } |
2235 | return 0; |
2236 | } |
2237 | |
2238 | size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, |
2239 | bool is_signed, Scalar &scalar, |
2240 | Status &error) { |
2241 | uint64_t uval = 0; |
2242 | if (byte_size == 0) { |
2243 | error.SetErrorString("byte size is zero" ); |
2244 | } else if (byte_size & (byte_size - 1)) { |
2245 | error.SetErrorStringWithFormat("byte size %u is not a power of 2" , |
2246 | byte_size); |
2247 | } else if (byte_size <= sizeof(uval)) { |
2248 | const size_t bytes_read = ReadMemory(addr, buf: &uval, size: byte_size, error); |
2249 | if (bytes_read == byte_size) { |
2250 | DataExtractor data(&uval, sizeof(uval), GetByteOrder(), |
2251 | GetAddressByteSize()); |
2252 | lldb::offset_t offset = 0; |
2253 | if (byte_size <= 4) |
2254 | scalar = data.GetMaxU32(offset_ptr: &offset, byte_size); |
2255 | else |
2256 | scalar = data.GetMaxU64(offset_ptr: &offset, byte_size); |
2257 | if (is_signed) |
2258 | scalar.SignExtend(bit_pos: byte_size * 8); |
2259 | return bytes_read; |
2260 | } |
2261 | } else { |
2262 | error.SetErrorStringWithFormat( |
2263 | "byte size of %u is too large for integer scalar type" , byte_size); |
2264 | } |
2265 | return 0; |
2266 | } |
2267 | |
2268 | Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { |
2269 | Status error; |
2270 | for (const auto &Entry : entries) { |
2271 | WriteMemory(addr: Entry.Dest, buf: Entry.Contents.data(), size: Entry.Contents.size(), |
2272 | error); |
2273 | if (!error.Success()) |
2274 | break; |
2275 | } |
2276 | return error; |
2277 | } |
2278 | |
2279 | #define USE_ALLOCATE_MEMORY_CACHE 1 |
2280 | addr_t Process::AllocateMemory(size_t size, uint32_t permissions, |
2281 | Status &error) { |
2282 | if (GetPrivateState() != eStateStopped) { |
2283 | error.SetErrorToGenericError(); |
2284 | return LLDB_INVALID_ADDRESS; |
2285 | } |
2286 | |
2287 | #if defined(USE_ALLOCATE_MEMORY_CACHE) |
2288 | return m_allocated_memory_cache.AllocateMemory(byte_size: size, permissions, error); |
2289 | #else |
2290 | addr_t allocated_addr = DoAllocateMemory(size, permissions, error); |
2291 | Log *log = GetLog(LLDBLog::Process); |
2292 | LLDB_LOGF(log, |
2293 | "Process::AllocateMemory(size=%" PRIu64 |
2294 | ", permissions=%s) => 0x%16.16" PRIx64 |
2295 | " (m_stop_id = %u m_memory_id = %u)" , |
2296 | (uint64_t)size, GetPermissionsAsCString(permissions), |
2297 | (uint64_t)allocated_addr, m_mod_id.GetStopID(), |
2298 | m_mod_id.GetMemoryID()); |
2299 | return allocated_addr; |
2300 | #endif |
2301 | } |
2302 | |
2303 | addr_t Process::CallocateMemory(size_t size, uint32_t permissions, |
2304 | Status &error) { |
2305 | addr_t return_addr = AllocateMemory(size, permissions, error); |
2306 | if (error.Success()) { |
2307 | std::string buffer(size, 0); |
2308 | WriteMemory(addr: return_addr, buf: buffer.c_str(), size, error); |
2309 | } |
2310 | return return_addr; |
2311 | } |
2312 | |
2313 | bool Process::CanJIT() { |
2314 | if (m_can_jit == eCanJITDontKnow) { |
2315 | Log *log = GetLog(mask: LLDBLog::Process); |
2316 | Status err; |
2317 | |
2318 | uint64_t allocated_memory = AllocateMemory( |
2319 | size: 8, permissions: ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, |
2320 | error&: err); |
2321 | |
2322 | if (err.Success()) { |
2323 | m_can_jit = eCanJITYes; |
2324 | LLDB_LOGF(log, |
2325 | "Process::%s pid %" PRIu64 |
2326 | " allocation test passed, CanJIT () is true" , |
2327 | __FUNCTION__, GetID()); |
2328 | } else { |
2329 | m_can_jit = eCanJITNo; |
2330 | LLDB_LOGF(log, |
2331 | "Process::%s pid %" PRIu64 |
2332 | " allocation test failed, CanJIT () is false: %s" , |
2333 | __FUNCTION__, GetID(), err.AsCString()); |
2334 | } |
2335 | |
2336 | DeallocateMemory(ptr: allocated_memory); |
2337 | } |
2338 | |
2339 | return m_can_jit == eCanJITYes; |
2340 | } |
2341 | |
2342 | void Process::SetCanJIT(bool can_jit) { |
2343 | m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); |
2344 | } |
2345 | |
2346 | void Process::SetCanRunCode(bool can_run_code) { |
2347 | SetCanJIT(can_run_code); |
2348 | m_can_interpret_function_calls = can_run_code; |
2349 | } |
2350 | |
2351 | Status Process::DeallocateMemory(addr_t ptr) { |
2352 | Status error; |
2353 | #if defined(USE_ALLOCATE_MEMORY_CACHE) |
2354 | if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { |
2355 | error.SetErrorStringWithFormat( |
2356 | "deallocation of memory at 0x%" PRIx64 " failed." , (uint64_t)ptr); |
2357 | } |
2358 | #else |
2359 | error = DoDeallocateMemory(ptr); |
2360 | |
2361 | Log *log = GetLog(LLDBLog::Process); |
2362 | LLDB_LOGF(log, |
2363 | "Process::DeallocateMemory(addr=0x%16.16" PRIx64 |
2364 | ") => err = %s (m_stop_id = %u, m_memory_id = %u)" , |
2365 | ptr, error.AsCString("SUCCESS" ), m_mod_id.GetStopID(), |
2366 | m_mod_id.GetMemoryID()); |
2367 | #endif |
2368 | return error; |
2369 | } |
2370 | |
2371 | bool Process::GetWatchpointReportedAfter() { |
2372 | if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) |
2373 | return *subclass_override; |
2374 | |
2375 | bool reported_after = true; |
2376 | const ArchSpec &arch = GetTarget().GetArchitecture(); |
2377 | if (!arch.IsValid()) |
2378 | return reported_after; |
2379 | llvm::Triple triple = arch.GetTriple(); |
2380 | |
2381 | if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || |
2382 | triple.isAArch64() || triple.isArmMClass() || triple.isARM()) |
2383 | reported_after = false; |
2384 | |
2385 | return reported_after; |
2386 | } |
2387 | |
2388 | ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, |
2389 | lldb::addr_t , |
2390 | size_t size_to_read) { |
2391 | Log *log = GetLog(mask: LLDBLog::Host); |
2392 | if (log) { |
2393 | LLDB_LOGF(log, |
2394 | "Process::ReadModuleFromMemory reading %s binary from memory" , |
2395 | file_spec.GetPath().c_str()); |
2396 | } |
2397 | ModuleSP module_sp(new Module(file_spec, ArchSpec())); |
2398 | if (module_sp) { |
2399 | Status error; |
2400 | ObjectFile *objfile = module_sp->GetMemoryObjectFile( |
2401 | process_sp: shared_from_this(), header_addr, error, size_to_read); |
2402 | if (objfile) |
2403 | return module_sp; |
2404 | } |
2405 | return ModuleSP(); |
2406 | } |
2407 | |
2408 | bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, |
2409 | uint32_t &permissions) { |
2410 | MemoryRegionInfo range_info; |
2411 | permissions = 0; |
2412 | Status error(GetMemoryRegionInfo(load_addr, range_info)); |
2413 | if (!error.Success()) |
2414 | return false; |
2415 | if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || |
2416 | range_info.GetWritable() == MemoryRegionInfo::eDontKnow || |
2417 | range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { |
2418 | return false; |
2419 | } |
2420 | permissions = range_info.GetLLDBPermissions(); |
2421 | return true; |
2422 | } |
2423 | |
2424 | Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { |
2425 | Status error; |
2426 | error.SetErrorString("watchpoints are not supported" ); |
2427 | return error; |
2428 | } |
2429 | |
2430 | Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { |
2431 | Status error; |
2432 | error.SetErrorString("watchpoints are not supported" ); |
2433 | return error; |
2434 | } |
2435 | |
2436 | StateType |
2437 | Process::WaitForProcessStopPrivate(EventSP &event_sp, |
2438 | const Timeout<std::micro> &timeout) { |
2439 | StateType state; |
2440 | |
2441 | while (true) { |
2442 | event_sp.reset(); |
2443 | state = GetStateChangedEventsPrivate(event_sp, timeout); |
2444 | |
2445 | if (StateIsStoppedState(state, must_exist: false)) |
2446 | break; |
2447 | |
2448 | // If state is invalid, then we timed out |
2449 | if (state == eStateInvalid) |
2450 | break; |
2451 | |
2452 | if (event_sp) |
2453 | HandlePrivateEvent(event_sp); |
2454 | } |
2455 | return state; |
2456 | } |
2457 | |
2458 | void Process::LoadOperatingSystemPlugin(bool flush) { |
2459 | std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); |
2460 | if (flush) |
2461 | m_thread_list.Clear(); |
2462 | m_os_up.reset(p: OperatingSystem::FindPlugin(process: this, plugin_name: nullptr)); |
2463 | if (flush) |
2464 | Flush(); |
2465 | } |
2466 | |
2467 | Status Process::Launch(ProcessLaunchInfo &launch_info) { |
2468 | StateType state_after_launch = eStateInvalid; |
2469 | EventSP first_stop_event_sp; |
2470 | Status status = |
2471 | LaunchPrivate(launch_info, state&: state_after_launch, event_sp&: first_stop_event_sp); |
2472 | if (status.Fail()) |
2473 | return status; |
2474 | |
2475 | if (state_after_launch != eStateStopped && |
2476 | state_after_launch != eStateCrashed) |
2477 | return Status(); |
2478 | |
2479 | // Note, the stop event was consumed above, but not handled. This |
2480 | // was done to give DidLaunch a chance to run. The target is either |
2481 | // stopped or crashed. Directly set the state. This is done to |
2482 | // prevent a stop message with a bunch of spurious output on thread |
2483 | // status, as well as not pop a ProcessIOHandler. |
2484 | SetPublicState(new_state: state_after_launch, restarted: false); |
2485 | |
2486 | if (PrivateStateThreadIsValid()) |
2487 | ResumePrivateStateThread(); |
2488 | else |
2489 | StartPrivateStateThread(); |
2490 | |
2491 | // Target was stopped at entry as was intended. Need to notify the |
2492 | // listeners about it. |
2493 | if (launch_info.GetFlags().Test(bit: eLaunchFlagStopAtEntry)) |
2494 | HandlePrivateEvent(event_sp&: first_stop_event_sp); |
2495 | |
2496 | return Status(); |
2497 | } |
2498 | |
2499 | Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, |
2500 | EventSP &event_sp) { |
2501 | Status error; |
2502 | m_abi_sp.reset(); |
2503 | m_dyld_up.reset(); |
2504 | m_jit_loaders_up.reset(); |
2505 | m_system_runtime_up.reset(); |
2506 | m_os_up.reset(); |
2507 | |
2508 | { |
2509 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
2510 | m_process_input_reader.reset(); |
2511 | } |
2512 | |
2513 | Module *exe_module = GetTarget().GetExecutableModulePointer(); |
2514 | |
2515 | // The "remote executable path" is hooked up to the local Executable |
2516 | // module. But we should be able to debug a remote process even if the |
2517 | // executable module only exists on the remote. However, there needs to |
2518 | // be a way to express this path, without actually having a module. |
2519 | // The way to do that is to set the ExecutableFile in the LaunchInfo. |
2520 | // Figure that out here: |
2521 | |
2522 | FileSpec exe_spec_to_use; |
2523 | if (!exe_module) { |
2524 | if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { |
2525 | error.SetErrorString("executable module does not exist" ); |
2526 | return error; |
2527 | } |
2528 | exe_spec_to_use = launch_info.GetExecutableFile(); |
2529 | } else |
2530 | exe_spec_to_use = exe_module->GetFileSpec(); |
2531 | |
2532 | if (exe_module && FileSystem::Instance().Exists(file_spec: exe_module->GetFileSpec())) { |
2533 | // Install anything that might need to be installed prior to launching. |
2534 | // For host systems, this will do nothing, but if we are connected to a |
2535 | // remote platform it will install any needed binaries |
2536 | error = GetTarget().Install(launch_info: &launch_info); |
2537 | if (error.Fail()) |
2538 | return error; |
2539 | } |
2540 | |
2541 | // Listen and queue events that are broadcasted during the process launch. |
2542 | ListenerSP listener_sp(Listener::MakeListener(name: "LaunchEventHijack" )); |
2543 | HijackProcessEvents(listener_sp); |
2544 | auto on_exit = llvm::make_scope_exit(F: [this]() { RestoreProcessEvents(); }); |
2545 | |
2546 | if (PrivateStateThreadIsValid()) |
2547 | PausePrivateStateThread(); |
2548 | |
2549 | error = WillLaunch(module: exe_module); |
2550 | if (error.Fail()) { |
2551 | std::string local_exec_file_path = exe_spec_to_use.GetPath(); |
2552 | return Status("file doesn't exist: '%s'" , local_exec_file_path.c_str()); |
2553 | } |
2554 | |
2555 | const bool restarted = false; |
2556 | SetPublicState(new_state: eStateLaunching, restarted); |
2557 | m_should_detach = false; |
2558 | |
2559 | if (m_public_run_lock.TrySetRunning()) { |
2560 | // Now launch using these arguments. |
2561 | error = DoLaunch(exe_module, launch_info); |
2562 | } else { |
2563 | // This shouldn't happen |
2564 | error.SetErrorString("failed to acquire process run lock" ); |
2565 | } |
2566 | |
2567 | if (error.Fail()) { |
2568 | if (GetID() != LLDB_INVALID_PROCESS_ID) { |
2569 | SetID(LLDB_INVALID_PROCESS_ID); |
2570 | const char *error_string = error.AsCString(); |
2571 | if (error_string == nullptr) |
2572 | error_string = "launch failed" ; |
2573 | SetExitStatus(status: -1, exit_string: error_string); |
2574 | } |
2575 | return error; |
2576 | } |
2577 | |
2578 | // Now wait for the process to launch and return control to us, and then |
2579 | // call DidLaunch: |
2580 | state = WaitForProcessStopPrivate(event_sp, timeout: seconds(10)); |
2581 | |
2582 | if (state == eStateInvalid || !event_sp) { |
2583 | // We were able to launch the process, but we failed to catch the |
2584 | // initial stop. |
2585 | error.SetErrorString("failed to catch stop after launch" ); |
2586 | SetExitStatus(status: 0, exit_string: error.AsCString()); |
2587 | Destroy(force_kill: false); |
2588 | return error; |
2589 | } |
2590 | |
2591 | if (state == eStateExited) { |
2592 | // We exited while trying to launch somehow. Don't call DidLaunch |
2593 | // as that's not likely to work, and return an invalid pid. |
2594 | HandlePrivateEvent(event_sp); |
2595 | return Status(); |
2596 | } |
2597 | |
2598 | if (state == eStateStopped || state == eStateCrashed) { |
2599 | DidLaunch(); |
2600 | |
2601 | // Now that we know the process type, update its signal responses from the |
2602 | // ones stored in the Target: |
2603 | if (m_unix_signals_sp) { |
2604 | StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); |
2605 | GetTarget().UpdateSignalsFromDummy(signals_sp: m_unix_signals_sp, warning_stream_sp: warning_strm); |
2606 | } |
2607 | |
2608 | DynamicLoader *dyld = GetDynamicLoader(); |
2609 | if (dyld) |
2610 | dyld->DidLaunch(); |
2611 | |
2612 | GetJITLoaders().DidLaunch(); |
2613 | |
2614 | SystemRuntime *system_runtime = GetSystemRuntime(); |
2615 | if (system_runtime) |
2616 | system_runtime->DidLaunch(); |
2617 | |
2618 | if (!m_os_up) |
2619 | LoadOperatingSystemPlugin(flush: false); |
2620 | |
2621 | // We successfully launched the process and stopped, now it the |
2622 | // right time to set up signal filters before resuming. |
2623 | UpdateAutomaticSignalFiltering(); |
2624 | return Status(); |
2625 | } |
2626 | |
2627 | return Status("Unexpected process state after the launch: %s, expected %s, " |
2628 | "%s, %s or %s" , |
2629 | StateAsCString(state), StateAsCString(state: eStateInvalid), |
2630 | StateAsCString(state: eStateExited), StateAsCString(state: eStateStopped), |
2631 | StateAsCString(state: eStateCrashed)); |
2632 | } |
2633 | |
2634 | Status Process::LoadCore() { |
2635 | Status error = DoLoadCore(); |
2636 | if (error.Success()) { |
2637 | ListenerSP listener_sp( |
2638 | Listener::MakeListener(name: "lldb.process.load_core_listener" )); |
2639 | HijackProcessEvents(listener_sp); |
2640 | |
2641 | if (PrivateStateThreadIsValid()) |
2642 | ResumePrivateStateThread(); |
2643 | else |
2644 | StartPrivateStateThread(); |
2645 | |
2646 | DynamicLoader *dyld = GetDynamicLoader(); |
2647 | if (dyld) |
2648 | dyld->DidAttach(); |
2649 | |
2650 | GetJITLoaders().DidAttach(); |
2651 | |
2652 | SystemRuntime *system_runtime = GetSystemRuntime(); |
2653 | if (system_runtime) |
2654 | system_runtime->DidAttach(); |
2655 | |
2656 | if (!m_os_up) |
2657 | LoadOperatingSystemPlugin(flush: false); |
2658 | |
2659 | // We successfully loaded a core file, now pretend we stopped so we can |
2660 | // show all of the threads in the core file and explore the crashed state. |
2661 | SetPrivateState(eStateStopped); |
2662 | |
2663 | // Wait for a stopped event since we just posted one above... |
2664 | lldb::EventSP event_sp; |
2665 | StateType state = |
2666 | WaitForProcessToStop(timeout: std::nullopt, event_sp_ptr: &event_sp, wait_always: true, hijack_listener_sp: listener_sp, |
2667 | stream: nullptr, use_run_lock: true, select_most_relevant: SelectMostRelevantFrame); |
2668 | |
2669 | if (!StateIsStoppedState(state, must_exist: false)) { |
2670 | Log *log = GetLog(mask: LLDBLog::Process); |
2671 | LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s" , |
2672 | StateAsCString(state)); |
2673 | error.SetErrorString( |
2674 | "Did not get stopped event after loading the core file." ); |
2675 | } |
2676 | RestoreProcessEvents(); |
2677 | } |
2678 | return error; |
2679 | } |
2680 | |
2681 | DynamicLoader *Process::GetDynamicLoader() { |
2682 | if (!m_dyld_up) |
2683 | m_dyld_up.reset(p: DynamicLoader::FindPlugin(process: this, plugin_name: "" )); |
2684 | return m_dyld_up.get(); |
2685 | } |
2686 | |
2687 | void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { |
2688 | m_dyld_up = std::move(dyld_up); |
2689 | } |
2690 | |
2691 | DataExtractor Process::GetAuxvData() { return DataExtractor(); } |
2692 | |
2693 | llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { |
2694 | return false; |
2695 | } |
2696 | |
2697 | JITLoaderList &Process::GetJITLoaders() { |
2698 | if (!m_jit_loaders_up) { |
2699 | m_jit_loaders_up = std::make_unique<JITLoaderList>(); |
2700 | JITLoader::LoadPlugins(process: this, list&: *m_jit_loaders_up); |
2701 | } |
2702 | return *m_jit_loaders_up; |
2703 | } |
2704 | |
2705 | SystemRuntime *Process::GetSystemRuntime() { |
2706 | if (!m_system_runtime_up) |
2707 | m_system_runtime_up.reset(p: SystemRuntime::FindPlugin(process: this)); |
2708 | return m_system_runtime_up.get(); |
2709 | } |
2710 | |
2711 | Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, |
2712 | uint32_t exec_count) |
2713 | : NextEventAction(process), m_exec_count(exec_count) { |
2714 | Log *log = GetLog(mask: LLDBLog::Process); |
2715 | LLDB_LOGF( |
2716 | log, |
2717 | "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, |
2718 | __FUNCTION__, static_cast<void *>(process), exec_count); |
2719 | } |
2720 | |
2721 | Process::NextEventAction::EventActionResult |
2722 | Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { |
2723 | Log *log = GetLog(mask: LLDBLog::Process); |
2724 | |
2725 | StateType state = ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
2726 | LLDB_LOGF(log, |
2727 | "Process::AttachCompletionHandler::%s called with state %s (%d)" , |
2728 | __FUNCTION__, StateAsCString(state), static_cast<int>(state)); |
2729 | |
2730 | switch (state) { |
2731 | case eStateAttaching: |
2732 | return eEventActionSuccess; |
2733 | |
2734 | case eStateRunning: |
2735 | case eStateConnected: |
2736 | return eEventActionRetry; |
2737 | |
2738 | case eStateStopped: |
2739 | case eStateCrashed: |
2740 | // During attach, prior to sending the eStateStopped event, |
2741 | // lldb_private::Process subclasses must set the new process ID. |
2742 | assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); |
2743 | // We don't want these events to be reported, so go set the |
2744 | // ShouldReportStop here: |
2745 | m_process->GetThreadList().SetShouldReportStop(eVoteNo); |
2746 | |
2747 | if (m_exec_count > 0) { |
2748 | --m_exec_count; |
2749 | |
2750 | LLDB_LOGF(log, |
2751 | "Process::AttachCompletionHandler::%s state %s: reduced " |
2752 | "remaining exec count to %" PRIu32 ", requesting resume" , |
2753 | __FUNCTION__, StateAsCString(state), m_exec_count); |
2754 | |
2755 | RequestResume(); |
2756 | return eEventActionRetry; |
2757 | } else { |
2758 | LLDB_LOGF(log, |
2759 | "Process::AttachCompletionHandler::%s state %s: no more " |
2760 | "execs expected to start, continuing with attach" , |
2761 | __FUNCTION__, StateAsCString(state)); |
2762 | |
2763 | m_process->CompleteAttach(); |
2764 | return eEventActionSuccess; |
2765 | } |
2766 | break; |
2767 | |
2768 | default: |
2769 | case eStateExited: |
2770 | case eStateInvalid: |
2771 | break; |
2772 | } |
2773 | |
2774 | m_exit_string.assign(s: "No valid Process" ); |
2775 | return eEventActionExit; |
2776 | } |
2777 | |
2778 | Process::NextEventAction::EventActionResult |
2779 | Process::AttachCompletionHandler::HandleBeingInterrupted() { |
2780 | return eEventActionSuccess; |
2781 | } |
2782 | |
2783 | const char *Process::AttachCompletionHandler::GetExitString() { |
2784 | return m_exit_string.c_str(); |
2785 | } |
2786 | |
2787 | ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { |
2788 | if (m_listener_sp) |
2789 | return m_listener_sp; |
2790 | else |
2791 | return debugger.GetListener(); |
2792 | } |
2793 | |
2794 | Status Process::WillLaunch(Module *module) { |
2795 | return DoWillLaunch(module); |
2796 | } |
2797 | |
2798 | Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { |
2799 | return DoWillAttachToProcessWithID(pid); |
2800 | } |
2801 | |
2802 | Status Process::WillAttachToProcessWithName(const char *process_name, |
2803 | bool wait_for_launch) { |
2804 | return DoWillAttachToProcessWithName(process_name, wait_for_launch); |
2805 | } |
2806 | |
2807 | Status Process::Attach(ProcessAttachInfo &attach_info) { |
2808 | m_abi_sp.reset(); |
2809 | { |
2810 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
2811 | m_process_input_reader.reset(); |
