1 | //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // The ScalarEvolution class is an LLVM pass which can be used to analyze and |
10 | // categorize scalar expressions in loops. It specializes in recognizing |
11 | // general induction variables, representing them with the abstract and opaque |
12 | // SCEV class. Given this analysis, trip counts of loops and other important |
13 | // properties can be obtained. |
14 | // |
15 | // This analysis is primarily useful for induction variable substitution and |
16 | // strength reduction. |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H |
21 | #define LLVM_ANALYSIS_SCALAREVOLUTION_H |
22 | |
23 | #include "llvm/ADT/APInt.h" |
24 | #include "llvm/ADT/ArrayRef.h" |
25 | #include "llvm/ADT/DenseMap.h" |
26 | #include "llvm/ADT/DenseMapInfo.h" |
27 | #include "llvm/ADT/FoldingSet.h" |
28 | #include "llvm/ADT/PointerIntPair.h" |
29 | #include "llvm/ADT/SetVector.h" |
30 | #include "llvm/ADT/SmallPtrSet.h" |
31 | #include "llvm/ADT/SmallVector.h" |
32 | #include "llvm/IR/ConstantRange.h" |
33 | #include "llvm/IR/Instructions.h" |
34 | #include "llvm/IR/PassManager.h" |
35 | #include "llvm/IR/ValueHandle.h" |
36 | #include "llvm/IR/ValueMap.h" |
37 | #include "llvm/Pass.h" |
38 | #include "llvm/Support/Compiler.h" |
39 | #include <cassert> |
40 | #include <cstdint> |
41 | #include <memory> |
42 | #include <optional> |
43 | #include <utility> |
44 | |
45 | namespace llvm { |
46 | |
47 | class OverflowingBinaryOperator; |
48 | class AssumptionCache; |
49 | class BasicBlock; |
50 | class Constant; |
51 | class ConstantInt; |
52 | class DataLayout; |
53 | class DominatorTree; |
54 | class GEPOperator; |
55 | class LLVMContext; |
56 | class Loop; |
57 | class LoopInfo; |
58 | class raw_ostream; |
59 | class ScalarEvolution; |
60 | class SCEVAddRecExpr; |
61 | class SCEVUnknown; |
62 | class StructType; |
63 | class TargetLibraryInfo; |
64 | class Type; |
65 | enum SCEVTypes : unsigned short; |
66 | |
67 | LLVM_ABI extern bool VerifySCEV; |
68 | |
69 | /// This class represents an analyzed expression in the program. These are |
70 | /// opaque objects that the client is not allowed to do much with directly. |
71 | /// |
72 | class SCEV : public FoldingSetNode { |
73 | friend struct FoldingSetTrait<SCEV>; |
74 | |
75 | /// A reference to an Interned FoldingSetNodeID for this node. The |
76 | /// ScalarEvolution's BumpPtrAllocator holds the data. |
77 | FoldingSetNodeIDRef FastID; |
78 | |
79 | // The SCEV baseclass this node corresponds to |
80 | const SCEVTypes SCEVType; |
81 | |
82 | protected: |
83 | // Estimated complexity of this node's expression tree size. |
84 | const unsigned short ExpressionSize; |
85 | |
86 | /// This field is initialized to zero and may be used in subclasses to store |
87 | /// miscellaneous information. |
88 | unsigned short SubclassData = 0; |
89 | |
90 | public: |
91 | /// NoWrapFlags are bitfield indices into SubclassData. |
92 | /// |
93 | /// Add and Mul expressions may have no-unsigned-wrap <NUW> or |
94 | /// no-signed-wrap <NSW> properties, which are derived from the IR |
95 | /// operator. NSW is a misnomer that we use to mean no signed overflow or |
96 | /// underflow. |
97 | /// |
98 | /// AddRec expressions may have a no-self-wraparound <NW> property if, in |
99 | /// the integer domain, abs(step) * max-iteration(loop) <= |
100 | /// unsigned-max(bitwidth). This means that the recurrence will never reach |
101 | /// its start value if the step is non-zero. Computing the same value on |
102 | /// each iteration is not considered wrapping, and recurrences with step = 0 |
103 | /// are trivially <NW>. <NW> is independent of the sign of step and the |
104 | /// value the add recurrence starts with. |
105 | /// |
106 | /// Note that NUW and NSW are also valid properties of a recurrence, and |
107 | /// either implies NW. For convenience, NW will be set for a recurrence |
108 | /// whenever either NUW or NSW are set. |
109 | /// |
110 | /// We require that the flag on a SCEV apply to the entire scope in which |
111 | /// that SCEV is defined. A SCEV's scope is set of locations dominated by |
112 | /// a defining location, which is in turn described by the following rules: |
113 | /// * A SCEVUnknown is at the point of definition of the Value. |
114 | /// * A SCEVConstant is defined at all points. |
115 | /// * A SCEVAddRec is defined starting with the header of the associated |
116 | /// loop. |
117 | /// * All other SCEVs are defined at the earlest point all operands are |
118 | /// defined. |
119 | /// |
120 | /// The above rules describe a maximally hoisted form (without regards to |
121 | /// potential control dependence). A SCEV is defined anywhere a |
122 | /// corresponding instruction could be defined in said maximally hoisted |
123 | /// form. Note that SCEVUDivExpr (currently the only expression type which |
124 | /// can trap) can be defined per these rules in regions where it would trap |
125 | /// at runtime. A SCEV being defined does not require the existence of any |
126 | /// instruction within the defined scope. |
127 | enum NoWrapFlags { |
128 | FlagAnyWrap = 0, // No guarantee. |
129 | FlagNW = (1 << 0), // No self-wrap. |
130 | FlagNUW = (1 << 1), // No unsigned wrap. |
131 | FlagNSW = (1 << 2), // No signed wrap. |
132 | NoWrapMask = (1 << 3) - 1 |
133 | }; |
134 | |
135 | explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, |
136 | unsigned short ExpressionSize) |
137 | : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {} |
138 | SCEV(const SCEV &) = delete; |
139 | SCEV &operator=(const SCEV &) = delete; |
140 | |
141 | SCEVTypes getSCEVType() const { return SCEVType; } |
142 | |
143 | /// Return the LLVM type of this SCEV expression. |
144 | LLVM_ABI Type *getType() const; |
145 | |
146 | /// Return operands of this SCEV expression. |
147 | LLVM_ABI ArrayRef<const SCEV *> operands() const; |
148 | |
149 | /// Return true if the expression is a constant zero. |
150 | LLVM_ABI bool isZero() const; |
151 | |
152 | /// Return true if the expression is a constant one. |
153 | LLVM_ABI bool isOne() const; |
154 | |
155 | /// Return true if the expression is a constant all-ones value. |
156 | LLVM_ABI bool isAllOnesValue() const; |
157 | |
158 | /// Return true if the specified scev is negated, but not a constant. |
159 | LLVM_ABI bool isNonConstantNegative() const; |
160 | |
161 | // Returns estimated size of the mathematical expression represented by this |
162 | // SCEV. The rules of its calculation are following: |
163 | // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1; |
164 | // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula: |
165 | // (1 + Size(Op1) + ... + Size(OpN)). |
166 | // This value gives us an estimation of time we need to traverse through this |
167 | // SCEV and all its operands recursively. We may use it to avoid performing |
168 | // heavy transformations on SCEVs of excessive size for sake of saving the |
169 | // compilation time. |
170 | unsigned short getExpressionSize() const { |
171 | return ExpressionSize; |
172 | } |
173 | |
174 | /// Print out the internal representation of this scalar to the specified |
175 | /// stream. This should really only be used for debugging purposes. |
176 | LLVM_ABI void print(raw_ostream &OS) const; |
177 | |
178 | /// This method is used for debugging. |
179 | LLVM_ABI void dump() const; |
180 | }; |
181 | |
182 | // Specialize FoldingSetTrait for SCEV to avoid needing to compute |
183 | // temporary FoldingSetNodeID values. |
184 | template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { |
185 | static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; } |
186 | |
187 | static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, |
188 | FoldingSetNodeID &TempID) { |
189 | return ID == X.FastID; |
190 | } |
191 | |
192 | static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { |
193 | return X.FastID.ComputeHash(); |
194 | } |
195 | }; |
196 | |
197 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { |
198 | S.print(OS); |
199 | return OS; |
200 | } |
201 | |
202 | /// An object of this class is returned by queries that could not be answered. |
203 | /// For example, if you ask for the number of iterations of a linked-list |
204 | /// traversal loop, you will get one of these. None of the standard SCEV |
205 | /// operations are valid on this class, it is just a marker. |
206 | struct SCEVCouldNotCompute : public SCEV { |
207 | LLVM_ABI SCEVCouldNotCompute(); |
208 | |
209 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
210 | LLVM_ABI static bool classof(const SCEV *S); |
211 | }; |
212 | |
213 | /// This class represents an assumption made using SCEV expressions which can |
214 | /// be checked at run-time. |
215 | class SCEVPredicate : public FoldingSetNode { |
216 | friend struct FoldingSetTrait<SCEVPredicate>; |
217 | |
218 | /// A reference to an Interned FoldingSetNodeID for this node. The |
219 | /// ScalarEvolution's BumpPtrAllocator holds the data. |
220 | FoldingSetNodeIDRef FastID; |
221 | |
222 | public: |
223 | enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap }; |
224 | |
225 | protected: |
226 | SCEVPredicateKind Kind; |
227 | ~SCEVPredicate() = default; |
228 | SCEVPredicate(const SCEVPredicate &) = default; |
229 | SCEVPredicate &operator=(const SCEVPredicate &) = default; |
230 | |
231 | public: |
232 | LLVM_ABI SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind); |
233 | |
234 | SCEVPredicateKind getKind() const { return Kind; } |
235 | |
236 | /// Returns the estimated complexity of this predicate. This is roughly |
237 | /// measured in the number of run-time checks required. |
238 | virtual unsigned getComplexity() const { return 1; } |
239 | |
240 | /// Returns true if the predicate is always true. This means that no |
241 | /// assumptions were made and nothing needs to be checked at run-time. |
242 | virtual bool isAlwaysTrue() const = 0; |
243 | |
244 | /// Returns true if this predicate implies \p N. |
245 | virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const = 0; |
246 | |
247 | /// Prints a textual representation of this predicate with an indentation of |
248 | /// \p Depth. |
249 | virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; |
250 | }; |
251 | |
252 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { |
253 | P.print(OS); |
254 | return OS; |
255 | } |
256 | |
257 | // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute |
258 | // temporary FoldingSetNodeID values. |
259 | template <> |
260 | struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> { |
261 | static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { |
262 | ID = X.FastID; |
263 | } |
264 | |
265 | static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, |
266 | unsigned IDHash, FoldingSetNodeID &TempID) { |
267 | return ID == X.FastID; |
268 | } |
269 | |
270 | static unsigned ComputeHash(const SCEVPredicate &X, |
271 | FoldingSetNodeID &TempID) { |
272 | return X.FastID.ComputeHash(); |
273 | } |
274 | }; |
275 | |
276 | /// This class represents an assumption that the expression LHS Pred RHS |
277 | /// evaluates to true, and this can be checked at run-time. |
278 | class LLVM_ABI SCEVComparePredicate final : public SCEVPredicate { |
279 | /// We assume that LHS Pred RHS is true. |
280 | const ICmpInst::Predicate Pred; |
281 | const SCEV *LHS; |
282 | const SCEV *RHS; |
283 | |
284 | public: |
285 | SCEVComparePredicate(const FoldingSetNodeIDRef ID, |
286 | const ICmpInst::Predicate Pred, |
287 | const SCEV *LHS, const SCEV *RHS); |
288 | |
289 | /// Implementation of the SCEVPredicate interface |
290 | bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override; |
291 | void print(raw_ostream &OS, unsigned Depth = 0) const override; |
292 | bool isAlwaysTrue() const override; |
293 | |
294 | ICmpInst::Predicate getPredicate() const { return Pred; } |
295 | |
296 | /// Returns the left hand side of the predicate. |
297 | const SCEV *getLHS() const { return LHS; } |
298 | |
299 | /// Returns the right hand side of the predicate. |
300 | const SCEV *getRHS() const { return RHS; } |
301 | |
302 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
303 | static bool classof(const SCEVPredicate *P) { |
304 | return P->getKind() == P_Compare; |
305 | } |
306 | }; |
307 | |
308 | /// This class represents an assumption made on an AddRec expression. Given an |
309 | /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw |
310 | /// flags (defined below) in the first X iterations of the loop, where X is a |
311 | /// SCEV expression returned by getPredicatedBackedgeTakenCount). |
312 | /// |
313 | /// Note that this does not imply that X is equal to the backedge taken |
314 | /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a |
315 | /// predicated backedge taken count of X, we only guarantee that {0,+,1} has |
316 | /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we |
317 | /// have more than X iterations. |
318 | class LLVM_ABI SCEVWrapPredicate final : public SCEVPredicate { |
319 | public: |
320 | /// Similar to SCEV::NoWrapFlags, but with slightly different semantics |
321 | /// for FlagNUSW. The increment is considered to be signed, and a + b |
322 | /// (where b is the increment) is considered to wrap if: |
323 | /// zext(a + b) != zext(a) + sext(b) |
324 | /// |
325 | /// If Signed is a function that takes an n-bit tuple and maps to the |
326 | /// integer domain as the tuples value interpreted as twos complement, |
327 | /// and Unsigned a function that takes an n-bit tuple and maps to the |
328 | /// integer domain as the base two value of input tuple, then a + b |
329 | /// has IncrementNUSW iff: |
330 | /// |
331 | /// 0 <= Unsigned(a) + Signed(b) < 2^n |
332 | /// |
333 | /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW. |
334 | /// |
335 | /// Note that the IncrementNUSW flag is not commutative: if base + inc |
336 | /// has IncrementNUSW, then inc + base doesn't neccessarily have this |
337 | /// property. The reason for this is that this is used for sign/zero |
338 | /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is |
339 | /// assumed. A {base,+,inc} expression is already non-commutative with |
340 | /// regards to base and inc, since it is interpreted as: |
341 | /// (((base + inc) + inc) + inc) ... |
342 | enum IncrementWrapFlags { |
343 | IncrementAnyWrap = 0, // No guarantee. |
344 | IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap. |
345 | IncrementNSSW = (1 << 1), // No signed with signed increment wrap |
346 | // (equivalent with SCEV::NSW) |
347 | IncrementNoWrapMask = (1 << 2) - 1 |
348 | }; |
349 | |
350 | /// Convenient IncrementWrapFlags manipulation methods. |
351 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
352 | clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, |
353 | SCEVWrapPredicate::IncrementWrapFlags OffFlags) { |
354 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
355 | assert((OffFlags & IncrementNoWrapMask) == OffFlags && |
356 | "Invalid flags value!"); |
357 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags); |
358 | } |
359 | |
360 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
361 | maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) { |
362 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
363 | assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!"); |
364 | |
365 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask); |
