1//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
10//
11//===----------------------------------------------------------------------===//
12
13#include "MCTargetDesc/HexagonMCInstrInfo.h"
14#include "MCTargetDesc/HexagonBaseInfo.h"
15#include "MCTargetDesc/HexagonMCChecker.h"
16#include "MCTargetDesc/HexagonMCExpr.h"
17#include "MCTargetDesc/HexagonMCShuffler.h"
18#include "MCTargetDesc/HexagonMCTargetDesc.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCInst.h"
24#include "llvm/MC/MCInstrInfo.h"
25#include "llvm/MC/MCInstrItineraries.h"
26#include "llvm/MC/MCSubtargetInfo.h"
27#include "llvm/Support/Casting.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <cassert>
30#include <cstdint>
31#include <limits>
32
33using namespace llvm;
34
35bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
36 return Register != Hexagon::NoRegister;
37}
38
39Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
40 MCInst const &Inst)
41 : MCII(MCII), BundleCurrent(Inst.begin() +
42 HexagonMCInstrInfo::bundleInstructionsOffset),
43 BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
44
45Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
46 MCInst const &Inst, std::nullptr_t)
47 : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
48 DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
49
50Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
51 if (DuplexCurrent != DuplexEnd) {
52 ++DuplexCurrent;
53 if (DuplexCurrent == DuplexEnd) {
54 DuplexCurrent = BundleEnd;
55 DuplexEnd = BundleEnd;
56 ++BundleCurrent;
57 }
58 return *this;
59 }
60 ++BundleCurrent;
61 if (BundleCurrent != BundleEnd) {
62 MCInst const &Inst = *BundleCurrent->getInst();
63 if (HexagonMCInstrInfo::isDuplex(MCII, MCI: Inst)) {
64 DuplexCurrent = Inst.begin();
65 DuplexEnd = Inst.end();
66 }
67 }
68 return *this;
69}
70
71MCInst const &Hexagon::PacketIterator::operator*() const {
72 if (DuplexCurrent != DuplexEnd)
73 return *DuplexCurrent->getInst();
74 return *BundleCurrent->getInst();
75}
76
77bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
78 return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
79 DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
80}
81
82void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
83 MCContext &Context) {
84 MI.addOperand(Op: MCOperand::createExpr(Val: MCConstantExpr::create(Value, Ctx&: Context)));
85}
86
87void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
88 MCInstrInfo const &MCII, MCInst &MCB,
89 MCInst const &MCI) {
90 assert(HexagonMCInstrInfo::isBundle(MCB));
91 MCOperand const &exOp =
92 MCI.getOperand(i: HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
93
94 // Create the extender.
95 MCInst *XMCI =
96 new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, Inst: MCI, MO: exOp));
97 XMCI->setLoc(MCI.getLoc());
98
99 MCB.addOperand(Op: MCOperand::createInst(Val: XMCI));
100}
101
102iterator_range<Hexagon::PacketIterator>
103HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
104 MCInst const &MCI) {
105 assert(isBundle(MCI));
106 return make_range(x: Hexagon::PacketIterator(MCII, MCI),
107 y: Hexagon::PacketIterator(MCII, MCI, nullptr));
108}
109
110iterator_range<MCInst::const_iterator>
111HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
112 assert(isBundle(MCI));
113 return drop_begin(RangeOrContainer: MCI, N: bundleInstructionsOffset);
114}
115
116size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
117 if (HexagonMCInstrInfo::isBundle(MCI))
118 return (MCI.size() - bundleInstructionsOffset);
119 else
120 return (1);
121}
122
123namespace {
124bool canonicalizePacketImpl(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
125 MCContext &Context, MCInst &MCB,
126 HexagonMCChecker *Check) {
127 // Check the bundle for errors.
128 bool CheckOk = Check ? Check->check(FullCheck: false) : true;
129 if (!CheckOk)
130 return false;
131
132 MCInst OrigMCB = MCB;
133
134 // Examine the packet and convert pairs of instructions to compound
135 // instructions when possible.