2812 | } |
2813 | m_dyld_up.reset(); |
2814 | m_jit_loaders_up.reset(); |
2815 | m_system_runtime_up.reset(); |
2816 | m_os_up.reset(); |
2817 | |
2818 | lldb::pid_t attach_pid = attach_info.GetProcessID(); |
2819 | Status error; |
2820 | if (attach_pid == LLDB_INVALID_PROCESS_ID) { |
2821 | char process_name[PATH_MAX]; |
2822 | |
2823 | if (attach_info.GetExecutableFile().GetPath(path: process_name, |
2824 | max_path_length: sizeof(process_name))) { |
2825 | const bool wait_for_launch = attach_info.GetWaitForLaunch(); |
2826 | |
2827 | if (wait_for_launch) { |
2828 | error = WillAttachToProcessWithName(process_name, wait_for_launch); |
2829 | if (error.Success()) { |
2830 | if (m_public_run_lock.TrySetRunning()) { |
2831 | m_should_detach = true; |
2832 | const bool restarted = false; |
2833 | SetPublicState(new_state: eStateAttaching, restarted); |
2834 | // Now attach using these arguments. |
2835 | error = DoAttachToProcessWithName(process_name, attach_info); |
2836 | } else { |
2837 | // This shouldn't happen |
2838 | error.SetErrorString("failed to acquire process run lock" ); |
2839 | } |
2840 | |
2841 | if (error.Fail()) { |
2842 | if (GetID() != LLDB_INVALID_PROCESS_ID) { |
2843 | SetID(LLDB_INVALID_PROCESS_ID); |
2844 | if (error.AsCString() == nullptr) |
2845 | error.SetErrorString("attach failed" ); |
2846 | |
2847 | SetExitStatus(status: -1, exit_string: error.AsCString()); |
2848 | } |
2849 | } else { |
2850 | SetNextEventAction(new Process::AttachCompletionHandler( |
2851 | this, attach_info.GetResumeCount())); |
2852 | StartPrivateStateThread(); |
2853 | } |
2854 | return error; |
2855 | } |
2856 | } else { |
2857 | ProcessInstanceInfoList process_infos; |
2858 | PlatformSP platform_sp(GetTarget().GetPlatform()); |
2859 | |
2860 | if (platform_sp) { |
2861 | ProcessInstanceInfoMatch match_info; |
2862 | match_info.GetProcessInfo() = attach_info; |
2863 | match_info.SetNameMatchType(NameMatch::Equals); |
2864 | platform_sp->FindProcesses(match_info, proc_infos&: process_infos); |
2865 | const uint32_t num_matches = process_infos.size(); |
2866 | if (num_matches == 1) { |
2867 | attach_pid = process_infos[0].GetProcessID(); |
2868 | // Fall through and attach using the above process ID |
2869 | } else { |
2870 | match_info.GetProcessInfo().GetExecutableFile().GetPath( |
2871 | path: process_name, max_path_length: sizeof(process_name)); |
2872 | if (num_matches > 1) { |
2873 | StreamString s; |
2874 | ProcessInstanceInfo::DumpTableHeader(s, show_args: true, verbose: false); |
2875 | for (size_t i = 0; i < num_matches; i++) { |
2876 | process_infos[i].DumpAsTableRow( |
2877 | s, resolver&: platform_sp->GetUserIDResolver(), show_args: true, verbose: false); |
2878 | } |
2879 | error.SetErrorStringWithFormat( |
2880 | "more than one process named %s:\n%s" , process_name, |
2881 | s.GetData()); |
2882 | } else |
2883 | error.SetErrorStringWithFormat( |
2884 | "could not find a process named %s" , process_name); |
2885 | } |
2886 | } else { |
2887 | error.SetErrorString( |
2888 | "invalid platform, can't find processes by name" ); |
2889 | return error; |
2890 | } |
2891 | } |
2892 | } else { |
2893 | error.SetErrorString("invalid process name" ); |
2894 | } |
2895 | } |
2896 | |
2897 | if (attach_pid != LLDB_INVALID_PROCESS_ID) { |
2898 | error = WillAttachToProcessWithID(pid: attach_pid); |
2899 | if (error.Success()) { |
2900 | |
2901 | if (m_public_run_lock.TrySetRunning()) { |
2902 | // Now attach using these arguments. |
2903 | m_should_detach = true; |
2904 | const bool restarted = false; |
2905 | SetPublicState(new_state: eStateAttaching, restarted); |
2906 | error = DoAttachToProcessWithID(pid: attach_pid, attach_info); |
2907 | } else { |
2908 | // This shouldn't happen |
2909 | error.SetErrorString("failed to acquire process run lock" ); |
2910 | } |
2911 | |
2912 | if (error.Success()) { |
2913 | SetNextEventAction(new Process::AttachCompletionHandler( |
2914 | this, attach_info.GetResumeCount())); |
2915 | StartPrivateStateThread(); |
2916 | } else { |
2917 | if (GetID() != LLDB_INVALID_PROCESS_ID) |
2918 | SetID(LLDB_INVALID_PROCESS_ID); |
2919 | |
2920 | const char *error_string = error.AsCString(); |
2921 | if (error_string == nullptr) |
2922 | error_string = "attach failed" ; |
2923 | |
2924 | SetExitStatus(status: -1, exit_string: error_string); |
2925 | } |
2926 | } |
2927 | } |
2928 | return error; |
2929 | } |
2930 | |
2931 | void Process::CompleteAttach() { |
2932 | Log *log(GetLog(mask: LLDBLog::Process | LLDBLog::Target)); |
2933 | LLDB_LOGF(log, "Process::%s()" , __FUNCTION__); |
2934 | |
2935 | // Let the process subclass figure out at much as it can about the process |
2936 | // before we go looking for a dynamic loader plug-in. |
2937 | ArchSpec process_arch; |
2938 | DidAttach(process_arch); |
2939 | |
2940 | if (process_arch.IsValid()) { |
2941 | LLDB_LOG(log, |
2942 | "Process::{0} replacing process architecture with DidAttach() " |
2943 | "architecture: \"{1}\"" , |
2944 | __FUNCTION__, process_arch.GetTriple().getTriple()); |
2945 | GetTarget().SetArchitecture(arch_spec: process_arch); |
2946 | } |
2947 | |
2948 | // We just attached. If we have a platform, ask it for the process |
2949 | // architecture, and if it isn't the same as the one we've already set, |
2950 | // switch architectures. |
2951 | PlatformSP platform_sp(GetTarget().GetPlatform()); |
2952 | assert(platform_sp); |
2953 | ArchSpec process_host_arch = GetSystemArchitecture(); |
2954 | if (platform_sp) { |
2955 | const ArchSpec &target_arch = GetTarget().GetArchitecture(); |
2956 | if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( |
2957 | arch: target_arch, process_host_arch, |
2958 | match: ArchSpec::CompatibleMatch, compatible_arch_ptr: nullptr)) { |
2959 | ArchSpec platform_arch; |
2960 | platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( |
2961 | arch: target_arch, process_host_arch, platform_arch_ptr: &platform_arch); |
2962 | if (platform_sp) { |
2963 | GetTarget().SetPlatform(platform_sp); |
2964 | GetTarget().SetArchitecture(arch_spec: platform_arch); |
2965 | LLDB_LOG(log, |
2966 | "switching platform to {0} and architecture to {1} based on " |
2967 | "info from attach" , |
2968 | platform_sp->GetName(), platform_arch.GetTriple().getTriple()); |
2969 | } |
2970 | } else if (!process_arch.IsValid()) { |
2971 | ProcessInstanceInfo process_info; |
2972 | GetProcessInfo(info&: process_info); |
2973 | const ArchSpec &process_arch = process_info.GetArchitecture(); |
2974 | const ArchSpec &target_arch = GetTarget().GetArchitecture(); |
2975 | if (process_arch.IsValid() && |
2976 | target_arch.IsCompatibleMatch(rhs: process_arch) && |
2977 | !target_arch.IsExactMatch(rhs: process_arch)) { |
2978 | GetTarget().SetArchitecture(arch_spec: process_arch); |
2979 | LLDB_LOGF(log, |
2980 | "Process::%s switching architecture to %s based on info " |
2981 | "the platform retrieved for pid %" PRIu64, |
2982 | __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), |
2983 | GetID()); |
2984 | } |
2985 | } |
2986 | } |
2987 | // Now that we know the process type, update its signal responses from the |
2988 | // ones stored in the Target: |
2989 | if (m_unix_signals_sp) { |
2990 | StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); |
2991 | GetTarget().UpdateSignalsFromDummy(signals_sp: m_unix_signals_sp, warning_stream_sp: warning_strm); |
2992 | } |
2993 | |
2994 | // We have completed the attach, now it is time to find the dynamic loader |
2995 | // plug-in |
2996 | DynamicLoader *dyld = GetDynamicLoader(); |
2997 | if (dyld) { |
2998 | dyld->DidAttach(); |
2999 | if (log) { |
3000 | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
3001 | LLDB_LOG(log, |
3002 | "after DynamicLoader::DidAttach(), target " |
3003 | "executable is {0} (using {1} plugin)" , |
3004 | exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), |
3005 | dyld->GetPluginName()); |
3006 | } |
3007 | } |
3008 | |
3009 | GetJITLoaders().DidAttach(); |
3010 | |
3011 | SystemRuntime *system_runtime = GetSystemRuntime(); |
3012 | if (system_runtime) { |
3013 | system_runtime->DidAttach(); |
3014 | if (log) { |
3015 | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
3016 | LLDB_LOG(log, |
3017 | "after SystemRuntime::DidAttach(), target " |
3018 | "executable is {0} (using {1} plugin)" , |
3019 | exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), |
3020 | system_runtime->GetPluginName()); |
3021 | } |
3022 | } |
3023 | |
3024 | if (!m_os_up) { |
3025 | LoadOperatingSystemPlugin(flush: false); |
3026 | if (m_os_up) { |
3027 | // Somebody might have gotten threads before now, but we need to force the |
3028 | // update after we've loaded the OperatingSystem plugin or it won't get a |
3029 | // chance to process the threads. |
3030 | m_thread_list.Clear(); |
3031 | UpdateThreadListIfNeeded(); |
3032 | } |
3033 | } |
3034 | // Figure out which one is the executable, and set that in our target: |
3035 | ModuleSP new_executable_module_sp; |
3036 | for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { |
3037 | if (module_sp && module_sp->IsExecutable()) { |
3038 | if (GetTarget().GetExecutableModulePointer() != module_sp.get()) |
3039 | new_executable_module_sp = module_sp; |
3040 | break; |
3041 | } |
3042 | } |
3043 | if (new_executable_module_sp) { |
3044 | GetTarget().SetExecutableModule(module_sp&: new_executable_module_sp, |
3045 | load_dependent_files: eLoadDependentsNo); |
3046 | if (log) { |
3047 | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
3048 | LLDB_LOGF( |
3049 | log, |
3050 | "Process::%s after looping through modules, target executable is %s" , |
3051 | __FUNCTION__, |
3052 | exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() |
3053 | : "<none>" ); |
3054 | } |
3055 | } |
3056 | } |
3057 | |
3058 | Status Process::ConnectRemote(llvm::StringRef remote_url) { |
3059 | m_abi_sp.reset(); |
3060 | { |
3061 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
3062 | m_process_input_reader.reset(); |
3063 | } |
3064 | |
3065 | // Find the process and its architecture. Make sure it matches the |
3066 | // architecture of the current Target, and if not adjust it. |
3067 | |
3068 | Status error(DoConnectRemote(remote_url)); |
3069 | if (error.Success()) { |
3070 | if (GetID() != LLDB_INVALID_PROCESS_ID) { |
3071 | EventSP event_sp; |
3072 | StateType state = WaitForProcessStopPrivate(event_sp, timeout: std::nullopt); |
3073 | |
3074 | if (state == eStateStopped || state == eStateCrashed) { |
3075 | // If we attached and actually have a process on the other end, then |
3076 | // this ended up being the equivalent of an attach. |
3077 | CompleteAttach(); |
3078 | |
3079 | // This delays passing the stopped event to listeners till |
3080 | // CompleteAttach gets a chance to complete... |
3081 | HandlePrivateEvent(event_sp); |
3082 | } |
3083 | } |
3084 | |
3085 | if (PrivateStateThreadIsValid()) |
3086 | ResumePrivateStateThread(); |
3087 | else |
3088 | StartPrivateStateThread(); |
3089 | } |
3090 | return error; |
3091 | } |
3092 | |
3093 | Status Process::PrivateResume() { |
3094 | Log *log(GetLog(mask: LLDBLog::Process | LLDBLog::Step)); |
3095 | LLDB_LOGF(log, |
3096 | "Process::PrivateResume() m_stop_id = %u, public state: %s " |
3097 | "private state: %s" , |
3098 | m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), |
3099 | StateAsCString(m_private_state.GetValue())); |
3100 | |
3101 | // If signals handing status changed we might want to update our signal |
3102 | // filters before resuming. |
3103 | UpdateAutomaticSignalFiltering(); |
3104 | |
3105 | Status error(WillResume()); |
3106 | // Tell the process it is about to resume before the thread list |
3107 | if (error.Success()) { |
3108 | // Now let the thread list know we are about to resume so it can let all of |
3109 | // our threads know that they are about to be resumed. Threads will each be |
3110 | // called with Thread::WillResume(StateType) where StateType contains the |
3111 | // state that they are supposed to have when the process is resumed |
3112 | // (suspended/running/stepping). Threads should also check their resume |
3113 | // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to |
3114 | // start back up with a signal. |
3115 | if (m_thread_list.WillResume()) { |
3116 | // Last thing, do the PreResumeActions. |
3117 | if (!RunPreResumeActions()) { |
3118 | error.SetErrorString( |
3119 | "Process::PrivateResume PreResumeActions failed, not resuming." ); |
3120 | } else { |
3121 | m_mod_id.BumpResumeID(); |
3122 | error = DoResume(); |
3123 | if (error.Success()) { |
3124 | DidResume(); |
3125 | m_thread_list.DidResume(); |
3126 | LLDB_LOGF(log, "Process thinks the process has resumed." ); |
3127 | } else { |
3128 | LLDB_LOGF(log, "Process::PrivateResume() DoResume failed." ); |
3129 | return error; |
3130 | } |
3131 | } |
3132 | } else { |
3133 | // Somebody wanted to run without running (e.g. we were faking a step |
3134 | // from one frame of a set of inlined frames that share the same PC to |
3135 | // another.) So generate a continue & a stopped event, and let the world |
3136 | // handle them. |
3137 | LLDB_LOGF(log, |
3138 | "Process::PrivateResume() asked to simulate a start & stop." ); |
3139 | |
3140 | SetPrivateState(eStateRunning); |
3141 | SetPrivateState(eStateStopped); |
3142 | } |
3143 | } else |
3144 | LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\"." , |
3145 | error.AsCString("<unknown error>" )); |
3146 | return error; |
3147 | } |
3148 | |
3149 | Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { |
3150 | if (!StateIsRunningState(state: m_public_state.GetValue())) |
3151 | return Status("Process is not running." ); |
3152 | |
3153 | // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in |
3154 | // case it was already set and some thread plan logic calls halt on its own. |
3155 | m_clear_thread_plans_on_stop |= clear_thread_plans; |
3156 | |
3157 | ListenerSP halt_listener_sp( |
3158 | Listener::MakeListener(name: "lldb.process.halt_listener" )); |
3159 | HijackProcessEvents(listener_sp: halt_listener_sp); |
3160 | |
3161 | EventSP event_sp; |
3162 | |
3163 | SendAsyncInterrupt(); |
3164 | |
3165 | if (m_public_state.GetValue() == eStateAttaching) { |
3166 | // Don't hijack and eat the eStateExited as the code that was doing the |
3167 | // attach will be waiting for this event... |
3168 | RestoreProcessEvents(); |
3169 | Destroy(force_kill: false); |
3170 | SetExitStatus(SIGKILL, exit_string: "Cancelled async attach." ); |
3171 | return Status(); |
3172 | } |
3173 | |
3174 | // Wait for the process halt timeout seconds for the process to stop. |
3175 | // If we are going to use the run lock, that means we're stopping out to the |
3176 | // user, so we should also select the most relevant frame. |
3177 | SelectMostRelevant select_most_relevant = |
3178 | use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; |
3179 | StateType state = WaitForProcessToStop(timeout: GetInterruptTimeout(), event_sp_ptr: &event_sp, wait_always: true, |
3180 | hijack_listener_sp: halt_listener_sp, stream: nullptr, |
3181 | use_run_lock, select_most_relevant); |
3182 | RestoreProcessEvents(); |
3183 | |
3184 | if (state == eStateInvalid || !event_sp) { |
3185 | // We timed out and didn't get a stop event... |
3186 | return Status("Halt timed out. State = %s" , StateAsCString(state: GetState())); |
3187 | } |
3188 | |
3189 | BroadcastEvent(event_sp); |
3190 | |
3191 | return Status(); |
3192 | } |
3193 | |
3194 | Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { |
3195 | Status error; |
3196 | |
3197 | // Check both the public & private states here. If we're hung evaluating an |
3198 | // expression, for instance, then the public state will be stopped, but we |
3199 | // still need to interrupt. |
3200 | if (m_public_state.GetValue() == eStateRunning || |
3201 | m_private_state.GetValue() == eStateRunning) { |
3202 | Log *log = GetLog(mask: LLDBLog::Process); |
3203 | LLDB_LOGF(log, "Process::%s() About to stop." , __FUNCTION__); |
3204 | |
3205 | ListenerSP listener_sp( |
3206 | Listener::MakeListener(name: "lldb.Process.StopForDestroyOrDetach.hijack" )); |
3207 | HijackProcessEvents(listener_sp); |
3208 | |
3209 | SendAsyncInterrupt(); |
3210 | |
3211 | // Consume the interrupt event. |
3212 | StateType state = WaitForProcessToStop(timeout: GetInterruptTimeout(), |
3213 | event_sp_ptr: &exit_event_sp, wait_always: true, hijack_listener_sp: listener_sp); |
3214 | |
3215 | RestoreProcessEvents(); |
3216 | |
3217 | // If the process exited while we were waiting for it to stop, put the |
3218 | // exited event into the shared pointer passed in and return. Our caller |
3219 | // doesn't need to do anything else, since they don't have a process |
3220 | // anymore... |
3221 | |
3222 | if (state == eStateExited || m_private_state.GetValue() == eStateExited) { |
3223 | LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop." , |
3224 | __FUNCTION__); |
3225 | return error; |
3226 | } else |
3227 | exit_event_sp.reset(); // It is ok to consume any non-exit stop events |
3228 | |
3229 | if (state != eStateStopped) { |
3230 | LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s" , __FUNCTION__, |
3231 | StateAsCString(state)); |
3232 | // If we really couldn't stop the process then we should just error out |
3233 | // here, but if the lower levels just bobbled sending the event and we |
3234 | // really are stopped, then continue on. |
3235 | StateType private_state = m_private_state.GetValue(); |
3236 | if (private_state != eStateStopped) { |
3237 | return Status( |
3238 | "Attempt to stop the target in order to detach timed out. " |
3239 | "State = %s" , |
3240 | StateAsCString(state: GetState())); |
3241 | } |
3242 | } |
3243 | } |
3244 | return error; |
3245 | } |
3246 | |
3247 | Status Process::Detach(bool keep_stopped) { |
3248 | EventSP exit_event_sp; |
3249 | Status error; |
3250 | m_destroy_in_process = true; |
3251 | |
3252 | error = WillDetach(); |
3253 | |
3254 | if (error.Success()) { |
3255 | if (DetachRequiresHalt()) { |
3256 | error = StopForDestroyOrDetach(exit_event_sp); |
3257 | if (!error.Success()) { |
3258 | m_destroy_in_process = false; |
3259 | return error; |
3260 | } else if (exit_event_sp) { |
3261 | // We shouldn't need to do anything else here. There's no process left |
3262 | // to detach from... |
3263 | StopPrivateStateThread(); |
3264 | m_destroy_in_process = false; |
3265 | return error; |
3266 | } |
3267 | } |
3268 | |
3269 | m_thread_list.DiscardThreadPlans(); |
3270 | DisableAllBreakpointSites(); |
3271 | |
3272 | error = DoDetach(keep_stopped); |
3273 | if (error.Success()) { |
3274 | DidDetach(); |
3275 | StopPrivateStateThread(); |
3276 | } else { |
3277 | return error; |
3278 | } |
3279 | } |
3280 | m_destroy_in_process = false; |
3281 | |
3282 | // If we exited when we were waiting for a process to stop, then forward the |
3283 | // event here so we don't lose the event |
3284 | if (exit_event_sp) { |
3285 | // Directly broadcast our exited event because we shut down our private |
3286 | // state thread above |
3287 | BroadcastEvent(event_sp&: exit_event_sp); |
3288 | } |
3289 | |
3290 | // If we have been interrupted (to kill us) in the middle of running, we may |
3291 | // not end up propagating the last events through the event system, in which |
3292 | // case we might strand the write lock. Unlock it here so when we do to tear |
3293 | // down the process we don't get an error destroying the lock. |
3294 | |
3295 | m_public_run_lock.SetStopped(); |
3296 | return error; |
3297 | } |
3298 | |
3299 | Status Process::Destroy(bool force_kill) { |
3300 | // If we've already called Process::Finalize then there's nothing useful to |
3301 | // be done here. Finalize has actually called Destroy already. |
3302 | if (m_finalizing) |
3303 | return {}; |
3304 | return DestroyImpl(force_kill); |
3305 | } |
3306 | |
3307 | Status Process::DestroyImpl(bool force_kill) { |
3308 | // Tell ourselves we are in the process of destroying the process, so that we |
3309 | // don't do any unnecessary work that might hinder the destruction. Remember |
3310 | // to set this back to false when we are done. That way if the attempt |
3311 | // failed and the process stays around for some reason it won't be in a |
3312 | // confused state. |
3313 | |
3314 | if (force_kill) |
3315 | m_should_detach = false; |
3316 | |
3317 | if (GetShouldDetach()) { |
3318 | // FIXME: This will have to be a process setting: |
3319 | bool keep_stopped = false; |
3320 | Detach(keep_stopped); |
3321 | } |
3322 | |
3323 | m_destroy_in_process = true; |
3324 | |
3325 | Status error(WillDestroy()); |
3326 | if (error.Success()) { |
3327 | EventSP exit_event_sp; |
3328 | if (DestroyRequiresHalt()) { |
3329 | error = StopForDestroyOrDetach(exit_event_sp); |
3330 | } |
3331 | |
3332 | if (m_public_state.GetValue() == eStateStopped) { |
3333 | // Ditch all thread plans, and remove all our breakpoints: in case we |
3334 | // have to restart the target to kill it, we don't want it hitting a |
3335 | // breakpoint... Only do this if we've stopped, however, since if we |
3336 | // didn't manage to halt it above, then we're not going to have much luck |
3337 | // doing this now. |
