1 | //===-- Process.cpp -------------------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include <atomic> |
10 | #include <memory> |
11 | #include <mutex> |
12 | #include <optional> |
13 | |
14 | #include "llvm/ADT/ScopeExit.h" |
15 | #include "llvm/Support/ScopedPrinter.h" |
16 | #include "llvm/Support/Threading.h" |
17 | |
18 | #include "lldb/Breakpoint/BreakpointLocation.h" |
19 | #include "lldb/Breakpoint/StoppointCallbackContext.h" |
20 | #include "lldb/Core/Debugger.h" |
21 | #include "lldb/Core/Module.h" |
22 | #include "lldb/Core/ModuleSpec.h" |
23 | #include "lldb/Core/PluginManager.h" |
24 | #include "lldb/Core/Progress.h" |
25 | #include "lldb/Core/Telemetry.h" |
26 | #include "lldb/Expression/DiagnosticManager.h" |
27 | #include "lldb/Expression/DynamicCheckerFunctions.h" |
28 | #include "lldb/Expression/UserExpression.h" |
29 | #include "lldb/Expression/UtilityFunction.h" |
30 | #include "lldb/Host/ConnectionFileDescriptor.h" |
31 | #include "lldb/Host/FileSystem.h" |
32 | #include "lldb/Host/Host.h" |
33 | #include "lldb/Host/HostInfo.h" |
34 | #include "lldb/Host/OptionParser.h" |
35 | #include "lldb/Host/Pipe.h" |
36 | #include "lldb/Host/Terminal.h" |
37 | #include "lldb/Host/ThreadLauncher.h" |
38 | #include "lldb/Interpreter/CommandInterpreter.h" |
39 | #include "lldb/Interpreter/OptionArgParser.h" |
40 | #include "lldb/Interpreter/OptionValueProperties.h" |
41 | #include "lldb/Symbol/Function.h" |
42 | #include "lldb/Symbol/Symbol.h" |
43 | #include "lldb/Target/ABI.h" |
44 | #include "lldb/Target/AssertFrameRecognizer.h" |
45 | #include "lldb/Target/DynamicLoader.h" |
46 | #include "lldb/Target/InstrumentationRuntime.h" |
47 | #include "lldb/Target/JITLoader.h" |
48 | #include "lldb/Target/JITLoaderList.h" |
49 | #include "lldb/Target/Language.h" |
50 | #include "lldb/Target/LanguageRuntime.h" |
51 | #include "lldb/Target/MemoryHistory.h" |
52 | #include "lldb/Target/MemoryRegionInfo.h" |
53 | #include "lldb/Target/OperatingSystem.h" |
54 | #include "lldb/Target/Platform.h" |
55 | #include "lldb/Target/Process.h" |
56 | #include "lldb/Target/RegisterContext.h" |
57 | #include "lldb/Target/StopInfo.h" |
58 | #include "lldb/Target/StructuredDataPlugin.h" |
59 | #include "lldb/Target/SystemRuntime.h" |
60 | #include "lldb/Target/Target.h" |
61 | #include "lldb/Target/TargetList.h" |
62 | #include "lldb/Target/Thread.h" |
63 | #include "lldb/Target/ThreadPlan.h" |
64 | #include "lldb/Target/ThreadPlanBase.h" |
65 | #include "lldb/Target/ThreadPlanCallFunction.h" |
66 | #include "lldb/Target/ThreadPlanStack.h" |
67 | #include "lldb/Target/UnixSignals.h" |
68 | #include "lldb/Target/VerboseTrapFrameRecognizer.h" |
69 | #include "lldb/Utility/AddressableBits.h" |
70 | #include "lldb/Utility/Event.h" |
71 | #include "lldb/Utility/LLDBLog.h" |
72 | #include "lldb/Utility/Log.h" |
73 | #include "lldb/Utility/NameMatches.h" |
74 | #include "lldb/Utility/ProcessInfo.h" |
75 | #include "lldb/Utility/SelectHelper.h" |
76 | #include "lldb/Utility/State.h" |
77 | #include "lldb/Utility/Timer.h" |
78 | |
79 | using namespace lldb; |
80 | using namespace lldb_private; |
81 | using namespace std::chrono; |
82 | |
83 | class ProcessOptionValueProperties |
84 | : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { |
85 | public: |
86 | ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} |
87 | |
88 | const Property * |
89 | GetPropertyAtIndex(size_t idx, |
90 | const ExecutionContext *exe_ctx) const override { |
91 | // When getting the value for a key from the process options, we will |
92 | // always try and grab the setting from the current process if there is |
93 | // one. Else we just use the one from this instance. |
94 | if (exe_ctx) { |
95 | Process *process = exe_ctx->GetProcessPtr(); |
96 | if (process) { |
97 | ProcessOptionValueProperties *instance_properties = |
98 | static_cast<ProcessOptionValueProperties *>( |
99 | process->GetValueProperties().get()); |
100 | if (this != instance_properties) |
101 | return instance_properties->ProtectedGetPropertyAtIndex(idx); |
102 | } |
103 | } |
104 | return ProtectedGetPropertyAtIndex(idx); |
105 | } |
106 | }; |
107 | |
108 | static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { |
109 | { |
110 | .value: eFollowParent, |
111 | .string_value: "parent", |
112 | .usage: "Continue tracing the parent process and detach the child.", |
113 | }, |
114 | { |
115 | .value: eFollowChild, |
116 | .string_value: "child", |
117 | .usage: "Trace the child process and detach the parent.", |
118 | }, |
119 | }; |
120 | |
121 | #define LLDB_PROPERTIES_process |
122 | #include "TargetProperties.inc" |
123 | |
124 | enum { |
125 | #define LLDB_PROPERTIES_process |
126 | #include "TargetPropertiesEnum.inc" |
127 | ePropertyExperimental, |
128 | }; |
129 | |
130 | #define LLDB_PROPERTIES_process_experimental |
131 | #include "TargetProperties.inc" |
132 | |
133 | enum { |
134 | #define LLDB_PROPERTIES_process_experimental |
135 | #include "TargetPropertiesEnum.inc" |
136 | }; |
137 | |
138 | class ProcessExperimentalOptionValueProperties |
139 | : public Cloneable<ProcessExperimentalOptionValueProperties, |
140 | OptionValueProperties> { |
141 | public: |
142 | ProcessExperimentalOptionValueProperties() |
143 | : Cloneable(Properties::GetExperimentalSettingsName()) {} |
144 | }; |
145 | |
146 | ProcessExperimentalProperties::ProcessExperimentalProperties() |
147 | : Properties(OptionValuePropertiesSP( |
148 | new ProcessExperimentalOptionValueProperties())) { |
149 | m_collection_sp->Initialize(setting_definitions: g_process_experimental_properties); |
150 | } |
151 | |
152 | ProcessProperties::ProcessProperties(lldb_private::Process *process) |
153 | : Properties(), |
154 | m_process(process) // Can be nullptr for global ProcessProperties |
155 | { |
156 | if (process == nullptr) { |
157 | // Global process properties, set them up one time |
158 | m_collection_sp = std::make_shared<ProcessOptionValueProperties>(args: "process"); |
159 | m_collection_sp->Initialize(setting_definitions: g_process_properties); |
160 | m_collection_sp->AppendProperty( |
161 | name: "thread", desc: "Settings specific to threads.", is_global: true, |
162 | value_sp: Thread::GetGlobalProperties().GetValueProperties()); |
163 | } else { |
164 | m_collection_sp = |
165 | OptionValueProperties::CreateLocalCopy(global_properties: Process::GetGlobalProperties()); |
166 | m_collection_sp->SetValueChangedCallback( |
167 | property_idx: ePropertyPythonOSPluginPath, |
168 | callback: [this] { m_process->LoadOperatingSystemPlugin(flush: true); }); |
169 | } |
170 | |
171 | m_experimental_properties_up = |
172 | std::make_unique<ProcessExperimentalProperties>(); |
173 | m_collection_sp->AppendProperty( |
174 | name: Properties::GetExperimentalSettingsName(), |
175 | desc: "Experimental settings - setting these won't produce " |
176 | "errors if the setting is not present.", |
177 | is_global: true, value_sp: m_experimental_properties_up->GetValueProperties()); |
178 | } |
179 | |
180 | ProcessProperties::~ProcessProperties() = default; |
181 | |
182 | bool ProcessProperties::GetDisableMemoryCache() const { |
183 | const uint32_t idx = ePropertyDisableMemCache; |
184 | return GetPropertyAtIndexAs<bool>( |
185 | idx, g_process_properties[idx].default_uint_value != 0); |
186 | } |
187 | |
188 | uint64_t ProcessProperties::GetMemoryCacheLineSize() const { |
189 | const uint32_t idx = ePropertyMemCacheLineSize; |
190 | return GetPropertyAtIndexAs<uint64_t>( |
191 | idx, g_process_properties[idx].default_uint_value); |
192 | } |
193 | |
194 | Args ProcessProperties::GetExtraStartupCommands() const { |
195 | Args args; |
196 | const uint32_t idx = ePropertyExtraStartCommand; |
197 | m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); |
198 | return args; |
199 | } |
200 | |
201 | void ProcessProperties::SetExtraStartupCommands(const Args &args) { |
202 | const uint32_t idx = ePropertyExtraStartCommand; |
203 | m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); |
204 | } |
205 | |
206 | FileSpec ProcessProperties::GetPythonOSPluginPath() const { |
207 | const uint32_t idx = ePropertyPythonOSPluginPath; |
208 | return GetPropertyAtIndexAs<FileSpec>(idx, default_value: {}); |
209 | } |
210 | |
211 | uint32_t ProcessProperties::GetVirtualAddressableBits() const { |
212 | const uint32_t idx = ePropertyVirtualAddressableBits; |
213 | return GetPropertyAtIndexAs<uint64_t>( |
214 | idx, g_process_properties[idx].default_uint_value); |
215 | } |
216 | |
217 | void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { |
218 | const uint32_t idx = ePropertyVirtualAddressableBits; |
219 | SetPropertyAtIndex(idx, t: static_cast<uint64_t>(bits)); |
220 | } |
221 | |
222 | uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { |
223 | const uint32_t idx = ePropertyHighmemVirtualAddressableBits; |
224 | return GetPropertyAtIndexAs<uint64_t>( |
225 | idx, g_process_properties[idx].default_uint_value); |
226 | } |
227 | |
228 | void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { |
229 | const uint32_t idx = ePropertyHighmemVirtualAddressableBits; |
230 | SetPropertyAtIndex(idx, t: static_cast<uint64_t>(bits)); |
231 | } |
232 | |
233 | void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { |
234 | const uint32_t idx = ePropertyPythonOSPluginPath; |
235 | SetPropertyAtIndex(idx, t: file); |
236 | } |
237 | |
238 | bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { |
239 | const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; |
240 | return GetPropertyAtIndexAs<bool>( |
241 | idx, g_process_properties[idx].default_uint_value != 0); |
242 | } |
243 | |
244 | void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { |
245 | const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; |
246 | SetPropertyAtIndex(idx, t: ignore); |
247 | } |
248 | |
249 | bool ProcessProperties::GetUnwindOnErrorInExpressions() const { |
250 | const uint32_t idx = ePropertyUnwindOnErrorInExpressions; |
251 | return GetPropertyAtIndexAs<bool>( |
252 | idx, g_process_properties[idx].default_uint_value != 0); |
253 | } |
254 | |
255 | void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { |
256 | const uint32_t idx = ePropertyUnwindOnErrorInExpressions; |
257 | SetPropertyAtIndex(idx, t: ignore); |
258 | } |
259 | |
260 | bool ProcessProperties::GetStopOnSharedLibraryEvents() const { |
261 | const uint32_t idx = ePropertyStopOnSharedLibraryEvents; |
262 | return GetPropertyAtIndexAs<bool>( |
263 | idx, g_process_properties[idx].default_uint_value != 0); |
264 | } |
265 | |
266 | void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { |
267 | const uint32_t idx = ePropertyStopOnSharedLibraryEvents; |
268 | SetPropertyAtIndex(idx, t: stop); |
269 | } |
270 | |
271 | bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { |
272 | const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; |
273 | return GetPropertyAtIndexAs<bool>( |
274 | idx, g_process_properties[idx].default_uint_value != 0); |
275 | } |
276 | |
277 | void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { |
278 | const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; |
279 | SetPropertyAtIndex(idx, t: disable); |
280 | m_process->Flush(); |
281 | } |
282 | |
283 | bool ProcessProperties::GetDetachKeepsStopped() const { |
284 | const uint32_t idx = ePropertyDetachKeepsStopped; |
285 | return GetPropertyAtIndexAs<bool>( |
286 | idx, g_process_properties[idx].default_uint_value != 0); |
287 | } |
288 | |
289 | void ProcessProperties::SetDetachKeepsStopped(bool stop) { |
290 | const uint32_t idx = ePropertyDetachKeepsStopped; |
291 | SetPropertyAtIndex(idx, t: stop); |
292 | } |
293 | |
294 | bool ProcessProperties::GetWarningsOptimization() const { |
295 | const uint32_t idx = ePropertyWarningOptimization; |
296 | return GetPropertyAtIndexAs<bool>( |
297 | idx, g_process_properties[idx].default_uint_value != 0); |
298 | } |
299 | |
300 | bool ProcessProperties::GetWarningsUnsupportedLanguage() const { |
301 | const uint32_t idx = ePropertyWarningUnsupportedLanguage; |
302 | return GetPropertyAtIndexAs<bool>( |
303 | idx, g_process_properties[idx].default_uint_value != 0); |
304 | } |
305 | |
306 | bool ProcessProperties::GetStopOnExec() const { |
307 | const uint32_t idx = ePropertyStopOnExec; |
308 | return GetPropertyAtIndexAs<bool>( |
309 | idx, g_process_properties[idx].default_uint_value != 0); |
310 | } |
311 | |
312 | std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { |
313 | const uint32_t idx = ePropertyUtilityExpressionTimeout; |
314 | uint64_t value = GetPropertyAtIndexAs<uint64_t>( |
315 | idx, g_process_properties[idx].default_uint_value); |
316 | return std::chrono::seconds(value); |
317 | } |
318 | |
319 | std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { |
320 | const uint32_t idx = ePropertyInterruptTimeout; |
321 | uint64_t value = GetPropertyAtIndexAs<uint64_t>( |
322 | idx, g_process_properties[idx].default_uint_value); |
323 | return std::chrono::seconds(value); |
324 | } |
325 | |
326 | bool ProcessProperties::GetSteppingRunsAllThreads() const { |
327 | const uint32_t idx = ePropertySteppingRunsAllThreads; |
328 | return GetPropertyAtIndexAs<bool>( |
329 | idx, g_process_properties[idx].default_uint_value != 0); |
330 | } |
331 | |
332 | bool ProcessProperties::GetOSPluginReportsAllThreads() const { |
333 | const bool fail_value = true; |
334 | const Property *exp_property = |
335 | m_collection_sp->GetPropertyAtIndex(idx: ePropertyExperimental); |
336 | OptionValueProperties *exp_values = |
337 | exp_property->GetValue()->GetAsProperties(); |
338 | if (!exp_values) |
339 | return fail_value; |
340 | |
341 | return exp_values |
342 | ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) |
343 | .value_or(fail_value); |
344 | } |
345 | |
346 | void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { |
347 | const Property *exp_property = |
348 | m_collection_sp->GetPropertyAtIndex(idx: ePropertyExperimental); |
349 | OptionValueProperties *exp_values = |
350 | exp_property->GetValue()->GetAsProperties(); |
351 | if (exp_values) |
352 | exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, |
353 | does_report); |
354 | } |
355 | |
356 | FollowForkMode ProcessProperties::GetFollowForkMode() const { |
357 | const uint32_t idx = ePropertyFollowForkMode; |
358 | return GetPropertyAtIndexAs<FollowForkMode>( |
359 | idx, static_cast<FollowForkMode>( |
360 | g_process_properties[idx].default_uint_value)); |
361 | } |
362 | |
363 | bool ProcessProperties::TrackMemoryCacheChanges() const { |
364 | const uint32_t idx = ePropertyTrackMemoryCacheChanges; |
365 | return GetPropertyAtIndexAs<bool>( |
366 | idx, g_process_properties[idx].default_uint_value != 0); |
367 | } |
368 | |
369 | ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, |
370 | llvm::StringRef plugin_name, |
371 | ListenerSP listener_sp, |
372 | const FileSpec *crash_file_path, |
373 | bool can_connect) { |
374 | static uint32_t g_process_unique_id = 0; |
375 | |
376 | ProcessSP process_sp; |
377 | ProcessCreateInstance create_callback = nullptr; |
378 | if (!plugin_name.empty()) { |
379 | create_callback = |
380 | PluginManager::GetProcessCreateCallbackForPluginName(name: plugin_name); |
381 | if (create_callback) { |
382 | process_sp = create_callback(target_sp, listener_sp, crash_file_path, |
383 | can_connect); |
384 | if (process_sp) { |
385 | if (process_sp->CanDebug(target: target_sp, plugin_specified_by_name: true)) { |
386 | process_sp->m_process_unique_id = ++g_process_unique_id; |
387 | } else |
388 | process_sp.reset(); |
389 | } |
390 | } |
391 | } else { |
392 | for (uint32_t idx = 0; |
393 | (create_callback = |
394 | PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; |
395 | ++idx) { |
396 | process_sp = create_callback(target_sp, listener_sp, crash_file_path, |
397 | can_connect); |
398 | if (process_sp) { |
399 | if (process_sp->CanDebug(target: target_sp, plugin_specified_by_name: false)) { |
400 | process_sp->m_process_unique_id = ++g_process_unique_id; |
401 | break; |
402 | } else |
403 | process_sp.reset(); |
404 | } |
405 | } |
406 | } |
407 | return process_sp; |
408 | } |
409 | |
410 | llvm::StringRef Process::GetStaticBroadcasterClass() { |
411 | static constexpr llvm::StringLiteral class_name("lldb.process"); |
412 | return class_name; |
413 | } |
414 | |
415 | Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) |
416 | : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { |
417 | // This constructor just delegates to the full Process constructor, |
418 | // defaulting to using the Host's UnixSignals. |
419 | } |
420 | |
421 | Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, |
422 | const UnixSignalsSP &unix_signals_sp) |
423 | : ProcessProperties(this), |
424 | Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), |
425 | Process::GetStaticBroadcasterClass().str()), |
426 | m_target_wp(target_sp), m_public_state(eStateUnloaded), |
427 | m_private_state(eStateUnloaded), |
428 | m_private_state_broadcaster(nullptr, |
429 | "lldb.process.internal_state_broadcaster"), |
430 | m_private_state_control_broadcaster( |
431 | nullptr, "lldb.process.internal_state_control_broadcaster"), |
432 | m_private_state_listener_sp( |
433 | Listener::MakeListener(name: "lldb.process.internal_state_listener")), |
434 | m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), |
435 | m_thread_id_to_index_id_map(), m_exit_status(-1), |
436 | m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), |
437 | m_extended_thread_list(*this), |
438 | m_base_direction(RunDirection::eRunForward), m_extended_thread_stop_id(0), |
439 | m_queue_list(this), m_queue_list_stop_id(0), |
440 | m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), |
441 | m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), |
442 | m_stdin_forward(false), m_stdout_data(), m_stderr_data(), |
443 | m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), |
444 | m_memory_cache(*this), m_allocated_memory_cache(*this), |
445 | m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), |
446 | m_private_run_lock(), m_currently_handling_do_on_removals(false), |
447 | m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID), |
448 | m_finalizing(false), m_destructing(false), |
449 | m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), |
450 | m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), |
451 | m_can_interpret_function_calls(false), m_run_thread_plan_lock(), |
452 | m_can_jit(eCanJITDontKnow), |
453 | m_crash_info_dict_sp(new StructuredData::Dictionary()) { |
454 | CheckInWithManager(); |
455 | |
456 | Log *log = GetLog(mask: LLDBLog::Object); |
457 | LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); |
458 | |
459 | if (!m_unix_signals_sp) |
460 | m_unix_signals_sp = std::make_shared<UnixSignals>(); |
461 | |
462 | SetEventName(event_mask: eBroadcastBitStateChanged, name: "state-changed"); |
463 | SetEventName(event_mask: eBroadcastBitInterrupt, name: "interrupt"); |
464 | SetEventName(event_mask: eBroadcastBitSTDOUT, name: "stdout-available"); |
465 | SetEventName(event_mask: eBroadcastBitSTDERR, name: "stderr-available"); |
466 | SetEventName(event_mask: eBroadcastBitProfileData, name: "profile-data-available"); |
467 | SetEventName(event_mask: eBroadcastBitStructuredData, name: "structured-data-available"); |
468 | |
469 | m_private_state_control_broadcaster.SetEventName( |
470 | event_mask: eBroadcastInternalStateControlStop, name: "control-stop"); |
471 | m_private_state_control_broadcaster.SetEventName( |
472 | event_mask: eBroadcastInternalStateControlPause, name: "control-pause"); |
473 | m_private_state_control_broadcaster.SetEventName( |
474 | event_mask: eBroadcastInternalStateControlResume, name: "control-resume"); |
475 | |
476 | // The listener passed into process creation is the primary listener: |
477 | // It always listens for all the event bits for Process: |
478 | SetPrimaryListener(listener_sp); |
479 | |
480 | m_private_state_listener_sp->StartListeningForEvents( |
481 | broadcaster: &m_private_state_broadcaster, |
482 | event_mask: eBroadcastBitStateChanged | eBroadcastBitInterrupt); |
483 | |
484 | m_private_state_listener_sp->StartListeningForEvents( |
485 | broadcaster: &m_private_state_control_broadcaster, |
486 | event_mask: eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | |
487 | eBroadcastInternalStateControlResume); |
488 | // We need something valid here, even if just the default UnixSignalsSP. |
489 | assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); |
490 | |
491 | // Allow the platform to override the default cache line size |
492 | OptionValueSP value_sp = |
493 | m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) |
494 | ->GetValue(); |
495 | uint64_t platform_cache_line_size = |
496 | target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); |
497 | if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) |
498 | value_sp->SetValueAs(platform_cache_line_size); |
499 | |
500 | // FIXME: Frame recognizer registration should not be done in Target. |
501 | // We should have a plugin do the registration instead, for example, a |
502 | // common C LanguageRuntime plugin. |
503 | RegisterAssertFrameRecognizer(process: this); |
504 | RegisterVerboseTrapFrameRecognizer(process&: *this); |
505 | } |
506 | |
507 | Process::~Process() { |
508 | Log *log = GetLog(mask: LLDBLog::Object); |
509 | LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); |
510 | StopPrivateStateThread(); |
511 | |
512 | // ThreadList::Clear() will try to acquire this process's mutex, so |
513 | // explicitly clear the thread list here to ensure that the mutex is not |
514 | // destroyed before the thread list. |
515 | m_thread_list.Clear(); |
516 | } |
517 | |
518 | ProcessProperties &Process::GetGlobalProperties() { |
519 | // NOTE: intentional leak so we don't crash if global destructor chain gets |
520 | // called as other threads still use the result of this function |
521 | static ProcessProperties *g_settings_ptr = |
522 | new ProcessProperties(nullptr); |
523 | return *g_settings_ptr; |
524 | } |
525 | |
526 | void Process::Finalize(bool destructing) { |
527 | if (m_finalizing.exchange(i: true)) |
528 | return; |
529 | if (destructing) |
530 | m_destructing.exchange(i: true); |
531 | |
532 | // Destroy the process. This will call the virtual function DoDestroy under |
533 | // the hood, giving our derived class a chance to do the ncessary tear down. |
534 | DestroyImpl(force_kill: false); |
535 | |
536 | // Clear our broadcaster before we proceed with destroying |
537 | Broadcaster::Clear(); |
538 | |
539 | // Do any cleanup needed prior to being destructed... Subclasses that |
540 | // override this method should call this superclass method as well. |
541 | |
542 | // We need to destroy the loader before the derived Process class gets |
543 | // destroyed since it is very likely that undoing the loader will require |
544 | // access to the real process. |
545 | m_dynamic_checkers_up.reset(); |
546 | m_abi_sp.reset(); |
547 | m_os_up.reset(); |
548 | m_system_runtime_up.reset(); |
549 | m_dyld_up.reset(); |
550 | m_jit_loaders_up.reset(); |
551 | m_thread_plans.Clear(); |
552 | m_thread_list_real.Destroy(); |
553 | m_thread_list.Destroy(); |
554 | m_extended_thread_list.Destroy(); |
555 | m_queue_list.Clear(); |
556 | m_queue_list_stop_id = 0; |
557 | m_watchpoint_resource_list.Clear(); |
558 | std::vector<Notifications> empty_notifications; |
559 | m_notifications.swap(x&: empty_notifications); |
560 | m_image_tokens.clear(); |
561 | m_memory_cache.Clear(); |
562 | m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); |
563 | { |
564 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
565 | m_language_runtimes.clear(); |
566 | } |
567 | m_instrumentation_runtimes.clear(); |
568 | m_next_event_action_up.reset(); |
569 | // Clear the last natural stop ID since it has a strong reference to this |
570 | // process |
571 | m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); |
572 | // We have to be very careful here as the m_private_state_listener might |
573 | // contain events that have ProcessSP values in them which can keep this |
574 | // process around forever. These events need to be cleared out. |
575 | m_private_state_listener_sp->Clear(); |
576 | m_public_run_lock.SetStopped(); |
577 | m_private_run_lock.SetStopped(); |
578 | m_structured_data_plugin_map.clear(); |
579 | } |
580 | |
581 | void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { |
582 | m_notifications.push_back(x: callbacks); |
583 | if (callbacks.initialize != nullptr) |
584 | callbacks.initialize(callbacks.baton, this); |
585 | } |
586 | |
587 | bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { |
588 | std::vector<Notifications>::iterator pos, end = m_notifications.end(); |
589 | for (pos = m_notifications.begin(); pos != end; ++pos) { |
590 | if (pos->baton == callbacks.baton && |
591 | pos->initialize == callbacks.initialize && |
592 | pos->process_state_changed == callbacks.process_state_changed) { |
593 | m_notifications.erase(position: pos); |
594 | return true; |
595 | } |
596 | } |
597 | return false; |
598 | } |
599 | |
600 | void Process::SynchronouslyNotifyStateChanged(StateType state) { |
601 | std::vector<Notifications>::iterator notification_pos, |
602 | notification_end = m_notifications.end(); |
603 | for (notification_pos = m_notifications.begin(); |
604 | notification_pos != notification_end; ++notification_pos) { |
605 | if (notification_pos->process_state_changed) |
606 | notification_pos->process_state_changed(notification_pos->baton, this, |
607 | state); |
608 | } |
609 | } |
610 | |
611 | // FIXME: We need to do some work on events before the general Listener sees |
612 | // them. |
613 | // For instance if we are continuing from a breakpoint, we need to ensure that |
614 | // we do the little "insert real insn, step & stop" trick. But we can't do |
615 | // that when the event is delivered by the broadcaster - since that is done on |
616 | // the thread that is waiting for new events, so if we needed more than one |
617 | // event for our handling, we would stall. So instead we do it when we fetch |
618 | // the event off of the queue. |
619 | // |
620 | |
621 | StateType Process::GetNextEvent(EventSP &event_sp) { |
622 | StateType state = eStateInvalid; |
623 | |
624 | if (GetPrimaryListener()->GetEventForBroadcaster(broadcaster: this, event_sp, |
625 | timeout: std::chrono::seconds(0)) && |
626 | event_sp) |
627 | state = Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
628 | |
629 | return state; |
630 | } |
631 | |
632 | void Process::SyncIOHandler(uint32_t iohandler_id, |
633 | const Timeout<std::micro> &timeout) { |
634 | // don't sync (potentially context switch) in case where there is no process |
635 | // IO |
636 | if (!ProcessIOHandlerExists()) |
637 | return; |
638 | |
639 | auto Result = m_iohandler_sync.WaitForValueNotEqualTo(value: iohandler_id, timeout); |
640 | |
641 | Log *log = GetLog(mask: LLDBLog::Process); |
642 | if (Result) { |
643 | LLDB_LOG( |
644 | log, |
645 | "waited from m_iohandler_sync to change from {0}. New value is {1}.", |
646 | iohandler_id, *Result); |
647 | } else { |
648 | LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", |
649 | iohandler_id); |
650 | } |
651 | } |
652 | |
653 | StateType Process::WaitForProcessToStop( |
654 | const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, |
655 | ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, |
656 | SelectMostRelevant select_most_relevant) { |
657 | // We can't just wait for a "stopped" event, because the stopped event may |
658 | // have restarted the target. We have to actually check each event, and in |
659 | // the case of a stopped event check the restarted flag on the event. |
660 | if (event_sp_ptr) |
661 | event_sp_ptr->reset(); |
662 | StateType state = GetState(); |
663 | // If we are exited or detached, we won't ever get back to any other valid |
664 | // state... |
665 | if (state == eStateDetached || state == eStateExited) |
666 | return state; |
667 | |
668 | Log *log = GetLog(mask: LLDBLog::Process); |
669 | LLDB_LOG(log, "timeout = {0}", timeout); |
670 | |
671 | if (!wait_always && StateIsStoppedState(state, must_exist: true) && |
672 | StateIsStoppedState(state: GetPrivateState(), must_exist: true)) { |
673 | LLDB_LOGF(log, |
674 | "Process::%s returning without waiting for events; process " |
675 | "private and public states are already 'stopped'.", |
676 | __FUNCTION__); |
677 | // We need to toggle the run lock as this won't get done in |
678 | // SetPublicState() if the process is hijacked. |
679 | if (hijack_listener_sp && use_run_lock) |
680 | m_public_run_lock.SetStopped(); |
681 | return state; |
682 | } |
683 | |
684 | while (state != eStateInvalid) { |
685 | EventSP event_sp; |
686 | state = GetStateChangedEvents(event_sp, timeout, hijack_listener: hijack_listener_sp); |
687 | if (event_sp_ptr && event_sp) |
688 | *event_sp_ptr = event_sp; |
689 | |
690 | bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); |
691 | Process::HandleProcessStateChangedEvent( |
692 | event_sp, stream, select_most_relevant, pop_process_io_handler); |
693 | |
694 | switch (state) { |
695 | case eStateCrashed: |
696 | case eStateDetached: |
697 | case eStateExited: |
698 | case eStateUnloaded: |
699 | // We need to toggle the run lock as this won't get done in |
700 | // SetPublicState() if the process is hijacked. |
701 | if (hijack_listener_sp && use_run_lock) |
702 | m_public_run_lock.SetStopped(); |
703 | return state; |
704 | case eStateStopped: |
705 | if (Process::ProcessEventData::GetRestartedFromEvent(event_ptr: event_sp.get())) |
706 | continue; |
707 | else { |
708 | // We need to toggle the run lock as this won't get done in |
709 | // SetPublicState() if the process is hijacked. |
710 | if (hijack_listener_sp && use_run_lock) |
711 | m_public_run_lock.SetStopped(); |
712 | return state; |
713 | } |
714 | default: |
715 | continue; |
716 | } |
717 | } |
718 | return state; |
719 | } |
720 | |
721 | bool Process::HandleProcessStateChangedEvent( |
722 | const EventSP &event_sp, Stream *stream, |
723 | SelectMostRelevant select_most_relevant, |
724 | bool &pop_process_io_handler) { |
725 | const bool handle_pop = pop_process_io_handler; |
726 | |
727 | pop_process_io_handler = false; |
728 | ProcessSP process_sp = |
729 | Process::ProcessEventData::GetProcessFromEvent(event_ptr: event_sp.get()); |
730 | |
731 | if (!process_sp) |
732 | return false; |
733 | |
734 | StateType event_state = |
735 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
736 | if (event_state == eStateInvalid) |
737 | return false; |
738 | |
739 | switch (event_state) { |
740 | case eStateInvalid: |
741 | case eStateUnloaded: |
742 | case eStateAttaching: |
743 | case eStateLaunching: |
744 | case eStateStepping: |
745 | case eStateDetached: |
746 | if (stream) |
747 | stream->Printf(format: "Process %"PRIu64 " %s\n", process_sp->GetID(), |
748 | StateAsCString(state: event_state)); |
749 | if (event_state == eStateDetached) |
750 | pop_process_io_handler = true; |
751 | break; |
752 | |
753 | case eStateConnected: |
754 | case eStateRunning: |
755 | // Don't be chatty when we run... |
756 | break; |
757 | |
758 | case eStateExited: |
759 | if (stream) |
760 | process_sp->GetStatus(ostrm&: *stream); |
761 | pop_process_io_handler = true; |
762 | break; |
763 | |
764 | case eStateStopped: |
765 | case eStateCrashed: |
766 | case eStateSuspended: |
767 | // Make sure the program hasn't been auto-restarted: |
768 | if (Process::ProcessEventData::GetRestartedFromEvent(event_ptr: event_sp.get())) { |
769 | if (stream) { |
770 | size_t num_reasons = |
771 | Process::ProcessEventData::GetNumRestartedReasons(event_ptr: event_sp.get()); |
772 | if (num_reasons > 0) { |
773 | // FIXME: Do we want to report this, or would that just be annoyingly |
774 | // chatty? |
775 | if (num_reasons == 1) { |
776 | const char *reason = |
777 | Process::ProcessEventData::GetRestartedReasonAtIndex( |
778 | event_ptr: event_sp.get(), idx: 0); |
779 | stream->Printf(format: "Process %"PRIu64 " stopped and restarted: %s\n", |
780 | process_sp->GetID(), |
781 | reason ? reason : "<UNKNOWN REASON>"); |
782 | } else { |
783 | stream->Printf(format: "Process %"PRIu64 |
784 | " stopped and restarted, reasons:\n", |
785 | process_sp->GetID()); |
786 | |
787 | for (size_t i = 0; i < num_reasons; i++) { |
788 | const char *reason = |
789 | Process::ProcessEventData::GetRestartedReasonAtIndex( |
790 | event_ptr: event_sp.get(), idx: i); |
791 | stream->Printf(format: "\t%s\n", reason ? reason : "<UNKNOWN REASON>"); |
792 | } |
793 | } |
794 | } |
795 | } |
796 | } else { |
797 | StopInfoSP curr_thread_stop_info_sp; |
798 | // Lock the thread list so it doesn't change on us, this is the scope for |
799 | // the locker: |
800 | { |
801 | ThreadList &thread_list = process_sp->GetThreadList(); |
802 | std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); |
803 | |
804 | ThreadSP curr_thread(thread_list.GetSelectedThread()); |
805 | |
806 | if (curr_thread && curr_thread->IsValid()) |
807 | curr_thread_stop_info_sp = curr_thread->GetStopInfo(); |
808 | bool prefer_curr_thread = curr_thread_stop_info_sp && |
809 | curr_thread_stop_info_sp->ShouldSelect(); |
810 | |
811 | if (!prefer_curr_thread) { |
812 | // Prefer a thread that has just completed its plan over another |
813 | // thread as current thread. |
814 | ThreadSP plan_thread; |
815 | ThreadSP other_thread; |
816 | |
817 | for (ThreadSP thread : thread_list.Threads()) { |
818 | StopInfoSP stop_info = thread->GetStopInfo(); |
819 | if (!stop_info || !stop_info->ShouldSelect()) |
820 | continue; |
821 | StopReason thread_stop_reason = stop_info->GetStopReason(); |
822 | if (thread_stop_reason == eStopReasonPlanComplete) { |
823 | if (!plan_thread) |
824 | plan_thread = thread; |
825 | } else if (!other_thread) { |
826 | other_thread = thread; |
827 | } |
828 | } |
829 | if (plan_thread) |
830 | thread_list.SetSelectedThreadByID(tid: plan_thread->GetID()); |
831 | else if (other_thread) |
832 | thread_list.SetSelectedThreadByID(tid: other_thread->GetID()); |
833 | else { |
834 | ThreadSP thread; |
835 | if (curr_thread && curr_thread->IsValid()) |
836 | thread = curr_thread; |
837 | else |
838 | thread = thread_list.GetThreadAtIndex(idx: 0); |
839 | |
840 | if (thread) |
841 | thread_list.SetSelectedThreadByID(tid: thread->GetID()); |
842 | } |
843 | } |
844 | } |
845 | // Drop the ThreadList mutex by here, since GetThreadStatus below might |
846 | // have to run code, e.g. for Data formatters, and if we hold the |
847 | // ThreadList mutex, then the process is going to have a hard time |
848 | // restarting the process. |
849 | if (stream) { |
850 | Debugger &debugger = process_sp->GetTarget().GetDebugger(); |
851 | if (debugger.GetTargetList().GetSelectedTarget().get() == |
852 | &process_sp->GetTarget()) { |
853 | ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); |
854 | |
855 | if (!thread_sp || !thread_sp->IsValid()) |
856 | return false; |
857 | |
858 | const bool only_threads_with_stop_reason = true; |
859 | const uint32_t start_frame = |