366 | } |
367 | |
368 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
369 | setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, |
370 | SCEVWrapPredicate::IncrementWrapFlags OnFlags) { |
371 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
372 | assert((OnFlags & IncrementNoWrapMask) == OnFlags && |
373 | "Invalid flags value!"); |
374 | |
375 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags); |
376 | } |
377 | |
378 | /// Returns the set of SCEVWrapPredicate no wrap flags implied by a |
379 | /// SCEVAddRecExpr. |
380 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags |
381 | getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE); |
382 | |
383 | private: |
384 | const SCEVAddRecExpr *AR; |
385 | IncrementWrapFlags Flags; |
386 | |
387 | public: |
388 | explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID, |
389 | const SCEVAddRecExpr *AR, |
390 | IncrementWrapFlags Flags); |
391 | |
392 | /// Returns the set assumed no overflow flags. |
393 | IncrementWrapFlags getFlags() const { return Flags; } |
394 | |
395 | /// Implementation of the SCEVPredicate interface |
396 | const SCEVAddRecExpr *getExpr() const; |
397 | bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override; |
398 | void print(raw_ostream &OS, unsigned Depth = 0) const override; |
399 | bool isAlwaysTrue() const override; |
400 | |
401 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
402 | static bool classof(const SCEVPredicate *P) { |
403 | return P->getKind() == P_Wrap; |
404 | } |
405 | }; |
406 | |
407 | /// This class represents a composition of other SCEV predicates, and is the |
408 | /// class that most clients will interact with. This is equivalent to a |
409 | /// logical "AND" of all the predicates in the union. |
410 | /// |
411 | /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the |
412 | /// ScalarEvolution::Preds folding set. This is why the \c add function is sound. |
413 | class LLVM_ABI SCEVUnionPredicate final : public SCEVPredicate { |
414 | private: |
415 | using PredicateMap = |
416 | DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>; |
417 | |
418 | /// Vector with references to all predicates in this union. |
419 | SmallVector<const SCEVPredicate *, 16> Preds; |
420 | |
421 | /// Adds a predicate to this union. |
422 | void add(const SCEVPredicate *N, ScalarEvolution &SE); |
423 | |
424 | public: |
425 | SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds, |
426 | ScalarEvolution &SE); |
427 | |
428 | ArrayRef<const SCEVPredicate *> getPredicates() const { return Preds; } |
429 | |
430 | /// Implementation of the SCEVPredicate interface |
431 | bool isAlwaysTrue() const override; |
432 | bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override; |
433 | void print(raw_ostream &OS, unsigned Depth) const override; |
434 | |
435 | /// We estimate the complexity of a union predicate as the size number of |
436 | /// predicates in the union. |
437 | unsigned getComplexity() const override { return Preds.size(); } |
438 | |
439 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
440 | static bool classof(const SCEVPredicate *P) { |
441 | return P->getKind() == P_Union; |
442 | } |
443 | }; |
444 | |
445 | /// The main scalar evolution driver. Because client code (intentionally) |
446 | /// can't do much with the SCEV objects directly, they must ask this class |
447 | /// for services. |
448 | class ScalarEvolution { |
449 | friend class ScalarEvolutionsTest; |
450 | |
451 | public: |
452 | /// An enum describing the relationship between a SCEV and a loop. |
453 | enum LoopDisposition { |
454 | LoopVariant, ///< The SCEV is loop-variant (unknown). |
455 | LoopInvariant, ///< The SCEV is loop-invariant. |
456 | LoopComputable ///< The SCEV varies predictably with the loop. |
457 | }; |
458 | |
459 | /// An enum describing the relationship between a SCEV and a basic block. |
460 | enum BlockDisposition { |
461 | DoesNotDominateBlock, ///< The SCEV does not dominate the block. |
462 | DominatesBlock, ///< The SCEV dominates the block. |
463 | ProperlyDominatesBlock ///< The SCEV properly dominates the block. |
464 | }; |
465 | |
466 | /// Convenient NoWrapFlags manipulation that hides enum casts and is |
467 | /// visible in the ScalarEvolution name space. |
468 | [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, |
469 | int Mask) { |
470 | return (SCEV::NoWrapFlags)(Flags & Mask); |
471 | } |
472 | [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, |
473 | SCEV::NoWrapFlags OnFlags) { |
474 | return (SCEV::NoWrapFlags)(Flags | OnFlags); |
475 | } |
476 | [[nodiscard]] static SCEV::NoWrapFlags |
477 | clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { |
478 | return (SCEV::NoWrapFlags)(Flags & ~OffFlags); |
479 | } |
480 | [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags, |
481 | SCEV::NoWrapFlags TestFlags) { |
482 | return TestFlags == maskFlags(Flags, Mask: TestFlags); |
483 | }; |
484 | |
485 | LLVM_ABI ScalarEvolution(Function &F, TargetLibraryInfo &TLI, |
486 | AssumptionCache &AC, DominatorTree &DT, |
487 | LoopInfo &LI); |
488 | LLVM_ABI ScalarEvolution(ScalarEvolution &&Arg); |
489 | LLVM_ABI ~ScalarEvolution(); |
490 | |
491 | LLVMContext &getContext() const { return F.getContext(); } |
492 | |
493 | /// Test if values of the given type are analyzable within the SCEV |
494 | /// framework. This primarily includes integer types, and it can optionally |
495 | /// include pointer types if the ScalarEvolution class has access to |
496 | /// target-specific information. |
497 | LLVM_ABI bool isSCEVable(Type *Ty) const; |
498 | |
499 | /// Return the size in bits of the specified type, for which isSCEVable must |
500 | /// return true. |
501 | LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const; |
502 | |
503 | /// Return a type with the same bitwidth as the given type and which |
504 | /// represents how SCEV will treat the given type, for which isSCEVable must |
505 | /// return true. For pointer types, this is the pointer-sized integer type. |
506 | LLVM_ABI Type *getEffectiveSCEVType(Type *Ty) const; |
507 | |
508 | // Returns a wider type among {Ty1, Ty2}. |
509 | LLVM_ABI Type *getWiderType(Type *Ty1, Type *Ty2) const; |
510 | |
511 | /// Return true if there exists a point in the program at which both |
512 | /// A and B could be operands to the same instruction. |
513 | /// SCEV expressions are generally assumed to correspond to instructions |
514 | /// which could exists in IR. In general, this requires that there exists |
515 | /// a use point in the program where all operands dominate the use. |
516 | /// |
517 | /// Example: |
518 | /// loop { |
519 | /// if |
520 | /// loop { v1 = load @global1; } |
521 | /// else |
522 | /// loop { v2 = load @global2; } |
523 | /// } |
524 | /// No SCEV with operand V1, and v2 can exist in this program. |
525 | LLVM_ABI bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B); |
526 | |
527 | /// Return true if the SCEV is a scAddRecExpr or it contains |
528 | /// scAddRecExpr. The result will be cached in HasRecMap. |
529 | LLVM_ABI bool containsAddRecurrence(const SCEV *S); |
530 | |
531 | /// Is operation \p BinOp between \p LHS and \p RHS provably does not have |
532 | /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the |
533 | /// no-overflow fact should be true in the context of this instruction. |
534 | LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, |
535 | const SCEV *LHS, const SCEV *RHS, |
536 | const Instruction *CtxI = nullptr); |
537 | |
538 | /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into |
539 | /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet. |
540 | /// Does not mutate the original instruction. Returns std::nullopt if it could |
541 | /// not deduce more precise flags than the instruction already has, otherwise |
542 | /// returns proven flags. |
543 | LLVM_ABI std::optional<SCEV::NoWrapFlags> |
544 | getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO); |
545 | |
546 | /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops. |
547 | LLVM_ABI void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops); |
548 | |
549 | /// Return true if the SCEV expression contains an undef value. |
550 | LLVM_ABI bool containsUndefs(const SCEV *S) const; |
551 | |
552 | /// Return true if the SCEV expression contains a Value that has been |
553 | /// optimised out and is now a nullptr. |
554 | LLVM_ABI bool containsErasedValue(const SCEV *S) const; |
555 | |
556 | /// Return a SCEV expression for the full generality of the specified |
557 | /// expression. |
558 | LLVM_ABI const SCEV *getSCEV(Value *V); |
559 | |
560 | /// Return an existing SCEV for V if there is one, otherwise return nullptr. |
561 | LLVM_ABI const SCEV *getExistingSCEV(Value *V); |
562 | |
563 | LLVM_ABI const SCEV *getConstant(ConstantInt *V); |
564 | LLVM_ABI const SCEV *getConstant(const APInt &Val); |
565 | LLVM_ABI const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); |
566 | LLVM_ABI const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, |
567 | unsigned Depth = 0); |
568 | LLVM_ABI const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty); |
569 | LLVM_ABI const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, |
570 | unsigned Depth = 0); |
571 | LLVM_ABI const SCEV *getVScale(Type *Ty); |
572 | LLVM_ABI const SCEV *getElementCount(Type *Ty, ElementCount EC); |
573 | LLVM_ABI const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, |
574 | unsigned Depth = 0); |
575 | LLVM_ABI const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty, |
576 | unsigned Depth = 0); |
577 | LLVM_ABI const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, |
578 | unsigned Depth = 0); |
579 | LLVM_ABI const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty, |
580 | unsigned Depth = 0); |
581 | LLVM_ABI const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty); |
582 | LLVM_ABI const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); |
583 | LLVM_ABI const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
584 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
585 | unsigned Depth = 0); |
586 | const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, |
587 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
588 | unsigned Depth = 0) { |
589 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
590 | return getAddExpr(Ops, Flags, Depth); |
591 | } |
592 | const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, |
593 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
594 | unsigned Depth = 0) { |
595 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; |
596 | return getAddExpr(Ops, Flags, Depth); |
597 | } |
598 | LLVM_ABI const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
599 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
600 | unsigned Depth = 0); |
601 | const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, |
602 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
603 | unsigned Depth = 0) { |
604 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
605 | return getMulExpr(Ops, Flags, Depth); |
606 | } |
607 | const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, |
608 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
609 | unsigned Depth = 0) { |
610 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; |
611 | return getMulExpr(Ops, Flags, Depth); |
612 | } |
613 | LLVM_ABI const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); |
614 | LLVM_ABI const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); |
615 | LLVM_ABI const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS); |
616 | LLVM_ABI const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, |
617 | const Loop *L, SCEV::NoWrapFlags Flags); |
618 | LLVM_ABI const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
619 | const Loop *L, SCEV::NoWrapFlags Flags); |
620 | const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, |
621 | const Loop *L, SCEV::NoWrapFlags Flags) { |
622 | SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); |
623 | return getAddRecExpr(Operands&: NewOp, L, Flags); |
624 | } |
625 | |
626 | /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some |
627 | /// Predicates. If successful return these <AddRecExpr, Predicates>; |
628 | /// The function is intended to be called from PSCEV (the caller will decide |
629 | /// whether to actually add the predicates and carry out the rewrites). |
630 | LLVM_ABI std::optional< |
631 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
632 | createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI); |
633 | |
634 | /// Returns an expression for a GEP |
635 | /// |
636 | /// \p GEP The GEP. The indices contained in the GEP itself are ignored, |
637 | /// instead we use IndexExprs. |
638 | /// \p IndexExprs The expressions for the indices. |
639 | LLVM_ABI const SCEV * |
640 | getGEPExpr(GEPOperator *GEP, const SmallVectorImpl<const SCEV *> &IndexExprs); |
641 | LLVM_ABI const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW); |
642 | LLVM_ABI const SCEV *getMinMaxExpr(SCEVTypes Kind, |
643 | SmallVectorImpl<const SCEV *> &Operands); |
644 | LLVM_ABI const SCEV * |
645 | getSequentialMinMaxExpr(SCEVTypes Kind, |
646 | SmallVectorImpl<const SCEV *> &Operands); |
647 | LLVM_ABI const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); |
648 | LLVM_ABI const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); |
649 | LLVM_ABI const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); |
650 | LLVM_ABI const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); |
651 | LLVM_ABI const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); |
652 | LLVM_ABI const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands); |
653 | LLVM_ABI const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS, |
654 | bool Sequential = false); |
655 | LLVM_ABI const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands, |
656 | bool Sequential = false); |
657 | LLVM_ABI const SCEV *getUnknown(Value *V); |
658 | LLVM_ABI const SCEV *getCouldNotCompute(); |
659 | |
660 | /// Return a SCEV for the constant 0 of a specific type. |
661 | const SCEV *getZero(Type *Ty) { return getConstant(Ty, V: 0); } |
662 | |
663 | /// Return a SCEV for the constant 1 of a specific type. |
664 | const SCEV *getOne(Type *Ty) { return getConstant(Ty, V: 1); } |
665 | |
666 | /// Return a SCEV for the constant \p Power of two. |
667 | const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) { |
668 | assert(Power < getTypeSizeInBits(Ty) && "Power out of range"); |
669 | return getConstant(Val: APInt::getOneBitSet(numBits: getTypeSizeInBits(Ty), BitNo: Power)); |
670 | } |
671 | |
672 | /// Return a SCEV for the constant -1 of a specific type. |
673 | const SCEV *getMinusOne(Type *Ty) { |
674 | return getConstant(Ty, V: -1, /*isSigned=*/isSigned: true); |
675 | } |
676 | |
677 | /// Return an expression for a TypeSize. |
678 | LLVM_ABI const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size); |
679 | |
680 | /// Return an expression for the alloc size of AllocTy that is type IntTy |
681 | LLVM_ABI const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy); |
682 | |
683 | /// Return an expression for the store size of StoreTy that is type IntTy |
684 | LLVM_ABI const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy); |
685 | |
686 | /// Return an expression for offsetof on the given field with type IntTy |