3338 | m_thread_list.DiscardThreadPlans(); |
3339 | DisableAllBreakpointSites(); |
3340 | } |
3341 | |
3342 | error = DoDestroy(); |
3343 | if (error.Success()) { |
3344 | DidDestroy(); |
3345 | StopPrivateStateThread(); |
3346 | } |
3347 | m_stdio_communication.StopReadThread(); |
3348 | m_stdio_communication.Disconnect(); |
3349 | m_stdin_forward = false; |
3350 | |
3351 | { |
3352 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
3353 | if (m_process_input_reader) { |
3354 | m_process_input_reader->SetIsDone(true); |
3355 | m_process_input_reader->Cancel(); |
3356 | m_process_input_reader.reset(); |
3357 | } |
3358 | } |
3359 | |
3360 | // If we exited when we were waiting for a process to stop, then forward |
3361 | // the event here so we don't lose the event |
3362 | if (exit_event_sp) { |
3363 | // Directly broadcast our exited event because we shut down our private |
3364 | // state thread above |
3365 | BroadcastEvent(event_sp&: exit_event_sp); |
3366 | } |
3367 | |
3368 | // If we have been interrupted (to kill us) in the middle of running, we |
3369 | // may not end up propagating the last events through the event system, in |
3370 | // which case we might strand the write lock. Unlock it here so when we do |
3371 | // to tear down the process we don't get an error destroying the lock. |
3372 | m_public_run_lock.SetStopped(); |
3373 | } |
3374 | |
3375 | m_destroy_in_process = false; |
3376 | |
3377 | return error; |
3378 | } |
3379 | |
3380 | Status Process::Signal(int signal) { |
3381 | Status error(WillSignal()); |
3382 | if (error.Success()) { |
3383 | error = DoSignal(signal); |
3384 | if (error.Success()) |
3385 | DidSignal(); |
3386 | } |
3387 | return error; |
3388 | } |
3389 | |
3390 | void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { |
3391 | assert(signals_sp && "null signals_sp" ); |
3392 | m_unix_signals_sp = std::move(signals_sp); |
3393 | } |
3394 | |
3395 | const lldb::UnixSignalsSP &Process::GetUnixSignals() { |
3396 | assert(m_unix_signals_sp && "null m_unix_signals_sp" ); |
3397 | return m_unix_signals_sp; |
3398 | } |
3399 | |
3400 | lldb::ByteOrder Process::GetByteOrder() const { |
3401 | return GetTarget().GetArchitecture().GetByteOrder(); |
3402 | } |
3403 | |
3404 | uint32_t Process::GetAddressByteSize() const { |
3405 | return GetTarget().GetArchitecture().GetAddressByteSize(); |
3406 | } |
3407 | |
3408 | bool Process::ShouldBroadcastEvent(Event *event_ptr) { |
3409 | const StateType state = |
3410 | Process::ProcessEventData::GetStateFromEvent(event_ptr); |
3411 | bool return_value = true; |
3412 | Log *log(GetLog(mask: LLDBLog::Events | LLDBLog::Process)); |
3413 | |
3414 | switch (state) { |
3415 | case eStateDetached: |
3416 | case eStateExited: |
3417 | case eStateUnloaded: |
3418 | m_stdio_communication.SynchronizeWithReadThread(); |
3419 | m_stdio_communication.StopReadThread(); |
3420 | m_stdio_communication.Disconnect(); |
3421 | m_stdin_forward = false; |
3422 | |
3423 | [[fallthrough]]; |
3424 | case eStateConnected: |
3425 | case eStateAttaching: |
3426 | case eStateLaunching: |
3427 | // These events indicate changes in the state of the debugging session, |
3428 | // always report them. |
3429 | return_value = true; |
3430 | break; |
3431 | case eStateInvalid: |
3432 | // We stopped for no apparent reason, don't report it. |
3433 | return_value = false; |
3434 | break; |
3435 | case eStateRunning: |
3436 | case eStateStepping: |
3437 | // If we've started the target running, we handle the cases where we are |
3438 | // already running and where there is a transition from stopped to running |
3439 | // differently. running -> running: Automatically suppress extra running |
3440 | // events stopped -> running: Report except when there is one or more no |
3441 | // votes |
3442 | // and no yes votes. |
3443 | SynchronouslyNotifyStateChanged(state); |
3444 | if (m_force_next_event_delivery) |
3445 | return_value = true; |
3446 | else { |
3447 | switch (m_last_broadcast_state) { |
3448 | case eStateRunning: |
3449 | case eStateStepping: |
3450 | // We always suppress multiple runnings with no PUBLIC stop in between. |
3451 | return_value = false; |
3452 | break; |
3453 | default: |
3454 | // TODO: make this work correctly. For now always report |
3455 | // run if we aren't running so we don't miss any running events. If I |
3456 | // run the lldb/test/thread/a.out file and break at main.cpp:58, run |
3457 | // and hit the breakpoints on multiple threads, then somehow during the |
3458 | // stepping over of all breakpoints no run gets reported. |
3459 | |
3460 | // This is a transition from stop to run. |
3461 | switch (m_thread_list.ShouldReportRun(event_ptr)) { |
3462 | case eVoteYes: |
3463 | case eVoteNoOpinion: |
3464 | return_value = true; |
3465 | break; |
3466 | case eVoteNo: |
3467 | return_value = false; |
3468 | break; |
3469 | } |
3470 | break; |
3471 | } |
3472 | } |
3473 | break; |
3474 | case eStateStopped: |
3475 | case eStateCrashed: |
3476 | case eStateSuspended: |
3477 | // We've stopped. First see if we're going to restart the target. If we |
3478 | // are going to stop, then we always broadcast the event. If we aren't |
3479 | // going to stop, let the thread plans decide if we're going to report this |
3480 | // event. If no thread has an opinion, we don't report it. |
3481 | |
3482 | m_stdio_communication.SynchronizeWithReadThread(); |
3483 | RefreshStateAfterStop(); |
3484 | if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { |
3485 | LLDB_LOGF(log, |
3486 | "Process::ShouldBroadcastEvent (%p) stopped due to an " |
3487 | "interrupt, state: %s" , |
3488 | static_cast<void *>(event_ptr), StateAsCString(state)); |
3489 | // Even though we know we are going to stop, we should let the threads |
3490 | // have a look at the stop, so they can properly set their state. |
3491 | m_thread_list.ShouldStop(event_ptr); |
3492 | return_value = true; |
3493 | } else { |
3494 | bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); |
3495 | bool should_resume = false; |
3496 | |
3497 | // It makes no sense to ask "ShouldStop" if we've already been |
3498 | // restarted... Asking the thread list is also not likely to go well, |
3499 | // since we are running again. So in that case just report the event. |
3500 | |
3501 | if (!was_restarted) |
3502 | should_resume = !m_thread_list.ShouldStop(event_ptr); |
3503 | |
3504 | if (was_restarted || should_resume || m_resume_requested) { |
3505 | Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); |
3506 | LLDB_LOGF(log, |
3507 | "Process::ShouldBroadcastEvent: should_resume: %i state: " |
3508 | "%s was_restarted: %i report_stop_vote: %d." , |
3509 | should_resume, StateAsCString(state), was_restarted, |
3510 | report_stop_vote); |
3511 | |
3512 | switch (report_stop_vote) { |
3513 | case eVoteYes: |
3514 | return_value = true; |
3515 | break; |
3516 | case eVoteNoOpinion: |
3517 | case eVoteNo: |
3518 | return_value = false; |
3519 | break; |
3520 | } |
3521 | |
3522 | if (!was_restarted) { |
3523 | LLDB_LOGF(log, |
3524 | "Process::ShouldBroadcastEvent (%p) Restarting process " |
3525 | "from state: %s" , |
3526 | static_cast<void *>(event_ptr), StateAsCString(state)); |
3527 | ProcessEventData::SetRestartedInEvent(event_ptr, new_value: true); |
3528 | PrivateResume(); |
3529 | } |
3530 | } else { |
3531 | return_value = true; |
3532 | SynchronouslyNotifyStateChanged(state); |
3533 | } |
3534 | } |
3535 | break; |
3536 | } |
3537 | |
3538 | // Forcing the next event delivery is a one shot deal. So reset it here. |
3539 | m_force_next_event_delivery = false; |
3540 | |
3541 | // We do some coalescing of events (for instance two consecutive running |
3542 | // events get coalesced.) But we only coalesce against events we actually |
3543 | // broadcast. So we use m_last_broadcast_state to track that. NB - you |
3544 | // can't use "m_public_state.GetValue()" for that purpose, as was originally |
3545 | // done, because the PublicState reflects the last event pulled off the |
3546 | // queue, and there may be several events stacked up on the queue unserviced. |
3547 | // So the PublicState may not reflect the last broadcasted event yet. |
3548 | // m_last_broadcast_state gets updated here. |
3549 | |
3550 | if (return_value) |
3551 | m_last_broadcast_state = state; |
3552 | |
3553 | LLDB_LOGF(log, |
3554 | "Process::ShouldBroadcastEvent (%p) => new state: %s, last " |
3555 | "broadcast state: %s - %s" , |
3556 | static_cast<void *>(event_ptr), StateAsCString(state), |
3557 | StateAsCString(m_last_broadcast_state), |
3558 | return_value ? "YES" : "NO" ); |
3559 | return return_value; |
3560 | } |
3561 | |
3562 | bool Process::StartPrivateStateThread(bool is_secondary_thread) { |
3563 | Log *log = GetLog(mask: LLDBLog::Events); |
3564 | |
3565 | bool already_running = PrivateStateThreadIsValid(); |
3566 | LLDB_LOGF(log, "Process::%s()%s " , __FUNCTION__, |
3567 | already_running ? " already running" |
3568 | : " starting private state thread" ); |
3569 | |
3570 | if (!is_secondary_thread && already_running) |
3571 | return true; |
3572 | |
3573 | // Create a thread that watches our internal state and controls which events |
3574 | // make it to clients (into the DCProcess event queue). |
3575 | char thread_name[1024]; |
3576 | uint32_t max_len = llvm::get_max_thread_name_length(); |
3577 | if (max_len > 0 && max_len <= 30) { |
3578 | // On platforms with abbreviated thread name lengths, choose thread names |
3579 | // that fit within the limit. |
3580 | if (already_running) |
3581 | snprintf(s: thread_name, maxlen: sizeof(thread_name), format: "intern-state-OV" ); |
3582 | else |
3583 | snprintf(s: thread_name, maxlen: sizeof(thread_name), format: "intern-state" ); |
3584 | } else { |
3585 | if (already_running) |
3586 | snprintf(s: thread_name, maxlen: sizeof(thread_name), |
3587 | format: "<lldb.process.internal-state-override(pid=%" PRIu64 ")>" , |
3588 | GetID()); |
3589 | else |
3590 | snprintf(s: thread_name, maxlen: sizeof(thread_name), |
3591 | format: "<lldb.process.internal-state(pid=%" PRIu64 ")>" , GetID()); |
3592 | } |
3593 | |
3594 | llvm::Expected<HostThread> private_state_thread = |
3595 | ThreadLauncher::LaunchThread( |
3596 | name: thread_name, |
3597 | thread_function: [this, is_secondary_thread] { |
3598 | return RunPrivateStateThread(is_secondary_thread); |
3599 | }, |
3600 | min_stack_byte_size: 8 * 1024 * 1024); |
3601 | if (!private_state_thread) { |
3602 | LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), |
3603 | "failed to launch host thread: {0}" ); |
3604 | return false; |
3605 | } |
3606 | |
3607 | assert(private_state_thread->IsJoinable()); |
3608 | m_private_state_thread = *private_state_thread; |
3609 | ResumePrivateStateThread(); |
3610 | return true; |
3611 | } |
3612 | |
3613 | void Process::PausePrivateStateThread() { |
3614 | ControlPrivateStateThread(signal: eBroadcastInternalStateControlPause); |
3615 | } |
3616 | |
3617 | void Process::ResumePrivateStateThread() { |
3618 | ControlPrivateStateThread(signal: eBroadcastInternalStateControlResume); |
3619 | } |
3620 | |
3621 | void Process::StopPrivateStateThread() { |
3622 | if (m_private_state_thread.IsJoinable()) |
3623 | ControlPrivateStateThread(signal: eBroadcastInternalStateControlStop); |
3624 | else { |
3625 | Log *log = GetLog(mask: LLDBLog::Process); |
3626 | LLDB_LOGF( |
3627 | log, |
3628 | "Went to stop the private state thread, but it was already invalid." ); |
3629 | } |
3630 | } |
3631 | |
3632 | void Process::ControlPrivateStateThread(uint32_t signal) { |
3633 | Log *log = GetLog(mask: LLDBLog::Process); |
3634 | |
3635 | assert(signal == eBroadcastInternalStateControlStop || |
3636 | signal == eBroadcastInternalStateControlPause || |
3637 | signal == eBroadcastInternalStateControlResume); |
3638 | |
3639 | LLDB_LOGF(log, "Process::%s (signal = %d)" , __FUNCTION__, signal); |
3640 | |
3641 | // Signal the private state thread |
3642 | if (m_private_state_thread.IsJoinable()) { |
3643 | // Broadcast the event. |
3644 | // It is important to do this outside of the if below, because it's |
3645 | // possible that the thread state is invalid but that the thread is waiting |
3646 | // on a control event instead of simply being on its way out (this should |
3647 | // not happen, but it apparently can). |
3648 | LLDB_LOGF(log, "Sending control event of type: %d." , signal); |
3649 | std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); |
3650 | m_private_state_control_broadcaster.BroadcastEvent(event_type: signal, |
3651 | event_data_sp: event_receipt_sp); |
3652 | |
3653 | // Wait for the event receipt or for the private state thread to exit |
3654 | bool receipt_received = false; |
3655 | if (PrivateStateThreadIsValid()) { |
3656 | while (!receipt_received) { |
3657 | // Check for a receipt for n seconds and then check if the private |
3658 | // state thread is still around. |
3659 | receipt_received = |
3660 | event_receipt_sp->WaitForEventReceived(timeout: GetUtilityExpressionTimeout()); |
3661 | if (!receipt_received) { |
3662 | // Check if the private state thread is still around. If it isn't |
3663 | // then we are done waiting |
3664 | if (!PrivateStateThreadIsValid()) |
3665 | break; // Private state thread exited or is exiting, we are done |
3666 | } |
3667 | } |
3668 | } |
3669 | |
3670 | if (signal == eBroadcastInternalStateControlStop) { |
3671 | thread_result_t result = {}; |
3672 | m_private_state_thread.Join(result: &result); |
3673 | m_private_state_thread.Reset(); |
3674 | } |
3675 | } else { |
3676 | LLDB_LOGF( |
3677 | log, |
3678 | "Private state thread already dead, no need to signal it to stop." ); |
3679 | } |
3680 | } |
3681 | |
3682 | void Process::SendAsyncInterrupt() { |
3683 | if (PrivateStateThreadIsValid()) |
3684 | m_private_state_broadcaster.BroadcastEvent(event_type: Process::eBroadcastBitInterrupt, |
3685 | event_data_sp: nullptr); |
3686 | else |
3687 | BroadcastEvent(event_type: Process::eBroadcastBitInterrupt, event_data_sp: nullptr); |
3688 | } |
3689 | |
3690 | void Process::HandlePrivateEvent(EventSP &event_sp) { |
3691 | Log *log = GetLog(mask: LLDBLog::Process); |
3692 | m_resume_requested = false; |
3693 | |
3694 | const StateType new_state = |
3695 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
3696 | |
3697 | // First check to see if anybody wants a shot at this event: |
3698 | if (m_next_event_action_up) { |
3699 | NextEventAction::EventActionResult action_result = |
3700 | m_next_event_action_up->PerformAction(event_sp); |
3701 | LLDB_LOGF(log, "Ran next event action, result was %d." , action_result); |
3702 | |
3703 | switch (action_result) { |
3704 | case NextEventAction::eEventActionSuccess: |
3705 | SetNextEventAction(nullptr); |
3706 | break; |
3707 | |
3708 | case NextEventAction::eEventActionRetry: |
3709 | break; |
3710 | |
3711 | case NextEventAction::eEventActionExit: |
3712 | // Handle Exiting Here. If we already got an exited event, we should |
3713 | // just propagate it. Otherwise, swallow this event, and set our state |
3714 | // to exit so the next event will kill us. |
3715 | if (new_state != eStateExited) { |
3716 | // FIXME: should cons up an exited event, and discard this one. |
3717 | SetExitStatus(status: 0, exit_string: m_next_event_action_up->GetExitString()); |
3718 | SetNextEventAction(nullptr); |
3719 | return; |
3720 | } |
3721 | SetNextEventAction(nullptr); |
3722 | break; |
3723 | } |
3724 | } |
3725 | |
3726 | // See if we should broadcast this state to external clients? |
3727 | const bool should_broadcast = ShouldBroadcastEvent(event_ptr: event_sp.get()); |
3728 | |
3729 | if (should_broadcast) { |
3730 | const bool is_hijacked = IsHijackedForEvent(event_mask: eBroadcastBitStateChanged); |
3731 | if (log) { |
3732 | LLDB_LOGF(log, |
3733 | "Process::%s (pid = %" PRIu64 |
3734 | ") broadcasting new state %s (old state %s) to %s" , |
3735 | __FUNCTION__, GetID(), StateAsCString(new_state), |
3736 | StateAsCString(GetState()), |
3737 | is_hijacked ? "hijacked" : "public" ); |
3738 | } |
3739 | Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); |
3740 | if (StateIsRunningState(state: new_state)) { |
3741 | // Only push the input handler if we aren't fowarding events, as this |
3742 | // means the curses GUI is in use... Or don't push it if we are launching |
3743 | // since it will come up stopped. |
3744 | if (!GetTarget().GetDebugger().IsForwardingEvents() && |
3745 | new_state != eStateLaunching && new_state != eStateAttaching) { |
3746 | PushProcessIOHandler(); |
3747 | m_iohandler_sync.SetValue(value: m_iohandler_sync.GetValue() + 1, |
3748 | broadcast_type: eBroadcastAlways); |
3749 | LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d" , |
3750 | __FUNCTION__, m_iohandler_sync.GetValue()); |
3751 | } |
3752 | } else if (StateIsStoppedState(state: new_state, must_exist: false)) { |
3753 | if (!Process::ProcessEventData::GetRestartedFromEvent(event_ptr: event_sp.get())) { |
3754 | // If the lldb_private::Debugger is handling the events, we don't want |
3755 | // to pop the process IOHandler here, we want to do it when we receive |
3756 | // the stopped event so we can carefully control when the process |
3757 | // IOHandler is popped because when we stop we want to display some |
3758 | // text stating how and why we stopped, then maybe some |
3759 | // process/thread/frame info, and then we want the "(lldb) " prompt to |
3760 | // show up. If we pop the process IOHandler here, then we will cause |
3761 | // the command interpreter to become the top IOHandler after the |
3762 | // process pops off and it will update its prompt right away... See the |
3763 | // Debugger.cpp file where it calls the function as |
3764 | // "process_sp->PopProcessIOHandler()" to see where I am talking about. |
3765 | // Otherwise we end up getting overlapping "(lldb) " prompts and |
3766 | // garbled output. |
3767 | // |
3768 | // If we aren't handling the events in the debugger (which is indicated |
3769 | // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or |
3770 | // we are hijacked, then we always pop the process IO handler manually. |
3771 | // Hijacking happens when the internal process state thread is running |
3772 | // thread plans, or when commands want to run in synchronous mode and |
3773 | // they call "process->WaitForProcessToStop()". An example of something |
3774 | // that will hijack the events is a simple expression: |
3775 | // |
3776 | // (lldb) expr (int)puts("hello") |
3777 | // |
3778 | // This will cause the internal process state thread to resume and halt |
3779 | // the process (and _it_ will hijack the eBroadcastBitStateChanged |
3780 | // events) and we do need the IO handler to be pushed and popped |
3781 | // correctly. |
3782 | |
3783 | if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) |
3784 | PopProcessIOHandler(); |
3785 | } |
3786 | } |
3787 | |
3788 | BroadcastEvent(event_sp); |
3789 | } else { |
3790 | if (log) { |
3791 | LLDB_LOGF( |
3792 | log, |
3793 | "Process::%s (pid = %" PRIu64 |
3794 | ") suppressing state %s (old state %s): should_broadcast == false" , |
3795 | __FUNCTION__, GetID(), StateAsCString(new_state), |
3796 | StateAsCString(GetState())); |
3797 | } |
3798 | } |
3799 | } |
3800 | |
3801 | Status Process::HaltPrivate() { |
3802 | EventSP event_sp; |
3803 | Status error(WillHalt()); |
3804 | if (error.Fail()) |
3805 | return error; |
3806 | |
3807 | // Ask the process subclass to actually halt our process |
3808 | bool caused_stop; |
3809 | error = DoHalt(caused_stop); |
3810 | |
3811 | DidHalt(); |
3812 | return error; |
3813 | } |
3814 | |
3815 | thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { |
3816 | bool control_only = true; |
3817 | |
3818 | Log *log = GetLog(mask: LLDBLog::Process); |
3819 | LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting..." , |
3820 | __FUNCTION__, static_cast<void *>(this), GetID()); |
3821 | |
3822 | bool exit_now = false; |
3823 | bool interrupt_requested = false; |
3824 | while (!exit_now) { |
3825 | EventSP event_sp; |
3826 | GetEventsPrivate(event_sp, timeout: std::nullopt, control_only); |
3827 | if (event_sp->BroadcasterIs(broadcaster: &m_private_state_control_broadcaster)) { |
3828 | LLDB_LOGF(log, |
3829 | "Process::%s (arg = %p, pid = %" PRIu64 |
3830 | ") got a control event: %d" , |
3831 | __FUNCTION__, static_cast<void *>(this), GetID(), |
3832 | event_sp->GetType()); |
3833 | |
3834 | switch (event_sp->GetType()) { |
3835 | case eBroadcastInternalStateControlStop: |
3836 | exit_now = true; |
3837 | break; // doing any internal state management below |
3838 | |
3839 | case eBroadcastInternalStateControlPause: |
3840 | control_only = true; |
3841 | break; |
3842 | |
3843 | case eBroadcastInternalStateControlResume: |
3844 | control_only = false; |
3845 | break; |
3846 | } |
3847 | |
3848 | continue; |
3849 | } else if (event_sp->GetType() == eBroadcastBitInterrupt) { |
3850 | if (m_public_state.GetValue() == eStateAttaching) { |
3851 | LLDB_LOGF(log, |
3852 | "Process::%s (arg = %p, pid = %" PRIu64 |
3853 | ") woke up with an interrupt while attaching - " |
3854 | "forwarding interrupt." , |
3855 | __FUNCTION__, static_cast<void *>(this), GetID()); |