136 if (!HexagonDisableCompound)
137 HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCI&: MCB);
138 HexagonMCShuffle(Context, ReportErrors: false, MCII, STI, MCB);
139
140 const SmallVector<DuplexCandidate, 8> possibleDuplexes =
141 (STI.hasFeature(Hexagon::Feature: FeatureDuplex))
142 ? HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB)
143 : SmallVector<DuplexCandidate, 8>();
144
145 // Examine the packet and convert pairs of instructions to duplex
146 // instructions when possible.
147 HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
148
149 // Examines packet and pad the packet, if needed, when an
150 // end-loop is in the bundle.
151 HexagonMCInstrInfo::padEndloop(MCI&: MCB, Context);
152
153 // If compounding and duplexing didn't reduce the size below
154 // 4 or less we have a packet that is too big.
155 if (HexagonMCInstrInfo::bundleSize(MCI: MCB) > HEXAGON_PACKET_SIZE) {
156 if (Check)
157 Check->reportError(Msg: "invalid instruction packet: out of slots");
158 return false;
159 }
160 // Check the bundle for errors.
161 CheckOk = Check ? Check->check(FullCheck: true) : true;
162 if (!CheckOk)
163 return false;
164
165 HexagonMCShuffle(Context, ReportErrors: true, MCII, STI, MCB);
166
167 return true;
168}
169} // namespace
170
171bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
172 MCSubtargetInfo const &STI,
173 MCContext &Context, MCInst &MCB,
174 HexagonMCChecker *Check,
175 bool AttemptCompatibility) {
176 auto ArchSTI = Hexagon_MC::getArchSubtarget(STI: &STI);
177 if (!AttemptCompatibility || ArchSTI == nullptr)
178 return canonicalizePacketImpl(MCII, STI, Context, MCB, Check);
179
180 const MCRegisterInfo *RI = Context.getRegisterInfo();
181 HexagonMCChecker DefaultCheck(Context, MCII, STI, MCB, *RI, false);
182 HexagonMCChecker *BaseCheck = (Check == nullptr) ? &DefaultCheck : Check;
183 HexagonMCChecker PerfCheck(*BaseCheck, STI, false);
184 if (canonicalizePacketImpl(MCII, STI, Context, MCB, Check: &PerfCheck))
185 return true;
186
187 HexagonMCChecker ArchCheck(*BaseCheck, *ArchSTI, true);
188 return canonicalizePacketImpl(MCII, STI: *ArchSTI, Context, MCB, Check: &ArchCheck);
189}
190
191MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
192 MCInst const &Inst,
193 MCOperand const &MO) {
194 assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
195 HexagonMCInstrInfo::isExtended(MCII, Inst));
196
197 MCInst XMI;
198 XMI.setOpcode(Hexagon::A4_ext);
199 if (MO.isImm())
200 XMI.addOperand(Op: MCOperand::createImm(Val: MO.getImm() & (~0x3f)));
201 else if (MO.isExpr())
202 XMI.addOperand(Op: MCOperand::createExpr(Val: MO.getExpr()));
203 else
204 llvm_unreachable("invalid extendable operand");
205 return XMI;
206}
207
208MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
209 MCInst const &inst0,
210 MCInst const &inst1) {
211 assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
212 MCInst *duplexInst = new (Context) MCInst;
213 duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
214
215 MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(Inst: inst0));
216 MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(Inst: inst1));
217 duplexInst->addOperand(Op: MCOperand::createInst(Val: SubInst0));
218 duplexInst->addOperand(Op: MCOperand::createInst(Val: SubInst1));
219 return duplexInst;
220}
221
222MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
223 size_t Index) {
224 assert(Index <= bundleSize(MCB));
225 if (Index == 0)
226 return nullptr;
227 MCInst const *Inst =
228 MCB.getOperand(i: Index + bundleInstructionsOffset - 1).getInst();
229 if (isImmext(MCI: *Inst))
230 return Inst;
231 return nullptr;
232}
233
234void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
235 MCInstrInfo const &MCII, MCInst &MCB,
236 MCInst const &MCI) {
237 if (isConstExtended(MCII, MCI))
238 addConstExtender(Context, MCII, MCB, MCI);
239}
240
241unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
242 MCInst const &MCI) {
243 uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
244 unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
245 return HexagonII::getMemAccessSizeInBytes(S: HexagonII::MemAccessSize(S));
246}
247
248unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
249 MCInst const &MCI) {
250 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
251 return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
252 HexagonII::AddrModeMask);
253}
254
255MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
256 MCInst const &MCI) {
257 return MCII.get(Opcode: MCI.getOpcode());
258}
259
260unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
261 using namespace Hexagon;
262
263 switch (Reg) {
264 default:
265 llvm_unreachable("unknown duplex register");
266 // Rs Rss
267 case R0:
268 case D0:
269 return 0;
270 case R1:
271 case D1:
272 return 1;
273 case R2:
274 case D2:
275 return 2;
276 case R3:
277 case D3:
278 return 3;
279 case R4:
280 case D8:
281 return 4;
282 case R5:
283 case D9:
284 return 5;
285 case R6:
286 case D10:
287 return 6;
288 case R7:
289 case D11:
290 return 7;
291 case R16:
292 return 8;
293 case R17:
294 return 9;
295 case R18:
296 return 10;
297 case R19:
298 return 11;
299 case R20:
300 return 12;
301 case R21:
302 return 13;
303 case R22:
304 return 14;
305 case R23:
306 return 15;
307 }
308}
309
310MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
311 const auto &HExpr = cast<HexagonMCExpr>(Val: Expr);
312 assert(HExpr.getExpr());
313 return *HExpr.getExpr();
314}
315
316unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
317 MCInst const &MCI) {
318 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
319 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
320}
321
322MCOperand const &
323HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
324 MCInst const &MCI) {
325 unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
326 MCOperand const &MO = MCI.getOperand(i: O);
327
328 assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
329 HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
330 (MO.isImm() || MO.isExpr()));
331 return (MO);
332}
333
334unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
335 MCInst const &MCI) {
336 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
337 return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
338}
339
340unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
341 MCInst const &MCI) {
342 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
343 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
344}
345
346bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII,
347 MCInst const &MCI) {
348 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
349 return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
350}
351
352/// Return the maximum value of an extendable operand.
353int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
354 MCInst const &MCI) {
355 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
356 HexagonMCInstrInfo::isExtended(MCII, MCI));
357
358 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
359 return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
360 return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
361}
362
363/// Return the minimum value of an extendable operand.
364int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
365 MCInst const &MCI) {
366 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
367 HexagonMCInstrInfo::isExtended(MCII, MCI));
368
369 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
370 return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
371 return 0;
372}
373
374StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
375 MCInst const &MCI) {
376 return MCII.getName(Opcode: MCI.getOpcode());
377}
378
379unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
380 MCInst const &MCI) {
381 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
382 return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
383}
384
385MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
386 MCInst const &MCI) {
387 if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
388 // VTMP doesn't actually exist in the encodings for these 184
389 // 3 instructions so go ahead and create it here.
390 static MCOperand MCO = MCOperand::createReg(Hexagon::Reg: VTMP);
391 return (MCO);
392 } else {
393 unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
394 MCOperand const &MCO = MCI.getOperand(i: O);
395
396 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
397 HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
398 MCO.isReg());
399 return (MCO);
400 }
401}
402
403/// Return the new value or the newly produced value.
404unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
405 MCInst const &MCI) {
406 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
407 return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
408}
409
410MCOperand const &
411HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
412 MCInst const &MCI) {
413 unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
414 MCOperand const &MCO = MCI.getOperand(i: O);
415
416 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
417 HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
418 MCO.isReg());
419 return (MCO);
420}
421
422/// Return the Hexagon ISA class for the insn.
423unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
424 MCInst const &MCI) {
425 const uint64_t F = MCII.get(Opcode: MCI.getOpcode()).TSFlags;
426 return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
427}
428
429/// Return the resources used by this instruction
430unsigned HexagonMCInstrInfo::getCVIResources(MCInstrInfo const &MCII,
431 MCSubtargetInfo const &STI,
432 MCInst const &MCI) {
433
434 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
435 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
436 int Size = II[SchedClass].LastStage - II[SchedClass].FirstStage;
437
438 // HVX resources used are currenty located at the second to last stage.