687 | LLVM_ABI const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, |
688 | unsigned FieldNo); |
689 | |
690 | /// Return the SCEV object corresponding to -V. |
691 | LLVM_ABI const SCEV * |
692 | getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); |
693 | |
694 | /// Return the SCEV object corresponding to ~V. |
695 | LLVM_ABI const SCEV *getNotSCEV(const SCEV *V); |
696 | |
697 | /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1. |
698 | /// |
699 | /// If the LHS and RHS are pointers which don't share a common base |
700 | /// (according to getPointerBase()), this returns a SCEVCouldNotCompute. |
701 | /// To compute the difference between two unrelated pointers, you can |
702 | /// explicitly convert the arguments using getPtrToIntExpr(), for pointer |
703 | /// types that support it. |
704 | LLVM_ABI const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, |
705 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
706 | unsigned Depth = 0); |
707 | |
708 | /// Compute ceil(N / D). N and D are treated as unsigned values. |
709 | /// |
710 | /// Since SCEV doesn't have native ceiling division, this generates a |
711 | /// SCEV expression of the following form: |
712 | /// |
713 | /// umin(N, 1) + floor((N - umin(N, 1)) / D) |
714 | /// |
715 | /// A denominator of zero or poison is handled the same way as getUDivExpr(). |
716 | LLVM_ABI const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D); |
717 | |
718 | /// Return a SCEV corresponding to a conversion of the input value to the |
719 | /// specified type. If the type must be extended, it is zero extended. |
720 | LLVM_ABI const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty, |
721 | unsigned Depth = 0); |
722 | |
723 | /// Return a SCEV corresponding to a conversion of the input value to the |
724 | /// specified type. If the type must be extended, it is sign extended. |
725 | LLVM_ABI const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty, |
726 | unsigned Depth = 0); |
727 | |
728 | /// Return a SCEV corresponding to a conversion of the input value to the |
729 | /// specified type. If the type must be extended, it is zero extended. The |
730 | /// conversion must not be narrowing. |
731 | LLVM_ABI const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); |
732 | |
733 | /// Return a SCEV corresponding to a conversion of the input value to the |
734 | /// specified type. If the type must be extended, it is sign extended. The |
735 | /// conversion must not be narrowing. |
736 | LLVM_ABI const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); |
737 | |
738 | /// Return a SCEV corresponding to a conversion of the input value to the |
739 | /// specified type. If the type must be extended, it is extended with |
740 | /// unspecified bits. The conversion must not be narrowing. |
741 | LLVM_ABI const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); |
742 | |
743 | /// Return a SCEV corresponding to a conversion of the input value to the |
744 | /// specified type. The conversion must not be widening. |
745 | LLVM_ABI const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); |
746 | |
747 | /// Promote the operands to the wider of the types using zero-extension, and |
748 | /// then perform a umax operation with them. |
749 | LLVM_ABI const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, |
750 | const SCEV *RHS); |
751 | |
752 | /// Promote the operands to the wider of the types using zero-extension, and |
753 | /// then perform a umin operation with them. |
754 | LLVM_ABI const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, |
755 | const SCEV *RHS, |
756 | bool Sequential = false); |
757 | |
758 | /// Promote the operands to the wider of the types using zero-extension, and |
759 | /// then perform a umin operation with them. N-ary function. |
760 | LLVM_ABI const SCEV * |
761 | getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, |
762 | bool Sequential = false); |
763 | |
764 | /// Transitively follow the chain of pointer-type operands until reaching a |
765 | /// SCEV that does not have a single pointer operand. This returns a |
766 | /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner |
767 | /// cases do exist. |
768 | LLVM_ABI const SCEV *getPointerBase(const SCEV *V); |
769 | |
770 | /// Compute an expression equivalent to S - getPointerBase(S). |
771 | LLVM_ABI const SCEV *removePointerBase(const SCEV *S); |
772 | |
773 | /// Return a SCEV expression for the specified value at the specified scope |
774 | /// in the program. The L value specifies a loop nest to evaluate the |
775 | /// expression at, where null is the top-level or a specified loop is |
776 | /// immediately inside of the loop. |
777 | /// |
778 | /// This method can be used to compute the exit value for a variable defined |
779 | /// in a loop by querying what the value will hold in the parent loop. |
780 | /// |
781 | /// In the case that a relevant loop exit value cannot be computed, the |
782 | /// original value V is returned. |
783 | LLVM_ABI const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); |
784 | |
785 | /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). |
786 | LLVM_ABI const SCEV *getSCEVAtScope(Value *V, const Loop *L); |
787 | |
788 | /// Test whether entry to the loop is protected by a conditional between LHS |
789 | /// and RHS. This is used to help avoid max expressions in loop trip |
790 | /// counts, and to eliminate casts. |
791 | LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, |
792 | const SCEV *LHS, const SCEV *RHS); |
793 | |
794 | /// Test whether entry to the basic block is protected by a conditional |
795 | /// between LHS and RHS. |
796 | LLVM_ABI bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, |
797 | CmpPredicate Pred, |
798 | const SCEV *LHS, |
799 | const SCEV *RHS); |
800 | |
801 | /// Test whether the backedge of the loop is protected by a conditional |
802 | /// between LHS and RHS. This is used to eliminate casts. |
803 | LLVM_ABI bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, |
804 | const SCEV *LHS, const SCEV *RHS); |
805 | |
806 | /// A version of getTripCountFromExitCount below which always picks an |
807 | /// evaluation type which can not result in overflow. |
808 | LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount); |
809 | |
810 | /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip |
811 | /// count". A "trip count" is the number of times the header of the loop |
812 | /// will execute if an exit is taken after the specified number of backedges |
813 | /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the |
814 | /// expression can overflow if ExitCount = UINT_MAX. If EvalTy is not wide |
815 | /// enough to hold the result without overflow, result unsigned wraps with |
816 | /// 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8) |
817 | LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, |
818 | Type *EvalTy, const Loop *L); |
819 | |
820 | /// Returns the exact trip count of the loop if we can compute it, and |
821 | /// the result is a small constant. '0' is used to represent an unknown |
822 | /// or non-constant trip count. Note that a trip count is simply one more |
823 | /// than the backedge taken count for the loop. |
824 | LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L); |
825 | |
826 | /// Return the exact trip count for this loop if we exit through ExitingBlock. |
827 | /// '0' is used to represent an unknown or non-constant trip count. Note |
828 | /// that a trip count is simply one more than the backedge taken count for |
829 | /// the same exit. |
830 | /// This "trip count" assumes that control exits via ExitingBlock. More |
831 | /// precisely, it is the number of times that control will reach ExitingBlock |
832 | /// before taking the branch. For loops with multiple exits, it may not be |
833 | /// the number times that the loop header executes if the loop exits |
834 | /// prematurely via another branch. |
835 | LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L, |
836 | const BasicBlock *ExitingBlock); |
837 | |
838 | /// Returns the upper bound of the loop trip count as a normal unsigned |
839 | /// value. |
840 | /// Returns 0 if the trip count is unknown, not constant or requires |
841 | /// SCEV predicates and \p Predicates is nullptr. |
842 | LLVM_ABI unsigned getSmallConstantMaxTripCount( |
843 | const Loop *L, |
844 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr); |
845 | |
846 | /// Returns the largest constant divisor of the trip count as a normal |
847 | /// unsigned value, if possible. This means that the actual trip count is |
848 | /// always a multiple of the returned value. Returns 1 if the trip count is |
849 | /// unknown or not guaranteed to be the multiple of a constant., Will also |
850 | /// return 1 if the trip count is very large (>= 2^32). |
851 | /// Note that the argument is an exit count for loop L, NOT a trip count. |
852 | LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L, |
853 | const SCEV *ExitCount); |
854 | |
855 | /// Returns the largest constant divisor of the trip count of the |
856 | /// loop. Will return 1 if no trip count could be computed, or if a |
857 | /// divisor could not be found. |
858 | LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L); |
859 | |
860 | /// Returns the largest constant divisor of the trip count of this loop as a |
861 | /// normal unsigned value, if possible. This means that the actual trip |
862 | /// count is always a multiple of the returned value (don't forget the trip |
863 | /// count could very well be zero as well!). As explained in the comments |
864 | /// for getSmallConstantTripCount, this assumes that control exits the loop |
865 | /// via ExitingBlock. |
866 | LLVM_ABI unsigned |
867 | getSmallConstantTripMultiple(const Loop *L, const BasicBlock *ExitingBlock); |
868 | |
869 | /// The terms "backedge taken count" and "exit count" are used |
870 | /// interchangeably to refer to the number of times the backedge of a loop |
871 | /// has executed before the loop is exited. |
872 | enum ExitCountKind { |
873 | /// An expression exactly describing the number of times the backedge has |
874 | /// executed when a loop is exited. |
875 | Exact, |
876 | /// A constant which provides an upper bound on the exact trip count. |
877 | ConstantMaximum, |
878 | /// An expression which provides an upper bound on the exact trip count. |
879 | SymbolicMaximum, |
880 | }; |
881 | |
882 | /// Return the number of times the backedge executes before the given exit |
883 | /// would be taken; if not exactly computable, return SCEVCouldNotCompute. |
884 | /// For a single exit loop, this value is equivelent to the result of |
885 | /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit) |
886 | /// before the backedge is executed (ExitCount + 1) times. Note that there |
887 | /// is no guarantee about *which* exit is taken on the exiting iteration. |
888 | LLVM_ABI const SCEV *getExitCount(const Loop *L, |
889 | const BasicBlock *ExitingBlock, |
890 | ExitCountKind Kind = Exact); |
891 | |
892 | /// Same as above except this uses the predicated backedge taken info and |
893 | /// may require predicates. |
894 | LLVM_ABI const SCEV * |
895 | getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, |
896 | SmallVectorImpl<const SCEVPredicate *> *Predicates, |
897 | ExitCountKind Kind = Exact); |
898 | |
899 | /// If the specified loop has a predictable backedge-taken count, return it, |
900 | /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is |
901 | /// the number of times the loop header will be branched to from within the |
902 | /// loop, assuming there are no abnormal exists like exception throws. This is |
903 | /// one less than the trip count of the loop, since it doesn't count the first |
904 | /// iteration, when the header is branched to from outside the loop. |
905 | /// |
906 | /// Note that it is not valid to call this method on a loop without a |
907 | /// loop-invariant backedge-taken count (see |
908 | /// hasLoopInvariantBackedgeTakenCount). |
909 | LLVM_ABI const SCEV *getBackedgeTakenCount(const Loop *L, |
910 | ExitCountKind Kind = Exact); |
911 | |
912 | /// Similar to getBackedgeTakenCount, except it will add a set of |
913 | /// SCEV predicates to Predicates that are required to be true in order for |
914 | /// the answer to be correct. Predicates can be checked with run-time |
915 | /// checks and can be used to perform loop versioning. |
916 | LLVM_ABI const SCEV *getPredicatedBackedgeTakenCount( |
917 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates); |
918 | |
919 | /// When successful, this returns a SCEVConstant that is greater than or equal |
920 | /// to (i.e. a "conservative over-approximation") of the value returend by |
921 | /// getBackedgeTakenCount. If such a value cannot be computed, it returns the |
922 | /// SCEVCouldNotCompute object. |
923 | const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) { |
924 | return getBackedgeTakenCount(L, Kind: ConstantMaximum); |
925 | } |
926 | |
927 | /// Similar to getConstantMaxBackedgeTakenCount, except it will add a set of |
928 | /// SCEV predicates to Predicates that are required to be true in order for |
929 | /// the answer to be correct. Predicates can be checked with run-time |
930 | /// checks and can be used to perform loop versioning. |
931 | LLVM_ABI const SCEV *getPredicatedConstantMaxBackedgeTakenCount( |
932 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates); |
933 | |
934 | /// When successful, this returns a SCEV that is greater than or equal |
935 | /// to (i.e. a "conservative over-approximation") of the value returend by |
936 | /// getBackedgeTakenCount. If such a value cannot be computed, it returns the |
937 | /// SCEVCouldNotCompute object. |
938 | const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) { |
939 | return getBackedgeTakenCount(L, Kind: SymbolicMaximum); |
940 | } |
941 | |
942 | /// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of |
943 | /// SCEV predicates to Predicates that are required to be true in order for |
944 | /// the answer to be correct. Predicates can be checked with run-time |
945 | /// checks and can be used to perform loop versioning. |
946 | LLVM_ABI const SCEV *getPredicatedSymbolicMaxBackedgeTakenCount( |
947 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates); |
948 | |
949 | /// Return true if the backedge taken count is either the value returned by |
950 | /// getConstantMaxBackedgeTakenCount or zero. |
951 | LLVM_ABI bool isBackedgeTakenCountMaxOrZero(const Loop *L); |
952 | |
953 | /// Return true if the specified loop has an analyzable loop-invariant |
954 | /// backedge-taken count. |
955 | LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L); |
956 | |
957 | // This method should be called by the client when it made any change that |
958 | // would invalidate SCEV's answers, and the client wants to remove all loop |
959 | // information held internally by ScalarEvolution. This is intended to be used |
960 | // when the alternative to forget a loop is too expensive (i.e. large loop |
961 | // bodies). |
962 | LLVM_ABI void forgetAllLoops(); |
963 | |
964 | /// This method should be called by the client when it has changed a loop in |
965 | /// a way that may effect ScalarEvolution's ability to compute a trip count, |
966 | /// or if the loop is deleted. This call is potentially expensive for large |
967 | /// loop bodies. |
968 | LLVM_ABI void forgetLoop(const Loop *L); |
969 | |
970 | // This method invokes forgetLoop for the outermost loop of the given loop |
971 | // \p L, making ScalarEvolution forget about all this subtree. This needs to |
972 | // be done whenever we make a transform that may affect the parameters of the |
973 | // outer loop, such as exit counts for branches. |
974 | LLVM_ABI void forgetTopmostLoop(const Loop *L); |
975 | |
976 | /// This method should be called by the client when it has changed a value |
977 | /// in a way that may effect its value, or which may disconnect it from a |
978 | /// def-use chain linking it to a loop. |
979 | LLVM_ABI void forgetValue(Value *V); |
980 | |
981 | /// Forget LCSSA phi node V of loop L to which a new predecessor was added, |
982 | /// such that it may no longer be trivial. |
983 | LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V); |
984 | |
985 | /// Called when the client has changed the disposition of values in |
986 | /// this loop. |
987 | /// |
988 | /// We don't have a way to invalidate per-loop dispositions. Clear and |
989 | /// recompute is simpler. |
990 | LLVM_ABI void forgetLoopDispositions(); |
991 | |
992 | /// Called when the client has changed the disposition of values in |
993 | /// a loop or block. |
994 | /// |
995 | /// We don't have a way to invalidate per-loop/per-block dispositions. Clear |
996 | /// and recompute is simpler. |
997 | LLVM_ABI void forgetBlockAndLoopDispositions(Value *V = nullptr); |
998 | |
999 | /// Determine the minimum number of zero bits that S is guaranteed to end in |
1000 | /// (at every loop iteration). It is, at the same time, the minimum number |
1001 | /// of times S is divisible by 2. For example, given {4,+,8} it returns 2. |
1002 | /// If S is guaranteed to be 0, it returns the bitwidth of S. |
1003 | LLVM_ABI uint32_t getMinTrailingZeros(const SCEV *S); |
1004 | |
1005 | /// Returns the max constant multiple of S. |
1006 | LLVM_ABI APInt getConstantMultiple(const SCEV *S); |
1007 | |
1008 | // Returns the max constant multiple of S. If S is exactly 0, return 1. |
1009 | LLVM_ABI APInt getNonZeroConstantMultiple(const SCEV *S); |
1010 | |
1011 | /// Determine the unsigned range for a particular SCEV. |
1012 | /// NOTE: This returns a copy of the reference returned by getRangeRef. |
1013 | ConstantRange getUnsignedRange(const SCEV *S) { |
1014 | return getRangeRef(S, Hint: HINT_RANGE_UNSIGNED); |
1015 | } |
1016 | |
1017 | /// Determine the min of the unsigned range for a particular SCEV. |
1018 | APInt getUnsignedRangeMin(const SCEV *S) { |
1019 | return getRangeRef(S, Hint: HINT_RANGE_UNSIGNED).getUnsignedMin(); |
1020 | } |
1021 | |
1022 | /// Determine the max of the unsigned range for a particular SCEV. |
1023 | APInt getUnsignedRangeMax(const SCEV *S) { |
1024 | return getRangeRef(S, Hint: HINT_RANGE_UNSIGNED).getUnsignedMax(); |
1025 | } |
1026 | |
1027 | /// Determine the signed range for a particular SCEV. |
1028 | /// NOTE: This returns a copy of the reference returned by getRangeRef. |
1029 | ConstantRange getSignedRange(const SCEV *S) { |
1030 | return getRangeRef(S, Hint: HINT_RANGE_SIGNED); |
1031 | } |
1032 | |
1033 | /// Determine the min of the signed range for a particular SCEV. |
1034 | APInt getSignedRangeMin(const SCEV *S) { |
1035 | return getRangeRef(S, Hint: HINT_RANGE_SIGNED).getSignedMin(); |
1036 | } |
1037 | |
1038 | /// Determine the max of the signed range for a particular SCEV. |
1039 | APInt getSignedRangeMax(const SCEV *S) { |
1040 | return getRangeRef(S, Hint: HINT_RANGE_SIGNED).getSignedMax(); |
1041 | } |
1042 | |
1043 | /// Test if the given expression is known to be negative. |
1044 | LLVM_ABI bool isKnownNegative(const SCEV *S); |
1045 | |
1046 | /// Test if the given expression is known to be positive. |
1047 | LLVM_ABI bool isKnownPositive(const SCEV *S); |
1048 | |
1049 | /// Test if the given expression is known to be non-negative. |
1050 | LLVM_ABI bool isKnownNonNegative(const SCEV *S); |
1051 | |
1052 | /// Test if the given expression is known to be non-positive. |
1053 | LLVM_ABI bool isKnownNonPositive(const SCEV *S); |
1054 | |
1055 | /// Test if the given expression is known to be non-zero. |
1056 | LLVM_ABI bool isKnownNonZero(const SCEV *S); |
1057 | |
1058 | /// Test if the given expression is known to be a power of 2. OrNegative |
1059 | /// allows matching negative power of 2s, and OrZero allows matching 0. |
1060 | LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero = false, |
1061 | bool OrNegative = false); |
1062 | |
1063 | /// Check that \p S is a multiple of \p M. When \p S is an AddRecExpr, \p S is |
1064 | /// a multiple of \p M if \p S starts with a multiple of \p M and at every |
1065 | /// iteration step \p S only adds multiples of \p M. \p Assumptions records |
1066 | /// the runtime predicates under which \p S is a multiple of \p M. |
1067 | LLVM_ABI bool |
1068 | isKnownMultipleOf(const SCEV *S, uint64_t M, |
1069 | SmallVectorImpl<const SCEVPredicate *> &Assumptions); |
1070 | |
1071 | /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from |
1072 | /// \p S by substitution of all AddRec sub-expression related to loop \p L |
1073 | /// with initial value of that SCEV. The second is obtained from \p S by |
1074 | /// substitution of all AddRec sub-expressions related to loop \p L with post |
1075 | /// increment of this AddRec in the loop \p L. In both cases all other AddRec |
1076 | /// sub-expressions (not related to \p L) remain the same. |
1077 | /// If the \p S contains non-invariant unknown SCEV the function returns |
1078 | /// CouldNotCompute SCEV in both values of std::pair. |
1079 | /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1 |
1080 | /// the function returns pair: |
1081 | /// first = {0, +, 1}<L2> |
1082 | /// second = {1, +, 1}<L1> + {0, +, 1}<L2> |
1083 | /// We can see that for the first AddRec sub-expression it was replaced with |
1084 | /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post |
1085 | /// increment value) for the second one. In both cases AddRec expression |
1086 | /// related to L2 remains the same. |
1087 | LLVM_ABI std::pair<const SCEV *, const SCEV *> |
1088 | SplitIntoInitAndPostInc(const Loop *L, const SCEV *S); |
1089 | |
1090 | /// We'd like to check the predicate on every iteration of the most dominated |
1091 | /// loop between loops used in LHS and RHS. |
1092 | /// To do this we use the following list of steps: |
1093 | /// 1. Collect set S all loops on which either LHS or RHS depend. |
1094 | /// 2. If S is non-empty |
1095 | /// a. Let PD be the element of S which is dominated by all other elements. |
1096 | /// b. Let E(LHS) be value of LHS on entry of PD. |
1097 | /// To get E(LHS), we should just take LHS and replace all AddRecs that are |
1098 | /// attached to PD on with their entry values. |
1099 | /// Define E(RHS) in the same way. |
1100 | /// c. Let B(LHS) be value of L on backedge of PD. |
1101 | /// To get B(LHS), we should just take LHS and replace all AddRecs that are |
1102 | /// attached to PD on with their backedge values. |
1103 | /// Define B(RHS) in the same way. |
1104 | /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD, |
1105 | /// so we can assert on that. |
1106 | /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) && |
1107 | /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS)) |
1108 | LLVM_ABI bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, |
1109 | const SCEV *RHS); |
1110 | |
1111 | /// Test if the given expression is known to satisfy the condition described |
1112 | /// by Pred, LHS, and RHS. |
1113 | LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, |
1114 | const SCEV *RHS); |
1115 | |
1116 | /// Check whether the condition described by Pred, LHS, and RHS is true or |
1117 | /// false. If we know it, return the evaluation of this condition. If neither |
1118 | /// is proved, return std::nullopt. |
1119 | LLVM_ABI std::optional<bool> |
1120 | evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS); |
1121 | |
1122 | /// Test if the given expression is known to satisfy the condition described |
1123 | /// by Pred, LHS, and RHS in the given Context. |
1124 | LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, |
1125 | const SCEV *RHS, const Instruction *CtxI); |
1126 | |
1127 | /// Check whether the condition described by Pred, LHS, and RHS is true or |
1128 | /// false in the given \p Context. If we know it, return the evaluation of |
1129 | /// this condition. If neither is proved, return std::nullopt. |
1130 | LLVM_ABI std::optional<bool> evaluatePredicateAt(CmpPredicate Pred, |
1131 | const SCEV *LHS, |
1132 | const SCEV *RHS, |
1133 | const Instruction *CtxI); |
1134 | |
1135 | /// Test if the condition described by Pred, LHS, RHS is known to be true on |
1136 | /// every iteration of the loop of the recurrency LHS. |
1137 | LLVM_ABI bool isKnownOnEveryIteration(CmpPredicate Pred, |
1138 | const SCEVAddRecExpr *LHS, |
1139 | const SCEV *RHS); |
1140 | |
1141 | /// Information about the number of loop iterations for which a loop exit's |
1142 | /// branch condition evaluates to the not-taken path. This is a temporary |
1143 | /// pair of exact and max expressions that are eventually summarized in |
1144 | /// ExitNotTakenInfo and BackedgeTakenInfo. |
1145 | struct ExitLimit { |
1146 | const SCEV *ExactNotTaken; // The exit is not taken exactly this many times |
1147 | const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many |
1148 | // times |
1149 | const SCEV *SymbolicMaxNotTaken; |
1150 | |
1151 | // Not taken either exactly ConstantMaxNotTaken or zero times |
1152 | bool MaxOrZero = false; |
1153 | |
1154 | /// A vector of predicate guards for this ExitLimit. The result is only |
1155 | /// valid if all of the predicates in \c Predicates evaluate to 'true' at |
1156 | /// run-time. |
1157 | SmallVector<const SCEVPredicate *, 4> Predicates; |
1158 | |
1159 | /// Construct either an exact exit limit from a constant, or an unknown |
1160 | /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed |
1161 | /// as arguments and asserts enforce that internally. |
1162 | /*implicit*/ LLVM_ABI ExitLimit(const SCEV *E); |
1163 | |
1164 | LLVM_ABI |
1165 | ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken, |
1166 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, |
1167 | ArrayRef<ArrayRef<const SCEVPredicate *>> PredLists = {}); |
1168 | |
1169 | LLVM_ABI ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken, |
1170 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, |
1171 | ArrayRef<const SCEVPredicate *> PredList); |
1172 | |
1173 | /// Test whether this ExitLimit contains any computed information, or |
1174 | /// whether it's all SCEVCouldNotCompute values. |
1175 | bool hasAnyInfo() const { |
1176 | return !isa<SCEVCouldNotCompute>(Val: ExactNotTaken) || |
1177 | !isa<SCEVCouldNotCompute>(Val: ConstantMaxNotTaken); |
1178 | } |
1179 | |
1180 | /// Test whether this ExitLimit contains all information. |
1181 | bool hasFullInfo() const { |
1182 | return !isa<SCEVCouldNotCompute>(Val: ExactNotTaken); |
1183 | } |
1184 | }; |
1185 | |
1186 | /// Compute the number of times the backedge of the specified loop will |
1187 | /// execute if its exit condition were a conditional branch of ExitCond. |
1188 | /// |
1189 | /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit |
1190 | /// branch. In this case, we can assume that the loop exits only if the |
1191 | /// condition is true and can infer that failing to meet the condition prior |
1192 | /// to integer wraparound results in undefined behavior. |
1193 | /// |
1194 | /// If \p AllowPredicates is set, this call will try to use a minimal set of |
1195 | /// SCEV predicates in order to return an exact answer. |
1196 | LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, |
1197 | bool ExitIfTrue, |
1198 | bool ControlsOnlyExit, |
1199 | bool AllowPredicates = false); |
1200 | |
1201 | /// A predicate is said to be monotonically increasing if may go from being |
1202 | /// false to being true as the loop iterates, but never the other way |
1203 | /// around. A predicate is said to be monotonically decreasing if may go |
1204 | /// from being true to being false as the loop iterates, but never the other |
1205 | /// way around. |
1206 | enum MonotonicPredicateType { |
1207 | MonotonicallyIncreasing, |
1208 | MonotonicallyDecreasing |
1209 | }; |
1210 | |
1211 | /// If, for all loop invariant X, the predicate "LHS `Pred` X" is |
1212 | /// monotonically increasing or decreasing, returns |
1213 | /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing) |
1214 | /// respectively. If we could not prove either of these facts, returns |
1215 | /// std::nullopt. |
1216 | LLVM_ABI std::optional<MonotonicPredicateType> |
1217 | getMonotonicPredicateType(const SCEVAddRecExpr *LHS, |
1218 | ICmpInst::Predicate Pred); |
1219 | |
1220 | struct LoopInvariantPredicate { |
1221 | CmpPredicate Pred; |
1222 | const SCEV *LHS; |
1223 | const SCEV *RHS; |
1224 | |
1225 | LoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS) |
1226 | : Pred(Pred), LHS(LHS), RHS(RHS) {} |
1227 | }; |
1228 | /// If the result of the predicate LHS `Pred` RHS is loop invariant with |
1229 | /// respect to L, return a LoopInvariantPredicate with LHS and RHS being |
1230 | /// invariants, available at L's entry. Otherwise, return std::nullopt. |
1231 | LLVM_ABI std::optional<LoopInvariantPredicate> |
1232 | getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, |
1233 | const Loop *L, const Instruction *CtxI = nullptr); |
1234 | |
1235 | /// If the result of the predicate LHS `Pred` RHS is loop invariant with |
1236 | /// respect to L at given Context during at least first MaxIter iterations, |
1237 | /// return a LoopInvariantPredicate with LHS and RHS being invariants, |
1238 | /// available at L's entry. Otherwise, return std::nullopt. The predicate |
1239 | /// should be the loop's exit condition. |
1240 | LLVM_ABI std::optional<LoopInvariantPredicate> |
1241 | getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, |
1242 | const SCEV *LHS, |
1243 | const SCEV *RHS, const Loop *L, |
1244 | const Instruction *CtxI, |
1245 | const SCEV *MaxIter); |
1246 | |
1247 | LLVM_ABI std::optional<LoopInvariantPredicate> |
1248 | getLoopInvariantExitCondDuringFirstIterationsImpl( |
1249 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
1250 | const Instruction *CtxI, const SCEV *MaxIter); |
1251 | |
1252 | /// Simplify LHS and RHS in a comparison with predicate Pred. Return true |
1253 | /// iff any changes were made. If the operands are provably equal or |
1254 | /// unequal, LHS and RHS are set to the same value and Pred is set to either |
1255 | /// ICMP_EQ or ICMP_NE. |
1256 | LLVM_ABI bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, |
1257 | const SCEV *&RHS, unsigned Depth = 0); |
1258 | |
1259 | /// Return the "disposition" of the given SCEV with respect to the given |
1260 | /// loop. |
1261 | LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); |
1262 | |
1263 | /// Return true if the value of the given SCEV is unchanging in the |
1264 | /// specified loop. |
1265 | LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L); |
1266 | |
1267 | /// Determine if the SCEV can be evaluated at loop's entry. It is true if it |
1268 | /// doesn't depend on a SCEVUnknown of an instruction which is dominated by |
1269 | /// the header of loop L. |
1270 | LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L); |
1271 | |
1272 | /// Return true if the given SCEV changes value in a known way in the |
1273 | /// specified loop. This property being true implies that the value is |
1274 | /// variant in the loop AND that we can emit an expression to compute the |
1275 | /// value of the expression at any particular loop iteration. |
1276 | LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); |
1277 | |
1278 | /// Return the "disposition" of the given SCEV with respect to the given |
1279 | /// block. |
1280 | LLVM_ABI BlockDisposition getBlockDisposition(const SCEV *S, |
1281 | const BasicBlock *BB); |
1282 | |
1283 | /// Return true if elements that makes up the given SCEV dominate the |
1284 | /// specified basic block. |
1285 | LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB); |
1286 | |
1287 | /// Return true if elements that makes up the given SCEV properly dominate |
1288 | /// the specified basic block. |
1289 | LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB); |
1290 | |
1291 | /// Test whether the given SCEV has Op as a direct or indirect operand. |
1292 | LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const; |
1293 | |
1294 | /// Return the size of an element read or written by Inst. |
1295 | LLVM_ABI const SCEV *getElementSize(Instruction *Inst); |
1296 | |
1297 | LLVM_ABI void print(raw_ostream &OS) const; |
1298 | LLVM_ABI void verify() const; |
1299 | LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, |
1300 | FunctionAnalysisManager::Invalidator &Inv); |
1301 | |
1302 | /// Return the DataLayout associated with the module this SCEV instance is |
1303 | /// operating on. |
1304 | const DataLayout &getDataLayout() const { return DL; } |
1305 | |
1306 | LLVM_ABI const SCEVPredicate *getEqualPredicate(const SCEV *LHS, |
1307 | const SCEV *RHS); |
1308 | LLVM_ABI const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred, |
1309 | const SCEV *LHS, |
1310 | const SCEV *RHS); |
1311 | |
1312 | LLVM_ABI const SCEVPredicate * |
1313 | getWrapPredicate(const SCEVAddRecExpr *AR, |
1314 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags); |
1315 | |
1316 | /// Re-writes the SCEV according to the Predicates in \p A. |
1317 | LLVM_ABI const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L, |
1318 | const SCEVPredicate &A); |
1319 | /// Tries to convert the \p S expression to an AddRec expression, |
1320 | /// adding additional predicates to \p Preds as required. |
1321 | LLVM_ABI const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates( |
1322 | const SCEV *S, const Loop *L, |
1323 | SmallVectorImpl<const SCEVPredicate *> &Preds); |
1324 | |
1325 | /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a |
1326 | /// constant, and std::nullopt if it isn't. |
1327 | /// |
1328 | /// This is intended to be a cheaper version of getMinusSCEV. We can be |
1329 | /// frugal here since we just bail out of actually constructing and |
1330 | /// canonicalizing an expression in the cases where the result isn't going |
1331 | /// to be a constant. |
1332 | LLVM_ABI std::optional<APInt> computeConstantDifference(const SCEV *LHS, |
1333 | const SCEV *RHS); |
1334 | |
1335 | /// Update no-wrap flags of an AddRec. This may drop the cached info about |
1336 | /// this AddRec (such as range info) in case if new flags may potentially |
1337 | /// sharpen it. |
1338 | LLVM_ABI void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags); |
1339 | |
1340 | class LoopGuards { |
1341 | DenseMap<const SCEV *, const SCEV *> RewriteMap; |
1342 | bool PreserveNUW = false; |
1343 | bool PreserveNSW = false; |
1344 | ScalarEvolution &SE; |
1345 | |
1346 | LoopGuards(ScalarEvolution &SE) : SE(SE) {} |
1347 | |
1348 | /// Recursively collect loop guards in \p Guards, starting from |
1349 | /// block \p Block with predecessor \p Pred. The intended starting point |
1350 | /// is to collect from a loop header and its predecessor. |
1351 | static void |
1352 | collectFromBlock(ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, |
1353 | const BasicBlock *Block, const BasicBlock *Pred, |
1354 | SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, |
1355 | unsigned Depth = 0); |
1356 | |
1357 | /// Collect loop guards in \p Guards, starting from PHINode \p |
1358 | /// Phi, by calling \p collectFromBlock on the incoming blocks of |
1359 | /// \Phi and trying to merge the found constraints into a single |
1360 | /// combined one for \p Phi. |
1361 | static void collectFromPHI( |
1362 | ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, |
1363 | const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, |
1364 | SmallDenseMap<const BasicBlock *, LoopGuards> &IncomingGuards, |
1365 | unsigned Depth); |
1366 | |
1367 | public: |
1368 | /// Collect rewrite map for loop guards for loop \p L, together with flags |
1369 | /// indicating if NUW and NSW can be preserved during rewriting. |
1370 | LLVM_ABI static LoopGuards collect(const Loop *L, ScalarEvolution &SE); |
1371 | |
1372 | /// Try to apply the collected loop guards to \p Expr. |
1373 | LLVM_ABI const SCEV *rewrite(const SCEV *Expr) const; |
1374 | }; |
1375 | |
1376 | /// Try to apply information from loop guards for \p L to \p Expr. |
1377 | LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L); |
1378 | LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr, |
1379 | const LoopGuards &Guards); |
1380 | |
1381 | /// Return true if the loop has no abnormal exits. That is, if the loop |
1382 | /// is not infinite, it must exit through an explicit edge in the CFG. |
1383 | /// (As opposed to either a) throwing out of the function or b) entering a |
1384 | /// well defined infinite loop in some callee.) |
1385 | bool loopHasNoAbnormalExits(const Loop *L) { |
1386 | return getLoopProperties(L).HasNoAbnormalExits; |
1387 | } |
1388 | |
1389 | /// Return true if this loop is finite by assumption. That is, |
1390 | /// to be infinite, it must also be undefined. |
1391 | LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L); |
1392 | |
1393 | /// Return the set of Values that, if poison, will definitively result in S |
1394 | /// being poison as well. The returned set may be incomplete, i.e. there can |
1395 | /// be additional Values that also result in S being poison. |
1396 | LLVM_ABI void |
1397 | getPoisonGeneratingValues(SmallPtrSetImpl<const Value *> &Result, |
1398 | const SCEV *S); |
1399 | |
1400 | /// Check whether it is poison-safe to represent the expression S using the |
1401 | /// instruction I. If such a replacement is performed, the poison flags of |
1402 | /// instructions in DropPoisonGeneratingInsts must be dropped. |
1403 | LLVM_ABI bool canReuseInstruction( |
1404 | const SCEV *S, Instruction *I, |
1405 | SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts); |
1406 | |
1407 | class FoldID { |
1408 | const SCEV *Op = nullptr; |
1409 | const Type *Ty = nullptr; |
1410 | unsigned short C; |
1411 | |
1412 | public: |
1413 | FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) { |
1414 | assert(Op); |
1415 | assert(Ty); |
1416 | } |
1417 | |
1418 | FoldID(unsigned short C) : C(C) {} |
1419 | |
1420 | unsigned computeHash() const { |
1421 | return detail::combineHashValue( |
1422 | a: C, b: detail::combineHashValue(a: reinterpret_cast<uintptr_t>(Op), |
1423 | b: reinterpret_cast<uintptr_t>(Ty))); |
1424 | } |
1425 | |
1426 | bool operator==(const FoldID &RHS) const { |
1427 | return std::tie(args: Op, args: Ty, args: C) == std::tie(args: RHS.Op, args: RHS.Ty, args: RHS.C); |
1428 | } |
1429 | }; |
1430 | |
1431 | private: |
1432 | /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a |
1433 | /// Value is deleted. |
1434 | class LLVM_ABI SCEVCallbackVH final : public CallbackVH { |
1435 | ScalarEvolution *SE; |
1436 | |
1437 | void deleted() override; |
1438 | void allUsesReplacedWith(Value *New) override; |
1439 | |
1440 | public: |
1441 | SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); |
1442 | }; |
1443 | |
1444 | friend class SCEVCallbackVH; |
1445 | friend class SCEVExpander; |
1446 | friend class SCEVUnknown; |
1447 | |
1448 | /// The function we are analyzing. |
1449 | Function &F; |
1450 | |
1451 | /// Data layout of the module. |
1452 | const DataLayout &DL; |
1453 | |
1454 | /// Does the module have any calls to the llvm.experimental.guard intrinsic |
1455 | /// at all? If this is false, we avoid doing work that will only help if |
1456 | /// thare are guards present in the IR. |
1457 | bool HasGuards; |
1458 | |
1459 | /// The target library information for the target we are targeting. |
1460 | TargetLibraryInfo &TLI; |
1461 | |
1462 | /// The tracker for \@llvm.assume intrinsics in this function. |
1463 | AssumptionCache &AC; |
1464 | |
1465 | /// The dominator tree. |
1466 | DominatorTree &DT; |
1467 | |
1468 | /// The loop information for the function we are currently analyzing. |
1469 | LoopInfo &LI; |
1470 | |
1471 | /// This SCEV is used to represent unknown trip counts and things. |
1472 | std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute; |
1473 | |
1474 | /// The type for HasRecMap. |
1475 | using HasRecMapType = DenseMap<const SCEV *, bool>; |
1476 | |
1477 | /// This is a cache to record whether a SCEV contains any scAddRecExpr. |
1478 | HasRecMapType HasRecMap; |
1479 | |
1480 | /// The type for ExprValueMap. |
1481 | using ValueSetVector = SmallSetVector<Value *, 4>; |
1482 | using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>; |
1483 | |
1484 | /// ExprValueMap -- This map records the original values from which |
1485 | /// the SCEV expr is generated from. |
1486 | ExprValueMapType ExprValueMap; |
1487 | |
1488 | /// The type for ValueExprMap. |
1489 | using ValueExprMapType = |
1490 | DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>; |
1491 | |
1492 | /// This is a cache of the values we have analyzed so far. |
1493 | ValueExprMapType ValueExprMap; |
1494 | |
1495 | /// This is a cache for expressions that got folded to a different existing |
1496 | /// SCEV. |
1497 | DenseMap<FoldID, const SCEV *> FoldCache; |
1498 | DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser; |
1499 | |
1500 | /// Mark predicate values currently being processed by isImpliedCond. |
1501 | SmallPtrSet<const Value *, 6> PendingLoopPredicates; |
1502 | |
1503 | /// Mark SCEVUnknown Phis currently being processed by getRangeRef. |
1504 | SmallPtrSet<const PHINode *, 6> PendingPhiRanges; |
1505 | |
1506 | /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter. |
1507 | SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter; |
1508 | |
1509 | // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge. |
1510 | SmallPtrSet<const PHINode *, 6> PendingMerges; |
1511 | |
1512 | /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of |
1513 | /// conditions dominating the backedge of a loop. |
1514 | bool WalkingBEDominatingConds = false; |
1515 | |
1516 | /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a |
1517 | /// predicate by splitting it into a set of independent predicates. |
1518 | bool ProvingSplitPredicate = false; |
1519 | |
1520 | /// Memoized values for the getConstantMultiple |
1521 | DenseMap<const SCEV *, APInt> ConstantMultipleCache; |
1522 | |
1523 | /// Return the Value set from which the SCEV expr is generated. |
1524 | ArrayRef<Value *> getSCEVValues(const SCEV *S); |
1525 | |
1526 | /// Private helper method for the getConstantMultiple method. |
1527 | APInt getConstantMultipleImpl(const SCEV *S); |
1528 | |
1529 | /// Information about the number of times a particular loop exit may be |
1530 | /// reached before exiting the loop. |
1531 | struct ExitNotTakenInfo { |
1532 | PoisoningVH<BasicBlock> ExitingBlock; |
1533 | const SCEV *ExactNotTaken; |
1534 | const SCEV *ConstantMaxNotTaken; |
1535 | const SCEV *SymbolicMaxNotTaken; |
1536 | SmallVector<const SCEVPredicate *, 4> Predicates; |
1537 | |
1538 | explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock, |
1539 | const SCEV *ExactNotTaken, |
1540 | const SCEV *ConstantMaxNotTaken, |
1541 | const SCEV *SymbolicMaxNotTaken, |
1542 | ArrayRef<const SCEVPredicate *> Predicates) |
1543 | : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken), |
1544 | ConstantMaxNotTaken(ConstantMaxNotTaken), |
1545 | SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {} |
1546 | |
1547 | bool hasAlwaysTruePredicate() const { |
1548 | return Predicates.empty(); |
1549 | } |
1550 | }; |
1551 | |
1552 | /// Information about the backedge-taken count of a loop. This currently |
1553 | /// includes an exact count and a maximum count. |
1554 | /// |
1555 | class BackedgeTakenInfo { |
1556 | friend class ScalarEvolution; |
1557 | |
1558 | /// A list of computable exits and their not-taken counts. Loops almost |
1559 | /// never have more than one computable exit. |
1560 | SmallVector<ExitNotTakenInfo, 1> ExitNotTaken; |
1561 | |
1562 | /// Expression indicating the least constant maximum backedge-taken count of |
1563 | /// the loop that is known, or a SCEVCouldNotCompute. This expression is |
1564 | /// only valid if the predicates associated with all loop exits are true. |
1565 | const SCEV *ConstantMax = nullptr; |
1566 | |
1567 | /// Indicating if \c ExitNotTaken has an element for every exiting block in |
1568 | /// the loop. |
1569 | bool IsComplete = false; |
1570 | |
1571 | /// Expression indicating the least maximum backedge-taken count of the loop |
1572 | /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query. |
1573 | const SCEV *SymbolicMax = nullptr; |
1574 | |
1575 | /// True iff the backedge is taken either exactly Max or zero times. |
1576 | bool MaxOrZero = false; |
1577 | |
1578 | bool isComplete() const { return IsComplete; } |
1579 | const SCEV *getConstantMax() const { return ConstantMax; } |
1580 | |
1581 | LLVM_ABI const ExitNotTakenInfo *getExitNotTaken( |
1582 | const BasicBlock *ExitingBlock, |
1583 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const; |
1584 | |
1585 | public: |
1586 | BackedgeTakenInfo() = default; |
1587 | BackedgeTakenInfo(BackedgeTakenInfo &&) = default; |
1588 | BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default; |
1589 | |
1590 | using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>; |
1591 | |
1592 | /// Initialize BackedgeTakenInfo from a list of exact exit counts. |
1593 | LLVM_ABI BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, |
1594 | bool IsComplete, const SCEV *ConstantMax, |
1595 | bool MaxOrZero); |
1596 | |
1597 | /// Test whether this BackedgeTakenInfo contains any computed information, |
1598 | /// or whether it's all SCEVCouldNotCompute values. |
1599 | bool hasAnyInfo() const { |
1600 | return !ExitNotTaken.empty() || |
1601 | !isa<SCEVCouldNotCompute>(Val: getConstantMax()); |
1602 | } |
1603 | |
1604 | /// Test whether this BackedgeTakenInfo contains complete information. |
1605 | bool hasFullInfo() const { return isComplete(); } |
1606 | |
1607 | /// Return an expression indicating the exact *backedge-taken* |
1608 | /// count of the loop if it is known or SCEVCouldNotCompute |
1609 | /// otherwise. If execution makes it to the backedge on every |
1610 | /// iteration (i.e. there are no abnormal exists like exception |
1611 | /// throws and thread exits) then this is the number of times the |
1612 | /// loop header will execute minus one. |
1613 | /// |
1614 | /// If the SCEV predicate associated with the answer can be different |
1615 | /// from AlwaysTrue, we must add a (non null) Predicates argument. |
1616 | /// The SCEV predicate associated with the answer will be added to |
1617 | /// Predicates. A run-time check needs to be emitted for the SCEV |
1618 | /// predicate in order for the answer to be valid. |
1619 | /// |
1620 | /// Note that we should always know if we need to pass a predicate |
1621 | /// argument or not from the way the ExitCounts vector was computed. |
1622 | /// If we allowed SCEV predicates to be generated when populating this |
1623 | /// vector, this information can contain them and therefore a |
1624 | /// SCEVPredicate argument should be added to getExact. |
1625 | LLVM_ABI const SCEV *getExact( |
1626 | const Loop *L, ScalarEvolution *SE, |
1627 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const; |
1628 | |
1629 | /// Return the number of times this loop exit may fall through to the back |
1630 | /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via |
1631 | /// this block before this number of iterations, but may exit via another |
1632 | /// block. If \p Predicates is null the function returns CouldNotCompute if |
1633 | /// predicates are required, otherwise it fills in the required predicates. |
1634 | const SCEV *getExact( |
1635 | const BasicBlock *ExitingBlock, ScalarEvolution *SE, |
1636 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const { |
1637 | if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates)) |
1638 | return ENT->ExactNotTaken; |
1639 | else |
1640 | return SE->getCouldNotCompute(); |
1641 | } |
1642 | |
1643 | /// Get the constant max backedge taken count for the loop. |
1644 | LLVM_ABI const SCEV *getConstantMax( |
1645 | ScalarEvolution *SE, |
1646 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const; |
1647 | |
1648 | /// Get the constant max backedge taken count for the particular loop exit. |
1649 | const SCEV *getConstantMax( |
1650 | const BasicBlock *ExitingBlock, ScalarEvolution *SE, |
1651 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const { |
1652 | if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates)) |
1653 | return ENT->ConstantMaxNotTaken; |
1654 | else |
1655 | return SE->getCouldNotCompute(); |
1656 | } |
1657 | |
1658 | /// Get the symbolic max backedge taken count for the loop. |
1659 | LLVM_ABI const SCEV *getSymbolicMax( |
1660 | const Loop *L, ScalarEvolution *SE, |
1661 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr); |
1662 | |
1663 | /// Get the symbolic max backedge taken count for the particular loop exit. |
1664 | const SCEV *getSymbolicMax( |
1665 | const BasicBlock *ExitingBlock, ScalarEvolution *SE, |
1666 | SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const { |
1667 | if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates)) |
1668 | return ENT->SymbolicMaxNotTaken; |
1669 | else |
1670 | return SE->getCouldNotCompute(); |
1671 | } |
1672 | |
1673 | /// Return true if the number of times this backedge is taken is either the |
1674 | /// value returned by getConstantMax or zero. |
1675 | LLVM_ABI bool isConstantMaxOrZero(ScalarEvolution *SE) const; |
1676 | }; |
1677 | |
1678 | /// Cache the backedge-taken count of the loops for this function as they |
1679 | /// are computed. |
1680 | DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts; |
1681 | |
1682 | /// Cache the predicated backedge-taken count of the loops for this |
1683 | /// function as they are computed. |
1684 | DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts; |
1685 | |
1686 | /// Loops whose backedge taken counts directly use this non-constant SCEV. |
1687 | DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>> |
1688 | BECountUsers; |
1689 | |
1690 | /// This map contains entries for all of the PHI instructions that we |
1691 | /// attempt to compute constant evolutions for. This allows us to avoid |
1692 | /// potentially expensive recomputation of these properties. An instruction |
1693 | /// maps to null if we are unable to compute its exit value. |
1694 | DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue; |
1695 | |
1696 | /// This map contains entries for all the expressions that we attempt to |
1697 | /// compute getSCEVAtScope information for, which can be expensive in |
1698 | /// extreme cases. |
1699 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> |
1700 | ValuesAtScopes; |
1701 | |
1702 | /// Reverse map for invalidation purposes: Stores of which SCEV and which |
1703 | /// loop this is the value-at-scope of. |
1704 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> |
1705 | ValuesAtScopesUsers; |
1706 | |
1707 | /// Memoized computeLoopDisposition results. |
1708 | DenseMap<const SCEV *, |
1709 | SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>> |
1710 | LoopDispositions; |
1711 | |
1712 | struct LoopProperties { |
1713 | /// Set to true if the loop contains no instruction that can abnormally exit |
1714 | /// the loop (i.e. via throwing an exception, by terminating the thread |
1715 | /// cleanly or by infinite looping in a called function). Strictly |
1716 | /// speaking, the last one is not leaving the loop, but is identical to |
1717 | /// leaving the loop for reasoning about undefined behavior. |
1718 | bool HasNoAbnormalExits; |
1719 | |
1720 | /// Set to true if the loop contains no instruction that can have side |
1721 | /// effects (i.e. via throwing an exception, volatile or atomic access). |
1722 | bool HasNoSideEffects; |
1723 | }; |
1724 | |
1725 | /// Cache for \c getLoopProperties. |
1726 | DenseMap<const Loop *, LoopProperties> LoopPropertiesCache; |
1727 | |
1728 | /// Return a \c LoopProperties instance for \p L, creating one if necessary. |
1729 | LLVM_ABI LoopProperties getLoopProperties(const Loop *L); |
1730 | |
1731 | bool loopHasNoSideEffects(const Loop *L) { |
1732 | return getLoopProperties(L).HasNoSideEffects; |
1733 | } |
1734 | |
1735 | /// Compute a LoopDisposition value. |
1736 | LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); |
1737 | |
1738 | /// Memoized computeBlockDisposition results. |
1739 | DenseMap< |
1740 | const SCEV *, |
1741 | SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>> |
1742 | BlockDispositions; |
1743 | |
1744 | /// Compute a BlockDisposition value. |
1745 | BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); |
1746 | |
1747 | /// Stores all SCEV that use a given SCEV as its direct operand. |
1748 | DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers; |
1749 | |
1750 | /// Memoized results from getRange |
1751 | DenseMap<const SCEV *, ConstantRange> UnsignedRanges; |
1752 | |
1753 | /// Memoized results from getRange |
1754 | DenseMap<const SCEV *, ConstantRange> SignedRanges; |
1755 | |
1756 | /// Used to parameterize getRange |
1757 | enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED }; |
1758 | |
1759 | /// Set the memoized range for the given SCEV. |
1760 | const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, |
1761 | ConstantRange CR) { |
1762 | DenseMap<const SCEV *, ConstantRange> &Cache = |
1763 | Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges; |
1764 | |
1765 | auto Pair = Cache.insert_or_assign(Key: S, Val: std::move(CR)); |
1766 | return Pair.first->second; |
1767 | } |
1768 | |
1769 | /// Determine the range for a particular SCEV. |
1770 | /// NOTE: This returns a reference to an entry in a cache. It must be |
1771 | /// copied if its needed for longer. |
1772 | LLVM_ABI const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint, |
1773 | unsigned Depth = 0); |
1774 | |
1775 | /// Determine the range for a particular SCEV, but evaluates ranges for |
1776 | /// operands iteratively first. |
1777 | const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint); |
1778 | |
1779 | /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}. |
1780 | /// Helper for \c getRange. |
1781 | ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step, |
1782 | const APInt &MaxBECount); |
1783 | |
1784 | /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p |
1785 | /// Start,+,\p Step}<nw>. |
1786 | ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec, |
1787 | const SCEV *MaxBECount, |
1788 | unsigned BitWidth, |
1789 | RangeSignHint SignHint); |
1790 | |
1791 | /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p |
1792 | /// Step} by "factoring out" a ternary expression from the add recurrence. |
1793 | /// Helper called by \c getRange. |
1794 | ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step, |
1795 | const APInt &MaxBECount); |
1796 | |
1797 | /// If the unknown expression U corresponds to a simple recurrence, return |
1798 | /// a constant range which represents the entire recurrence. Note that |
1799 | /// *add* recurrences with loop invariant steps aren't represented by |
1800 | /// SCEVUnknowns and thus don't use this mechanism. |
1801 | ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U); |
1802 | |
1803 | /// We know that there is no SCEV for the specified value. Analyze the |
1804 | /// expression recursively. |
1805 | const SCEV *createSCEV(Value *V); |
1806 | |
1807 | /// We know that there is no SCEV for the specified value. Create a new SCEV |
1808 | /// for \p V iteratively. |
1809 | const SCEV *createSCEVIter(Value *V); |
1810 | /// Collect operands of \p V for which SCEV expressions should be constructed |
1811 | /// first. Returns a SCEV directly if it can be constructed trivially for \p |
1812 | /// V. |
1813 | const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops); |
1814 | |
1815 | /// Returns SCEV for the first operand of a phi if all phi operands have |
1816 | /// identical opcodes and operands. |
1817 | const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN); |
1818 | |
1819 | /// Provide the special handling we need to analyze PHI SCEVs. |
1820 | const SCEV *createNodeForPHI(PHINode *PN); |
1821 | |
1822 | /// Helper function called from createNodeForPHI. |
1823 | const SCEV *createAddRecFromPHI(PHINode *PN); |
1824 | |
1825 | /// A helper function for createAddRecFromPHI to handle simple cases. |
1826 | const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV, |
1827 | Value *StartValueV); |
1828 | |
1829 | /// Helper function called from createNodeForPHI. |
1830 | const SCEV *createNodeFromSelectLikePHI(PHINode *PN); |
1831 | |
1832 | /// Provide special handling for a select-like instruction (currently this |
1833 | /// is either a select instruction or a phi node). \p Ty is the type of the |
1834 | /// instruction being processed, that is assumed equivalent to |
1835 | /// "Cond ? TrueVal : FalseVal". |
1836 | std::optional<const SCEV *> |
1837 | createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond, |
1838 | Value *TrueVal, Value *FalseVal); |
1839 | |
1840 | /// See if we can model this select-like instruction via umin_seq expression. |
1841 | const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond, |
1842 | Value *TrueVal, |
1843 | Value *FalseVal); |
1844 | |
1845 | /// Given a value \p V, which is a select-like instruction (currently this is |
1846 | /// either a select instruction or a phi node), which is assumed equivalent to |
1847 | /// Cond ? TrueVal : FalseVal |
1848 | /// see if we can model it as a SCEV expression. |
1849 | const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal, |
1850 | Value *FalseVal); |
1851 | |
1852 | /// Provide the special handling we need to analyze GEP SCEVs. |
1853 | const SCEV *createNodeForGEP(GEPOperator *GEP); |
1854 | |
1855 | /// Implementation code for getSCEVAtScope; called at most once for each |
1856 | /// SCEV+Loop pair. |
1857 | const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); |
1858 | |
1859 | /// Return the BackedgeTakenInfo for the given loop, lazily computing new |
1860 | /// values if the loop hasn't been analyzed yet. The returned result is |
1861 | /// guaranteed not to be predicated. |
1862 | BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); |
1863 | |
1864 | /// Similar to getBackedgeTakenInfo, but will add predicates as required |
1865 | /// with the purpose of returning complete information. |
1866 | BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L); |
1867 | |
1868 | /// Compute the number of times the specified loop will iterate. |
1869 | /// If AllowPredicates is set, we will create new SCEV predicates as |
1870 | /// necessary in order to return an exact answer. |
1871 | BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L, |
1872 | bool AllowPredicates = false); |
1873 | |
1874 | /// Compute the number of times the backedge of the specified loop will |
1875 | /// execute if it exits via the specified block. If AllowPredicates is set, |
1876 | /// this call will try to use a minimal set of SCEV predicates in order to |
1877 | /// return an exact answer. |
1878 | ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, |
1879 | bool IsOnlyExit, bool AllowPredicates = false); |
1880 | |
1881 | // Helper functions for computeExitLimitFromCond to avoid exponential time |
1882 | // complexity. |
1883 | |
1884 | class ExitLimitCache { |
1885 | // It may look like we need key on the whole (L, ExitIfTrue, |
1886 | // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to |
1887 | // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only |
1888 | // vary the in \c ExitCond and \c ControlsOnlyExit parameters. We remember |
1889 | // the initial values of the other values to assert our assumption. |
1890 | SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap; |
1891 | |
1892 | const Loop *L; |
1893 | bool ExitIfTrue; |
1894 | bool AllowPredicates; |
1895 | |
1896 | public: |
1897 | ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates) |
1898 | : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {} |
1899 | |
1900 | LLVM_ABI std::optional<ExitLimit> find(const Loop *L, Value *ExitCond, |
1901 | bool ExitIfTrue, |
1902 | bool ControlsOnlyExit, |
1903 | bool AllowPredicates); |
1904 | |
1905 | LLVM_ABI void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue, |
1906 | bool ControlsOnlyExit, bool AllowPredicates, |
1907 | const ExitLimit &EL); |
1908 | }; |
1909 | |
1910 | using ExitLimitCacheTy = ExitLimitCache; |
1911 | |
1912 | ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache, |
1913 | const Loop *L, Value *ExitCond, |
1914 | bool ExitIfTrue, |
1915 | bool ControlsOnlyExit, |
1916 | bool AllowPredicates); |
1917 | ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L, |
1918 | Value *ExitCond, bool ExitIfTrue, |
1919 | bool ControlsOnlyExit, |
1920 | bool AllowPredicates); |
1921 | std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp( |
1922 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
1923 | bool ControlsOnlyExit, bool AllowPredicates); |
1924 | |
1925 | /// Compute the number of times the backedge of the specified loop will |
1926 | /// execute if its exit condition were a conditional branch of the ICmpInst |
1927 | /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try |
1928 | /// to use a minimal set of SCEV predicates in order to return an exact |
1929 | /// answer. |
1930 | ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, |
1931 | bool ExitIfTrue, |
1932 | bool IsSubExpr, |
1933 | bool AllowPredicates = false); |
1934 | |
1935 | /// Variant of previous which takes the components representing an ICmp |
1936 | /// as opposed to the ICmpInst itself. Note that the prior version can |
1937 | /// return more precise results in some cases and is preferred when caller |
1938 | /// has a materialized ICmp. |
1939 | ExitLimit computeExitLimitFromICmp(const Loop *L, CmpPredicate Pred, |
1940 | const SCEV *LHS, const SCEV *RHS, |
1941 | bool IsSubExpr, |
1942 | bool AllowPredicates = false); |
1943 | |
1944 | /// Compute the number of times the backedge of the specified loop will |
1945 | /// execute if its exit condition were a switch with a single exiting case |
1946 | /// to ExitingBB. |
1947 | ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, |
1948 | SwitchInst *Switch, |
1949 | BasicBlock *ExitingBB, |
1950 | bool IsSubExpr); |
1951 | |
1952 | /// Compute the exit limit of a loop that is controlled by a |
1953 | /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip |
1954 | /// count in these cases (since SCEV has no way of expressing them), but we |
1955 | /// can still sometimes compute an upper bound. |
1956 | /// |
1957 | /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred |
1958 | /// RHS`. |
1959 | ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, |
1960 | ICmpInst::Predicate Pred); |
1961 | |
1962 | /// If the loop is known to execute a constant number of times (the |
1963 | /// condition evolves only from constants), try to evaluate a few iterations |
1964 | /// of the loop until we get the exit condition gets a value of ExitWhen |
1965 | /// (true or false). If we cannot evaluate the exit count of the loop, |
1966 | /// return CouldNotCompute. |
1967 | const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, |
1968 | bool ExitWhen); |
1969 | |
1970 | /// Return the number of times an exit condition comparing the specified |
1971 | /// value to zero will execute. If not computable, return CouldNotCompute. |
1972 | /// If AllowPredicates is set, this call will try to use a minimal set of |
1973 | /// SCEV predicates in order to return an exact answer. |
1974 | ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr, |
1975 | bool AllowPredicates = false); |
1976 | |
1977 | /// Return the number of times an exit condition checking the specified |
1978 | /// value for nonzero will execute. If not computable, return |
1979 | /// CouldNotCompute. |
1980 | ExitLimit howFarToNonZero(const SCEV *V, const Loop *L); |
1981 | |
1982 | /// Return the number of times an exit condition containing the specified |
1983 | /// less-than comparison will execute. If not computable, return |
1984 | /// CouldNotCompute. |
1985 | /// |
1986 | /// \p isSigned specifies whether the less-than is signed. |
1987 | /// |
1988 | /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls |
1989 | /// the branch (loops exits only if condition is true). In this case, we can |
1990 | /// use NoWrapFlags to skip overflow checks. |
1991 | /// |
1992 | /// If \p AllowPredicates is set, this call will try to use a minimal set of |
1993 | /// SCEV predicates in order to return an exact answer. |
1994 | ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, |
1995 | bool isSigned, bool ControlsOnlyExit, |
1996 | bool AllowPredicates = false); |
1997 | |
1998 | ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, |
1999 | bool isSigned, bool IsSubExpr, |
2000 | bool AllowPredicates = false); |
2001 | |
2002 | /// Return a predecessor of BB (which may not be an immediate predecessor) |
2003 | /// which has exactly one successor from which BB is reachable, or null if |
2004 | /// no such block is found. |
2005 | std::pair<const BasicBlock *, const BasicBlock *> |
2006 | getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const; |
2007 | |
2008 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2009 | /// whenever the given FoundCondValue value evaluates to true in given |
2010 | /// Context. If Context is nullptr, then the found predicate is true |
2011 | /// everywhere. LHS and FoundLHS may have different type width. |
2012 | LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS, |
2013 | const SCEV *RHS, const Value *FoundCondValue, |
2014 | bool Inverse, |
2015 | const Instruction *Context = nullptr); |
2016 | |
2017 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2018 | /// whenever the given FoundCondValue value evaluates to true in given |
2019 | /// Context. If Context is nullptr, then the found predicate is true |
2020 | /// everywhere. LHS and FoundLHS must have same type width. |
2021 | LLVM_ABI bool isImpliedCondBalancedTypes(CmpPredicate Pred, const SCEV *LHS, |
2022 | const SCEV *RHS, |
2023 | CmpPredicate FoundPred, |
2024 | const SCEV *FoundLHS, |
2025 | const SCEV *FoundRHS, |
2026 | const Instruction *CtxI); |
2027 | |
2028 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2029 | /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is |
2030 | /// true in given Context. If Context is nullptr, then the found predicate is |
2031 | /// true everywhere. |
2032 | LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS, |
2033 | const SCEV *RHS, CmpPredicate FoundPred, |
2034 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
2035 | const Instruction *Context = nullptr); |
2036 | |
2037 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2038 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2039 | /// true in given Context. If Context is nullptr, then the found predicate is |
2040 | /// true everywhere. |
2041 | bool isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS, |
2042 | const SCEV *RHS, const SCEV *FoundLHS, |
2043 | const SCEV *FoundRHS, |
2044 | const Instruction *Context = nullptr); |
2045 | |
2046 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2047 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2048 | /// true. Here LHS is an operation that includes FoundLHS as one of its |
2049 | /// arguments. |
2050 | bool isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS, |
2051 | const SCEV *RHS, const SCEV *FoundLHS, |
2052 | const SCEV *FoundRHS, unsigned Depth = 0); |
2053 | |
2054 | /// Test whether the condition described by Pred, LHS, and RHS is true. |
2055 | /// Use only simple non-recursive types of checks, such as range analysis etc. |
2056 | bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred, const SCEV *LHS, |
2057 | const SCEV *RHS); |
2058 | |
2059 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2060 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2061 | /// true. |
2062 | bool isImpliedCondOperandsHelper(CmpPredicate Pred, const SCEV *LHS, |
2063 | const SCEV *RHS, const SCEV *FoundLHS, |
2064 | const SCEV *FoundRHS); |
2065 | |
2066 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2067 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2068 | /// true. Utility function used by isImpliedCondOperands. Tries to get |
2069 | /// cases like "X `sgt` 0 => X - 1 `sgt` -1". |
2070 | bool isImpliedCondOperandsViaRanges(CmpPredicate Pred, const SCEV *LHS, |
2071 | const SCEV *RHS, CmpPredicate FoundPred, |
2072 | const SCEV *FoundLHS, |
2073 | const SCEV *FoundRHS); |
2074 | |
2075 | /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied |
2076 | /// by a call to @llvm.experimental.guard in \p BB. |
2077 | bool isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred, |
2078 | const SCEV *LHS, const SCEV *RHS); |
2079 | |
2080 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2081 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2082 | /// true. |
2083 | /// |
2084 | /// This routine tries to rule out certain kinds of integer overflow, and |
2085 | /// then tries to reason about arithmetic properties of the predicates. |
2086 | bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, const SCEV *LHS, |
2087 | const SCEV *RHS, const SCEV *FoundLHS, |
2088 | const SCEV *FoundRHS); |
2089 | |
2090 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2091 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2092 | /// true. |
2093 | /// |
2094 | /// This routine tries to weaken the known condition basing on fact that |
2095 | /// FoundLHS is an AddRec. |
2096 | bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred, const SCEV *LHS, |
2097 | const SCEV *RHS, |
2098 | const SCEV *FoundLHS, |
2099 | const SCEV *FoundRHS, |
2100 | const Instruction *CtxI); |
2101 | |
2102 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2103 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2104 | /// true. |
2105 | /// |
2106 | /// This routine tries to figure out predicate for Phis which are SCEVUnknown |
2107 | /// if it is true for every possible incoming value from their respective |
2108 | /// basic blocks. |
2109 | bool isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, |
2110 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
2111 | unsigned Depth); |
2112 | |
2113 | /// Test whether the condition described by Pred, LHS, and RHS is true |
2114 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
2115 | /// true. |
2116 | /// |
2117 | /// This routine tries to reason about shifts. |
2118 | bool isImpliedCondOperandsViaShift(CmpPredicate Pred, const SCEV *LHS, |
2119 | const SCEV *RHS, const SCEV *FoundLHS, |
2120 | const SCEV *FoundRHS); |
2121 | |
2122 | /// If we know that the specified Phi is in the header of its containing |
2123 | /// loop, we know the loop executes a constant number of times, and the PHI |
2124 | /// node is just a recurrence involving constants, fold it. |
2125 | Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, |
2126 | const Loop *L); |
2127 | |
2128 | /// Test if the given expression is known to satisfy the condition described |
2129 | /// by Pred and the known constant ranges of LHS and RHS. |
2130 | bool isKnownPredicateViaConstantRanges(CmpPredicate Pred, const SCEV *LHS, |
2131 | const SCEV *RHS); |
2132 | |
2133 | /// Try to prove the condition described by "LHS Pred RHS" by ruling out |
2134 | /// integer overflow. |
2135 | /// |
2136 | /// For instance, this will return true for "A s< (A + C)<nsw>" if C is |
2137 | /// positive. |
2138 | bool isKnownPredicateViaNoOverflow(CmpPredicate Pred, const SCEV *LHS, |
2139 | const SCEV *RHS); |
2140 | |
2141 | /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to |
2142 | /// prove them individually. |
2143 | bool isKnownPredicateViaSplitting(CmpPredicate Pred, const SCEV *LHS, |
2144 | const SCEV *RHS); |
2145 | |
2146 | /// Try to match the Expr as "(L + R)<Flags>". |
2147 | bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, |
2148 | SCEV::NoWrapFlags &Flags); |
2149 | |
2150 | /// Forget predicated/non-predicated backedge taken counts for the given loop. |
2151 | void forgetBackedgeTakenCounts(const Loop *L, bool Predicated); |
2152 | |
2153 | /// Drop memoized information for all \p SCEVs. |
2154 | void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs); |
2155 | |
2156 | /// Helper for forgetMemoizedResults. |
2157 | void forgetMemoizedResultsImpl(const SCEV *S); |
2158 | |
2159 | /// Iterate over instructions in \p Worklist and their users. Erase entries |
2160 | /// from ValueExprMap and collect SCEV expressions in \p ToForget |
2161 | void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist, |
2162 | SmallPtrSetImpl<Instruction *> &Visited, |
2163 | SmallVectorImpl<const SCEV *> &ToForget); |
2164 | |
2165 | /// Erase Value from ValueExprMap and ExprValueMap. |
2166 | void eraseValueFromMap(Value *V); |
2167 | |
2168 | /// Insert V to S mapping into ValueExprMap and ExprValueMap. |
2169 | void insertValueToMap(Value *V, const SCEV *S); |
2170 | |
2171 | /// Return false iff given SCEV contains a SCEVUnknown with NULL value- |
2172 | /// pointer. |
2173 | bool checkValidity(const SCEV *S) const; |
2174 | |
2175 | /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be |
2176 | /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is |
2177 | /// equivalent to proving no signed (resp. unsigned) wrap in |
2178 | /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` |
2179 | /// (resp. `SCEVZeroExtendExpr`). |
2180 | template <typename ExtendOpTy> |
2181 | bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, |
2182 | const Loop *L); |
2183 | |
2184 | /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation. |
2185 | SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR); |
2186 | |
2187 | /// Try to prove NSW on \p AR by proving facts about conditions known on |
2188 | /// entry and backedge. |
2189 | SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR); |
2190 | |
2191 | /// Try to prove NUW on \p AR by proving facts about conditions known on |
2192 | /// entry and backedge. |
2193 | SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR); |
2194 | |
2195 | std::optional<MonotonicPredicateType> |
2196 | getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, |
2197 | ICmpInst::Predicate Pred); |
2198 | |
2199 | /// Return SCEV no-wrap flags that can be proven based on reasoning about |
2200 | /// how poison produced from no-wrap flags on this value (e.g. a nuw add) |
2201 | /// would trigger undefined behavior on overflow. |
2202 | SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V); |
2203 | |
2204 | /// Return a scope which provides an upper bound on the defining scope of |
2205 | /// 'S'. Specifically, return the first instruction in said bounding scope. |
2206 | /// Return nullptr if the scope is trivial (function entry). |
2207 | /// (See scope definition rules associated with flag discussion above) |
2208 | const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S); |
2209 | |
2210 | /// Return a scope which provides an upper bound on the defining scope for |
2211 | /// a SCEV with the operands in Ops. The outparam Precise is set if the |
2212 | /// bound found is a precise bound (i.e. must be the defining scope.) |
2213 | const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops, |
2214 | bool &Precise); |
2215 | |
2216 | /// Wrapper around the above for cases which don't care if the bound |
2217 | /// is precise. |
2218 | const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops); |
2219 | |
2220 | /// Given two instructions in the same function, return true if we can |
2221 | /// prove B must execute given A executes. |
2222 | bool isGuaranteedToTransferExecutionTo(const Instruction *A, |
2223 | const Instruction *B); |
2224 | |
2225 | /// Returns true if \p Op is guaranteed not to cause immediate UB. |
2226 | bool isGuaranteedNotToCauseUB(const SCEV *Op); |
2227 | |
2228 | /// Returns true if \p Op is guaranteed to not be poison. |
2229 | static bool isGuaranteedNotToBePoison(const SCEV *Op); |
2230 | |
2231 | /// Return true if the SCEV corresponding to \p I is never poison. Proving |
2232 | /// this is more complex than proving that just \p I is never poison, since |
2233 | /// SCEV commons expressions across control flow, and you can have cases |
2234 | /// like: |
2235 | /// |
2236 | /// idx0 = a + b; |
2237 | /// ptr[idx0] = 100; |
2238 | /// if (<condition>) { |
2239 | /// idx1 = a +nsw b; |
2240 | /// ptr[idx1] = 200; |
2241 | /// } |
2242 | /// |
2243 | /// where the SCEV expression (+ a b) is guaranteed to not be poison (and |
2244 | /// hence not sign-overflow) only if "<condition>" is true. Since both |
2245 | /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b), |
2246 | /// it is not okay to annotate (+ a b) with <nsw> in the above example. |
2247 | bool isSCEVExprNeverPoison(const Instruction *I); |
2248 | |
2249 | /// This is like \c isSCEVExprNeverPoison but it specifically works for |
2250 | /// instructions that will get mapped to SCEV add recurrences. Return true |
2251 | /// if \p I will never generate poison under the assumption that \p I is an |
2252 | /// add recurrence on the loop \p L. |
2253 | bool isAddRecNeverPoison(const Instruction *I, const Loop *L); |
2254 | |
2255 | /// Similar to createAddRecFromPHI, but with the additional flexibility of |
2256 | /// suggesting runtime overflow checks in case casts are encountered. |
2257 | /// If successful, the analysis records that for this loop, \p SymbolicPHI, |
2258 | /// which is the UnknownSCEV currently representing the PHI, can be rewritten |
2259 | /// into an AddRec, assuming some predicates; The function then returns the |
2260 | /// AddRec and the predicates as a pair, and caches this pair in |
2261 | /// PredicatedSCEVRewrites. |
2262 | /// If the analysis is not successful, a mapping from the \p SymbolicPHI to |
2263 | /// itself (with no predicates) is recorded, and a nullptr with an empty |
2264 | /// predicates vector is returned as a pair. |
2265 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
2266 | createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI); |
2267 | |
2268 | /// Compute the maximum backedge count based on the range of values |
2269 | /// permitted by Start, End, and Stride. This is for loops of the form |
2270 | /// {Start, +, Stride} LT End. |
2271 | /// |
2272 | /// Preconditions: |
2273 | /// * the induction variable is known to be positive. |
2274 | /// * the induction variable is assumed not to overflow (i.e. either it |
2275 | /// actually doesn't, or we'd have to immediately execute UB) |
2276 | /// We *don't* assert these preconditions so please be careful. |
2277 | const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride, |
2278 | const SCEV *End, unsigned BitWidth, |
2279 | bool IsSigned); |
2280 | |
2281 | /// Verify if an linear IV with positive stride can overflow when in a |
2282 | /// less-than comparison, knowing the invariant term of the comparison, |
2283 | /// the stride. |
2284 | bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); |
2285 | |
2286 | /// Verify if an linear IV with negative stride can overflow when in a |
2287 | /// greater-than comparison, knowing the invariant term of the comparison, |
2288 | /// the stride. |
2289 | bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); |
2290 | |
2291 | /// Get add expr already created or create a new one. |
2292 | const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, |
2293 | SCEV::NoWrapFlags Flags); |
2294 | |
2295 | /// Get mul expr already created or create a new one. |
2296 | const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, |
2297 | SCEV::NoWrapFlags Flags); |
2298 | |
2299 | // Get addrec expr already created or create a new one. |
2300 | const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, |
2301 | const Loop *L, SCEV::NoWrapFlags Flags); |
2302 | |
2303 | /// Return x if \p Val is f(x) where f is a 1-1 function. |
2304 | const SCEV *stripInjectiveFunctions(const SCEV *Val) const; |
2305 | |
2306 | /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed. |
2307 | /// A loop is considered "used" by an expression if it contains |
2308 | /// an add rec on said loop. |
2309 | void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed); |
2310 | |
2311 | /// Try to match the pattern generated by getURemExpr(A, B). If successful, |
2312 | /// Assign A and B to LHS and RHS, respectively. |
2313 | LLVM_ABI bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS); |
2314 | |
2315 | /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in |
2316 | /// `UniqueSCEVs`. Return if found, else nullptr. |
2317 | SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops); |
2318 | |
2319 | /// Get reachable blocks in this function, making limited use of SCEV |
2320 | /// reasoning about conditions. |
2321 | void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, |
2322 | Function &F); |
2323 | |
2324 | /// Return the given SCEV expression with a new set of operands. |
2325 | /// This preserves the origial nowrap flags. |
2326 | const SCEV *getWithOperands(const SCEV *S, |
2327 | SmallVectorImpl<const SCEV *> &NewOps); |
2328 | |
2329 | FoldingSet<SCEV> UniqueSCEVs; |
2330 | FoldingSet<SCEVPredicate> UniquePreds; |
2331 | BumpPtrAllocator SCEVAllocator; |
2332 | |
2333 | /// This maps loops to a list of addrecs that directly use said loop. |
2334 | DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers; |
2335 | |
2336 | /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression |
2337 | /// they can be rewritten into under certain predicates. |
2338 | DenseMap<std::pair<const SCEVUnknown *, const Loop *>, |
2339 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
2340 | PredicatedSCEVRewrites; |
2341 | |
2342 | /// Set of AddRecs for which proving NUW via an induction has already been |
2343 | /// tried. |
2344 | SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried; |
2345 | |
2346 | /// Set of AddRecs for which proving NSW via an induction has already been |
2347 | /// tried. |
2348 | SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried; |
2349 | |
2350 | /// The head of a linked list of all SCEVUnknown values that have been |
2351 | /// allocated. This is used by releaseMemory to locate them all and call |
2352 | /// their destructors. |
2353 | SCEVUnknown *FirstUnknown = nullptr; |
2354 | }; |
2355 | |
2356 | /// Analysis pass that exposes the \c ScalarEvolution for a function. |
2357 | class ScalarEvolutionAnalysis |
2358 | : public AnalysisInfoMixin<ScalarEvolutionAnalysis> { |
2359 | friend AnalysisInfoMixin<ScalarEvolutionAnalysis>; |
2360 | |
2361 | LLVM_ABI static AnalysisKey Key; |
2362 | |
2363 | public: |
2364 | using Result = ScalarEvolution; |
2365 | |
2366 | LLVM_ABI ScalarEvolution run(Function &F, FunctionAnalysisManager &AM); |
2367 | }; |
2368 | |
2369 | /// Verifier pass for the \c ScalarEvolutionAnalysis results. |
2370 | class ScalarEvolutionVerifierPass |
2371 | : public PassInfoMixin<ScalarEvolutionVerifierPass> { |
2372 | public: |
2373 | LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
2374 | static bool isRequired() { return true; } |
2375 | }; |
2376 | |
2377 | /// Printer pass for the \c ScalarEvolutionAnalysis results. |
2378 | class ScalarEvolutionPrinterPass |
2379 | : public PassInfoMixin<ScalarEvolutionPrinterPass> { |
2380 | raw_ostream &OS; |
2381 | |
2382 | public: |
2383 | explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {} |
2384 | |
2385 | LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
2386 | |
2387 | static bool isRequired() { return true; } |
2388 | }; |
2389 | |
2390 | class LLVM_ABI ScalarEvolutionWrapperPass : public FunctionPass { |
2391 | std::unique_ptr<ScalarEvolution> SE; |
2392 | |
2393 | public: |
2394 | static char ID; |
2395 | |
2396 | ScalarEvolutionWrapperPass(); |
2397 | |
2398 | ScalarEvolution &getSE() { return *SE; } |
2399 | const ScalarEvolution &getSE() const { return *SE; } |
2400 | |
2401 | bool runOnFunction(Function &F) override; |
2402 | void releaseMemory() override; |
2403 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
2404 | void print(raw_ostream &OS, const Module * = nullptr) const override; |
2405 | void verifyAnalysis() const override; |
2406 | }; |
2407 | |
2408 | /// An interface layer with SCEV used to manage how we see SCEV expressions |
2409 | /// for values in the context of existing predicates. We can add new |
2410 | /// predicates, but we cannot remove them. |
2411 | /// |
2412 | /// This layer has multiple purposes: |
2413 | /// - provides a simple interface for SCEV versioning. |
2414 | /// - guarantees that the order of transformations applied on a SCEV |
2415 | /// expression for a single Value is consistent across two different |
2416 | /// getSCEV calls. This means that, for example, once we've obtained |
2417 | /// an AddRec expression for a certain value through expression |
2418 | /// rewriting, we will continue to get an AddRec expression for that |
2419 | /// Value. |
2420 | /// - lowers the number of expression rewrites. |
2421 | class PredicatedScalarEvolution { |
2422 | public: |
2423 | LLVM_ABI PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L); |
2424 | |
2425 | LLVM_ABI const SCEVPredicate &getPredicate() const; |
2426 | |
2427 | /// Returns the SCEV expression of V, in the context of the current SCEV |
2428 | /// predicate. The order of transformations applied on the expression of V |
2429 | /// returned by ScalarEvolution is guaranteed to be preserved, even when |
2430 | /// adding new predicates. |
2431 | LLVM_ABI const SCEV *getSCEV(Value *V); |
2432 | |
2433 | /// Get the (predicated) backedge count for the analyzed loop. |
2434 | LLVM_ABI const SCEV *getBackedgeTakenCount(); |
2435 | |
2436 | /// Get the (predicated) symbolic max backedge count for the analyzed loop. |
2437 | LLVM_ABI const SCEV *getSymbolicMaxBackedgeTakenCount(); |
2438 | |
2439 | /// Returns the upper bound of the loop trip count as a normal unsigned |
2440 | /// value, or 0 if the trip count is unknown. |
2441 | LLVM_ABI unsigned getSmallConstantMaxTripCount(); |
2442 | |
2443 | /// Adds a new predicate. |
2444 | LLVM_ABI void addPredicate(const SCEVPredicate &Pred); |
2445 | |
2446 | /// Attempts to produce an AddRecExpr for V by adding additional SCEV |
2447 | /// predicates. If we can't transform the expression into an AddRecExpr we |
2448 | /// return nullptr and not add additional SCEV predicates to the current |
2449 | /// context. |
2450 | LLVM_ABI const SCEVAddRecExpr *getAsAddRec(Value *V); |
2451 | |
2452 | /// Proves that V doesn't overflow by adding SCEV predicate. |
2453 | LLVM_ABI void setNoOverflow(Value *V, |
2454 | SCEVWrapPredicate::IncrementWrapFlags Flags); |
2455 | |
2456 | /// Returns true if we've proved that V doesn't wrap by means of a SCEV |
2457 | /// predicate. |
2458 | LLVM_ABI bool hasNoOverflow(Value *V, |
2459 | SCEVWrapPredicate::IncrementWrapFlags Flags); |
2460 | |
2461 | /// Returns the ScalarEvolution analysis used. |
2462 | ScalarEvolution *getSE() const { return &SE; } |
2463 | |
2464 | /// We need to explicitly define the copy constructor because of FlagsMap. |
2465 | LLVM_ABI PredicatedScalarEvolution(const PredicatedScalarEvolution &); |
2466 | |
2467 | /// Print the SCEV mappings done by the Predicated Scalar Evolution. |
2468 | /// The printed text is indented by \p Depth. |
2469 | LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const; |
2470 | |
2471 | /// Check if \p AR1 and \p AR2 are equal, while taking into account |
2472 | /// Equal predicates in Preds. |
2473 | LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, |
2474 | const SCEVAddRecExpr *AR2) const; |
2475 | |
2476 | private: |
2477 | /// Increments the version number of the predicate. This needs to be called |
2478 | /// every time the SCEV predicate changes. |
2479 | void updateGeneration(); |
2480 | |
2481 | /// Holds a SCEV and the version number of the SCEV predicate used to |
2482 | /// perform the rewrite of the expression. |
2483 | using RewriteEntry = std::pair<unsigned, const SCEV *>; |
2484 | |
2485 | /// Maps a SCEV to the rewrite result of that SCEV at a certain version |
2486 | /// number. If this number doesn't match the current Generation, we will |
2487 | /// need to do a rewrite. To preserve the transformation order of previous |
2488 | /// rewrites, we will rewrite the previous result instead of the original |
2489 | /// SCEV. |
2490 | DenseMap<const SCEV *, RewriteEntry> RewriteMap; |
2491 | |
2492 | /// Records what NoWrap flags we've added to a Value *. |
2493 | ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap; |
2494 | |
2495 | /// The ScalarEvolution analysis. |
2496 | ScalarEvolution &SE; |
2497 | |
2498 | /// The analyzed Loop. |
2499 | const Loop &L; |
2500 | |
2501 | /// The SCEVPredicate that forms our context. We will rewrite all |
2502 | /// expressions assuming that this predicate true. |
2503 | std::unique_ptr<SCEVUnionPredicate> Preds; |
2504 | |
2505 | /// Marks the version of the SCEV predicate used. When rewriting a SCEV |
2506 | /// expression we mark it with the version of the predicate. We use this to |
2507 | /// figure out if the predicate has changed from the last rewrite of the |
2508 | /// SCEV. If so, we need to perform a new rewrite. |
2509 | unsigned Generation = 0; |
2510 | |
2511 | /// The backedge taken count. |
2512 | const SCEV *BackedgeCount = nullptr; |
2513 | |
2514 | /// The symbolic backedge taken count. |
2515 | const SCEV *SymbolicMaxBackedgeCount = nullptr; |
2516 | |
2517 | /// The constant max trip count for the loop. |
2518 | std::optional<unsigned> SmallConstantMaxTripCount; |
2519 | }; |
2520 | |
2521 | template <> struct DenseMapInfo<ScalarEvolution::FoldID> { |
2522 | static inline ScalarEvolution::FoldID getEmptyKey() { |
2523 | ScalarEvolution::FoldID ID(0); |
2524 | return ID; |
2525 | } |
2526 | static inline ScalarEvolution::FoldID getTombstoneKey() { |
2527 | ScalarEvolution::FoldID ID(1); |
2528 | return ID; |
2529 | } |
2530 | |
2531 | static unsigned getHashValue(const ScalarEvolution::FoldID &Val) { |
2532 | return Val.computeHash(); |
2533 | } |
2534 | |
2535 | static bool isEqual(const ScalarEvolution::FoldID &LHS, |
2536 | const ScalarEvolution::FoldID &RHS) { |
2537 | return LHS == RHS; |
2538 | } |
2539 | }; |
2540 | |
2541 | } // end namespace llvm |
2542 | |
2543 | #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H |
2544 |
Definitions
- SCEV
- NoWrapFlags
- SCEV
- SCEV
- operator=
- getSCEVType
- getExpressionSize
- FoldingSetTrait
- Profile
- Equals
- ComputeHash
- operator<<
- SCEVCouldNotCompute
- SCEVPredicate
- SCEVPredicateKind
- ~SCEVPredicate
- SCEVPredicate
- operator=
- getKind
- getComplexity
- operator<<
- FoldingSetTrait
- Profile
- Equals
- ComputeHash
- SCEVComparePredicate
- getPredicate
- getLHS
- getRHS
- classof
- SCEVWrapPredicate
- IncrementWrapFlags
- clearFlags
- maskFlags
- setFlags
- getFlags
- classof
- SCEVUnionPredicate
- getPredicates
- getComplexity
- classof
- ScalarEvolution
- LoopDisposition
- BlockDisposition
- maskFlags
- setFlags
- clearFlags
- hasFlags
- getContext
- getAddExpr
- getAddExpr
- getMulExpr
- getMulExpr
- getAddRecExpr
- getZero
- getOne
- getPowerOfTwo
- getMinusOne
- ExitCountKind
- getConstantMaxBackedgeTakenCount
- getSymbolicMaxBackedgeTakenCount
- getUnsignedRange
- getUnsignedRangeMin
- getUnsignedRangeMax
- getSignedRange
- getSignedRangeMin
- getSignedRangeMax
- ExitLimit
- hasAnyInfo
- hasFullInfo
- MonotonicPredicateType
- LoopInvariantPredicate
- LoopInvariantPredicate
- getDataLayout
- LoopGuards
- LoopGuards
- loopHasNoAbnormalExits
- FoldID
- FoldID
- FoldID
- computeHash
- operator==
- SCEVCallbackVH
- ExitNotTakenInfo
- ExitNotTakenInfo
- hasAlwaysTruePredicate
- BackedgeTakenInfo
- isComplete
- getConstantMax
- BackedgeTakenInfo
- BackedgeTakenInfo
- operator=
- hasAnyInfo
- hasFullInfo
- getExact
- getConstantMax
- getSymbolicMax
- LoopProperties
- loopHasNoSideEffects
- RangeSignHint
- setRange
- ExitLimitCache
- ExitLimitCache
- ScalarEvolutionAnalysis
- ScalarEvolutionVerifierPass
- isRequired
- ScalarEvolutionPrinterPass
- ScalarEvolutionPrinterPass
- isRequired
- ScalarEvolutionWrapperPass
- getSE
- getSE
- PredicatedScalarEvolution
- getSE
- DenseMapInfo
- getEmptyKey
- getTombstoneKey
- getHashValue
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more