3856 | // The server may be spinning waiting for a process to appear, in which |
3857 | // case we should tell it to stop doing that. Normally, we don't NEED |
3858 | // to do that because we will next close the communication to the stub |
3859 | // and that will get it to shut down. But there are remote debugging |
3860 | // cases where relying on that side-effect causes the shutdown to be |
3861 | // flakey, so we should send a positive signal to interrupt the wait. |
3862 | Status error = HaltPrivate(); |
3863 | BroadcastEvent(event_type: eBroadcastBitInterrupt, event_data_sp: nullptr); |
3864 | } else if (StateIsRunningState(state: m_last_broadcast_state)) { |
3865 | LLDB_LOGF(log, |
3866 | "Process::%s (arg = %p, pid = %" PRIu64 |
3867 | ") woke up with an interrupt - Halting." , |
3868 | __FUNCTION__, static_cast<void *>(this), GetID()); |
3869 | Status error = HaltPrivate(); |
3870 | if (error.Fail() && log) |
3871 | LLDB_LOGF(log, |
3872 | "Process::%s (arg = %p, pid = %" PRIu64 |
3873 | ") failed to halt the process: %s" , |
3874 | __FUNCTION__, static_cast<void *>(this), GetID(), |
3875 | error.AsCString()); |
3876 | // Halt should generate a stopped event. Make a note of the fact that |
3877 | // we were doing the interrupt, so we can set the interrupted flag |
3878 | // after we receive the event. We deliberately set this to true even if |
3879 | // HaltPrivate failed, so that we can interrupt on the next natural |
3880 | // stop. |
3881 | interrupt_requested = true; |
3882 | } else { |
3883 | // This can happen when someone (e.g. Process::Halt) sees that we are |
3884 | // running and sends an interrupt request, but the process actually |
3885 | // stops before we receive it. In that case, we can just ignore the |
3886 | // request. We use m_last_broadcast_state, because the Stopped event |
3887 | // may not have been popped of the event queue yet, which is when the |
3888 | // public state gets updated. |
3889 | LLDB_LOGF(log, |
3890 | "Process::%s ignoring interrupt as we have already stopped." , |
3891 | __FUNCTION__); |
3892 | } |
3893 | continue; |
3894 | } |
3895 | |
3896 | const StateType internal_state = |
3897 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
3898 | |
3899 | if (internal_state != eStateInvalid) { |
3900 | if (m_clear_thread_plans_on_stop && |
3901 | StateIsStoppedState(state: internal_state, must_exist: true)) { |
3902 | m_clear_thread_plans_on_stop = false; |
3903 | m_thread_list.DiscardThreadPlans(); |
3904 | } |
3905 | |
3906 | if (interrupt_requested) { |
3907 | if (StateIsStoppedState(state: internal_state, must_exist: true)) { |
3908 | // We requested the interrupt, so mark this as such in the stop event |
3909 | // so clients can tell an interrupted process from a natural stop |
3910 | ProcessEventData::SetInterruptedInEvent(event_ptr: event_sp.get(), new_value: true); |
3911 | interrupt_requested = false; |
3912 | } else if (log) { |
3913 | LLDB_LOGF(log, |
3914 | "Process::%s interrupt_requested, but a non-stopped " |
3915 | "state '%s' received." , |
3916 | __FUNCTION__, StateAsCString(internal_state)); |
3917 | } |
3918 | } |
3919 | |
3920 | HandlePrivateEvent(event_sp); |
3921 | } |
3922 | |
3923 | if (internal_state == eStateInvalid || internal_state == eStateExited || |
3924 | internal_state == eStateDetached) { |
3925 | LLDB_LOGF(log, |
3926 | "Process::%s (arg = %p, pid = %" PRIu64 |
3927 | ") about to exit with internal state %s..." , |
3928 | __FUNCTION__, static_cast<void *>(this), GetID(), |
3929 | StateAsCString(internal_state)); |
3930 | |
3931 | break; |
3932 | } |
3933 | } |
3934 | |
3935 | // Verify log is still enabled before attempting to write to it... |
3936 | LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting..." , |
3937 | __FUNCTION__, static_cast<void *>(this), GetID()); |
3938 | |
3939 | // If we are a secondary thread, then the primary thread we are working for |
3940 | // will have already acquired the public_run_lock, and isn't done with what |
3941 | // it was doing yet, so don't try to change it on the way out. |
3942 | if (!is_secondary_thread) |
3943 | m_public_run_lock.SetStopped(); |
3944 | return {}; |
3945 | } |
3946 | |
3947 | // Process Event Data |
3948 | |
3949 | Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} |
3950 | |
3951 | Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, |
3952 | StateType state) |
3953 | : EventData(), m_process_wp(), m_state(state) { |
3954 | if (process_sp) |
3955 | m_process_wp = process_sp; |
3956 | } |
3957 | |
3958 | Process::ProcessEventData::~ProcessEventData() = default; |
3959 | |
3960 | llvm::StringRef Process::ProcessEventData::GetFlavorString() { |
3961 | return "Process::ProcessEventData" ; |
3962 | } |
3963 | |
3964 | llvm::StringRef Process::ProcessEventData::GetFlavor() const { |
3965 | return ProcessEventData::GetFlavorString(); |
3966 | } |
3967 | |
3968 | bool Process::ProcessEventData::ShouldStop(Event *event_ptr, |
3969 | bool &found_valid_stopinfo) { |
3970 | found_valid_stopinfo = false; |
3971 | |
3972 | ProcessSP process_sp(m_process_wp.lock()); |
3973 | if (!process_sp) |
3974 | return false; |
3975 | |
3976 | ThreadList &curr_thread_list = process_sp->GetThreadList(); |
3977 | uint32_t num_threads = curr_thread_list.GetSize(); |
3978 | uint32_t idx; |
3979 | |
3980 | // The actions might change one of the thread's stop_info's opinions about |
3981 | // whether we should stop the process, so we need to query that as we go. |
3982 | |
3983 | // One other complication here, is that we try to catch any case where the |
3984 | // target has run (except for expressions) and immediately exit, but if we |
3985 | // get that wrong (which is possible) then the thread list might have |
3986 | // changed, and that would cause our iteration here to crash. We could |
3987 | // make a copy of the thread list, but we'd really like to also know if it |
3988 | // has changed at all, so we make up a vector of the thread ID's and check |
3989 | // what we get back against this list & bag out if anything differs. |
3990 | ThreadList not_suspended_thread_list(process_sp.get()); |
3991 | std::vector<uint32_t> thread_index_array(num_threads); |
3992 | uint32_t not_suspended_idx = 0; |
3993 | for (idx = 0; idx < num_threads; ++idx) { |
3994 | lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); |
3995 | |
3996 | /* |
3997 | Filter out all suspended threads, they could not be the reason |
3998 | of stop and no need to perform any actions on them. |
3999 | */ |
4000 | if (thread_sp->GetResumeState() != eStateSuspended) { |
4001 | not_suspended_thread_list.AddThread(thread_sp); |
4002 | thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); |
4003 | not_suspended_idx++; |
4004 | } |
4005 | } |
4006 | |
4007 | // Use this to track whether we should continue from here. We will only |
4008 | // continue the target running if no thread says we should stop. Of course |
4009 | // if some thread's PerformAction actually sets the target running, then it |
4010 | // doesn't matter what the other threads say... |
4011 | |
4012 | bool still_should_stop = false; |
4013 | |
4014 | // Sometimes - for instance if we have a bug in the stub we are talking to, |
4015 | // we stop but no thread has a valid stop reason. In that case we should |
4016 | // just stop, because we have no way of telling what the right thing to do |
4017 | // is, and it's better to let the user decide than continue behind their |
4018 | // backs. |
4019 | |
4020 | for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { |
4021 | curr_thread_list = process_sp->GetThreadList(); |
4022 | if (curr_thread_list.GetSize() != num_threads) { |
4023 | Log *log(GetLog(mask: LLDBLog::Step | LLDBLog::Process)); |
4024 | LLDB_LOGF( |
4025 | log, |
4026 | "Number of threads changed from %u to %u while processing event." , |
4027 | num_threads, curr_thread_list.GetSize()); |
4028 | break; |
4029 | } |
4030 | |
4031 | lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); |
4032 | |
4033 | if (thread_sp->GetIndexID() != thread_index_array[idx]) { |
4034 | Log *log(GetLog(mask: LLDBLog::Step | LLDBLog::Process)); |
4035 | LLDB_LOGF(log, |
4036 | "The thread at position %u changed from %u to %u while " |
4037 | "processing event." , |
4038 | idx, thread_index_array[idx], thread_sp->GetIndexID()); |
4039 | break; |
4040 | } |
4041 | |
4042 | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
4043 | if (stop_info_sp && stop_info_sp->IsValid()) { |
4044 | found_valid_stopinfo = true; |
4045 | bool this_thread_wants_to_stop; |
4046 | if (stop_info_sp->GetOverrideShouldStop()) { |
4047 | this_thread_wants_to_stop = |
4048 | stop_info_sp->GetOverriddenShouldStopValue(); |
4049 | } else { |
4050 | stop_info_sp->PerformAction(event_ptr); |
4051 | // The stop action might restart the target. If it does, then we |
4052 | // want to mark that in the event so that whoever is receiving it |
4053 | // will know to wait for the running event and reflect that state |
4054 | // appropriately. We also need to stop processing actions, since they |
4055 | // aren't expecting the target to be running. |
4056 | |
4057 | // FIXME: we might have run. |
4058 | if (stop_info_sp->HasTargetRunSinceMe()) { |
4059 | SetRestarted(true); |
4060 | break; |
4061 | } |
4062 | |
4063 | this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); |
4064 | } |
4065 | |
4066 | if (!still_should_stop) |
4067 | still_should_stop = this_thread_wants_to_stop; |
4068 | } |
4069 | } |
4070 | |
4071 | return still_should_stop; |
4072 | } |
4073 | |
4074 | void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { |
4075 | ProcessSP process_sp(m_process_wp.lock()); |
4076 | |
4077 | if (!process_sp) |
4078 | return; |
4079 | |
4080 | // This function gets called twice for each event, once when the event gets |
4081 | // pulled off of the private process event queue, and then any number of |
4082 | // times, first when it gets pulled off of the public event queue, then other |
4083 | // times when we're pretending that this is where we stopped at the end of |
4084 | // expression evaluation. m_update_state is used to distinguish these three |
4085 | // cases; it is 0 when we're just pulling it off for private handling, and > |
4086 | // 1 for expression evaluation, and we don't want to do the breakpoint |
4087 | // command handling then. |
4088 | if (m_update_state != 1) |
4089 | return; |
4090 | |
4091 | process_sp->SetPublicState( |
4092 | new_state: m_state, restarted: Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); |
4093 | |
4094 | if (m_state == eStateStopped && !m_restarted) { |
4095 | // Let process subclasses know we are about to do a public stop and do |
4096 | // anything they might need to in order to speed up register and memory |
4097 | // accesses. |
4098 | process_sp->WillPublicStop(); |
4099 | } |
4100 | |
4101 | // If this is a halt event, even if the halt stopped with some reason other |
4102 | // than a plain interrupt (e.g. we had already stopped for a breakpoint when |
4103 | // the halt request came through) don't do the StopInfo actions, as they may |
4104 | // end up restarting the process. |
4105 | if (m_interrupted) |
4106 | return; |
4107 | |
4108 | // If we're not stopped or have restarted, then skip the StopInfo actions: |
4109 | if (m_state != eStateStopped || m_restarted) { |
4110 | return; |
4111 | } |
4112 | |
4113 | bool does_anybody_have_an_opinion = false; |
4114 | bool still_should_stop = ShouldStop(event_ptr, found_valid_stopinfo&: does_anybody_have_an_opinion); |
4115 | |
4116 | if (GetRestarted()) { |
4117 | return; |
4118 | } |
4119 | |
4120 | if (!still_should_stop && does_anybody_have_an_opinion) { |
4121 | // We've been asked to continue, so do that here. |
4122 | SetRestarted(true); |
4123 | // Use the private resume method here, since we aren't changing the run |
4124 | // lock state. |
4125 | process_sp->PrivateResume(); |
4126 | } else { |
4127 | bool hijacked = process_sp->IsHijackedForEvent(event_mask: eBroadcastBitStateChanged) && |
4128 | !process_sp->StateChangedIsHijackedForSynchronousResume(); |
4129 | |
4130 | if (!hijacked) { |
4131 | // If we didn't restart, run the Stop Hooks here. |
4132 | // Don't do that if state changed events aren't hooked up to the |
4133 | // public (or SyncResume) broadcasters. StopHooks are just for |
4134 | // real public stops. They might also restart the target, |
4135 | // so watch for that. |
4136 | if (process_sp->GetTarget().RunStopHooks()) |
4137 | SetRestarted(true); |
4138 | } |
4139 | } |
4140 | } |
4141 | |
4142 | void Process::ProcessEventData::Dump(Stream *s) const { |
4143 | ProcessSP process_sp(m_process_wp.lock()); |
4144 | |
4145 | if (process_sp) |
4146 | s->Printf(format: " process = %p (pid = %" PRIu64 "), " , |
4147 | static_cast<void *>(process_sp.get()), process_sp->GetID()); |
4148 | else |
4149 | s->PutCString(cstr: " process = NULL, " ); |
4150 | |
4151 | s->Printf(format: "state = %s" , StateAsCString(state: GetState())); |
4152 | } |
4153 | |
4154 | const Process::ProcessEventData * |
4155 | Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { |
4156 | if (event_ptr) { |
4157 | const EventData *event_data = event_ptr->GetData(); |
4158 | if (event_data && |
4159 | event_data->GetFlavor() == ProcessEventData::GetFlavorString()) |
4160 | return static_cast<const ProcessEventData *>(event_ptr->GetData()); |
4161 | } |
4162 | return nullptr; |
4163 | } |
4164 | |
4165 | ProcessSP |
4166 | Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { |
4167 | ProcessSP process_sp; |
4168 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4169 | if (data) |
4170 | process_sp = data->GetProcessSP(); |
4171 | return process_sp; |
4172 | } |
4173 | |
4174 | StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { |
4175 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4176 | if (data == nullptr) |
4177 | return eStateInvalid; |
4178 | else |
4179 | return data->GetState(); |
4180 | } |
4181 | |
4182 | bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { |
4183 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4184 | if (data == nullptr) |
4185 | return false; |
4186 | else |
4187 | return data->GetRestarted(); |
4188 | } |
4189 | |
4190 | void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, |
4191 | bool new_value) { |
4192 | ProcessEventData *data = |
4193 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4194 | if (data != nullptr) |
4195 | data->SetRestarted(new_value); |
4196 | } |
4197 | |
4198 | size_t |
4199 | Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { |
4200 | ProcessEventData *data = |
4201 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4202 | if (data != nullptr) |
4203 | return data->GetNumRestartedReasons(); |
4204 | else |
4205 | return 0; |
4206 | } |
4207 | |
4208 | const char * |
4209 | Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, |
4210 | size_t idx) { |
4211 | ProcessEventData *data = |
4212 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4213 | if (data != nullptr) |
4214 | return data->GetRestartedReasonAtIndex(idx); |
4215 | else |
4216 | return nullptr; |
4217 | } |
4218 | |
4219 | void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, |
4220 | const char *reason) { |
4221 | ProcessEventData *data = |
4222 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4223 | if (data != nullptr) |
4224 | data->AddRestartedReason(reason); |
4225 | } |
4226 | |
4227 | bool Process::ProcessEventData::GetInterruptedFromEvent( |
4228 | const Event *event_ptr) { |
4229 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4230 | if (data == nullptr) |
4231 | return false; |
4232 | else |
4233 | return data->GetInterrupted(); |
4234 | } |
4235 | |
4236 | void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, |
4237 | bool new_value) { |
4238 | ProcessEventData *data = |
4239 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4240 | if (data != nullptr) |
4241 | data->SetInterrupted(new_value); |
4242 | } |
4243 | |
4244 | bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { |
4245 | ProcessEventData *data = |
4246 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4247 | if (data) { |
4248 | data->SetUpdateStateOnRemoval(); |
4249 | return true; |
4250 | } |
4251 | return false; |
4252 | } |
4253 | |
4254 | lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } |
4255 | |
4256 | void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { |
4257 | exe_ctx.SetTargetPtr(&GetTarget()); |
4258 | exe_ctx.SetProcessPtr(this); |
4259 | exe_ctx.SetThreadPtr(nullptr); |
4260 | exe_ctx.SetFramePtr(nullptr); |
4261 | } |
4262 | |
4263 | // uint32_t |
4264 | // Process::ListProcessesMatchingName (const char *name, StringList &matches, |
4265 | // std::vector<lldb::pid_t> &pids) |
4266 | //{ |
4267 | // return 0; |
4268 | //} |
4269 | // |
4270 | // ArchSpec |
4271 | // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) |
4272 | //{ |
4273 | // return Host::GetArchSpecForExistingProcess (pid); |
4274 | //} |
4275 | // |
4276 | // ArchSpec |
4277 | // Process::GetArchSpecForExistingProcess (const char *process_name) |
4278 | //{ |
4279 | // return Host::GetArchSpecForExistingProcess (process_name); |
4280 | //} |
4281 | |
4282 | EventSP Process::CreateEventFromProcessState(uint32_t event_type) { |
4283 | auto event_data_sp = |
4284 | std::make_shared<ProcessEventData>(args: shared_from_this(), args: GetState()); |
4285 | return std::make_shared<Event>(args&: event_type, args&: event_data_sp); |
4286 | } |
4287 | |
4288 | void Process::AppendSTDOUT(const char *s, size_t len) { |
4289 | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
4290 | m_stdout_data.append(s: s, n: len); |
4291 | auto event_sp = CreateEventFromProcessState(event_type: eBroadcastBitSTDOUT); |
4292 | BroadcastEventIfUnique(event_sp); |
4293 | } |
4294 | |
4295 | void Process::AppendSTDERR(const char *s, size_t len) { |
4296 | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
4297 | m_stderr_data.append(s: s, n: len); |
4298 | auto event_sp = CreateEventFromProcessState(event_type: eBroadcastBitSTDERR); |
4299 | BroadcastEventIfUnique(event_sp); |
4300 | } |
4301 | |
4302 | void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { |
4303 | std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); |
4304 | m_profile_data.push_back(x: one_profile_data); |
4305 | auto event_sp = CreateEventFromProcessState(event_type: eBroadcastBitProfileData); |
4306 | BroadcastEventIfUnique(event_sp); |
4307 | } |
4308 | |
4309 | void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, |
4310 | const StructuredDataPluginSP &plugin_sp) { |
4311 | auto data_sp = std::make_shared<EventDataStructuredData>( |
4312 | args: shared_from_this(), args: object_sp, args: plugin_sp); |
4313 | BroadcastEvent(event_type: eBroadcastBitStructuredData, event_data_sp: data_sp); |
4314 | } |
4315 | |
4316 | StructuredDataPluginSP |
4317 | Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { |
4318 | auto find_it = m_structured_data_plugin_map.find(Key: type_name); |
4319 | if (find_it != m_structured_data_plugin_map.end()) |
4320 | return find_it->second; |
4321 | else |
4322 | return StructuredDataPluginSP(); |
4323 | } |
4324 | |
4325 | size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { |
4326 | std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); |
4327 | if (m_profile_data.empty()) |
4328 | return 0; |
4329 | |
4330 | std::string &one_profile_data = m_profile_data.front(); |
4331 | size_t bytes_available = one_profile_data.size(); |
4332 | if (bytes_available > 0) { |
4333 | Log *log = GetLog(mask: LLDBLog::Process); |
4334 | LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")" , |
4335 | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
4336 | if (bytes_available > buf_size) { |
4337 | memcpy(dest: buf, src: one_profile_data.c_str(), n: buf_size); |
4338 | one_profile_data.erase(pos: 0, n: buf_size); |
4339 | bytes_available = buf_size; |
4340 | } else { |
4341 | memcpy(dest: buf, src: one_profile_data.c_str(), n: bytes_available); |
4342 | m_profile_data.erase(position: m_profile_data.begin()); |
4343 | } |
4344 | } |
4345 | return bytes_available; |
4346 | } |
4347 | |
4348 | // Process STDIO |
4349 | |
4350 | size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { |
4351 | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
4352 | size_t bytes_available = m_stdout_data.size(); |
4353 | if (bytes_available > 0) { |
4354 | Log *log = GetLog(mask: LLDBLog::Process); |
4355 | LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")" , |
4356 | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
4357 | if (bytes_available > buf_size) { |
4358 | memcpy(dest: buf, src: m_stdout_data.c_str(), n: buf_size); |
4359 | m_stdout_data.erase(pos: 0, n: buf_size); |
4360 | bytes_available = buf_size; |
4361 | } else { |
4362 | memcpy(dest: buf, src: m_stdout_data.c_str(), n: bytes_available); |
4363 | m_stdout_data.clear(); |
4364 | } |
4365 | } |
4366 | return bytes_available; |
4367 | } |
4368 | |
4369 | size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { |
4370 | std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); |
4371 | size_t bytes_available = m_stderr_data.size(); |
4372 | if (bytes_available > 0) { |