439 // This could also be done with a linear search of the stages looking for:
440 // CVI_ALL, CVI_MPY01, CVI_XLSHF, CVI_MPY0, CVI_MPY1, CVI_SHIFT, CVI_XLANE,
441 // CVI_ZW
442 unsigned Stage = II[SchedClass].LastStage - 1;
443
444 if (Size < 2)
445 return 0;
446 return ((Stage + HexagonStages)->getUnits());
447}
448
449/// Return the slots this instruction can execute out of
450unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
451 MCSubtargetInfo const &STI,
452 MCInst const &MCI) {
453 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
454 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
455 return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
456}
457
458/// Return the slots this instruction consumes in addition to
459/// the slot(s) it can execute out of
460
461unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
462 MCSubtargetInfo const &STI,
463 MCInst const &MCI) {
464 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
465 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
466 unsigned Slots = 0;
467
468 // FirstStage are slots that this instruction can execute in.
469 // FirstStage+1 are slots that are also consumed by this instruction.
470 // For example: vmemu can only execute in slot 0 but also consumes slot 1.
471 for (unsigned Stage = II[SchedClass].FirstStage + 1;
472 Stage < II[SchedClass].LastStage; ++Stage) {
473 unsigned Units = (Stage + HexagonStages)->getUnits();
474 if (Units > HexagonGetLastSlot())
475 break;
476 // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
477 Slots |= Units;
478 }
479
480 // if 0 is returned, then no additional slots are consumed by this inst.
481 return Slots;
482}
483
484bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
485 if (!HexagonMCInstrInfo::isBundle(MCI))
486 return false;
487
488 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
489 if (HexagonMCInstrInfo::isDuplex(MCII, MCI: *I.getInst()))
490 return true;
491 }
492
493 return false;
494}
495
496bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
497 return extenderForIndex(MCB, Index) != nullptr;
498}
499
500bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
501 if (!HexagonMCInstrInfo::isBundle(MCI))
502 return false;
503
504 for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
505 if (isImmext(MCI: *I.getInst()))
506 return true;
507 }
508
509 return false;
510}
511
512/// Return whether the insn produces a value.
513bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
514 MCInst const &MCI) {
515 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
516 return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
517}
518
519/// Return whether the insn produces a second value.
520bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
521 MCInst const &MCI) {
522 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
523 return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
524}
525
526MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
527 assert(isBundle(MCB));
528 assert(Index < HEXAGON_PRESHUFFLE_PACKET_SIZE);
529 return *MCB.getOperand(i: bundleInstructionsOffset + Index).getInst();
530}
531
532/// Return where the instruction is an accumulator.
533bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
534 MCInst const &MCI) {
535 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
536 return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
537}
538
539bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
540 auto Result = Hexagon::BUNDLE == MCI.getOpcode();
541 assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
542 return Result;
543}
544
545bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
546 MCInst const &MCI) {
547 if (HexagonMCInstrInfo::isExtended(MCII, MCI))
548 return true;
549 if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
550 return false;
551 MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
552 if (isa<HexagonMCExpr>(Val: MO.getExpr()) &&
553 HexagonMCInstrInfo::mustExtend(Expr: *MO.getExpr()))
554 return true;
555 // Branch insns are handled as necessary by relaxation.