860 | thread_sp->GetSelectedFrameIndex(select_most_relevant); |
861 | const uint32_t num_frames = 1; |
862 | const uint32_t num_frames_with_source = 1; |
863 | const bool stop_format = true; |
864 | |
865 | process_sp->GetStatus(ostrm&: *stream); |
866 | process_sp->GetThreadStatus(ostrm&: *stream, only_threads_with_stop_reason, |
867 | start_frame, num_frames, |
868 | num_frames_with_source, |
869 | stop_format); |
870 | if (curr_thread_stop_info_sp) { |
871 | lldb::addr_t crashing_address; |
872 | ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( |
873 | stop_info_sp&: curr_thread_stop_info_sp, crashing_address: &crashing_address); |
874 | if (valobj_sp) { |
875 | const ValueObject::GetExpressionPathFormat format = |
876 | ValueObject::GetExpressionPathFormat:: |
877 | eGetExpressionPathFormatHonorPointers; |
878 | stream->PutCString(cstr: "Likely cause: "); |
879 | valobj_sp->GetExpressionPath(s&: *stream, format); |
880 | stream->Printf(format: " accessed 0x%"PRIx64 "\n", crashing_address); |
881 | } |
882 | } |
883 | } else { |
884 | uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( |
885 | target_sp: process_sp->GetTarget().shared_from_this()); |
886 | if (target_idx != UINT32_MAX) |
887 | stream->Printf(format: "Target %d: (", target_idx); |
888 | else |
889 | stream->Printf(format: "Target <unknown index>: ("); |
890 | process_sp->GetTarget().Dump(s: stream, description_level: eDescriptionLevelBrief); |
891 | stream->Printf(format: ") stopped.\n"); |
892 | } |
893 | } |
894 | |
895 | // Pop the process IO handler |
896 | pop_process_io_handler = true; |
897 | } |
898 | break; |
899 | } |
900 | |
901 | if (handle_pop && pop_process_io_handler) |
902 | process_sp->PopProcessIOHandler(); |
903 | |
904 | return true; |
905 | } |
906 | |
907 | bool Process::HijackProcessEvents(ListenerSP listener_sp) { |
908 | if (listener_sp) { |
909 | return HijackBroadcaster(listener_sp, event_mask: eBroadcastBitStateChanged | |
910 | eBroadcastBitInterrupt); |
911 | } else |
912 | return false; |
913 | } |
914 | |
915 | void Process::RestoreProcessEvents() { RestoreBroadcaster(); } |
916 | |
917 | StateType Process::GetStateChangedEvents(EventSP &event_sp, |
918 | const Timeout<std::micro> &timeout, |
919 | ListenerSP hijack_listener_sp) { |
920 | Log *log = GetLog(mask: LLDBLog::Process); |
921 | LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); |
922 | |
923 | ListenerSP listener_sp = hijack_listener_sp; |
924 | if (!listener_sp) |
925 | listener_sp = GetPrimaryListener(); |
926 | |
927 | StateType state = eStateInvalid; |
928 | if (listener_sp->GetEventForBroadcasterWithType( |
929 | broadcaster: this, event_type_mask: eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, |
930 | timeout)) { |
931 | if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) |
932 | state = Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
933 | else |
934 | LLDB_LOG(log, "got no event or was interrupted."); |
935 | } |
936 | |
937 | LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); |
938 | return state; |
939 | } |
940 | |
941 | Event *Process::PeekAtStateChangedEvents() { |
942 | Log *log = GetLog(mask: LLDBLog::Process); |
943 | |
944 | LLDB_LOGF(log, "Process::%s...", __FUNCTION__); |
945 | |
946 | Event *event_ptr; |
947 | event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( |
948 | broadcaster: this, event_type_mask: eBroadcastBitStateChanged); |
949 | if (log) { |
950 | if (event_ptr) { |
951 | LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, |
952 | StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); |
953 | } else { |
954 | LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); |
955 | } |
956 | } |
957 | return event_ptr; |
958 | } |
959 | |
960 | StateType |
961 | Process::GetStateChangedEventsPrivate(EventSP &event_sp, |
962 | const Timeout<std::micro> &timeout) { |
963 | Log *log = GetLog(mask: LLDBLog::Process); |
964 | LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); |
965 | |
966 | StateType state = eStateInvalid; |
967 | if (m_private_state_listener_sp->GetEventForBroadcasterWithType( |
968 | broadcaster: &m_private_state_broadcaster, |
969 | event_type_mask: eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, |
970 | timeout)) |
971 | if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) |
972 | state = Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
973 | |
974 | LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, |
975 | state == eStateInvalid ? "TIMEOUT": StateAsCString(state)); |
976 | return state; |
977 | } |
978 | |
979 | bool Process::GetEventsPrivate(EventSP &event_sp, |
980 | const Timeout<std::micro> &timeout, |
981 | bool control_only) { |
982 | Log *log = GetLog(mask: LLDBLog::Process); |
983 | LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); |
984 | |
985 | if (control_only) |
986 | return m_private_state_listener_sp->GetEventForBroadcaster( |
987 | broadcaster: &m_private_state_control_broadcaster, event_sp, timeout); |
988 | else |
989 | return m_private_state_listener_sp->GetEvent(event_sp, timeout); |
990 | } |
991 | |
992 | bool Process::IsRunning() const { |
993 | return StateIsRunningState(state: m_public_state.GetValue()); |
994 | } |
995 | |
996 | int Process::GetExitStatus() { |
997 | std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
998 | |
999 | if (m_public_state.GetValue() == eStateExited) |
1000 | return m_exit_status; |
1001 | return -1; |
1002 | } |
1003 | |
1004 | const char *Process::GetExitDescription() { |
1005 | std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
1006 | |
1007 | if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) |
1008 | return m_exit_string.c_str(); |
1009 | return nullptr; |
1010 | } |
1011 | |
1012 | bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { |
1013 | // Use a mutex to protect setting the exit status. |
1014 | std::lock_guard<std::mutex> guard(m_exit_status_mutex); |
1015 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1016 | LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", |
1017 | GetPluginName(), status, exit_string); |
1018 | |
1019 | // We were already in the exited state |
1020 | if (m_private_state.GetValue() == eStateExited) { |
1021 | LLDB_LOG( |
1022 | log, |
1023 | "(plugin = {0}) ignoring exit status because state was already set " |
1024 | "to eStateExited", |
1025 | GetPluginName()); |
1026 | return false; |
1027 | } |
1028 | |
1029 | telemetry::ScopedDispatcher<telemetry::ProcessExitInfo> helper; |
1030 | |
1031 | UUID module_uuid; |
1032 | // Need this check because the pointer may not be valid at this point. |
1033 | if (TargetSP target_sp = m_target_wp.lock()) { |
1034 | helper.SetDebugger(&target_sp->GetDebugger()); |
1035 | if (ModuleSP mod = target_sp->GetExecutableModule()) |
1036 | module_uuid = mod->GetUUID(); |
1037 | } |
1038 | |
1039 | helper.DispatchNow(populate_fields_cb: [&](telemetry::ProcessExitInfo *info) { |
1040 | info->module_uuid = module_uuid; |
1041 | info->pid = m_pid; |
1042 | info->is_start_entry = true; |
1043 | info->exit_desc = {.exit_code: status, .description: exit_string.str()}; |
1044 | }); |
1045 | |
1046 | helper.DispatchOnExit( |
1047 | final_callback: [module_uuid, pid = m_pid](telemetry::ProcessExitInfo *info) { |
1048 | info->module_uuid = module_uuid; |
1049 | info->pid = pid; |
1050 | }); |
1051 | |
1052 | m_exit_status = status; |
1053 | if (!exit_string.empty()) |
1054 | m_exit_string = exit_string.str(); |
1055 | else |
1056 | m_exit_string.clear(); |
1057 | |
1058 | // Clear the last natural stop ID since it has a strong reference to this |
1059 | // process |
1060 | m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); |
1061 | |
1062 | SetPrivateState(eStateExited); |
1063 | |
1064 | // Allow subclasses to do some cleanup |
1065 | DidExit(); |
1066 | |
1067 | return true; |
1068 | } |
1069 | |
1070 | bool Process::IsAlive() { |
1071 | switch (m_private_state.GetValue()) { |
1072 | case eStateConnected: |
1073 | case eStateAttaching: |
1074 | case eStateLaunching: |
1075 | case eStateStopped: |
1076 | case eStateRunning: |
1077 | case eStateStepping: |
1078 | case eStateCrashed: |
1079 | case eStateSuspended: |
1080 | return true; |
1081 | default: |
1082 | return false; |
1083 | } |
1084 | } |
1085 | |
1086 | // This static callback can be used to watch for local child processes on the |
1087 | // current host. The child process exits, the process will be found in the |
1088 | // global target list (we want to be completely sure that the |
1089 | // lldb_private::Process doesn't go away before we can deliver the signal. |
1090 | bool Process::SetProcessExitStatus( |
1091 | lldb::pid_t pid, bool exited, |
1092 | int signo, // Zero for no signal |
1093 | int exit_status // Exit value of process if signal is zero |
1094 | ) { |
1095 | Log *log = GetLog(mask: LLDBLog::Process); |
1096 | LLDB_LOGF(log, |
1097 | "Process::SetProcessExitStatus (pid=%"PRIu64 |
1098 | ", exited=%i, signal=%i, exit_status=%i)\n", |
1099 | pid, exited, signo, exit_status); |
1100 | |
1101 | if (exited) { |
1102 | TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); |
1103 | if (target_sp) { |
1104 | ProcessSP process_sp(target_sp->GetProcessSP()); |
1105 | if (process_sp) { |
1106 | llvm::StringRef signal_str = |
1107 | process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); |
1108 | process_sp->SetExitStatus(status: exit_status, exit_string: signal_str); |
1109 | } |
1110 | } |
1111 | return true; |
1112 | } |
1113 | return false; |
1114 | } |
1115 | |
1116 | bool Process::UpdateThreadList(ThreadList &old_thread_list, |
1117 | ThreadList &new_thread_list) { |
1118 | m_thread_plans.ClearThreadCache(); |
1119 | return DoUpdateThreadList(old_thread_list, new_thread_list); |
1120 | } |
1121 | |
1122 | void Process::UpdateThreadListIfNeeded() { |
1123 | const uint32_t stop_id = GetStopID(); |
1124 | if (m_thread_list.GetSize(can_update: false) == 0 || |
1125 | stop_id != m_thread_list.GetStopID()) { |
1126 | bool clear_unused_threads = true; |
1127 | const StateType state = GetPrivateState(); |
1128 | if (StateIsStoppedState(state, must_exist: true)) { |
1129 | std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); |
1130 | m_thread_list.SetStopID(stop_id); |
1131 | |
1132 | // m_thread_list does have its own mutex, but we need to hold onto the |
1133 | // mutex between the call to UpdateThreadList(...) and the |
1134 | // os->UpdateThreadList(...) so it doesn't change on us |
1135 | ThreadList &old_thread_list = m_thread_list; |
1136 | ThreadList real_thread_list(*this); |
1137 | ThreadList new_thread_list(*this); |
1138 | // Always update the thread list with the protocol specific thread list, |
1139 | // but only update if "true" is returned |
1140 | if (UpdateThreadList(old_thread_list&: m_thread_list_real, new_thread_list&: real_thread_list)) { |
1141 | // Don't call into the OperatingSystem to update the thread list if we |
1142 | // are shutting down, since that may call back into the SBAPI's, |
1143 | // requiring the API lock which is already held by whoever is shutting |
1144 | // us down, causing a deadlock. |
1145 | OperatingSystem *os = GetOperatingSystem(); |
1146 | if (os && !m_destroy_in_process) { |
1147 | // Clear any old backing threads where memory threads might have been |
1148 | // backed by actual threads from the lldb_private::Process subclass |
1149 | size_t num_old_threads = old_thread_list.GetSize(can_update: false); |
1150 | for (size_t i = 0; i < num_old_threads; ++i) |
1151 | old_thread_list.GetThreadAtIndex(idx: i, can_update: false)->ClearBackingThread(); |
1152 | // See if the OS plugin reports all threads. If it does, then |
1153 | // it is safe to clear unseen thread's plans here. Otherwise we |
1154 | // should preserve them in case they show up again: |
1155 | clear_unused_threads = os->DoesPluginReportAllThreads(); |
1156 | |
1157 | // Turn off dynamic types to ensure we don't run any expressions. |
1158 | // Objective-C can run an expression to determine if a SBValue is a |
1159 | // dynamic type or not and we need to avoid this. OperatingSystem |
1160 | // plug-ins can't run expressions that require running code... |
1161 | |
1162 | Target &target = GetTarget(); |
1163 | const lldb::DynamicValueType saved_prefer_dynamic = |
1164 | target.GetPreferDynamicValue(); |
1165 | if (saved_prefer_dynamic != lldb::eNoDynamicValues) |
1166 | target.SetPreferDynamicValue(lldb::eNoDynamicValues); |
1167 | |
1168 | // Now let the OperatingSystem plug-in update the thread list |
1169 | |
1170 | os->UpdateThreadList( |
1171 | old_thread_list, // Old list full of threads created by OS plug-in |
1172 | real_thread_list, // The actual thread list full of threads |
1173 | // created by each lldb_private::Process |
1174 | // subclass |
1175 | new_thread_list); // The new thread list that we will show to the |
1176 | // user that gets filled in |
1177 | |
1178 | if (saved_prefer_dynamic != lldb::eNoDynamicValues) |
1179 | target.SetPreferDynamicValue(saved_prefer_dynamic); |
1180 | } else { |
1181 | // No OS plug-in, the new thread list is the same as the real thread |
1182 | // list. |
1183 | new_thread_list = real_thread_list; |
1184 | } |
1185 | |
1186 | m_thread_list_real.Update(rhs&: real_thread_list); |
1187 | m_thread_list.Update(rhs&: new_thread_list); |
1188 | m_thread_list.SetStopID(stop_id); |
1189 | |
1190 | if (GetLastNaturalStopID() != m_extended_thread_stop_id) { |
1191 | // Clear any extended threads that we may have accumulated previously |
1192 | m_extended_thread_list.Clear(); |
1193 | m_extended_thread_stop_id = GetLastNaturalStopID(); |
1194 | |
1195 | m_queue_list.Clear(); |
1196 | m_queue_list_stop_id = GetLastNaturalStopID(); |
1197 | } |
1198 | } |
1199 | // Now update the plan stack map. |
1200 | // If we do have an OS plugin, any absent real threads in the |
1201 | // m_thread_list have already been removed from the ThreadPlanStackMap. |
1202 | // So any remaining threads are OS Plugin threads, and those we want to |
1203 | // preserve in case they show up again. |
1204 | m_thread_plans.Update(current_threads&: m_thread_list, delete_missing: clear_unused_threads); |
1205 | } |
1206 | } |
1207 | } |
1208 | |
1209 | ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { |
1210 | return m_thread_plans.Find(tid); |
1211 | } |
1212 | |
1213 | bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { |
1214 | return m_thread_plans.PrunePlansForTID(tid); |
1215 | } |
1216 | |
1217 | void Process::PruneThreadPlans() { |
1218 | m_thread_plans.Update(current_threads&: GetThreadList(), delete_missing: true, check_for_new: false); |
1219 | } |
1220 | |
1221 | bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, |
1222 | lldb::DescriptionLevel desc_level, |
1223 | bool internal, bool condense_trivial, |
1224 | bool skip_unreported_plans) { |
1225 | return m_thread_plans.DumpPlansForTID( |
1226 | strm, tid, desc_level, internal, ignore_boring: condense_trivial, skip_unreported: skip_unreported_plans); |
1227 | } |
1228 | void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, |
1229 | bool internal, bool condense_trivial, |
1230 | bool skip_unreported_plans) { |
1231 | m_thread_plans.DumpPlans(strm, desc_level, internal, ignore_boring: condense_trivial, |
1232 | skip_unreported: skip_unreported_plans); |
1233 | } |
1234 | |
1235 | void Process::UpdateQueueListIfNeeded() { |
1236 | if (m_system_runtime_up) { |
1237 | if (m_queue_list.GetSize() == 0 || |
1238 | m_queue_list_stop_id != GetLastNaturalStopID()) { |
1239 | const StateType state = GetPrivateState(); |
1240 | if (StateIsStoppedState(state, must_exist: true)) { |
1241 | m_system_runtime_up->PopulateQueueList(queue_list&: m_queue_list); |
1242 | m_queue_list_stop_id = GetLastNaturalStopID(); |
1243 | } |
1244 | } |
1245 | } |
1246 | } |
1247 | |
1248 | ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { |
1249 | OperatingSystem *os = GetOperatingSystem(); |
1250 | if (os) |
1251 | return os->CreateThread(tid, context); |
1252 | return ThreadSP(); |
1253 | } |
1254 | |
1255 | uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { |
1256 | return AssignIndexIDToThread(thread_id); |
1257 | } |
1258 | |
1259 | bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { |
1260 | return (m_thread_id_to_index_id_map.find(x: thread_id) != |
1261 | m_thread_id_to_index_id_map.end()); |
1262 | } |
1263 | |
1264 | uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { |
1265 | auto [iterator, inserted] = |
1266 | m_thread_id_to_index_id_map.try_emplace(k: thread_id, args: m_thread_index_id + 1); |
1267 | if (inserted) |
1268 | ++m_thread_index_id; |
1269 | |
1270 | return iterator->second; |
1271 | } |
1272 | |
1273 | StateType Process::GetState() { |
1274 | if (CurrentThreadIsPrivateStateThread()) |
1275 | return m_private_state.GetValue(); |
1276 | else |
1277 | return m_public_state.GetValue(); |
1278 | } |
1279 | |
1280 | void Process::SetPublicState(StateType new_state, bool restarted) { |
1281 | const bool new_state_is_stopped = StateIsStoppedState(state: new_state, must_exist: false); |
1282 | if (new_state_is_stopped) { |
1283 | // This will only set the time if the public stop time has no value, so |
1284 | // it is ok to call this multiple times. With a public stop we can't look |
1285 | // at the stop ID because many private stops might have happened, so we |
1286 | // can't check for a stop ID of zero. This allows the "statistics" command |
1287 | // to dump the time it takes to reach somewhere in your code, like a |
1288 | // breakpoint you set. |
1289 | GetTarget().GetStatistics().SetFirstPublicStopTime(); |
1290 | } |
1291 | |
1292 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1293 | LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", |
1294 | GetPluginName().data(), StateAsCString(new_state), restarted); |
1295 | const StateType old_state = m_public_state.GetValue(); |
1296 | m_public_state.SetValue(new_state); |
1297 | |
1298 | // On the transition from Run to Stopped, we unlock the writer end of the run |
1299 | // lock. The lock gets locked in Resume, which is the public API to tell the |
1300 | // program to run. |
1301 | if (!StateChangedIsExternallyHijacked()) { |
1302 | if (new_state == eStateDetached) { |
1303 | LLDB_LOGF(log, |
1304 | "(plugin = %s, state = %s) -- unlocking run lock for detach", |
1305 | GetPluginName().data(), StateAsCString(new_state)); |
1306 | m_public_run_lock.SetStopped(); |
1307 | } else { |
1308 | const bool old_state_is_stopped = StateIsStoppedState(state: old_state, must_exist: false); |
1309 | if ((old_state_is_stopped != new_state_is_stopped)) { |
1310 | if (new_state_is_stopped && !restarted) { |
1311 | LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", |
1312 | GetPluginName().data(), StateAsCString(new_state)); |
1313 | m_public_run_lock.SetStopped(); |
1314 | } |
1315 | } |
1316 | } |
1317 | } |
1318 | } |
1319 | |
1320 | Status Process::Resume() { |
1321 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1322 | LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); |
1323 | if (!m_public_run_lock.SetRunning()) { |
1324 | LLDB_LOGF(log, "(plugin = %s) -- SetRunning failed, not resuming.", |
1325 | GetPluginName().data()); |
1326 | return Status::FromErrorString( |
1327 | str: "resume request failed - process already running"); |
1328 | } |
1329 | Status error = PrivateResume(); |
1330 | if (!error.Success()) { |
1331 | // Undo running state change |
1332 | m_public_run_lock.SetStopped(); |
1333 | } |
1334 | return error; |
1335 | } |
1336 | |
1337 | Status Process::ResumeSynchronous(Stream *stream) { |
1338 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process)); |
1339 | LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); |
1340 | if (!m_public_run_lock.SetRunning()) { |
1341 | LLDB_LOGF(log, "Process::Resume: -- SetRunning failed, not resuming."); |
1342 | return Status::FromErrorString( |
1343 | str: "resume request failed: process already running"); |
1344 | } |
1345 | |
1346 | ListenerSP listener_sp( |
1347 | Listener::MakeListener(name: ResumeSynchronousHijackListenerName.data())); |
1348 | HijackProcessEvents(listener_sp); |
1349 | |
1350 | Status error = PrivateResume(); |
1351 | if (error.Success()) { |
1352 | StateType state = |
1353 | WaitForProcessToStop(timeout: std::nullopt, event_sp_ptr: nullptr, wait_always: true, hijack_listener_sp: listener_sp, stream, |
1354 | use_run_lock: true /* use_run_lock */, select_most_relevant: SelectMostRelevantFrame); |
1355 | const bool must_be_alive = |
1356 | false; // eStateExited is ok, so this must be false |
1357 | if (!StateIsStoppedState(state, must_exist: must_be_alive)) |
1358 | error = Status::FromErrorStringWithFormat( |
1359 | format: "process not in stopped state after synchronous resume: %s", |
1360 | StateAsCString(state)); |
1361 | } else { |
1362 | // Undo running state change |
1363 | m_public_run_lock.SetStopped(); |
1364 | } |
1365 | |
1366 | // Undo the hijacking of process events... |
1367 | RestoreProcessEvents(); |
1368 | |
1369 | return error; |
1370 | } |
1371 | |
1372 | bool Process::StateChangedIsExternallyHijacked() { |
1373 | if (IsHijackedForEvent(event_mask: eBroadcastBitStateChanged)) { |
1374 | llvm::StringRef hijacking_name = GetHijackingListenerName(); |
1375 | if (!hijacking_name.starts_with(Prefix: "lldb.internal")) |
1376 | return true; |
1377 | } |
1378 | return false; |
1379 | } |
1380 | |
1381 | bool Process::StateChangedIsHijackedForSynchronousResume() { |
1382 | if (IsHijackedForEvent(event_mask: eBroadcastBitStateChanged)) { |
1383 | llvm::StringRef hijacking_name = GetHijackingListenerName(); |
1384 | if (hijacking_name == ResumeSynchronousHijackListenerName) |
1385 | return true; |
1386 | } |
1387 | return false; |
1388 | } |
1389 | |
1390 | StateType Process::GetPrivateState() { return m_private_state.GetValue(); } |
1391 | |
1392 | void Process::SetPrivateState(StateType new_state) { |
1393 | // Use m_destructing not m_finalizing here. If we are finalizing a process |
1394 | // that we haven't started tearing down, we'd like to be able to nicely |
1395 | // detach if asked, but that requires the event system be live. That will |
1396 | // not be true for an in-the-middle-of-being-destructed Process, since the |
1397 | // event system relies on Process::shared_from_this, which may have already |
1398 | // been destroyed. |
1399 | if (m_destructing) |
1400 | return; |
1401 | |
1402 | Log *log(GetLog(mask: LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); |
1403 | bool state_changed = false; |
1404 | |
1405 | LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), |
1406 | StateAsCString(new_state)); |
1407 | |
1408 | std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); |
1409 | std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); |
1410 | |
1411 | const StateType old_state = m_private_state.GetValueNoLock(); |
1412 | state_changed = old_state != new_state; |
1413 | |
1414 | const bool old_state_is_stopped = StateIsStoppedState(state: old_state, must_exist: false); |
1415 | const bool new_state_is_stopped = StateIsStoppedState(state: new_state, must_exist: false); |
1416 | if (old_state_is_stopped != new_state_is_stopped) { |
1417 | if (new_state_is_stopped) |
1418 | m_private_run_lock.SetStopped(); |
1419 | else |
1420 | m_private_run_lock.SetRunning(); |
1421 | } |
1422 | |
1423 | if (state_changed) { |
1424 | m_private_state.SetValueNoLock(new_state); |
1425 | EventSP event_sp( |
1426 | new Event(eBroadcastBitStateChanged, |
1427 | new ProcessEventData(shared_from_this(), new_state))); |
1428 | if (StateIsStoppedState(state: new_state, must_exist: false)) { |
1429 | // Note, this currently assumes that all threads in the list stop when |
1430 | // the process stops. In the future we will want to support a debugging |
1431 | // model where some threads continue to run while others are stopped. |
1432 | // When that happens we will either need a way for the thread list to |
1433 | // identify which threads are stopping or create a special thread list |
1434 | // containing only threads which actually stopped. |
1435 | // |
1436 | // The process plugin is responsible for managing the actual behavior of |
1437 | // the threads and should have stopped any threads that are going to stop |
1438 | // before we get here. |
1439 | m_thread_list.DidStop(); |
1440 | |
1441 | if (m_mod_id.BumpStopID() == 0) |
1442 | GetTarget().GetStatistics().SetFirstPrivateStopTime(); |
1443 | |
1444 | if (!m_mod_id.IsLastResumeForUserExpression()) |
1445 | m_mod_id.SetStopEventForLastNaturalStopID(event_sp); |
1446 | m_memory_cache.Clear(); |
1447 | LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", |
1448 | GetPluginName().data(), StateAsCString(new_state), |
1449 | m_mod_id.GetStopID()); |
1450 | } |
1451 | |
1452 | m_private_state_broadcaster.BroadcastEvent(event_sp); |
1453 | } else { |
1454 | LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", |
1455 | GetPluginName().data(), StateAsCString(new_state)); |
1456 | } |
1457 | } |
1458 | |
1459 | void Process::SetRunningUserExpression(bool on) { |
1460 | m_mod_id.SetRunningUserExpression(on); |
1461 | } |
1462 | |
1463 | void Process::SetRunningUtilityFunction(bool on) { |
1464 | m_mod_id.SetRunningUtilityFunction(on); |
1465 | } |
1466 | |
1467 | addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } |
1468 | |
1469 | const lldb::ABISP &Process::GetABI() { |
1470 | if (!m_abi_sp) |
1471 | m_abi_sp = ABI::FindPlugin(process_sp: shared_from_this(), arch: GetTarget().GetArchitecture()); |
1472 | return m_abi_sp; |
1473 | } |
1474 | |
1475 | std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { |
1476 | std::vector<LanguageRuntime *> language_runtimes; |
1477 | |
1478 | if (m_finalizing) |
1479 | return language_runtimes; |
1480 | |
1481 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
1482 | // Before we pass off a copy of the language runtimes, we must make sure that |
1483 | // our collection is properly populated. It's possible that some of the |
1484 | // language runtimes were not loaded yet, either because nobody requested it |
1485 | // yet or the proper condition for loading wasn't yet met (e.g. libc++.so |
1486 | // hadn't been loaded). |
1487 | for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { |
1488 | if (LanguageRuntime *runtime = GetLanguageRuntime(language: lang_type)) |
1489 | language_runtimes.emplace_back(args&: runtime); |
1490 | } |
1491 | |
1492 | return language_runtimes; |
1493 | } |
1494 | |
1495 | LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { |
1496 | if (m_finalizing) |
1497 | return nullptr; |
1498 | |
1499 | LanguageRuntime *runtime = nullptr; |
1500 | |
1501 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
1502 | LanguageRuntimeCollection::iterator pos; |
1503 | pos = m_language_runtimes.find(x: language); |
1504 | if (pos == m_language_runtimes.end() || !pos->second) { |
1505 | lldb::LanguageRuntimeSP runtime_sp( |
1506 | LanguageRuntime::FindPlugin(process: this, language)); |
1507 | |
1508 | m_language_runtimes[language] = runtime_sp; |
1509 | runtime = runtime_sp.get(); |
1510 | } else |
1511 | runtime = pos->second.get(); |
1512 | |
1513 | if (runtime) |
1514 | // It's possible that a language runtime can support multiple LanguageTypes, |
1515 | // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, |
1516 | // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the |
1517 | // primary language type and make sure that our runtime supports it. |
1518 | assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); |
1519 | |
1520 | return runtime; |
1521 | } |
1522 | |
1523 | bool Process::IsPossibleDynamicValue(ValueObject &in_value) { |
1524 | if (m_finalizing) |
1525 | return false; |
1526 | |
1527 | if (in_value.IsDynamic()) |
1528 | return false; |
1529 | LanguageType known_type = in_value.GetObjectRuntimeLanguage(); |
1530 | |
1531 | if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { |
1532 | LanguageRuntime *runtime = GetLanguageRuntime(language: known_type); |
1533 | return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; |
1534 | } |
1535 | |
1536 | for (LanguageRuntime *runtime : GetLanguageRuntimes()) { |
1537 | if (runtime->CouldHaveDynamicValue(in_value)) |
1538 | return true; |
1539 | } |
1540 | |
1541 | return false; |
1542 | } |
1543 | |
1544 | void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { |
1545 | m_dynamic_checkers_up.reset(p: dynamic_checkers); |
1546 | } |
1547 | |
1548 | StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { |
1549 | return m_breakpoint_site_list; |
1550 | } |
1551 | |
1552 | const StopPointSiteList<BreakpointSite> & |
1553 | Process::GetBreakpointSiteList() const { |
1554 | return m_breakpoint_site_list; |
1555 | } |
1556 | |
1557 | void Process::DisableAllBreakpointSites() { |
1558 | m_breakpoint_site_list.ForEach(callback: [this](BreakpointSite *bp_site) -> void { |
1559 | // bp_site->SetEnabled(true); |
1560 | DisableBreakpointSite(bp_site); |
1561 | }); |
1562 | } |
1563 | |
1564 | Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { |
1565 | Status error(DisableBreakpointSiteByID(break_id)); |
1566 | |
1567 | if (error.Success()) |
1568 | m_breakpoint_site_list.Remove(site_id: break_id); |
1569 | |
1570 | return error; |
1571 | } |
1572 | |
1573 | Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { |
1574 | Status error; |
1575 | BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(site_id: break_id); |
1576 | if (bp_site_sp) { |
1577 | if (bp_site_sp->IsEnabled()) |
1578 | error = DisableBreakpointSite(bp_site: bp_site_sp.get()); |
1579 | } else { |
1580 | error = Status::FromErrorStringWithFormat( |
1581 | format: "invalid breakpoint site ID: %"PRIu64, break_id); |
1582 | } |
1583 | |
1584 | return error; |
1585 | } |
1586 | |
1587 | Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { |
1588 | Status error; |
1589 | BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(site_id: break_id); |
1590 | if (bp_site_sp) { |
1591 | if (!bp_site_sp->IsEnabled()) |
1592 | error = EnableBreakpointSite(bp_site: bp_site_sp.get()); |
1593 | } else { |
1594 | error = Status::FromErrorStringWithFormat( |
1595 | format: "invalid breakpoint site ID: %"PRIu64, break_id); |
1596 | } |
1597 | return error; |
1598 | } |
1599 | |
1600 | lldb::break_id_t |
1601 | Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, |
1602 | bool use_hardware) { |
1603 | addr_t load_addr = LLDB_INVALID_ADDRESS; |
1604 | |
1605 | bool show_error = true; |
1606 | switch (GetState()) { |
1607 | case eStateInvalid: |
1608 | case eStateUnloaded: |
1609 | case eStateConnected: |
1610 | case eStateAttaching: |
1611 | case eStateLaunching: |
1612 | case eStateDetached: |
1613 | case eStateExited: |
1614 | show_error = false; |
1615 | break; |
1616 | |
1617 | case eStateStopped: |
1618 | case eStateRunning: |
1619 | case eStateStepping: |
1620 | case eStateCrashed: |
1621 | case eStateSuspended: |
1622 | show_error = IsAlive(); |
1623 | break; |
1624 | } |
1625 | |
1626 | // Reset the IsIndirect flag here, in case the location changes from pointing |
1627 | // to a indirect symbol to a regular symbol. |
1628 | constituent->SetIsIndirect(false); |
1629 | |
1630 | if (constituent->ShouldResolveIndirectFunctions()) { |
1631 | Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); |
1632 | if (symbol && symbol->IsIndirect()) { |
1633 | Status error; |
1634 | Address symbol_address = symbol->GetAddress(); |
1635 | load_addr = ResolveIndirectFunction(address: &symbol_address, error); |
1636 | if (!error.Success() && show_error) { |
1637 | GetTarget().GetDebugger().GetAsyncErrorStream()->Printf( |
1638 | format: "warning: failed to resolve indirect function at 0x%"PRIx64 |
1639 | " for breakpoint %i.%i: %s\n", |
1640 | symbol->GetLoadAddress(target: &GetTarget()), |
1641 | constituent->GetBreakpoint().GetID(), constituent->GetID(), |
1642 | error.AsCString() ? error.AsCString() : "unknown error"); |
1643 | return LLDB_INVALID_BREAK_ID; |
1644 | } |
1645 | Address resolved_address(load_addr); |
1646 | load_addr = resolved_address.GetOpcodeLoadAddress(target: &GetTarget()); |
1647 | constituent->SetIsIndirect(true); |
1648 | } else |
1649 | load_addr = constituent->GetAddress().GetOpcodeLoadAddress(target: &GetTarget()); |
1650 | } else |
1651 | load_addr = constituent->GetAddress().GetOpcodeLoadAddress(target: &GetTarget()); |
1652 | |
1653 | if (load_addr != LLDB_INVALID_ADDRESS) { |
1654 | BreakpointSiteSP bp_site_sp; |
1655 | |
1656 | // Look up this breakpoint site. If it exists, then add this new |
1657 | // constituent, otherwise create a new breakpoint site and add it. |
1658 | |
1659 | bp_site_sp = m_breakpoint_site_list.FindByAddress(addr: load_addr); |
1660 | |
1661 | if (bp_site_sp) { |
1662 | bp_site_sp->AddConstituent(constituent); |
1663 | constituent->SetBreakpointSite(bp_site_sp); |
1664 | return bp_site_sp->GetID(); |
1665 | } else { |
1666 | bp_site_sp.reset( |
1667 | p: new BreakpointSite(constituent, load_addr, use_hardware)); |
1668 | if (bp_site_sp) { |
1669 | Status error = EnableBreakpointSite(bp_site: bp_site_sp.get()); |
1670 | if (error.Success()) { |
1671 | constituent->SetBreakpointSite(bp_site_sp); |
1672 | return m_breakpoint_site_list.Add(site_sp: bp_site_sp); |
1673 | } else { |
1674 | if (show_error || use_hardware) { |
1675 | // Report error for setting breakpoint... |
1676 | GetTarget().GetDebugger().GetAsyncErrorStream()->Printf( |
1677 | format: "warning: failed to set breakpoint site at 0x%"PRIx64 |
1678 | " for breakpoint %i.%i: %s\n", |
1679 | load_addr, constituent->GetBreakpoint().GetID(), |
1680 | constituent->GetID(), |
1681 | error.AsCString() ? error.AsCString() : "unknown error"); |
1682 | } |
1683 | } |
1684 | } |
1685 | } |
1686 | } |
1687 | // We failed to enable the breakpoint |
1688 | return LLDB_INVALID_BREAK_ID; |
1689 | } |
1690 | |
1691 | void Process::RemoveConstituentFromBreakpointSite( |
1692 | lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, |
1693 | BreakpointSiteSP &bp_site_sp) { |
1694 | uint32_t num_constituents = |
1695 | bp_site_sp->RemoveConstituent(break_id: constituent_id, break_loc_id: constituent_loc_id); |
1696 | if (num_constituents == 0) { |
1697 | // Don't try to disable the site if we don't have a live process anymore. |
1698 | if (IsAlive()) |
1699 | DisableBreakpointSite(bp_site: bp_site_sp.get()); |
1700 | m_breakpoint_site_list.RemoveByAddress(addr: bp_site_sp->GetLoadAddress()); |
1701 | } |
1702 | } |
1703 | |
1704 | size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, |
1705 | uint8_t *buf) const { |
1706 | size_t bytes_removed = 0; |
1707 | StopPointSiteList<BreakpointSite> bp_sites_in_range; |
1708 | |
1709 | if (m_breakpoint_site_list.FindInRange(lower_bound: bp_addr, upper_bound: bp_addr + size, |
1710 | bp_site_list&: bp_sites_in_range)) { |
1711 | bp_sites_in_range.ForEach(callback: [bp_addr, size, |
1712 | buf](BreakpointSite *bp_site) -> void { |
1713 | if (bp_site->GetType() == BreakpointSite::eSoftware) { |
1714 | addr_t intersect_addr; |
1715 | size_t intersect_size; |
1716 | size_t opcode_offset; |
1717 | if (bp_site->IntersectsRange(addr: bp_addr, size, intersect_addr: &intersect_addr, |
1718 | intersect_size: &intersect_size, opcode_offset: &opcode_offset)) { |