4373 | Log *log = GetLog(mask: LLDBLog::Process); |
4374 | LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")" , |
4375 | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
4376 | if (bytes_available > buf_size) { |
4377 | memcpy(dest: buf, src: m_stderr_data.c_str(), n: buf_size); |
4378 | m_stderr_data.erase(pos: 0, n: buf_size); |
4379 | bytes_available = buf_size; |
4380 | } else { |
4381 | memcpy(dest: buf, src: m_stderr_data.c_str(), n: bytes_available); |
4382 | m_stderr_data.clear(); |
4383 | } |
4384 | } |
4385 | return bytes_available; |
4386 | } |
4387 | |
4388 | void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, |
4389 | size_t src_len) { |
4390 | Process *process = (Process *)baton; |
4391 | process->AppendSTDOUT(s: static_cast<const char *>(src), len: src_len); |
4392 | } |
4393 | |
4394 | class IOHandlerProcessSTDIO : public IOHandler { |
4395 | public: |
4396 | IOHandlerProcessSTDIO(Process *process, int write_fd) |
4397 | : IOHandler(process->GetTarget().GetDebugger(), |
4398 | IOHandler::Type::ProcessIO), |
4399 | m_process(process), |
4400 | m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), |
4401 | m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { |
4402 | m_pipe.CreateNew(child_process_inherit: false); |
4403 | } |
4404 | |
4405 | ~IOHandlerProcessSTDIO() override = default; |
4406 | |
4407 | void SetIsRunning(bool running) { |
4408 | std::lock_guard<std::mutex> guard(m_mutex); |
4409 | SetIsDone(!running); |
4410 | m_is_running = running; |
4411 | } |
4412 | |
4413 | // Each IOHandler gets to run until it is done. It should read data from the |
4414 | // "in" and place output into "out" and "err and return when done. |
4415 | void Run() override { |
4416 | if (!m_read_file.IsValid() || !m_write_file.IsValid() || |
4417 | !m_pipe.CanRead() || !m_pipe.CanWrite()) { |
4418 | SetIsDone(true); |
4419 | return; |
4420 | } |
4421 | |
4422 | SetIsDone(false); |
4423 | const int read_fd = m_read_file.GetDescriptor(); |
4424 | Terminal terminal(read_fd); |
4425 | TerminalState terminal_state(terminal, false); |
4426 | // FIXME: error handling? |
4427 | llvm::consumeError(Err: terminal.SetCanonical(false)); |
4428 | llvm::consumeError(Err: terminal.SetEcho(false)); |
4429 | // FD_ZERO, FD_SET are not supported on windows |
4430 | #ifndef _WIN32 |
4431 | const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); |
4432 | SetIsRunning(true); |
4433 | while (true) { |
4434 | { |
4435 | std::lock_guard<std::mutex> guard(m_mutex); |
4436 | if (GetIsDone()) |
4437 | break; |
4438 | } |
4439 | |
4440 | SelectHelper select_helper; |
4441 | select_helper.FDSetRead(fd: read_fd); |
4442 | select_helper.FDSetRead(fd: pipe_read_fd); |
4443 | Status error = select_helper.Select(); |
4444 | |
4445 | if (error.Fail()) |
4446 | break; |
4447 | |
4448 | char ch = 0; |
4449 | size_t n; |
4450 | if (select_helper.FDIsSetRead(fd: read_fd)) { |
4451 | n = 1; |
4452 | if (m_read_file.Read(buf: &ch, num_bytes&: n).Success() && n == 1) { |
4453 | if (m_write_file.Write(buf: &ch, num_bytes&: n).Fail() || n != 1) |
4454 | break; |
4455 | } else |
4456 | break; |
4457 | } |
4458 | |
4459 | if (select_helper.FDIsSetRead(fd: pipe_read_fd)) { |
4460 | size_t bytes_read; |
4461 | // Consume the interrupt byte |
4462 | Status error = m_pipe.Read(buf: &ch, size: 1, bytes_read); |
4463 | if (error.Success()) { |
4464 | if (ch == 'q') |
4465 | break; |
4466 | if (ch == 'i') |
4467 | if (StateIsRunningState(state: m_process->GetState())) |
4468 | m_process->SendAsyncInterrupt(); |
4469 | } |
4470 | } |
4471 | } |
4472 | SetIsRunning(false); |
4473 | #endif |
4474 | } |
4475 | |
4476 | void Cancel() override { |
4477 | std::lock_guard<std::mutex> guard(m_mutex); |
4478 | SetIsDone(true); |
4479 | // Only write to our pipe to cancel if we are in |
4480 | // IOHandlerProcessSTDIO::Run(). We can end up with a python command that |
4481 | // is being run from the command interpreter: |
4482 | // |
4483 | // (lldb) step_process_thousands_of_times |
4484 | // |
4485 | // In this case the command interpreter will be in the middle of handling |
4486 | // the command and if the process pushes and pops the IOHandler thousands |
4487 | // of times, we can end up writing to m_pipe without ever consuming the |
4488 | // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up |
4489 | // deadlocking when the pipe gets fed up and blocks until data is consumed. |
4490 | if (m_is_running) { |
4491 | char ch = 'q'; // Send 'q' for quit |
4492 | size_t bytes_written = 0; |
4493 | m_pipe.Write(buf: &ch, size: 1, bytes_written); |
4494 | } |
4495 | } |
4496 | |
4497 | bool Interrupt() override { |
4498 | // Do only things that are safe to do in an interrupt context (like in a |
4499 | // SIGINT handler), like write 1 byte to a file descriptor. This will |
4500 | // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte |
4501 | // that was written to the pipe and then call |
4502 | // m_process->SendAsyncInterrupt() from a much safer location in code. |
4503 | if (m_active) { |
4504 | char ch = 'i'; // Send 'i' for interrupt |
4505 | size_t bytes_written = 0; |
4506 | Status result = m_pipe.Write(buf: &ch, size: 1, bytes_written); |
4507 | return result.Success(); |
4508 | } else { |
4509 | // This IOHandler might be pushed on the stack, but not being run |
4510 | // currently so do the right thing if we aren't actively watching for |
4511 | // STDIN by sending the interrupt to the process. Otherwise the write to |
4512 | // the pipe above would do nothing. This can happen when the command |
4513 | // interpreter is running and gets a "expression ...". It will be on the |
4514 | // IOHandler thread and sending the input is complete to the delegate |
4515 | // which will cause the expression to run, which will push the process IO |
4516 | // handler, but not run it. |
4517 | |
4518 | if (StateIsRunningState(state: m_process->GetState())) { |
4519 | m_process->SendAsyncInterrupt(); |
4520 | return true; |
4521 | } |
4522 | } |
4523 | return false; |
4524 | } |
4525 | |
4526 | void GotEOF() override {} |
4527 | |
4528 | protected: |
4529 | Process *m_process; |
4530 | NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB |
4531 | NativeFile m_write_file; // Write to this file (usually the primary pty for |
4532 | // getting io to debuggee) |
4533 | Pipe m_pipe; |
4534 | std::mutex m_mutex; |
4535 | bool m_is_running = false; |
4536 | }; |
4537 | |
4538 | void Process::SetSTDIOFileDescriptor(int fd) { |
4539 | // First set up the Read Thread for reading/handling process I/O |
4540 | m_stdio_communication.SetConnection( |
4541 | std::make_unique<ConnectionFileDescriptor>(args&: fd, args: true)); |
4542 | if (m_stdio_communication.IsConnected()) { |
4543 | m_stdio_communication.SetReadThreadBytesReceivedCallback( |
4544 | callback: STDIOReadThreadBytesReceived, callback_baton: this); |
4545 | m_stdio_communication.StartReadThread(); |
4546 | |
4547 | // Now read thread is set up, set up input reader. |
4548 | { |
4549 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4550 | if (!m_process_input_reader) |
4551 | m_process_input_reader = |
4552 | std::make_shared<IOHandlerProcessSTDIO>(args: this, args&: fd); |
4553 | } |
4554 | } |
4555 | } |
4556 | |
4557 | bool Process::ProcessIOHandlerIsActive() { |
4558 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4559 | IOHandlerSP io_handler_sp(m_process_input_reader); |
4560 | if (io_handler_sp) |
4561 | return GetTarget().GetDebugger().IsTopIOHandler(reader_sp: io_handler_sp); |
4562 | return false; |
4563 | } |
4564 | |
4565 | bool Process::PushProcessIOHandler() { |
4566 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4567 | IOHandlerSP io_handler_sp(m_process_input_reader); |
4568 | if (io_handler_sp) { |
4569 | Log *log = GetLog(mask: LLDBLog::Process); |
4570 | LLDB_LOGF(log, "Process::%s pushing IO handler" , __FUNCTION__); |
4571 | |
4572 | io_handler_sp->SetIsDone(false); |
4573 | // If we evaluate an utility function, then we don't cancel the current |
4574 | // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the |
4575 | // existing IOHandler that potentially provides the user interface (e.g. |
4576 | // the IOHandler for Editline). |
4577 | bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); |
4578 | GetTarget().GetDebugger().RunIOHandlerAsync(reader_sp: io_handler_sp, |
4579 | cancel_top_handler); |
4580 | return true; |
4581 | } |
4582 | return false; |
4583 | } |
4584 | |
4585 | bool Process::PopProcessIOHandler() { |
4586 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4587 | IOHandlerSP io_handler_sp(m_process_input_reader); |
4588 | if (io_handler_sp) |
4589 | return GetTarget().GetDebugger().RemoveIOHandler(reader_sp: io_handler_sp); |
4590 | return false; |
4591 | } |
4592 | |
4593 | // The process needs to know about installed plug-ins |
4594 | void Process::SettingsInitialize() { Thread::SettingsInitialize(); } |
4595 | |
4596 | void Process::SettingsTerminate() { Thread::SettingsTerminate(); } |
4597 | |
4598 | namespace { |
4599 | // RestorePlanState is used to record the "is private", "is controlling" and |
4600 | // "okay |
4601 | // to discard" fields of the plan we are running, and reset it on Clean or on |
4602 | // destruction. It will only reset the state once, so you can call Clean and |
4603 | // then monkey with the state and it won't get reset on you again. |
4604 | |
4605 | class RestorePlanState { |
4606 | public: |
4607 | RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) |
4608 | : m_thread_plan_sp(thread_plan_sp) { |
4609 | if (m_thread_plan_sp) { |
4610 | m_private = m_thread_plan_sp->GetPrivate(); |
4611 | m_is_controlling = m_thread_plan_sp->IsControllingPlan(); |
4612 | m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); |
4613 | } |
4614 | } |
4615 | |
4616 | ~RestorePlanState() { Clean(); } |
4617 | |
4618 | void Clean() { |
4619 | if (!m_already_reset && m_thread_plan_sp) { |
4620 | m_already_reset = true; |
4621 | m_thread_plan_sp->SetPrivate(m_private); |
4622 | m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); |
4623 | m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); |
4624 | } |
4625 | } |
4626 | |
4627 | private: |
4628 | lldb::ThreadPlanSP m_thread_plan_sp; |
4629 | bool m_already_reset = false; |
4630 | bool m_private = false; |
4631 | bool m_is_controlling = false; |
4632 | bool m_okay_to_discard = false; |
4633 | }; |
4634 | } // anonymous namespace |
4635 | |
4636 | static microseconds |
4637 | GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { |
4638 | const milliseconds default_one_thread_timeout(250); |
4639 | |
4640 | // If the overall wait is forever, then we don't need to worry about it. |
4641 | if (!options.GetTimeout()) { |
4642 | return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() |
4643 | : default_one_thread_timeout; |
4644 | } |
4645 | |
4646 | // If the one thread timeout is set, use it. |
4647 | if (options.GetOneThreadTimeout()) |
4648 | return *options.GetOneThreadTimeout(); |
4649 | |
4650 | // Otherwise use half the total timeout, bounded by the |
4651 | // default_one_thread_timeout. |
4652 | return std::min<microseconds>(a: default_one_thread_timeout, |
4653 | b: *options.GetTimeout() / 2); |
4654 | } |
4655 | |
4656 | static Timeout<std::micro> |
4657 | GetExpressionTimeout(const EvaluateExpressionOptions &options, |
4658 | bool before_first_timeout) { |
4659 | // If we are going to run all threads the whole time, or if we are only going |
4660 | // to run one thread, we can just return the overall timeout. |
4661 | if (!options.GetStopOthers() || !options.GetTryAllThreads()) |
4662 | return options.GetTimeout(); |
4663 | |
4664 | if (before_first_timeout) |
4665 | return GetOneThreadExpressionTimeout(options); |
4666 | |
4667 | if (!options.GetTimeout()) |
4668 | return std::nullopt; |
4669 | else |
4670 | return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); |
4671 | } |
4672 | |
4673 | static std::optional<ExpressionResults> |
4674 | HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, |
4675 | RestorePlanState &restorer, const EventSP &event_sp, |
4676 | EventSP &event_to_broadcast_sp, |
4677 | const EvaluateExpressionOptions &options, |
4678 | bool handle_interrupts) { |
4679 | Log *log = GetLog(mask: LLDBLog::Step | LLDBLog::Process); |
4680 | |
4681 | ThreadSP thread_sp = thread_plan_sp->GetTarget() |
4682 | .GetProcessSP() |
4683 | ->GetThreadList() |
4684 | .FindThreadByID(tid: thread_id); |
4685 | if (!thread_sp) { |
4686 | LLDB_LOG(log, |
4687 | "The thread on which we were running the " |
4688 | "expression: tid = {0}, exited while " |
4689 | "the expression was running." , |
4690 | thread_id); |
4691 | return eExpressionThreadVanished; |
4692 | } |
4693 | |
4694 | ThreadPlanSP plan = thread_sp->GetCompletedPlan(); |
4695 | if (plan == thread_plan_sp && plan->PlanSucceeded()) { |
4696 | LLDB_LOG(log, "execution completed successfully" ); |
4697 | |
4698 | // Restore the plan state so it will get reported as intended when we are |
4699 | // done. |
4700 | restorer.Clean(); |
4701 | return eExpressionCompleted; |
4702 | } |
4703 | |
4704 | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
4705 | if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && |
4706 | stop_info_sp->ShouldNotify(event_ptr: event_sp.get())) { |
4707 | LLDB_LOG(log, "stopped for breakpoint: {0}." , stop_info_sp->GetDescription()); |
4708 | if (!options.DoesIgnoreBreakpoints()) { |
4709 | // Restore the plan state and then force Private to false. We are going |
4710 | // to stop because of this plan so we need it to become a public plan or |
4711 | // it won't report correctly when we continue to its termination later |
4712 | // on. |
4713 | restorer.Clean(); |
4714 | thread_plan_sp->SetPrivate(false); |
4715 | event_to_broadcast_sp = event_sp; |
4716 | } |
4717 | return eExpressionHitBreakpoint; |
4718 | } |
4719 | |
4720 | if (!handle_interrupts && |
4721 | Process::ProcessEventData::GetInterruptedFromEvent(event_ptr: event_sp.get())) |
4722 | return std::nullopt; |
4723 | |
4724 | LLDB_LOG(log, "thread plan did not successfully complete" ); |
4725 | if (!options.DoesUnwindOnError()) |
4726 | event_to_broadcast_sp = event_sp; |
4727 | return eExpressionInterrupted; |
4728 | } |
4729 | |
4730 | ExpressionResults |
4731 | Process::RunThreadPlan(ExecutionContext &exe_ctx, |
4732 | lldb::ThreadPlanSP &thread_plan_sp, |
4733 | const EvaluateExpressionOptions &options, |
4734 | DiagnosticManager &diagnostic_manager) { |
4735 | ExpressionResults return_value = eExpressionSetupError; |
4736 | |
4737 | std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); |
4738 | |
4739 | if (!thread_plan_sp) { |
4740 | diagnostic_manager.PutString( |
4741 | severity: eDiagnosticSeverityError, |
4742 | str: "RunThreadPlan called with empty thread plan." ); |
4743 | return eExpressionSetupError; |
4744 | } |
4745 | |
4746 | if (!thread_plan_sp->ValidatePlan(error: nullptr)) { |
4747 | diagnostic_manager.PutString( |
4748 | severity: eDiagnosticSeverityError, |
4749 | str: "RunThreadPlan called with an invalid thread plan." ); |
4750 | return eExpressionSetupError; |
4751 | } |
4752 | |
4753 | if (exe_ctx.GetProcessPtr() != this) { |
4754 | diagnostic_manager.PutString(severity: eDiagnosticSeverityError, |
4755 | str: "RunThreadPlan called on wrong process." ); |
4756 | return eExpressionSetupError; |
4757 | } |
4758 | |
4759 | Thread *thread = exe_ctx.GetThreadPtr(); |
4760 | if (thread == nullptr) { |
4761 | diagnostic_manager.PutString(severity: eDiagnosticSeverityError, |
4762 | str: "RunThreadPlan called with invalid thread." ); |
4763 | return eExpressionSetupError; |
4764 | } |
4765 | |
4766 | // Record the thread's id so we can tell when a thread we were using |
4767 | // to run the expression exits during the expression evaluation. |
4768 | lldb::tid_t expr_thread_id = thread->GetID(); |
4769 | |
4770 | // We need to change some of the thread plan attributes for the thread plan |
4771 | // runner. This will restore them when we are done: |
4772 | |
4773 | RestorePlanState thread_plan_restorer(thread_plan_sp); |
4774 | |
4775 | // We rely on the thread plan we are running returning "PlanCompleted" if |
4776 | // when it successfully completes. For that to be true the plan can't be |
4777 | // private - since private plans suppress themselves in the GetCompletedPlan |
4778 | // call. |
4779 | |
4780 | thread_plan_sp->SetPrivate(false); |
4781 | |
4782 | // The plans run with RunThreadPlan also need to be terminal controlling plans |
4783 | // or when they are done we will end up asking the plan above us whether we |
4784 | // should stop, which may give the wrong answer. |
4785 | |
4786 | thread_plan_sp->SetIsControllingPlan(true); |
4787 | thread_plan_sp->SetOkayToDiscard(false); |
4788 | |
4789 | // If we are running some utility expression for LLDB, we now have to mark |
4790 | // this in the ProcesModID of this process. This RAII takes care of marking |
4791 | // and reverting the mark it once we are done running the expression. |
4792 | UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); |
4793 | |
4794 | if (m_private_state.GetValue() != eStateStopped) { |
4795 | diagnostic_manager.PutString( |
4796 | severity: eDiagnosticSeverityError, |
4797 | str: "RunThreadPlan called while the private state was not stopped." ); |
4798 | return eExpressionSetupError; |
4799 | } |
4800 | |
4801 | // Save the thread & frame from the exe_ctx for restoration after we run |
4802 | const uint32_t thread_idx_id = thread->GetIndexID(); |
4803 | StackFrameSP selected_frame_sp = |
4804 | thread->GetSelectedFrame(select_most_relevant: DoNoSelectMostRelevantFrame); |
4805 | if (!selected_frame_sp) { |
4806 | thread->SetSelectedFrame(frame: nullptr); |
4807 | selected_frame_sp = thread->GetSelectedFrame(select_most_relevant: DoNoSelectMostRelevantFrame); |
4808 | if (!selected_frame_sp) { |
4809 | diagnostic_manager.Printf( |
4810 | severity: eDiagnosticSeverityError, |
4811 | format: "RunThreadPlan called without a selected frame on thread %d" , |
4812 | thread_idx_id); |
4813 | return eExpressionSetupError; |
4814 | } |
4815 | } |
4816 | |
4817 | // Make sure the timeout values make sense. The one thread timeout needs to |
4818 | // be smaller than the overall timeout. |
4819 | if (options.GetOneThreadTimeout() && options.GetTimeout() && |
4820 | *options.GetTimeout() < *options.GetOneThreadTimeout()) { |
4821 | diagnostic_manager.PutString(severity: eDiagnosticSeverityError, |
4822 | str: "RunThreadPlan called with one thread " |
4823 | "timeout greater than total timeout" ); |
4824 | return eExpressionSetupError; |
4825 | } |
4826 | |
4827 | StackID ctx_frame_id = selected_frame_sp->GetStackID(); |
4828 | |
4829 | // N.B. Running the target may unset the currently selected thread and frame. |
4830 | // We don't want to do that either, so we should arrange to reset them as |
4831 | // well. |
4832 | |
4833 | lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); |
4834 | |
4835 | uint32_t selected_tid; |
4836 | StackID selected_stack_id; |
4837 | if (selected_thread_sp) { |
4838 | selected_tid = selected_thread_sp->GetIndexID(); |
4839 | selected_stack_id = |
4840 | selected_thread_sp->GetSelectedFrame(select_most_relevant: DoNoSelectMostRelevantFrame) |
4841 | ->GetStackID(); |
4842 | } else { |
4843 | selected_tid = LLDB_INVALID_THREAD_ID; |
4844 | } |
4845 | |
4846 | HostThread backup_private_state_thread; |
4847 | lldb::StateType old_state = eStateInvalid; |
4848 | lldb::ThreadPlanSP stopper_base_plan_sp; |
4849 | |
4850 | Log *log(GetLog(mask: LLDBLog::Step | LLDBLog::Process)); |
4851 | if (m_private_state_thread.EqualsThread(thread: Host::GetCurrentThread())) { |
4852 | // Yikes, we are running on the private state thread! So we can't wait for |
4853 | // public events on this thread, since we are the thread that is generating |
4854 | // public events. The simplest thing to do is to spin up a temporary thread |
4855 | // to handle private state thread events while we are fielding public |
4856 | // events here. |
4857 | LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " |
4858 | "another state thread to handle the events." ); |
4859 | |
4860 | backup_private_state_thread = m_private_state_thread; |
4861 | |
4862 | // One other bit of business: we want to run just this thread plan and |
4863 | // anything it pushes, and then stop, returning control here. But in the |
4864 | // normal course of things, the plan above us on the stack would be given a |
4865 | // shot at the stop event before deciding to stop, and we don't want that. |
4866 | // So we insert a "stopper" base plan on the stack before the plan we want |
4867 | // to run. Since base plans always stop and return control to the user, |
4868 | // that will do just what we want. |
4869 | stopper_base_plan_sp.reset(p: new ThreadPlanBase(*thread)); |
4870 | thread->QueueThreadPlan(plan_sp&: stopper_base_plan_sp, abort_other_plans: false); |
4871 | // Have to make sure our public state is stopped, since otherwise the |
4872 | // reporting logic below doesn't work correctly. |
4873 | old_state = m_public_state.GetValue(); |
4874 | m_public_state.SetValueNoLock(eStateStopped); |
4875 | |
4876 | // Now spin up the private state thread: |
4877 | StartPrivateStateThread(is_secondary_thread: true); |
4878 | } |
4879 | |
4880 | thread->QueueThreadPlan( |
4881 | plan_sp&: thread_plan_sp, abort_other_plans: false); // This used to pass "true" does that make sense? |
4882 | |
4883 | if (options.GetDebug()) { |
4884 | // In this case, we aren't actually going to run, we just want to stop |
4885 | // right away. Flush this thread so we will refetch the stacks and show the |
4886 | // correct backtrace. |
4887 | // FIXME: To make this prettier we should invent some stop reason for this, |
4888 | // but that |
4889 | // is only cosmetic, and this functionality is only of use to lldb |
4890 | // developers who can live with not pretty... |
4891 | thread->Flush(); |
4892 | return eExpressionStoppedForDebug; |
4893 | } |
4894 | |
4895 | ListenerSP listener_sp( |
4896 | Listener::MakeListener(name: "lldb.process.listener.run-thread-plan" )); |
4897 | |
4898 | lldb::EventSP event_to_broadcast_sp; |
4899 | |
4900 | { |
4901 | // This process event hijacker Hijacks the Public events and its destructor |
4902 | // makes sure that the process events get restored on exit to the function. |
4903 | // |
4904 | // If the event needs to propagate beyond the hijacker (e.g., the process |
4905 | // exits during execution), then the event is put into |
4906 | // event_to_broadcast_sp for rebroadcasting. |
4907 | |
4908 | ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); |
4909 | |
4910 | if (log) { |
4911 | StreamString s; |
4912 | thread_plan_sp->GetDescription(s: &s, level: lldb::eDescriptionLevelVerbose); |
4913 | LLDB_LOGF(log, |
4914 | "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 |
4915 | " to run thread plan \"%s\"." , |
4916 | thread_idx_id, expr_thread_id, s.GetData()); |
4917 | } |
4918 | |
4919 | bool got_event; |
4920 | lldb::EventSP event_sp; |
4921 | lldb::StateType stop_state = lldb::eStateInvalid; |
4922 | |
4923 | bool before_first_timeout = true; // This is set to false the first time |
4924 | // that we have to halt the target. |
4925 | bool do_resume = true; |
4926 | bool handle_running_event = true; |
4927 | |
4928 | // This is just for accounting: |
4929 | uint32_t num_resumes = 0; |
4930 | |
4931 | // If we are going to run all threads the whole time, or if we are only |
4932 | // going to run one thread, then we don't need the first timeout. So we |
4933 | // pretend we are after the first timeout already. |
4934 | if (!options.GetStopOthers() || !options.GetTryAllThreads()) |
4935 | before_first_timeout = false; |
4936 | |
4937 | LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n" , |
4938 | options.GetStopOthers(), options.GetTryAllThreads(), |
4939 | before_first_timeout); |
4940 | |
4941 | // This isn't going to work if there are unfetched events on the queue. Are |
4942 | // there cases where we might want to run the remaining events here, and |
4943 | // then try to call the function? That's probably being too tricky for our |
4944 | // own good. |
4945 | |
4946 | Event *other_events = listener_sp->PeekAtNextEvent(); |
4947 | if (other_events != nullptr) { |
4948 | diagnostic_manager.PutString( |
4949 | severity: eDiagnosticSeverityError, |
4950 | str: "RunThreadPlan called with pending events on the queue." ); |
4951 | return eExpressionSetupError; |
4952 | } |
4953 | |
4954 | // We also need to make sure that the next event is delivered. We might be |
4955 | // calling a function as part of a thread plan, in which case the last |
4956 | // delivered event could be the running event, and we don't want event |
4957 | // coalescing to cause us to lose OUR running event... |
4958 | ForceNextEventDelivery(); |
4959 | |
4960 | // This while loop must exit out the bottom, there's cleanup that we need to do |
4961 | // when we are done. So don't call return anywhere within it. |
4962 | |
4963 | #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT |
4964 | // It's pretty much impossible to write test cases for things like: One |
4965 | // thread timeout expires, I go to halt, but the process already stopped on |
4966 | // the function call stop breakpoint. Turning on this define will make us |
4967 | // not fetch the first event till after the halt. So if you run a quick |
4968 | // function, it will have completed, and the completion event will be |
4969 | // waiting, when you interrupt for halt. The expression evaluation should |
4970 | // still succeed. |
4971 | bool miss_first_event = true; |
4972 | #endif |
4973 | while (true) { |
4974 | // We usually want to resume the process if we get to the top of the |
4975 | // loop. The only exception is if we get two running events with no |
4976 | // intervening stop, which can happen, we will just wait for then next |
4977 | // stop event. |
4978 | LLDB_LOGF(log, |
4979 | "Top of while loop: do_resume: %i handle_running_event: %i " |
4980 | "before_first_timeout: %i." , |
4981 | do_resume, handle_running_event, before_first_timeout); |
4982 | |
4983 | if (do_resume || handle_running_event) { |
4984 | // Do the initial resume and wait for the running event before going |
4985 | // further. |
4986 | |
4987 | if (do_resume) { |
4988 | num_resumes++; |
4989 | Status resume_error = PrivateResume(); |
4990 | if (!resume_error.Success()) { |
4991 | diagnostic_manager.Printf( |
4992 | severity: eDiagnosticSeverityError, |
4993 | format: "couldn't resume inferior the %d time: \"%s\"." , num_resumes, |
4994 | resume_error.AsCString()); |
4995 | return_value = eExpressionSetupError; |
4996 | break; |
4997 | } |
4998 | } |
4999 | |
5000 | got_event = |
5001 | listener_sp->GetEvent(event_sp, timeout: GetUtilityExpressionTimeout()); |
5002 | if (!got_event) { |
5003 | LLDB_LOGF(log, |
5004 | "Process::RunThreadPlan(): didn't get any event after " |
5005 | "resume %" PRIu32 ", exiting." , |
5006 | num_resumes); |
5007 | |
5008 | diagnostic_manager.Printf(severity: eDiagnosticSeverityError, |
5009 | format: "didn't get any event after resume %" PRIu32 |
5010 | ", exiting." , |
5011 | num_resumes); |
5012 | return_value = eExpressionSetupError; |
5013 | break; |
5014 | } |
5015 | |
5016 | stop_state = |
5017 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
5018 | |
5019 | if (stop_state != eStateRunning) { |
5020 | bool restarted = false; |
5021 | |
5022 | if (stop_state == eStateStopped) { |
5023 | restarted = Process::ProcessEventData::GetRestartedFromEvent( |
5024 | event_ptr: event_sp.get()); |
5025 | LLDB_LOGF( |
5026 | log, |
5027 | "Process::RunThreadPlan(): didn't get running event after " |
5028 | "resume %d, got %s instead (restarted: %i, do_resume: %i, " |
5029 | "handle_running_event: %i)." , |
5030 | num_resumes, StateAsCString(stop_state), restarted, do_resume, |
5031 | handle_running_event); |
5032 | } |
5033 | |
5034 | if (restarted) { |
5035 | // This is probably an overabundance of caution, I don't think I |
5036 | // should ever get a stopped & restarted event here. But if I do, |
5037 | // the best thing is to Halt and then get out of here. |
5038 | const bool clear_thread_plans = false; |
5039 | const bool use_run_lock = false; |
5040 | Halt(clear_thread_plans, use_run_lock); |
5041 | } |
5042 | |
5043 | diagnostic_manager.Printf( |
5044 | severity: eDiagnosticSeverityError, |
5045 | format: "didn't get running event after initial resume, got %s instead." , |
5046 | StateAsCString(state: stop_state)); |
5047 | return_value = eExpressionSetupError; |
5048 | break; |
5049 | } |
5050 | |
5051 | if (log) |
5052 | log->PutCString(cstr: "Process::RunThreadPlan(): resuming succeeded." ); |
5053 | // We need to call the function synchronously, so spin waiting for it |
5054 | // to return. If we get interrupted while executing, we're going to |
5055 | // lose our context, and won't be able to gather the result at this |
5056 | // point. We set the timeout AFTER the resume, since the resume takes |
5057 | // some time and we don't want to charge that to the timeout. |
5058 | } else { |
5059 | if (log) |
5060 | log->PutCString(cstr: "Process::RunThreadPlan(): waiting for next event." ); |
5061 | } |
5062 | |
5063 | do_resume = true; |
5064 | handle_running_event = true; |
5065 | |
5066 | // Now wait for the process to stop again: |
5067 | event_sp.reset(); |
5068 | |
5069 | Timeout<std::micro> timeout = |
5070 | GetExpressionTimeout(options, before_first_timeout); |
5071 | if (log) { |
5072 | if (timeout) { |
5073 | auto now = system_clock::now(); |
5074 | LLDB_LOGF(log, |
5075 | "Process::RunThreadPlan(): about to wait - now is %s - " |
5076 | "endpoint is %s" , |
5077 | llvm::to_string(now).c_str(), |
5078 | llvm::to_string(now + *timeout).c_str()); |
5079 | } else { |
5080 | LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever." ); |
5081 | } |
5082 | } |
5083 | |
5084 | #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT |
5085 | // See comment above... |
5086 | if (miss_first_event) { |
5087 | std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
5088 | miss_first_event = false; |
5089 | got_event = false; |
5090 | } else |
5091 | #endif |
5092 | got_event = listener_sp->GetEvent(event_sp, timeout); |
5093 | |
5094 | if (got_event) { |
5095 | if (event_sp) { |
5096 | bool keep_going = false; |
5097 | if (event_sp->GetType() == eBroadcastBitInterrupt) { |
5098 | const bool clear_thread_plans = false; |
5099 | const bool use_run_lock = false; |
5100 | Halt(clear_thread_plans, use_run_lock); |
5101 | return_value = eExpressionInterrupted; |
5102 | diagnostic_manager.PutString(severity: eDiagnosticSeverityRemark, |
5103 | str: "execution halted by user interrupt." ); |
5104 | LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " |
5105 | "eBroadcastBitInterrupted, exiting." ); |
5106 | break; |
5107 | } else { |
5108 | stop_state = |
5109 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
5110 | LLDB_LOGF(log, |
5111 | "Process::RunThreadPlan(): in while loop, got event: %s." , |
5112 | StateAsCString(stop_state)); |
5113 | |
5114 | switch (stop_state) { |
5115 | case lldb::eStateStopped: { |
5116 | if (Process::ProcessEventData::GetRestartedFromEvent( |
5117 | event_ptr: event_sp.get())) { |
5118 | // If we were restarted, we just need to go back up to fetch |
5119 | // another event. |
5120 | LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " |
5121 | "restart, so we'll continue waiting." ); |
5122 | keep_going = true; |
5123 | do_resume = false; |
5124 | handle_running_event = true; |
5125 | } else { |
5126 | const bool handle_interrupts = true; |
5127 | return_value = *HandleStoppedEvent( |
5128 | thread_id: expr_thread_id, thread_plan_sp, restorer&: thread_plan_restorer, |
5129 | event_sp, event_to_broadcast_sp, options, |
5130 | handle_interrupts); |
5131 | if (return_value == eExpressionThreadVanished) |
5132 | keep_going = false; |
5133 | } |
5134 | } break; |
5135 | |
5136 | case lldb::eStateRunning: |
5137 | // This shouldn't really happen, but sometimes we do get two |
5138 | // running events without an intervening stop, and in that case |
5139 | // we should just go back to waiting for the stop. |
5140 | do_resume = false; |
5141 | keep_going = true; |
5142 | handle_running_event = false; |
5143 | break; |
5144 | |
5145 | default: |
5146 | LLDB_LOGF(log, |
5147 | "Process::RunThreadPlan(): execution stopped with " |
5148 | "unexpected state: %s." , |
5149 | StateAsCString(stop_state)); |
5150 | |
5151 | if (stop_state == eStateExited) |
5152 | event_to_broadcast_sp = event_sp; |
5153 | |
5154 | diagnostic_manager.PutString( |
5155 | severity: eDiagnosticSeverityError, |
5156 | str: "execution stopped with unexpected state." ); |
5157 | return_value = eExpressionInterrupted; |
5158 | break; |
5159 | } |
5160 | } |
5161 | |
5162 | if (keep_going) |
5163 | continue; |
5164 | else |
5165 | break; |
5166 | } else { |
5167 | if (log) |
5168 | log->PutCString(cstr: "Process::RunThreadPlan(): got_event was true, but " |
5169 | "the event pointer was null. How odd..." ); |
5170 | return_value = eExpressionInterrupted; |
5171 | break; |
5172 | } |
5173 | } else { |
5174 | // If we didn't get an event that means we've timed out... We will |
5175 | // interrupt the process here. Depending on what we were asked to do |
5176 | // we will either exit, or try with all threads running for the same |
5177 | // timeout. |
5178 | |
5179 | if (log) { |
5180 | if (options.GetTryAllThreads()) { |
5181 | if (before_first_timeout) { |
5182 | LLDB_LOG(log, |
5183 | "Running function with one thread timeout timed out." ); |
5184 | } else |
5185 | LLDB_LOG(log, "Restarting function with all threads enabled and " |
5186 | "timeout: {0} timed out, abandoning execution." , |
5187 | timeout); |
5188 | } else |
5189 | LLDB_LOG(log, "Running function with timeout: {0} timed out, " |
5190 | "abandoning execution." , |
5191 | timeout); |
5192 | } |
5193 | |
5194 | // It is possible that between the time we issued the Halt, and we get |
5195 | // around to calling Halt the target could have stopped. That's fine, |
5196 | // Halt will figure that out and send the appropriate Stopped event. |
5197 | // BUT it is also possible that we stopped & restarted (e.g. hit a |
5198 | // signal with "stop" set to false.) In |
5199 | // that case, we'll get the stopped & restarted event, and we should go |
5200 | // back to waiting for the Halt's stopped event. That's what this |
5201 | // while loop does. |
5202 | |
5203 | bool back_to_top = true; |
5204 | uint32_t try_halt_again = 0; |
5205 | bool do_halt = true; |
5206 | const uint32_t num_retries = 5; |
5207 | while (try_halt_again < num_retries) { |
5208 | Status halt_error; |
5209 | if (do_halt) { |
5210 | LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt." ); |
5211 | const bool clear_thread_plans = false; |
5212 | const bool use_run_lock = false; |
5213 | Halt(clear_thread_plans, use_run_lock); |
5214 | } |
5215 | if (halt_error.Success()) { |
5216 | if (log) |
5217 | log->PutCString(cstr: "Process::RunThreadPlan(): Halt succeeded." ); |
5218 | |
5219 | got_event = |
5220 | listener_sp->GetEvent(event_sp, timeout: GetUtilityExpressionTimeout()); |
5221 | |
5222 | if (got_event) { |
5223 | stop_state = |
5224 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
5225 | if (log) { |
5226 | LLDB_LOGF(log, |
5227 | "Process::RunThreadPlan(): Stopped with event: %s" , |
5228 | StateAsCString(stop_state)); |
5229 | if (stop_state == lldb::eStateStopped && |
5230 | Process::ProcessEventData::GetInterruptedFromEvent( |
5231 | event_ptr: event_sp.get())) |
5232 | log->PutCString(cstr: " Event was the Halt interruption event." ); |
5233 | } |
5234 | |
5235 | if (stop_state == lldb::eStateStopped) { |
5236 | if (Process::ProcessEventData::GetRestartedFromEvent( |
5237 | event_ptr: event_sp.get())) { |
5238 | if (log) |
5239 | log->PutCString(cstr: "Process::RunThreadPlan(): Went to halt " |
5240 | "but got a restarted event, there must be " |
5241 | "an un-restarted stopped event so try " |
5242 | "again... " |
5243 | "Exiting wait loop." ); |
5244 | try_halt_again++; |
5245 | do_halt = false; |
5246 | continue; |
5247 | } |
5248 | |
5249 | // Between the time we initiated the Halt and the time we |
5250 | // delivered it, the process could have already finished its |
5251 | // job. Check that here: |
5252 | const bool handle_interrupts = false; |
5253 | if (auto result = HandleStoppedEvent( |
5254 | thread_id: expr_thread_id, thread_plan_sp, restorer&: thread_plan_restorer, |
5255 | event_sp, event_to_broadcast_sp, options, |
5256 | handle_interrupts)) { |
5257 | return_value = *result; |
5258 | back_to_top = false; |
5259 | break; |
5260 | } |
5261 | |
5262 | if (!options.GetTryAllThreads()) { |
5263 | if (log) |
5264 | log->PutCString(cstr: "Process::RunThreadPlan(): try_all_threads " |
5265 | "was false, we stopped so now we're " |
5266 | "quitting." ); |
5267 | return_value = eExpressionInterrupted; |
5268 | back_to_top = false; |
5269 | break; |
5270 | } |
5271 | |
5272 | if (before_first_timeout) { |
5273 | // Set all the other threads to run, and return to the top of |
5274 | // the loop, which will continue; |
5275 | before_first_timeout = false; |
5276 | thread_plan_sp->SetStopOthers(false); |
5277 | if (log) |
5278 | log->PutCString( |
5279 | cstr: "Process::RunThreadPlan(): about to resume." ); |
5280 | |
5281 | back_to_top = true; |
5282 | break; |
5283 | } else { |
5284 | // Running all threads failed, so return Interrupted. |
5285 | if (log) |
5286 | log->PutCString(cstr: "Process::RunThreadPlan(): running all " |
5287 | "threads timed out." ); |
5288 | return_value = eExpressionInterrupted; |
5289 | back_to_top = false; |
5290 | break; |
5291 | } |
5292 | } |
5293 | } else { |
5294 | if (log) |
5295 | log->PutCString(cstr: "Process::RunThreadPlan(): halt said it " |
5296 | "succeeded, but I got no event. " |
5297 | "I'm getting out of here passing Interrupted." ); |
5298 | return_value = eExpressionInterrupted; |
5299 | back_to_top = false; |
5300 | break; |
5301 | } |
5302 | } else { |
5303 | try_halt_again++; |
5304 | continue; |
5305 | } |
5306 | } |
5307 | |
5308 | if (!back_to_top || try_halt_again > num_retries) |
5309 | break; |
5310 | else |
5311 | continue; |
5312 | } |
5313 | } // END WAIT LOOP |
5314 | |
5315 | // If we had to start up a temporary private state thread to run this |
5316 | // thread plan, shut it down now. |
5317 | if (backup_private_state_thread.IsJoinable()) { |
5318 | StopPrivateStateThread(); |
5319 | Status error; |
5320 | m_private_state_thread = backup_private_state_thread; |
5321 | if (stopper_base_plan_sp) { |
5322 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: stopper_base_plan_sp); |
5323 | } |
5324 | if (old_state != eStateInvalid) |
5325 | m_public_state.SetValueNoLock(old_state); |
5326 | } |
5327 | |
5328 | // If our thread went away on us, we need to get out of here without |
5329 | // doing any more work. We don't have to clean up the thread plan, that |
5330 | // will have happened when the Thread was destroyed. |
5331 | if (return_value == eExpressionThreadVanished) { |
5332 | return return_value; |
5333 | } |
5334 | |
5335 | if (return_value != eExpressionCompleted && log) { |
5336 | // Print a backtrace into the log so we can figure out where we are: |
5337 | StreamString s; |
5338 | s.PutCString(cstr: "Thread state after unsuccessful completion: \n" ); |
5339 | thread->GetStackFrameStatus(strm&: s, first_frame: 0, UINT32_MAX, show_frame_info: true, UINT32_MAX); |
5340 | log->PutString(str: s.GetString()); |
5341 | } |
5342 | // Restore the thread state if we are going to discard the plan execution. |
5343 | // There are three cases where this could happen: 1) The execution |
5344 | // successfully completed 2) We hit a breakpoint, and ignore_breakpoints |
5345 | // was true 3) We got some other error, and discard_on_error was true |
5346 | bool should_unwind = (return_value == eExpressionInterrupted && |
5347 | options.DoesUnwindOnError()) || |
5348 | (return_value == eExpressionHitBreakpoint && |
5349 | options.DoesIgnoreBreakpoints()); |
5350 | |
5351 | if (return_value == eExpressionCompleted || should_unwind) { |
5352 | thread_plan_sp->RestoreThreadState(); |
5353 | } |
5354 | |
5355 | // Now do some processing on the results of the run: |
5356 | if (return_value == eExpressionInterrupted || |
5357 | return_value == eExpressionHitBreakpoint) { |
5358 | if (log) { |
5359 | StreamString s; |
5360 | if (event_sp) |
5361 | event_sp->Dump(s: &s); |
5362 | else { |
5363 | log->PutCString(cstr: "Process::RunThreadPlan(): Stop event that " |
5364 | "interrupted us is NULL." ); |
5365 | } |
5366 | |
5367 | StreamString ts; |
5368 | |
5369 | const char *event_explanation = nullptr; |
5370 | |
5371 | do { |
5372 | if (!event_sp) { |
5373 | event_explanation = "<no event>" ; |
5374 | break; |
5375 | } else if (event_sp->GetType() == eBroadcastBitInterrupt) { |
5376 | event_explanation = "<user interrupt>" ; |
5377 | break; |
5378 | } else { |
5379 | const Process::ProcessEventData *event_data = |
5380 | Process::ProcessEventData::GetEventDataFromEvent( |
5381 | event_ptr: event_sp.get()); |
5382 | |
5383 | if (!event_data) { |
5384 | event_explanation = "<no event data>" ; |
5385 | break; |
5386 | } |
5387 | |
5388 | Process *process = event_data->GetProcessSP().get(); |
5389 | |
5390 | if (!process) { |
5391 | event_explanation = "<no process>" ; |
5392 | break; |
5393 | } |
5394 | |
5395 | ThreadList &thread_list = process->GetThreadList(); |
5396 | |
5397 | uint32_t num_threads = thread_list.GetSize(); |
5398 | uint32_t thread_index; |
5399 | |
5400 | ts.Printf(format: "<%u threads> " , num_threads); |
5401 | |
5402 | for (thread_index = 0; thread_index < num_threads; ++thread_index) { |
5403 | Thread *thread = thread_list.GetThreadAtIndex(idx: thread_index).get(); |
5404 | |
5405 | if (!thread) { |
5406 | ts.Printf(format: "<?> " ); |
5407 | continue; |
5408 | } |
5409 | |
5410 | ts.Printf(format: "<0x%4.4" PRIx64 " " , thread->GetID()); |
5411 | RegisterContext *register_context = |
5412 | thread->GetRegisterContext().get(); |
5413 | |
5414 | if (register_context) |
5415 | ts.Printf(format: "[ip 0x%" PRIx64 "] " , register_context->GetPC()); |
5416 | else |
5417 | ts.Printf(format: "[ip unknown] " ); |
5418 | |
5419 | // Show the private stop info here, the public stop info will be |
5420 | // from the last natural stop. |
5421 | lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); |
5422 | if (stop_info_sp) { |
5423 | const char *stop_desc = stop_info_sp->GetDescription(); |
5424 | if (stop_desc) |
5425 | ts.PutCString(cstr: stop_desc); |
5426 | } |
5427 | ts.Printf(format: ">" ); |
5428 | } |
5429 | |
5430 | event_explanation = ts.GetData(); |
5431 | } |
5432 | } while (false); |
5433 | |
5434 | if (event_explanation) |
5435 | LLDB_LOGF(log, |
5436 | "Process::RunThreadPlan(): execution interrupted: %s %s" , |
5437 | s.GetData(), event_explanation); |
5438 | else |
5439 | LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s" , |
5440 | s.GetData()); |
5441 | } |
5442 | |
5443 | if (should_unwind) { |
5444 | LLDB_LOGF(log, |
5445 | "Process::RunThreadPlan: ExecutionInterrupted - " |
5446 | "discarding thread plans up to %p." , |
5447 | static_cast<void *>(thread_plan_sp.get())); |
5448 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: thread_plan_sp); |
5449 | } else { |
5450 | LLDB_LOGF(log, |
5451 | "Process::RunThreadPlan: ExecutionInterrupted - for " |
5452 | "plan: %p not discarding." , |
5453 | static_cast<void *>(thread_plan_sp.get())); |
5454 | } |
5455 | } else if (return_value == eExpressionSetupError) { |
5456 | if (log) |
5457 | log->PutCString(cstr: "Process::RunThreadPlan(): execution set up error." ); |
5458 | |
5459 | if (options.DoesUnwindOnError()) { |
5460 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: thread_plan_sp); |
5461 | } |
5462 | } else { |
5463 | if (thread->IsThreadPlanDone(plan: thread_plan_sp.get())) { |
5464 | if (log) |
5465 | log->PutCString(cstr: "Process::RunThreadPlan(): thread plan is done" ); |
5466 | return_value = eExpressionCompleted; |
5467 | } else if (thread->WasThreadPlanDiscarded(plan: thread_plan_sp.get())) { |
5468 | if (log) |
5469 | log->PutCString( |
5470 | cstr: "Process::RunThreadPlan(): thread plan was discarded" ); |
5471 | return_value = eExpressionDiscarded; |
5472 | } else { |
5473 | if (log) |
5474 | log->PutCString( |
5475 | cstr: "Process::RunThreadPlan(): thread plan stopped in mid course" ); |
5476 | if (options.DoesUnwindOnError() && thread_plan_sp) { |
5477 | if (log) |
5478 | log->PutCString(cstr: "Process::RunThreadPlan(): discarding thread plan " |
5479 | "'cause unwind_on_error is set." ); |
5480 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: thread_plan_sp); |
5481 | } |
5482 | } |
5483 | } |
5484 | |
5485 | // Thread we ran the function in may have gone away because we ran the |
5486 | // target Check that it's still there, and if it is put it back in the |
5487 | // context. Also restore the frame in the context if it is still present. |
5488 | thread = GetThreadList().FindThreadByIndexID(index_id: thread_idx_id, can_update: true).get(); |
5489 | if (thread) { |
5490 | exe_ctx.SetFrameSP(thread->GetFrameWithStackID(stack_id: ctx_frame_id)); |
5491 | } |
5492 | |
5493 | // Also restore the current process'es selected frame & thread, since this |
5494 | // function calling may be done behind the user's back. |
5495 | |
5496 | if (selected_tid != LLDB_INVALID_THREAD_ID) { |
5497 | if (GetThreadList().SetSelectedThreadByIndexID(index_id: selected_tid) && |
5498 | selected_stack_id.IsValid()) { |
5499 | // We were able to restore the selected thread, now restore the frame: |
5500 | std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); |
5501 | StackFrameSP old_frame_sp = |
5502 | GetThreadList().GetSelectedThread()->GetFrameWithStackID( |
5503 | stack_id: selected_stack_id); |
5504 | if (old_frame_sp) |
5505 | GetThreadList().GetSelectedThread()->SetSelectedFrame( |
5506 | frame: old_frame_sp.get()); |
5507 | } |
5508 | } |
5509 | } |
5510 | |
5511 | // If the process exited during the run of the thread plan, notify everyone. |
5512 | |
5513 | if (event_to_broadcast_sp) { |
5514 | if (log) |
5515 | log->PutCString(cstr: "Process::RunThreadPlan(): rebroadcasting event." ); |
5516 | BroadcastEvent(event_sp&: event_to_broadcast_sp); |
5517 | } |
5518 | |
5519 | return return_value; |
5520 | } |
5521 | |
5522 | const char *Process::ExecutionResultAsCString(ExpressionResults result) { |
5523 | const char *result_name = "<unknown>" ; |
5524 | |
5525 | switch (result) { |
5526 | case eExpressionCompleted: |
5527 | result_name = "eExpressionCompleted" ; |
5528 | break; |
5529 | case eExpressionDiscarded: |
5530 | result_name = "eExpressionDiscarded" ; |
5531 | break; |
5532 | case eExpressionInterrupted: |
5533 | result_name = "eExpressionInterrupted" ; |
5534 | break; |
5535 | case eExpressionHitBreakpoint: |
5536 | result_name = "eExpressionHitBreakpoint" ; |
5537 | break; |
5538 | case eExpressionSetupError: |
5539 | result_name = "eExpressionSetupError" ; |
5540 | break; |
5541 | case eExpressionParseError: |
5542 | result_name = "eExpressionParseError" ; |
5543 | break; |
5544 | case eExpressionResultUnavailable: |
5545 | result_name = "eExpressionResultUnavailable" ; |
5546 | break; |
5547 | case eExpressionTimedOut: |
5548 | result_name = "eExpressionTimedOut" ; |
5549 | break; |
5550 | case eExpressionStoppedForDebug: |
5551 | result_name = "eExpressionStoppedForDebug" ; |
5552 | break; |
5553 | case eExpressionThreadVanished: |
5554 | result_name = "eExpressionThreadVanished" ; |
5555 | } |
5556 | return result_name; |
5557 | } |
5558 | |
5559 | void Process::GetStatus(Stream &strm) { |
5560 | const StateType state = GetState(); |
5561 | if (StateIsStoppedState(state, must_exist: false)) { |
5562 | if (state == eStateExited) { |
5563 | int exit_status = GetExitStatus(); |
5564 | const char *exit_description = GetExitDescription(); |
5565 | strm.Printf(format: "Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n" , |
5566 | GetID(), exit_status, exit_status, |
5567 | exit_description ? exit_description : "" ); |
5568 | } else { |
5569 | if (state == eStateConnected) |
5570 | strm.Printf(format: "Connected to remote target.\n" ); |
5571 | else |
5572 | strm.Printf(format: "Process %" PRIu64 " %s\n" , GetID(), StateAsCString(state)); |
5573 | } |
5574 | } else { |
5575 | strm.Printf(format: "Process %" PRIu64 " is running.\n" , GetID()); |
5576 | } |
5577 | } |
5578 | |
5579 | size_t Process::GetThreadStatus(Stream &strm, |
5580 | bool only_threads_with_stop_reason, |
5581 | uint32_t start_frame, uint32_t num_frames, |
5582 | uint32_t num_frames_with_source, |
5583 | bool stop_format) { |
5584 | size_t num_thread_infos_dumped = 0; |
5585 | |
5586 | // You can't hold the thread list lock while calling Thread::GetStatus. That |
5587 | // very well might run code (e.g. if we need it to get return values or |
5588 | // arguments.) For that to work the process has to be able to acquire it. |
5589 | // So instead copy the thread ID's, and look them up one by one: |
5590 | |
5591 | uint32_t num_threads; |
5592 | std::vector<lldb::tid_t> thread_id_array; |
5593 | // Scope for thread list locker; |
5594 | { |
5595 | std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); |
5596 | ThreadList &curr_thread_list = GetThreadList(); |
5597 | num_threads = curr_thread_list.GetSize(); |
5598 | uint32_t idx; |
5599 | thread_id_array.resize(new_size: num_threads); |
5600 | for (idx = 0; idx < num_threads; ++idx) |
5601 | thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); |
5602 | } |
5603 | |
5604 | for (uint32_t i = 0; i < num_threads; i++) { |
5605 | ThreadSP thread_sp(GetThreadList().FindThreadByID(tid: thread_id_array[i])); |
5606 | if (thread_sp) { |
5607 | if (only_threads_with_stop_reason) { |
5608 | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
5609 | if (!stop_info_sp || !stop_info_sp->IsValid()) |
5610 | continue; |
5611 | } |
5612 | thread_sp->GetStatus(strm, start_frame, num_frames, |
5613 | num_frames_with_source, |
5614 | stop_format); |
5615 | ++num_thread_infos_dumped; |
5616 | } else { |
5617 | Log *log = GetLog(mask: LLDBLog::Process); |
5618 | LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 |
5619 | " vanished while running Thread::GetStatus." ); |
5620 | } |
5621 | } |
5622 | return num_thread_infos_dumped; |
5623 | } |
5624 | |
5625 | void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { |
5626 | m_memory_cache.AddInvalidRange(base_addr: region.GetRangeBase(), byte_size: region.GetByteSize()); |
5627 | } |
5628 | |
5629 | bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { |
5630 | return m_memory_cache.RemoveInvalidRange(base_addr: region.GetRangeBase(), |
5631 | byte_size: region.GetByteSize()); |
5632 | } |
5633 | |
5634 | void Process::AddPreResumeAction(PreResumeActionCallback callback, |
5635 | void *baton) { |
5636 | m_pre_resume_actions.push_back(x: PreResumeCallbackAndBaton(callback, baton)); |
5637 | } |
5638 | |
5639 | bool Process::RunPreResumeActions() { |
5640 | bool result = true; |
5641 | while (!m_pre_resume_actions.empty()) { |
5642 | struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); |
5643 | m_pre_resume_actions.pop_back(); |
5644 | bool this_result = action.callback(action.baton); |
5645 | if (result) |
5646 | result = this_result; |
5647 | } |
5648 | return result; |
5649 | } |
5650 | |
5651 | void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } |
5652 | |
5653 | void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) |
5654 | { |
5655 | PreResumeCallbackAndBaton element(callback, baton); |
5656 | auto found_iter = std::find(first: m_pre_resume_actions.begin(), last: m_pre_resume_actions.end(), val: element); |
5657 | if (found_iter != m_pre_resume_actions.end()) |
5658 | { |
5659 | m_pre_resume_actions.erase(position: found_iter); |
5660 | } |
5661 | } |
5662 | |
5663 | ProcessRunLock &Process::GetRunLock() { |
5664 | if (m_private_state_thread.EqualsThread(thread: Host::GetCurrentThread())) |
5665 | return m_private_run_lock; |
5666 | else |
5667 | return m_public_run_lock; |
5668 | } |
5669 | |
5670 | bool Process::CurrentThreadIsPrivateStateThread() |
5671 | { |
5672 | return m_private_state_thread.EqualsThread(thread: Host::GetCurrentThread()); |
5673 | } |
5674 | |
5675 | |
5676 | void Process::Flush() { |
5677 | m_thread_list.Flush(); |
5678 | m_extended_thread_list.Flush(); |
5679 | m_extended_thread_stop_id = 0; |
5680 | m_queue_list.Clear(); |
5681 | m_queue_list_stop_id = 0; |
5682 | } |
5683 | |
5684 | lldb::addr_t Process::GetCodeAddressMask() { |
5685 | if (uint32_t num_bits_setting = GetVirtualAddressableBits()) |
5686 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5687 | |
5688 | return m_code_address_mask; |
5689 | } |
5690 | |
5691 | lldb::addr_t Process::GetDataAddressMask() { |
5692 | if (uint32_t num_bits_setting = GetVirtualAddressableBits()) |
5693 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5694 | |
5695 | return m_data_address_mask; |
5696 | } |
5697 | |
5698 | lldb::addr_t Process::GetHighmemCodeAddressMask() { |
5699 | if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) |
5700 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5701 | |
5702 | if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) |
5703 | return m_highmem_code_address_mask; |
5704 | return GetCodeAddressMask(); |
5705 | } |
5706 | |
5707 | lldb::addr_t Process::GetHighmemDataAddressMask() { |
5708 | if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) |
5709 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5710 | |
5711 | if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) |
5712 | return m_highmem_data_address_mask; |
5713 | return GetDataAddressMask(); |
5714 | } |
5715 | |
5716 | void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { |
5717 | LLDB_LOG(GetLog(LLDBLog::Process), |
5718 | "Setting Process code address mask to {0:x}" , code_address_mask); |
5719 | m_code_address_mask = code_address_mask; |
5720 | } |
5721 | |
5722 | void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { |
5723 | LLDB_LOG(GetLog(LLDBLog::Process), |
5724 | "Setting Process data address mask to {0:x}" , data_address_mask); |
5725 | m_data_address_mask = data_address_mask; |
5726 | } |
5727 | |
5728 | void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { |
5729 | LLDB_LOG(GetLog(LLDBLog::Process), |
5730 | "Setting Process highmem code address mask to {0:x}" , |
5731 | code_address_mask); |
5732 | m_highmem_code_address_mask = code_address_mask; |
5733 | } |
5734 | |
5735 | void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { |
5736 | LLDB_LOG(GetLog(LLDBLog::Process), |
5737 | "Setting Process highmem data address mask to {0:x}" , |
5738 | data_address_mask); |
5739 | m_highmem_data_address_mask = data_address_mask; |
5740 | } |
5741 | |
5742 | addr_t Process::FixCodeAddress(addr_t addr) { |
5743 | if (ABISP abi_sp = GetABI()) |
5744 | addr = abi_sp->FixCodeAddress(pc: addr); |
5745 | return addr; |
5746 | } |
5747 | |
5748 | addr_t Process::FixDataAddress(addr_t addr) { |
5749 | if (ABISP abi_sp = GetABI()) |
5750 | addr = abi_sp->FixDataAddress(pc: addr); |
5751 | return addr; |
5752 | } |
5753 | |
5754 | addr_t Process::FixAnyAddress(addr_t addr) { |
5755 | if (ABISP abi_sp = GetABI()) |
5756 | addr = abi_sp->FixAnyAddress(pc: addr); |
5757 | return addr; |
5758 | } |
5759 | |
5760 | void Process::DidExec() { |
5761 | Log *log = GetLog(mask: LLDBLog::Process); |
5762 | LLDB_LOGF(log, "Process::%s()" , __FUNCTION__); |
5763 | |
5764 | Target &target = GetTarget(); |
5765 | target.CleanupProcess(); |
5766 | target.ClearModules(delete_locations: false); |
5767 | m_dynamic_checkers_up.reset(); |
5768 | m_abi_sp.reset(); |
5769 | m_system_runtime_up.reset(); |
5770 | m_os_up.reset(); |
5771 | m_dyld_up.reset(); |
5772 | m_jit_loaders_up.reset(); |
5773 | m_image_tokens.clear(); |
5774 | // After an exec, the inferior is a new process and these memory regions are |
5775 | // no longer allocated. |
5776 | m_allocated_memory_cache.Clear(/*deallocte_memory=*/deallocate_memory: false); |
5777 | { |
5778 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
5779 | m_language_runtimes.clear(); |
5780 | } |
5781 | m_instrumentation_runtimes.clear(); |
5782 | m_thread_list.DiscardThreadPlans(); |
5783 | m_memory_cache.Clear(clear_invalid_ranges: true); |
5784 | DoDidExec(); |
5785 | CompleteAttach(); |
5786 | // Flush the process (threads and all stack frames) after running |
5787 | // CompleteAttach() in case the dynamic loader loaded things in new |
5788 | // locations. |
5789 | Flush(); |
5790 | |
5791 | // After we figure out what was loaded/unloaded in CompleteAttach, we need to |
5792 | // let the target know so it can do any cleanup it needs to. |
5793 | target.DidExec(); |
5794 | } |
5795 | |
5796 | addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { |
5797 | if (address == nullptr) { |
5798 | error.SetErrorString("Invalid address argument" ); |
5799 | return LLDB_INVALID_ADDRESS; |
5800 | } |
5801 | |
5802 | addr_t function_addr = LLDB_INVALID_ADDRESS; |
5803 | |
5804 | addr_t addr = address->GetLoadAddress(target: &GetTarget()); |
5805 | std::map<addr_t, addr_t>::const_iterator iter = |
5806 | m_resolved_indirect_addresses.find(x: addr); |
5807 | if (iter != m_resolved_indirect_addresses.end()) { |
5808 | function_addr = (*iter).second; |
5809 | } else { |
5810 | if (!CallVoidArgVoidPtrReturn(address, returned_func&: function_addr)) { |
5811 | Symbol *symbol = address->CalculateSymbolContextSymbol(); |
5812 | error.SetErrorStringWithFormat( |
5813 | "Unable to call resolver for indirect function %s" , |
5814 | symbol ? symbol->GetName().AsCString() : "<UNKNOWN>" ); |
5815 | function_addr = LLDB_INVALID_ADDRESS; |
5816 | } else { |
5817 | if (ABISP abi_sp = GetABI()) |
5818 | function_addr = abi_sp->FixCodeAddress(pc: function_addr); |
5819 | m_resolved_indirect_addresses.insert( |
5820 | x: std::pair<addr_t, addr_t>(addr, function_addr)); |
5821 | } |
5822 | } |
5823 | return function_addr; |
5824 | } |
5825 | |
5826 | void Process::ModulesDidLoad(ModuleList &module_list) { |
5827 | // Inform the system runtime of the modified modules. |
5828 | SystemRuntime *sys_runtime = GetSystemRuntime(); |
5829 | if (sys_runtime) |
5830 | sys_runtime->ModulesDidLoad(module_list); |
5831 | |
5832 | GetJITLoaders().ModulesDidLoad(module_list); |
5833 | |
5834 | // Give the instrumentation runtimes a chance to be created before informing |
5835 | // them of the modified modules. |
5836 | InstrumentationRuntime::ModulesDidLoad(module_list, process: this, |
5837 | runtimes&: m_instrumentation_runtimes); |
5838 | for (auto &runtime : m_instrumentation_runtimes) |
5839 | runtime.second->ModulesDidLoad(module_list); |
5840 | |
5841 | // Give the language runtimes a chance to be created before informing them of |
5842 | // the modified modules. |
5843 | for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { |
5844 | if (LanguageRuntime *runtime = GetLanguageRuntime(language: lang_type)) |
5845 | runtime->ModulesDidLoad(module_list); |
5846 | } |
5847 | |
5848 | // If we don't have an operating system plug-in, try to load one since |
5849 | // loading shared libraries might cause a new one to try and load |
5850 | if (!m_os_up) |
5851 | LoadOperatingSystemPlugin(flush: false); |
5852 | |
5853 | // Inform the structured-data plugins of the modified modules. |
5854 | for (auto &pair : m_structured_data_plugin_map) { |
5855 | if (pair.second) |
5856 | pair.second->ModulesDidLoad(process&: *this, module_list); |
5857 | } |
5858 | } |
5859 | |
5860 | void Process::PrintWarningOptimization(const SymbolContext &sc) { |
5861 | if (!GetWarningsOptimization()) |
5862 | return; |
5863 | if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) |
5864 | return; |
5865 | sc.module_sp->ReportWarningOptimization(debugger_id: GetTarget().GetDebugger().GetID()); |
5866 | } |
5867 | |
5868 | void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { |
5869 | if (!GetWarningsUnsupportedLanguage()) |
5870 | return; |
5871 | if (!sc.module_sp) |
5872 | return; |
5873 | LanguageType language = sc.GetLanguage(); |
5874 | if (language == eLanguageTypeUnknown) |
5875 | return; |
5876 | LanguageSet plugins = |
5877 | PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); |
5878 | if (plugins[language]) |
5879 | return; |
5880 | sc.module_sp->ReportWarningUnsupportedLanguage( |
5881 | language, debugger_id: GetTarget().GetDebugger().GetID()); |
5882 | } |
5883 | |
5884 | bool Process::GetProcessInfo(ProcessInstanceInfo &info) { |
5885 | info.Clear(); |
5886 | |
5887 | PlatformSP platform_sp = GetTarget().GetPlatform(); |
5888 | if (!platform_sp) |
5889 | return false; |
5890 | |
5891 | return platform_sp->GetProcessInfo(pid: GetID(), proc_info&: info); |
5892 | } |
5893 | |
5894 | ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { |
5895 | ThreadCollectionSP threads; |
5896 | |
5897 | const MemoryHistorySP &memory_history = |
5898 | MemoryHistory::FindPlugin(process: shared_from_this()); |
5899 | |
5900 | if (!memory_history) { |
5901 | return threads; |
5902 | } |
5903 | |
5904 | threads = std::make_shared<ThreadCollection>( |
5905 | args: memory_history->GetHistoryThreads(address: addr)); |
5906 | |
5907 | return threads; |
5908 | } |
5909 | |
5910 | InstrumentationRuntimeSP |
5911 | Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { |
5912 | InstrumentationRuntimeCollection::iterator pos; |
5913 | pos = m_instrumentation_runtimes.find(x: type); |
5914 | if (pos == m_instrumentation_runtimes.end()) { |
5915 | return InstrumentationRuntimeSP(); |
5916 | } else |
5917 | return (*pos).second; |
5918 | } |
5919 | |
5920 | bool Process::GetModuleSpec(const FileSpec &module_file_spec, |
5921 | const ArchSpec &arch, ModuleSpec &module_spec) { |
5922 | module_spec.Clear(); |
5923 | return false; |
5924 | } |
5925 | |
5926 | size_t Process::AddImageToken(lldb::addr_t image_ptr) { |
5927 | m_image_tokens.push_back(x: image_ptr); |
5928 | return m_image_tokens.size() - 1; |
5929 | } |
5930 | |
5931 | lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { |
5932 | if (token < m_image_tokens.size()) |
5933 | return m_image_tokens[token]; |
5934 | return LLDB_INVALID_IMAGE_TOKEN; |
5935 | } |
5936 | |
5937 | void Process::ResetImageToken(size_t token) { |
5938 | if (token < m_image_tokens.size()) |
5939 | m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; |
5940 | } |
5941 | |
5942 | Address |
5943 | Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, |
5944 | AddressRange range_bounds) { |
5945 | Target &target = GetTarget(); |
5946 | DisassemblerSP disassembler_sp; |
5947 | InstructionList *insn_list = nullptr; |
5948 | |
5949 | Address retval = default_stop_addr; |
5950 | |
5951 | if (!target.GetUseFastStepping()) |
5952 | return retval; |
5953 | if (!default_stop_addr.IsValid()) |
5954 | return retval; |
5955 | |
5956 | const char *plugin_name = nullptr; |
5957 | const char *flavor = nullptr; |
5958 | disassembler_sp = Disassembler::DisassembleRange( |
5959 | arch: target.GetArchitecture(), plugin_name, flavor, target&: GetTarget(), disasm_range: range_bounds); |
5960 | if (disassembler_sp) |
5961 | insn_list = &disassembler_sp->GetInstructionList(); |
5962 | |
5963 | if (insn_list == nullptr) { |
5964 | return retval; |
5965 | } |
5966 | |
5967 | size_t insn_offset = |
5968 | insn_list->GetIndexOfInstructionAtAddress(addr: default_stop_addr); |
