1//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the DAGTypeLegalizer class. This is a private interface
10// shared between the code that implements the SelectionDAG::LegalizeTypes
11// method.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17
18#include "MatchContext.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/TargetLowering.h"
22#include "llvm/Support/Compiler.h"
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27/// This takes an arbitrary SelectionDAG as input and hacks on it until only
28/// value types the target machine can handle are left. This involves promoting
29/// small sizes to large sizes or splitting up large values into small values.
30///
31class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
32 const TargetLowering &TLI;
33 SelectionDAG &DAG;
34public:
35 /// This pass uses the NodeId on the SDNodes to hold information about the
36 /// state of the node. The enum has all the values.
37 enum NodeIdFlags {
38 /// All operands have been processed, so this node is ready to be handled.
39 ReadyToProcess = 0,
40
41 /// This is a new node, not before seen, that was created in the process of
42 /// legalizing some other node.
43 NewNode = -1,
44
45 /// This node's ID needs to be set to the number of its unprocessed
46 /// operands.
47 Unanalyzed = -2,
48
49 /// This is a node that has already been processed.
50 Processed = -3
51
52 // 1+ - This is a node which has this many unprocessed operands.
53 };
54private:
55
56 /// This is a bitvector that contains two bits for each simple value type,
57 /// where the two bits correspond to the LegalizeAction enum from
58 /// TargetLowering. This can be queried with "getTypeAction(VT)".
59 TargetLowering::ValueTypeActionImpl ValueTypeActions;
60
61 /// Return how we should legalize values of this type.
62 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63 return TLI.getTypeAction(Context&: *DAG.getContext(), VT);
64 }
65
66 /// Return true if this type is legal on this target.
67 bool isTypeLegal(EVT VT) const {
68 return TLI.getTypeAction(Context&: *DAG.getContext(), VT) == TargetLowering::TypeLegal;
69 }
70
71 /// Return true if this is a simple legal type.
72 bool isSimpleLegalType(EVT VT) const {
73 return VT.isSimple() && TLI.isTypeLegal(VT);
74 }
75
76 EVT getSetCCResultType(EVT VT) const {
77 return TLI.getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT);
78 }
79
80 /// Pretend all of this node's results are legal.
81 bool IgnoreNodeResults(SDNode *N) const {
82 return N->getOpcode() == ISD::TargetConstant ||
83 N->getOpcode() == ISD::Register;
84 }
85
86 // Bijection from SDValue to unique id. As each created node gets a
87 // new id we do not need to worry about reuse expunging. Should we
88 // run out of ids, we can do a one time expensive compactifcation.
89 typedef unsigned TableId;
90
91 TableId NextValueId = 1;
92
93 SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
94 SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
95
96 /// For integer nodes that are below legal width, this map indicates what
97 /// promoted value to use.
98 SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
99
100 /// For integer nodes that need to be expanded this map indicates which
101 /// operands are the expanded version of the input.
102 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
103
104 /// For floating-point nodes converted to integers of the same size, this map
105 /// indicates the converted value to use.
106 SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
107
108 /// For floating-point nodes that have a smaller precision than the smallest
109 /// supported precision, this map indicates what promoted value to use.
110 SmallDenseMap<TableId, TableId, 8> PromotedFloats;
111
112 /// For floating-point nodes that have a smaller precision than the smallest
113 /// supported precision, this map indicates the converted value to use.
114 SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
115
116 /// For float nodes that need to be expanded this map indicates which operands
117 /// are the expanded version of the input.
118 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
119
120 /// For nodes that are <1 x ty>, this map indicates the scalar value of type
121 /// 'ty' to use.
122 SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
123
124 /// For nodes that need to be split this map indicates which operands are the
125 /// expanded version of the input.
126 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
127
128 /// For vector nodes that need to be widened, indicates the widened value to
129 /// use.
130 SmallDenseMap<TableId, TableId, 8> WidenedVectors;
131
132 /// For values that have been replaced with another, indicates the replacement
133 /// value to use.
134 SmallDenseMap<TableId, TableId, 8> ReplacedValues;
135
136 /// This defines a worklist of nodes to process. In order to be pushed onto
137 /// this worklist, all operands of a node must have already been processed.
138 SmallVector<SDNode*, 128> Worklist;
139
140 TableId getTableId(SDValue V) {
141 assert(V.getNode() && "Getting TableId on SDValue()");
142
143 auto I = ValueToIdMap.find(Val: V);
144 if (I != ValueToIdMap.end()) {
145 // replace if there's been a shift.
146 RemapId(Id&: I->second);
147 assert(I->second && "All Ids should be nonzero");
148 return I->second;
149 }
150 // Add if it's not there.
151 ValueToIdMap.insert(KV: std::make_pair(x&: V, y&: NextValueId));
152 IdToValueMap.insert(KV: std::make_pair(x&: NextValueId, y&: V));
153 ++NextValueId;
154 assert(NextValueId != 0 &&
155 "Ran out of Ids. Increase id type size or add compactification");
156 return NextValueId - 1;
157 }
158
159 const SDValue &getSDValue(TableId &Id) {
160 RemapId(Id);
161 assert(Id && "TableId should be non-zero");
162 auto I = IdToValueMap.find(Val: Id);
163 assert(I != IdToValueMap.end() && "cannot find Id in map");
164 return I->second;
165 }
166
167public:
168 explicit DAGTypeLegalizer(SelectionDAG &dag)
169 : TLI(dag.getTargetLoweringInfo()), DAG(dag),
170 ValueTypeActions(TLI.getValueTypeActions()) {
171 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
172 "Too many value types for ValueTypeActions to hold!");
173 }
174
175 /// This is the main entry point for the type legalizer. This does a
176 /// top-down traversal of the dag, legalizing types as it goes. Returns
177 /// "true" if it made any changes.
178 bool run();
179
180 void NoteDeletion(SDNode *Old, SDNode *New) {
181 assert(Old != New && "node replaced with self");
182 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
183 TableId NewId = getTableId(V: SDValue(New, i));
184 TableId OldId = getTableId(V: SDValue(Old, i));
185
186 if (OldId != NewId) {
187 ReplacedValues[OldId] = NewId;
188
189 // Delete Node from tables. We cannot do this when OldId == NewId,
190 // because NewId can still have table references to it in
191 // ReplacedValues.
192 IdToValueMap.erase(Val: OldId);
193 PromotedIntegers.erase(Val: OldId);
194 ExpandedIntegers.erase(Val: OldId);
195 SoftenedFloats.erase(Val: OldId);
196 PromotedFloats.erase(Val: OldId);
197 SoftPromotedHalfs.erase(Val: OldId);
198 ExpandedFloats.erase(Val: OldId);
199 ScalarizedVectors.erase(Val: OldId);
200 SplitVectors.erase(Val: OldId);
201 WidenedVectors.erase(Val: OldId);
202 }
203
204 ValueToIdMap.erase(Val: SDValue(Old, i));
205 }
206 }
207
208 SelectionDAG &getDAG() const { return DAG; }
209
210private:
211 SDNode *AnalyzeNewNode(SDNode *N);
212 void AnalyzeNewValue(SDValue &Val);
213 void PerformExpensiveChecks();
214 void RemapId(TableId &Id);
215 void RemapValue(SDValue &V);
216
217 // Common routines.
218 SDValue BitConvertToInteger(SDValue Op);
219 SDValue BitConvertVectorToIntegerVector(SDValue Op);
220 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
221 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
222 bool CustomWidenLowerNode(SDNode *N, EVT VT);
223
224 /// Replace each result of the given MERGE_VALUES node with the corresponding
225 /// input operand, except for the result 'ResNo', for which the corresponding
226 /// input operand is returned.
227 SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
228
229 SDValue JoinIntegers(SDValue Lo, SDValue Hi);
230
231 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
232
233 SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
234
235 void ReplaceValueWith(SDValue From, SDValue To);
236 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
237 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
238 SDValue &Lo, SDValue &Hi);
239
240 //===--------------------------------------------------------------------===//
241 // Integer Promotion Support: LegalizeIntegerTypes.cpp
242 //===--------------------------------------------------------------------===//
243
244 /// Given a processed operand Op which was promoted to a larger integer type,
245 /// this returns the promoted value. The low bits of the promoted value
246 /// corresponding to the original type are exactly equal to Op.
247 /// The extra bits contain rubbish, so the promoted value may need to be zero-
248 /// or sign-extended from the original type before it is usable (the helpers
249 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
250 /// For example, if Op is an i16 and was promoted to an i32, then this method
251 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
252 /// 16 bits of which contain rubbish.
253 SDValue GetPromotedInteger(SDValue Op) {
254 TableId &PromotedId = PromotedIntegers[getTableId(V: Op)];
255 SDValue PromotedOp = getSDValue(Id&: PromotedId);
256 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
257 return PromotedOp;
258 }
259 void SetPromotedInteger(SDValue Op, SDValue Result);
260
261 /// Get a promoted operand and sign extend it to the final size.
262 SDValue SExtPromotedInteger(SDValue Op) {
263 EVT OldVT = Op.getValueType();
264 SDLoc dl(Op);
265 Op = GetPromotedInteger(Op);
266 return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: Op.getValueType(), N1: Op,
267 N2: DAG.getValueType(OldVT));
268 }
269
270 /// Get a promoted operand and zero extend it to the final size.
271 SDValue ZExtPromotedInteger(SDValue Op) {
272 EVT OldVT = Op.getValueType();
273 SDLoc dl(Op);
274 Op = GetPromotedInteger(Op);
275 return DAG.getZeroExtendInReg(Op, DL: dl, VT: OldVT);
276 }
277
278 // Promote the given operand V (vector or scalar) according to N's specific
279 // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
280 // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
281 // promoted value.
282 SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
283
284 // Integer Result Promotion.
285 void PromoteIntegerResult(SDNode *N, unsigned ResNo);
286 SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
287 SDValue PromoteIntRes_AssertSext(SDNode *N);
288 SDValue PromoteIntRes_AssertZext(SDNode *N);
289 SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
290 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
291 SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
292 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
293 SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
294 SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
295 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
296 SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
297 SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N);
298 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
299 SDValue PromoteIntRes_ScalarOp(SDNode *N);
300 SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
301 SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
302 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
303 SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
304 SDValue PromoteIntRes_BITCAST(SDNode *N);
305 SDValue PromoteIntRes_BSWAP(SDNode *N);
306 SDValue PromoteIntRes_BITREVERSE(SDNode *N);
307 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
308 SDValue PromoteIntRes_Constant(SDNode *N);
309 SDValue PromoteIntRes_CTLZ(SDNode *N);
310 SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
311 SDValue PromoteIntRes_CTTZ(SDNode *N);
312 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
313 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
314 SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
315 SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N);
316 SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N);
317 SDValue PromoteIntRes_XRINT(SDNode *N);
318 SDValue PromoteIntRes_FREEZE(SDNode *N);
319 SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
320 SDValue PromoteIntRes_LOAD(LoadSDNode *N);
321 SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
322 SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
323 SDValue PromoteIntRes_Overflow(SDNode *N);
324 SDValue PromoteIntRes_FFREXP(SDNode *N);
325 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
326 SDValue PromoteIntRes_Select(SDNode *N);
327 SDValue PromoteIntRes_SELECT_CC(SDNode *N);
328 SDValue PromoteIntRes_SETCC(SDNode *N);
329 SDValue PromoteIntRes_SHL(SDNode *N);
330 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
331 SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
332 SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
333 SDValue PromoteIntRes_UMINUMAX(SDNode *N);
334 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
335 SDValue PromoteIntRes_SRA(SDNode *N);
336 SDValue PromoteIntRes_SRL(SDNode *N);
337 SDValue PromoteIntRes_TRUNCATE(SDNode *N);
338 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
339 SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo);
340 SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
341 SDValue PromoteIntRes_UNDEF(SDNode *N);
342 SDValue PromoteIntRes_VAARG(SDNode *N);
343 SDValue PromoteIntRes_VSCALE(SDNode *N);
344 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
345 template <class MatchContextClass>
346 SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
347 SDValue PromoteIntRes_MULFIX(SDNode *N);
348 SDValue PromoteIntRes_DIVFIX(SDNode *N);
349 SDValue PromoteIntRes_GET_ROUNDING(SDNode *N);
350 SDValue PromoteIntRes_VECREDUCE(SDNode *N);
351 SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
352 SDValue PromoteIntRes_ABS(SDNode *N);
353 SDValue PromoteIntRes_Rotate(SDNode *N);
354 SDValue PromoteIntRes_FunnelShift(SDNode *N);
355 SDValue PromoteIntRes_VPFunnelShift(SDNode *N);
356 SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
357
358 // Integer Operand Promotion.
359 bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
360 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
361 SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
362 SDValue PromoteIntOp_BITCAST(SDNode *N);
363 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
364 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
365 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
366 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
367 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
368 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
369 SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
370 SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
371 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
372 SDValue PromoteIntOp_ScalarOp(SDNode *N);
373 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
374 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
375 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
376 SDValue PromoteIntOp_Shift(SDNode *N);
377 SDValue PromoteIntOp_FunnelShift(SDNode *N);
378 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
379 SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N);
380 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
381 SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
382 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
383 SDValue PromoteIntOp_TRUNCATE(SDNode *N);
384 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
385 SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
386 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
387 SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N);
388 SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
389 SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
390 SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
391 SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
392 SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
393 SDValue PromoteIntOp_FIX(SDNode *N);
394 SDValue PromoteIntOp_ExpOp(SDNode *N);
395 SDValue PromoteIntOp_VECREDUCE(SDNode *N);
396 SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
397 SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
398 SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
399 SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
400 SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
401 SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo);
402
403 void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS);
404 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
405
406 //===--------------------------------------------------------------------===//
407 // Integer Expansion Support: LegalizeIntegerTypes.cpp
408 //===--------------------------------------------------------------------===//
409
410 /// Given a processed operand Op which was expanded into two integers of half
411 /// the size, this returns the two halves. The low bits of Op are exactly
412 /// equal to the bits of Lo; the high bits exactly equal Hi.
413 /// For example, if Op is an i64 which was expanded into two i32's, then this
414 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
415 /// Op, and Hi being equal to the upper 32 bits.
416 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
417 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
418
419 // Integer Result Expansion.
420 void ExpandIntegerResult(SDNode *N, unsigned ResNo);
421 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
422 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
423 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
424 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
425 void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi);
426 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
427 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
428 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
429 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
430 void ExpandIntRes_READCOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
431 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
432 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
433 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
434 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
435 void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi);
436 void ExpandIntRes_FP_TO_XINT (SDNode *N, SDValue &Lo, SDValue &Hi);
437 void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi);
438 void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
439
440 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
441 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
442 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
443 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
444 void ExpandIntRes_UADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
445 void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
446 void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
447 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
448 void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi);
449 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
450 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
451 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
452 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
453 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
454 void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi);
455 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
456
457 void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi);
458
459 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
460 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
461 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
462 void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
463 void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
464 void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
465 void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
466
467 void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
468 void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi);
469
470 void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi);
471 void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi);
472
473 void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi);
474
475 void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
476 SDValue &Lo, SDValue &Hi);
477 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
478 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
479
480 // Integer Operand Expansion.
481 bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
482 SDValue ExpandIntOp_BR_CC(SDNode *N);
483 SDValue ExpandIntOp_SELECT_CC(SDNode *N);
484 SDValue ExpandIntOp_SETCC(SDNode *N);
485 SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
486 SDValue ExpandIntOp_Shift(SDNode *N);
487 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
488 SDValue ExpandIntOp_TRUNCATE(SDNode *N);
489 SDValue ExpandIntOp_XINT_TO_FP(SDNode *N);
490 SDValue ExpandIntOp_RETURNADDR(SDNode *N);
491 SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
492 SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
493 SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
494 SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
495 SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
496
497 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
498 ISD::CondCode &CCCode, const SDLoc &dl);
499
500 //===--------------------------------------------------------------------===//
501 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
502 //===--------------------------------------------------------------------===//
503
504 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
505 /// integer of the same size, this returns the integer. The integer contains
506 /// exactly the same bits as Op - only the type changed. For example, if Op
507 /// is an f32 which was softened to an i32, then this method returns an i32,
508 /// the bits of which coincide with those of Op
509 SDValue GetSoftenedFloat(SDValue Op) {
510 TableId Id = getTableId(V: Op);
511 auto Iter = SoftenedFloats.find(Val: Id);
512 if (Iter == SoftenedFloats.end()) {
513 assert(isSimpleLegalType(Op.getValueType()) &&
514 "Operand wasn't converted to integer?");
515 return Op;
516 }
517 SDValue SoftenedOp = getSDValue(Id&: Iter->second);
518 assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
519 return SoftenedOp;
520 }
521 void SetSoftenedFloat(SDValue Op, SDValue Result);
522
523 // Convert Float Results to Integer.
524 void SoftenFloatResult(SDNode *N, unsigned ResNo);
525 SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
526 SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
527 SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
528 SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
529 SDValue SoftenFloatRes_BITCAST(SDNode *N);
530 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
531 SDValue SoftenFloatRes_ConstantFP(SDNode *N);
532 SDValue SoftenFloatRes_EXTRACT_ELEMENT(SDNode *N);
533 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
534 SDValue SoftenFloatRes_FABS(SDNode *N);
535 SDValue SoftenFloatRes_FMINNUM(SDNode *N);
536 SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
537 SDValue SoftenFloatRes_FADD(SDNode *N);
538 SDValue SoftenFloatRes_FCBRT(SDNode *N);
539 SDValue SoftenFloatRes_FCEIL(SDNode *N);
540 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
541 SDValue SoftenFloatRes_FCOS(SDNode *N);
542 SDValue SoftenFloatRes_FDIV(SDNode *N);
543 SDValue SoftenFloatRes_FEXP(SDNode *N);
544 SDValue SoftenFloatRes_FEXP2(SDNode *N);
545 SDValue SoftenFloatRes_FEXP10(SDNode *N);
546 SDValue SoftenFloatRes_FFLOOR(SDNode *N);
547 SDValue SoftenFloatRes_FLOG(SDNode *N);
548 SDValue SoftenFloatRes_FLOG2(SDNode *N);
549 SDValue SoftenFloatRes_FLOG10(SDNode *N);
550 SDValue SoftenFloatRes_FMA(SDNode *N);
551 SDValue SoftenFloatRes_FMUL(SDNode *N);
552 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
553 SDValue SoftenFloatRes_FNEG(SDNode *N);
554 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
555 SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
556 SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N);
557 SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
558 SDValue SoftenFloatRes_FPOW(SDNode *N);
559 SDValue SoftenFloatRes_ExpOp(SDNode *N);
560 SDValue SoftenFloatRes_FFREXP(SDNode *N);
561 SDValue SoftenFloatRes_FREEZE(SDNode *N);
562 SDValue SoftenFloatRes_FREM(SDNode *N);
563 SDValue SoftenFloatRes_FRINT(SDNode *N);
564 SDValue SoftenFloatRes_FROUND(SDNode *N);
565 SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
566 SDValue SoftenFloatRes_FSIN(SDNode *N);
567 SDValue SoftenFloatRes_FSQRT(SDNode *N);
568 SDValue SoftenFloatRes_FSUB(SDNode *N);
569 SDValue SoftenFloatRes_FTRUNC(SDNode *N);
570 SDValue SoftenFloatRes_LOAD(SDNode *N);
571 SDValue SoftenFloatRes_SELECT(SDNode *N);
572 SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
573 SDValue SoftenFloatRes_UNDEF(SDNode *N);
574 SDValue SoftenFloatRes_VAARG(SDNode *N);
575 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
576 SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
577 SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
578
579 // Convert Float Operand to Integer.
580 bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
581 SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
582 SDValue SoftenFloatOp_BITCAST(SDNode *N);
583 SDValue SoftenFloatOp_BR_CC(SDNode *N);
584 SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
585 SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
586 SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
587 SDValue SoftenFloatOp_LROUND(SDNode *N);
588 SDValue SoftenFloatOp_LLROUND(SDNode *N);
589 SDValue SoftenFloatOp_LRINT(SDNode *N);
590 SDValue SoftenFloatOp_LLRINT(SDNode *N);
591 SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
592 SDValue SoftenFloatOp_SETCC(SDNode *N);
593 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
594 SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
595
596 //===--------------------------------------------------------------------===//
597 // Float Expansion Support: LegalizeFloatTypes.cpp
598 //===--------------------------------------------------------------------===//
599
600 /// Given a processed operand Op which was expanded into two floating-point
601 /// values of half the size, this returns the two halves.
602 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
603 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
604 /// into two f64's, then this method returns the two f64's, with Lo being
605 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
606 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
607 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
608
609 // Float Result Expansion.
610 void ExpandFloatResult(SDNode *N, unsigned ResNo);
611 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
612 void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
613 SDValue &Lo, SDValue &Hi);
614 void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
615 SDValue &Lo, SDValue &Hi);
616 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
617 void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
618 void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
619 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
620 void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi);
621 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
622 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
623 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
624 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
625 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
626 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
627 void ExpandFloatRes_FEXP10 (SDNode *N, SDValue &Lo, SDValue &Hi);
628 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
629 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
630 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
631 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
632 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
633 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
634 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
635 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
636 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
637 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
638 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
639 void ExpandFloatRes_FLDEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
640 void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
641 void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
642 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
643 void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
644 void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
645 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
646 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
647 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
648 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
649 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
650 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
651
652 // Float Operand Expansion.
653 bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
654 SDValue ExpandFloatOp_BR_CC(SDNode *N);
655 SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
656 SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
657 SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
658 SDValue ExpandFloatOp_LROUND(SDNode *N);
659 SDValue ExpandFloatOp_LLROUND(SDNode *N);
660 SDValue ExpandFloatOp_LRINT(SDNode *N);
661 SDValue ExpandFloatOp_LLRINT(SDNode *N);
662 SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
663 SDValue ExpandFloatOp_SETCC(SDNode *N);
664 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
665
666 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
667 ISD::CondCode &CCCode, const SDLoc &dl,
668 SDValue &Chain, bool IsSignaling = false);
669
670 //===--------------------------------------------------------------------===//
671 // Float promotion support: LegalizeFloatTypes.cpp
672 //===--------------------------------------------------------------------===//
673
674 SDValue GetPromotedFloat(SDValue Op) {
675 TableId &PromotedId = PromotedFloats[getTableId(V: Op)];
676 SDValue PromotedOp = getSDValue(Id&: PromotedId);
677 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
678 return PromotedOp;
679 }
680 void SetPromotedFloat(SDValue Op, SDValue Result);
681
682 void PromoteFloatResult(SDNode *N, unsigned ResNo);
683 SDValue PromoteFloatRes_BITCAST(SDNode *N);
684 SDValue PromoteFloatRes_BinOp(SDNode *N);
685 SDValue PromoteFloatRes_ConstantFP(SDNode *N);
686 SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
687 SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
688 SDValue PromoteFloatRes_FMAD(SDNode *N);
689 SDValue PromoteFloatRes_ExpOp(SDNode *N);
690 SDValue PromoteFloatRes_FFREXP(SDNode *N);
691 SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
692 SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N);
693 SDValue PromoteFloatRes_LOAD(SDNode *N);
694 SDValue PromoteFloatRes_SELECT(SDNode *N);
695 SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
696 SDValue PromoteFloatRes_UnaryOp(SDNode *N);
697 SDValue PromoteFloatRes_UNDEF(SDNode *N);
698 SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
699 SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
700 SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
701 SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
702
703 bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
704 SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
705 SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
706 SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
707 SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo);
708 SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo);
709 SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
710 SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
711 SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
712 SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
713
714 //===--------------------------------------------------------------------===//
715 // Half soft promotion support: LegalizeFloatTypes.cpp
716 //===--------------------------------------------------------------------===//
717
718 SDValue GetSoftPromotedHalf(SDValue Op) {
719 TableId &PromotedId = SoftPromotedHalfs[getTableId(V: Op)];
720 SDValue PromotedOp = getSDValue(Id&: PromotedId);
721 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
722 return PromotedOp;
723 }
724 void SetSoftPromotedHalf(SDValue Op, SDValue Result);
725
726 void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
727 SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
728 SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
729 SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
730 SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
731 SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
732 SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
733 SDValue SoftPromoteHalfRes_ExpOp(SDNode *N);
734 SDValue SoftPromoteHalfRes_FFREXP(SDNode *N);
735 SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
736 SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
737 SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
738 SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
739 SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
740 SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
741 SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
742 SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
743 SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
744
745 bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
746 SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
747 SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
748 SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
749 SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
750 SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
751 SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
752 SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
753 SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
754 SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
755 SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
756
757 //===--------------------------------------------------------------------===//
758 // Scalarization Support: LegalizeVectorTypes.cpp
759 //===--------------------------------------------------------------------===//
760
761 /// Given a processed one-element vector Op which was scalarized to its
762 /// element type, this returns the element. For example, if Op is a v1i32,
763 /// Op = < i32 val >, this method returns val, an i32.
764 SDValue GetScalarizedVector(SDValue Op) {
765 TableId &ScalarizedId = ScalarizedVectors[getTableId(V: Op)];
766 SDValue ScalarizedOp = getSDValue(Id&: ScalarizedId);
767 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
768 return ScalarizedOp;
769 }
770 void SetScalarizedVector(SDValue Op, SDValue Result);
771
772 // Vector Result Scalarization: <1 x ty> -> ty.
773 void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
774 SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
775 SDValue ScalarizeVecRes_BinOp(SDNode *N);
776 SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
777 SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
778 SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
779 SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
780 SDValue ScalarizeVecRes_InregOp(SDNode *N);
781 SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
782
783 SDValue ScalarizeVecRes_BITCAST(SDNode *N);
784 SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
785 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
786 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
787 SDValue ScalarizeVecRes_ExpOp(SDNode *N);
788 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
789 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
790 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
791 SDValue ScalarizeVecRes_VSELECT(SDNode *N);
792 SDValue ScalarizeVecRes_SELECT(SDNode *N);
793 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
794 SDValue ScalarizeVecRes_SETCC(SDNode *N);
795 SDValue ScalarizeVecRes_UNDEF(SDNode *N);
796 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
797 SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
798 SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
799
800 SDValue ScalarizeVecRes_FIX(SDNode *N);
801 SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo);
802
803 // Vector Operand Scalarization: <1 x ty> -> ty.
804 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
805 SDValue ScalarizeVecOp_BITCAST(SDNode *N);
806 SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
807 SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
808 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
809 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
810 SDValue ScalarizeVecOp_VSELECT(SDNode *N);
811 SDValue ScalarizeVecOp_VSETCC(SDNode *N);
812 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
813 SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
814 SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
815 SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
816 SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
817 SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
818 SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
819
820 //===--------------------------------------------------------------------===//
821 // Vector Splitting Support: LegalizeVectorTypes.cpp
822 //===--------------------------------------------------------------------===//
823
824 /// Given a processed vector Op which was split into vectors of half the size,
825 /// this method returns the halves. The first elements of Op coincide with the
826 /// elements of Lo; the remaining elements of Op coincide with the elements of
827 /// Hi: Op is what you would get by concatenating Lo and Hi.
828 /// For example, if Op is a v8i32 that was split into two v4i32's, then this
829 /// method returns the two v4i32's, with Lo corresponding to the first 4
830 /// elements of Op, and Hi to the last 4 elements.
831 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
832 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
833
834 /// Split mask operator of a VP intrinsic.
835 std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
836
837 /// Split mask operator of a VP intrinsic in a given location.
838 std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
839
840 // Helper function for incrementing the pointer when splitting
841 // memory operations
842 void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
843 SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
844
845 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
846 void SplitVectorResult(SDNode *N, unsigned ResNo);
847 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
848 void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
849 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
850 void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi);
851 void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
852 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
853 void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
854 void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
855 void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
856 SDValue &Lo, SDValue &Hi);
857
858 void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
859
860 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
861 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
862 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
863 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
864 void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
865 void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi);
866 void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
867 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
868 void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
869 void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
870 void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo,
871 SDValue &Hi);
872 void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
873 void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
874 bool SplitSETCC = false);
875 void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
876 void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
877 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
878 void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
879 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
880 SDValue &Hi);
881 void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
882 void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N);
883 void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N);
884 void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
885 void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
886 void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
887
888 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
889 bool SplitVectorOperand(SDNode *N, unsigned OpNo);
890 SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
891 SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
892 SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
893 SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
894 SDValue SplitVecOp_UnaryOp(SDNode *N);
895 SDValue SplitVecOp_TruncateHelper(SDNode *N);
896
897 SDValue SplitVecOp_BITCAST(SDNode *N);
898 SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
899 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
900 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
901 SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
902 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
903 SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
904 SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo);
905 SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
906 SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
907 SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
908 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
909 SDValue SplitVecOp_VSETCC(SDNode *N);
910 SDValue SplitVecOp_FP_ROUND(SDNode *N);
911 SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N);
912 SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
913
914 //===--------------------------------------------------------------------===//
915 // Vector Widening Support: LegalizeVectorTypes.cpp
916 //===--------------------------------------------------------------------===//
917
918 /// Given a processed vector Op which was widened into a larger vector, this
919 /// method returns the larger vector. The elements of the returned vector
920 /// consist of the elements of Op followed by elements containing rubbish.
921 /// For example, if Op is a v2i32 that was widened to a v4i32, then this
922 /// method returns a v4i32 for which the first two elements are the same as
923 /// those of Op, while the last two elements contain rubbish.
924 SDValue GetWidenedVector(SDValue Op) {
925 TableId &WidenedId = WidenedVectors[getTableId(V: Op)];
926 SDValue WidenedOp = getSDValue(Id&: WidenedId);
927 assert(WidenedOp.getNode() && "Operand wasn't widened?");
928 return WidenedOp;
929 }
930 void SetWidenedVector(SDValue Op, SDValue Result);
931
932 /// Given a mask Mask, returns the larger vector into which Mask was widened.
933 SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
934 // For VP operations, we must also widen the mask. Note that the mask type
935 // may not actually need widening, leading it be split along with the VP
936 // operation.
937 // FIXME: This could lead to an infinite split/widen loop. We only handle
938 // the case where the mask needs widening to an identically-sized type as
939 // the vector inputs.
940 assert(getTypeAction(Mask.getValueType()) ==
941 TargetLowering::TypeWidenVector &&
942 "Unable to widen binary VP op");
943 Mask = GetWidenedVector(Op: Mask);
944 assert(Mask.getValueType().getVectorElementCount() == EC &&
945 "Unable to widen binary VP op");
946 return Mask;
947 }
948
949 // Widen Vector Result Promotion.
950 void WidenVectorResult(SDNode *N, unsigned ResNo);
951 SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
952 SDValue WidenVecRes_AssertZext(SDNode* N);
953 SDValue WidenVecRes_BITCAST(SDNode* N);
954 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
955 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
956 SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
957 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
958 SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
959 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
960 SDValue WidenVecRes_LOAD(SDNode* N);
961 SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
962 SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N);
963 SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
964 SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
965 SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
966 SDValue WidenVecRes_ScalarOp(SDNode* N);
967 SDValue WidenVecRes_Select(SDNode *N);
968 SDValue WidenVSELECTMask(SDNode *N);
969 SDValue WidenVecRes_SELECT_CC(SDNode* N);
970 SDValue WidenVecRes_SETCC(SDNode* N);
971 SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
972 SDValue WidenVecRes_UNDEF(SDNode *N);
973 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
974 SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N);
975
976 SDValue WidenVecRes_Ternary(SDNode *N);
977 SDValue WidenVecRes_Binary(SDNode *N);
978 SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
979 SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
980 SDValue WidenVecRes_StrictFP(SDNode *N);
981 SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
982 SDValue WidenVecRes_Convert(SDNode *N);
983 SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
984 SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
985 SDValue WidenVecRes_XRINT(SDNode *N);
986 SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
987 SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N);
988 SDValue WidenVecRes_ExpOp(SDNode *N);
989 SDValue WidenVecRes_Unary(SDNode *N);
990 SDValue WidenVecRes_InregOp(SDNode *N);
991
992 // Widen Vector Operand.
993 bool WidenVectorOperand(SDNode *N, unsigned OpNo);
994 SDValue WidenVecOp_BITCAST(SDNode *N);
995 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
996 SDValue WidenVecOp_EXTEND(SDNode *N);
997 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
998 SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
999 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
1000 SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N);
1001 SDValue WidenVecOp_STORE(SDNode* N);
1002 SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
1003 SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo);
1004 SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
1005 SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
1006 SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
1007 SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
1008 SDValue WidenVecOp_SETCC(SDNode* N);
1009 SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
1010 SDValue WidenVecOp_VSELECT(SDNode *N);
1011
1012 SDValue WidenVecOp_Convert(SDNode *N);
1013 SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
1014 SDValue WidenVecOp_UnrollVectorOp(SDNode *N);
1015 SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
1016 SDValue WidenVecOp_VECREDUCE(SDNode *N);
1017 SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
1018 SDValue WidenVecOp_VP_REDUCE(SDNode *N);
1019 SDValue WidenVecOp_ExpOp(SDNode *N);
1020
1021 /// Helper function to generate a set of operations to perform
1022 /// a vector operation for a wider type.
1023 ///
1024 SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
1025
1026 //===--------------------------------------------------------------------===//
1027 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
1028 //===--------------------------------------------------------------------===//
1029
1030 /// Helper function to generate a set of loads to load a vector with a
1031 /// resulting wider type. It takes:
1032 /// LdChain: list of chains for the load to be generated.
1033 /// Ld: load to widen
1034 SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
1035 LoadSDNode *LD);
1036
1037 /// Helper function to generate a set of extension loads to load a vector with
1038 /// a resulting wider type. It takes:
1039 /// LdChain: list of chains for the load to be generated.
1040 /// Ld: load to widen
1041 /// ExtType: extension element type
1042 SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
1043 LoadSDNode *LD, ISD::LoadExtType ExtType);
1044
1045 /// Helper function to generate a set of stores to store a widen vector into
1046 /// non-widen memory. Returns true if successful, false otherwise.
1047 /// StChain: list of chains for the stores we have generated
1048 /// ST: store of a widen value
1049 bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
1050
1051 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
1052 /// input vector must have the same element type as NVT.
1053 /// When FillWithZeroes is "on" the vector will be widened with zeroes.
1054 /// By default, the vector will be widened with undefined values.
1055 SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
1056
1057 /// Return a mask of vector type MaskVT to replace InMask. Also adjust
1058 /// MaskVT to ToMaskVT if needed with vector extension or truncation.
1059 SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
1060
1061 //===--------------------------------------------------------------------===//
1062 // Generic Splitting: LegalizeTypesGeneric.cpp
1063 //===--------------------------------------------------------------------===//
1064
1065 // Legalization methods which only use that the illegal type is split into two
1066 // not necessarily identical types. As such they can be used for splitting
1067 // vectors and expanding integers and floats.
1068
1069 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1070 if (Op.getValueType().isVector())
1071 GetSplitVector(Op, Lo, Hi);
1072 else if (Op.getValueType().isInteger())
1073 GetExpandedInteger(Op, Lo, Hi);
1074 else
1075 GetExpandedFloat(Op, Lo, Hi);
1076 }
1077
1078 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1079 /// given value.
1080 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1081
1082 // Generic Result Splitting.
1083 void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1084 SDValue &Lo, SDValue &Hi);
1085 void SplitVecRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
1086 void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
1087 void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi);
1088 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
1089 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
1090 void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
1091
1092 //===--------------------------------------------------------------------===//
1093 // Generic Expansion: LegalizeTypesGeneric.cpp
1094 //===--------------------------------------------------------------------===//
1095
1096 // Legalization methods which only use that the illegal type is split into two
1097 // identical types of half the size, and that the Lo/Hi part is stored first
1098 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
1099 // such they can be used for expanding integers and floats.
1100
1101 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1102 if (Op.getValueType().isInteger())
1103 GetExpandedInteger(Op, Lo, Hi);
1104 else
1105 GetExpandedFloat(Op, Lo, Hi);
1106 }
1107
1108
1109 /// This function will split the integer \p Op into \p NumElements
1110 /// operations of type \p EltVT and store them in \p Ops.
1111 void IntegerToVector(SDValue Op, unsigned NumElements,
1112 SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1113
1114 // Generic Result Expansion.
1115 void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
1116 SDValue &Lo, SDValue &Hi);
1117 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
1118 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
1119 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
1120 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1121 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
1122 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
1123
1124 // Generic Operand Expansion.
1125 SDValue ExpandOp_BITCAST (SDNode *N);
1126 SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
1127 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
1128 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1129 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1130 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
1131};
1132
1133} // end namespace llvm.
1134
1135#endif
1136

source code of llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h