1719 | assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); |
1720 | assert(bp_addr < intersect_addr + intersect_size && |
1721 | intersect_addr + intersect_size <= bp_addr + size); |
1722 | assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); |
1723 | size_t buf_offset = intersect_addr - bp_addr; |
1724 | ::memcpy(dest: buf + buf_offset, |
1725 | src: bp_site->GetSavedOpcodeBytes() + opcode_offset, |
1726 | n: intersect_size); |
1727 | } |
1728 | } |
1729 | }); |
1730 | } |
1731 | return bytes_removed; |
1732 | } |
1733 | |
1734 | size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { |
1735 | PlatformSP platform_sp(GetTarget().GetPlatform()); |
1736 | if (platform_sp) |
1737 | return platform_sp->GetSoftwareBreakpointTrapOpcode(target&: GetTarget(), bp_site); |
1738 | return 0; |
1739 | } |
1740 | |
1741 | Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { |
1742 | Status error; |
1743 | assert(bp_site != nullptr); |
1744 | Log *log = GetLog(mask: LLDBLog::Breakpoints); |
1745 | const addr_t bp_addr = bp_site->GetLoadAddress(); |
1746 | LLDB_LOGF( |
1747 | log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%"PRIx64, |
1748 | bp_site->GetID(), (uint64_t)bp_addr); |
1749 | if (bp_site->IsEnabled()) { |
1750 | LLDB_LOGF( |
1751 | log, |
1752 | "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%"PRIx64 |
1753 | " -- already enabled", |
1754 | bp_site->GetID(), (uint64_t)bp_addr); |
1755 | return error; |
1756 | } |
1757 | |
1758 | if (bp_addr == LLDB_INVALID_ADDRESS) { |
1759 | error = Status::FromErrorString( |
1760 | str: "BreakpointSite contains an invalid load address."); |
1761 | return error; |
1762 | } |
1763 | // Ask the lldb::Process subclass to fill in the correct software breakpoint |
1764 | // trap for the breakpoint site |
1765 | const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); |
1766 | |
1767 | if (bp_opcode_size == 0) { |
1768 | error = Status::FromErrorStringWithFormat( |
1769 | format: "Process::GetSoftwareBreakpointTrapOpcode() " |
1770 | "returned zero, unable to get breakpoint " |
1771 | "trap for address 0x%"PRIx64, |
1772 | bp_addr); |
1773 | } else { |
1774 | const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); |
1775 | |
1776 | if (bp_opcode_bytes == nullptr) { |
1777 | error = Status::FromErrorString( |
1778 | str: "BreakpointSite doesn't contain a valid breakpoint trap opcode."); |
1779 | return error; |
1780 | } |
1781 | |
1782 | // Save the original opcode by reading it |
1783 | if (DoReadMemory(vm_addr: bp_addr, buf: bp_site->GetSavedOpcodeBytes(), size: bp_opcode_size, |
1784 | error) == bp_opcode_size) { |
1785 | // Write a software breakpoint in place of the original opcode |
1786 | if (DoWriteMemory(vm_addr: bp_addr, buf: bp_opcode_bytes, size: bp_opcode_size, error) == |
1787 | bp_opcode_size) { |
1788 | uint8_t verify_bp_opcode_bytes[64]; |
1789 | if (DoReadMemory(vm_addr: bp_addr, buf: verify_bp_opcode_bytes, size: bp_opcode_size, |
1790 | error) == bp_opcode_size) { |
1791 | if (::memcmp(s1: bp_opcode_bytes, s2: verify_bp_opcode_bytes, |
1792 | n: bp_opcode_size) == 0) { |
1793 | bp_site->SetEnabled(true); |
1794 | bp_site->SetType(BreakpointSite::eSoftware); |
1795 | LLDB_LOGF(log, |
1796 | "Process::EnableSoftwareBreakpoint (site_id = %d) " |
1797 | "addr = 0x%"PRIx64 " -- SUCCESS", |
1798 | bp_site->GetID(), (uint64_t)bp_addr); |
1799 | } else |
1800 | error = Status::FromErrorString( |
1801 | str: "failed to verify the breakpoint trap in memory."); |
1802 | } else |
1803 | error = Status::FromErrorString( |
1804 | str: "Unable to read memory to verify breakpoint trap."); |
1805 | } else |
1806 | error = Status::FromErrorString( |
1807 | str: "Unable to write breakpoint trap to memory."); |
1808 | } else |
1809 | error = Status::FromErrorString( |
1810 | str: "Unable to read memory at breakpoint address."); |
1811 | } |
1812 | if (log && error.Fail()) |
1813 | LLDB_LOGF( |
1814 | log, |
1815 | "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%"PRIx64 |
1816 | " -- FAILED: %s", |
1817 | bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); |
1818 | return error; |
1819 | } |
1820 | |
1821 | Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { |
1822 | Status error; |
1823 | assert(bp_site != nullptr); |
1824 | Log *log = GetLog(mask: LLDBLog::Breakpoints); |
1825 | addr_t bp_addr = bp_site->GetLoadAddress(); |
1826 | lldb::user_id_t breakID = bp_site->GetID(); |
1827 | LLDB_LOGF(log, |
1828 | "Process::DisableSoftwareBreakpoint (breakID = %"PRIu64 |
1829 | ") addr = 0x%"PRIx64, |
1830 | breakID, (uint64_t)bp_addr); |
1831 | |
1832 | if (bp_site->IsHardware()) { |
1833 | error = |
1834 | Status::FromErrorString(str: "Breakpoint site is a hardware breakpoint."); |
1835 | } else if (bp_site->IsEnabled()) { |
1836 | const size_t break_op_size = bp_site->GetByteSize(); |
1837 | const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); |
1838 | if (break_op_size > 0) { |
1839 | // Clear a software breakpoint instruction |
1840 | uint8_t curr_break_op[8]; |
1841 | assert(break_op_size <= sizeof(curr_break_op)); |
1842 | bool break_op_found = false; |
1843 | |
1844 | // Read the breakpoint opcode |
1845 | if (DoReadMemory(vm_addr: bp_addr, buf: curr_break_op, size: break_op_size, error) == |
1846 | break_op_size) { |
1847 | bool verify = false; |
1848 | // Make sure the breakpoint opcode exists at this address |
1849 | if (::memcmp(s1: curr_break_op, s2: break_op, n: break_op_size) == 0) { |
1850 | break_op_found = true; |
1851 | // We found a valid breakpoint opcode at this address, now restore |
1852 | // the saved opcode. |
1853 | if (DoWriteMemory(vm_addr: bp_addr, buf: bp_site->GetSavedOpcodeBytes(), |
1854 | size: break_op_size, error) == break_op_size) { |
1855 | verify = true; |
1856 | } else |
1857 | error = Status::FromErrorString( |
1858 | str: "Memory write failed when restoring original opcode."); |
1859 | } else { |
1860 | error = Status::FromErrorString( |
1861 | str: "Original breakpoint trap is no longer in memory."); |
1862 | // Set verify to true and so we can check if the original opcode has |
1863 | // already been restored |
1864 | verify = true; |
1865 | } |
1866 | |
1867 | if (verify) { |
1868 | uint8_t verify_opcode[8]; |
1869 | assert(break_op_size < sizeof(verify_opcode)); |
1870 | // Verify that our original opcode made it back to the inferior |
1871 | if (DoReadMemory(vm_addr: bp_addr, buf: verify_opcode, size: break_op_size, error) == |
1872 | break_op_size) { |
1873 | // compare the memory we just read with the original opcode |
1874 | if (::memcmp(s1: bp_site->GetSavedOpcodeBytes(), s2: verify_opcode, |
1875 | n: break_op_size) == 0) { |
1876 | // SUCCESS |
1877 | bp_site->SetEnabled(false); |
1878 | LLDB_LOGF(log, |
1879 | "Process::DisableSoftwareBreakpoint (site_id = %d) " |
1880 | "addr = 0x%"PRIx64 " -- SUCCESS", |
1881 | bp_site->GetID(), (uint64_t)bp_addr); |
1882 | return error; |
1883 | } else { |
1884 | if (break_op_found) |
1885 | error = Status::FromErrorString( |
1886 | str: "Failed to restore original opcode."); |
1887 | } |
1888 | } else |
1889 | error = |
1890 | Status::FromErrorString(str: "Failed to read memory to verify that " |
1891 | "breakpoint trap was restored."); |
1892 | } |
1893 | } else |
1894 | error = Status::FromErrorString( |
1895 | str: "Unable to read memory that should contain the breakpoint trap."); |
1896 | } |
1897 | } else { |
1898 | LLDB_LOGF( |
1899 | log, |
1900 | "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%"PRIx64 |
1901 | " -- already disabled", |
1902 | bp_site->GetID(), (uint64_t)bp_addr); |
1903 | return error; |
1904 | } |
1905 | |
1906 | LLDB_LOGF( |
1907 | log, |
1908 | "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%"PRIx64 |
1909 | " -- FAILED: %s", |
1910 | bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); |
1911 | return error; |
1912 | } |
1913 | |
1914 | // Uncomment to verify memory caching works after making changes to caching |
1915 | // code |
1916 | //#define VERIFY_MEMORY_READS |
1917 | |
1918 | size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { |
1919 | if (ABISP abi_sp = GetABI()) |
1920 | addr = abi_sp->FixAnyAddress(pc: addr); |
1921 | |
1922 | error.Clear(); |
1923 | if (!GetDisableMemoryCache()) { |
1924 | #if defined(VERIFY_MEMORY_READS) |
1925 | // Memory caching is enabled, with debug verification |
1926 | |
1927 | if (buf && size) { |
1928 | // Uncomment the line below to make sure memory caching is working. |
1929 | // I ran this through the test suite and got no assertions, so I am |
1930 | // pretty confident this is working well. If any changes are made to |
1931 | // memory caching, uncomment the line below and test your changes! |
1932 | |
1933 | // Verify all memory reads by using the cache first, then redundantly |
1934 | // reading the same memory from the inferior and comparing to make sure |
1935 | // everything is exactly the same. |
1936 | std::string verify_buf(size, '\0'); |
1937 | assert(verify_buf.size() == size); |
1938 | const size_t cache_bytes_read = |
1939 | m_memory_cache.Read(this, addr, buf, size, error); |
1940 | Status verify_error; |
1941 | const size_t verify_bytes_read = |
1942 | ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), |
1943 | verify_buf.size(), verify_error); |
1944 | assert(cache_bytes_read == verify_bytes_read); |
1945 | assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); |
1946 | assert(verify_error.Success() == error.Success()); |
1947 | return cache_bytes_read; |
1948 | } |
1949 | return 0; |
1950 | #else // !defined(VERIFY_MEMORY_READS) |
1951 | // Memory caching is enabled, without debug verification |
1952 | |
1953 | return m_memory_cache.Read(addr, dst: buf, dst_len: size, error); |
1954 | #endif // defined (VERIFY_MEMORY_READS) |
1955 | } else { |
1956 | // Memory caching is disabled |
1957 | |
1958 | return ReadMemoryFromInferior(vm_addr: addr, buf, size, error); |
1959 | } |
1960 | } |
1961 | |
1962 | void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, |
1963 | const uint8_t *buf, size_t size, |
1964 | AddressRanges &matches, size_t alignment, |
1965 | size_t max_matches) { |
1966 | // Inputs are already validated in FindInMemory() functions. |
1967 | assert(buf != nullptr); |
1968 | assert(size > 0); |
1969 | assert(alignment > 0); |
1970 | assert(max_matches > 0); |
1971 | assert(start_addr != LLDB_INVALID_ADDRESS); |
1972 | assert(end_addr != LLDB_INVALID_ADDRESS); |
1973 | assert(start_addr < end_addr); |
1974 | |
1975 | lldb::addr_t start = llvm::alignTo(Value: start_addr, Align: alignment); |
1976 | while (matches.size() < max_matches && (start + size) < end_addr) { |
1977 | const lldb::addr_t found_addr = FindInMemory(low: start, high: end_addr, buf, size); |
1978 | if (found_addr == LLDB_INVALID_ADDRESS) |
1979 | break; |
1980 | |
1981 | if (found_addr % alignment) { |
1982 | // We need to check the alignment because the FindInMemory uses a special |
1983 | // algorithm to efficiently search mememory but doesn't support alignment. |
1984 | start = llvm::alignTo(Value: start + 1, Align: alignment); |
1985 | continue; |
1986 | } |
1987 | |
1988 | matches.emplace_back(args: found_addr, args&: size); |
1989 | start = found_addr + alignment; |
1990 | } |
1991 | } |
1992 | |
1993 | AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, |
1994 | const AddressRanges &ranges, |
1995 | size_t alignment, size_t max_matches, |
1996 | Status &error) { |
1997 | AddressRanges matches; |
1998 | if (buf == nullptr) { |
1999 | error = Status::FromErrorString(str: "buffer is null"); |
2000 | return matches; |
2001 | } |
2002 | if (size == 0) { |
2003 | error = Status::FromErrorString(str: "buffer size is zero"); |
2004 | return matches; |
2005 | } |
2006 | if (ranges.empty()) { |
2007 | error = Status::FromErrorString(str: "empty ranges"); |
2008 | return matches; |
2009 | } |
2010 | if (alignment == 0) { |
2011 | error = Status::FromErrorString(str: "alignment must be greater than zero"); |
2012 | return matches; |
2013 | } |
2014 | if (max_matches == 0) { |
2015 | error = Status::FromErrorString(str: "max_matches must be greater than zero"); |
2016 | return matches; |
2017 | } |
2018 | |
2019 | int resolved_ranges = 0; |
2020 | Target &target = GetTarget(); |
2021 | for (size_t i = 0; i < ranges.size(); ++i) { |
2022 | if (matches.size() >= max_matches) |
2023 | break; |
2024 | const AddressRange &range = ranges[i]; |
2025 | if (range.IsValid() == false) |
2026 | continue; |
2027 | |
2028 | const lldb::addr_t start_addr = |
2029 | range.GetBaseAddress().GetLoadAddress(target: &target); |
2030 | if (start_addr == LLDB_INVALID_ADDRESS) |
2031 | continue; |
2032 | |
2033 | ++resolved_ranges; |
2034 | const lldb::addr_t end_addr = start_addr + range.GetByteSize(); |
2035 | DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, |
2036 | max_matches); |
2037 | } |
2038 | |
2039 | if (resolved_ranges > 0) |
2040 | error.Clear(); |
2041 | else |
2042 | error = Status::FromErrorString(str: "unable to resolve any ranges"); |
2043 | |
2044 | return matches; |
2045 | } |
2046 | |
2047 | lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, |
2048 | const AddressRange &range, size_t alignment, |
2049 | Status &error) { |
2050 | if (buf == nullptr) { |
2051 | error = Status::FromErrorString(str: "buffer is null"); |
2052 | return LLDB_INVALID_ADDRESS; |
2053 | } |
2054 | if (size == 0) { |
2055 | error = Status::FromErrorString(str: "buffer size is zero"); |
2056 | return LLDB_INVALID_ADDRESS; |
2057 | } |
2058 | if (!range.IsValid()) { |
2059 | error = Status::FromErrorString(str: "range is invalid"); |
2060 | return LLDB_INVALID_ADDRESS; |
2061 | } |
2062 | if (alignment == 0) { |
2063 | error = Status::FromErrorString(str: "alignment must be greater than zero"); |
2064 | return LLDB_INVALID_ADDRESS; |
2065 | } |
2066 | |
2067 | Target &target = GetTarget(); |
2068 | const lldb::addr_t start_addr = |
2069 | range.GetBaseAddress().GetLoadAddress(target: &target); |
2070 | if (start_addr == LLDB_INVALID_ADDRESS) { |
2071 | error = Status::FromErrorString(str: "range load address is invalid"); |
2072 | return LLDB_INVALID_ADDRESS; |
2073 | } |
2074 | const lldb::addr_t end_addr = start_addr + range.GetByteSize(); |
2075 | |
2076 | AddressRanges matches; |
2077 | DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, max_matches: 1); |
2078 | if (matches.empty()) |
2079 | return LLDB_INVALID_ADDRESS; |
2080 | |
2081 | error.Clear(); |
2082 | return matches[0].GetBaseAddress().GetLoadAddress(target: &target); |
2083 | } |
2084 | |
2085 | size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, |
2086 | Status &error) { |
2087 | char buf[256]; |
2088 | out_str.clear(); |
2089 | addr_t curr_addr = addr; |
2090 | while (true) { |
2091 | size_t length = ReadCStringFromMemory(vm_addr: curr_addr, cstr: buf, cstr_max_len: sizeof(buf), error); |
2092 | if (length == 0) |
2093 | break; |
2094 | out_str.append(s: buf, n: length); |
2095 | // If we got "length - 1" bytes, we didn't get the whole C string, we need |
2096 | // to read some more characters |
2097 | if (length == sizeof(buf) - 1) |
2098 | curr_addr += length; |
2099 | else |
2100 | break; |
2101 | } |
2102 | return out_str.size(); |
2103 | } |
2104 | |
2105 | // Deprecated in favor of ReadStringFromMemory which has wchar support and |
2106 | // correct code to find null terminators. |
2107 | size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, |
2108 | size_t dst_max_len, |
2109 | Status &result_error) { |
2110 | size_t total_cstr_len = 0; |
2111 | if (dst && dst_max_len) { |
2112 | result_error.Clear(); |
2113 | // NULL out everything just to be safe |
2114 | memset(s: dst, c: 0, n: dst_max_len); |
2115 | addr_t curr_addr = addr; |
2116 | const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); |
2117 | size_t bytes_left = dst_max_len - 1; |
2118 | char *curr_dst = dst; |
2119 | |
2120 | while (bytes_left > 0) { |
2121 | addr_t cache_line_bytes_left = |
2122 | cache_line_size - (curr_addr % cache_line_size); |
2123 | addr_t bytes_to_read = |
2124 | std::min<addr_t>(a: bytes_left, b: cache_line_bytes_left); |
2125 | Status error; |
2126 | size_t bytes_read = ReadMemory(addr: curr_addr, buf: curr_dst, size: bytes_to_read, error); |
2127 | |
2128 | if (bytes_read == 0) { |
2129 | result_error = std::move(error); |
2130 | dst[total_cstr_len] = '\0'; |
2131 | break; |
2132 | } |
2133 | const size_t len = strlen(s: curr_dst); |
2134 | |
2135 | total_cstr_len += len; |
2136 | |
2137 | if (len < bytes_to_read) |
2138 | break; |
2139 | |
2140 | curr_dst += bytes_read; |
2141 | curr_addr += bytes_read; |
2142 | bytes_left -= bytes_read; |
2143 | } |
2144 | } else { |
2145 | if (dst == nullptr) |
2146 | result_error = Status::FromErrorString(str: "invalid arguments"); |
2147 | else |
2148 | result_error.Clear(); |
2149 | } |
2150 | return total_cstr_len; |
2151 | } |
2152 | |
2153 | size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, |
2154 | Status &error) { |
2155 | LLDB_SCOPED_TIMER(); |
2156 | |
2157 | if (ABISP abi_sp = GetABI()) |
2158 | addr = abi_sp->FixAnyAddress(pc: addr); |
2159 | |
2160 | if (buf == nullptr || size == 0) |
2161 | return 0; |
2162 | |
2163 | size_t bytes_read = 0; |
2164 | uint8_t *bytes = (uint8_t *)buf; |
2165 | |
2166 | while (bytes_read < size) { |
2167 | const size_t curr_size = size - bytes_read; |
2168 | const size_t curr_bytes_read = |
2169 | DoReadMemory(vm_addr: addr + bytes_read, buf: bytes + bytes_read, size: curr_size, error); |
2170 | bytes_read += curr_bytes_read; |
2171 | if (curr_bytes_read == curr_size || curr_bytes_read == 0) |
2172 | break; |
2173 | } |
2174 | |
2175 | // Replace any software breakpoint opcodes that fall into this range back |
2176 | // into "buf" before we return |
2177 | if (bytes_read > 0) |
2178 | RemoveBreakpointOpcodesFromBuffer(bp_addr: addr, size: bytes_read, buf: (uint8_t *)buf); |
2179 | return bytes_read; |
2180 | } |
2181 | |
2182 | lldb::offset_t Process::ReadMemoryInChunks(lldb::addr_t vm_addr, void *buf, |
2183 | lldb::addr_t chunk_size, |
2184 | lldb::offset_t size, |
2185 | ReadMemoryChunkCallback callback) { |
2186 | // Safety check to prevent an infinite loop. |
2187 | if (chunk_size == 0) |
2188 | return 0; |
2189 | |
2190 | // Buffer for when a NULL buf is provided, initialized |
2191 | // to 0 bytes, we set it to chunk_size and then replace buf |
2192 | // with the new buffer. |
2193 | DataBufferHeap data_buffer; |
2194 | if (!buf) { |
2195 | data_buffer.SetByteSize(chunk_size); |
2196 | buf = data_buffer.GetBytes(); |
2197 | } |
2198 | |
2199 | uint64_t bytes_remaining = size; |
2200 | uint64_t bytes_read = 0; |
2201 | Status error; |
2202 | while (bytes_remaining > 0) { |
2203 | // Get the next read chunk size as the minimum of the remaining bytes and |
2204 | // the write chunk max size. |
2205 | const lldb::addr_t bytes_to_read = std::min(a: bytes_remaining, b: chunk_size); |
2206 | const lldb::addr_t current_addr = vm_addr + bytes_read; |
2207 | const lldb::addr_t bytes_read_for_chunk = |
2208 | ReadMemoryFromInferior(addr: current_addr, buf, size: bytes_to_read, error); |
2209 | |
2210 | bytes_read += bytes_read_for_chunk; |
2211 | // If the bytes read in this chunk would cause us to overflow, something |
2212 | // went wrong and we should fail fast. |
2213 | if (bytes_read_for_chunk > bytes_remaining) |
2214 | return 0; |
2215 | else |
2216 | bytes_remaining -= bytes_read_for_chunk; |
2217 | |
2218 | if (callback(error, current_addr, buf, bytes_read_for_chunk) == |
2219 | IterationAction::Stop) |
2220 | break; |
2221 | } |
2222 | |
2223 | return bytes_read; |
2224 | } |
2225 | |
2226 | uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, |
2227 | size_t integer_byte_size, |
2228 | uint64_t fail_value, |
2229 | Status &error) { |
2230 | Scalar scalar; |
2231 | if (ReadScalarIntegerFromMemory(addr: vm_addr, byte_size: integer_byte_size, is_signed: false, scalar, |
2232 | error)) |
2233 | return scalar.ULongLong(fail_value); |
2234 | return fail_value; |
2235 | } |
2236 | |
2237 | int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, |
2238 | size_t integer_byte_size, |
2239 | int64_t fail_value, |
2240 | Status &error) { |
2241 | Scalar scalar; |
2242 | if (ReadScalarIntegerFromMemory(addr: vm_addr, byte_size: integer_byte_size, is_signed: true, scalar, |
2243 | error)) |
2244 | return scalar.SLongLong(fail_value); |
2245 | return fail_value; |
2246 | } |
2247 | |
2248 | addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { |
2249 | Scalar scalar; |
2250 | if (ReadScalarIntegerFromMemory(addr: vm_addr, byte_size: GetAddressByteSize(), is_signed: false, scalar, |
2251 | error)) |
2252 | return scalar.ULongLong(LLDB_INVALID_ADDRESS); |
2253 | return LLDB_INVALID_ADDRESS; |
2254 | } |
2255 | |
2256 | bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, |
2257 | Status &error) { |
2258 | Scalar scalar; |
2259 | const uint32_t addr_byte_size = GetAddressByteSize(); |
2260 | if (addr_byte_size <= 4) |
2261 | scalar = (uint32_t)ptr_value; |
2262 | else |
2263 | scalar = ptr_value; |
2264 | return WriteScalarToMemory(vm_addr, scalar, size: addr_byte_size, error) == |
2265 | addr_byte_size; |
2266 | } |
2267 | |
2268 | size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, |
2269 | Status &error) { |
2270 | size_t bytes_written = 0; |
2271 | const uint8_t *bytes = (const uint8_t *)buf; |
2272 | |
2273 | while (bytes_written < size) { |
2274 | const size_t curr_size = size - bytes_written; |
2275 | const size_t curr_bytes_written = DoWriteMemory( |
2276 | vm_addr: addr + bytes_written, buf: bytes + bytes_written, size: curr_size, error); |
2277 | bytes_written += curr_bytes_written; |
2278 | if (curr_bytes_written == curr_size || curr_bytes_written == 0) |
2279 | break; |
2280 | } |
2281 | return bytes_written; |
2282 | } |
2283 | |
2284 | size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, |
2285 | Status &error) { |
2286 | if (ABISP abi_sp = GetABI()) |
2287 | addr = abi_sp->FixAnyAddress(pc: addr); |
2288 | |
2289 | m_memory_cache.Flush(addr, size); |
2290 | |
2291 | if (buf == nullptr || size == 0) |
2292 | return 0; |
2293 | |
2294 | if (TrackMemoryCacheChanges() || !m_allocated_memory_cache.IsInCache(addr)) |
2295 | m_mod_id.BumpMemoryID(); |
2296 | |
2297 | // We need to write any data that would go where any current software traps |
2298 | // (enabled software breakpoints) any software traps (breakpoints) that we |
2299 | // may have placed in our tasks memory. |
2300 | |
2301 | StopPointSiteList<BreakpointSite> bp_sites_in_range; |
2302 | if (!m_breakpoint_site_list.FindInRange(lower_bound: addr, upper_bound: addr + size, bp_site_list&: bp_sites_in_range)) |
2303 | return WriteMemoryPrivate(addr, buf, size, error); |
2304 | |
2305 | // No breakpoint sites overlap |
2306 | if (bp_sites_in_range.IsEmpty()) |
2307 | return WriteMemoryPrivate(addr, buf, size, error); |
2308 | |
2309 | const uint8_t *ubuf = (const uint8_t *)buf; |
2310 | uint64_t bytes_written = 0; |
2311 | |
2312 | bp_sites_in_range.ForEach(callback: [this, addr, size, &bytes_written, &ubuf, |
2313 | &error](BreakpointSite *bp) -> void { |
2314 | if (error.Fail()) |
2315 | return; |
2316 | |
2317 | if (bp->GetType() != BreakpointSite::eSoftware) |
2318 | return; |
2319 | |
2320 | addr_t intersect_addr; |
2321 | size_t intersect_size; |
2322 | size_t opcode_offset; |
2323 | const bool intersects = bp->IntersectsRange( |
2324 | addr, size, intersect_addr: &intersect_addr, intersect_size: &intersect_size, opcode_offset: &opcode_offset); |
2325 | UNUSED_IF_ASSERT_DISABLED(intersects); |
2326 | assert(intersects); |
2327 | assert(addr <= intersect_addr && intersect_addr < addr + size); |
2328 | assert(addr < intersect_addr + intersect_size && |
2329 | intersect_addr + intersect_size <= addr + size); |
2330 | assert(opcode_offset + intersect_size <= bp->GetByteSize()); |
2331 | |
2332 | // Check for bytes before this breakpoint |
2333 | const addr_t curr_addr = addr + bytes_written; |
2334 | if (intersect_addr > curr_addr) { |
2335 | // There are some bytes before this breakpoint that we need to just |
2336 | // write to memory |
2337 | size_t curr_size = intersect_addr - curr_addr; |
2338 | size_t curr_bytes_written = |
2339 | WriteMemoryPrivate(addr: curr_addr, buf: ubuf + bytes_written, size: curr_size, error); |
2340 | bytes_written += curr_bytes_written; |
2341 | if (curr_bytes_written != curr_size) { |
2342 | // We weren't able to write all of the requested bytes, we are |
2343 | // done looping and will return the number of bytes that we have |
2344 | // written so far. |
2345 | if (error.Success()) |
2346 | error = Status::FromErrorString(str: "could not write all bytes"); |
2347 | } |
2348 | } |
2349 | // Now write any bytes that would cover up any software breakpoints |
2350 | // directly into the breakpoint opcode buffer |
2351 | ::memcpy(dest: bp->GetSavedOpcodeBytes() + opcode_offset, src: ubuf + bytes_written, |
2352 | n: intersect_size); |
2353 | bytes_written += intersect_size; |
2354 | }); |
2355 | |
2356 | // Write any remaining bytes after the last breakpoint if we have any left |
2357 | if (bytes_written < size) |
2358 | bytes_written += |
2359 | WriteMemoryPrivate(addr: addr + bytes_written, buf: ubuf + bytes_written, |
2360 | size: size - bytes_written, error); |
2361 | |
2362 | return bytes_written; |
2363 | } |
2364 | |
2365 | size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, |
2366 | size_t byte_size, Status &error) { |
2367 | if (byte_size == UINT32_MAX) |
2368 | byte_size = scalar.GetByteSize(); |
2369 | if (byte_size > 0) { |
2370 | uint8_t buf[32]; |
2371 | const size_t mem_size = |
2372 | scalar.GetAsMemoryData(dst: buf, dst_len: byte_size, dst_byte_order: GetByteOrder(), error); |
2373 | if (mem_size > 0) |
2374 | return WriteMemory(addr, buf, size: mem_size, error); |
2375 | else |
2376 | error = Status::FromErrorString(str: "failed to get scalar as memory data"); |
2377 | } else { |
2378 | error = Status::FromErrorString(str: "invalid scalar value"); |
2379 | } |
2380 | return 0; |
2381 | } |
2382 | |
2383 | size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, |
2384 | bool is_signed, Scalar &scalar, |
2385 | Status &error) { |
2386 | uint64_t uval = 0; |
2387 | if (byte_size == 0) { |
2388 | error = Status::FromErrorString(str: "byte size is zero"); |
2389 | } else if (byte_size & (byte_size - 1)) { |
2390 | error = Status::FromErrorStringWithFormat( |
2391 | format: "byte size %u is not a power of 2", byte_size); |
2392 | } else if (byte_size <= sizeof(uval)) { |
2393 | const size_t bytes_read = ReadMemory(addr, buf: &uval, size: byte_size, error); |
2394 | if (bytes_read == byte_size) { |
2395 | DataExtractor data(&uval, sizeof(uval), GetByteOrder(), |
2396 | GetAddressByteSize()); |
2397 | lldb::offset_t offset = 0; |
2398 | if (byte_size <= 4) |
2399 | scalar = data.GetMaxU32(offset_ptr: &offset, byte_size); |
2400 | else |
2401 | scalar = data.GetMaxU64(offset_ptr: &offset, byte_size); |
2402 | if (is_signed) |
2403 | scalar.SignExtend(bit_pos: byte_size * 8); |
2404 | return bytes_read; |
2405 | } |
2406 | } else { |
2407 | error = Status::FromErrorStringWithFormat( |
2408 | format: "byte size of %u is too large for integer scalar type", byte_size); |
2409 | } |
2410 | return 0; |
2411 | } |
2412 | |
2413 | Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { |
2414 | Status error; |
2415 | for (const auto &Entry : entries) { |
2416 | WriteMemory(addr: Entry.Dest, buf: Entry.Contents.data(), size: Entry.Contents.size(), |
2417 | error); |
2418 | if (!error.Success()) |
2419 | break; |
2420 | } |
2421 | return error; |
2422 | } |
2423 | |
2424 | addr_t Process::AllocateMemory(size_t size, uint32_t permissions, |
2425 | Status &error) { |
2426 | if (GetPrivateState() != eStateStopped) { |
2427 | error = Status::FromErrorString( |
2428 | str: "cannot allocate memory while process is running"); |
2429 | return LLDB_INVALID_ADDRESS; |
2430 | } |
2431 | |
2432 | return m_allocated_memory_cache.AllocateMemory(byte_size: size, permissions, error); |
2433 | } |
2434 | |
2435 | addr_t Process::CallocateMemory(size_t size, uint32_t permissions, |
2436 | Status &error) { |
2437 | addr_t return_addr = AllocateMemory(size, permissions, error); |
2438 | if (error.Success()) { |
2439 | std::string buffer(size, 0); |
2440 | WriteMemory(addr: return_addr, buf: buffer.c_str(), size, error); |
2441 | } |
2442 | return return_addr; |
2443 | } |
2444 | |
2445 | bool Process::CanJIT() { |
2446 | if (m_can_jit == eCanJITDontKnow) { |
2447 | Log *log = GetLog(mask: LLDBLog::Process); |
2448 | Status err; |
2449 | |
2450 | uint64_t allocated_memory = AllocateMemory( |
2451 | size: 8, permissions: ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, |
2452 | error&: err); |
2453 | |
2454 | if (err.Success()) { |
2455 | m_can_jit = eCanJITYes; |
2456 | LLDB_LOGF(log, |
2457 | "Process::%s pid %"PRIu64 |
2458 | " allocation test passed, CanJIT () is true", |
2459 | __FUNCTION__, GetID()); |
2460 | } else { |
2461 | m_can_jit = eCanJITNo; |
2462 | LLDB_LOGF(log, |
2463 | "Process::%s pid %"PRIu64 |
2464 | " allocation test failed, CanJIT () is false: %s", |
2465 | __FUNCTION__, GetID(), err.AsCString()); |
2466 | } |
2467 | |
2468 | DeallocateMemory(ptr: allocated_memory); |
2469 | } |
2470 | |
2471 | return m_can_jit == eCanJITYes; |
2472 | } |
2473 | |
2474 | void Process::SetCanJIT(bool can_jit) { |
2475 | m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); |
2476 | } |
2477 | |
2478 | void Process::SetCanRunCode(bool can_run_code) { |
2479 | SetCanJIT(can_run_code); |
2480 | m_can_interpret_function_calls = can_run_code; |
2481 | } |
2482 | |
2483 | Status Process::DeallocateMemory(addr_t ptr) { |
2484 | Status error; |
2485 | if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { |
2486 | error = Status::FromErrorStringWithFormat( |
2487 | format: "deallocation of memory at 0x%"PRIx64 " failed.", (uint64_t)ptr); |
2488 | } |
2489 | return error; |
2490 | } |
2491 | |
2492 | bool Process::GetWatchpointReportedAfter() { |
2493 | if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) |
2494 | return *subclass_override; |
2495 | |
2496 | bool reported_after = true; |
2497 | const ArchSpec &arch = GetTarget().GetArchitecture(); |
2498 | if (!arch.IsValid()) |
2499 | return reported_after; |
2500 | llvm::Triple triple = arch.GetTriple(); |
2501 | |
2502 | if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || |
2503 | triple.isAArch64() || triple.isArmMClass() || triple.isARM() || |
2504 | triple.isLoongArch()) |
2505 | reported_after = false; |
2506 | |
2507 | return reported_after; |
2508 | } |
2509 | |
2510 | ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, |
2511 | lldb::addr_t header_addr, |
2512 | size_t size_to_read) { |
2513 | Log *log = GetLog(mask: LLDBLog::Host); |
2514 | if (log) { |
2515 | LLDB_LOGF(log, |
2516 | "Process::ReadModuleFromMemory reading %s binary from memory", |
2517 | file_spec.GetPath().c_str()); |
2518 | } |
2519 | ModuleSP module_sp(new Module(file_spec, ArchSpec())); |
2520 | if (module_sp) { |
2521 | Status error; |
2522 | std::unique_ptr<Progress> progress_up; |
2523 | // Reading an ObjectFile from a local corefile is very fast, |
2524 | // only print a progress update if we're reading from a |
2525 | // live session which might go over gdb remote serial protocol. |
2526 | if (IsLiveDebugSession()) |
2527 | progress_up = std::make_unique<Progress>( |
2528 | args: "Reading binary from memory", args: file_spec.GetFilename().GetString()); |
2529 | |
2530 | ObjectFile *objfile = module_sp->GetMemoryObjectFile( |
2531 | process_sp: shared_from_this(), header_addr, error, size_to_read); |
2532 | if (objfile) |
2533 | return module_sp; |
2534 | } |
2535 | return ModuleSP(); |
2536 | } |
2537 | |
2538 | bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, |
2539 | uint32_t &permissions) { |
2540 | MemoryRegionInfo range_info; |
2541 | permissions = 0; |
2542 | Status error(GetMemoryRegionInfo(load_addr, range_info)); |
2543 | if (!error.Success()) |
2544 | return false; |
2545 | if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || |
2546 | range_info.GetWritable() == MemoryRegionInfo::eDontKnow || |
2547 | range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { |
2548 | return false; |
2549 | } |
2550 | permissions = range_info.GetLLDBPermissions(); |
2551 | return true; |
2552 | } |
2553 | |
2554 | Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { |
2555 | Status error; |
2556 | error = Status::FromErrorString(str: "watchpoints are not supported"); |
2557 | return error; |
2558 | } |
2559 | |
2560 | Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { |
2561 | Status error; |
2562 | error = Status::FromErrorString(str: "watchpoints are not supported"); |
2563 | return error; |
2564 | } |
2565 | |
2566 | StateType |
2567 | Process::WaitForProcessStopPrivate(EventSP &event_sp, |
2568 | const Timeout<std::micro> &timeout) { |
2569 | StateType state; |
2570 | |
2571 | while (true) { |
2572 | event_sp.reset(); |
2573 | state = GetStateChangedEventsPrivate(event_sp, timeout); |
2574 | |
2575 | if (StateIsStoppedState(state, must_exist: false)) |
2576 | break; |
2577 | |
2578 | // If state is invalid, then we timed out |
2579 | if (state == eStateInvalid) |
2580 | break; |
2581 | |
2582 | if (event_sp) |
2583 | HandlePrivateEvent(event_sp); |
2584 | } |
2585 | return state; |
2586 | } |
2587 | |
2588 | void Process::LoadOperatingSystemPlugin(bool flush) { |
2589 | std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); |
2590 | if (flush) |
2591 | m_thread_list.Clear(); |
2592 | m_os_up.reset(p: OperatingSystem::FindPlugin(process: this, plugin_name: nullptr)); |
2593 | if (flush) |
2594 | Flush(); |
2595 | } |
2596 | |
2597 | Status Process::Launch(ProcessLaunchInfo &launch_info) { |
2598 | StateType state_after_launch = eStateInvalid; |
2599 | EventSP first_stop_event_sp; |
2600 | Status status = |
2601 | LaunchPrivate(launch_info, state&: state_after_launch, event_sp&: first_stop_event_sp); |
2602 | if (status.Fail()) |
2603 | return status; |
2604 | |
2605 | if (state_after_launch != eStateStopped && |
2606 | state_after_launch != eStateCrashed) |
2607 | return Status(); |
2608 | |
2609 | // Note, the stop event was consumed above, but not handled. This |
2610 | // was done to give DidLaunch a chance to run. The target is either |
2611 | // stopped or crashed. Directly set the state. This is done to |
2612 | // prevent a stop message with a bunch of spurious output on thread |
2613 | // status, as well as not pop a ProcessIOHandler. |
2614 | SetPublicState(new_state: state_after_launch, restarted: false); |
2615 | |
2616 | if (PrivateStateThreadIsValid()) |
2617 | ResumePrivateStateThread(); |
2618 | else |
2619 | StartPrivateStateThread(); |
2620 | |
2621 | // Target was stopped at entry as was intended. Need to notify the |
2622 | // listeners about it. |
2623 | if (launch_info.GetFlags().Test(bit: eLaunchFlagStopAtEntry)) |
2624 | HandlePrivateEvent(event_sp&: first_stop_event_sp); |
2625 | |
2626 | return Status(); |
2627 | } |
2628 | |
2629 | Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, |
2630 | EventSP &event_sp) { |
2631 | Status error; |
2632 | m_abi_sp.reset(); |
2633 | m_dyld_up.reset(); |
2634 | m_jit_loaders_up.reset(); |
2635 | m_system_runtime_up.reset(); |
2636 | m_os_up.reset(); |
2637 | GetTarget().ClearAllLoadedSections(); |
2638 | |
2639 | { |
2640 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
2641 | m_process_input_reader.reset(); |
2642 | } |
2643 | |
2644 | Module *exe_module = GetTarget().GetExecutableModulePointer(); |
2645 | |
2646 | // The "remote executable path" is hooked up to the local Executable |
2647 | // module. But we should be able to debug a remote process even if the |
2648 | // executable module only exists on the remote. However, there needs to |
2649 | // be a way to express this path, without actually having a module. |
2650 | // The way to do that is to set the ExecutableFile in the LaunchInfo. |
2651 | // Figure that out here: |
2652 | |
2653 | FileSpec exe_spec_to_use; |
2654 | if (!exe_module) { |
2655 | if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { |
2656 | error = Status::FromErrorString(str: "executable module does not exist"); |
2657 | return error; |
2658 | } |
2659 | exe_spec_to_use = launch_info.GetExecutableFile(); |
2660 | } else |
2661 | exe_spec_to_use = exe_module->GetFileSpec(); |
2662 | |
2663 | if (exe_module && FileSystem::Instance().Exists(file_spec: exe_module->GetFileSpec())) { |
2664 | // Install anything that might need to be installed prior to launching. |
2665 | // For host systems, this will do nothing, but if we are connected to a |
2666 | // remote platform it will install any needed binaries |
2667 | error = GetTarget().Install(launch_info: &launch_info); |
2668 | if (error.Fail()) |
2669 | return error; |
2670 | } |
2671 | |
2672 | // Listen and queue events that are broadcasted during the process launch. |
2673 | ListenerSP listener_sp(Listener::MakeListener(name: "LaunchEventHijack")); |
2674 | HijackProcessEvents(listener_sp); |
2675 | auto on_exit = llvm::make_scope_exit(F: [this]() { RestoreProcessEvents(); }); |
2676 | |
2677 | if (PrivateStateThreadIsValid()) |
2678 | PausePrivateStateThread(); |
2679 | |
2680 | error = WillLaunch(module: exe_module); |
2681 | if (error.Fail()) { |
2682 | std::string local_exec_file_path = exe_spec_to_use.GetPath(); |
2683 | return Status::FromErrorStringWithFormat(format: "file doesn't exist: '%s'", |
2684 | local_exec_file_path.c_str()); |
2685 | } |
2686 | |
2687 | const bool restarted = false; |
2688 | SetPublicState(new_state: eStateLaunching, restarted); |
2689 | m_should_detach = false; |
2690 | |
2691 | m_public_run_lock.SetRunning(); |
2692 | error = DoLaunch(exe_module, launch_info); |
2693 | |
2694 | if (error.Fail()) { |
2695 | if (GetID() != LLDB_INVALID_PROCESS_ID) { |
2696 | SetID(LLDB_INVALID_PROCESS_ID); |
2697 | const char *error_string = error.AsCString(); |
2698 | if (error_string == nullptr) |
2699 | error_string = "launch failed"; |
2700 | SetExitStatus(status: -1, exit_string: error_string); |
2701 | } |
2702 | return error; |
2703 | } |
2704 | |
2705 | // Now wait for the process to launch and return control to us, and then |
2706 | // call DidLaunch: |
2707 | state = WaitForProcessStopPrivate(event_sp, timeout: seconds(10)); |
2708 | |
2709 | if (state == eStateInvalid || !event_sp) { |
2710 | // We were able to launch the process, but we failed to catch the |
2711 | // initial stop. |
2712 | error = Status::FromErrorString(str: "failed to catch stop after launch"); |
2713 | SetExitStatus(status: 0, exit_string: error.AsCString()); |
2714 | Destroy(force_kill: false); |
2715 | return error; |
2716 | } |
2717 | |
2718 | if (state == eStateExited) { |
2719 | // We exited while trying to launch somehow. Don't call DidLaunch |
2720 | // as that's not likely to work, and return an invalid pid. |
2721 | HandlePrivateEvent(event_sp); |
2722 | return Status(); |
2723 | } |
2724 | |
2725 | if (state == eStateStopped || state == eStateCrashed) { |
2726 | DidLaunch(); |
2727 | |
2728 | // Now that we know the process type, update its signal responses from the |
2729 | // ones stored in the Target: |
2730 | if (m_unix_signals_sp) |
2731 | GetTarget().UpdateSignalsFromDummy( |
2732 | signals_sp: m_unix_signals_sp, warning_stream_sp: GetTarget().GetDebugger().GetAsyncErrorStream()); |
2733 | |
2734 | DynamicLoader *dyld = GetDynamicLoader(); |
2735 | if (dyld) |
2736 | dyld->DidLaunch(); |
2737 | |
2738 | GetJITLoaders().DidLaunch(); |
2739 | |
2740 | SystemRuntime *system_runtime = GetSystemRuntime(); |
2741 | if (system_runtime) |
2742 | system_runtime->DidLaunch(); |
2743 | |
2744 | if (!m_os_up) |
2745 | LoadOperatingSystemPlugin(flush: false); |
2746 | |
2747 | // We successfully launched the process and stopped, now it the |
2748 | // right time to set up signal filters before resuming. |
2749 | UpdateAutomaticSignalFiltering(); |
2750 | return Status(); |
2751 | } |
2752 | |
2753 | return Status::FromErrorStringWithFormat( |
2754 | format: "Unexpected process state after the launch: %s, expected %s, " |
2755 | "%s, %s or %s", |
2756 | StateAsCString(state), StateAsCString(state: eStateInvalid), |
2757 | StateAsCString(state: eStateExited), StateAsCString(state: eStateStopped), |
2758 | StateAsCString(state: eStateCrashed)); |
2759 | } |
2760 | |
2761 | Status Process::LoadCore() { |
2762 | GetTarget().ClearAllLoadedSections(); |
2763 | Status error = DoLoadCore(); |
2764 | if (error.Success()) { |
2765 | ListenerSP listener_sp( |
2766 | Listener::MakeListener(name: "lldb.process.load_core_listener")); |
2767 | HijackProcessEvents(listener_sp); |
2768 | |
2769 | if (PrivateStateThreadIsValid()) |
2770 | ResumePrivateStateThread(); |
2771 | else |
2772 | StartPrivateStateThread(); |
2773 | |
2774 | DynamicLoader *dyld = GetDynamicLoader(); |
2775 | if (dyld) |
2776 | dyld->DidAttach(); |
2777 | |
2778 | GetJITLoaders().DidAttach(); |
2779 | |
2780 | SystemRuntime *system_runtime = GetSystemRuntime(); |
2781 | if (system_runtime) |
2782 | system_runtime->DidAttach(); |
2783 | |
2784 | if (!m_os_up) |
2785 | LoadOperatingSystemPlugin(flush: false); |
2786 | |
2787 | // We successfully loaded a core file, now pretend we stopped so we can |
2788 | // show all of the threads in the core file and explore the crashed state. |
2789 | SetPrivateState(eStateStopped); |
2790 | |
2791 | // Wait for a stopped event since we just posted one above... |
2792 | lldb::EventSP event_sp; |
2793 | StateType state = |
2794 | WaitForProcessToStop(timeout: std::nullopt, event_sp_ptr: &event_sp, wait_always: true, hijack_listener_sp: listener_sp, |
2795 | stream: nullptr, use_run_lock: true, select_most_relevant: SelectMostRelevantFrame); |
2796 | |
2797 | if (!StateIsStoppedState(state, must_exist: false)) { |
2798 | Log *log = GetLog(mask: LLDBLog::Process); |
2799 | LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", |
2800 | StateAsCString(state)); |
2801 | error = Status::FromErrorString( |
2802 | str: "Did not get stopped event after loading the core file."); |
2803 | } |
2804 | RestoreProcessEvents(); |
2805 | // Since we hijacked the event stream, we will have we won't have run the |
2806 | // stop hooks. Make sure we do that here: |
2807 | GetTarget().RunStopHooks(/* at_initial_stop= */ true); |
2808 | } |
2809 | return error; |
2810 | } |
2811 | |
2812 | DynamicLoader *Process::GetDynamicLoader() { |
2813 | if (!m_dyld_up) |
2814 | m_dyld_up.reset(p: DynamicLoader::FindPlugin(process: this, plugin_name: "")); |
2815 | return m_dyld_up.get(); |
2816 | } |
2817 | |
2818 | void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { |
2819 | m_dyld_up = std::move(dyld_up); |
2820 | } |
2821 | |
2822 | DataExtractor Process::GetAuxvData() { return DataExtractor(); } |
2823 | |
2824 | llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { |
2825 | return false; |
2826 | } |
2827 | |
2828 | JITLoaderList &Process::GetJITLoaders() { |
2829 | if (!m_jit_loaders_up) { |
2830 | m_jit_loaders_up = std::make_unique<JITLoaderList>(); |
2831 | JITLoader::LoadPlugins(process: this, list&: *m_jit_loaders_up); |
2832 | } |
2833 | return *m_jit_loaders_up; |
2834 | } |
2835 | |
2836 | SystemRuntime *Process::GetSystemRuntime() { |
2837 | if (!m_system_runtime_up) |
2838 | m_system_runtime_up.reset(p: SystemRuntime::FindPlugin(process: this)); |
2839 | return m_system_runtime_up.get(); |
2840 | } |
2841 | |
2842 | Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, |
2843 | uint32_t exec_count) |
2844 | : NextEventAction(process), m_exec_count(exec_count) { |
2845 | Log *log = GetLog(mask: LLDBLog::Process); |
2846 | LLDB_LOGF( |
2847 | log, |
2848 | "Process::AttachCompletionHandler::%s process=%p, exec_count=%"PRIu32, |
2849 | __FUNCTION__, static_cast<void *>(process), exec_count); |
2850 | } |
2851 | |
2852 | Process::NextEventAction::EventActionResult |
2853 | Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { |
2854 | Log *log = GetLog(mask: LLDBLog::Process); |
2855 | |
2856 | StateType state = ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
2857 | LLDB_LOGF(log, |
2858 | "Process::AttachCompletionHandler::%s called with state %s (%d)", |
2859 | __FUNCTION__, StateAsCString(state), static_cast<int>(state)); |
2860 | |
2861 | switch (state) { |
2862 | case eStateAttaching: |
2863 | return eEventActionSuccess; |
2864 | |
2865 | case eStateRunning: |
2866 | case eStateConnected: |
2867 | return eEventActionRetry; |
2868 | |
2869 | case eStateStopped: |
2870 | case eStateCrashed: |
2871 | // During attach, prior to sending the eStateStopped event, |
2872 | // lldb_private::Process subclasses must set the new process ID. |
2873 | assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); |
2874 | // We don't want these events to be reported, so go set the |
2875 | // ShouldReportStop here: |
2876 | m_process->GetThreadList().SetShouldReportStop(eVoteNo); |
2877 | |
2878 | if (m_exec_count > 0) { |
2879 | --m_exec_count; |
2880 | |
2881 | LLDB_LOGF(log, |
2882 | "Process::AttachCompletionHandler::%s state %s: reduced " |
2883 | "remaining exec count to %"PRIu32 ", requesting resume", |
2884 | __FUNCTION__, StateAsCString(state), m_exec_count); |
2885 | |
2886 | RequestResume(); |
2887 | return eEventActionRetry; |
2888 | } else { |
2889 | LLDB_LOGF(log, |
2890 | "Process::AttachCompletionHandler::%s state %s: no more " |
2891 | "execs expected to start, continuing with attach", |
2892 | __FUNCTION__, StateAsCString(state)); |
2893 | |
2894 | m_process->CompleteAttach(); |
2895 | return eEventActionSuccess; |
2896 | } |
2897 | break; |
2898 | |
2899 | default: |
2900 | case eStateExited: |
2901 | case eStateInvalid: |
2902 | break; |
2903 | } |
2904 | |
2905 | m_exit_string.assign(s: "No valid Process"); |
2906 | return eEventActionExit; |
2907 | } |
2908 | |
2909 | Process::NextEventAction::EventActionResult |
2910 | Process::AttachCompletionHandler::HandleBeingInterrupted() { |
2911 | return eEventActionSuccess; |
2912 | } |
2913 | |
2914 | const char *Process::AttachCompletionHandler::GetExitString() { |
2915 | return m_exit_string.c_str(); |
2916 | } |
2917 | |
2918 | ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { |
2919 | if (m_listener_sp) |
2920 | return m_listener_sp; |
2921 | else |
2922 | return debugger.GetListener(); |
2923 | } |
2924 | |
2925 | Status Process::WillLaunch(Module *module) { |
2926 | return DoWillLaunch(module); |
2927 | } |
2928 | |
2929 | Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { |
2930 | return DoWillAttachToProcessWithID(pid); |
2931 | } |
2932 | |
2933 | Status Process::WillAttachToProcessWithName(const char *process_name, |
2934 | bool wait_for_launch) { |
2935 | return DoWillAttachToProcessWithName(process_name, wait_for_launch); |
2936 | } |
2937 | |
2938 | Status Process::Attach(ProcessAttachInfo &attach_info) { |
2939 | m_abi_sp.reset(); |
2940 | { |
2941 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
2942 | m_process_input_reader.reset(); |
2943 | } |
2944 | m_dyld_up.reset(); |
2945 | m_jit_loaders_up.reset(); |
2946 | m_system_runtime_up.reset(); |
2947 | m_os_up.reset(); |
2948 | GetTarget().ClearAllLoadedSections(); |
2949 | |
2950 | lldb::pid_t attach_pid = attach_info.GetProcessID(); |
2951 | Status error; |
2952 | if (attach_pid == LLDB_INVALID_PROCESS_ID) { |
2953 | char process_name[PATH_MAX]; |
2954 | |
2955 | if (attach_info.GetExecutableFile().GetPath(path: process_name, |
2956 | max_path_length: sizeof(process_name))) { |
2957 | const bool wait_for_launch = attach_info.GetWaitForLaunch(); |
2958 | |
2959 | if (wait_for_launch) { |
2960 | error = WillAttachToProcessWithName(process_name, wait_for_launch); |
2961 | if (error.Success()) { |
2962 | m_public_run_lock.SetRunning(); |
2963 | m_should_detach = true; |
2964 | const bool restarted = false; |
2965 | SetPublicState(new_state: eStateAttaching, restarted); |
2966 | // Now attach using these arguments. |
2967 | error = DoAttachToProcessWithName(process_name, attach_info); |
2968 | |
2969 | if (error.Fail()) { |
2970 | if (GetID() != LLDB_INVALID_PROCESS_ID) { |
2971 | SetID(LLDB_INVALID_PROCESS_ID); |
2972 | if (error.AsCString() == nullptr) |
2973 | error = Status::FromErrorString(str: "attach failed"); |
2974 | |
2975 | SetExitStatus(status: -1, exit_string: error.AsCString()); |
2976 | } |
2977 | } else { |
2978 | SetNextEventAction(new Process::AttachCompletionHandler( |
2979 | this, attach_info.GetResumeCount())); |
2980 | StartPrivateStateThread(); |
2981 | } |
2982 | return error; |
2983 | } |
2984 | } else { |
2985 | ProcessInstanceInfoList process_infos; |
2986 | PlatformSP platform_sp(GetTarget().GetPlatform()); |
2987 | |
2988 | if (platform_sp) { |
2989 | ProcessInstanceInfoMatch match_info; |
2990 | match_info.GetProcessInfo() = attach_info; |
2991 | match_info.SetNameMatchType(NameMatch::Equals); |
2992 | platform_sp->FindProcesses(match_info, proc_infos&: process_infos); |
2993 | const uint32_t num_matches = process_infos.size(); |
2994 | if (num_matches == 1) { |
2995 | attach_pid = process_infos[0].GetProcessID(); |
2996 | // Fall through and attach using the above process ID |
2997 | } else { |
2998 | match_info.GetProcessInfo().GetExecutableFile().GetPath( |
2999 | path: process_name, max_path_length: sizeof(process_name)); |
3000 | if (num_matches > 1) { |
3001 | StreamString s; |
3002 | ProcessInstanceInfo::DumpTableHeader(s, show_args: true, verbose: false); |
3003 | for (size_t i = 0; i < num_matches; i++) { |
3004 | process_infos[i].DumpAsTableRow( |
3005 | s, resolver&: platform_sp->GetUserIDResolver(), show_args: true, verbose: false); |
3006 | } |
3007 | error = Status::FromErrorStringWithFormat( |
3008 | format: "more than one process named %s:\n%s", process_name, |
3009 | s.GetData()); |
3010 | } else |
3011 | error = Status::FromErrorStringWithFormat( |
3012 | format: "could not find a process named %s", process_name); |
3013 | } |
3014 | } else { |
3015 | error = Status::FromErrorString( |
3016 | str: "invalid platform, can't find processes by name"); |
3017 | return error; |
3018 | } |
3019 | } |
3020 | } else { |
3021 | error = Status::FromErrorString(str: "invalid process name"); |
3022 | } |
3023 | } |
3024 | |
3025 | if (attach_pid != LLDB_INVALID_PROCESS_ID) { |
3026 | error = WillAttachToProcessWithID(pid: attach_pid); |
3027 | if (error.Success()) { |
3028 | m_public_run_lock.SetRunning(); |
3029 | |
3030 | // Now attach using these arguments. |
3031 | m_should_detach = true; |
3032 | const bool restarted = false; |
3033 | SetPublicState(new_state: eStateAttaching, restarted); |
3034 | error = DoAttachToProcessWithID(pid: attach_pid, attach_info); |
3035 | |
3036 | if (error.Success()) { |
3037 | SetNextEventAction(new Process::AttachCompletionHandler( |
3038 | this, attach_info.GetResumeCount())); |
3039 | StartPrivateStateThread(); |
3040 | } else { |
3041 | if (GetID() != LLDB_INVALID_PROCESS_ID) |
3042 | SetID(LLDB_INVALID_PROCESS_ID); |
3043 | |
3044 | const char *error_string = error.AsCString(); |
3045 | if (error_string == nullptr) |
3046 | error_string = "attach failed"; |
3047 | |
3048 | SetExitStatus(status: -1, exit_string: error_string); |
3049 | } |
3050 | } |
3051 | } |
3052 | return error; |
3053 | } |
3054 | |
3055 | void Process::CompleteAttach() { |
3056 | Log *log(GetLog(mask: LLDBLog::Process | LLDBLog::Target)); |
3057 | LLDB_LOGF(log, "Process::%s()", __FUNCTION__); |
3058 | |
3059 | // Let the process subclass figure out at much as it can about the process |
3060 | // before we go looking for a dynamic loader plug-in. |
3061 | ArchSpec process_arch; |
3062 | DidAttach(process_arch); |
3063 | |
3064 | if (process_arch.IsValid()) { |
3065 | LLDB_LOG(log, |
3066 | "Process::{0} replacing process architecture with DidAttach() " |
3067 | "architecture: \"{1}\"", |
3068 | __FUNCTION__, process_arch.GetTriple().getTriple()); |
3069 | GetTarget().SetArchitecture(arch_spec: process_arch); |
3070 | } |
3071 | |
3072 | // We just attached. If we have a platform, ask it for the process |
3073 | // architecture, and if it isn't the same as the one we've already set, |
3074 | // switch architectures. |
3075 | PlatformSP platform_sp(GetTarget().GetPlatform()); |
3076 | assert(platform_sp); |
3077 | ArchSpec process_host_arch = GetSystemArchitecture(); |
3078 | if (platform_sp) { |
3079 | const ArchSpec &target_arch = GetTarget().GetArchitecture(); |
3080 | if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( |
3081 | arch: target_arch, process_host_arch, |
3082 | match: ArchSpec::CompatibleMatch, compatible_arch_ptr: nullptr)) { |
3083 | ArchSpec platform_arch; |
3084 | platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( |
3085 | arch: target_arch, process_host_arch, platform_arch_ptr: &platform_arch); |
3086 | if (platform_sp) { |
3087 | GetTarget().SetPlatform(platform_sp); |
3088 | GetTarget().SetArchitecture(arch_spec: platform_arch); |
3089 | LLDB_LOG(log, |
3090 | "switching platform to {0} and architecture to {1} based on " |
3091 | "info from attach", |
3092 | platform_sp->GetName(), platform_arch.GetTriple().getTriple()); |
3093 | } |
3094 | } else if (!process_arch.IsValid()) { |
3095 | ProcessInstanceInfo process_info; |
3096 | GetProcessInfo(info&: process_info); |
3097 | const ArchSpec &process_arch = process_info.GetArchitecture(); |
3098 | const ArchSpec &target_arch = GetTarget().GetArchitecture(); |
3099 | if (process_arch.IsValid() && |
3100 | target_arch.IsCompatibleMatch(rhs: process_arch) && |
3101 | !target_arch.IsExactMatch(rhs: process_arch)) { |
3102 | GetTarget().SetArchitecture(arch_spec: process_arch); |
3103 | LLDB_LOGF(log, |
3104 | "Process::%s switching architecture to %s based on info " |
3105 | "the platform retrieved for pid %"PRIu64, |
3106 | __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), |
3107 | GetID()); |
3108 | } |
3109 | } |
3110 | } |
3111 | // Now that we know the process type, update its signal responses from the |
3112 | // ones stored in the Target: |
3113 | if (m_unix_signals_sp) |
3114 | GetTarget().UpdateSignalsFromDummy( |
3115 | signals_sp: m_unix_signals_sp, warning_stream_sp: GetTarget().GetDebugger().GetAsyncErrorStream()); |
3116 | |
3117 | // We have completed the attach, now it is time to find the dynamic loader |
3118 | // plug-in |
3119 | DynamicLoader *dyld = GetDynamicLoader(); |
3120 | if (dyld) { |
3121 | dyld->DidAttach(); |
3122 | if (log) { |
3123 | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
3124 | LLDB_LOG(log, |
3125 | "after DynamicLoader::DidAttach(), target " |
3126 | "executable is {0} (using {1} plugin)", |
3127 | exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), |
3128 | dyld->GetPluginName()); |
3129 | } |
3130 | } |
3131 | |
3132 | GetJITLoaders().DidAttach(); |
3133 | |
3134 | SystemRuntime *system_runtime = GetSystemRuntime(); |
3135 | if (system_runtime) { |
3136 | system_runtime->DidAttach(); |
3137 | if (log) { |
3138 | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
3139 | LLDB_LOG(log, |
3140 | "after SystemRuntime::DidAttach(), target " |
3141 | "executable is {0} (using {1} plugin)", |
3142 | exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), |
3143 | system_runtime->GetPluginName()); |
3144 | } |
3145 | } |
3146 | |
3147 | if (!m_os_up) { |
3148 | LoadOperatingSystemPlugin(flush: false); |
3149 | if (m_os_up) { |
3150 | // Somebody might have gotten threads before now, but we need to force the |
3151 | // update after we've loaded the OperatingSystem plugin or it won't get a |
3152 | // chance to process the threads. |
3153 | m_thread_list.Clear(); |
3154 | UpdateThreadListIfNeeded(); |
3155 | } |
3156 | } |
3157 | // Figure out which one is the executable, and set that in our target: |
3158 | ModuleSP new_executable_module_sp; |
3159 | for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { |
3160 | if (module_sp && module_sp->IsExecutable()) { |
3161 | if (GetTarget().GetExecutableModulePointer() != module_sp.get()) |
3162 | new_executable_module_sp = module_sp; |
3163 | break; |
3164 | } |
3165 | } |
3166 | if (new_executable_module_sp) { |
3167 | GetTarget().SetExecutableModule(module_sp&: new_executable_module_sp, |
3168 | load_dependent_files: eLoadDependentsNo); |
3169 | if (log) { |
3170 | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); |
3171 | LLDB_LOGF( |
3172 | log, |
3173 | "Process::%s after looping through modules, target executable is %s", |
3174 | __FUNCTION__, |
3175 | exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() |
3176 | : "<none>"); |
3177 | } |
3178 | } |
3179 | // Since we hijacked the event stream, we will have we won't have run the |
3180 | // stop hooks. Make sure we do that here: |
3181 | GetTarget().RunStopHooks(/* at_initial_stop= */ true); |
3182 | } |
3183 | |
3184 | Status Process::ConnectRemote(llvm::StringRef remote_url) { |
3185 | m_abi_sp.reset(); |
3186 | { |
3187 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
3188 | m_process_input_reader.reset(); |
3189 | } |
3190 | |
3191 | // Find the process and its architecture. Make sure it matches the |
3192 | // architecture of the current Target, and if not adjust it. |
3193 | |
3194 | Status error(DoConnectRemote(remote_url)); |
3195 | if (error.Success()) { |
3196 | if (GetID() != LLDB_INVALID_PROCESS_ID) { |
3197 | EventSP event_sp; |
3198 | StateType state = WaitForProcessStopPrivate(event_sp, timeout: std::nullopt); |
3199 | |
3200 | if (state == eStateStopped || state == eStateCrashed) { |
3201 | // If we attached and actually have a process on the other end, then |
3202 | // this ended up being the equivalent of an attach. |
3203 | CompleteAttach(); |
3204 | |
3205 | // This delays passing the stopped event to listeners till |
3206 | // CompleteAttach gets a chance to complete... |
3207 | HandlePrivateEvent(event_sp); |
3208 | } |
3209 | } |
3210 | |
3211 | if (PrivateStateThreadIsValid()) |
3212 | ResumePrivateStateThread(); |
3213 | else |
3214 | StartPrivateStateThread(); |
3215 | } |
3216 | return error; |
3217 | } |
3218 | |
3219 | void Process::SetBaseDirection(RunDirection direction) { |
3220 | if (m_base_direction == direction) |
3221 | return; |
3222 | m_thread_list.DiscardThreadPlans(); |
3223 | m_base_direction = direction; |
3224 | } |
3225 | |
3226 | Status Process::PrivateResume() { |
3227 | Log *log(GetLog(mask: LLDBLog::Process | LLDBLog::Step)); |
3228 | LLDB_LOGF(log, |
3229 | "Process::PrivateResume() m_stop_id = %u, public state: %s " |
3230 | "private state: %s", |
3231 | m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), |
3232 | StateAsCString(m_private_state.GetValue())); |
3233 | |
3234 | // If signals handing status changed we might want to update our signal |
3235 | // filters before resuming. |
3236 | UpdateAutomaticSignalFiltering(); |
3237 | // Clear any crash info we accumulated for this stop, but don't do so if we |
3238 | // are running functions; we don't want to wipe out the real stop's info. |
3239 | if (!GetModID().IsLastResumeForUserExpression()) |
3240 | ResetExtendedCrashInfoDict(); |
3241 | |
3242 | Status error(WillResume()); |
3243 | // Tell the process it is about to resume before the thread list |
3244 | if (error.Success()) { |
3245 | // Now let the thread list know we are about to resume so it can let all of |
3246 | // our threads know that they are about to be resumed. Threads will each be |
3247 | // called with Thread::WillResume(StateType) where StateType contains the |
3248 | // state that they are supposed to have when the process is resumed |
3249 | // (suspended/running/stepping). Threads should also check their resume |
3250 | // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to |
3251 | // start back up with a signal. |
3252 | RunDirection direction; |
3253 | if (m_thread_list.WillResume(direction)) { |
3254 | LLDB_LOGF(log, "Process::PrivateResume WillResume direction=%d", |
3255 | direction); |
3256 | // Last thing, do the PreResumeActions. |
3257 | if (!RunPreResumeActions()) { |
3258 | error = Status::FromErrorString( |
3259 | str: "Process::PrivateResume PreResumeActions failed, not resuming."); |
3260 | LLDB_LOGF( |
3261 | log, |
3262 | "Process::PrivateResume PreResumeActions failed, not resuming."); |
3263 | } else { |
3264 | m_mod_id.BumpResumeID(); |
3265 | error = DoResume(direction); |
3266 | if (error.Success()) { |
3267 | DidResume(); |
3268 | m_thread_list.DidResume(); |
3269 | LLDB_LOGF(log, |
3270 | "Process::PrivateResume thinks the process has resumed."); |
3271 | } else { |
3272 | LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); |
3273 | return error; |
3274 | } |
3275 | } |
3276 | } else { |
3277 | // Somebody wanted to run without running (e.g. we were faking a step |
3278 | // from one frame of a set of inlined frames that share the same PC to |
3279 | // another.) So generate a continue & a stopped event, and let the world |
3280 | // handle them. |
3281 | LLDB_LOGF(log, |
3282 | "Process::PrivateResume() asked to simulate a start & stop."); |
3283 | |
3284 | SetPrivateState(eStateRunning); |
3285 | SetPrivateState(eStateStopped); |
3286 | } |
3287 | } else |
3288 | LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", |
3289 | error.AsCString("<unknown error>")); |
3290 | return error; |
3291 | } |
3292 | |
3293 | Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { |
3294 | if (!StateIsRunningState(state: m_public_state.GetValue())) |
3295 | return Status::FromErrorString(str: "Process is not running."); |
3296 | |
3297 | // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in |
3298 | // case it was already set and some thread plan logic calls halt on its own. |
3299 | m_clear_thread_plans_on_stop |= clear_thread_plans; |
3300 | |
3301 | ListenerSP halt_listener_sp( |
3302 | Listener::MakeListener(name: "lldb.process.halt_listener")); |
3303 | HijackProcessEvents(listener_sp: halt_listener_sp); |
3304 | |
3305 | EventSP event_sp; |
3306 | |
3307 | SendAsyncInterrupt(); |
3308 | |
3309 | if (m_public_state.GetValue() == eStateAttaching) { |
3310 | // Don't hijack and eat the eStateExited as the code that was doing the |
3311 | // attach will be waiting for this event... |
3312 | RestoreProcessEvents(); |
3313 | Destroy(force_kill: false); |
3314 | SetExitStatus(SIGKILL, exit_string: "Cancelled async attach."); |
3315 | return Status(); |
3316 | } |
3317 | |
3318 | // Wait for the process halt timeout seconds for the process to stop. |
3319 | // If we are going to use the run lock, that means we're stopping out to the |
3320 | // user, so we should also select the most relevant frame. |
3321 | SelectMostRelevant select_most_relevant = |
3322 | use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; |
3323 | StateType state = WaitForProcessToStop(timeout: GetInterruptTimeout(), event_sp_ptr: &event_sp, wait_always: true, |
3324 | hijack_listener_sp: halt_listener_sp, stream: nullptr, |
3325 | use_run_lock, select_most_relevant); |
3326 | RestoreProcessEvents(); |
3327 | |
3328 | if (state == eStateInvalid || !event_sp) { |
3329 | // We timed out and didn't get a stop event... |
3330 | return Status::FromErrorStringWithFormat(format: "Halt timed out. State = %s", |
3331 | StateAsCString(state: GetState())); |
3332 | } |
3333 | |
3334 | BroadcastEvent(event_sp); |
3335 | |
3336 | return Status(); |
3337 | } |
3338 | |
3339 | lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, |
3340 | const uint8_t *buf, size_t size) { |
3341 | const size_t region_size = high - low; |
3342 | |
3343 | if (region_size < size) |
3344 | return LLDB_INVALID_ADDRESS; |
3345 | |
3346 | // See "Boyer-Moore string search algorithm". |
3347 | std::vector<size_t> bad_char_heuristic(256, size); |
3348 | for (size_t idx = 0; idx < size - 1; idx++) { |
3349 | decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; |
3350 | bad_char_heuristic[bcu_idx] = size - idx - 1; |
3351 | } |
3352 | |
3353 | // Memory we're currently searching through. |
3354 | llvm::SmallVector<uint8_t, 0> mem; |
3355 | // Position of the memory buffer. |
3356 | addr_t mem_pos = low; |
3357 | // Maximum number of bytes read (and buffered). We need to read at least |
3358 | // `size` bytes for a successful match. |
3359 | const size_t max_read_size = std::max<size_t>(a: size, b: 0x10000); |
3360 | |
3361 | for (addr_t cur_addr = low; cur_addr <= (high - size);) { |
3362 | if (cur_addr + size > mem_pos + mem.size()) { |
3363 | // We need to read more data. We don't attempt to reuse the data we've |
3364 | // already read (up to `size-1` bytes from `cur_addr` to |
3365 | // `mem_pos+mem.size()`). This is fine for patterns much smaller than |
3366 | // max_read_size. For very |
3367 | // long patterns we may need to do something more elaborate. |
3368 | mem.resize_for_overwrite(N: max_read_size); |
3369 | Status error; |
3370 | mem.resize(N: ReadMemory(addr: cur_addr, buf: mem.data(), |
3371 | size: std::min<addr_t>(a: mem.size(), b: high - cur_addr), |
3372 | error)); |
3373 | mem_pos = cur_addr; |
3374 | if (size > mem.size()) { |
3375 | // We didn't read enough data. Skip to the next memory region. |
3376 | MemoryRegionInfo info; |
3377 | error = GetMemoryRegionInfo(load_addr: mem_pos + mem.size(), range_info&: info); |
3378 | if (error.Fail()) |
3379 | break; |
3380 | cur_addr = info.GetRange().GetRangeEnd(); |
3381 | continue; |
3382 | } |
3383 | } |
3384 | int64_t j = size - 1; |
3385 | while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos]) |
3386 | j--; |
3387 | if (j < 0) |
3388 | return cur_addr; // We have a match. |
3389 | cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]]; |
3390 | } |
3391 | |
3392 | return LLDB_INVALID_ADDRESS; |
3393 | } |
3394 | |
3395 | Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { |
3396 | Status error; |
3397 | |
3398 | // Check both the public & private states here. If we're hung evaluating an |
3399 | // expression, for instance, then the public state will be stopped, but we |
3400 | // still need to interrupt. |
3401 | if (m_public_state.GetValue() == eStateRunning || |
3402 | m_private_state.GetValue() == eStateRunning) { |
3403 | Log *log = GetLog(mask: LLDBLog::Process); |
3404 | LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); |
3405 | |
3406 | ListenerSP listener_sp( |
3407 | Listener::MakeListener(name: "lldb.Process.StopForDestroyOrDetach.hijack")); |
3408 | HijackProcessEvents(listener_sp); |
3409 | |
3410 | SendAsyncInterrupt(); |
3411 | |
3412 | // Consume the interrupt event. |
3413 | StateType state = WaitForProcessToStop(timeout: GetInterruptTimeout(), |
3414 | event_sp_ptr: &exit_event_sp, wait_always: true, hijack_listener_sp: listener_sp); |
3415 | |
3416 | RestoreProcessEvents(); |
3417 | |
3418 | // If the process exited while we were waiting for it to stop, put the |
3419 | // exited event into the shared pointer passed in and return. Our caller |
3420 | // doesn't need to do anything else, since they don't have a process |
3421 | // anymore... |
3422 | |
3423 | if (state == eStateExited || m_private_state.GetValue() == eStateExited) { |
3424 | LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", |
3425 | __FUNCTION__); |
3426 | return error; |
3427 | } else |
3428 | exit_event_sp.reset(); // It is ok to consume any non-exit stop events |
3429 | |
3430 | if (state != eStateStopped) { |
3431 | LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, |
3432 | StateAsCString(state)); |
3433 | // If we really couldn't stop the process then we should just error out |
3434 | // here, but if the lower levels just bobbled sending the event and we |
3435 | // really are stopped, then continue on. |
3436 | StateType private_state = m_private_state.GetValue(); |
3437 | if (private_state != eStateStopped) { |
3438 | return Status::FromErrorStringWithFormat( |
3439 | format: "Attempt to stop the target in order to detach timed out. " |
3440 | "State = %s", |
3441 | StateAsCString(state: GetState())); |
3442 | } |
3443 | } |
3444 | } |
3445 | return error; |
3446 | } |
3447 | |
3448 | Status Process::Detach(bool keep_stopped) { |
3449 | EventSP exit_event_sp; |
3450 | Status error; |
3451 | m_destroy_in_process = true; |
3452 | |
3453 | error = WillDetach(); |
3454 | |
3455 | if (error.Success()) { |
3456 | if (DetachRequiresHalt()) { |
3457 | error = StopForDestroyOrDetach(exit_event_sp); |
3458 | if (!error.Success()) { |
3459 | m_destroy_in_process = false; |
3460 | return error; |
3461 | } else if (exit_event_sp) { |
3462 | // We shouldn't need to do anything else here. There's no process left |
3463 | // to detach from... |
3464 | StopPrivateStateThread(); |
3465 | m_destroy_in_process = false; |
3466 | return error; |
3467 | } |
3468 | } |
3469 | |
3470 | m_thread_list.DiscardThreadPlans(); |
3471 | DisableAllBreakpointSites(); |
3472 | |
3473 | error = DoDetach(keep_stopped); |
3474 | if (error.Success()) { |
3475 | DidDetach(); |
3476 | StopPrivateStateThread(); |
3477 | } else { |
3478 | return error; |
3479 | } |
3480 | } |
3481 | m_destroy_in_process = false; |
3482 | |
3483 | // If we exited when we were waiting for a process to stop, then forward the |
3484 | // event here so we don't lose the event |
3485 | if (exit_event_sp) { |
3486 | // Directly broadcast our exited event because we shut down our private |
3487 | // state thread above |
3488 | BroadcastEvent(event_sp&: exit_event_sp); |
3489 | } |
3490 | |
3491 | // If we have been interrupted (to kill us) in the middle of running, we may |
3492 | // not end up propagating the last events through the event system, in which |
3493 | // case we might strand the write lock. Unlock it here so when we do to tear |
3494 | // down the process we don't get an error destroying the lock. |
3495 | |
3496 | m_public_run_lock.SetStopped(); |
3497 | return error; |
3498 | } |
3499 | |
3500 | Status Process::Destroy(bool force_kill) { |
3501 | // If we've already called Process::Finalize then there's nothing useful to |
3502 | // be done here. Finalize has actually called Destroy already. |
3503 | if (m_finalizing) |
3504 | return {}; |
3505 | return DestroyImpl(force_kill); |
3506 | } |
3507 | |
3508 | Status Process::DestroyImpl(bool force_kill) { |
3509 | // Tell ourselves we are in the process of destroying the process, so that we |
3510 | // don't do any unnecessary work that might hinder the destruction. Remember |
3511 | // to set this back to false when we are done. That way if the attempt |
3512 | // failed and the process stays around for some reason it won't be in a |
3513 | // confused state. |
3514 | |
3515 | if (force_kill) |
3516 | m_should_detach = false; |
3517 | |
3518 | if (GetShouldDetach()) { |
3519 | // FIXME: This will have to be a process setting: |
3520 | bool keep_stopped = false; |
3521 | Detach(keep_stopped); |
3522 | } |
3523 | |
3524 | m_destroy_in_process = true; |
3525 | |
3526 | Status error(WillDestroy()); |
3527 | if (error.Success()) { |
3528 | EventSP exit_event_sp; |
3529 | if (DestroyRequiresHalt()) { |
3530 | error = StopForDestroyOrDetach(exit_event_sp); |
3531 | } |
3532 | |
3533 | if (m_public_state.GetValue() == eStateStopped) { |
3534 | // Ditch all thread plans, and remove all our breakpoints: in case we |
3535 | // have to restart the target to kill it, we don't want it hitting a |
3536 | // breakpoint... Only do this if we've stopped, however, since if we |
3537 | // didn't manage to halt it above, then we're not going to have much luck |
3538 | // doing this now. |
3539 | m_thread_list.DiscardThreadPlans(); |
3540 | DisableAllBreakpointSites(); |
3541 | } |
3542 | |
3543 | error = DoDestroy(); |
3544 | if (error.Success()) { |
3545 | DidDestroy(); |
3546 | StopPrivateStateThread(); |
3547 | } |
3548 | m_stdio_communication.StopReadThread(); |
3549 | m_stdio_communication.Disconnect(); |
3550 | m_stdin_forward = false; |
3551 | |
3552 | { |
3553 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
3554 | if (m_process_input_reader) { |
3555 | m_process_input_reader->SetIsDone(true); |
3556 | m_process_input_reader->Cancel(); |
3557 | m_process_input_reader.reset(); |
3558 | } |
3559 | } |
3560 | |
3561 | // If we exited when we were waiting for a process to stop, then forward |
3562 | // the event here so we don't lose the event |
3563 | if (exit_event_sp) { |
3564 | // Directly broadcast our exited event because we shut down our private |
3565 | // state thread above |
3566 | BroadcastEvent(event_sp&: exit_event_sp); |
3567 | } |
3568 | |
3569 | // If we have been interrupted (to kill us) in the middle of running, we |
3570 | // may not end up propagating the last events through the event system, in |
3571 | // which case we might strand the write lock. Unlock it here so when we do |
3572 | // to tear down the process we don't get an error destroying the lock. |
3573 | m_public_run_lock.SetStopped(); |
3574 | } |
3575 | |
3576 | m_destroy_in_process = false; |
3577 | |
3578 | return error; |
3579 | } |
3580 | |
3581 | Status Process::Signal(int signal) { |
3582 | Status error(WillSignal()); |
3583 | if (error.Success()) { |
3584 | error = DoSignal(signal); |
3585 | if (error.Success()) |
3586 | DidSignal(); |
3587 | } |
3588 | return error; |
3589 | } |
3590 | |
3591 | void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { |
3592 | assert(signals_sp && "null signals_sp"); |
3593 | m_unix_signals_sp = std::move(signals_sp); |
3594 | } |
3595 | |
3596 | const lldb::UnixSignalsSP &Process::GetUnixSignals() { |
3597 | assert(m_unix_signals_sp && "null m_unix_signals_sp"); |
3598 | return m_unix_signals_sp; |
3599 | } |
3600 | |
3601 | lldb::ByteOrder Process::GetByteOrder() const { |
3602 | return GetTarget().GetArchitecture().GetByteOrder(); |
3603 | } |
3604 | |
3605 | uint32_t Process::GetAddressByteSize() const { |
3606 | return GetTarget().GetArchitecture().GetAddressByteSize(); |
3607 | } |
3608 | |
3609 | bool Process::ShouldBroadcastEvent(Event *event_ptr) { |
3610 | const StateType state = |
3611 | Process::ProcessEventData::GetStateFromEvent(event_ptr); |
3612 | bool return_value = true; |
3613 | Log *log(GetLog(mask: LLDBLog::Events | LLDBLog::Process)); |
3614 | |
3615 | switch (state) { |
3616 | case eStateDetached: |
3617 | case eStateExited: |
3618 | case eStateUnloaded: |
3619 | m_stdio_communication.SynchronizeWithReadThread(); |
3620 | m_stdio_communication.StopReadThread(); |
3621 | m_stdio_communication.Disconnect(); |
3622 | m_stdin_forward = false; |
3623 | |
3624 | [[fallthrough]]; |
3625 | case eStateConnected: |
3626 | case eStateAttaching: |
3627 | case eStateLaunching: |
3628 | // These events indicate changes in the state of the debugging session, |
3629 | // always report them. |
3630 | return_value = true; |
3631 | break; |
3632 | case eStateInvalid: |
3633 | // We stopped for no apparent reason, don't report it. |
3634 | return_value = false; |
3635 | break; |
3636 | case eStateRunning: |
3637 | case eStateStepping: |
3638 | // If we've started the target running, we handle the cases where we are |
3639 | // already running and where there is a transition from stopped to running |
3640 | // differently. running -> running: Automatically suppress extra running |
3641 | // events stopped -> running: Report except when there is one or more no |
3642 | // votes |
3643 | // and no yes votes. |
3644 | SynchronouslyNotifyStateChanged(state); |
3645 | if (m_force_next_event_delivery) |
3646 | return_value = true; |
3647 | else { |
3648 | switch (m_last_broadcast_state) { |
3649 | case eStateRunning: |
3650 | case eStateStepping: |
3651 | // We always suppress multiple runnings with no PUBLIC stop in between. |
3652 | return_value = false; |
3653 | break; |
3654 | default: |
3655 | // TODO: make this work correctly. For now always report |
3656 | // run if we aren't running so we don't miss any running events. If I |
3657 | // run the lldb/test/thread/a.out file and break at main.cpp:58, run |
3658 | // and hit the breakpoints on multiple threads, then somehow during the |
3659 | // stepping over of all breakpoints no run gets reported. |
3660 | |
3661 | // This is a transition from stop to run. |
3662 | switch (m_thread_list.ShouldReportRun(event_ptr)) { |
3663 | case eVoteYes: |
3664 | case eVoteNoOpinion: |
3665 | return_value = true; |
3666 | break; |
3667 | case eVoteNo: |
3668 | return_value = false; |
3669 | break; |
3670 | } |
3671 | break; |
3672 | } |
3673 | } |
3674 | break; |
3675 | case eStateStopped: |
3676 | case eStateCrashed: |
3677 | case eStateSuspended: |
3678 | // We've stopped. First see if we're going to restart the target. If we |
3679 | // are going to stop, then we always broadcast the event. If we aren't |
3680 | // going to stop, let the thread plans decide if we're going to report this |
3681 | // event. If no thread has an opinion, we don't report it. |
3682 | |
3683 | m_stdio_communication.SynchronizeWithReadThread(); |
3684 | RefreshStateAfterStop(); |
3685 | if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { |
3686 | LLDB_LOGF(log, |
3687 | "Process::ShouldBroadcastEvent (%p) stopped due to an " |
3688 | "interrupt, state: %s", |
3689 | static_cast<void *>(event_ptr), StateAsCString(state)); |
3690 | // Even though we know we are going to stop, we should let the threads |
3691 | // have a look at the stop, so they can properly set their state. |
3692 | m_thread_list.ShouldStop(event_ptr); |
3693 | return_value = true; |
3694 | } else { |
3695 | bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); |
3696 | bool should_resume = false; |
3697 | |
3698 | // It makes no sense to ask "ShouldStop" if we've already been |
3699 | // restarted... Asking the thread list is also not likely to go well, |
3700 | // since we are running again. So in that case just report the event. |
3701 | |
3702 | if (!was_restarted) |
3703 | should_resume = !m_thread_list.ShouldStop(event_ptr); |
3704 | |
3705 | if (was_restarted || should_resume || m_resume_requested) { |
3706 | Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); |
3707 | LLDB_LOGF(log, |
3708 | "Process::ShouldBroadcastEvent: should_resume: %i state: " |
3709 | "%s was_restarted: %i report_stop_vote: %d.", |
3710 | should_resume, StateAsCString(state), was_restarted, |
3711 | report_stop_vote); |
3712 | |
3713 | switch (report_stop_vote) { |
3714 | case eVoteYes: |
3715 | return_value = true; |
3716 | break; |
3717 | case eVoteNoOpinion: |
3718 | case eVoteNo: |
3719 | return_value = false; |
3720 | break; |
3721 | } |
3722 | |
3723 | if (!was_restarted) { |
3724 | LLDB_LOGF(log, |
3725 | "Process::ShouldBroadcastEvent (%p) Restarting process " |
3726 | "from state: %s", |
3727 | static_cast<void *>(event_ptr), StateAsCString(state)); |
3728 | ProcessEventData::SetRestartedInEvent(event_ptr, new_value: true); |
3729 | PrivateResume(); |
3730 | } |
3731 | } else { |
3732 | return_value = true; |
3733 | SynchronouslyNotifyStateChanged(state); |
3734 | } |
3735 | } |
3736 | break; |
3737 | } |
3738 | |
3739 | // Forcing the next event delivery is a one shot deal. So reset it here. |
3740 | m_force_next_event_delivery = false; |
3741 | |
3742 | // We do some coalescing of events (for instance two consecutive running |
3743 | // events get coalesced.) But we only coalesce against events we actually |
3744 | // broadcast. So we use m_last_broadcast_state to track that. NB - you |
3745 | // can't use "m_public_state.GetValue()" for that purpose, as was originally |
3746 | // done, because the PublicState reflects the last event pulled off the |
3747 | // queue, and there may be several events stacked up on the queue unserviced. |
3748 | // So the PublicState may not reflect the last broadcasted event yet. |
3749 | // m_last_broadcast_state gets updated here. |
3750 | |
3751 | if (return_value) |
3752 | m_last_broadcast_state = state; |
3753 | |
3754 | LLDB_LOGF(log, |
3755 | "Process::ShouldBroadcastEvent (%p) => new state: %s, last " |
3756 | "broadcast state: %s - %s", |
3757 | static_cast<void *>(event_ptr), StateAsCString(state), |
3758 | StateAsCString(m_last_broadcast_state), |
3759 | return_value ? "YES": "NO"); |
3760 | return return_value; |
3761 | } |
3762 | |
3763 | bool Process::StartPrivateStateThread(bool is_secondary_thread) { |
3764 | Log *log = GetLog(mask: LLDBLog::Events); |
3765 | |
3766 | bool already_running = PrivateStateThreadIsValid(); |
3767 | LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, |
3768 | already_running ? " already running" |
3769 | : " starting private state thread"); |
3770 | |
3771 | if (!is_secondary_thread && already_running) |
3772 | return true; |
3773 | |
3774 | // Create a thread that watches our internal state and controls which events |
3775 | // make it to clients (into the DCProcess event queue). |
3776 | char thread_name[1024]; |
3777 | uint32_t max_len = llvm::get_max_thread_name_length(); |
3778 | if (max_len > 0 && max_len <= 30) { |
3779 | // On platforms with abbreviated thread name lengths, choose thread names |
3780 | // that fit within the limit. |
3781 | if (already_running) |
3782 | snprintf(s: thread_name, maxlen: sizeof(thread_name), format: "intern-state-OV"); |
3783 | else |
3784 | snprintf(s: thread_name, maxlen: sizeof(thread_name), format: "intern-state"); |
3785 | } else { |
3786 | if (already_running) |
3787 | snprintf(s: thread_name, maxlen: sizeof(thread_name), |
3788 | format: "<lldb.process.internal-state-override(pid=%"PRIu64 ")>", |
3789 | GetID()); |
3790 | else |
3791 | snprintf(s: thread_name, maxlen: sizeof(thread_name), |
3792 | format: "<lldb.process.internal-state(pid=%"PRIu64 ")>", GetID()); |
3793 | } |
3794 | |
3795 | llvm::Expected<HostThread> private_state_thread = |
3796 | ThreadLauncher::LaunchThread( |
3797 | name: thread_name, |
3798 | thread_function: [this, is_secondary_thread] { |
3799 | return RunPrivateStateThread(is_secondary_thread); |
3800 | }, |
3801 | min_stack_byte_size: 8 * 1024 * 1024); |
3802 | if (!private_state_thread) { |
3803 | LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), |
3804 | "failed to launch host thread: {0}"); |
3805 | return false; |
3806 | } |
3807 | |
3808 | assert(private_state_thread->IsJoinable()); |
3809 | m_private_state_thread = *private_state_thread; |
3810 | ResumePrivateStateThread(); |
3811 | return true; |
3812 | } |
3813 | |
3814 | void Process::PausePrivateStateThread() { |
3815 | ControlPrivateStateThread(signal: eBroadcastInternalStateControlPause); |
3816 | } |
3817 | |
3818 | void Process::ResumePrivateStateThread() { |
3819 | ControlPrivateStateThread(signal: eBroadcastInternalStateControlResume); |
3820 | } |
3821 | |
3822 | void Process::StopPrivateStateThread() { |
3823 | if (m_private_state_thread.IsJoinable()) |
3824 | ControlPrivateStateThread(signal: eBroadcastInternalStateControlStop); |
3825 | else { |
3826 | Log *log = GetLog(mask: LLDBLog::Process); |
3827 | LLDB_LOGF( |
3828 | log, |
3829 | "Went to stop the private state thread, but it was already invalid."); |
3830 | } |
3831 | } |
3832 | |
3833 | void Process::ControlPrivateStateThread(uint32_t signal) { |
3834 | Log *log = GetLog(mask: LLDBLog::Process); |
3835 | |
3836 | assert(signal == eBroadcastInternalStateControlStop || |
3837 | signal == eBroadcastInternalStateControlPause || |
3838 | signal == eBroadcastInternalStateControlResume); |
3839 | |
3840 | LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); |
3841 | |
3842 | // Signal the private state thread |
3843 | if (m_private_state_thread.IsJoinable()) { |
3844 | // Broadcast the event. |
3845 | // It is important to do this outside of the if below, because it's |
3846 | // possible that the thread state is invalid but that the thread is waiting |
3847 | // on a control event instead of simply being on its way out (this should |
3848 | // not happen, but it apparently can). |
3849 | LLDB_LOGF(log, "Sending control event of type: %d.", signal); |
3850 | std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); |
3851 | m_private_state_control_broadcaster.BroadcastEvent(event_type: signal, |
3852 | event_data_sp: event_receipt_sp); |
3853 | |
3854 | // Wait for the event receipt or for the private state thread to exit |
3855 | bool receipt_received = false; |
3856 | if (PrivateStateThreadIsValid()) { |
3857 | while (!receipt_received) { |
3858 | // Check for a receipt for n seconds and then check if the private |
3859 | // state thread is still around. |
3860 | receipt_received = |
3861 | event_receipt_sp->WaitForEventReceived(timeout: GetUtilityExpressionTimeout()); |
3862 | if (!receipt_received) { |
3863 | // Check if the private state thread is still around. If it isn't |
3864 | // then we are done waiting |
3865 | if (!PrivateStateThreadIsValid()) |
3866 | break; // Private state thread exited or is exiting, we are done |
3867 | } |
3868 | } |
3869 | } |
3870 | |
3871 | if (signal == eBroadcastInternalStateControlStop) { |
3872 | thread_result_t result = {}; |
3873 | m_private_state_thread.Join(result: &result); |
3874 | m_private_state_thread.Reset(); |
3875 | } |
3876 | } else { |
3877 | LLDB_LOGF( |
3878 | log, |
3879 | "Private state thread already dead, no need to signal it to stop."); |
3880 | } |
3881 | } |
3882 | |
3883 | void Process::SendAsyncInterrupt(Thread *thread) { |
3884 | if (thread != nullptr) |
3885 | m_interrupt_tid = thread->GetProtocolID(); |
3886 | else |
3887 | m_interrupt_tid = LLDB_INVALID_THREAD_ID; |
3888 | if (PrivateStateThreadIsValid()) |
3889 | m_private_state_broadcaster.BroadcastEvent(event_type: Process::eBroadcastBitInterrupt, |
3890 | event_data_sp: nullptr); |
3891 | else |
3892 | BroadcastEvent(event_type: Process::eBroadcastBitInterrupt, event_data_sp: nullptr); |
3893 | } |
3894 | |
3895 | void Process::HandlePrivateEvent(EventSP &event_sp) { |
3896 | Log *log = GetLog(mask: LLDBLog::Process); |
3897 | m_resume_requested = false; |
3898 | |
3899 | const StateType new_state = |
3900 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
3901 | |
3902 | // First check to see if anybody wants a shot at this event: |
3903 | if (m_next_event_action_up) { |
3904 | NextEventAction::EventActionResult action_result = |
3905 | m_next_event_action_up->PerformAction(event_sp); |
3906 | LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); |
3907 | |
3908 | switch (action_result) { |
3909 | case NextEventAction::eEventActionSuccess: |
3910 | SetNextEventAction(nullptr); |
3911 | break; |
3912 | |
3913 | case NextEventAction::eEventActionRetry: |
3914 | break; |
3915 | |
3916 | case NextEventAction::eEventActionExit: |
3917 | // Handle Exiting Here. If we already got an exited event, we should |
3918 | // just propagate it. Otherwise, swallow this event, and set our state |
3919 | // to exit so the next event will kill us. |
3920 | if (new_state != eStateExited) { |
3921 | // FIXME: should cons up an exited event, and discard this one. |
3922 | SetExitStatus(status: 0, exit_string: m_next_event_action_up->GetExitString()); |
3923 | SetNextEventAction(nullptr); |
3924 | return; |
3925 | } |
3926 | SetNextEventAction(nullptr); |
3927 | break; |
3928 | } |
3929 | } |
3930 | |
3931 | // See if we should broadcast this state to external clients? |
3932 | const bool should_broadcast = ShouldBroadcastEvent(event_ptr: event_sp.get()); |
3933 | |
3934 | if (should_broadcast) { |
3935 | const bool is_hijacked = IsHijackedForEvent(event_mask: eBroadcastBitStateChanged); |
3936 | if (log) { |
3937 | LLDB_LOGF(log, |
3938 | "Process::%s (pid = %"PRIu64 |
3939 | ") broadcasting new state %s (old state %s) to %s", |
3940 | __FUNCTION__, GetID(), StateAsCString(new_state), |
3941 | StateAsCString(GetState()), |
3942 | is_hijacked ? "hijacked": "public"); |
3943 | } |
3944 | Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); |
3945 | if (StateIsRunningState(state: new_state)) { |
3946 | // Only push the input handler if we aren't fowarding events, as this |
3947 | // means the curses GUI is in use... Or don't push it if we are launching |
3948 | // since it will come up stopped. |
3949 | if (!GetTarget().GetDebugger().IsForwardingEvents() && |
3950 | new_state != eStateLaunching && new_state != eStateAttaching) { |
3951 | PushProcessIOHandler(); |
3952 | m_iohandler_sync.SetValue(value: m_iohandler_sync.GetValue() + 1, |
3953 | broadcast_type: eBroadcastAlways); |
3954 | LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", |
3955 | __FUNCTION__, m_iohandler_sync.GetValue()); |
3956 | } |
3957 | } else if (StateIsStoppedState(state: new_state, must_exist: false)) { |
3958 | if (!Process::ProcessEventData::GetRestartedFromEvent(event_ptr: event_sp.get())) { |
3959 | // If the lldb_private::Debugger is handling the events, we don't want |
3960 | // to pop the process IOHandler here, we want to do it when we receive |
3961 | // the stopped event so we can carefully control when the process |
3962 | // IOHandler is popped because when we stop we want to display some |
3963 | // text stating how and why we stopped, then maybe some |
3964 | // process/thread/frame info, and then we want the "(lldb) " prompt to |
3965 | // show up. If we pop the process IOHandler here, then we will cause |
3966 | // the command interpreter to become the top IOHandler after the |
3967 | // process pops off and it will update its prompt right away... See the |
3968 | // Debugger.cpp file where it calls the function as |
3969 | // "process_sp->PopProcessIOHandler()" to see where I am talking about. |
3970 | // Otherwise we end up getting overlapping "(lldb) " prompts and |
3971 | // garbled output. |
3972 | // |
3973 | // If we aren't handling the events in the debugger (which is indicated |
3974 | // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or |
3975 | // we are hijacked, then we always pop the process IO handler manually. |
3976 | // Hijacking happens when the internal process state thread is running |
3977 | // thread plans, or when commands want to run in synchronous mode and |
3978 | // they call "process->WaitForProcessToStop()". An example of something |
3979 | // that will hijack the events is a simple expression: |
3980 | // |
3981 | // (lldb) expr (int)puts("hello") |
3982 | // |
3983 | // This will cause the internal process state thread to resume and halt |
3984 | // the process (and _it_ will hijack the eBroadcastBitStateChanged |
3985 | // events) and we do need the IO handler to be pushed and popped |
3986 | // correctly. |
3987 | |
3988 | if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) |
3989 | PopProcessIOHandler(); |
3990 | } |
3991 | } |
3992 | |
3993 | BroadcastEvent(event_sp); |
3994 | } else { |
3995 | if (log) { |
3996 | LLDB_LOGF( |
3997 | log, |
3998 | "Process::%s (pid = %"PRIu64 |
3999 | ") suppressing state %s (old state %s): should_broadcast == false", |
4000 | __FUNCTION__, GetID(), StateAsCString(new_state), |
4001 | StateAsCString(GetState())); |
4002 | } |
4003 | } |
4004 | } |
4005 | |
4006 | Status Process::HaltPrivate() { |
4007 | EventSP event_sp; |
4008 | Status error(WillHalt()); |
4009 | if (error.Fail()) |
4010 | return error; |
4011 | |
4012 | // Ask the process subclass to actually halt our process |
4013 | bool caused_stop; |
4014 | error = DoHalt(caused_stop); |
4015 | |
4016 | DidHalt(); |
4017 | return error; |
4018 | } |
4019 | |
4020 | thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { |
4021 | bool control_only = true; |
4022 | |
4023 | Log *log = GetLog(mask: LLDBLog::Process); |
4024 | LLDB_LOGF(log, "Process::%s (arg = %p, pid = %"PRIu64 ") thread starting...", |
4025 | __FUNCTION__, static_cast<void *>(this), GetID()); |
4026 | |
4027 | bool exit_now = false; |
4028 | bool interrupt_requested = false; |
4029 | while (!exit_now) { |
4030 | EventSP event_sp; |
4031 | GetEventsPrivate(event_sp, timeout: std::nullopt, control_only); |
4032 | if (event_sp->BroadcasterIs(broadcaster: &m_private_state_control_broadcaster)) { |
4033 | LLDB_LOGF(log, |
4034 | "Process::%s (arg = %p, pid = %"PRIu64 |
4035 | ") got a control event: %d", |
4036 | __FUNCTION__, static_cast<void *>(this), GetID(), |
4037 | event_sp->GetType()); |
4038 | |
4039 | switch (event_sp->GetType()) { |
4040 | case eBroadcastInternalStateControlStop: |
4041 | exit_now = true; |
4042 | break; // doing any internal state management below |
4043 | |
4044 | case eBroadcastInternalStateControlPause: |
4045 | control_only = true; |
4046 | break; |
4047 | |
4048 | case eBroadcastInternalStateControlResume: |
4049 | control_only = false; |
4050 | break; |
4051 | } |
4052 | |
4053 | continue; |
4054 | } else if (event_sp->GetType() == eBroadcastBitInterrupt) { |
4055 | if (m_public_state.GetValue() == eStateAttaching) { |
4056 | LLDB_LOGF(log, |
4057 | "Process::%s (arg = %p, pid = %"PRIu64 |
4058 | ") woke up with an interrupt while attaching - " |
4059 | "forwarding interrupt.", |
4060 | __FUNCTION__, static_cast<void *>(this), GetID()); |
4061 | // The server may be spinning waiting for a process to appear, in which |
4062 | // case we should tell it to stop doing that. Normally, we don't NEED |
4063 | // to do that because we will next close the communication to the stub |
4064 | // and that will get it to shut down. But there are remote debugging |
4065 | // cases where relying on that side-effect causes the shutdown to be |
4066 | // flakey, so we should send a positive signal to interrupt the wait. |
4067 | Status error = HaltPrivate(); |
4068 | BroadcastEvent(event_type: eBroadcastBitInterrupt, event_data_sp: nullptr); |
4069 | } else if (StateIsRunningState(state: m_last_broadcast_state)) { |
4070 | LLDB_LOGF(log, |
4071 | "Process::%s (arg = %p, pid = %"PRIu64 |
4072 | ") woke up with an interrupt - Halting.", |
4073 | __FUNCTION__, static_cast<void *>(this), GetID()); |
4074 | Status error = HaltPrivate(); |
4075 | if (error.Fail() && log) |
4076 | LLDB_LOGF(log, |
4077 | "Process::%s (arg = %p, pid = %"PRIu64 |
4078 | ") failed to halt the process: %s", |
4079 | __FUNCTION__, static_cast<void *>(this), GetID(), |
4080 | error.AsCString()); |
4081 | // Halt should generate a stopped event. Make a note of the fact that |
4082 | // we were doing the interrupt, so we can set the interrupted flag |
4083 | // after we receive the event. We deliberately set this to true even if |
4084 | // HaltPrivate failed, so that we can interrupt on the next natural |
4085 | // stop. |
4086 | interrupt_requested = true; |
4087 | } else { |
4088 | // This can happen when someone (e.g. Process::Halt) sees that we are |
4089 | // running and sends an interrupt request, but the process actually |
4090 | // stops before we receive it. In that case, we can just ignore the |
4091 | // request. We use m_last_broadcast_state, because the Stopped event |
4092 | // may not have been popped of the event queue yet, which is when the |
4093 | // public state gets updated. |
4094 | LLDB_LOGF(log, |
4095 | "Process::%s ignoring interrupt as we have already stopped.", |
4096 | __FUNCTION__); |
4097 | } |
4098 | continue; |
4099 | } |
4100 | |
4101 | const StateType internal_state = |
4102 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
4103 | |
4104 | if (internal_state != eStateInvalid) { |
4105 | if (m_clear_thread_plans_on_stop && |
4106 | StateIsStoppedState(state: internal_state, must_exist: true)) { |
4107 | m_clear_thread_plans_on_stop = false; |
4108 | m_thread_list.DiscardThreadPlans(); |
4109 | } |
4110 | |
4111 | if (interrupt_requested) { |
4112 | if (StateIsStoppedState(state: internal_state, must_exist: true)) { |
4113 | // Only mark interrupt event if it is not thread specific async |
4114 | // interrupt. |
4115 | if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) { |
4116 | // We requested the interrupt, so mark this as such in the stop |
4117 | // event so clients can tell an interrupted process from a natural |
4118 | // stop |
4119 | ProcessEventData::SetInterruptedInEvent(event_ptr: event_sp.get(), new_value: true); |
4120 | } |
4121 | interrupt_requested = false; |
4122 | } else if (log) { |
4123 | LLDB_LOGF(log, |
4124 | "Process::%s interrupt_requested, but a non-stopped " |
4125 | "state '%s' received.", |
4126 | __FUNCTION__, StateAsCString(internal_state)); |
4127 | } |
4128 | } |
4129 | |
4130 | HandlePrivateEvent(event_sp); |
4131 | } |
4132 | |
4133 | if (internal_state == eStateInvalid || internal_state == eStateExited || |
4134 | internal_state == eStateDetached) { |
4135 | LLDB_LOGF(log, |
4136 | "Process::%s (arg = %p, pid = %"PRIu64 |
4137 | ") about to exit with internal state %s...", |
4138 | __FUNCTION__, static_cast<void *>(this), GetID(), |
4139 | StateAsCString(internal_state)); |
4140 | |
4141 | break; |
4142 | } |
4143 | } |
4144 | |
4145 | // Verify log is still enabled before attempting to write to it... |
4146 | LLDB_LOGF(log, "Process::%s (arg = %p, pid = %"PRIu64 ") thread exiting...", |
4147 | __FUNCTION__, static_cast<void *>(this), GetID()); |
4148 | |
4149 | // If we are a secondary thread, then the primary thread we are working for |
4150 | // will have already acquired the public_run_lock, and isn't done with what |
4151 | // it was doing yet, so don't try to change it on the way out. |
4152 | if (!is_secondary_thread) |
4153 | m_public_run_lock.SetStopped(); |
4154 | return {}; |
4155 | } |
4156 | |
4157 | // Process Event Data |
4158 | |
4159 | Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} |
4160 | |
4161 | Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, |
4162 | StateType state) |
4163 | : EventData(), m_process_wp(), m_state(state) { |
4164 | if (process_sp) |
4165 | m_process_wp = process_sp; |
4166 | } |
4167 | |
4168 | Process::ProcessEventData::~ProcessEventData() = default; |
4169 | |
4170 | llvm::StringRef Process::ProcessEventData::GetFlavorString() { |
4171 | return "Process::ProcessEventData"; |
4172 | } |
4173 | |
4174 | llvm::StringRef Process::ProcessEventData::GetFlavor() const { |
4175 | return ProcessEventData::GetFlavorString(); |
4176 | } |
4177 | |
4178 | bool Process::ProcessEventData::ShouldStop(Event *event_ptr, |
4179 | bool &found_valid_stopinfo) { |
4180 | found_valid_stopinfo = false; |
4181 | |
4182 | ProcessSP process_sp(m_process_wp.lock()); |
4183 | if (!process_sp) |
4184 | return false; |
4185 | |
4186 | ThreadList &curr_thread_list = process_sp->GetThreadList(); |
4187 | uint32_t num_threads = curr_thread_list.GetSize(); |
4188 | |
4189 | // The actions might change one of the thread's stop_info's opinions about |
4190 | // whether we should stop the process, so we need to query that as we go. |
4191 | |
4192 | // One other complication here, is that we try to catch any case where the |
4193 | // target has run (except for expressions) and immediately exit, but if we |
4194 | // get that wrong (which is possible) then the thread list might have |
4195 | // changed, and that would cause our iteration here to crash. We could |
4196 | // make a copy of the thread list, but we'd really like to also know if it |
4197 | // has changed at all, so we store the original thread ID's of all threads and |
4198 | // check what we get back against this list & bag out if anything differs. |
4199 | std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads; |
4200 | for (uint32_t idx = 0; idx < num_threads; ++idx) { |
4201 | lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); |
4202 | |
4203 | /* |
4204 | Filter out all suspended threads, they could not be the reason |
4205 | of stop and no need to perform any actions on them. |
4206 | */ |
4207 | if (thread_sp->GetResumeState() != eStateSuspended) |
4208 | not_suspended_threads.emplace_back(args&: thread_sp, args: thread_sp->GetIndexID()); |
4209 | } |
4210 | |
4211 | // Use this to track whether we should continue from here. We will only |
4212 | // continue the target running if no thread says we should stop. Of course |
4213 | // if some thread's PerformAction actually sets the target running, then it |
4214 | // doesn't matter what the other threads say... |
4215 | |
4216 | bool still_should_stop = false; |
4217 | |
4218 | // Sometimes - for instance if we have a bug in the stub we are talking to, |
4219 | // we stop but no thread has a valid stop reason. In that case we should |
4220 | // just stop, because we have no way of telling what the right thing to do |
4221 | // is, and it's better to let the user decide than continue behind their |
4222 | // backs. |
4223 | |
4224 | for (auto [thread_sp, thread_index] : not_suspended_threads) { |
4225 | if (curr_thread_list.GetSize() != num_threads) { |
4226 | Log *log(GetLog(mask: LLDBLog::Step | LLDBLog::Process)); |
4227 | LLDB_LOGF( |
4228 | log, |
4229 | "Number of threads changed from %u to %u while processing event.", |
4230 | num_threads, curr_thread_list.GetSize()); |
4231 | break; |
4232 | } |
4233 | |
4234 | if (thread_sp->GetIndexID() != thread_index) { |
4235 | Log *log(GetLog(mask: LLDBLog::Step | LLDBLog::Process)); |
4236 | LLDB_LOG(log, |
4237 | "The thread {0} changed from {1} to {2} while processing event.", |
4238 | thread_sp.get(), thread_index, thread_sp->GetIndexID()); |
4239 | break; |
4240 | } |
4241 | |
4242 | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
4243 | if (stop_info_sp && stop_info_sp->IsValid()) { |
4244 | found_valid_stopinfo = true; |
4245 | bool this_thread_wants_to_stop; |
4246 | if (stop_info_sp->GetOverrideShouldStop()) { |
4247 | this_thread_wants_to_stop = |
4248 | stop_info_sp->GetOverriddenShouldStopValue(); |
4249 | } else { |
4250 | stop_info_sp->PerformAction(event_ptr); |
4251 | // The stop action might restart the target. If it does, then we |
4252 | // want to mark that in the event so that whoever is receiving it |
4253 | // will know to wait for the running event and reflect that state |
4254 | // appropriately. We also need to stop processing actions, since they |
4255 | // aren't expecting the target to be running. |
4256 | |
4257 | // FIXME: we might have run. |
4258 | if (stop_info_sp->HasTargetRunSinceMe()) { |
4259 | SetRestarted(true); |
4260 | break; |
4261 | } |
4262 | |
4263 | this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); |
4264 | } |
4265 | |
4266 | if (!still_should_stop) |
4267 | still_should_stop = this_thread_wants_to_stop; |
4268 | } |
4269 | } |
4270 | |
4271 | return still_should_stop; |
4272 | } |
4273 | |
4274 | bool Process::ProcessEventData::ForwardEventToPendingListeners( |
4275 | Event *event_ptr) { |
4276 | // STDIO and the other async event notifications should always be forwarded. |
4277 | if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) |
4278 | return true; |
4279 | |
4280 | // For state changed events, if the update state is zero, we are handling |
4281 | // this on the private state thread. We should wait for the public event. |
4282 | return m_update_state == 1; |
4283 | } |
4284 | |
4285 | void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { |
4286 | // We only have work to do for state changed events: |
4287 | if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) |
4288 | return; |
4289 | |
4290 | ProcessSP process_sp(m_process_wp.lock()); |
4291 | |
4292 | if (!process_sp) |
4293 | return; |
4294 | |
4295 | // This function gets called twice for each event, once when the event gets |
4296 | // pulled off of the private process event queue, and then any number of |
4297 | // times, first when it gets pulled off of the public event queue, then other |
4298 | // times when we're pretending that this is where we stopped at the end of |
4299 | // expression evaluation. m_update_state is used to distinguish these three |
4300 | // cases; it is 0 when we're just pulling it off for private handling, and > |
4301 | // 1 for expression evaluation, and we don't want to do the breakpoint |
4302 | // command handling then. |
4303 | if (m_update_state != 1) |
4304 | return; |
4305 | |
4306 | process_sp->SetPublicState( |
4307 | new_state: m_state, restarted: Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); |
4308 | |
4309 | if (m_state == eStateStopped && !m_restarted) { |
4310 | // Let process subclasses know we are about to do a public stop and do |
4311 | // anything they might need to in order to speed up register and memory |
4312 | // accesses. |
4313 | process_sp->WillPublicStop(); |
4314 | } |
4315 | |
4316 | // If this is a halt event, even if the halt stopped with some reason other |
4317 | // than a plain interrupt (e.g. we had already stopped for a breakpoint when |
4318 | // the halt request came through) don't do the StopInfo actions, as they may |
4319 | // end up restarting the process. |
4320 | if (m_interrupted) |
4321 | return; |
4322 | |
4323 | // If we're not stopped or have restarted, then skip the StopInfo actions: |
4324 | if (m_state != eStateStopped || m_restarted) { |
4325 | return; |
4326 | } |
4327 | |
4328 | bool does_anybody_have_an_opinion = false; |
4329 | bool still_should_stop = ShouldStop(event_ptr, found_valid_stopinfo&: does_anybody_have_an_opinion); |
4330 | |
4331 | if (GetRestarted()) { |
4332 | return; |
4333 | } |
4334 | |
4335 | if (!still_should_stop && does_anybody_have_an_opinion) { |
4336 | // We've been asked to continue, so do that here. |
4337 | SetRestarted(true); |
4338 | // Use the private resume method here, since we aren't changing the run |
4339 | // lock state. |
4340 | process_sp->PrivateResume(); |
4341 | } else { |
4342 | bool hijacked = process_sp->IsHijackedForEvent(event_mask: eBroadcastBitStateChanged) && |
4343 | !process_sp->StateChangedIsHijackedForSynchronousResume(); |
4344 | |
4345 | if (!hijacked) { |
4346 | // If we didn't restart, run the Stop Hooks here. |
4347 | // Don't do that if state changed events aren't hooked up to the |
4348 | // public (or SyncResume) broadcasters. StopHooks are just for |
4349 | // real public stops. They might also restart the target, |
4350 | // so watch for that. |
4351 | if (process_sp->GetTarget().RunStopHooks()) |
4352 | SetRestarted(true); |
4353 | } |
4354 | } |
4355 | } |
4356 | |
4357 | void Process::ProcessEventData::Dump(Stream *s) const { |
4358 | ProcessSP process_sp(m_process_wp.lock()); |
4359 | |
4360 | if (process_sp) |
4361 | s->Printf(format: " process = %p (pid = %"PRIu64 "), ", |
4362 | static_cast<void *>(process_sp.get()), process_sp->GetID()); |
4363 | else |
4364 | s->PutCString(cstr: " process = NULL, "); |
4365 | |
4366 | s->Printf(format: "state = %s", StateAsCString(state: GetState())); |
4367 | } |
4368 | |
4369 | const Process::ProcessEventData * |
4370 | Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { |
4371 | if (event_ptr) { |
4372 | const EventData *event_data = event_ptr->GetData(); |
4373 | if (event_data && |
4374 | event_data->GetFlavor() == ProcessEventData::GetFlavorString()) |
4375 | return static_cast<const ProcessEventData *>(event_ptr->GetData()); |
4376 | } |
4377 | return nullptr; |
4378 | } |
4379 | |
4380 | ProcessSP |
4381 | Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { |
4382 | ProcessSP process_sp; |
4383 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4384 | if (data) |
4385 | process_sp = data->GetProcessSP(); |
4386 | return process_sp; |
4387 | } |
4388 | |
4389 | StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { |
4390 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4391 | if (data == nullptr) |
4392 | return eStateInvalid; |
4393 | else |
4394 | return data->GetState(); |
4395 | } |
4396 | |
4397 | bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { |
4398 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4399 | if (data == nullptr) |
4400 | return false; |
4401 | else |
4402 | return data->GetRestarted(); |
4403 | } |
4404 | |
4405 | void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, |
4406 | bool new_value) { |
4407 | ProcessEventData *data = |
4408 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4409 | if (data != nullptr) |
4410 | data->SetRestarted(new_value); |
4411 | } |
4412 | |
4413 | size_t |
4414 | Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { |
4415 | ProcessEventData *data = |
4416 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4417 | if (data != nullptr) |
4418 | return data->GetNumRestartedReasons(); |
4419 | else |
4420 | return 0; |
4421 | } |
4422 | |
4423 | const char * |
4424 | Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, |
4425 | size_t idx) { |
4426 | ProcessEventData *data = |
4427 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4428 | if (data != nullptr) |
4429 | return data->GetRestartedReasonAtIndex(idx); |
4430 | else |
4431 | return nullptr; |
4432 | } |
4433 | |
4434 | void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, |
4435 | const char *reason) { |
4436 | ProcessEventData *data = |
4437 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4438 | if (data != nullptr) |
4439 | data->AddRestartedReason(reason); |
4440 | } |
4441 | |
4442 | bool Process::ProcessEventData::GetInterruptedFromEvent( |
4443 | const Event *event_ptr) { |
4444 | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); |
4445 | if (data == nullptr) |
4446 | return false; |
4447 | else |
4448 | return data->GetInterrupted(); |
4449 | } |
4450 | |
4451 | void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, |
4452 | bool new_value) { |
4453 | ProcessEventData *data = |
4454 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4455 | if (data != nullptr) |
4456 | data->SetInterrupted(new_value); |
4457 | } |
4458 | |
4459 | bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { |
4460 | ProcessEventData *data = |
4461 | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); |
4462 | if (data) { |
4463 | data->SetUpdateStateOnRemoval(); |
4464 | return true; |
4465 | } |
4466 | return false; |
4467 | } |
4468 | |
4469 | lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } |
4470 | |
4471 | void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { |
4472 | exe_ctx.SetTargetPtr(&GetTarget()); |
4473 | exe_ctx.SetProcessPtr(this); |
4474 | exe_ctx.SetThreadPtr(nullptr); |
4475 | exe_ctx.SetFramePtr(nullptr); |
4476 | } |
4477 | |
4478 | // uint32_t |
4479 | // Process::ListProcessesMatchingName (const char *name, StringList &matches, |
4480 | // std::vector<lldb::pid_t> &pids) |
4481 | //{ |
4482 | // return 0; |
4483 | //} |
4484 | // |
4485 | // ArchSpec |
4486 | // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) |
4487 | //{ |
4488 | // return Host::GetArchSpecForExistingProcess (pid); |
4489 | //} |
4490 | // |
4491 | // ArchSpec |
4492 | // Process::GetArchSpecForExistingProcess (const char *process_name) |
4493 | //{ |
4494 | // return Host::GetArchSpecForExistingProcess (process_name); |
4495 | //} |
4496 | |
4497 | EventSP Process::CreateEventFromProcessState(uint32_t event_type) { |
4498 | auto event_data_sp = |
4499 | std::make_shared<ProcessEventData>(args: shared_from_this(), args: GetState()); |
4500 | return std::make_shared<Event>(args&: event_type, args&: event_data_sp); |
4501 | } |
4502 | |
4503 | void Process::AppendSTDOUT(const char *s, size_t len) { |
4504 | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
4505 | m_stdout_data.append(s: s, n: len); |
4506 | auto event_sp = CreateEventFromProcessState(event_type: eBroadcastBitSTDOUT); |
4507 | BroadcastEventIfUnique(event_sp); |
4508 | } |
4509 | |
4510 | void Process::AppendSTDERR(const char *s, size_t len) { |
4511 | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
4512 | m_stderr_data.append(s: s, n: len); |
4513 | auto event_sp = CreateEventFromProcessState(event_type: eBroadcastBitSTDERR); |
4514 | BroadcastEventIfUnique(event_sp); |
4515 | } |
4516 | |
4517 | void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { |
4518 | std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); |
4519 | m_profile_data.push_back(x: one_profile_data); |
4520 | auto event_sp = CreateEventFromProcessState(event_type: eBroadcastBitProfileData); |
4521 | BroadcastEventIfUnique(event_sp); |
4522 | } |
4523 | |
4524 | void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, |
4525 | const StructuredDataPluginSP &plugin_sp) { |
4526 | auto data_sp = std::make_shared<EventDataStructuredData>( |
4527 | args: shared_from_this(), args: object_sp, args: plugin_sp); |
4528 | BroadcastEvent(event_type: eBroadcastBitStructuredData, event_data_sp: data_sp); |
4529 | } |
4530 | |
4531 | StructuredDataPluginSP |
4532 | Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { |
4533 | auto find_it = m_structured_data_plugin_map.find(Key: type_name); |
4534 | if (find_it != m_structured_data_plugin_map.end()) |
4535 | return find_it->second; |
4536 | else |
4537 | return StructuredDataPluginSP(); |
4538 | } |
4539 | |
4540 | size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { |
4541 | std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); |
4542 | if (m_profile_data.empty()) |
4543 | return 0; |
4544 | |
4545 | std::string &one_profile_data = m_profile_data.front(); |
4546 | size_t bytes_available = one_profile_data.size(); |
4547 | if (bytes_available > 0) { |
4548 | Log *log = GetLog(mask: LLDBLog::Process); |
4549 | LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %"PRIu64 ")", |
4550 | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
4551 | if (bytes_available > buf_size) { |
4552 | memcpy(dest: buf, src: one_profile_data.c_str(), n: buf_size); |
4553 | one_profile_data.erase(pos: 0, n: buf_size); |
4554 | bytes_available = buf_size; |
4555 | } else { |
4556 | memcpy(dest: buf, src: one_profile_data.c_str(), n: bytes_available); |
4557 | m_profile_data.erase(position: m_profile_data.begin()); |
4558 | } |
4559 | } |
4560 | return bytes_available; |
4561 | } |
4562 | |
4563 | // Process STDIO |
4564 | |
4565 | size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { |
4566 | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); |
4567 | size_t bytes_available = m_stdout_data.size(); |
4568 | if (bytes_available > 0) { |
4569 | Log *log = GetLog(mask: LLDBLog::Process); |
4570 | LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %"PRIu64 ")", |
4571 | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
4572 | if (bytes_available > buf_size) { |
4573 | memcpy(dest: buf, src: m_stdout_data.c_str(), n: buf_size); |
4574 | m_stdout_data.erase(pos: 0, n: buf_size); |
4575 | bytes_available = buf_size; |
4576 | } else { |
4577 | memcpy(dest: buf, src: m_stdout_data.c_str(), n: bytes_available); |
4578 | m_stdout_data.clear(); |
4579 | } |
4580 | } |
4581 | return bytes_available; |
4582 | } |
4583 | |
4584 | size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { |
4585 | std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); |
4586 | size_t bytes_available = m_stderr_data.size(); |
4587 | if (bytes_available > 0) { |
4588 | Log *log = GetLog(mask: LLDBLog::Process); |
4589 | LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %"PRIu64 ")", |
4590 | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); |
4591 | if (bytes_available > buf_size) { |
4592 | memcpy(dest: buf, src: m_stderr_data.c_str(), n: buf_size); |
4593 | m_stderr_data.erase(pos: 0, n: buf_size); |
4594 | bytes_available = buf_size; |
4595 | } else { |
4596 | memcpy(dest: buf, src: m_stderr_data.c_str(), n: bytes_available); |
4597 | m_stderr_data.clear(); |
4598 | } |
4599 | } |
4600 | return bytes_available; |
4601 | } |
4602 | |
4603 | void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, |
4604 | size_t src_len) { |
4605 | Process *process = (Process *)baton; |
4606 | process->AppendSTDOUT(s: static_cast<const char *>(src), len: src_len); |
4607 | } |
4608 | |
4609 | class IOHandlerProcessSTDIO : public IOHandler { |
4610 | public: |
4611 | IOHandlerProcessSTDIO(Process *process, int write_fd) |
4612 | : IOHandler(process->GetTarget().GetDebugger(), |
4613 | IOHandler::Type::ProcessIO), |
4614 | m_process(process), |
4615 | m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), |
4616 | m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { |
4617 | m_pipe.CreateNew(child_process_inherit: false); |
4618 | } |
4619 | |
4620 | ~IOHandlerProcessSTDIO() override = default; |
4621 | |
4622 | void SetIsRunning(bool running) { |
4623 | std::lock_guard<std::mutex> guard(m_mutex); |
4624 | SetIsDone(!running); |
4625 | m_is_running = running; |
4626 | } |
4627 | |
4628 | // Each IOHandler gets to run until it is done. It should read data from the |
4629 | // "in" and place output into "out" and "err and return when done. |
4630 | void Run() override { |
4631 | if (!m_read_file.IsValid() || !m_write_file.IsValid() || |
4632 | !m_pipe.CanRead() || !m_pipe.CanWrite()) { |
4633 | SetIsDone(true); |
4634 | return; |
4635 | } |
4636 | |
4637 | SetIsDone(false); |
4638 | const int read_fd = m_read_file.GetDescriptor(); |
4639 | Terminal terminal(read_fd); |
4640 | TerminalState terminal_state(terminal, false); |
4641 | // FIXME: error handling? |
4642 | llvm::consumeError(Err: terminal.SetCanonical(false)); |
4643 | llvm::consumeError(Err: terminal.SetEcho(false)); |
4644 | // FD_ZERO, FD_SET are not supported on windows |
4645 | #ifndef _WIN32 |
4646 | const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); |
4647 | SetIsRunning(true); |
4648 | while (true) { |
4649 | { |
4650 | std::lock_guard<std::mutex> guard(m_mutex); |
4651 | if (GetIsDone()) |
4652 | break; |
4653 | } |
4654 | |
4655 | SelectHelper select_helper; |
4656 | select_helper.FDSetRead(fd: read_fd); |
4657 | select_helper.FDSetRead(fd: pipe_read_fd); |
4658 | Status error = select_helper.Select(); |
4659 | |
4660 | if (error.Fail()) |
4661 | break; |
4662 | |
4663 | char ch = 0; |
4664 | size_t n; |
4665 | if (select_helper.FDIsSetRead(fd: read_fd)) { |
4666 | n = 1; |
4667 | if (m_read_file.Read(buf: &ch, num_bytes&: n).Success() && n == 1) { |
4668 | if (m_write_file.Write(buf: &ch, num_bytes&: n).Fail() || n != 1) |
4669 | break; |
4670 | } else |
4671 | break; |
4672 | } |
4673 | |
4674 | if (select_helper.FDIsSetRead(fd: pipe_read_fd)) { |
4675 | // Consume the interrupt byte |
4676 | if (llvm::Expected<size_t> bytes_read = m_pipe.Read(buf: &ch, size: 1)) { |
4677 | if (ch == 'q') |
4678 | break; |
4679 | if (ch == 'i') |
4680 | if (StateIsRunningState(state: m_process->GetState())) |
4681 | m_process->SendAsyncInterrupt(); |
4682 | } else { |
4683 | LLDB_LOG_ERROR(GetLog(LLDBLog::Process), bytes_read.takeError(), |
4684 | "Pipe read failed: {0}"); |
4685 | } |
4686 | } |
4687 | } |
4688 | SetIsRunning(false); |
4689 | #endif |
4690 | } |
4691 | |
4692 | void Cancel() override { |
4693 | std::lock_guard<std::mutex> guard(m_mutex); |
4694 | SetIsDone(true); |
4695 | // Only write to our pipe to cancel if we are in |
4696 | // IOHandlerProcessSTDIO::Run(). We can end up with a python command that |
4697 | // is being run from the command interpreter: |
4698 | // |
4699 | // (lldb) step_process_thousands_of_times |
4700 | // |
4701 | // In this case the command interpreter will be in the middle of handling |
4702 | // the command and if the process pushes and pops the IOHandler thousands |
4703 | // of times, we can end up writing to m_pipe without ever consuming the |
4704 | // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up |
4705 | // deadlocking when the pipe gets fed up and blocks until data is consumed. |
4706 | if (m_is_running) { |
4707 | char ch = 'q'; // Send 'q' for quit |
4708 | if (llvm::Error err = m_pipe.Write(buf: &ch, size: 1).takeError()) { |
4709 | LLDB_LOG_ERROR(GetLog(LLDBLog::Process), std::move(err), |
4710 | "Pipe write failed: {0}"); |
4711 | } |
4712 | } |
4713 | } |
4714 | |
4715 | bool Interrupt() override { |
4716 | // Do only things that are safe to do in an interrupt context (like in a |
4717 | // SIGINT handler), like write 1 byte to a file descriptor. This will |
4718 | // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte |
4719 | // that was written to the pipe and then call |
4720 | // m_process->SendAsyncInterrupt() from a much safer location in code. |
4721 | if (m_active) { |
4722 | char ch = 'i'; // Send 'i' for interrupt |
4723 | return !errorToBool(Err: m_pipe.Write(buf: &ch, size: 1).takeError()); |
4724 | } else { |
4725 | // This IOHandler might be pushed on the stack, but not being run |
4726 | // currently so do the right thing if we aren't actively watching for |
4727 | // STDIN by sending the interrupt to the process. Otherwise the write to |
4728 | // the pipe above would do nothing. This can happen when the command |
4729 | // interpreter is running and gets a "expression ...". It will be on the |
4730 | // IOHandler thread and sending the input is complete to the delegate |
4731 | // which will cause the expression to run, which will push the process IO |
4732 | // handler, but not run it. |
4733 | |
4734 | if (StateIsRunningState(state: m_process->GetState())) { |
4735 | m_process->SendAsyncInterrupt(); |
4736 | return true; |
4737 | } |
4738 | } |
4739 | return false; |
4740 | } |
4741 | |
4742 | void GotEOF() override {} |
4743 | |
4744 | protected: |
4745 | Process *m_process; |
4746 | NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB |
4747 | NativeFile m_write_file; // Write to this file (usually the primary pty for |
4748 | // getting io to debuggee) |
4749 | Pipe m_pipe; |
4750 | std::mutex m_mutex; |
4751 | bool m_is_running = false; |
4752 | }; |
4753 | |
4754 | void Process::SetSTDIOFileDescriptor(int fd) { |
4755 | // First set up the Read Thread for reading/handling process I/O |
4756 | m_stdio_communication.SetConnection( |
4757 | std::make_unique<ConnectionFileDescriptor>(args&: fd, args: true)); |
4758 | if (m_stdio_communication.IsConnected()) { |
4759 | m_stdio_communication.SetReadThreadBytesReceivedCallback( |
4760 | callback: STDIOReadThreadBytesReceived, callback_baton: this); |
4761 | m_stdio_communication.StartReadThread(); |
4762 | |
4763 | // Now read thread is set up, set up input reader. |
4764 | { |
4765 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4766 | if (!m_process_input_reader) |
4767 | m_process_input_reader = |
4768 | std::make_shared<IOHandlerProcessSTDIO>(args: this, args&: fd); |
4769 | } |
4770 | } |
4771 | } |
4772 | |
4773 | bool Process::ProcessIOHandlerIsActive() { |
4774 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4775 | IOHandlerSP io_handler_sp(m_process_input_reader); |
4776 | if (io_handler_sp) |
4777 | return GetTarget().GetDebugger().IsTopIOHandler(reader_sp: io_handler_sp); |
4778 | return false; |
4779 | } |
4780 | |
4781 | bool Process::PushProcessIOHandler() { |
4782 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4783 | IOHandlerSP io_handler_sp(m_process_input_reader); |
4784 | if (io_handler_sp) { |
4785 | Log *log = GetLog(mask: LLDBLog::Process); |
4786 | LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); |
4787 | |
4788 | io_handler_sp->SetIsDone(false); |
4789 | // If we evaluate an utility function, then we don't cancel the current |
4790 | // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the |
4791 | // existing IOHandler that potentially provides the user interface (e.g. |
4792 | // the IOHandler for Editline). |
4793 | bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); |
4794 | GetTarget().GetDebugger().RunIOHandlerAsync(reader_sp: io_handler_sp, |
4795 | cancel_top_handler); |
4796 | return true; |
4797 | } |
4798 | return false; |
4799 | } |
4800 | |
4801 | bool Process::PopProcessIOHandler() { |
4802 | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); |
4803 | IOHandlerSP io_handler_sp(m_process_input_reader); |
4804 | if (io_handler_sp) |
4805 | return GetTarget().GetDebugger().RemoveIOHandler(reader_sp: io_handler_sp); |
4806 | return false; |
4807 | } |
4808 | |
4809 | // The process needs to know about installed plug-ins |
4810 | void Process::SettingsInitialize() { Thread::SettingsInitialize(); } |
4811 | |
4812 | void Process::SettingsTerminate() { Thread::SettingsTerminate(); } |
4813 | |
4814 | namespace { |
4815 | // RestorePlanState is used to record the "is private", "is controlling" and |
4816 | // "okay |
4817 | // to discard" fields of the plan we are running, and reset it on Clean or on |
4818 | // destruction. It will only reset the state once, so you can call Clean and |
4819 | // then monkey with the state and it won't get reset on you again. |
4820 | |
4821 | class RestorePlanState { |
4822 | public: |
4823 | RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) |
4824 | : m_thread_plan_sp(thread_plan_sp) { |
4825 | if (m_thread_plan_sp) { |
4826 | m_private = m_thread_plan_sp->GetPrivate(); |
4827 | m_is_controlling = m_thread_plan_sp->IsControllingPlan(); |
4828 | m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); |
4829 | } |
4830 | } |
4831 | |
4832 | ~RestorePlanState() { Clean(); } |
4833 | |
4834 | void Clean() { |
4835 | if (!m_already_reset && m_thread_plan_sp) { |
4836 | m_already_reset = true; |
4837 | m_thread_plan_sp->SetPrivate(m_private); |
4838 | m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); |
4839 | m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); |
4840 | } |
4841 | } |
4842 | |
4843 | private: |
4844 | lldb::ThreadPlanSP m_thread_plan_sp; |
4845 | bool m_already_reset = false; |
4846 | bool m_private = false; |
4847 | bool m_is_controlling = false; |
4848 | bool m_okay_to_discard = false; |
4849 | }; |
4850 | } // anonymous namespace |
4851 | |
4852 | static microseconds |
4853 | GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { |
4854 | const milliseconds default_one_thread_timeout(250); |
4855 | |
4856 | // If the overall wait is forever, then we don't need to worry about it. |
4857 | if (!options.GetTimeout()) { |
4858 | return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() |
4859 | : default_one_thread_timeout; |
4860 | } |
4861 | |
4862 | // If the one thread timeout is set, use it. |
4863 | if (options.GetOneThreadTimeout()) |
4864 | return *options.GetOneThreadTimeout(); |
4865 | |
4866 | // Otherwise use half the total timeout, bounded by the |
4867 | // default_one_thread_timeout. |
4868 | return std::min<microseconds>(a: default_one_thread_timeout, |
4869 | b: *options.GetTimeout() / 2); |
4870 | } |
4871 | |
4872 | static Timeout<std::micro> |
4873 | GetExpressionTimeout(const EvaluateExpressionOptions &options, |
4874 | bool before_first_timeout) { |
4875 | // If we are going to run all threads the whole time, or if we are only going |
4876 | // to run one thread, we can just return the overall timeout. |
4877 | if (!options.GetStopOthers() || !options.GetTryAllThreads()) |
4878 | return options.GetTimeout(); |
4879 | |
4880 | if (before_first_timeout) |
4881 | return GetOneThreadExpressionTimeout(options); |
4882 | |
4883 | if (!options.GetTimeout()) |
4884 | return std::nullopt; |
4885 | else |
4886 | return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); |
4887 | } |
4888 | |
4889 | static std::optional<ExpressionResults> |
4890 | HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, |
4891 | RestorePlanState &restorer, const EventSP &event_sp, |
4892 | EventSP &event_to_broadcast_sp, |
4893 | const EvaluateExpressionOptions &options, |
4894 | bool handle_interrupts) { |
4895 | Log *log = GetLog(mask: LLDBLog::Step | LLDBLog::Process); |
4896 | |
4897 | ThreadSP thread_sp = thread_plan_sp->GetTarget() |
4898 | .GetProcessSP() |
4899 | ->GetThreadList() |
4900 | .FindThreadByID(tid: thread_id); |
4901 | if (!thread_sp) { |
4902 | LLDB_LOG(log, |
4903 | "The thread on which we were running the " |
4904 | "expression: tid = {0}, exited while " |
4905 | "the expression was running.", |
4906 | thread_id); |
4907 | return eExpressionThreadVanished; |
4908 | } |
4909 | |
4910 | ThreadPlanSP plan = thread_sp->GetCompletedPlan(); |
4911 | if (plan == thread_plan_sp && plan->PlanSucceeded()) { |
4912 | LLDB_LOG(log, "execution completed successfully"); |
4913 | |
4914 | // Restore the plan state so it will get reported as intended when we are |
4915 | // done. |
4916 | restorer.Clean(); |
4917 | return eExpressionCompleted; |
4918 | } |
4919 | |
4920 | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
4921 | if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && |
4922 | stop_info_sp->ShouldNotify(event_ptr: event_sp.get())) { |
4923 | LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); |
4924 | if (!options.DoesIgnoreBreakpoints()) { |
4925 | // Restore the plan state and then force Private to false. We are going |
4926 | // to stop because of this plan so we need it to become a public plan or |
4927 | // it won't report correctly when we continue to its termination later |
4928 | // on. |
4929 | restorer.Clean(); |
4930 | thread_plan_sp->SetPrivate(false); |
4931 | event_to_broadcast_sp = event_sp; |
4932 | } |
4933 | return eExpressionHitBreakpoint; |
4934 | } |
4935 | |
4936 | if (!handle_interrupts && |
4937 | Process::ProcessEventData::GetInterruptedFromEvent(event_ptr: event_sp.get())) |
4938 | return std::nullopt; |
4939 | |
4940 | LLDB_LOG(log, "thread plan did not successfully complete"); |
4941 | if (!options.DoesUnwindOnError()) |
4942 | event_to_broadcast_sp = event_sp; |
4943 | return eExpressionInterrupted; |
4944 | } |
4945 | |
4946 | ExpressionResults |
4947 | Process::RunThreadPlan(ExecutionContext &exe_ctx, |
4948 | lldb::ThreadPlanSP &thread_plan_sp, |
4949 | const EvaluateExpressionOptions &options, |
4950 | DiagnosticManager &diagnostic_manager) { |
4951 | ExpressionResults return_value = eExpressionSetupError; |
4952 | |
4953 | std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); |
4954 | |
4955 | if (!thread_plan_sp) { |
4956 | diagnostic_manager.PutString( |
4957 | severity: lldb::eSeverityError, str: "RunThreadPlan called with empty thread plan."); |
4958 | return eExpressionSetupError; |
4959 | } |
4960 | |
4961 | if (!thread_plan_sp->ValidatePlan(error: nullptr)) { |
4962 | diagnostic_manager.PutString( |
4963 | severity: lldb::eSeverityError, |
4964 | str: "RunThreadPlan called with an invalid thread plan."); |
4965 | return eExpressionSetupError; |
4966 | } |
4967 | |
4968 | if (exe_ctx.GetProcessPtr() != this) { |
4969 | diagnostic_manager.PutString(severity: lldb::eSeverityError, |
4970 | str: "RunThreadPlan called on wrong process."); |
4971 | return eExpressionSetupError; |
4972 | } |
4973 | |
4974 | Thread *thread = exe_ctx.GetThreadPtr(); |
4975 | if (thread == nullptr) { |
4976 | diagnostic_manager.PutString(severity: lldb::eSeverityError, |
4977 | str: "RunThreadPlan called with invalid thread."); |
4978 | return eExpressionSetupError; |
4979 | } |
4980 | |
4981 | // Record the thread's id so we can tell when a thread we were using |
4982 | // to run the expression exits during the expression evaluation. |
4983 | lldb::tid_t expr_thread_id = thread->GetID(); |
4984 | |
4985 | // We need to change some of the thread plan attributes for the thread plan |
4986 | // runner. This will restore them when we are done: |
4987 | |
4988 | RestorePlanState thread_plan_restorer(thread_plan_sp); |
4989 | |
4990 | // We rely on the thread plan we are running returning "PlanCompleted" if |
4991 | // when it successfully completes. For that to be true the plan can't be |
4992 | // private - since private plans suppress themselves in the GetCompletedPlan |
4993 | // call. |
4994 | |
4995 | thread_plan_sp->SetPrivate(false); |
4996 | |
4997 | // The plans run with RunThreadPlan also need to be terminal controlling plans |
4998 | // or when they are done we will end up asking the plan above us whether we |
4999 | // should stop, which may give the wrong answer. |
5000 | |
5001 | thread_plan_sp->SetIsControllingPlan(true); |
5002 | thread_plan_sp->SetOkayToDiscard(false); |
5003 | |
5004 | // If we are running some utility expression for LLDB, we now have to mark |
5005 | // this in the ProcesModID of this process. This RAII takes care of marking |
5006 | // and reverting the mark it once we are done running the expression. |
5007 | UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); |
5008 | |
5009 | if (m_private_state.GetValue() != eStateStopped) { |
5010 | diagnostic_manager.PutString( |
5011 | severity: lldb::eSeverityError, |
5012 | str: "RunThreadPlan called while the private state was not stopped."); |
5013 | return eExpressionSetupError; |
5014 | } |
5015 | |
5016 | // Save the thread & frame from the exe_ctx for restoration after we run |
5017 | const uint32_t thread_idx_id = thread->GetIndexID(); |
5018 | StackFrameSP selected_frame_sp = |
5019 | thread->GetSelectedFrame(select_most_relevant: DoNoSelectMostRelevantFrame); |
5020 | if (!selected_frame_sp) { |
5021 | thread->SetSelectedFrame(frame: nullptr); |
5022 | selected_frame_sp = thread->GetSelectedFrame(select_most_relevant: DoNoSelectMostRelevantFrame); |
5023 | if (!selected_frame_sp) { |
5024 | diagnostic_manager.Printf( |
5025 | severity: lldb::eSeverityError, |
5026 | format: "RunThreadPlan called without a selected frame on thread %d", |
5027 | thread_idx_id); |
5028 | return eExpressionSetupError; |
5029 | } |
5030 | } |
5031 | |
5032 | // Make sure the timeout values make sense. The one thread timeout needs to |
5033 | // be smaller than the overall timeout. |
5034 | if (options.GetOneThreadTimeout() && options.GetTimeout() && |
5035 | *options.GetTimeout() < *options.GetOneThreadTimeout()) { |
5036 | diagnostic_manager.PutString(severity: lldb::eSeverityError, |
5037 | str: "RunThreadPlan called with one thread " |
5038 | "timeout greater than total timeout"); |
5039 | return eExpressionSetupError; |
5040 | } |
5041 | |
5042 | // If the ExecutionContext has a frame, we want to make sure to save/restore |
5043 | // that frame into exe_ctx. This can happen when we run expressions from a |
5044 | // non-selected SBFrame, in which case we don't want some thread-plan |
5045 | // to overwrite the ExecutionContext frame. |
5046 | StackID ctx_frame_id = exe_ctx.HasFrameScope() |
5047 | ? exe_ctx.GetFrameRef().GetStackID() |
5048 | : selected_frame_sp->GetStackID(); |
5049 | |
5050 | // N.B. Running the target may unset the currently selected thread and frame. |
5051 | // We don't want to do that either, so we should arrange to reset them as |
5052 | // well. |
5053 | |
5054 | lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); |
5055 | |
5056 | uint32_t selected_tid; |
5057 | StackID selected_stack_id; |
5058 | if (selected_thread_sp) { |
5059 | selected_tid = selected_thread_sp->GetIndexID(); |
5060 | selected_stack_id = |
5061 | selected_thread_sp->GetSelectedFrame(select_most_relevant: DoNoSelectMostRelevantFrame) |
5062 | ->GetStackID(); |
5063 | } else { |
5064 | selected_tid = LLDB_INVALID_THREAD_ID; |
5065 | } |
5066 | |
5067 | HostThread backup_private_state_thread; |
5068 | lldb::StateType old_state = eStateInvalid; |
5069 | lldb::ThreadPlanSP stopper_base_plan_sp; |
5070 | |
5071 | Log *log(GetLog(mask: LLDBLog::Step | LLDBLog::Process)); |
5072 | if (m_private_state_thread.EqualsThread(thread: Host::GetCurrentThread())) { |
5073 | // Yikes, we are running on the private state thread! So we can't wait for |
5074 | // public events on this thread, since we are the thread that is generating |
5075 | // public events. The simplest thing to do is to spin up a temporary thread |
5076 | // to handle private state thread events while we are fielding public |
5077 | // events here. |
5078 | LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " |
5079 | "another state thread to handle the events."); |
5080 | |
5081 | backup_private_state_thread = m_private_state_thread; |
5082 | |
5083 | // One other bit of business: we want to run just this thread plan and |
5084 | // anything it pushes, and then stop, returning control here. But in the |
5085 | // normal course of things, the plan above us on the stack would be given a |
5086 | // shot at the stop event before deciding to stop, and we don't want that. |
5087 | // So we insert a "stopper" base plan on the stack before the plan we want |
5088 | // to run. Since base plans always stop and return control to the user, |
5089 | // that will do just what we want. |
5090 | stopper_base_plan_sp.reset(p: new ThreadPlanBase(*thread)); |
5091 | thread->QueueThreadPlan(plan_sp&: stopper_base_plan_sp, abort_other_plans: false); |
5092 | // Have to make sure our public state is stopped, since otherwise the |
5093 | // reporting logic below doesn't work correctly. |
5094 | old_state = m_public_state.GetValue(); |
5095 | m_public_state.SetValueNoLock(eStateStopped); |
5096 | |
5097 | // Now spin up the private state thread: |
5098 | StartPrivateStateThread(is_secondary_thread: true); |
5099 | } |
5100 | |
5101 | thread->QueueThreadPlan( |
5102 | plan_sp&: thread_plan_sp, abort_other_plans: false); // This used to pass "true" does that make sense? |
5103 | |
5104 | if (options.GetDebug()) { |
5105 | // In this case, we aren't actually going to run, we just want to stop |
5106 | // right away. Flush this thread so we will refetch the stacks and show the |
5107 | // correct backtrace. |
5108 | // FIXME: To make this prettier we should invent some stop reason for this, |
5109 | // but that |
5110 | // is only cosmetic, and this functionality is only of use to lldb |
5111 | // developers who can live with not pretty... |
5112 | thread->Flush(); |
5113 | return eExpressionStoppedForDebug; |
5114 | } |
5115 | |
5116 | ListenerSP listener_sp( |
5117 | Listener::MakeListener(name: "lldb.process.listener.run-thread-plan")); |
5118 | |
5119 | lldb::EventSP event_to_broadcast_sp; |
5120 | |
5121 | { |
5122 | // This process event hijacker Hijacks the Public events and its destructor |
5123 | // makes sure that the process events get restored on exit to the function. |
5124 | // |
5125 | // If the event needs to propagate beyond the hijacker (e.g., the process |
5126 | // exits during execution), then the event is put into |
5127 | // event_to_broadcast_sp for rebroadcasting. |
5128 | |
5129 | ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); |
5130 | |
5131 | if (log) { |
5132 | StreamString s; |
5133 | thread_plan_sp->GetDescription(s: &s, level: lldb::eDescriptionLevelVerbose); |
5134 | LLDB_LOGF(log, |
5135 | "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4"PRIx64 |
5136 | " to run thread plan \"%s\".", |
5137 | thread_idx_id, expr_thread_id, s.GetData()); |
5138 | } |
5139 | |
5140 | bool got_event; |
5141 | lldb::EventSP event_sp; |
5142 | lldb::StateType stop_state = lldb::eStateInvalid; |
5143 | |
5144 | bool before_first_timeout = true; // This is set to false the first time |
5145 | // that we have to halt the target. |
5146 | bool do_resume = true; |
5147 | bool handle_running_event = true; |
5148 | |
5149 | // This is just for accounting: |
5150 | uint32_t num_resumes = 0; |
5151 | |
5152 | // If we are going to run all threads the whole time, or if we are only |
5153 | // going to run one thread, then we don't need the first timeout. So we |
5154 | // pretend we are after the first timeout already. |
5155 | if (!options.GetStopOthers() || !options.GetTryAllThreads()) |
5156 | before_first_timeout = false; |
5157 | |
5158 | LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", |
5159 | options.GetStopOthers(), options.GetTryAllThreads(), |
5160 | before_first_timeout); |
5161 | |
5162 | // This isn't going to work if there are unfetched events on the queue. Are |
5163 | // there cases where we might want to run the remaining events here, and |
5164 | // then try to call the function? That's probably being too tricky for our |
5165 | // own good. |
5166 | |
5167 | Event *other_events = listener_sp->PeekAtNextEvent(); |
5168 | if (other_events != nullptr) { |
5169 | diagnostic_manager.PutString( |
5170 | severity: lldb::eSeverityError, |
5171 | str: "RunThreadPlan called with pending events on the queue."); |
5172 | return eExpressionSetupError; |
5173 | } |
5174 | |
5175 | // We also need to make sure that the next event is delivered. We might be |
5176 | // calling a function as part of a thread plan, in which case the last |
5177 | // delivered event could be the running event, and we don't want event |
5178 | // coalescing to cause us to lose OUR running event... |
5179 | ForceNextEventDelivery(); |
5180 | |
5181 | // This while loop must exit out the bottom, there's cleanup that we need to do |
5182 | // when we are done. So don't call return anywhere within it. |
5183 | |
5184 | #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT |
5185 | // It's pretty much impossible to write test cases for things like: One |
5186 | // thread timeout expires, I go to halt, but the process already stopped on |
5187 | // the function call stop breakpoint. Turning on this define will make us |
5188 | // not fetch the first event till after the halt. So if you run a quick |
5189 | // function, it will have completed, and the completion event will be |
5190 | // waiting, when you interrupt for halt. The expression evaluation should |
5191 | // still succeed. |
5192 | bool miss_first_event = true; |
5193 | #endif |
5194 | while (true) { |
5195 | // We usually want to resume the process if we get to the top of the |
5196 | // loop. The only exception is if we get two running events with no |
5197 | // intervening stop, which can happen, we will just wait for then next |
5198 | // stop event. |
5199 | LLDB_LOGF(log, |
5200 | "Top of while loop: do_resume: %i handle_running_event: %i " |
5201 | "before_first_timeout: %i.", |
5202 | do_resume, handle_running_event, before_first_timeout); |
5203 | |
5204 | if (do_resume || handle_running_event) { |
5205 | // Do the initial resume and wait for the running event before going |
5206 | // further. |
5207 | |
5208 | if (do_resume) { |
5209 | num_resumes++; |
5210 | Status resume_error = PrivateResume(); |
5211 | if (!resume_error.Success()) { |
5212 | diagnostic_manager.Printf( |
5213 | severity: lldb::eSeverityError, |
5214 | format: "couldn't resume inferior the %d time: \"%s\".", num_resumes, |
5215 | resume_error.AsCString()); |
5216 | return_value = eExpressionSetupError; |
5217 | break; |
5218 | } |
5219 | } |
5220 | |
5221 | got_event = |
5222 | listener_sp->GetEvent(event_sp, timeout: GetUtilityExpressionTimeout()); |
5223 | if (!got_event) { |
5224 | LLDB_LOGF(log, |
5225 | "Process::RunThreadPlan(): didn't get any event after " |
5226 | "resume %"PRIu32 ", exiting.", |
5227 | num_resumes); |
5228 | |
5229 | diagnostic_manager.Printf(severity: lldb::eSeverityError, |
5230 | format: "didn't get any event after resume %"PRIu32 |
5231 | ", exiting.", |
5232 | num_resumes); |
5233 | return_value = eExpressionSetupError; |
5234 | break; |
5235 | } |
5236 | |
5237 | stop_state = |
5238 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
5239 | |
5240 | if (stop_state != eStateRunning) { |
5241 | bool restarted = false; |
5242 | |
5243 | if (stop_state == eStateStopped) { |
5244 | restarted = Process::ProcessEventData::GetRestartedFromEvent( |
5245 | event_ptr: event_sp.get()); |
5246 | LLDB_LOGF( |
5247 | log, |
5248 | "Process::RunThreadPlan(): didn't get running event after " |
5249 | "resume %d, got %s instead (restarted: %i, do_resume: %i, " |
5250 | "handle_running_event: %i).", |
5251 | num_resumes, StateAsCString(stop_state), restarted, do_resume, |
5252 | handle_running_event); |
5253 | } |
5254 | |
5255 | if (restarted) { |
5256 | // This is probably an overabundance of caution, I don't think I |
5257 | // should ever get a stopped & restarted event here. But if I do, |
5258 | // the best thing is to Halt and then get out of here. |
5259 | const bool clear_thread_plans = false; |
5260 | const bool use_run_lock = false; |
5261 | Halt(clear_thread_plans, use_run_lock); |
5262 | } |
5263 | |
5264 | diagnostic_manager.Printf( |
5265 | severity: lldb::eSeverityError, |
5266 | format: "didn't get running event after initial resume, got %s instead.", |
5267 | StateAsCString(state: stop_state)); |
5268 | return_value = eExpressionSetupError; |
5269 | break; |
5270 | } |
5271 | |
5272 | if (log) |
5273 | log->PutCString(cstr: "Process::RunThreadPlan(): resuming succeeded."); |
5274 | // We need to call the function synchronously, so spin waiting for it |
5275 | // to return. If we get interrupted while executing, we're going to |
5276 | // lose our context, and won't be able to gather the result at this |
5277 | // point. We set the timeout AFTER the resume, since the resume takes |
5278 | // some time and we don't want to charge that to the timeout. |
5279 | } else { |
5280 | if (log) |
5281 | log->PutCString(cstr: "Process::RunThreadPlan(): waiting for next event."); |
5282 | } |
5283 | |
5284 | do_resume = true; |
5285 | handle_running_event = true; |
5286 | |
5287 | // Now wait for the process to stop again: |
5288 | event_sp.reset(); |
5289 | |
5290 | Timeout<std::micro> timeout = |
5291 | GetExpressionTimeout(options, before_first_timeout); |
5292 | if (log) { |
5293 | if (timeout) { |
5294 | auto now = system_clock::now(); |
5295 | LLDB_LOGF(log, |
5296 | "Process::RunThreadPlan(): about to wait - now is %s - " |
5297 | "endpoint is %s", |
5298 | llvm::to_string(now).c_str(), |
5299 | llvm::to_string(now + *timeout).c_str()); |
5300 | } else { |
5301 | LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); |
5302 | } |
5303 | } |
5304 | |
5305 | #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT |
5306 | // See comment above... |
5307 | if (miss_first_event) { |
5308 | std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
5309 | miss_first_event = false; |
5310 | got_event = false; |
5311 | } else |
5312 | #endif |
5313 | got_event = listener_sp->GetEvent(event_sp, timeout); |
5314 | |
5315 | if (got_event) { |
5316 | if (event_sp) { |
5317 | bool keep_going = false; |
5318 | if (event_sp->GetType() == eBroadcastBitInterrupt) { |
5319 | const bool clear_thread_plans = false; |
5320 | const bool use_run_lock = false; |
5321 | Halt(clear_thread_plans, use_run_lock); |
5322 | return_value = eExpressionInterrupted; |
5323 | diagnostic_manager.PutString(severity: lldb::eSeverityInfo, |
5324 | str: "execution halted by user interrupt."); |
5325 | LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " |
5326 | "eBroadcastBitInterrupted, exiting."); |
5327 | break; |
5328 | } else { |
5329 | stop_state = |
5330 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
5331 | LLDB_LOGF(log, |
5332 | "Process::RunThreadPlan(): in while loop, got event: %s.", |
5333 | StateAsCString(stop_state)); |
5334 | |
5335 | switch (stop_state) { |
5336 | case lldb::eStateStopped: { |
5337 | if (Process::ProcessEventData::GetRestartedFromEvent( |
5338 | event_ptr: event_sp.get())) { |
5339 | // If we were restarted, we just need to go back up to fetch |
5340 | // another event. |
5341 | LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " |
5342 | "restart, so we'll continue waiting."); |
5343 | keep_going = true; |
5344 | do_resume = false; |
5345 | handle_running_event = true; |
5346 | } else { |
5347 | const bool handle_interrupts = true; |
5348 | return_value = *HandleStoppedEvent( |
5349 | thread_id: expr_thread_id, thread_plan_sp, restorer&: thread_plan_restorer, |
5350 | event_sp, event_to_broadcast_sp, options, |
5351 | handle_interrupts); |
5352 | if (return_value == eExpressionThreadVanished) |
5353 | keep_going = false; |
5354 | } |
5355 | } break; |
5356 | |
5357 | case lldb::eStateRunning: |
5358 | // This shouldn't really happen, but sometimes we do get two |
5359 | // running events without an intervening stop, and in that case |
5360 | // we should just go back to waiting for the stop. |
5361 | do_resume = false; |
5362 | keep_going = true; |
5363 | handle_running_event = false; |
5364 | break; |
5365 | |
5366 | default: |
5367 | LLDB_LOGF(log, |
5368 | "Process::RunThreadPlan(): execution stopped with " |
5369 | "unexpected state: %s.", |
5370 | StateAsCString(stop_state)); |
5371 | |
5372 | if (stop_state == eStateExited) |
5373 | event_to_broadcast_sp = event_sp; |
5374 | |
5375 | diagnostic_manager.PutString( |
5376 | severity: lldb::eSeverityError, |
5377 | str: "execution stopped with unexpected state."); |
5378 | return_value = eExpressionInterrupted; |
5379 | break; |
5380 | } |
5381 | } |
5382 | |
5383 | if (keep_going) |
5384 | continue; |
5385 | else |
5386 | break; |
5387 | } else { |
5388 | if (log) |
5389 | log->PutCString(cstr: "Process::RunThreadPlan(): got_event was true, but " |
5390 | "the event pointer was null. How odd..."); |
5391 | return_value = eExpressionInterrupted; |
5392 | break; |
5393 | } |
5394 | } else { |
5395 | // If we didn't get an event that means we've timed out... We will |
5396 | // interrupt the process here. Depending on what we were asked to do |
5397 | // we will either exit, or try with all threads running for the same |
5398 | // timeout. |
5399 | |
5400 | if (log) { |
5401 | if (options.GetTryAllThreads()) { |
5402 | if (before_first_timeout) { |
5403 | LLDB_LOG(log, |
5404 | "Running function with one thread timeout timed out."); |
5405 | } else |
5406 | LLDB_LOG(log, "Restarting function with all threads enabled and " |
5407 | "timeout: {0} timed out, abandoning execution.", |
5408 | timeout); |
5409 | } else |
5410 | LLDB_LOG(log, "Running function with timeout: {0} timed out, " |
5411 | "abandoning execution.", |
5412 | timeout); |
5413 | } |
5414 | |
5415 | // It is possible that between the time we issued the Halt, and we get |
5416 | // around to calling Halt the target could have stopped. That's fine, |
5417 | // Halt will figure that out and send the appropriate Stopped event. |
5418 | // BUT it is also possible that we stopped & restarted (e.g. hit a |
5419 | // signal with "stop" set to false.) In |
5420 | // that case, we'll get the stopped & restarted event, and we should go |
5421 | // back to waiting for the Halt's stopped event. That's what this |
5422 | // while loop does. |
5423 | |
5424 | bool back_to_top = true; |
5425 | uint32_t try_halt_again = 0; |
5426 | bool do_halt = true; |
5427 | const uint32_t num_retries = 5; |
5428 | while (try_halt_again < num_retries) { |
5429 | Status halt_error; |
5430 | if (do_halt) { |
5431 | LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); |
5432 | const bool clear_thread_plans = false; |
5433 | const bool use_run_lock = false; |
5434 | Halt(clear_thread_plans, use_run_lock); |
5435 | } |
5436 | if (halt_error.Success()) { |
5437 | if (log) |
5438 | log->PutCString(cstr: "Process::RunThreadPlan(): Halt succeeded."); |
5439 | |
5440 | got_event = |
5441 | listener_sp->GetEvent(event_sp, timeout: GetUtilityExpressionTimeout()); |
5442 | |
5443 | if (got_event) { |
5444 | stop_state = |
5445 | Process::ProcessEventData::GetStateFromEvent(event_ptr: event_sp.get()); |
5446 | if (log) { |
5447 | LLDB_LOGF(log, |
5448 | "Process::RunThreadPlan(): Stopped with event: %s", |
5449 | StateAsCString(stop_state)); |
5450 | if (stop_state == lldb::eStateStopped && |
5451 | Process::ProcessEventData::GetInterruptedFromEvent( |
5452 | event_ptr: event_sp.get())) |
5453 | log->PutCString(cstr: " Event was the Halt interruption event."); |
5454 | } |
5455 | |
5456 | if (stop_state == lldb::eStateStopped) { |
5457 | if (Process::ProcessEventData::GetRestartedFromEvent( |
5458 | event_ptr: event_sp.get())) { |
5459 | if (log) |
5460 | log->PutCString(cstr: "Process::RunThreadPlan(): Went to halt " |
5461 | "but got a restarted event, there must be " |
5462 | "an un-restarted stopped event so try " |
5463 | "again... " |
5464 | "Exiting wait loop."); |
5465 | try_halt_again++; |
5466 | do_halt = false; |
5467 | continue; |
5468 | } |
5469 | |
5470 | // Between the time we initiated the Halt and the time we |
5471 | // delivered it, the process could have already finished its |
5472 | // job. Check that here: |
5473 | const bool handle_interrupts = false; |
5474 | if (auto result = HandleStoppedEvent( |
5475 | thread_id: expr_thread_id, thread_plan_sp, restorer&: thread_plan_restorer, |
5476 | event_sp, event_to_broadcast_sp, options, |
5477 | handle_interrupts)) { |
5478 | return_value = *result; |
5479 | back_to_top = false; |
5480 | break; |
5481 | } |
5482 | |
5483 | if (!options.GetTryAllThreads()) { |
5484 | if (log) |
5485 | log->PutCString(cstr: "Process::RunThreadPlan(): try_all_threads " |
5486 | "was false, we stopped so now we're " |
5487 | "quitting."); |
5488 | return_value = eExpressionInterrupted; |
5489 | back_to_top = false; |
5490 | break; |
5491 | } |
5492 | |
5493 | if (before_first_timeout) { |
5494 | // Set all the other threads to run, and return to the top of |
5495 | // the loop, which will continue; |
5496 | before_first_timeout = false; |
5497 | thread_plan_sp->SetStopOthers(false); |
5498 | if (log) |
5499 | log->PutCString( |
5500 | cstr: "Process::RunThreadPlan(): about to resume."); |
5501 | |
5502 | back_to_top = true; |
5503 | break; |
5504 | } else { |
5505 | // Running all threads failed, so return Interrupted. |
5506 | if (log) |
5507 | log->PutCString(cstr: "Process::RunThreadPlan(): running all " |
5508 | "threads timed out."); |
5509 | return_value = eExpressionInterrupted; |
5510 | back_to_top = false; |
5511 | break; |
5512 | } |
5513 | } |
5514 | } else { |
5515 | if (log) |
5516 | log->PutCString(cstr: "Process::RunThreadPlan(): halt said it " |
5517 | "succeeded, but I got no event. " |
5518 | "I'm getting out of here passing Interrupted."); |
5519 | return_value = eExpressionInterrupted; |
5520 | back_to_top = false; |
5521 | break; |
5522 | } |
5523 | } else { |
5524 | try_halt_again++; |
5525 | continue; |
5526 | } |
5527 | } |
5528 | |
5529 | if (!back_to_top || try_halt_again > num_retries) |
5530 | break; |
5531 | else |
5532 | continue; |
5533 | } |
5534 | } // END WAIT LOOP |
5535 | |
5536 | // If we had to start up a temporary private state thread to run this |
5537 | // thread plan, shut it down now. |
5538 | if (backup_private_state_thread.IsJoinable()) { |
5539 | StopPrivateStateThread(); |
5540 | Status error; |
5541 | m_private_state_thread = backup_private_state_thread; |
5542 | if (stopper_base_plan_sp) { |
5543 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: stopper_base_plan_sp); |
5544 | } |
5545 | if (old_state != eStateInvalid) |
5546 | m_public_state.SetValueNoLock(old_state); |
5547 | } |
5548 | |
5549 | // If our thread went away on us, we need to get out of here without |
5550 | // doing any more work. We don't have to clean up the thread plan, that |
5551 | // will have happened when the Thread was destroyed. |
5552 | if (return_value == eExpressionThreadVanished) { |
5553 | return return_value; |
5554 | } |
5555 | |
5556 | if (return_value != eExpressionCompleted && log) { |
5557 | // Print a backtrace into the log so we can figure out where we are: |
5558 | StreamString s; |
5559 | s.PutCString(cstr: "Thread state after unsuccessful completion: \n"); |
5560 | thread->GetStackFrameStatus(strm&: s, first_frame: 0, UINT32_MAX, show_frame_info: true, UINT32_MAX, |
5561 | /*show_hidden*/ true); |
5562 | log->PutString(str: s.GetString()); |
5563 | } |
5564 | // Restore the thread state if we are going to discard the plan execution. |
5565 | // There are three cases where this could happen: 1) The execution |
5566 | // successfully completed 2) We hit a breakpoint, and ignore_breakpoints |
5567 | // was true 3) We got some other error, and discard_on_error was true |
5568 | bool should_unwind = (return_value == eExpressionInterrupted && |
5569 | options.DoesUnwindOnError()) || |
5570 | (return_value == eExpressionHitBreakpoint && |
5571 | options.DoesIgnoreBreakpoints()); |
5572 | |
5573 | if (return_value == eExpressionCompleted || should_unwind) { |
5574 | thread_plan_sp->RestoreThreadState(); |
5575 | } |
5576 | |
5577 | // Now do some processing on the results of the run: |
5578 | if (return_value == eExpressionInterrupted || |
5579 | return_value == eExpressionHitBreakpoint) { |
5580 | if (log) { |
5581 | StreamString s; |
5582 | if (event_sp) |
5583 | event_sp->Dump(s: &s); |
5584 | else { |
5585 | log->PutCString(cstr: "Process::RunThreadPlan(): Stop event that " |
5586 | "interrupted us is NULL."); |
5587 | } |
5588 | |
5589 | StreamString ts; |
5590 | |
5591 | const char *event_explanation = nullptr; |
5592 | |
5593 | do { |
5594 | if (!event_sp) { |
5595 | event_explanation = "<no event>"; |
5596 | break; |
5597 | } else if (event_sp->GetType() == eBroadcastBitInterrupt) { |
5598 | event_explanation = "<user interrupt>"; |
5599 | break; |
5600 | } else { |
5601 | const Process::ProcessEventData *event_data = |
5602 | Process::ProcessEventData::GetEventDataFromEvent( |
5603 | event_ptr: event_sp.get()); |
5604 | |
5605 | if (!event_data) { |
5606 | event_explanation = "<no event data>"; |
5607 | break; |
5608 | } |
5609 | |
5610 | Process *process = event_data->GetProcessSP().get(); |
5611 | |
5612 | if (!process) { |
5613 | event_explanation = "<no process>"; |
5614 | break; |
5615 | } |
5616 | |
5617 | ThreadList &thread_list = process->GetThreadList(); |
5618 | |
5619 | uint32_t num_threads = thread_list.GetSize(); |
5620 | uint32_t thread_index; |
5621 | |
5622 | ts.Printf(format: "<%u threads> ", num_threads); |
5623 | |
5624 | for (thread_index = 0; thread_index < num_threads; ++thread_index) { |
5625 | Thread *thread = thread_list.GetThreadAtIndex(idx: thread_index).get(); |
5626 | |
5627 | if (!thread) { |
5628 | ts.Printf(format: "<?> "); |
5629 | continue; |
5630 | } |
5631 | |
5632 | ts.Printf(format: "<0x%4.4"PRIx64 " ", thread->GetID()); |
5633 | RegisterContext *register_context = |
5634 | thread->GetRegisterContext().get(); |
5635 | |
5636 | if (register_context) |
5637 | ts.Printf(format: "[ip 0x%"PRIx64 "] ", register_context->GetPC()); |
5638 | else |
5639 | ts.Printf(format: "[ip unknown] "); |
5640 | |
5641 | // Show the private stop info here, the public stop info will be |
5642 | // from the last natural stop. |
5643 | lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); |
5644 | if (stop_info_sp) { |
5645 | const char *stop_desc = stop_info_sp->GetDescription(); |
5646 | if (stop_desc) |
5647 | ts.PutCString(cstr: stop_desc); |
5648 | } |
5649 | ts.Printf(format: ">"); |
5650 | } |
5651 | |
5652 | event_explanation = ts.GetData(); |
5653 | } |
5654 | } while (false); |
5655 | |
5656 | if (event_explanation) |
5657 | LLDB_LOGF(log, |
5658 | "Process::RunThreadPlan(): execution interrupted: %s %s", |
5659 | s.GetData(), event_explanation); |
5660 | else |
5661 | LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", |
5662 | s.GetData()); |
5663 | } |
5664 | |
5665 | if (should_unwind) { |
5666 | LLDB_LOGF(log, |
5667 | "Process::RunThreadPlan: ExecutionInterrupted - " |
5668 | "discarding thread plans up to %p.", |
5669 | static_cast<void *>(thread_plan_sp.get())); |
5670 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: thread_plan_sp); |
5671 | } else { |
5672 | LLDB_LOGF(log, |
5673 | "Process::RunThreadPlan: ExecutionInterrupted - for " |
5674 | "plan: %p not discarding.", |
5675 | static_cast<void *>(thread_plan_sp.get())); |
5676 | } |
5677 | } else if (return_value == eExpressionSetupError) { |
5678 | if (log) |
5679 | log->PutCString(cstr: "Process::RunThreadPlan(): execution set up error."); |
5680 | |
5681 | if (options.DoesUnwindOnError()) { |
5682 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: thread_plan_sp); |
5683 | } |
5684 | } else { |
5685 | if (thread->IsThreadPlanDone(plan: thread_plan_sp.get())) { |
5686 | if (log) |
5687 | log->PutCString(cstr: "Process::RunThreadPlan(): thread plan is done"); |
5688 | return_value = eExpressionCompleted; |
5689 | } else if (thread->WasThreadPlanDiscarded(plan: thread_plan_sp.get())) { |
5690 | if (log) |
5691 | log->PutCString( |
5692 | cstr: "Process::RunThreadPlan(): thread plan was discarded"); |
5693 | return_value = eExpressionDiscarded; |
5694 | } else { |
5695 | if (log) |
5696 | log->PutCString( |
5697 | cstr: "Process::RunThreadPlan(): thread plan stopped in mid course"); |
5698 | if (options.DoesUnwindOnError() && thread_plan_sp) { |
5699 | if (log) |
5700 | log->PutCString(cstr: "Process::RunThreadPlan(): discarding thread plan " |
5701 | "'cause unwind_on_error is set."); |
5702 | thread->DiscardThreadPlansUpToPlan(up_to_plan_sp&: thread_plan_sp); |
5703 | } |
5704 | } |
5705 | } |
5706 | |
5707 | // Thread we ran the function in may have gone away because we ran the |
5708 | // target Check that it's still there, and if it is put it back in the |
5709 | // context. Also restore the frame in the context if it is still present. |
5710 | thread = GetThreadList().FindThreadByIndexID(index_id: thread_idx_id, can_update: true).get(); |
5711 | if (thread) { |
5712 | exe_ctx.SetFrameSP(thread->GetFrameWithStackID(stack_id: ctx_frame_id)); |
5713 | } |
5714 | |
5715 | // Also restore the current process'es selected frame & thread, since this |
5716 | // function calling may be done behind the user's back. |
5717 | |
5718 | if (selected_tid != LLDB_INVALID_THREAD_ID) { |
5719 | if (GetThreadList().SetSelectedThreadByIndexID(index_id: selected_tid) && |
5720 | selected_stack_id.IsValid()) { |
5721 | // We were able to restore the selected thread, now restore the frame: |
5722 | std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); |
5723 | StackFrameSP old_frame_sp = |
5724 | GetThreadList().GetSelectedThread()->GetFrameWithStackID( |
5725 | stack_id: selected_stack_id); |
5726 | if (old_frame_sp) |
5727 | GetThreadList().GetSelectedThread()->SetSelectedFrame( |
5728 | frame: old_frame_sp.get()); |
5729 | } |
5730 | } |
5731 | } |
5732 | |
5733 | // If the process exited during the run of the thread plan, notify everyone. |
5734 | |
5735 | if (event_to_broadcast_sp) { |
5736 | if (log) |
5737 | log->PutCString(cstr: "Process::RunThreadPlan(): rebroadcasting event."); |
5738 | BroadcastEvent(event_sp&: event_to_broadcast_sp); |
5739 | } |
5740 | |
5741 | return return_value; |
5742 | } |
5743 | |
5744 | void Process::GetStatus(Stream &strm) { |
5745 | const StateType state = GetState(); |
5746 | if (StateIsStoppedState(state, must_exist: false)) { |
5747 | if (state == eStateExited) { |
5748 | int exit_status = GetExitStatus(); |
5749 | const char *exit_description = GetExitDescription(); |
5750 | strm.Printf(format: "Process %"PRIu64 " exited with status = %i (0x%8.8x) %s\n", |
5751 | GetID(), exit_status, exit_status, |
5752 | exit_description ? exit_description : ""); |
5753 | } else { |
5754 | if (state == eStateConnected) |
5755 | strm.Printf(format: "Connected to remote target.\n"); |
5756 | else |
5757 | strm.Printf(format: "Process %"PRIu64 " %s\n", GetID(), StateAsCString(state)); |
5758 | } |
5759 | } else { |
5760 | strm.Printf(format: "Process %"PRIu64 " is running.\n", GetID()); |
5761 | } |
5762 | } |
5763 | |
5764 | size_t Process::GetThreadStatus(Stream &strm, |
5765 | bool only_threads_with_stop_reason, |
5766 | uint32_t start_frame, uint32_t num_frames, |
5767 | uint32_t num_frames_with_source, |
5768 | bool stop_format) { |
5769 | size_t num_thread_infos_dumped = 0; |
5770 | |
5771 | // You can't hold the thread list lock while calling Thread::GetStatus. That |
5772 | // very well might run code (e.g. if we need it to get return values or |
5773 | // arguments.) For that to work the process has to be able to acquire it. |
5774 | // So instead copy the thread ID's, and look them up one by one: |
5775 | |
5776 | uint32_t num_threads; |
5777 | std::vector<lldb::tid_t> thread_id_array; |
5778 | // Scope for thread list locker; |
5779 | { |
5780 | std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); |
5781 | ThreadList &curr_thread_list = GetThreadList(); |
5782 | num_threads = curr_thread_list.GetSize(); |
5783 | uint32_t idx; |
5784 | thread_id_array.resize(new_size: num_threads); |
5785 | for (idx = 0; idx < num_threads; ++idx) |
5786 | thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); |
5787 | } |
5788 | |
5789 | for (uint32_t i = 0; i < num_threads; i++) { |
5790 | ThreadSP thread_sp(GetThreadList().FindThreadByID(tid: thread_id_array[i])); |
5791 | if (thread_sp) { |
5792 | if (only_threads_with_stop_reason) { |
5793 | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); |
5794 | if (!stop_info_sp || !stop_info_sp->ShouldShow()) |
5795 | continue; |
5796 | } |
5797 | thread_sp->GetStatus(strm, start_frame, num_frames, |
5798 | num_frames_with_source, stop_format, |
5799 | /*show_hidden*/ num_frames <= 1); |
5800 | ++num_thread_infos_dumped; |
5801 | } else { |
5802 | Log *log = GetLog(mask: LLDBLog::Process); |
5803 | LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x"PRIu64 |
5804 | " vanished while running Thread::GetStatus."); |
5805 | } |
5806 | } |
5807 | return num_thread_infos_dumped; |
5808 | } |
5809 | |
5810 | void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { |
5811 | m_memory_cache.AddInvalidRange(base_addr: region.GetRangeBase(), byte_size: region.GetByteSize()); |
5812 | } |
5813 | |
5814 | bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { |
5815 | return m_memory_cache.RemoveInvalidRange(base_addr: region.GetRangeBase(), |
5816 | byte_size: region.GetByteSize()); |
5817 | } |
5818 | |
5819 | void Process::AddPreResumeAction(PreResumeActionCallback callback, |
5820 | void *baton) { |
5821 | m_pre_resume_actions.push_back(x: PreResumeCallbackAndBaton(callback, baton)); |
5822 | } |
5823 | |
5824 | bool Process::RunPreResumeActions() { |
5825 | bool result = true; |
5826 | while (!m_pre_resume_actions.empty()) { |
5827 | struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); |
5828 | m_pre_resume_actions.pop_back(); |
5829 | bool this_result = action.callback(action.baton); |
5830 | if (result) |
5831 | result = this_result; |
5832 | } |
5833 | return result; |
5834 | } |
5835 | |
5836 | void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } |
5837 | |
5838 | void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) |
5839 | { |
5840 | PreResumeCallbackAndBaton element(callback, baton); |
5841 | auto found_iter = llvm::find(Range&: m_pre_resume_actions, Val: element); |
5842 | if (found_iter != m_pre_resume_actions.end()) |
5843 | { |
5844 | m_pre_resume_actions.erase(position: found_iter); |
5845 | } |
5846 | } |
5847 | |
5848 | ProcessRunLock &Process::GetRunLock() { |
5849 | if (Process::CurrentThreadIsPrivateStateThread()) |
5850 | return m_private_run_lock; |
5851 | return m_public_run_lock; |
5852 | } |
5853 | |
5854 | bool Process::CurrentThreadIsPrivateStateThread() |
5855 | { |
5856 | return m_private_state_thread.EqualsThread(thread: Host::GetCurrentThread()); |
5857 | } |
5858 | |
5859 | |
5860 | void Process::Flush() { |
5861 | m_thread_list.Flush(); |
5862 | m_extended_thread_list.Flush(); |
5863 | m_extended_thread_stop_id = 0; |
5864 | m_queue_list.Clear(); |
5865 | m_queue_list_stop_id = 0; |
5866 | } |
5867 | |
5868 | lldb::addr_t Process::GetCodeAddressMask() { |
5869 | if (uint32_t num_bits_setting = GetVirtualAddressableBits()) |
5870 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5871 | |
5872 | return m_code_address_mask; |
5873 | } |
5874 | |
5875 | lldb::addr_t Process::GetDataAddressMask() { |
5876 | if (uint32_t num_bits_setting = GetVirtualAddressableBits()) |
5877 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5878 | |
5879 | return m_data_address_mask; |
5880 | } |
5881 | |
5882 | lldb::addr_t Process::GetHighmemCodeAddressMask() { |
5883 | if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) |
5884 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5885 | |
5886 | if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) |
5887 | return m_highmem_code_address_mask; |
5888 | return GetCodeAddressMask(); |
5889 | } |
5890 | |
5891 | lldb::addr_t Process::GetHighmemDataAddressMask() { |
5892 | if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) |
5893 | return AddressableBits::AddressableBitToMask(addressable_bits: num_bits_setting); |
5894 | |
5895 | if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) |
5896 | return m_highmem_data_address_mask; |
5897 | return GetDataAddressMask(); |
5898 | } |
5899 | |
5900 | void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { |
5901 | LLDB_LOG(GetLog(LLDBLog::Process), |
5902 | "Setting Process code address mask to {0:x}", code_address_mask); |
5903 | m_code_address_mask = code_address_mask; |
5904 | } |
5905 | |
5906 | void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { |
5907 | LLDB_LOG(GetLog(LLDBLog::Process), |
5908 | "Setting Process data address mask to {0:x}", data_address_mask); |
5909 | m_data_address_mask = data_address_mask; |
5910 | } |
5911 | |
5912 | void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { |
5913 | LLDB_LOG(GetLog(LLDBLog::Process), |
5914 | "Setting Process highmem code address mask to {0:x}", |
5915 | code_address_mask); |
5916 | m_highmem_code_address_mask = code_address_mask; |
5917 | } |
5918 | |
5919 | void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { |
5920 | LLDB_LOG(GetLog(LLDBLog::Process), |
5921 | "Setting Process highmem data address mask to {0:x}", |
5922 | data_address_mask); |
5923 | m_highmem_data_address_mask = data_address_mask; |
5924 | } |
5925 | |
5926 | addr_t Process::FixCodeAddress(addr_t addr) { |
5927 | if (ABISP abi_sp = GetABI()) |
5928 | addr = abi_sp->FixCodeAddress(pc: addr); |
5929 | return addr; |
5930 | } |
5931 | |
5932 | addr_t Process::FixDataAddress(addr_t addr) { |
5933 | if (ABISP abi_sp = GetABI()) |
5934 | addr = abi_sp->FixDataAddress(pc: addr); |
5935 | return addr; |
5936 | } |
5937 | |
5938 | addr_t Process::FixAnyAddress(addr_t addr) { |
5939 | if (ABISP abi_sp = GetABI()) |
5940 | addr = abi_sp->FixAnyAddress(pc: addr); |
5941 | return addr; |
5942 | } |
5943 | |
5944 | void Process::DidExec() { |
5945 | Log *log = GetLog(mask: LLDBLog::Process); |
5946 | LLDB_LOGF(log, "Process::%s()", __FUNCTION__); |
5947 | |
5948 | Target &target = GetTarget(); |
5949 | target.CleanupProcess(); |
5950 | target.ClearModules(delete_locations: false); |
5951 | m_dynamic_checkers_up.reset(); |
5952 | m_abi_sp.reset(); |
5953 | m_system_runtime_up.reset(); |
5954 | m_os_up.reset(); |
5955 | m_dyld_up.reset(); |
5956 | m_jit_loaders_up.reset(); |
5957 | m_image_tokens.clear(); |
5958 | // After an exec, the inferior is a new process and these memory regions are |
5959 | // no longer allocated. |
5960 | m_allocated_memory_cache.Clear(/*deallocte_memory=*/deallocate_memory: false); |
5961 | { |
5962 | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); |
5963 | m_language_runtimes.clear(); |
5964 | } |
5965 | m_instrumentation_runtimes.clear(); |
5966 | m_thread_list.DiscardThreadPlans(); |
5967 | m_memory_cache.Clear(clear_invalid_ranges: true); |
5968 | DoDidExec(); |
5969 | CompleteAttach(); |
5970 | // Flush the process (threads and all stack frames) after running |
5971 | // CompleteAttach() in case the dynamic loader loaded things in new |
5972 | // locations. |
5973 | Flush(); |
5974 | |
5975 | // After we figure out what was loaded/unloaded in CompleteAttach, we need to |
5976 | // let the target know so it can do any cleanup it needs to. |
5977 | target.DidExec(); |
5978 | } |
5979 | |
5980 | addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { |
5981 | if (address == nullptr) { |
5982 | error = Status::FromErrorString(str: "Invalid address argument"); |
5983 | return LLDB_INVALID_ADDRESS; |
5984 | } |
5985 | |
5986 | addr_t function_addr = LLDB_INVALID_ADDRESS; |
5987 | |
5988 | addr_t addr = address->GetLoadAddress(target: &GetTarget()); |
5989 | std::map<addr_t, addr_t>::const_iterator iter = |
5990 | m_resolved_indirect_addresses.find(x: addr); |
5991 | if (iter != m_resolved_indirect_addresses.end()) { |
5992 | function_addr = (*iter).second; |
5993 | } else { |
5994 | if (!CallVoidArgVoidPtrReturn(address, returned_func&: function_addr)) { |
5995 | Symbol *symbol = address->CalculateSymbolContextSymbol(); |
5996 | error = Status::FromErrorStringWithFormat( |
5997 | format: "Unable to call resolver for indirect function %s", |
5998 | symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); |
5999 | function_addr = LLDB_INVALID_ADDRESS; |
6000 | } else { |
6001 | if (ABISP abi_sp = GetABI()) |
6002 | function_addr = abi_sp->FixCodeAddress(pc: function_addr); |
6003 | m_resolved_indirect_addresses.insert( |
6004 | x: std::pair<addr_t, addr_t>(addr, function_addr)); |
6005 | } |
6006 | } |
6007 | return function_addr; |
6008 | } |
6009 | |
6010 | void Process::ModulesDidLoad(ModuleList &module_list) { |
6011 | // Inform the system runtime of the modified modules. |
6012 | SystemRuntime *sys_runtime = GetSystemRuntime(); |
6013 | if (sys_runtime) |
6014 | sys_runtime->ModulesDidLoad(module_list); |
6015 | |
6016 | GetJITLoaders().ModulesDidLoad(module_list); |
6017 | |
6018 | // Give the instrumentation runtimes a chance to be created before informing |
6019 | // them of the modified modules. |
6020 | InstrumentationRuntime::ModulesDidLoad(module_list, process: this, |
6021 | runtimes&: m_instrumentation_runtimes); |
6022 | for (auto &runtime : m_instrumentation_runtimes) |
6023 | runtime.second->ModulesDidLoad(module_list); |
6024 | |
6025 | // Give the language runtimes a chance to be created before informing them of |
6026 | // the modified modules. |
6027 | for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { |
6028 | if (LanguageRuntime *runtime = GetLanguageRuntime(language: lang_type)) |
6029 | runtime->ModulesDidLoad(module_list); |
6030 | } |
6031 | |
6032 | // If we don't have an operating system plug-in, try to load one since |
6033 | // loading shared libraries might cause a new one to try and load |
6034 | if (!m_os_up) |
6035 | LoadOperatingSystemPlugin(flush: false); |
6036 | |
6037 | // Inform the structured-data plugins of the modified modules. |
6038 | for (auto &pair : m_structured_data_plugin_map) { |
6039 | if (pair.second) |
6040 | pair.second->ModulesDidLoad(process&: *this, module_list); |
6041 | } |
6042 | } |
6043 | |
6044 | void Process::PrintWarningOptimization(const SymbolContext &sc) { |
6045 | if (!GetWarningsOptimization()) |
6046 | return; |
6047 | if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) |
6048 | return; |
6049 | sc.module_sp->ReportWarningOptimization(debugger_id: GetTarget().GetDebugger().GetID()); |
6050 | } |
6051 | |
6052 | void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { |
6053 | if (!GetWarningsUnsupportedLanguage()) |
6054 | return; |
6055 | if (!sc.module_sp) |
6056 | return; |
6057 | LanguageType language = sc.GetLanguage(); |
6058 | if (language == eLanguageTypeUnknown || |
6059 | language == lldb::eLanguageTypeAssembly || |
6060 | language == lldb::eLanguageTypeMipsAssembler) |
6061 | return; |
6062 | LanguageSet plugins = |
6063 | PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); |
6064 | if (plugins[language]) |
6065 | return; |
6066 | sc.module_sp->ReportWarningUnsupportedLanguage( |
6067 | language, debugger_id: GetTarget().GetDebugger().GetID()); |
6068 | } |
6069 | |
6070 | bool Process::GetProcessInfo(ProcessInstanceInfo &info) { |
6071 | info.Clear(); |
6072 | |
6073 | PlatformSP platform_sp = GetTarget().GetPlatform(); |
6074 | if (!platform_sp) |
6075 | return false; |
6076 | |
6077 | return platform_sp->GetProcessInfo(pid: GetID(), proc_info&: info); |
6078 | } |
6079 | |
6080 | lldb_private::UUID Process::FindModuleUUID(const llvm::StringRef path) { |
6081 | return lldb_private::UUID(); |
6082 | } |
6083 | |
6084 | ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { |
6085 | ThreadCollectionSP threads; |
6086 | |
6087 | const MemoryHistorySP &memory_history = |
6088 | MemoryHistory::FindPlugin(process: shared_from_this()); |
6089 | |
6090 | if (!memory_history) { |
6091 | return threads; |
6092 | } |
6093 | |
6094 | threads = std::make_shared<ThreadCollection>( |
6095 | args: memory_history->GetHistoryThreads(address: addr)); |
6096 | |
6097 | return threads; |
6098 | } |
6099 | |
6100 | InstrumentationRuntimeSP |
6101 | Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { |
6102 | InstrumentationRuntimeCollection::iterator pos; |
6103 | pos = m_instrumentation_runtimes.find(x: type); |
6104 | if (pos == m_instrumentation_runtimes.end()) { |
6105 | return InstrumentationRuntimeSP(); |
6106 | } else |
6107 | return (*pos).second; |
6108 | } |
6109 | |
6110 | bool Process::GetModuleSpec(const FileSpec &module_file_spec, |
6111 | const ArchSpec &arch, ModuleSpec &module_spec) { |
6112 | module_spec.Clear(); |
6113 | return false; |
6114 | } |
6115 | |
6116 | size_t Process::AddImageToken(lldb::addr_t image_ptr) { |
6117 | m_image_tokens.push_back(x: image_ptr); |
6118 | return m_image_tokens.size() - 1; |
6119 | } |
6120 | |
6121 | lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { |
6122 | if (token < m_image_tokens.size()) |
6123 | return m_image_tokens[token]; |
6124 | return LLDB_INVALID_IMAGE_TOKEN; |
6125 | } |
6126 | |
6127 | void Process::ResetImageToken(size_t token) { |
6128 | if (token < m_image_tokens.size()) |
6129 | m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; |
6130 | } |
6131 | |
6132 | Address |
6133 | Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, |
6134 | AddressRange range_bounds) { |
6135 | Target &target = GetTarget(); |
6136 | DisassemblerSP disassembler_sp; |
6137 | InstructionList *insn_list = nullptr; |
6138 | |
6139 | Address retval = default_stop_addr; |
6140 | |
6141 | if (!target.GetUseFastStepping()) |
6142 | return retval; |
6143 | if (!default_stop_addr.IsValid()) |
6144 | return retval; |
6145 | |
6146 | const char *plugin_name = nullptr; |
6147 | const char *flavor = nullptr; |
6148 | const char *cpu = nullptr; |
6149 | const char *features = nullptr; |
6150 | disassembler_sp = Disassembler::DisassembleRange( |
6151 | arch: target.GetArchitecture(), plugin_name, flavor, cpu, features, target&: GetTarget(), |
6152 | disasm_ranges: range_bounds); |
6153 | if (disassembler_sp) |
6154 | insn_list = &disassembler_sp->GetInstructionList(); |
6155 | |
6156 | if (insn_list == nullptr) { |
6157 | return retval; |
6158 | } |
6159 | |
6160 | size_t insn_offset = |
6161 | insn_list->GetIndexOfInstructionAtAddress(addr: default_stop_addr); |
6162 | if (insn_offset == UINT32_MAX) { |
6163 | return retval; |
6164 | } |
6165 | |
6166 | uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( |
6167 | start: insn_offset, ignore_calls: false /* ignore_calls*/, found_calls: nullptr); |
6168 | if (branch_index == UINT32_MAX) { |
6169 | return retval; |
6170 | } |
6171 | |
6172 | if (branch_index > insn_offset) { |
6173 | Address next_branch_insn_address = |
6174 | insn_list->GetInstructionAtIndex(idx: branch_index)->GetAddress(); |
6175 | if (next_branch_insn_address.IsValid() && |
6176 | range_bounds.ContainsFileAddress(so_addr: next_branch_insn_address)) { |
6177 | retval = next_branch_insn_address; |
6178 | } |
6179 | } |
6180 | |
6181 | return retval; |
6182 | } |
6183 | |
6184 | Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, |
6185 | MemoryRegionInfo &range_info) { |
6186 | if (const lldb::ABISP &abi = GetABI()) |
6187 | load_addr = abi->FixAnyAddress(pc: load_addr); |
6188 | Status error = DoGetMemoryRegionInfo(load_addr, range_info); |
6189 | // Reject a region that does not contain the requested address. |
6190 | if (error.Success() && !range_info.GetRange().Contains(r: load_addr)) |
6191 | error = Status::FromErrorString(str: "Invalid memory region"); |
6192 | |
6193 | return error; |
6194 | } |
6195 | |
6196 | Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { |
6197 | Status error; |
6198 | |
6199 | lldb::addr_t range_end = 0; |
6200 | const lldb::ABISP &abi = GetABI(); |
6201 | |
6202 | region_list.clear(); |
6203 | do { |
6204 | lldb_private::MemoryRegionInfo region_info; |
6205 | error = GetMemoryRegionInfo(load_addr: range_end, range_info&: region_info); |
6206 | // GetMemoryRegionInfo should only return an error if it is unimplemented. |
6207 | if (error.Fail()) { |
6208 | region_list.clear(); |
6209 | break; |
6210 | } |
6211 | |
6212 | // We only check the end address, not start and end, because we assume that |
6213 | // the start will not have non-address bits until the first unmappable |
6214 | // region. We will have exited the loop by that point because the previous |
6215 | // region, the last mappable region, will have non-address bits in its end |
6216 | // address. |
6217 | range_end = region_info.GetRange().GetRangeEnd(); |
6218 | if (region_info.GetMapped() == MemoryRegionInfo::eYes) { |
6219 | region_list.push_back(x: std::move(region_info)); |
6220 | } |
6221 | } while ( |
6222 | // For a process with no non-address bits, all address bits |
6223 | // set means the end of memory. |
6224 | range_end != LLDB_INVALID_ADDRESS && |
6225 | // If we have non-address bits and some are set then the end |
6226 | // is at or beyond the end of mappable memory. |
6227 | !(abi && (abi->FixAnyAddress(pc: range_end) != range_end))); |
6228 | |
6229 | return error; |
6230 | } |
6231 | |
6232 | Status |
6233 | Process::ConfigureStructuredData(llvm::StringRef type_name, |
6234 | const StructuredData::ObjectSP &config_sp) { |
6235 | // If you get this, the Process-derived class needs to implement a method to |
6236 | // enable an already-reported asynchronous structured data feature. See |
6237 | // ProcessGDBRemote for an example implementation over gdb-remote. |
6238 | return Status::FromErrorString(str: "unimplemented"); |
6239 | } |
6240 | |
6241 | void Process::MapSupportedStructuredDataPlugins( |
6242 | const StructuredData::Array &supported_type_names) { |
6243 | Log *log = GetLog(mask: LLDBLog::Process); |
6244 | |
6245 | // Bail out early if there are no type names to map. |
6246 | if (supported_type_names.GetSize() == 0) { |
6247 | LLDB_LOG(log, "no structured data types supported"); |
6248 | return; |
6249 | } |
6250 | |
6251 | // These StringRefs are backed by the input parameter. |
6252 | std::set<llvm::StringRef> type_names; |
6253 | |
6254 | LLDB_LOG(log, |
6255 | "the process supports the following async structured data types:"); |
6256 | |
6257 | supported_type_names.ForEach( |
6258 | foreach_callback: [&type_names, &log](StructuredData::Object *object) { |
6259 | // There shouldn't be null objects in the array. |
6260 | if (!object) |
6261 | return false; |
6262 | |
6263 | // All type names should be strings. |
6264 | const llvm::StringRef type_name = object->GetStringValue(); |
6265 | if (type_name.empty()) |
6266 | return false; |
6267 | |
6268 | type_names.insert(x: type_name); |
6269 | LLDB_LOG(log, "- {0}", type_name); |
6270 | return true; |
6271 | }); |
6272 | |
6273 | // For each StructuredDataPlugin, if the plugin handles any of the types in |
6274 | // the supported_type_names, map that type name to that plugin. Stop when |
6275 | // we've consumed all the type names. |
6276 | // FIXME: should we return an error if there are type names nobody |
6277 | // supports? |
6278 | for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { |
6279 | auto create_instance = |
6280 | PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( |
6281 | idx: plugin_index); |
6282 | if (!create_instance) |
6283 | break; |
6284 | |
6285 | // Create the plugin. |
6286 | StructuredDataPluginSP plugin_sp = (*create_instance)(*this); |
6287 | if (!plugin_sp) { |
6288 | // This plugin doesn't think it can work with the process. Move on to the |
6289 | // next. |
6290 | continue; |
6291 | } |
6292 | |
6293 | // For any of the remaining type names, map any that this plugin supports. |
6294 | std::vector<llvm::StringRef> names_to_remove; |
6295 | for (llvm::StringRef type_name : type_names) { |
6296 | if (plugin_sp->SupportsStructuredDataType(type_name)) { |
6297 | m_structured_data_plugin_map.insert( |
6298 | KV: std::make_pair(x&: type_name, y&: plugin_sp)); |
6299 | names_to_remove.push_back(x: type_name); |
6300 | LLDB_LOG(log, "using plugin {0} for type name {1}", |
6301 | plugin_sp->GetPluginName(), type_name); |
6302 | } |
6303 | } |
6304 | |
6305 | // Remove the type names that were consumed by this plugin. |
6306 | for (llvm::StringRef type_name : names_to_remove) |
6307 | type_names.erase(x: type_name); |
6308 | } |
6309 | } |
6310 | |
6311 | bool Process::RouteAsyncStructuredData( |
6312 | const StructuredData::ObjectSP object_sp) { |
6313 | // Nothing to do if there's no data. |
6314 | if (!object_sp) |
6315 | return false; |
6316 | |
6317 | // The contract is this must be a dictionary, so we can look up the routing |
6318 | // key via the top-level 'type' string value within the dictionary. |
6319 | StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); |
6320 | if (!dictionary) |
6321 | return false; |
6322 | |
6323 | // Grab the async structured type name (i.e. the feature/plugin name). |
6324 | llvm::StringRef type_name; |
6325 | if (!dictionary->GetValueForKeyAsString(key: "type", result&: type_name)) |
6326 | return false; |
6327 | |
6328 | // Check if there's a plugin registered for this type name. |
6329 | auto find_it = m_structured_data_plugin_map.find(Key: type_name); |
6330 | if (find_it == m_structured_data_plugin_map.end()) { |
6331 | // We don't have a mapping for this structured data type. |
6332 | return false; |
6333 | } |
6334 | |
6335 | // Route the structured data to the plugin. |
6336 | find_it->second->HandleArrivalOfStructuredData(process&: *this, type_name, object_sp); |
6337 | return true; |
6338 | } |
6339 | |
6340 | Status Process::UpdateAutomaticSignalFiltering() { |
6341 | // Default implementation does nothign. |
6342 | // No automatic signal filtering to speak of. |
6343 | return Status(); |
6344 | } |
6345 | |
6346 | UtilityFunction *Process::GetLoadImageUtilityFunction( |
6347 | Platform *platform, |
6348 | llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { |
6349 | if (platform != GetTarget().GetPlatform().get()) |
6350 | return nullptr; |
6351 | llvm::call_once(flag&: m_dlopen_utility_func_flag_once, |
6352 | F: [&] { m_dlopen_utility_func_up = factory(); }); |
6353 | return m_dlopen_utility_func_up.get(); |
6354 | } |
6355 | |
6356 | llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { |
6357 | if (!IsLiveDebugSession()) |
6358 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
6359 | S: "Can't trace a non-live process."); |
6360 | return llvm::make_error<UnimplementedError>(); |
6361 | } |
6362 | |
6363 | bool Process::CallVoidArgVoidPtrReturn(const Address *address, |
6364 | addr_t &returned_func, |
6365 | bool trap_exceptions) { |
6366 | Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); |
6367 | if (thread == nullptr || address == nullptr) |
6368 | return false; |
6369 | |
6370 | EvaluateExpressionOptions options; |
6371 | options.SetStopOthers(true); |
6372 | options.SetUnwindOnError(true); |
6373 | options.SetIgnoreBreakpoints(true); |
6374 | options.SetTryAllThreads(true); |
6375 | options.SetDebug(false); |
6376 | options.SetTimeout(GetUtilityExpressionTimeout()); |
6377 | options.SetTrapExceptions(trap_exceptions); |
6378 | |
6379 | auto type_system_or_err = |
6380 | GetTarget().GetScratchTypeSystemForLanguage(language: eLanguageTypeC); |
6381 | if (!type_system_or_err) { |
6382 | llvm::consumeError(Err: type_system_or_err.takeError()); |
6383 | return false; |
6384 | } |
6385 | auto ts = *type_system_or_err; |
6386 | if (!ts) |
6387 | return false; |
6388 | CompilerType void_ptr_type = |
6389 | ts->GetBasicTypeFromAST(basic_type: eBasicTypeVoid).GetPointerType(); |
6390 | lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( |
6391 | *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); |
6392 | if (call_plan_sp) { |
6393 | DiagnosticManager diagnostics; |
6394 | |
6395 | StackFrame *frame = thread->GetStackFrameAtIndex(idx: 0).get(); |
6396 | if (frame) { |
6397 | ExecutionContext exe_ctx; |
6398 | frame->CalculateExecutionContext(exe_ctx); |
6399 | ExpressionResults result = |
6400 | RunThreadPlan(exe_ctx, thread_plan_sp&: call_plan_sp, options, diagnostic_manager&: diagnostics); |
6401 | if (result == eExpressionCompleted) { |
6402 | returned_func = |
6403 | call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( |
6404 | LLDB_INVALID_ADDRESS); |
6405 | |
6406 | if (GetAddressByteSize() == 4) { |
6407 | if (returned_func == UINT32_MAX) |
6408 | return false; |
6409 | } else if (GetAddressByteSize() == 8) { |
6410 | if (returned_func == UINT64_MAX) |
6411 | return false; |
6412 | } |
6413 | return true; |
6414 | } |
6415 | } |
6416 | } |
6417 | |
6418 | return false; |
6419 | } |
6420 | |
6421 | llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { |
6422 | Architecture *arch = GetTarget().GetArchitecturePlugin(); |
6423 | const MemoryTagManager *tag_manager = |
6424 | arch ? arch->GetMemoryTagManager() : nullptr; |
6425 | if (!arch || !tag_manager) { |
6426 | return llvm::createStringError( |
6427 | EC: llvm::inconvertibleErrorCode(), |
6428 | S: "This architecture does not support memory tagging"); |
6429 | } |
6430 | |
6431 | if (!SupportsMemoryTagging()) { |
6432 | return llvm::createStringError(EC: llvm::inconvertibleErrorCode(), |
6433 | S: "Process does not support memory tagging"); |
6434 | } |
6435 | |
6436 | return tag_manager; |
6437 | } |
6438 | |
6439 | llvm::Expected<std::vector<lldb::addr_t>> |
6440 | Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { |
6441 | llvm::Expected<const MemoryTagManager *> tag_manager_or_err = |
6442 | GetMemoryTagManager(); |
6443 | if (!tag_manager_or_err) |
6444 | return tag_manager_or_err.takeError(); |
6445 | |
6446 | const MemoryTagManager *tag_manager = *tag_manager_or_err; |
6447 | llvm::Expected<std::vector<uint8_t>> tag_data = |
6448 | DoReadMemoryTags(addr, len, type: tag_manager->GetAllocationTagType()); |
6449 | if (!tag_data) |
6450 | return tag_data.takeError(); |
6451 | |
6452 | return tag_manager->UnpackTagsData(tags: *tag_data, |
6453 | granules: len / tag_manager->GetGranuleSize()); |
6454 | } |
6455 | |
6456 | Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, |
6457 | const std::vector<lldb::addr_t> &tags) { |
6458 | llvm::Expected<const MemoryTagManager *> tag_manager_or_err = |
6459 | GetMemoryTagManager(); |
6460 | if (!tag_manager_or_err) |
6461 | return Status::FromError(error: tag_manager_or_err.takeError()); |
6462 | |
6463 | const MemoryTagManager *tag_manager = *tag_manager_or_err; |
6464 | llvm::Expected<std::vector<uint8_t>> packed_tags = |
6465 | tag_manager->PackTags(tags); |
6466 | if (!packed_tags) { |
6467 | return Status::FromError(error: packed_tags.takeError()); |
6468 | } |
6469 | |
6470 | return DoWriteMemoryTags(addr, len, type: tag_manager->GetAllocationTagType(), |
6471 | tags: *packed_tags); |
6472 | } |
6473 | |
6474 | // Create a CoreFileMemoryRange from a MemoryRegionInfo |
6475 | static CoreFileMemoryRange |
6476 | CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { |
6477 | const addr_t addr = region.GetRange().GetRangeBase(); |
6478 | llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); |
6479 | return {.range: range, .lldb_permissions: region.GetLLDBPermissions()}; |
6480 | } |
6481 | |
6482 | // Add dirty pages to the core file ranges and return true if dirty pages |
6483 | // were added. Return false if the dirty page information is not valid or in |
6484 | // the region. |
6485 | static bool AddDirtyPages(const MemoryRegionInfo ®ion, |
6486 | CoreFileMemoryRanges &ranges) { |
6487 | const auto &dirty_page_list = region.GetDirtyPageList(); |
6488 | if (!dirty_page_list) |
6489 | return false; |
6490 | const uint32_t lldb_permissions = region.GetLLDBPermissions(); |
6491 | const addr_t page_size = region.GetPageSize(); |
6492 | if (page_size == 0) |
6493 | return false; |
6494 | llvm::AddressRange range(0, 0); |
6495 | for (addr_t page_addr : *dirty_page_list) { |
6496 | if (range.empty()) { |
6497 | // No range yet, initialize the range with the current dirty page. |
6498 | range = llvm::AddressRange(page_addr, page_addr + page_size); |
6499 | } else { |
6500 | if (range.end() == page_addr) { |
6501 | // Combine consective ranges. |
6502 | range = llvm::AddressRange(range.start(), page_addr + page_size); |
6503 | } else { |
6504 | // Add previous contiguous range and init the new range with the |
6505 | // current dirty page. |
6506 | ranges.Append(b: range.start(), s: range.size(), t: {.range: range, .lldb_permissions: lldb_permissions}); |
6507 | range = llvm::AddressRange(page_addr, page_addr + page_size); |
6508 | } |
6509 | } |
6510 | } |
6511 | // The last range |
6512 | if (!range.empty()) |
6513 | ranges.Append(b: range.start(), s: range.size(), t: {.range: range, .lldb_permissions: lldb_permissions}); |
6514 | return true; |
6515 | } |
6516 | |
6517 | // Given a region, add the region to \a ranges. |
6518 | // |
6519 | // Only add the region if it isn't empty and if it has some permissions. |
6520 | // If \a try_dirty_pages is true, then try to add only the dirty pages for a |
6521 | // given region. If the region has dirty page information, only dirty pages |
6522 | // will be added to \a ranges, else the entire range will be added to \a |
6523 | // ranges. |
6524 | static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, |
6525 | CoreFileMemoryRanges &ranges) { |
6526 | // Don't add empty ranges. |
6527 | if (region.GetRange().GetByteSize() == 0) |
6528 | return; |
6529 | // Don't add ranges with no read permissions. |
6530 | if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) |
6531 | return; |
6532 | if (try_dirty_pages && AddDirtyPages(region, ranges)) |
6533 | return; |
6534 | |
6535 | ranges.Append(b: region.GetRange().GetRangeBase(), |
6536 | s: region.GetRange().GetByteSize(), |
6537 | t: CreateCoreFileMemoryRange(region)); |
6538 | } |
6539 | |
6540 | static void SaveDynamicLoaderSections(Process &process, |
6541 | const SaveCoreOptions &options, |
6542 | CoreFileMemoryRanges &ranges, |
6543 | std::set<addr_t> &stack_ends) { |
6544 | DynamicLoader *dyld = process.GetDynamicLoader(); |
6545 | if (!dyld) |
6546 | return; |
6547 | |
6548 | std::vector<MemoryRegionInfo> dynamic_loader_mem_regions; |
6549 | std::function<bool(const lldb_private::Thread &)> save_thread_predicate = |
6550 | [&](const lldb_private::Thread &t) -> bool { |
6551 | return options.ShouldThreadBeSaved(tid: t.GetID()); |
6552 | }; |
6553 | dyld->CalculateDynamicSaveCoreRanges(process, ranges&: dynamic_loader_mem_regions, |
6554 | save_thread_predicate); |
6555 | for (const auto ®ion : dynamic_loader_mem_regions) { |
6556 | // The Dynamic Loader can give us regions that could include a truncated |
6557 | // stack |
6558 | if (stack_ends.count(x: region.GetRange().GetRangeEnd()) == 0) |
6559 | AddRegion(region, try_dirty_pages: true, ranges); |
6560 | } |
6561 | } |
6562 | |
6563 | static void SaveOffRegionsWithStackPointers(Process &process, |
6564 | const SaveCoreOptions &core_options, |
6565 | const MemoryRegionInfos ®ions, |
6566 | CoreFileMemoryRanges &ranges, |
6567 | std::set<addr_t> &stack_ends) { |
6568 | const bool try_dirty_pages = true; |
6569 | |
6570 | // Before we take any dump, we want to save off the used portions of the |
6571 | // stacks and mark those memory regions as saved. This prevents us from saving |
6572 | // the unused portion of the stack below the stack pointer. Saving space on |
6573 | // the dump. |
6574 | for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { |
6575 | if (!thread_sp) |
6576 | continue; |
6577 | StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(idx: 0); |
6578 | if (!frame_sp) |
6579 | continue; |
6580 | RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); |
6581 | if (!reg_ctx_sp) |
6582 | continue; |
6583 | const addr_t sp = reg_ctx_sp->GetSP(); |
6584 | const size_t red_zone = process.GetABI()->GetRedZoneSize(); |
6585 | lldb_private::MemoryRegionInfo sp_region; |
6586 | if (process.GetMemoryRegionInfo(load_addr: sp, range_info&: sp_region).Success()) { |
6587 | const size_t stack_head = (sp - red_zone); |
6588 | const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; |
6589 | // Even if the SaveCoreOption doesn't want us to save the stack |
6590 | // we still need to populate the stack_ends set so it doesn't get saved |
6591 | // off in other calls |
6592 | sp_region.GetRange().SetRangeBase(stack_head); |
6593 | sp_region.GetRange().SetByteSize(stack_size); |
6594 | const addr_t range_end = sp_region.GetRange().GetRangeEnd(); |
6595 | stack_ends.insert(x: range_end); |
6596 | // This will return true if the threadlist the user specified is empty, |
6597 | // or contains the thread id from thread_sp. |
6598 | if (core_options.ShouldThreadBeSaved(tid: thread_sp->GetID())) { |
6599 | AddRegion(region: sp_region, try_dirty_pages, ranges); |
6600 | } |
6601 | } |
6602 | } |
6603 | } |
6604 | |
6605 | // Save all memory regions that are not empty or have at least some permissions |
6606 | // for a full core file style. |
6607 | static void GetCoreFileSaveRangesFull(Process &process, |
6608 | const MemoryRegionInfos ®ions, |
6609 | CoreFileMemoryRanges &ranges, |
6610 | std::set<addr_t> &stack_ends) { |
6611 | |
6612 | // Don't add only dirty pages, add full regions. |
6613 | const bool try_dirty_pages = false; |
6614 | for (const auto ®ion : regions) |
6615 | if (stack_ends.count(x: region.GetRange().GetRangeEnd()) == 0) |
6616 | AddRegion(region, try_dirty_pages, ranges); |
6617 | } |
6618 | |
6619 | // Save only the dirty pages to the core file. Make sure the process has at |
6620 | // least some dirty pages, as some OS versions don't support reporting what |
6621 | // pages are dirty within an memory region. If no memory regions have dirty |
6622 | // page information fall back to saving out all ranges with write permissions. |
6623 | static void GetCoreFileSaveRangesDirtyOnly(Process &process, |
6624 | const MemoryRegionInfos ®ions, |
6625 | CoreFileMemoryRanges &ranges, |
6626 | std::set<addr_t> &stack_ends) { |
6627 | |
6628 | // Iterate over the regions and find all dirty pages. |
6629 | bool have_dirty_page_info = false; |
6630 | for (const auto ®ion : regions) { |
6631 | if (stack_ends.count(x: region.GetRange().GetRangeEnd()) == 0 && |
6632 | AddDirtyPages(region, ranges)) |
6633 | have_dirty_page_info = true; |
6634 | } |
6635 | |
6636 | if (!have_dirty_page_info) { |
6637 | // We didn't find support for reporting dirty pages from the process |
6638 | // plug-in so fall back to any region with write access permissions. |
6639 | const bool try_dirty_pages = false; |
6640 | for (const auto ®ion : regions) |
6641 | if (stack_ends.count(x: region.GetRange().GetRangeEnd()) == 0 && |
6642 | region.GetWritable() == MemoryRegionInfo::eYes) |
6643 | AddRegion(region, try_dirty_pages, ranges); |
6644 | } |
6645 | } |
6646 | |
6647 | // Save all thread stacks to the core file. Some OS versions support reporting |
6648 | // when a memory region is stack related. We check on this information, but we |
6649 | // also use the stack pointers of each thread and add those in case the OS |
6650 | // doesn't support reporting stack memory. This function also attempts to only |
6651 | // emit dirty pages from the stack if the memory regions support reporting |
6652 | // dirty regions as this will make the core file smaller. If the process |
6653 | // doesn't support dirty regions, then it will fall back to adding the full |
6654 | // stack region. |
6655 | static void GetCoreFileSaveRangesStackOnly(Process &process, |
6656 | const MemoryRegionInfos ®ions, |
6657 | CoreFileMemoryRanges &ranges, |
6658 | std::set<addr_t> &stack_ends) { |
6659 | const bool try_dirty_pages = true; |
6660 | // Some platforms support annotating the region information that tell us that |
6661 | // it comes from a thread stack. So look for those regions first. |
6662 | |
6663 | for (const auto ®ion : regions) { |
6664 | // Save all the stack memory ranges not associated with a stack pointer. |
6665 | if (stack_ends.count(x: region.GetRange().GetRangeEnd()) == 0 && |
6666 | region.IsStackMemory() == MemoryRegionInfo::eYes) |
6667 | AddRegion(region, try_dirty_pages, ranges); |
6668 | } |
6669 | } |
6670 | |
6671 | // TODO: We should refactor CoreFileMemoryRanges to use the lldb range type, and |
6672 | // then add an intersect method on it, or MemoryRegionInfo. |
6673 | static MemoryRegionInfo Intersect(const MemoryRegionInfo &lhs, |
6674 | const MemoryRegionInfo::RangeType &rhs) { |
6675 | |
6676 | MemoryRegionInfo region_info; |
6677 | region_info.SetLLDBPermissions(lhs.GetLLDBPermissions()); |
6678 | region_info.GetRange() = lhs.GetRange().Intersect(rhs); |
6679 | |
6680 | return region_info; |
6681 | } |
6682 | |
6683 | static void GetUserSpecifiedCoreFileSaveRanges(Process &process, |
6684 | const MemoryRegionInfos ®ions, |
6685 | const SaveCoreOptions &options, |
6686 | CoreFileMemoryRanges &ranges) { |
6687 | const auto &option_ranges = options.GetCoreFileMemoryRanges(); |
6688 | if (option_ranges.IsEmpty()) |
6689 | return; |
6690 | |
6691 | for (const auto &range : regions) { |
6692 | auto *entry = option_ranges.FindEntryThatIntersects(range: range.GetRange()); |
6693 | if (entry) { |
6694 | if (*entry != range.GetRange()) { |
6695 | AddRegion(region: Intersect(lhs: range, rhs: *entry), try_dirty_pages: true, ranges); |
6696 | } else { |
6697 | // If they match, add the range directly. |
6698 | AddRegion(region: range, try_dirty_pages: true, ranges); |
6699 | } |
6700 | } |
6701 | } |
6702 | } |
6703 | |
6704 | Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options, |
6705 | CoreFileMemoryRanges &ranges) { |
6706 | lldb_private::MemoryRegionInfos regions; |
6707 | Status err = GetMemoryRegions(region_list&: regions); |
6708 | SaveCoreStyle core_style = options.GetStyle(); |
6709 | if (err.Fail()) |
6710 | return err; |
6711 | if (regions.empty()) |
6712 | return Status::FromErrorString( |
6713 | str: "failed to get any valid memory regions from the process"); |
6714 | if (core_style == eSaveCoreUnspecified) |
6715 | return Status::FromErrorString( |
6716 | str: "callers must set the core_style to something other than " |
6717 | "eSaveCoreUnspecified"); |
6718 | |
6719 | GetUserSpecifiedCoreFileSaveRanges(process&: *this, regions, options, ranges); |
6720 | |
6721 | std::set<addr_t> stack_ends; |
6722 | // For fully custom set ups, we don't want to even look at threads if there |
6723 | // are no threads specified. |
6724 | if (core_style != lldb::eSaveCoreCustomOnly || |
6725 | options.HasSpecifiedThreads()) { |
6726 | SaveOffRegionsWithStackPointers(process&: *this, core_options: options, regions, ranges, |
6727 | stack_ends); |
6728 | // Save off the dynamic loader sections, so if we are on an architecture |
6729 | // that supports Thread Locals, that we include those as well. |
6730 | SaveDynamicLoaderSections(process&: *this, options, ranges, stack_ends); |
6731 | } |
6732 | |
6733 | switch (core_style) { |
6734 | case eSaveCoreUnspecified: |
6735 | case eSaveCoreCustomOnly: |
6736 | break; |
6737 | |
6738 | case eSaveCoreFull: |
6739 | GetCoreFileSaveRangesFull(process&: *this, regions, ranges, stack_ends); |
6740 | break; |
6741 | |
6742 | case eSaveCoreDirtyOnly: |
6743 | GetCoreFileSaveRangesDirtyOnly(process&: *this, regions, ranges, stack_ends); |
6744 | break; |
6745 | |
6746 | case eSaveCoreStackOnly: |
6747 | GetCoreFileSaveRangesStackOnly(process&: *this, regions, ranges, stack_ends); |
6748 | break; |
6749 | } |
6750 | |
6751 | if (err.Fail()) |
6752 | return err; |
6753 | |
6754 | if (ranges.IsEmpty()) |
6755 | return Status::FromErrorStringWithFormat( |
6756 | format: "no valid address ranges found for core style"); |
6757 | |
6758 | return ranges.FinalizeCoreFileSaveRanges(); |
6759 | } |
6760 | |
6761 | std::vector<ThreadSP> |
6762 | Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) { |
6763 | std::vector<ThreadSP> thread_list; |
6764 | for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) { |
6765 | if (core_options.ShouldThreadBeSaved(tid: thread_sp->GetID())) { |
6766 | thread_list.push_back(x: thread_sp); |
6767 | } |
6768 | } |
6769 | |
6770 | return thread_list; |
6771 | } |
6772 | |
6773 | void Process::SetAddressableBitMasks(AddressableBits bit_masks) { |
6774 | uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); |
6775 | uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); |
6776 | |
6777 | if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) |
6778 | return; |
6779 | |
6780 | if (low_memory_addr_bits != 0) { |
6781 | addr_t low_addr_mask = |
6782 | AddressableBits::AddressableBitToMask(addressable_bits: low_memory_addr_bits); |
6783 | SetCodeAddressMask(low_addr_mask); |
6784 | SetDataAddressMask(low_addr_mask); |
6785 | } |
6786 | |
6787 | if (high_memory_addr_bits != 0) { |
6788 | addr_t high_addr_mask = |
6789 | AddressableBits::AddressableBitToMask(addressable_bits: high_memory_addr_bits); |
6790 | SetHighmemCodeAddressMask(high_addr_mask); |
6791 | SetHighmemDataAddressMask(high_addr_mask); |
6792 | } |
6793 | } |
6794 |
Definitions
- ProcessOptionValueProperties
- ProcessOptionValueProperties
- GetPropertyAtIndex
- g_follow_fork_mode_values
- ProcessExperimentalOptionValueProperties
- ProcessExperimentalOptionValueProperties
- ProcessExperimentalProperties
- ProcessProperties
- ~ProcessProperties
- GetDisableMemoryCache
- GetMemoryCacheLineSize
- GetExtraStartupCommands
- SetExtraStartupCommands
- GetPythonOSPluginPath
- GetVirtualAddressableBits
- SetVirtualAddressableBits
- GetHighmemVirtualAddressableBits
- SetHighmemVirtualAddressableBits
- SetPythonOSPluginPath
- GetIgnoreBreakpointsInExpressions
- SetIgnoreBreakpointsInExpressions
- GetUnwindOnErrorInExpressions
- SetUnwindOnErrorInExpressions
- GetStopOnSharedLibraryEvents
- SetStopOnSharedLibraryEvents
- GetDisableLangRuntimeUnwindPlans
- SetDisableLangRuntimeUnwindPlans
- GetDetachKeepsStopped
- SetDetachKeepsStopped
- GetWarningsOptimization
- GetWarningsUnsupportedLanguage
- GetStopOnExec
- GetUtilityExpressionTimeout
- GetInterruptTimeout
- GetSteppingRunsAllThreads
- GetOSPluginReportsAllThreads
- SetOSPluginReportsAllThreads
- GetFollowForkMode
- TrackMemoryCacheChanges
- FindPlugin
- GetStaticBroadcasterClass
- Process
- Process
- ~Process
- GetGlobalProperties
- Finalize
- RegisterNotificationCallbacks
- UnregisterNotificationCallbacks
- SynchronouslyNotifyStateChanged
- GetNextEvent
- SyncIOHandler
- WaitForProcessToStop
- HandleProcessStateChangedEvent
- HijackProcessEvents
- RestoreProcessEvents
- GetStateChangedEvents
- PeekAtStateChangedEvents
- GetStateChangedEventsPrivate
- GetEventsPrivate
- IsRunning
- GetExitStatus
- GetExitDescription
- SetExitStatus
- IsAlive
- SetProcessExitStatus
- UpdateThreadList
- UpdateThreadListIfNeeded
- FindThreadPlans
- PruneThreadPlansForTID
- PruneThreadPlans
- DumpThreadPlansForTID
- DumpThreadPlans
- UpdateQueueListIfNeeded
- CreateOSPluginThread
- GetNextThreadIndexID
- HasAssignedIndexIDToThread
- AssignIndexIDToThread
- GetState
- SetPublicState
- Resume
- ResumeSynchronous
- StateChangedIsExternallyHijacked
- StateChangedIsHijackedForSynchronousResume
- GetPrivateState
- SetPrivateState
- SetRunningUserExpression
- SetRunningUtilityFunction
- GetImageInfoAddress
- GetABI
- GetLanguageRuntimes
- GetLanguageRuntime
- IsPossibleDynamicValue
- SetDynamicCheckers
- GetBreakpointSiteList
- GetBreakpointSiteList
- DisableAllBreakpointSites
- ClearBreakpointSiteByID
- DisableBreakpointSiteByID
- EnableBreakpointSiteByID
- CreateBreakpointSite
- RemoveConstituentFromBreakpointSite
- RemoveBreakpointOpcodesFromBuffer
- GetSoftwareBreakpointTrapOpcode
- EnableSoftwareBreakpoint
- DisableSoftwareBreakpoint
- ReadMemory
- DoFindInMemory
- FindRangesInMemory
- FindInMemory
- ReadCStringFromMemory
- ReadCStringFromMemory
- ReadMemoryFromInferior
- ReadMemoryInChunks
- ReadUnsignedIntegerFromMemory
- ReadSignedIntegerFromMemory
- ReadPointerFromMemory
- WritePointerToMemory
- WriteMemoryPrivate
- WriteMemory
- WriteScalarToMemory
- ReadScalarIntegerFromMemory
- WriteObjectFile
- AllocateMemory
- CallocateMemory
- CanJIT
- SetCanJIT
- SetCanRunCode
- DeallocateMemory
- GetWatchpointReportedAfter
- ReadModuleFromMemory
- GetLoadAddressPermissions
- EnableWatchpoint
- DisableWatchpoint
- WaitForProcessStopPrivate
- LoadOperatingSystemPlugin
- Launch
- LaunchPrivate
- LoadCore
- GetDynamicLoader
- SetDynamicLoader
- GetAuxvData
- SaveCore
- GetJITLoaders
- GetSystemRuntime
- AttachCompletionHandler
- PerformAction
- HandleBeingInterrupted
- GetExitString
- GetListenerForProcess
- WillLaunch
- WillAttachToProcessWithID
- WillAttachToProcessWithName
- Attach
- CompleteAttach
- ConnectRemote
- SetBaseDirection
- PrivateResume
- Halt
- FindInMemory
- StopForDestroyOrDetach
- Detach
- Destroy
- DestroyImpl
- Signal
- SetUnixSignals
- GetUnixSignals
- GetByteOrder
- GetAddressByteSize
- ShouldBroadcastEvent
- StartPrivateStateThread
- PausePrivateStateThread
- ResumePrivateStateThread
- StopPrivateStateThread
- ControlPrivateStateThread
- SendAsyncInterrupt
- HandlePrivateEvent
- HaltPrivate
- RunPrivateStateThread
- ProcessEventData
- ProcessEventData
- ~ProcessEventData
- GetFlavorString
- GetFlavor
- ShouldStop
- ForwardEventToPendingListeners
- DoOnRemoval
- Dump
- GetEventDataFromEvent
- GetProcessFromEvent
- GetStateFromEvent
- GetRestartedFromEvent
- SetRestartedInEvent
- GetNumRestartedReasons
- GetRestartedReasonAtIndex
- AddRestartedReason
- GetInterruptedFromEvent
- SetInterruptedInEvent
- SetUpdateStateOnRemoval
- CalculateTarget
- CalculateExecutionContext
- CreateEventFromProcessState
- AppendSTDOUT
- AppendSTDERR
- BroadcastAsyncProfileData
- BroadcastStructuredData
- GetStructuredDataPlugin
- GetAsyncProfileData
- GetSTDOUT
- GetSTDERR
- STDIOReadThreadBytesReceived
- IOHandlerProcessSTDIO
- IOHandlerProcessSTDIO
- ~IOHandlerProcessSTDIO
- SetIsRunning
- Run
- Cancel
- Interrupt
- GotEOF
- SetSTDIOFileDescriptor
- ProcessIOHandlerIsActive
- PushProcessIOHandler
- PopProcessIOHandler
- SettingsInitialize
- SettingsTerminate
- RestorePlanState
- RestorePlanState
- ~RestorePlanState
- Clean
- GetOneThreadExpressionTimeout
- GetExpressionTimeout
- HandleStoppedEvent
- RunThreadPlan
- GetStatus
- GetThreadStatus
- AddInvalidMemoryRegion
- RemoveInvalidMemoryRange
- AddPreResumeAction
- RunPreResumeActions
- ClearPreResumeActions
- ClearPreResumeAction
- GetRunLock
- CurrentThreadIsPrivateStateThread
- Flush
- GetCodeAddressMask
- GetDataAddressMask
- GetHighmemCodeAddressMask
- GetHighmemDataAddressMask
- SetCodeAddressMask
- SetDataAddressMask
- SetHighmemCodeAddressMask
- SetHighmemDataAddressMask
- FixCodeAddress
- FixDataAddress
- FixAnyAddress
- DidExec
- ResolveIndirectFunction
- ModulesDidLoad
- PrintWarningOptimization
- PrintWarningUnsupportedLanguage
- GetProcessInfo
- FindModuleUUID
- GetHistoryThreads
- GetInstrumentationRuntime
- GetModuleSpec
- AddImageToken
- GetImagePtrFromToken
- ResetImageToken
- AdvanceAddressToNextBranchInstruction
- GetMemoryRegionInfo
- GetMemoryRegions
- ConfigureStructuredData
- MapSupportedStructuredDataPlugins
- RouteAsyncStructuredData
- UpdateAutomaticSignalFiltering
- GetLoadImageUtilityFunction
- TraceSupported
- CallVoidArgVoidPtrReturn
- GetMemoryTagManager
- ReadMemoryTags
- WriteMemoryTags
- CreateCoreFileMemoryRange
- AddDirtyPages
- AddRegion
- SaveDynamicLoaderSections
- SaveOffRegionsWithStackPointers
- GetCoreFileSaveRangesFull
- GetCoreFileSaveRangesDirtyOnly
- GetCoreFileSaveRangesStackOnly
- Intersect
- GetUserSpecifiedCoreFileSaveRanges
- CalculateCoreFileSaveRanges
- CalculateCoreFileThreadList
Learn to use CMake with our Intro Training
Find out more