5969 | if (insn_offset == UINT32_MAX) { |
5970 | return retval; |
5971 | } |
5972 | |
5973 | uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( |
5974 | start: insn_offset, ignore_calls: false /* ignore_calls*/, found_calls: nullptr); |
5975 | if (branch_index == UINT32_MAX) { |
5976 | return retval; |
5977 | } |
5978 | |
5979 | if (branch_index > insn_offset) { |
5980 | Address next_branch_insn_address = |
5981 | insn_list->GetInstructionAtIndex(idx: branch_index)->GetAddress(); |
5982 | if (next_branch_insn_address.IsValid() && |
5983 | range_bounds.ContainsFileAddress(so_addr: next_branch_insn_address)) { |
5984 | retval = next_branch_insn_address; |
5985 | } |
5986 | } |
5987 | |
5988 | return retval; |
5989 | } |
5990 | |
5991 | Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, |
5992 | MemoryRegionInfo &range_info) { |
5993 | if (const lldb::ABISP &abi = GetABI()) |
5994 | load_addr = abi->FixAnyAddress(pc: load_addr); |
5995 | return DoGetMemoryRegionInfo(load_addr, range_info); |
5996 | } |
5997 | |
5998 | Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { |
5999 | Status error; |
6000 | |
6001 | lldb::addr_t range_end = 0; |
6002 | const lldb::ABISP &abi = GetABI(); |
6003 | |
6004 | region_list.clear(); |
6005 | do { |
6006 | lldb_private::MemoryRegionInfo region_info; |
6007 | error = GetMemoryRegionInfo(load_addr: range_end, range_info&: region_info); |
6008 | // GetMemoryRegionInfo should only return an error if it is unimplemented. |
6009 | if (error.Fail()) { |
6010 | region_list.clear(); |
6011 | break; |
6012 | } |
6013 | |
6014 | // We only check the end address, not start and end, because we assume that |
6015 | // the start will not have non-address bits until the first unmappable |
6016 | // region. We will have exited the loop by that point because the previous |
6017 | // region, the last mappable region, will have non-address bits in its end |
6018 | // address. |
6019 | range_end = region_info.GetRange().GetRangeEnd(); |
6020 | if (region_info.GetMapped() == MemoryRegionInfo::eYes) { |
6021 | region_list.push_back(x: std::move(region_info)); |
6022 | } |
6023 | } while ( |
6024 | // For a process with no non-address bits, all address bits |
6025 | // set means the end of memory. |
6026 | range_end != LLDB_INVALID_ADDRESS && |
6027 | // If we have non-address bits and some are set then the end |
6028 | // is at or beyond the end of mappable memory. |
6029 | !(abi && (abi->FixAnyAddress(pc: range_end) != range_end))); |
6030 | |
6031 | return error; |
6032 | } |
6033 | |
6034 | Status |
6035 | Process::ConfigureStructuredData(llvm::StringRef type_name, |
6036 | const StructuredData::ObjectSP &config_sp) { |
6037 | // If you get this, the Process-derived class needs to implement a method to |
6038 | // enable an already-reported asynchronous structured data feature. See |
6039 | // ProcessGDBRemote for an example implementation over gdb-remote. |
6040 | return Status("unimplemented" ); |
6041 | } |
6042 | |
6043 | void Process::MapSupportedStructuredDataPlugins( |
6044 | const StructuredData::Array &supported_type_names) { |
6045 | Log *log = GetLog(mask: LLDBLog::Process); |
6046 | |
6047 | // Bail out early if there are no type names to map. |
6048 | if (supported_type_names.GetSize() == 0) { |
6049 | LLDB_LOG(log, "no structured data types supported" ); |
6050 | return; |
6051 | } |
6052 | |
6053 | // These StringRefs are backed by the input parameter. |
6054 | std::set<llvm::StringRef> type_names; |
6055 | |
6056 | LLDB_LOG(log, |
6057 | "the process supports the following async structured data types:" ); |
6058 | |
6059 | supported_type_names.ForEach( |
6060 | foreach_callback: [&type_names, &log](StructuredData::Object *object) { |
6061 | // There shouldn't be null objects in the array. |
6062 | if (!object) |
6063 | return false; |
6064 | |
6065 | // All type names should be strings. |
6066 | const llvm::StringRef type_name = object->GetStringValue(); |
6067 | if (type_name.empty()) |
6068 | return false; |
6069 | |
6070 | type_names.insert(x: type_name); |
6071 | LLDB_LOG(log, "- {0}" , type_name); |
6072 | return true; |
6073 | }); |
6074 | |
6075 | // For each StructuredDataPlugin, if the plugin handles any of the types in |
6076 | // the supported_type_names, map that type name to that plugin. Stop when |
6077 | // we've consumed all the type names. |
6078 | // FIXME: should we return an error if there are type names nobody |
6079 | // supports? |
6080 | for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { |
6081 | auto create_instance = |
6082 | PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( |
6083 | idx: plugin_index); |
6084 | if (!create_instance) |
6085 | break; |
6086 | |
6087 | // Create the plugin. |
6088 | StructuredDataPluginSP plugin_sp = (*create_instance)(*this); |
6089 | if (!plugin_sp) { |
6090 | // This plugin doesn't think it can work with the process. Move on to the |
6091 | // next. |
6092 | continue; |
6093 | } |
6094 | |
6095 | // For any of the remaining type names, map any that this plugin supports. |
6096 | std::vector<llvm::StringRef> names_to_remove; |
6097 | for (llvm::StringRef type_name : type_names) { |
6098 | if (plugin_sp->SupportsStructuredDataType(type_name)) { |
6099 | m_structured_data_plugin_map.insert( |
6100 | KV: std::make_pair(x&: type_name, y&: plugin_sp)); |
6101 | names_to_remove.push_back(x: type_name); |
6102 | LLDB_LOG(log, "using plugin {0} for type name {1}" , |
6103 | plugin_sp->GetPluginName(), type_name); |
6104 | } |
6105 | } |
6106 | |
6107 | // Remove the type names that were consumed by this plugin. |
6108 | for (llvm::StringRef type_name : names_to_remove) |
6109 | type_names.erase(x: type_name); |
6110 | } |
6111 | } |
6112 | |
6113 | bool Process::RouteAsyncStructuredData( |
6114 | const StructuredData::ObjectSP object_sp) { |
6115 | // Nothing to do if there's no data. |
6116 | if (!object_sp) |
6117 | return false; |
6118 | |
6119 | // The contract is this must be a dictionary, so we can look up the routing |
6120 | // key via the top-level 'type' string value within the dictionary. |
6121 | StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); |
6122 | if (!dictionary) |
6123 | return false; |
6124 | |
6125 | // Grab the async structured type name (i.e. the feature/plugin name). |
6126 | llvm::StringRef type_name; |
6127 | if (!dictionary->GetValueForKeyAsString(key: "type" , result&: type_name)) |
6128 | return false; |
6129 | |
6130 | // Check if there's a plugin registered for this type name. |
6131 | auto find_it = m_structured_data_plugin_map.find(Key: type_name); |
6132 | if (find_it == m_structured_data_plugin_map.end()) { |
6133 | // We don't have a mapping for this structured data type. |
6134 | return false; |
6135 | } |
6136 | |
6137 | // Route the structured data to the plugin. |
6138 | find_it->second->HandleArrivalOfStructuredData(process&: *this, type_name, object_sp); |
6139 | return true; |
6140 | } |
6141 | |
6142 | Status Process::UpdateAutomaticSignalFiltering() { |
6143 | // Default implementation does nothign. |
6144 | // No automatic signal filtering to speak of. |
6145 | return Status(); |
6146 | } |
6147 | |
6148 | UtilityFunction *Process::GetLoadImageUtilityFunction( |
6149 | Platform *platform, |
6150 | llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { |
6151 | if (platform != GetTarget().GetPlatform().get()) |
6152 | return nullptr; |
6153 | llvm::call_once(flag&: m_dlopen_utility_func_flag_once, |
6154 | F: [&] { m_dlopen_utility_func_up = factory(); }); |
6155 | return m_dlopen_utility_func_up.get(); |
6156 | } |
6157 | |
6158 | llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { |
6159 | if (!IsLiveDebugSession()) |
6160 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
6161 | Msg: "Can't trace a non-live process." ); |
6162 | return llvm::make_error<UnimplementedError>(); |
6163 | } |
6164 | |
6165 | bool Process::CallVoidArgVoidPtrReturn(const Address *address, |
6166 | addr_t &returned_func, |
6167 | bool trap_exceptions) { |
6168 | Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); |
6169 | if (thread == nullptr || address == nullptr) |
6170 | return false; |
6171 | |
6172 | EvaluateExpressionOptions options; |
6173 | options.SetStopOthers(true); |
6174 | options.SetUnwindOnError(true); |
6175 | options.SetIgnoreBreakpoints(true); |
6176 | options.SetTryAllThreads(true); |
6177 | options.SetDebug(false); |
6178 | options.SetTimeout(GetUtilityExpressionTimeout()); |
6179 | options.SetTrapExceptions(trap_exceptions); |
6180 | |
6181 | auto type_system_or_err = |
6182 | GetTarget().GetScratchTypeSystemForLanguage(language: eLanguageTypeC); |
6183 | if (!type_system_or_err) { |
6184 | llvm::consumeError(Err: type_system_or_err.takeError()); |
6185 | return false; |
6186 | } |
6187 | auto ts = *type_system_or_err; |
6188 | if (!ts) |
6189 | return false; |
6190 | CompilerType void_ptr_type = |
6191 | ts->GetBasicTypeFromAST(basic_type: eBasicTypeVoid).GetPointerType(); |
6192 | lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( |
6193 | *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); |
6194 | if (call_plan_sp) { |
6195 | DiagnosticManager diagnostics; |
6196 | |
6197 | StackFrame *frame = thread->GetStackFrameAtIndex(idx: 0).get(); |
6198 | if (frame) { |
6199 | ExecutionContext exe_ctx; |
6200 | frame->CalculateExecutionContext(exe_ctx); |
6201 | ExpressionResults result = |
6202 | RunThreadPlan(exe_ctx, thread_plan_sp&: call_plan_sp, options, diagnostic_manager&: diagnostics); |
6203 | if (result == eExpressionCompleted) { |
6204 | returned_func = |
6205 | call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( |
6206 | LLDB_INVALID_ADDRESS); |
6207 | |
6208 | if (GetAddressByteSize() == 4) { |
6209 | if (returned_func == UINT32_MAX) |
6210 | return false; |
6211 | } else if (GetAddressByteSize() == 8) { |
6212 | if (returned_func == UINT64_MAX) |
6213 | return false; |
6214 | } |
6215 | return true; |
6216 | } |
6217 | } |
6218 | } |
6219 | |
6220 | return false; |
6221 | } |
6222 | |
6223 | llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { |
6224 | Architecture *arch = GetTarget().GetArchitecturePlugin(); |
6225 | const MemoryTagManager *tag_manager = |
6226 | arch ? arch->GetMemoryTagManager() : nullptr; |
6227 | if (!arch || !tag_manager) { |
6228 | return llvm::createStringError( |
6229 | EC: llvm::inconvertibleErrorCode(), |
6230 | Msg: "This architecture does not support memory tagging" ); |
6231 | } |
6232 | |
6233 | if (!SupportsMemoryTagging()) { |
6234 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
6235 | Msg: "Process does not support memory tagging" ); |
6236 | } |
6237 | |
6238 | return tag_manager; |
6239 | } |
6240 | |
6241 | llvm::Expected<std::vector<lldb::addr_t>> |
6242 | Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { |
6243 | llvm::Expected<const MemoryTagManager *> tag_manager_or_err = |
6244 | GetMemoryTagManager(); |
6245 | if (!tag_manager_or_err) |
6246 | return tag_manager_or_err.takeError(); |
6247 | |
6248 | const MemoryTagManager *tag_manager = *tag_manager_or_err; |
6249 | llvm::Expected<std::vector<uint8_t>> tag_data = |
6250 | DoReadMemoryTags(addr, len, type: tag_manager->GetAllocationTagType()); |
6251 | if (!tag_data) |
6252 | return tag_data.takeError(); |
6253 | |
6254 | return tag_manager->UnpackTagsData(tags: *tag_data, |
6255 | granules: len / tag_manager->GetGranuleSize()); |
6256 | } |
6257 | |
6258 | Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, |
6259 | const std::vector<lldb::addr_t> &tags) { |
6260 | llvm::Expected<const MemoryTagManager *> tag_manager_or_err = |
6261 | GetMemoryTagManager(); |
6262 | if (!tag_manager_or_err) |
6263 | return Status(tag_manager_or_err.takeError()); |
6264 | |
6265 | const MemoryTagManager *tag_manager = *tag_manager_or_err; |
6266 | llvm::Expected<std::vector<uint8_t>> packed_tags = |
6267 | tag_manager->PackTags(tags); |
6268 | if (!packed_tags) { |
6269 | return Status(packed_tags.takeError()); |
6270 | } |
6271 | |
6272 | return DoWriteMemoryTags(addr, len, type: tag_manager->GetAllocationTagType(), |
6273 | tags: *packed_tags); |
6274 | } |
6275 | |
6276 | // Create a CoreFileMemoryRange from a MemoryRegionInfo |
6277 | static Process::CoreFileMemoryRange |
6278 | CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { |
6279 | const addr_t addr = region.GetRange().GetRangeBase(); |
6280 | llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); |
6281 | return {.range: range, .lldb_permissions: region.GetLLDBPermissions()}; |
6282 | } |
6283 | |
6284 | // Add dirty pages to the core file ranges and return true if dirty pages |
6285 | // were added. Return false if the dirty page information is not valid or in |
6286 | // the region. |
6287 | static bool AddDirtyPages(const MemoryRegionInfo ®ion, |
6288 | Process::CoreFileMemoryRanges &ranges) { |
6289 | const auto &dirty_page_list = region.GetDirtyPageList(); |
6290 | if (!dirty_page_list) |
6291 | return false; |
6292 | const uint32_t lldb_permissions = region.GetLLDBPermissions(); |
6293 | const addr_t page_size = region.GetPageSize(); |
6294 | if (page_size == 0) |
6295 | return false; |
6296 | llvm::AddressRange range(0, 0); |
6297 | for (addr_t page_addr : *dirty_page_list) { |
6298 | if (range.empty()) { |
6299 | // No range yet, initialize the range with the current dirty page. |
6300 | range = llvm::AddressRange(page_addr, page_addr + page_size); |
6301 | } else { |
6302 | if (range.end() == page_addr) { |
6303 | // Combine consective ranges. |
6304 | range = llvm::AddressRange(range.start(), page_addr + page_size); |
6305 | } else { |
6306 | // Add previous contiguous range and init the new range with the |
6307 | // current dirty page. |
6308 | ranges.push_back(x: {.range: range, .lldb_permissions: lldb_permissions}); |
6309 | range = llvm::AddressRange(page_addr, page_addr + page_size); |
6310 | } |
6311 | } |
6312 | } |
6313 | // The last range |
6314 | if (!range.empty()) |
6315 | ranges.push_back(x: {.range: range, .lldb_permissions: lldb_permissions}); |
6316 | return true; |
6317 | } |
6318 | |
6319 | // Given a region, add the region to \a ranges. |
6320 | // |
6321 | // Only add the region if it isn't empty and if it has some permissions. |
6322 | // If \a try_dirty_pages is true, then try to add only the dirty pages for a |
6323 | // given region. If the region has dirty page information, only dirty pages |
6324 | // will be added to \a ranges, else the entire range will be added to \a |
6325 | // ranges. |
6326 | static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, |
6327 | Process::CoreFileMemoryRanges &ranges) { |
6328 | // Don't add empty ranges. |
6329 | if (region.GetRange().GetByteSize() == 0) |
6330 | return; |
6331 | // Don't add ranges with no read permissions. |
6332 | if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) |
6333 | return; |
6334 | if (try_dirty_pages && AddDirtyPages(region, ranges)) |
6335 | return; |
6336 | ranges.push_back(x: CreateCoreFileMemoryRange(region)); |
6337 | } |
6338 | |
6339 | // Save all memory regions that are not empty or have at least some permissions |
6340 | // for a full core file style. |
6341 | static void GetCoreFileSaveRangesFull(Process &process, |
6342 | const MemoryRegionInfos ®ions, |
6343 | Process::CoreFileMemoryRanges &ranges) { |
6344 | |
6345 | // Don't add only dirty pages, add full regions. |
6346 | const bool try_dirty_pages = false; |
6347 | for (const auto ®ion : regions) |
6348 | AddRegion(region, try_dirty_pages, ranges); |
6349 | } |
6350 | |
6351 | // Save only the dirty pages to the core file. Make sure the process has at |
6352 | // least some dirty pages, as some OS versions don't support reporting what |
6353 | // pages are dirty within an memory region. If no memory regions have dirty |
6354 | // page information fall back to saving out all ranges with write permissions. |
6355 | static void |
6356 | GetCoreFileSaveRangesDirtyOnly(Process &process, |
6357 | const MemoryRegionInfos ®ions, |
6358 | Process::CoreFileMemoryRanges &ranges) { |
6359 | // Iterate over the regions and find all dirty pages. |
6360 | bool have_dirty_page_info = false; |
6361 | for (const auto ®ion : regions) { |
6362 | if (AddDirtyPages(region, ranges)) |
6363 | have_dirty_page_info = true; |
6364 | } |
6365 | |
6366 | if (!have_dirty_page_info) { |
6367 | // We didn't find support for reporting dirty pages from the process |
6368 | // plug-in so fall back to any region with write access permissions. |
6369 | const bool try_dirty_pages = false; |
6370 | for (const auto ®ion : regions) |
6371 | if (region.GetWritable() == MemoryRegionInfo::eYes) |
6372 | AddRegion(region, try_dirty_pages, ranges); |
6373 | } |
6374 | } |
6375 | |
6376 | // Save all thread stacks to the core file. Some OS versions support reporting |
6377 | // when a memory region is stack related. We check on this information, but we |
6378 | // also use the stack pointers of each thread and add those in case the OS |
6379 | // doesn't support reporting stack memory. This function also attempts to only |
6380 | // emit dirty pages from the stack if the memory regions support reporting |
6381 | // dirty regions as this will make the core file smaller. If the process |
6382 | // doesn't support dirty regions, then it will fall back to adding the full |
6383 | // stack region. |
6384 | static void |
6385 | GetCoreFileSaveRangesStackOnly(Process &process, |
6386 | const MemoryRegionInfos ®ions, |
6387 | Process::CoreFileMemoryRanges &ranges) { |
6388 | // Some platforms support annotating the region information that tell us that |
6389 | // it comes from a thread stack. So look for those regions first. |
6390 | |
6391 | // Keep track of which stack regions we have added |
6392 | std::set<addr_t> stack_bases; |
6393 | |
6394 | const bool try_dirty_pages = true; |
6395 | for (const auto ®ion : regions) { |
6396 | if (region.IsStackMemory() == MemoryRegionInfo::eYes) { |
6397 | stack_bases.insert(x: region.GetRange().GetRangeBase()); |
6398 | AddRegion(region, try_dirty_pages, ranges); |
6399 | } |
6400 | } |
6401 | |
6402 | // Also check with our threads and get the regions for their stack pointers |
6403 | // and add those regions if not already added above. |
6404 | for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { |
6405 | if (!thread_sp) |
6406 | continue; |
6407 | StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(idx: 0); |
6408 | if (!frame_sp) |
6409 | continue; |
6410 | RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); |
6411 | if (!reg_ctx_sp) |
6412 | continue; |
6413 | const addr_t sp = reg_ctx_sp->GetSP(); |
6414 | lldb_private::MemoryRegionInfo sp_region; |
6415 | if (process.GetMemoryRegionInfo(load_addr: sp, range_info&: sp_region).Success()) { |
6416 | // Only add this region if not already added above. If our stack pointer |
6417 | // is pointing off in the weeds, we will want this range. |
6418 | if (stack_bases.count(x: sp_region.GetRange().GetRangeBase()) == 0) |
6419 | AddRegion(region: sp_region, try_dirty_pages, ranges); |
6420 | } |
6421 | } |
6422 | } |
6423 | |
6424 | Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style, |
6425 | CoreFileMemoryRanges &ranges) { |
6426 | lldb_private::MemoryRegionInfos regions; |
6427 | Status err = GetMemoryRegions(region_list&: regions); |
6428 | if (err.Fail()) |
6429 | return err; |
6430 | if (regions.empty()) |
6431 | return Status("failed to get any valid memory regions from the process" ); |
6432 | |
6433 | switch (core_style) { |
6434 | case eSaveCoreUnspecified: |
6435 | err = Status("callers must set the core_style to something other than " |
6436 | "eSaveCoreUnspecified" ); |
6437 | break; |
6438 | |
6439 | case eSaveCoreFull: |
6440 | GetCoreFileSaveRangesFull(process&: *this, regions, ranges); |
6441 | break; |
6442 | |
6443 | case eSaveCoreDirtyOnly: |
6444 | GetCoreFileSaveRangesDirtyOnly(process&: *this, regions, ranges); |
6445 | break; |
6446 | |
6447 | case eSaveCoreStackOnly: |
6448 | GetCoreFileSaveRangesStackOnly(process&: *this, regions, ranges); |
6449 | break; |
6450 | } |
6451 | |
6452 | if (err.Fail()) |
6453 | return err; |
6454 | |
6455 | if (ranges.empty()) |
6456 | return Status("no valid address ranges found for core style" ); |
6457 | |
6458 | return Status(); // Success! |
6459 | } |
6460 | |
6461 | void Process::SetAddressableBitMasks(AddressableBits bit_masks) { |
6462 | uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); |
6463 | uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); |
6464 | |
6465 | if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) |
6466 | return; |
6467 | |
6468 | if (low_memory_addr_bits != 0) { |
6469 | addr_t low_addr_mask = |
6470 | AddressableBits::AddressableBitToMask(addressable_bits: low_memory_addr_bits); |
6471 | SetCodeAddressMask(low_addr_mask); |
6472 | SetDataAddressMask(low_addr_mask); |
6473 | } |
6474 | |
6475 | if (high_memory_addr_bits != 0) { |
6476 | addr_t high_addr_mask = |
6477 | AddressableBits::AddressableBitToMask(addressable_bits: high_memory_addr_bits); |
6478 | SetHighmemCodeAddressMask(high_addr_mask); |
6479 | SetHighmemDataAddressMask(high_addr_mask); |
6480 | } |
6481 | } |
6482 | |