556 if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
557 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
558 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
559 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
560 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
561 return false;
562 // Otherwise loop instructions and other CR insts are handled by relaxation
563 else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
564 (MCI.getOpcode() != Hexagon::C4_addipc))
565 return false;
566
567 assert(!MO.isImm());
568 if (isa<HexagonMCExpr>(Val: MO.getExpr()) &&
569 HexagonMCInstrInfo::mustNotExtend(Expr: *MO.getExpr()))
570 return false;
571
572 int64_t Value;
573 if (!MO.getExpr()->evaluateAsAbsolute(Res&: Value))
574 return true;
575 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) {
576 int32_t SValue = Value;
577 int32_t MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
578 int32_t MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
579 return SValue < MinValue || SValue > MaxValue;
580 }
581 uint32_t UValue = Value;
582 uint32_t MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
583 uint32_t MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
584 return UValue < MinValue || UValue > MaxValue;
585}
586
587bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
588 return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
589 !HexagonMCInstrInfo::isPrefix(MCII, MCI);
590}
591
592bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
593 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
594 return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
595}
596
597bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
598 MCInst const &MCI) {
599 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
600 return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
601}
602
603bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
604 MCInst const &MCI) {
605 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
606 return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
607}
608
609bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
610 MCInst const &MCI) {
611 return (getType(MCII, MCI) == HexagonII::TypeCJ);
612}
613
614bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
615 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
616 return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
617}
618
619bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
620 return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
621 (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
622}
623
624bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
625 return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
626}
627
628bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
629 MCInst const &MCI) {
630 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
631 return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
632}
633
634bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
635 MCInst const &MCI) {
636 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
637 return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
638}
639
640bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
641 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
642 return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
643}
644
645bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
646 const uint64_t V = getType(MCII, MCI);
647 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
648}
649
650bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
651 return MCI.getOpcode() == Hexagon::A4_ext;
652}
653
654bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
655 assert(isBundle(MCI));
656 int64_t Flags = MCI.getOperand(i: 0).getImm();
657 return (Flags & innerLoopMask) != 0;
658}
659
660bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
661 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
662}
663
664bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
665 return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
666 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
667}
668
669/// Return whether the insn expects newly produced value.
670bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
671 MCInst const &MCI) {
672 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
673 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
674}
675
676bool HexagonMCInstrInfo::isNewValueStore(MCInstrInfo const &MCII,
677 MCInst const &MCI) {
678 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
679 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
680}
681
682/// Return whether the operand is extendable.
683bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
684 MCInst const &MCI, unsigned short O) {
685 return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
686}
687
688bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
689 assert(isBundle(MCI));
690 int64_t Flags = MCI.getOperand(i: 0).getImm();
691 return (Flags & outerLoopMask) != 0;
692}
693
694bool HexagonMCInstrInfo::IsVecRegPair(unsigned VecReg) {
695 return (VecReg >= Hexagon::W0 && VecReg <= Hexagon::W15) ||
696 (VecReg >= Hexagon::WR0 && VecReg <= Hexagon::WR15);
697}
698
699bool HexagonMCInstrInfo::IsReverseVecRegPair(unsigned VecReg) {
700 return (VecReg >= Hexagon::WR0 && VecReg <= Hexagon::WR15);
701}
702
703bool HexagonMCInstrInfo::IsVecRegSingle(unsigned VecReg) {
704 return (VecReg >= Hexagon::V0 && VecReg <= Hexagon::V31);
705}
706
707std::pair<unsigned, unsigned>
708HexagonMCInstrInfo::GetVecRegPairIndices(unsigned VecRegPair) {
709 assert(IsVecRegPair(VecRegPair) &&
710 "VecRegPair must be a vector register pair");
711
712 const bool IsRev = IsReverseVecRegPair(VecReg: VecRegPair);
713 const unsigned PairIndex =
714 2 * (IsRev ? VecRegPair - Hexagon::WR0 : VecRegPair - Hexagon::W0);
715
716 return IsRev ? std::make_pair(x: PairIndex, y: PairIndex + 1)
717 : std::make_pair(x: PairIndex + 1, y: PairIndex);
718}
719
720bool HexagonMCInstrInfo::IsSingleConsumerRefPairProducer(unsigned Producer,
721 unsigned Consumer) {
722 if (IsVecRegPair(VecReg: Producer) && IsVecRegSingle(VecReg: Consumer)) {
723 const unsigned ProdPairIndex = IsReverseVecRegPair(Producer)
724 ? Producer - Hexagon::WR0
725 : Producer - Hexagon::W0;
726 const unsigned ConsumerSingleIndex = (Consumer - Hexagon::V0) >> 1;
727
728 return ConsumerSingleIndex == ProdPairIndex;
729 }
730 return false;
731}
732
733bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
734 MCInst const &MCI) {
735 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
736 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
737}
738
739bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
740 return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
741}
742
743bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
744 MCInst const &MCI) {
745 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
746 return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
747}
748
749/// Return whether the insn is newly predicated.
750bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
751 MCInst const &MCI) {
752 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
753 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
754}
755
756bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
757 MCInst const &MCI) {
758 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
759 return (
760 !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
761}
762
763bool HexagonMCInstrInfo::isPredReg(MCRegisterInfo const &MRI, unsigned Reg) {
764 auto &PredRegClass = MRI.getRegClass(Hexagon::PredRegsRegClassID);
765 return PredRegClass.contains(Reg);
766}
767
768bool HexagonMCInstrInfo::isPredRegister(MCInstrInfo const &MCII,
769 MCInst const &Inst, unsigned I) {
770 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, MCI: Inst);
771
772 return Inst.getOperand(I).isReg() &&
773 Desc.operands()[I].RegClass == Hexagon::PredRegsRegClassID;
774}
775
776/// Return whether the insn can be packaged only with A and X-type insns.
777bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
778 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
779 return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
780}
781
782/// Return whether the insn can be packaged only with an A-type insn in slot #1.
783bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
784 MCInst const &MCI) {
785 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
786 return ((F >> HexagonII::RestrictSlot1AOKPos) &
787 HexagonII::RestrictSlot1AOKMask);
788}
789
790bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
791 MCInst const &MCI) {
792 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
793 return ((F >> HexagonII::RestrictNoSlot1StorePos) &
794 HexagonII::RestrictNoSlot1StoreMask);
795}
796
797/// Return whether the insn is solo, i.e., cannot be in a packet.
798bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
799 const uint64_t F = MCII.get(Opcode: MCI.getOpcode()).TSFlags;
800 return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
801}
802
803bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
804 assert(isBundle(MCI));
805 auto Flags = MCI.getOperand(i: 0).getImm();
806 return (Flags & memReorderDisabledMask) != 0;
807}
808
809bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
810 switch (MCI.getOpcode()) {
811 default:
812 return false;
813 case Hexagon::SA1_addi:
814 case Hexagon::SA1_addrx:
815 case Hexagon::SA1_addsp:
816 case Hexagon::SA1_and1:
817 case Hexagon::SA1_clrf:
818 case Hexagon::SA1_clrfnew:
819 case Hexagon::SA1_clrt:
820 case Hexagon::SA1_clrtnew:
821 case Hexagon::SA1_cmpeqi:
822 case Hexagon::SA1_combine0i:
823 case Hexagon::SA1_combine1i:
824 case Hexagon::SA1_combine2i:
825 case Hexagon::SA1_combine3i:
826 case Hexagon::SA1_combinerz:
827 case Hexagon::SA1_combinezr:
828 case Hexagon::SA1_dec:
829 case Hexagon::SA1_inc:
830 case Hexagon::SA1_seti:
831 case Hexagon::SA1_setin1:
832 case Hexagon::SA1_sxtb:
833 case Hexagon::SA1_sxth:
834 case Hexagon::SA1_tfr:
835 case Hexagon::SA1_zxtb:
836 case Hexagon::SA1_zxth:
837 case Hexagon::SL1_loadri_io:
838 case Hexagon::SL1_loadrub_io:
839 case Hexagon::SL2_deallocframe:
840 case Hexagon::SL2_jumpr31:
841 case Hexagon::SL2_jumpr31_f:
842 case Hexagon::SL2_jumpr31_fnew:
843 case Hexagon::SL2_jumpr31_t:
844 case Hexagon::SL2_jumpr31_tnew:
845 case Hexagon::SL2_loadrb_io:
846 case Hexagon::SL2_loadrd_sp:
847 case Hexagon::SL2_loadrh_io:
848 case Hexagon::SL2_loadri_sp:
849 case Hexagon::SL2_loadruh_io:
850 case Hexagon::SL2_return:
851 case Hexagon::SL2_return_f:
852 case Hexagon::SL2_return_fnew:
853 case Hexagon::SL2_return_t:
854 case Hexagon::SL2_return_tnew:
855 case Hexagon::SS1_storeb_io:
856 case Hexagon::SS1_storew_io:
857 case Hexagon::SS2_allocframe:
858 case Hexagon::SS2_storebi0:
859 case Hexagon::SS2_storebi1:
860 case Hexagon::SS2_stored_sp:
861 case Hexagon::SS2_storeh_io:
862 case Hexagon::SS2_storew_sp:
863 case Hexagon::SS2_storewi0:
864 case Hexagon::SS2_storewi1:
865 return true;
866 }
867}
868
869bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
870 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
871 return (F >> HexagonII::isCVIPos) & HexagonII::isCVIMask;
872}
873
874int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
875 auto Sentinel = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
876 << 8;
877 if (MCI.size() <= Index)
878 return Sentinel;
879 MCOperand const &MCO = MCI.getOperand(i: Index);
880 if (!MCO.isExpr())
881 return Sentinel;
882 int64_t Value;
883 if (!MCO.getExpr()->evaluateAsAbsolute(Res&: Value))
884 return Sentinel;
885 return Value;
886}
887
888void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
889 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Val: Expr));
890 HExpr.setMustExtend(Val);
891}
892
893bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
894 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Val: Expr);
895 return HExpr.mustExtend();
896}
897void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
898 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Val: Expr));
899 HExpr.setMustNotExtend(Val);
900}
901bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
902 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Val: Expr);
903 return HExpr.mustNotExtend();
904}
905void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
906 HexagonMCExpr &HExpr =
907 const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(Val: &Expr));
908 HExpr.setS27_2_reloc(Val);
909}
910bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
911 HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(Val: &Expr);
912 if (!HExpr)
913 return false;
914 return HExpr->s27_2_reloc();
915}
916
917unsigned HexagonMCInstrInfo::packetSizeSlots(MCSubtargetInfo const &STI) {
918 const bool IsTiny = STI.hasFeature(Hexagon::ProcTinyCore);
919
920 return IsTiny ? (HEXAGON_PACKET_SIZE - 1) : HEXAGON_PACKET_SIZE;
921}
922
923unsigned HexagonMCInstrInfo::packetSize(StringRef CPU) {
924 return llvm::StringSwitch<unsigned>(CPU)
925 .Case(S: "hexagonv67t", Value: 3)
926 .Default(Value: 4);
927}
928
929void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
930 MCInst Nop;
931 Nop.setOpcode(Hexagon::A2_nop);
932 assert(isBundle(MCB));
933 while (LoopNeedsPadding(MCB))
934 MCB.addOperand(Op: MCOperand::createInst(Val: new (Context) MCInst(Nop)));
935}
936
937HexagonMCInstrInfo::PredicateInfo
938HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
939 if (!isPredicated(MCII, MCI))
940 return {0, 0, false};
941 MCInstrDesc const &Desc = getDesc(MCII, MCI);
942 for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
943 if (Desc.operands()[I].RegClass == Hexagon::PredRegsRegClassID)
944 return {MCI.getOperand(i: I).getReg(), I, isPredicatedTrue(MCII, MCI)};
945 return {0, 0, false};
946}
947
948bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
949 MCInst const &MCI) {
950 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
951 return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
952}
953
954bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
955 switch (MCI.getOpcode()) {
956 default:
957 return false;
958 case Hexagon::V6_vgathermh:
959 case Hexagon::V6_vgathermhq:
960 case Hexagon::V6_vgathermhw:
961 case Hexagon::V6_vgathermhwq:
962 case Hexagon::V6_vgathermw:
963 case Hexagon::V6_vgathermwq:
964 return true;
965 }
966 return false;
967}
968
969bool HexagonMCInstrInfo::hasHvxTmp(MCInstrInfo const &MCII, MCInst const &MCI) {
970 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
971 return (F >> HexagonII::HasHvxTmpPos) & HexagonII::HasHvxTmpMask;
972}
973
974bool HexagonMCInstrInfo::requiresSlot(MCSubtargetInfo const &STI,
975 MCInst const &MCI) {
976 const unsigned OpCode = MCI.getOpcode();
977 const bool IsTiny = STI.getFeatureBits() [Hexagon::ProcTinyCore];
978 const bool NoSlotReqd = Hexagon::A4_ext == OpCode ||
979 (IsTiny && Hexagon::A2_nop == OpCode) ||
980 (IsTiny && Hexagon::J4_hintjumpr == OpCode);
981
982 return !NoSlotReqd;
983}
984
985unsigned HexagonMCInstrInfo::slotsConsumed(MCInstrInfo const &MCII,
986 MCSubtargetInfo const &STI,
987 MCInst const &MCI) {
988 unsigned slotsUsed = 0;
989 for (auto HMI : bundleInstructions(MCI)) {
990 MCInst const &MCI = *HMI.getInst();
991 if (!requiresSlot(STI, MCI))
992 continue;
993 if (isDuplex(MCII, MCI))
994 slotsUsed += 2;
995 else
996 ++slotsUsed;
997 }
998 return slotsUsed;
999}
1000
1001void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
1002 DuplexCandidate Candidate) {
1003 assert(Candidate.packetIndexI < MCB.size());
1004 assert(Candidate.packetIndexJ < MCB.size());
1005 assert(isBundle(MCB));
1006 MCInst *Duplex =
1007 deriveDuplex(Context, iClass: Candidate.iClass,
1008 inst0: *MCB.getOperand(i: Candidate.packetIndexJ).getInst(),
1009 inst1: *MCB.getOperand(i: Candidate.packetIndexI).getInst());
1010 assert(Duplex != nullptr);
1011 MCB.getOperand(i: Candidate.packetIndexI).setInst(Duplex);
1012 MCB.erase(I: MCB.begin() + Candidate.packetIndexJ);
1013}
1014
1015void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
1016 assert(isBundle(MCI));
1017 MCOperand &Operand = MCI.getOperand(i: 0);
1018 Operand.setImm(Operand.getImm() | innerLoopMask);
1019}
1020
1021void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
1022 assert(isBundle(MCI));
1023 MCOperand &Operand = MCI.getOperand(i: 0);
1024 Operand.setImm(Operand.getImm() | memReorderDisabledMask);
1025 assert(isMemReorderDisabled(MCI));
1026}
1027
1028void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
1029 assert(isBundle(MCI));
1030 MCOperand &Operand = MCI.getOperand(i: 0);
1031 Operand.setImm(Operand.getImm() | outerLoopMask);
1032}
1033
1034unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
1035 unsigned Producer,
1036 unsigned Producer2) {
1037 // If we're a single vector consumer of a double producer, set subreg bit
1038 // based on if we're accessing the lower or upper register component
1039 if (IsVecRegPair(VecReg: Producer) && IsVecRegSingle(VecReg: Consumer)) {
1040 unsigned Rev = IsReverseVecRegPair(VecReg: Producer);
1041 return ((Consumer - Hexagon::V0) & 0x1) ^ Rev;
1042 }
1043 if (Producer2 != Hexagon::NoRegister)
1044 return Consumer == Producer;
1045 return 0;
1046}
1047
1048bool HexagonMCInstrInfo::LoopNeedsPadding(MCInst const &MCB) {
1049 return (
1050 (HexagonMCInstrInfo::isInnerLoop(MCI: MCB) &&
1051 (HexagonMCInstrInfo::bundleSize(MCI: MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
1052 ((HexagonMCInstrInfo::isOuterLoop(MCI: MCB) &&
1053 (HexagonMCInstrInfo::bundleSize(MCI: MCB) < HEXAGON_PACKET_OUTER_SIZE))));
1054}
1055
1056bool HexagonMCInstrInfo::IsABranchingInst(MCInstrInfo const &MCII,
1057 MCSubtargetInfo const &STI,
1058 MCInst const &I) {
1059 assert(!HexagonMCInstrInfo::isBundle(I));
1060 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, MCI: I);
1061 return (Desc.isBranch() || Desc.isCall() || Desc.isReturn());
1062}
1063

source code of llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp