1 | //===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // A class to represent an relation over integer tuples. A relation is |
10 | // represented as a constraint system over a space of tuples of integer valued |
11 | // variables supporting symbolic variables and existential quantification. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
16 | #include "mlir/Analysis/Presburger/Fraction.h" |
17 | #include "mlir/Analysis/Presburger/LinearTransform.h" |
18 | #include "mlir/Analysis/Presburger/MPInt.h" |
19 | #include "mlir/Analysis/Presburger/PWMAFunction.h" |
20 | #include "mlir/Analysis/Presburger/PresburgerRelation.h" |
21 | #include "mlir/Analysis/Presburger/PresburgerSpace.h" |
22 | #include "mlir/Analysis/Presburger/Simplex.h" |
23 | #include "mlir/Analysis/Presburger/Utils.h" |
24 | #include "mlir/Support/LLVM.h" |
25 | #include "mlir/Support/LogicalResult.h" |
26 | #include "llvm/ADT/DenseMap.h" |
27 | #include "llvm/ADT/DenseSet.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/Sequence.h" |
30 | #include "llvm/ADT/SmallBitVector.h" |
31 | #include "llvm/Support/Debug.h" |
32 | #include "llvm/Support/raw_ostream.h" |
33 | #include <algorithm> |
34 | #include <cassert> |
35 | #include <functional> |
36 | #include <memory> |
37 | #include <optional> |
38 | #include <utility> |
39 | #include <vector> |
40 | |
41 | #define DEBUG_TYPE "presburger" |
42 | |
43 | using namespace mlir; |
44 | using namespace presburger; |
45 | |
46 | using llvm::SmallDenseMap; |
47 | using llvm::SmallDenseSet; |
48 | |
49 | std::unique_ptr<IntegerRelation> IntegerRelation::clone() const { |
50 | return std::make_unique<IntegerRelation>(args: *this); |
51 | } |
52 | |
53 | std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const { |
54 | return std::make_unique<IntegerPolyhedron>(args: *this); |
55 | } |
56 | |
57 | void IntegerRelation::setSpace(const PresburgerSpace &oSpace) { |
58 | assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!" ); |
59 | space = oSpace; |
60 | } |
61 | |
62 | void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) { |
63 | assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!" ); |
64 | assert(oSpace.getNumVars() <= getNumVars() && "invalid space!" ); |
65 | unsigned newNumLocals = getNumVars() - oSpace.getNumVars(); |
66 | space = oSpace; |
67 | space.insertVar(kind: VarKind::Local, pos: 0, num: newNumLocals); |
68 | } |
69 | |
70 | void IntegerRelation::setId(VarKind kind, unsigned i, Identifier id) { |
71 | assert(space.isUsingIds() && |
72 | "space must be using identifiers to set an identifier" ); |
73 | assert(kind != VarKind::Local && "local variables cannot have identifiers" ); |
74 | assert(i < space.getNumVarKind(kind) && "invalid variable index" ); |
75 | space.setId(kind, pos: i, id); |
76 | } |
77 | |
78 | ArrayRef<Identifier> IntegerRelation::getIds(VarKind kind) { |
79 | if (!space.isUsingIds()) |
80 | space.resetIds(); |
81 | return space.getIds(kind); |
82 | } |
83 | |
84 | void IntegerRelation::append(const IntegerRelation &other) { |
85 | assert(space.isEqual(other.getSpace()) && "Spaces must be equal." ); |
86 | |
87 | inequalities.reserveRows(rows: inequalities.getNumRows() + |
88 | other.getNumInequalities()); |
89 | equalities.reserveRows(rows: equalities.getNumRows() + other.getNumEqualities()); |
90 | |
91 | for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { |
92 | addInequality(inEq: other.getInequality(idx: r)); |
93 | } |
94 | for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { |
95 | addEquality(eq: other.getEquality(idx: r)); |
96 | } |
97 | } |
98 | |
99 | IntegerRelation IntegerRelation::intersect(IntegerRelation other) const { |
100 | IntegerRelation result = *this; |
101 | result.mergeLocalVars(other); |
102 | result.append(other); |
103 | return result; |
104 | } |
105 | |
106 | bool IntegerRelation::isEqual(const IntegerRelation &other) const { |
107 | assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible." ); |
108 | return PresburgerRelation(*this).isEqual(set: PresburgerRelation(other)); |
109 | } |
110 | |
111 | bool IntegerRelation::isObviouslyEqual(const IntegerRelation &other) const { |
112 | if (!space.isEqual(other: other.getSpace())) |
113 | return false; |
114 | if (getNumEqualities() != other.getNumEqualities()) |
115 | return false; |
116 | if (getNumInequalities() != other.getNumInequalities()) |
117 | return false; |
118 | |
119 | unsigned cols = getNumCols(); |
120 | for (unsigned i = 0, eqs = getNumEqualities(); i < eqs; ++i) { |
121 | for (unsigned j = 0; j < cols; ++j) { |
122 | if (atEq(i, j) != other.atEq(i, j)) |
123 | return false; |
124 | } |
125 | } |
126 | for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) { |
127 | for (unsigned j = 0; j < cols; ++j) { |
128 | if (atIneq(i, j) != other.atIneq(i, j)) |
129 | return false; |
130 | } |
131 | } |
132 | return true; |
133 | } |
134 | |
135 | bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const { |
136 | assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible." ); |
137 | return PresburgerRelation(*this).isSubsetOf(set: PresburgerRelation(other)); |
138 | } |
139 | |
140 | MaybeOptimum<SmallVector<Fraction, 8>> |
141 | IntegerRelation::findRationalLexMin() const { |
142 | assert(getNumSymbolVars() == 0 && "Symbols are not supported!" ); |
143 | MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin = |
144 | LexSimplex(*this).findRationalLexMin(); |
145 | |
146 | if (!maybeLexMin.isBounded()) |
147 | return maybeLexMin; |
148 | |
149 | // The Simplex returns the lexmin over all the variables including locals. But |
150 | // locals are not actually part of the space and should not be returned in the |
151 | // result. Since the locals are placed last in the list of variables, they |
152 | // will be minimized last in the lexmin. So simply truncating out the locals |
153 | // from the end of the answer gives the desired lexmin over the dimensions. |
154 | assert(maybeLexMin->size() == getNumVars() && |
155 | "Incorrect number of vars in lexMin!" ); |
156 | maybeLexMin->resize(N: getNumDimAndSymbolVars()); |
157 | return maybeLexMin; |
158 | } |
159 | |
160 | MaybeOptimum<SmallVector<MPInt, 8>> IntegerRelation::findIntegerLexMin() const { |
161 | assert(getNumSymbolVars() == 0 && "Symbols are not supported!" ); |
162 | MaybeOptimum<SmallVector<MPInt, 8>> maybeLexMin = |
163 | LexSimplex(*this).findIntegerLexMin(); |
164 | |
165 | if (!maybeLexMin.isBounded()) |
166 | return maybeLexMin.getKind(); |
167 | |
168 | // The Simplex returns the lexmin over all the variables including locals. But |
169 | // locals are not actually part of the space and should not be returned in the |
170 | // result. Since the locals are placed last in the list of variables, they |
171 | // will be minimized last in the lexmin. So simply truncating out the locals |
172 | // from the end of the answer gives the desired lexmin over the dimensions. |
173 | assert(maybeLexMin->size() == getNumVars() && |
174 | "Incorrect number of vars in lexMin!" ); |
175 | maybeLexMin->resize(N: getNumDimAndSymbolVars()); |
176 | return maybeLexMin; |
177 | } |
178 | |
179 | static bool rangeIsZero(ArrayRef<MPInt> range) { |
180 | return llvm::all_of(Range&: range, P: [](const MPInt &x) { return x == 0; }); |
181 | } |
182 | |
183 | static void removeConstraintsInvolvingVarRange(IntegerRelation &poly, |
184 | unsigned begin, unsigned count) { |
185 | // We loop until i > 0 and index into i - 1 to avoid sign issues. |
186 | // |
187 | // We iterate backwards so that whether we remove constraint i - 1 or not, the |
188 | // next constraint to be tested is always i - 2. |
189 | for (unsigned i = poly.getNumEqualities(); i > 0; i--) |
190 | if (!rangeIsZero(range: poly.getEquality(idx: i - 1).slice(N: begin, M: count))) |
191 | poly.removeEquality(pos: i - 1); |
192 | for (unsigned i = poly.getNumInequalities(); i > 0; i--) |
193 | if (!rangeIsZero(range: poly.getInequality(idx: i - 1).slice(N: begin, M: count))) |
194 | poly.removeInequality(pos: i - 1); |
195 | } |
196 | |
197 | IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const { |
198 | return {getSpace(), getNumInequalities(), getNumEqualities()}; |
199 | } |
200 | |
201 | void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) { |
202 | unsigned curNum = getNumVarKind(kind); |
203 | assert(num <= curNum && "Can't truncate to more vars!" ); |
204 | removeVarRange(kind, varStart: num, varLimit: curNum); |
205 | } |
206 | |
207 | void IntegerRelation::truncateVarKind(VarKind kind, |
208 | const CountsSnapshot &counts) { |
209 | truncateVarKind(kind, num: counts.getSpace().getNumVarKind(kind)); |
210 | } |
211 | |
212 | void IntegerRelation::truncate(const CountsSnapshot &counts) { |
213 | truncateVarKind(kind: VarKind::Domain, counts); |
214 | truncateVarKind(kind: VarKind::Range, counts); |
215 | truncateVarKind(kind: VarKind::Symbol, counts); |
216 | truncateVarKind(kind: VarKind::Local, counts); |
217 | removeInequalityRange(start: counts.getNumIneqs(), end: getNumInequalities()); |
218 | removeEqualityRange(start: counts.getNumEqs(), end: getNumEqualities()); |
219 | } |
220 | |
221 | PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const { |
222 | // If there are no locals, we're done. |
223 | if (getNumLocalVars() == 0) |
224 | return PresburgerRelation(*this); |
225 | |
226 | // Move all the non-div locals to the end, as the current API to |
227 | // SymbolicLexOpt requires these to form a contiguous range. |
228 | // |
229 | // Take a copy so we can perform mutations. |
230 | IntegerRelation copy = *this; |
231 | std::vector<MaybeLocalRepr> reprs(getNumLocalVars()); |
232 | copy.getLocalReprs(repr: &reprs); |
233 | |
234 | // Iterate through all the locals. The last `numNonDivLocals` are the locals |
235 | // that have been scanned already and do not have division representations. |
236 | unsigned numNonDivLocals = 0; |
237 | unsigned offset = copy.getVarKindOffset(kind: VarKind::Local); |
238 | for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) { |
239 | if (!reprs[i]) { |
240 | // Whenever we come across a local that does not have a division |
241 | // representation, we swap it to the `numNonDivLocals`-th last position |
242 | // and increment `numNonDivLocal`s. `reprs` also needs to be swapped. |
243 | copy.swapVar(posA: offset + i, posB: offset + e - numNonDivLocals - 1); |
244 | std::swap(a&: reprs[i], b&: reprs[e - numNonDivLocals - 1]); |
245 | ++numNonDivLocals; |
246 | continue; |
247 | } |
248 | ++i; |
249 | } |
250 | |
251 | // If there are no non-div locals, we're done. |
252 | if (numNonDivLocals == 0) |
253 | return PresburgerRelation(*this); |
254 | |
255 | // We computeSymbolicIntegerLexMin by considering the non-div locals as |
256 | // "non-symbols" and considering everything else as "symbols". This will |
257 | // compute a function mapping assignments to "symbols" to the |
258 | // lexicographically minimal valid assignment of "non-symbols", when a |
259 | // satisfying assignment exists. It separately returns the set of assignments |
260 | // to the "symbols" such that a satisfying assignment to the "non-symbols" |
261 | // exists but the lexmin is unbounded. We basically want to find the set of |
262 | // values of the "symbols" such that an assignment to the "non-symbols" |
263 | // exists, which is the union of the domain of the returned lexmin function |
264 | // and the returned set of assignments to the "symbols" that makes the lexmin |
265 | // unbounded. |
266 | SymbolicLexOpt lexminResult = |
267 | SymbolicLexSimplex(copy, /*symbolOffset*/ 0, |
268 | IntegerPolyhedron(PresburgerSpace::getSetSpace( |
269 | /*numDims=*/copy.getNumVars() - numNonDivLocals))) |
270 | .computeSymbolicIntegerLexMin(); |
271 | PresburgerRelation result = |
272 | lexminResult.lexopt.getDomain().unionSet(set: lexminResult.unboundedDomain); |
273 | |
274 | // The result set might lie in the wrong space -- all its ids are dims. |
275 | // Set it to the desired space and return. |
276 | PresburgerSpace space = getSpace(); |
277 | space.removeVarRange(kind: VarKind::Local, varStart: 0, varLimit: getNumLocalVars()); |
278 | result.setSpace(space); |
279 | return result; |
280 | } |
281 | |
282 | SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMin() const { |
283 | // Symbol and Domain vars will be used as symbols for symbolic lexmin. |
284 | // In other words, for every value of the symbols and domain, return the |
285 | // lexmin value of the (range, locals). |
286 | llvm::SmallBitVector isSymbol(getNumVars(), false); |
287 | isSymbol.set(I: getVarKindOffset(kind: VarKind::Symbol), |
288 | E: getVarKindEnd(kind: VarKind::Symbol)); |
289 | isSymbol.set(I: getVarKindOffset(kind: VarKind::Domain), |
290 | E: getVarKindEnd(kind: VarKind::Domain)); |
291 | // Compute the symbolic lexmin of the dims and locals, with the symbols being |
292 | // the actual symbols of this set. |
293 | // The resultant space of lexmin is the space of the relation itself. |
294 | SymbolicLexOpt result = |
295 | SymbolicLexSimplex(*this, |
296 | IntegerPolyhedron(PresburgerSpace::getSetSpace( |
297 | /*numDims=*/getNumDomainVars(), |
298 | /*numSymbols=*/getNumSymbolVars())), |
299 | isSymbol) |
300 | .computeSymbolicIntegerLexMin(); |
301 | |
302 | // We want to return only the lexmin over the dims, so strip the locals from |
303 | // the computed lexmin. |
304 | result.lexopt.removeOutputs(start: result.lexopt.getNumOutputs() - getNumLocalVars(), |
305 | end: result.lexopt.getNumOutputs()); |
306 | return result; |
307 | } |
308 | |
309 | /// findSymbolicIntegerLexMax is implemented using findSymbolicIntegerLexMin as |
310 | /// follows: |
311 | /// 1. A new relation is created which is `this` relation with the sign of |
312 | /// each dimension variable in range flipped; |
313 | /// 2. findSymbolicIntegerLexMin is called on the range negated relation to |
314 | /// compute the negated lexmax of `this` relation; |
315 | /// 3. The sign of the negated lexmax is flipped and returned. |
316 | SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMax() const { |
317 | IntegerRelation flippedRel = *this; |
318 | // Flip range sign by flipping the sign of range variables in all constraints. |
319 | for (unsigned j = getNumDomainVars(), |
320 | b = getNumDomainVars() + getNumRangeVars(); |
321 | j < b; j++) { |
322 | for (unsigned i = 0, a = getNumEqualities(); i < a; i++) |
323 | flippedRel.atEq(i, j) = -1 * atEq(i, j); |
324 | for (unsigned i = 0, a = getNumInequalities(); i < a; i++) |
325 | flippedRel.atIneq(i, j) = -1 * atIneq(i, j); |
326 | } |
327 | // Compute negated lexmax by computing lexmin. |
328 | SymbolicLexOpt flippedSymbolicIntegerLexMax = |
329 | flippedRel.findSymbolicIntegerLexMin(), |
330 | symbolicIntegerLexMax( |
331 | flippedSymbolicIntegerLexMax.lexopt.getSpace()); |
332 | // Get lexmax by flipping range sign in the PWMA constraints. |
333 | for (auto &flippedPiece : |
334 | flippedSymbolicIntegerLexMax.lexopt.getAllPieces()) { |
335 | IntMatrix mat = flippedPiece.output.getOutputMatrix(); |
336 | for (unsigned i = 0, e = mat.getNumRows(); i < e; i++) |
337 | mat.negateRow(row: i); |
338 | MultiAffineFunction maf(flippedPiece.output.getSpace(), mat); |
339 | PWMAFunction::Piece piece = {.domain: flippedPiece.domain, .output: maf}; |
340 | symbolicIntegerLexMax.lexopt.addPiece(piece); |
341 | } |
342 | symbolicIntegerLexMax.unboundedDomain = |
343 | flippedSymbolicIntegerLexMax.unboundedDomain; |
344 | return symbolicIntegerLexMax; |
345 | } |
346 | |
347 | PresburgerRelation |
348 | IntegerRelation::subtract(const PresburgerRelation &set) const { |
349 | return PresburgerRelation(*this).subtract(set); |
350 | } |
351 | |
352 | unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) { |
353 | assert(pos <= getNumVarKind(kind)); |
354 | |
355 | unsigned insertPos = space.insertVar(kind, pos, num); |
356 | inequalities.insertColumns(pos: insertPos, count: num); |
357 | equalities.insertColumns(pos: insertPos, count: num); |
358 | return insertPos; |
359 | } |
360 | |
361 | unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) { |
362 | unsigned pos = getNumVarKind(kind); |
363 | return insertVar(kind, pos, num); |
364 | } |
365 | |
366 | void IntegerRelation::addEquality(ArrayRef<MPInt> eq) { |
367 | assert(eq.size() == getNumCols()); |
368 | unsigned row = equalities.appendExtraRow(); |
369 | for (unsigned i = 0, e = eq.size(); i < e; ++i) |
370 | equalities(row, i) = eq[i]; |
371 | } |
372 | |
373 | void IntegerRelation::addInequality(ArrayRef<MPInt> inEq) { |
374 | assert(inEq.size() == getNumCols()); |
375 | unsigned row = inequalities.appendExtraRow(); |
376 | for (unsigned i = 0, e = inEq.size(); i < e; ++i) |
377 | inequalities(row, i) = inEq[i]; |
378 | } |
379 | |
380 | void IntegerRelation::removeVar(VarKind kind, unsigned pos) { |
381 | removeVarRange(kind, varStart: pos, varLimit: pos + 1); |
382 | } |
383 | |
384 | void IntegerRelation::removeVar(unsigned pos) { removeVarRange(varStart: pos, varLimit: pos + 1); } |
385 | |
386 | void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart, |
387 | unsigned varLimit) { |
388 | assert(varLimit <= getNumVarKind(kind)); |
389 | |
390 | if (varStart >= varLimit) |
391 | return; |
392 | |
393 | // Remove eliminated variables from the constraints. |
394 | unsigned offset = getVarKindOffset(kind); |
395 | equalities.removeColumns(pos: offset + varStart, count: varLimit - varStart); |
396 | inequalities.removeColumns(pos: offset + varStart, count: varLimit - varStart); |
397 | |
398 | // Remove eliminated variables from the space. |
399 | space.removeVarRange(kind, varStart, varLimit); |
400 | } |
401 | |
402 | void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) { |
403 | assert(varLimit <= getNumVars()); |
404 | |
405 | if (varStart >= varLimit) |
406 | return; |
407 | |
408 | // Helper function to remove vars of the specified kind in the given range |
409 | // [start, limit), The range is absolute (i.e. it is not relative to the kind |
410 | // of variable). Also updates `limit` to reflect the deleted variables. |
411 | auto removeVarKindInRange = [this](VarKind kind, unsigned &start, |
412 | unsigned &limit) { |
413 | if (start >= limit) |
414 | return; |
415 | |
416 | unsigned offset = getVarKindOffset(kind); |
417 | unsigned num = getNumVarKind(kind); |
418 | |
419 | // Get `start`, `limit` relative to the specified kind. |
420 | unsigned relativeStart = |
421 | start <= offset ? 0 : std::min(a: num, b: start - offset); |
422 | unsigned relativeLimit = |
423 | limit <= offset ? 0 : std::min(a: num, b: limit - offset); |
424 | |
425 | // Remove vars of the specified kind in the relative range. |
426 | removeVarRange(kind, varStart: relativeStart, varLimit: relativeLimit); |
427 | |
428 | // Update `limit` to reflect deleted variables. |
429 | // `start` does not need to be updated because any variables that are |
430 | // deleted are after position `start`. |
431 | limit -= relativeLimit - relativeStart; |
432 | }; |
433 | |
434 | removeVarKindInRange(VarKind::Domain, varStart, varLimit); |
435 | removeVarKindInRange(VarKind::Range, varStart, varLimit); |
436 | removeVarKindInRange(VarKind::Symbol, varStart, varLimit); |
437 | removeVarKindInRange(VarKind::Local, varStart, varLimit); |
438 | } |
439 | |
440 | void IntegerRelation::removeEquality(unsigned pos) { |
441 | equalities.removeRow(pos); |
442 | } |
443 | |
444 | void IntegerRelation::removeInequality(unsigned pos) { |
445 | inequalities.removeRow(pos); |
446 | } |
447 | |
448 | void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) { |
449 | if (start >= end) |
450 | return; |
451 | equalities.removeRows(pos: start, count: end - start); |
452 | } |
453 | |
454 | void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) { |
455 | if (start >= end) |
456 | return; |
457 | inequalities.removeRows(pos: start, count: end - start); |
458 | } |
459 | |
460 | void IntegerRelation::swapVar(unsigned posA, unsigned posB) { |
461 | assert(posA < getNumVars() && "invalid position A" ); |
462 | assert(posB < getNumVars() && "invalid position B" ); |
463 | |
464 | if (posA == posB) |
465 | return; |
466 | |
467 | VarKind kindA = space.getVarKindAt(pos: posA); |
468 | VarKind kindB = space.getVarKindAt(pos: posB); |
469 | unsigned relativePosA = posA - getVarKindOffset(kind: kindA); |
470 | unsigned relativePosB = posB - getVarKindOffset(kind: kindB); |
471 | space.swapVar(kindA, kindB, posA: relativePosA, posB: relativePosB); |
472 | |
473 | inequalities.swapColumns(column: posA, otherColumn: posB); |
474 | equalities.swapColumns(column: posA, otherColumn: posB); |
475 | } |
476 | |
477 | void IntegerRelation::clearConstraints() { |
478 | equalities.resizeVertically(newNRows: 0); |
479 | inequalities.resizeVertically(newNRows: 0); |
480 | } |
481 | |
482 | /// Gather all lower and upper bounds of the variable at `pos`, and |
483 | /// optionally any equalities on it. In addition, the bounds are to be |
484 | /// independent of variables in position range [`offset`, `offset` + `num`). |
485 | void IntegerRelation::getLowerAndUpperBoundIndices( |
486 | unsigned pos, SmallVectorImpl<unsigned> *lbIndices, |
487 | SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices, |
488 | unsigned offset, unsigned num) const { |
489 | assert(pos < getNumVars() && "invalid position" ); |
490 | assert(offset + num < getNumCols() && "invalid range" ); |
491 | |
492 | // Checks for a constraint that has a non-zero coeff for the variables in |
493 | // the position range [offset, offset + num) while ignoring `pos`. |
494 | auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) { |
495 | unsigned c, f; |
496 | auto cst = isEq ? getEquality(idx: r) : getInequality(idx: r); |
497 | for (c = offset, f = offset + num; c < f; ++c) { |
498 | if (c == pos) |
499 | continue; |
500 | if (cst[c] != 0) |
501 | break; |
502 | } |
503 | return c < f; |
504 | }; |
505 | |
506 | // Gather all lower bounds and upper bounds of the variable. Since the |
507 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
508 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
509 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
510 | // The bounds are to be independent of [offset, offset + num) columns. |
511 | if (containsConstraintDependentOnRange(r, /*isEq=*/false)) |
512 | continue; |
513 | if (atIneq(i: r, j: pos) >= 1) { |
514 | // Lower bound. |
515 | lbIndices->push_back(Elt: r); |
516 | } else if (atIneq(i: r, j: pos) <= -1) { |
517 | // Upper bound. |
518 | ubIndices->push_back(Elt: r); |
519 | } |
520 | } |
521 | |
522 | // An equality is both a lower and upper bound. Record any equalities |
523 | // involving the pos^th variable. |
524 | if (!eqIndices) |
525 | return; |
526 | |
527 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
528 | if (atEq(i: r, j: pos) == 0) |
529 | continue; |
530 | if (containsConstraintDependentOnRange(r, /*isEq=*/true)) |
531 | continue; |
532 | eqIndices->push_back(Elt: r); |
533 | } |
534 | } |
535 | |
536 | bool IntegerRelation::hasConsistentState() const { |
537 | if (!inequalities.hasConsistentState()) |
538 | return false; |
539 | if (!equalities.hasConsistentState()) |
540 | return false; |
541 | return true; |
542 | } |
543 | |
544 | void IntegerRelation::setAndEliminate(unsigned pos, ArrayRef<MPInt> values) { |
545 | if (values.empty()) |
546 | return; |
547 | assert(pos + values.size() <= getNumVars() && |
548 | "invalid position or too many values" ); |
549 | // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the |
550 | // constant term and removing the var x_j. We do this for all the vars |
551 | // pos, pos + 1, ... pos + values.size() - 1. |
552 | unsigned constantColPos = getNumCols() - 1; |
553 | for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) |
554 | inequalities.addToColumn(sourceColumn: i + pos, targetColumn: constantColPos, scale: values[i]); |
555 | for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) |
556 | equalities.addToColumn(sourceColumn: i + pos, targetColumn: constantColPos, scale: values[i]); |
557 | removeVarRange(varStart: pos, varLimit: pos + values.size()); |
558 | } |
559 | |
560 | void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) { |
561 | *this = other; |
562 | } |
563 | |
564 | // Searches for a constraint with a non-zero coefficient at `colIdx` in |
565 | // equality (isEq=true) or inequality (isEq=false) constraints. |
566 | // Returns true and sets row found in search in `rowIdx`, false otherwise. |
567 | bool IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq, |
568 | unsigned *rowIdx) const { |
569 | assert(colIdx < getNumCols() && "position out of bounds" ); |
570 | auto at = [&](unsigned rowIdx) -> MPInt { |
571 | return isEq ? atEq(i: rowIdx, j: colIdx) : atIneq(i: rowIdx, j: colIdx); |
572 | }; |
573 | unsigned e = isEq ? getNumEqualities() : getNumInequalities(); |
574 | for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) { |
575 | if (at(*rowIdx) != 0) { |
576 | return true; |
577 | } |
578 | } |
579 | return false; |
580 | } |
581 | |
582 | void IntegerRelation::normalizeConstraintsByGCD() { |
583 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
584 | equalities.normalizeRow(row: i); |
585 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
586 | inequalities.normalizeRow(row: i); |
587 | } |
588 | |
589 | bool IntegerRelation::hasInvalidConstraint() const { |
590 | assert(hasConsistentState()); |
591 | auto check = [&](bool isEq) -> bool { |
592 | unsigned numCols = getNumCols(); |
593 | unsigned numRows = isEq ? getNumEqualities() : getNumInequalities(); |
594 | for (unsigned i = 0, e = numRows; i < e; ++i) { |
595 | unsigned j; |
596 | for (j = 0; j < numCols - 1; ++j) { |
597 | MPInt v = isEq ? atEq(i, j) : atIneq(i, j); |
598 | // Skip rows with non-zero variable coefficients. |
599 | if (v != 0) |
600 | break; |
601 | } |
602 | if (j < numCols - 1) { |
603 | continue; |
604 | } |
605 | // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'. |
606 | // Example invalid constraints include: '1 == 0' or '-1 >= 0' |
607 | MPInt v = isEq ? atEq(i, j: numCols - 1) : atIneq(i, j: numCols - 1); |
608 | if ((isEq && v != 0) || (!isEq && v < 0)) { |
609 | return true; |
610 | } |
611 | } |
612 | return false; |
613 | }; |
614 | if (check(/*isEq=*/true)) |
615 | return true; |
616 | return check(/*isEq=*/false); |
617 | } |
618 | |
619 | /// Eliminate variable from constraint at `rowIdx` based on coefficient at |
620 | /// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be |
621 | /// updated as they have already been eliminated. |
622 | static void eliminateFromConstraint(IntegerRelation *constraints, |
623 | unsigned rowIdx, unsigned pivotRow, |
624 | unsigned pivotCol, unsigned elimColStart, |
625 | bool isEq) { |
626 | // Skip if equality 'rowIdx' if same as 'pivotRow'. |
627 | if (isEq && rowIdx == pivotRow) |
628 | return; |
629 | auto at = [&](unsigned i, unsigned j) -> MPInt { |
630 | return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j); |
631 | }; |
632 | MPInt leadCoeff = at(rowIdx, pivotCol); |
633 | // Skip if leading coefficient at 'rowIdx' is already zero. |
634 | if (leadCoeff == 0) |
635 | return; |
636 | MPInt pivotCoeff = constraints->atEq(i: pivotRow, j: pivotCol); |
637 | int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1; |
638 | MPInt lcm = presburger::lcm(a: pivotCoeff, b: leadCoeff); |
639 | MPInt pivotMultiplier = sign * (lcm / abs(x: pivotCoeff)); |
640 | MPInt rowMultiplier = lcm / abs(x: leadCoeff); |
641 | |
642 | unsigned numCols = constraints->getNumCols(); |
643 | for (unsigned j = 0; j < numCols; ++j) { |
644 | // Skip updating column 'j' if it was just eliminated. |
645 | if (j >= elimColStart && j < pivotCol) |
646 | continue; |
647 | MPInt v = pivotMultiplier * constraints->atEq(i: pivotRow, j) + |
648 | rowMultiplier * at(rowIdx, j); |
649 | isEq ? constraints->atEq(i: rowIdx, j) = v |
650 | : constraints->atIneq(i: rowIdx, j) = v; |
651 | } |
652 | } |
653 | |
654 | /// Returns the position of the variable that has the minimum <number of lower |
655 | /// bounds> times <number of upper bounds> from the specified range of |
656 | /// variables [start, end). It is often best to eliminate in the increasing |
657 | /// order of these counts when doing Fourier-Motzkin elimination since FM adds |
658 | /// that many new constraints. |
659 | static unsigned getBestVarToEliminate(const IntegerRelation &cst, |
660 | unsigned start, unsigned end) { |
661 | assert(start < cst.getNumVars() && end < cst.getNumVars() + 1); |
662 | |
663 | auto getProductOfNumLowerUpperBounds = [&](unsigned pos) { |
664 | unsigned numLb = 0; |
665 | unsigned numUb = 0; |
666 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
667 | if (cst.atIneq(i: r, j: pos) > 0) { |
668 | ++numLb; |
669 | } else if (cst.atIneq(i: r, j: pos) < 0) { |
670 | ++numUb; |
671 | } |
672 | } |
673 | return numLb * numUb; |
674 | }; |
675 | |
676 | unsigned minLoc = start; |
677 | unsigned min = getProductOfNumLowerUpperBounds(start); |
678 | for (unsigned c = start + 1; c < end; c++) { |
679 | unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c); |
680 | if (numLbUbProduct < min) { |
681 | min = numLbUbProduct; |
682 | minLoc = c; |
683 | } |
684 | } |
685 | return minLoc; |
686 | } |
687 | |
688 | // Checks for emptiness of the set by eliminating variables successively and |
689 | // using the GCD test (on all equality constraints) and checking for trivially |
690 | // invalid constraints. Returns 'true' if the constraint system is found to be |
691 | // empty; false otherwise. |
692 | bool IntegerRelation::isEmpty() const { |
693 | if (isEmptyByGCDTest() || hasInvalidConstraint()) |
694 | return true; |
695 | |
696 | IntegerRelation tmpCst(*this); |
697 | |
698 | // First, eliminate as many local variables as possible using equalities. |
699 | tmpCst.removeRedundantLocalVars(); |
700 | if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint()) |
701 | return true; |
702 | |
703 | // Eliminate as many variables as possible using Gaussian elimination. |
704 | unsigned currentPos = 0; |
705 | while (currentPos < tmpCst.getNumVars()) { |
706 | tmpCst.gaussianEliminateVars(posStart: currentPos, posLimit: tmpCst.getNumVars()); |
707 | ++currentPos; |
708 | // We check emptiness through trivial checks after eliminating each ID to |
709 | // detect emptiness early. Since the checks isEmptyByGCDTest() and |
710 | // hasInvalidConstraint() are linear time and single sweep on the constraint |
711 | // buffer, this appears reasonable - but can optimize in the future. |
712 | if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest()) |
713 | return true; |
714 | } |
715 | |
716 | // Eliminate the remaining using FM. |
717 | for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) { |
718 | tmpCst.fourierMotzkinEliminate( |
719 | pos: getBestVarToEliminate(cst: tmpCst, start: 0, end: tmpCst.getNumVars())); |
720 | // Check for a constraint explosion. This rarely happens in practice, but |
721 | // this check exists as a safeguard against improperly constructed |
722 | // constraint systems or artificially created arbitrarily complex systems |
723 | // that aren't the intended use case for IntegerRelation. This is |
724 | // needed since FM has a worst case exponential complexity in theory. |
725 | if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) { |
726 | LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n" ); |
727 | return false; |
728 | } |
729 | |
730 | // FM wouldn't have modified the equalities in any way. So no need to again |
731 | // run GCD test. Check for trivial invalid constraints. |
732 | if (tmpCst.hasInvalidConstraint()) |
733 | return true; |
734 | } |
735 | return false; |
736 | } |
737 | |
738 | bool IntegerRelation::isObviouslyEmpty() const { |
739 | return isEmptyByGCDTest() || hasInvalidConstraint(); |
740 | } |
741 | |
742 | // Runs the GCD test on all equality constraints. Returns 'true' if this test |
743 | // fails on any equality. Returns 'false' otherwise. |
744 | // This test can be used to disprove the existence of a solution. If it returns |
745 | // true, no integer solution to the equality constraints can exist. |
746 | // |
747 | // GCD test definition: |
748 | // |
749 | // The equality constraint: |
750 | // |
751 | // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0 |
752 | // |
753 | // has an integer solution iff: |
754 | // |
755 | // GCD of c_1, c_2, ..., c_n divides c_0. |
756 | bool IntegerRelation::isEmptyByGCDTest() const { |
757 | assert(hasConsistentState()); |
758 | unsigned numCols = getNumCols(); |
759 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
760 | MPInt gcd = abs(x: atEq(i, j: 0)); |
761 | for (unsigned j = 1; j < numCols - 1; ++j) { |
762 | gcd = presburger::gcd(a: gcd, b: abs(x: atEq(i, j))); |
763 | } |
764 | MPInt v = abs(x: atEq(i, j: numCols - 1)); |
765 | if (gcd > 0 && (v % gcd != 0)) { |
766 | return true; |
767 | } |
768 | } |
769 | return false; |
770 | } |
771 | |
772 | // Returns a matrix where each row is a vector along which the polytope is |
773 | // bounded. The span of the returned vectors is guaranteed to contain all |
774 | // such vectors. The returned vectors are NOT guaranteed to be linearly |
775 | // independent. This function should not be called on empty sets. |
776 | // |
777 | // It is sufficient to check the perpendiculars of the constraints, as the set |
778 | // of perpendiculars which are bounded must span all bounded directions. |
779 | IntMatrix IntegerRelation::getBoundedDirections() const { |
780 | // Note that it is necessary to add the equalities too (which the constructor |
781 | // does) even though we don't need to check if they are bounded; whether an |
782 | // inequality is bounded or not depends on what other constraints, including |
783 | // equalities, are present. |
784 | Simplex simplex(*this); |
785 | |
786 | assert(!simplex.isEmpty() && "It is not meaningful to ask whether a " |
787 | "direction is bounded in an empty set." ); |
788 | |
789 | SmallVector<unsigned, 8> boundedIneqs; |
790 | // The constructor adds the inequalities to the simplex first, so this |
791 | // processes all the inequalities. |
792 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
793 | if (simplex.isBoundedAlongConstraint(constraintIndex: i)) |
794 | boundedIneqs.push_back(Elt: i); |
795 | } |
796 | |
797 | // The direction vector is given by the coefficients and does not include the |
798 | // constant term, so the matrix has one fewer column. |
799 | unsigned dirsNumCols = getNumCols() - 1; |
800 | IntMatrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols); |
801 | |
802 | // Copy the bounded inequalities. |
803 | unsigned row = 0; |
804 | for (unsigned i : boundedIneqs) { |
805 | for (unsigned col = 0; col < dirsNumCols; ++col) |
806 | dirs(row, col) = atIneq(i, j: col); |
807 | ++row; |
808 | } |
809 | |
810 | // Copy the equalities. All the equalities' perpendiculars are bounded. |
811 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
812 | for (unsigned col = 0; col < dirsNumCols; ++col) |
813 | dirs(row, col) = atEq(i, j: col); |
814 | ++row; |
815 | } |
816 | |
817 | return dirs; |
818 | } |
819 | |
820 | bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); } |
821 | |
822 | /// Let this set be S. If S is bounded then we directly call into the GBR |
823 | /// sampling algorithm. Otherwise, there are some unbounded directions, i.e., |
824 | /// vectors v such that S extends to infinity along v or -v. In this case we |
825 | /// use an algorithm described in the integer set library (isl) manual and used |
826 | /// by the isl_set_sample function in that library. The algorithm is: |
827 | /// |
828 | /// 1) Apply a unimodular transform T to S to obtain S*T, such that all |
829 | /// dimensions in which S*T is bounded lie in the linear span of a prefix of the |
830 | /// dimensions. |
831 | /// |
832 | /// 2) Construct a set B by removing all constraints that involve |
833 | /// the unbounded dimensions and then deleting the unbounded dimensions. Note |
834 | /// that B is a Bounded set. |
835 | /// |
836 | /// 3) Try to obtain a sample from B using the GBR sampling |
837 | /// algorithm. If no sample is found, return that S is empty. |
838 | /// |
839 | /// 4) Otherwise, substitute the obtained sample into S*T to obtain a set |
840 | /// C. C is a full-dimensional Cone and always contains a sample. |
841 | /// |
842 | /// 5) Obtain an integer sample from C. |
843 | /// |
844 | /// 6) Return T*v, where v is the concatenation of the samples from B and C. |
845 | /// |
846 | /// The following is a sketch of a proof that |
847 | /// a) If the algorithm returns empty, then S is empty. |
848 | /// b) If the algorithm returns a sample, it is a valid sample in S. |
849 | /// |
850 | /// The algorithm returns empty only if B is empty, in which case S*T is |
851 | /// certainly empty since B was obtained by removing constraints and then |
852 | /// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector |
853 | /// v is in S*T iff T*v is in S. So in this case, since |
854 | /// S*T is empty, S is empty too. |
855 | /// |
856 | /// Otherwise, the algorithm substitutes the sample from B into S*T. All the |
857 | /// constraints of S*T that did not involve unbounded dimensions are satisfied |
858 | /// by this substitution. All dimensions in the linear span of the dimensions |
859 | /// outside the prefix are unbounded in S*T (step 1). Substituting values for |
860 | /// the bounded dimensions cannot make these dimensions bounded, and these are |
861 | /// the only remaining dimensions in C, so C is unbounded along every vector (in |
862 | /// the positive or negative direction, or both). C is hence a full-dimensional |
863 | /// cone and therefore always contains an integer point. |
864 | /// |
865 | /// Concatenating the samples from B and C gives a sample v in S*T, so the |
866 | /// returned sample T*v is a sample in S. |
867 | std::optional<SmallVector<MPInt, 8>> |
868 | IntegerRelation::findIntegerSample() const { |
869 | // First, try the GCD test heuristic. |
870 | if (isEmptyByGCDTest()) |
871 | return {}; |
872 | |
873 | Simplex simplex(*this); |
874 | if (simplex.isEmpty()) |
875 | return {}; |
876 | |
877 | // For a bounded set, we directly call into the GBR sampling algorithm. |
878 | if (!simplex.isUnbounded()) |
879 | return simplex.findIntegerSample(); |
880 | |
881 | // The set is unbounded. We cannot directly use the GBR algorithm. |
882 | // |
883 | // m is a matrix containing, in each row, a vector in which S is |
884 | // bounded, such that the linear span of all these dimensions contains all |
885 | // bounded dimensions in S. |
886 | IntMatrix m = getBoundedDirections(); |
887 | // In column echelon form, each row of m occupies only the first rank(m) |
888 | // columns and has zeros on the other columns. The transform T that brings S |
889 | // to column echelon form is unimodular as well, so this is a suitable |
890 | // transform to use in step 1 of the algorithm. |
891 | std::pair<unsigned, LinearTransform> result = |
892 | LinearTransform::makeTransformToColumnEchelon(m); |
893 | const LinearTransform &transform = result.second; |
894 | // 1) Apply T to S to obtain S*T. |
895 | IntegerRelation transformedSet = transform.applyTo(rel: *this); |
896 | |
897 | // 2) Remove the unbounded dimensions and constraints involving them to |
898 | // obtain a bounded set. |
899 | IntegerRelation boundedSet(transformedSet); |
900 | unsigned numBoundedDims = result.first; |
901 | unsigned numUnboundedDims = getNumVars() - numBoundedDims; |
902 | removeConstraintsInvolvingVarRange(poly&: boundedSet, begin: numBoundedDims, |
903 | count: numUnboundedDims); |
904 | boundedSet.removeVarRange(varStart: numBoundedDims, varLimit: boundedSet.getNumVars()); |
905 | |
906 | // 3) Try to obtain a sample from the bounded set. |
907 | std::optional<SmallVector<MPInt, 8>> boundedSample = |
908 | Simplex(boundedSet).findIntegerSample(); |
909 | if (!boundedSample) |
910 | return {}; |
911 | assert(boundedSet.containsPoint(*boundedSample) && |
912 | "Simplex returned an invalid sample!" ); |
913 | |
914 | // 4) Substitute the values of the bounded dimensions into S*T to obtain a |
915 | // full-dimensional cone, which necessarily contains an integer sample. |
916 | transformedSet.setAndEliminate(pos: 0, values: *boundedSample); |
917 | IntegerRelation &cone = transformedSet; |
918 | |
919 | // 5) Obtain an integer sample from the cone. |
920 | // |
921 | // We shrink the cone such that for any rational point in the shrunken cone, |
922 | // rounding up each of the point's coordinates produces a point that still |
923 | // lies in the original cone. |
924 | // |
925 | // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i. |
926 | // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the |
927 | // shrunken cone will have the inequality tightened by some amount s, such |
928 | // that if x satisfies the shrunken cone's tightened inequality, then x + e |
929 | // satisfies the original inequality, i.e., |
930 | // |
931 | // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0 |
932 | // |
933 | // for any e_i values in [0, 1). In fact, we will handle the slightly more |
934 | // general case where e_i can be in [0, 1]. For example, consider the |
935 | // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low |
936 | // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS |
937 | // is minimized when we add 1 to the x_i with negative coefficient a_i and |
938 | // keep the other x_i the same. In the example, we would get x = (3, 1, 1), |
939 | // changing the value of the LHS by -3 + -7 = -10. |
940 | // |
941 | // In general, the value of the LHS can change by at most the sum of the |
942 | // negative a_i, so we accomodate this by shifting the inequality by this |
943 | // amount for the shrunken cone. |
944 | for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) { |
945 | for (unsigned j = 0; j < cone.getNumVars(); ++j) { |
946 | MPInt coeff = cone.atIneq(i, j); |
947 | if (coeff < 0) |
948 | cone.atIneq(i, j: cone.getNumVars()) += coeff; |
949 | } |
950 | } |
951 | |
952 | // Obtain an integer sample in the cone by rounding up a rational point from |
953 | // the shrunken cone. Shrinking the cone amounts to shifting its apex |
954 | // "inwards" without changing its "shape"; the shrunken cone is still a |
955 | // full-dimensional cone and is hence non-empty. |
956 | Simplex shrunkenConeSimplex(cone); |
957 | assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!" ); |
958 | |
959 | // The sample will always exist since the shrunken cone is non-empty. |
960 | SmallVector<Fraction, 8> shrunkenConeSample = |
961 | *shrunkenConeSimplex.getRationalSample(); |
962 | |
963 | SmallVector<MPInt, 8> coneSample(llvm::map_range(C&: shrunkenConeSample, F: ceil)); |
964 | |
965 | // 6) Return transform * concat(boundedSample, coneSample). |
966 | SmallVector<MPInt, 8> &sample = *boundedSample; |
967 | sample.append(in_start: coneSample.begin(), in_end: coneSample.end()); |
968 | return transform.postMultiplyWithColumn(colVec: sample); |
969 | } |
970 | |
971 | /// Helper to evaluate an affine expression at a point. |
972 | /// The expression is a list of coefficients for the dimensions followed by the |
973 | /// constant term. |
974 | static MPInt valueAt(ArrayRef<MPInt> expr, ArrayRef<MPInt> point) { |
975 | assert(expr.size() == 1 + point.size() && |
976 | "Dimensionalities of point and expression don't match!" ); |
977 | MPInt value = expr.back(); |
978 | for (unsigned i = 0; i < point.size(); ++i) |
979 | value += expr[i] * point[i]; |
980 | return value; |
981 | } |
982 | |
983 | /// A point satisfies an equality iff the value of the equality at the |
984 | /// expression is zero, and it satisfies an inequality iff the value of the |
985 | /// inequality at that point is non-negative. |
986 | bool IntegerRelation::containsPoint(ArrayRef<MPInt> point) const { |
987 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
988 | if (valueAt(expr: getEquality(idx: i), point) != 0) |
989 | return false; |
990 | } |
991 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
992 | if (valueAt(expr: getInequality(idx: i), point) < 0) |
993 | return false; |
994 | } |
995 | return true; |
996 | } |
997 | |
998 | /// Just substitute the values given and check if an integer sample exists for |
999 | /// the local vars. |
1000 | /// |
1001 | /// TODO: this could be made more efficient by handling divisions separately. |
1002 | /// Instead of finding an integer sample over all the locals, we can first |
1003 | /// compute the values of the locals that have division representations and |
1004 | /// only use the integer emptiness check for the locals that don't have this. |
1005 | /// Handling this correctly requires ordering the divs, though. |
1006 | std::optional<SmallVector<MPInt, 8>> |
1007 | IntegerRelation::containsPointNoLocal(ArrayRef<MPInt> point) const { |
1008 | assert(point.size() == getNumVars() - getNumLocalVars() && |
1009 | "Point should contain all vars except locals!" ); |
1010 | assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() && |
1011 | "This function depends on locals being stored last!" ); |
1012 | IntegerRelation copy = *this; |
1013 | copy.setAndEliminate(pos: 0, values: point); |
1014 | return copy.findIntegerSample(); |
1015 | } |
1016 | |
1017 | DivisionRepr |
1018 | IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const { |
1019 | SmallVector<bool, 8> foundRepr(getNumVars(), false); |
1020 | for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) |
1021 | foundRepr[i] = true; |
1022 | |
1023 | unsigned localOffset = getVarKindOffset(kind: VarKind::Local); |
1024 | DivisionRepr divs(getNumVars(), getNumLocalVars()); |
1025 | bool changed; |
1026 | do { |
1027 | // Each time changed is true, at end of this iteration, one or more local |
1028 | // vars have been detected as floor divs. |
1029 | changed = false; |
1030 | for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) { |
1031 | if (!foundRepr[i + localOffset]) { |
1032 | MaybeLocalRepr res = |
1033 | computeSingleVarRepr(cst: *this, foundRepr, pos: localOffset + i, |
1034 | dividend: divs.getDividend(i), divisor&: divs.getDenom(i)); |
1035 | if (!res) { |
1036 | // No representation was found, so clear the representation and |
1037 | // continue. |
1038 | divs.clearRepr(i); |
1039 | continue; |
1040 | } |
1041 | foundRepr[localOffset + i] = true; |
1042 | if (repr) |
1043 | (*repr)[i] = res; |
1044 | changed = true; |
1045 | } |
1046 | } |
1047 | } while (changed); |
1048 | |
1049 | return divs; |
1050 | } |
1051 | |
1052 | /// Tightens inequalities given that we are dealing with integer spaces. This is |
1053 | /// analogous to the GCD test but applied to inequalities. The constant term can |
1054 | /// be reduced to the preceding multiple of the GCD of the coefficients, i.e., |
1055 | /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a |
1056 | /// fast method - linear in the number of coefficients. |
1057 | // Example on how this affects practical cases: consider the scenario: |
1058 | // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield |
1059 | // j >= 100 instead of the tighter (exact) j >= 128. |
1060 | void IntegerRelation::gcdTightenInequalities() { |
1061 | unsigned numCols = getNumCols(); |
1062 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
1063 | // Normalize the constraint and tighten the constant term by the GCD. |
1064 | MPInt gcd = inequalities.normalizeRow(row: i, nCols: getNumCols() - 1); |
1065 | if (gcd > 1) |
1066 | atIneq(i, j: numCols - 1) = floorDiv(lhs: atIneq(i, j: numCols - 1), rhs: gcd); |
1067 | } |
1068 | } |
1069 | |
1070 | // Eliminates all variable variables in column range [posStart, posLimit). |
1071 | // Returns the number of variables eliminated. |
1072 | unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart, |
1073 | unsigned posLimit) { |
1074 | // Return if variable positions to eliminate are out of range. |
1075 | assert(posLimit <= getNumVars()); |
1076 | assert(hasConsistentState()); |
1077 | |
1078 | if (posStart >= posLimit) |
1079 | return 0; |
1080 | |
1081 | gcdTightenInequalities(); |
1082 | |
1083 | unsigned pivotCol = 0; |
1084 | for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) { |
1085 | // Find a row which has a non-zero coefficient in column 'j'. |
1086 | unsigned pivotRow; |
1087 | if (!findConstraintWithNonZeroAt(colIdx: pivotCol, /*isEq=*/true, rowIdx: &pivotRow)) { |
1088 | // No pivot row in equalities with non-zero at 'pivotCol'. |
1089 | if (!findConstraintWithNonZeroAt(colIdx: pivotCol, /*isEq=*/false, rowIdx: &pivotRow)) { |
1090 | // If inequalities are also non-zero in 'pivotCol', it can be |
1091 | // eliminated. |
1092 | continue; |
1093 | } |
1094 | break; |
1095 | } |
1096 | |
1097 | // Eliminate variable at 'pivotCol' from each equality row. |
1098 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
1099 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow, pivotCol, elimColStart: posStart, |
1100 | /*isEq=*/true); |
1101 | equalities.normalizeRow(row: i); |
1102 | } |
1103 | |
1104 | // Eliminate variable at 'pivotCol' from each inequality row. |
1105 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
1106 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow, pivotCol, elimColStart: posStart, |
1107 | /*isEq=*/false); |
1108 | inequalities.normalizeRow(row: i); |
1109 | } |
1110 | removeEquality(pos: pivotRow); |
1111 | gcdTightenInequalities(); |
1112 | } |
1113 | // Update position limit based on number eliminated. |
1114 | posLimit = pivotCol; |
1115 | // Remove eliminated columns from all constraints. |
1116 | removeVarRange(varStart: posStart, varLimit: posLimit); |
1117 | return posLimit - posStart; |
1118 | } |
1119 | |
1120 | bool IntegerRelation::gaussianEliminate() { |
1121 | gcdTightenInequalities(); |
1122 | unsigned firstVar = 0, vars = getNumVars(); |
1123 | unsigned nowDone, eqs, pivotRow; |
1124 | for (nowDone = 0, eqs = getNumEqualities(); nowDone < eqs; ++nowDone) { |
1125 | // Finds the first non-empty column. |
1126 | for (; firstVar < vars; ++firstVar) { |
1127 | if (!findConstraintWithNonZeroAt(colIdx: firstVar, isEq: true, rowIdx: &pivotRow)) |
1128 | continue; |
1129 | break; |
1130 | } |
1131 | // The matrix has been normalized to row echelon form. |
1132 | if (firstVar >= vars) |
1133 | break; |
1134 | |
1135 | // The first pivot row found is below where it should currently be placed. |
1136 | if (pivotRow > nowDone) { |
1137 | equalities.swapRows(row: pivotRow, otherRow: nowDone); |
1138 | pivotRow = nowDone; |
1139 | } |
1140 | |
1141 | // Normalize all lower equations and all inequalities. |
1142 | for (unsigned i = nowDone + 1; i < eqs; ++i) { |
1143 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow, pivotCol: firstVar, elimColStart: 0, isEq: true); |
1144 | equalities.normalizeRow(row: i); |
1145 | } |
1146 | for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) { |
1147 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow, pivotCol: firstVar, elimColStart: 0, isEq: false); |
1148 | inequalities.normalizeRow(row: i); |
1149 | } |
1150 | gcdTightenInequalities(); |
1151 | } |
1152 | |
1153 | // No redundant rows. |
1154 | if (nowDone == eqs) |
1155 | return false; |
1156 | |
1157 | // Check to see if the redundant rows constant is zero, a non-zero value means |
1158 | // the set is empty. |
1159 | for (unsigned i = nowDone; i < eqs; ++i) { |
1160 | if (atEq(i, j: vars) == 0) |
1161 | continue; |
1162 | |
1163 | *this = getEmpty(space: getSpace()); |
1164 | return true; |
1165 | } |
1166 | // Eliminate rows that are confined to be all zeros. |
1167 | removeEqualityRange(start: nowDone, end: eqs); |
1168 | return true; |
1169 | } |
1170 | |
1171 | // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin |
1172 | // to check if a constraint is redundant. |
1173 | void IntegerRelation::removeRedundantInequalities() { |
1174 | SmallVector<bool, 32> redun(getNumInequalities(), false); |
1175 | // To check if an inequality is redundant, we replace the inequality by its |
1176 | // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting |
1177 | // system is empty. If it is, the inequality is redundant. |
1178 | IntegerRelation tmpCst(*this); |
1179 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1180 | // Change the inequality to its complement. |
1181 | tmpCst.inequalities.negateRow(row: r); |
1182 | --tmpCst.atIneq(i: r, j: tmpCst.getNumCols() - 1); |
1183 | if (tmpCst.isEmpty()) { |
1184 | redun[r] = true; |
1185 | // Zero fill the redundant inequality. |
1186 | inequalities.fillRow(row: r, /*value=*/0); |
1187 | tmpCst.inequalities.fillRow(row: r, /*value=*/0); |
1188 | } else { |
1189 | // Reverse the change (to avoid recreating tmpCst each time). |
1190 | ++tmpCst.atIneq(i: r, j: tmpCst.getNumCols() - 1); |
1191 | tmpCst.inequalities.negateRow(row: r); |
1192 | } |
1193 | } |
1194 | |
1195 | unsigned pos = 0; |
1196 | for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) { |
1197 | if (!redun[r]) |
1198 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
1199 | } |
1200 | inequalities.resizeVertically(newNRows: pos); |
1201 | } |
1202 | |
1203 | // A more complex check to eliminate redundant inequalities and equalities. Uses |
1204 | // Simplex to check if a constraint is redundant. |
1205 | void IntegerRelation::removeRedundantConstraints() { |
1206 | // First, we run gcdTightenInequalities. This allows us to catch some |
1207 | // constraints which are not redundant when considering rational solutions |
1208 | // but are redundant in terms of integer solutions. |
1209 | gcdTightenInequalities(); |
1210 | Simplex simplex(*this); |
1211 | simplex.detectRedundant(); |
1212 | |
1213 | unsigned pos = 0; |
1214 | unsigned numIneqs = getNumInequalities(); |
1215 | // Scan to get rid of all inequalities marked redundant, in-place. In Simplex, |
1216 | // the first constraints added are the inequalities. |
1217 | for (unsigned r = 0; r < numIneqs; r++) { |
1218 | if (!simplex.isMarkedRedundant(constraintIndex: r)) |
1219 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
1220 | } |
1221 | inequalities.resizeVertically(newNRows: pos); |
1222 | |
1223 | // Scan to get rid of all equalities marked redundant, in-place. In Simplex, |
1224 | // after the inequalities, a pair of constraints for each equality is added. |
1225 | // An equality is redundant if both the inequalities in its pair are |
1226 | // redundant. |
1227 | pos = 0; |
1228 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1229 | if (!(simplex.isMarkedRedundant(constraintIndex: numIneqs + 2 * r) && |
1230 | simplex.isMarkedRedundant(constraintIndex: numIneqs + 2 * r + 1))) |
1231 | equalities.copyRow(sourceRow: r, targetRow: pos++); |
1232 | } |
1233 | equalities.resizeVertically(newNRows: pos); |
1234 | } |
1235 | |
1236 | std::optional<MPInt> IntegerRelation::computeVolume() const { |
1237 | assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!" ); |
1238 | |
1239 | Simplex simplex(*this); |
1240 | // If the polytope is rationally empty, there are certainly no integer |
1241 | // points. |
1242 | if (simplex.isEmpty()) |
1243 | return MPInt(0); |
1244 | |
1245 | // Just find the maximum and minimum integer value of each non-local var |
1246 | // separately, thus finding the number of integer values each such var can |
1247 | // take. Multiplying these together gives a valid overapproximation of the |
1248 | // number of integer points in the relation. The result this gives is |
1249 | // equivalent to projecting (rationally) the relation onto its non-local vars |
1250 | // and returning the number of integer points in a minimal axis-parallel |
1251 | // hyperrectangular overapproximation of that. |
1252 | // |
1253 | // We also handle the special case where one dimension is unbounded and |
1254 | // another dimension can take no integer values. In this case, the volume is |
1255 | // zero. |
1256 | // |
1257 | // If there is no such empty dimension, if any dimension is unbounded we |
1258 | // just return the result as unbounded. |
1259 | MPInt count(1); |
1260 | SmallVector<MPInt, 8> dim(getNumVars() + 1); |
1261 | bool hasUnboundedVar = false; |
1262 | for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) { |
1263 | dim[i] = 1; |
1264 | auto [min, max] = simplex.computeIntegerBounds(coeffs: dim); |
1265 | dim[i] = 0; |
1266 | |
1267 | assert((!min.isEmpty() && !max.isEmpty()) && |
1268 | "Polytope should be rationally non-empty!" ); |
1269 | |
1270 | // One of the dimensions is unbounded. Note this fact. We will return |
1271 | // unbounded if none of the other dimensions makes the volume zero. |
1272 | if (min.isUnbounded() || max.isUnbounded()) { |
1273 | hasUnboundedVar = true; |
1274 | continue; |
1275 | } |
1276 | |
1277 | // In this case there are no valid integer points and the volume is |
1278 | // definitely zero. |
1279 | if (min.getBoundedOptimum() > max.getBoundedOptimum()) |
1280 | return MPInt(0); |
1281 | |
1282 | count *= (*max - *min + 1); |
1283 | } |
1284 | |
1285 | if (count == 0) |
1286 | return MPInt(0); |
1287 | if (hasUnboundedVar) |
1288 | return {}; |
1289 | return count; |
1290 | } |
1291 | |
1292 | void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) { |
1293 | assert(posA < getNumLocalVars() && "Invalid local var position" ); |
1294 | assert(posB < getNumLocalVars() && "Invalid local var position" ); |
1295 | |
1296 | unsigned localOffset = getVarKindOffset(kind: VarKind::Local); |
1297 | posA += localOffset; |
1298 | posB += localOffset; |
1299 | inequalities.addToColumn(sourceColumn: posB, targetColumn: posA, scale: 1); |
1300 | equalities.addToColumn(sourceColumn: posB, targetColumn: posA, scale: 1); |
1301 | removeVar(pos: posB); |
1302 | } |
1303 | |
1304 | /// mergeAndAlignSymbols's implementation can be broken down into two steps: |
1305 | /// 1. Merge and align identifiers into `other` from `this. If an identifier |
1306 | /// from `this` exists in `other` then we align it. Otherwise, we assume it is a |
1307 | /// new identifier and insert it into `other` in the same position as `this`. |
1308 | /// 2. Add identifiers that are in `other` but not `this to `this`. |
1309 | void IntegerRelation::mergeAndAlignSymbols(IntegerRelation &other) { |
1310 | assert(space.isUsingIds() && other.space.isUsingIds() && |
1311 | "both relations need to have identifers to merge and align" ); |
1312 | |
1313 | unsigned i = 0; |
1314 | for (const Identifier identifier : space.getIds(kind: VarKind::Symbol)) { |
1315 | // Search in `other` starting at position `i` since the left of `i` is |
1316 | // aligned. |
1317 | const Identifier *findBegin = |
1318 | other.space.getIds(kind: VarKind::Symbol).begin() + i; |
1319 | const Identifier *findEnd = other.space.getIds(kind: VarKind::Symbol).end(); |
1320 | const Identifier *itr = std::find(first: findBegin, last: findEnd, val: identifier); |
1321 | if (itr != findEnd) { |
1322 | other.swapVar(posA: other.getVarKindOffset(kind: VarKind::Symbol) + i, |
1323 | posB: other.getVarKindOffset(kind: VarKind::Symbol) + i + |
1324 | std::distance(first: findBegin, last: itr)); |
1325 | } else { |
1326 | other.insertVar(kind: VarKind::Symbol, pos: i); |
1327 | other.space.setId(kind: VarKind::Symbol, pos: i, id: identifier); |
1328 | } |
1329 | ++i; |
1330 | } |
1331 | |
1332 | for (unsigned e = other.getNumVarKind(kind: VarKind::Symbol); i < e; ++i) { |
1333 | insertVar(kind: VarKind::Symbol, pos: i); |
1334 | space.setId(kind: VarKind::Symbol, pos: i, id: other.space.getId(kind: VarKind::Symbol, pos: i)); |
1335 | } |
1336 | } |
1337 | |
1338 | /// Adds additional local ids to the sets such that they both have the union |
1339 | /// of the local ids in each set, without changing the set of points that |
1340 | /// lie in `this` and `other`. |
1341 | /// |
1342 | /// To detect local ids that always take the same value, each local id is |
1343 | /// represented as a floordiv with constant denominator in terms of other ids. |
1344 | /// After extracting these divisions, local ids in `other` with the same |
1345 | /// division representation as some other local id in any set are considered |
1346 | /// duplicate and are merged. |
1347 | /// |
1348 | /// It is possible that division representation for some local id cannot be |
1349 | /// obtained, and thus these local ids are not considered for detecting |
1350 | /// duplicates. |
1351 | unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) { |
1352 | IntegerRelation &relA = *this; |
1353 | IntegerRelation &relB = other; |
1354 | |
1355 | unsigned oldALocals = relA.getNumLocalVars(); |
1356 | |
1357 | // Merge function that merges the local variables in both sets by treating |
1358 | // them as the same variable. |
1359 | auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool { |
1360 | // We only merge from local at pos j to local at pos i, where j > i. |
1361 | if (i >= j) |
1362 | return false; |
1363 | |
1364 | // If i < oldALocals, we are trying to merge duplicate divs. Since we do not |
1365 | // want to merge duplicates in A, we ignore this call. |
1366 | if (j < oldALocals) |
1367 | return false; |
1368 | |
1369 | // Merge local at pos j into local at position i. |
1370 | relA.eliminateRedundantLocalVar(posA: i, posB: j); |
1371 | relB.eliminateRedundantLocalVar(posA: i, posB: j); |
1372 | return true; |
1373 | }; |
1374 | |
1375 | presburger::mergeLocalVars(relA&: *this, relB&: other, merge); |
1376 | |
1377 | // Since we do not remove duplicate divisions in relA, this is guranteed to be |
1378 | // non-negative. |
1379 | return relA.getNumLocalVars() - oldALocals; |
1380 | } |
1381 | |
1382 | bool IntegerRelation::hasOnlyDivLocals() const { |
1383 | return getLocalReprs().hasAllReprs(); |
1384 | } |
1385 | |
1386 | void IntegerRelation::removeDuplicateDivs() { |
1387 | DivisionRepr divs = getLocalReprs(); |
1388 | auto merge = [this](unsigned i, unsigned j) -> bool { |
1389 | eliminateRedundantLocalVar(posA: i, posB: j); |
1390 | return true; |
1391 | }; |
1392 | divs.removeDuplicateDivs(merge); |
1393 | } |
1394 | |
1395 | void IntegerRelation::simplify() { |
1396 | bool changed = true; |
1397 | // Repeat until we reach a fixed point. |
1398 | while (changed) { |
1399 | if (isObviouslyEmpty()) |
1400 | return; |
1401 | changed = false; |
1402 | normalizeConstraintsByGCD(); |
1403 | changed |= gaussianEliminate(); |
1404 | changed |= removeDuplicateConstraints(); |
1405 | } |
1406 | // Current set is not empty. |
1407 | } |
1408 | |
1409 | /// Removes local variables using equalities. Each equality is checked if it |
1410 | /// can be reduced to the form: `e = affine-expr`, where `e` is a local |
1411 | /// variable and `affine-expr` is an affine expression not containing `e`. |
1412 | /// If an equality satisfies this form, the local variable is replaced in |
1413 | /// each constraint and then removed. The equality used to replace this local |
1414 | /// variable is also removed. |
1415 | void IntegerRelation::removeRedundantLocalVars() { |
1416 | // Normalize the equality constraints to reduce coefficients of local |
1417 | // variables to 1 wherever possible. |
1418 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
1419 | equalities.normalizeRow(row: i); |
1420 | |
1421 | while (true) { |
1422 | unsigned i, e, j, f; |
1423 | for (i = 0, e = getNumEqualities(); i < e; ++i) { |
1424 | // Find a local variable to eliminate using ith equality. |
1425 | for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j) |
1426 | if (abs(x: atEq(i, j)) == 1) |
1427 | break; |
1428 | |
1429 | // Local variable can be eliminated using ith equality. |
1430 | if (j < f) |
1431 | break; |
1432 | } |
1433 | |
1434 | // No equality can be used to eliminate a local variable. |
1435 | if (i == e) |
1436 | break; |
1437 | |
1438 | // Use the ith equality to simplify other equalities. If any changes |
1439 | // are made to an equality constraint, it is normalized by GCD. |
1440 | for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) { |
1441 | if (atEq(i: k, j) != 0) { |
1442 | eliminateFromConstraint(constraints: this, rowIdx: k, pivotRow: i, pivotCol: j, elimColStart: j, /*isEq=*/true); |
1443 | equalities.normalizeRow(row: k); |
1444 | } |
1445 | } |
1446 | |
1447 | // Use the ith equality to simplify inequalities. |
1448 | for (unsigned k = 0, t = getNumInequalities(); k < t; ++k) |
1449 | eliminateFromConstraint(constraints: this, rowIdx: k, pivotRow: i, pivotCol: j, elimColStart: j, /*isEq=*/false); |
1450 | |
1451 | // Remove the ith equality and the found local variable. |
1452 | removeVar(pos: j); |
1453 | removeEquality(pos: i); |
1454 | } |
1455 | } |
1456 | |
1457 | void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart, |
1458 | unsigned varLimit, VarKind dstKind, |
1459 | unsigned pos) { |
1460 | assert(varLimit <= getNumVarKind(srcKind) && "invalid id range" ); |
1461 | |
1462 | if (varStart >= varLimit) |
1463 | return; |
1464 | |
1465 | unsigned srcOffset = getVarKindOffset(kind: srcKind); |
1466 | unsigned dstOffset = getVarKindOffset(kind: dstKind); |
1467 | unsigned convertCount = varLimit - varStart; |
1468 | int forwardMoveOffset = dstOffset > srcOffset ? -convertCount : 0; |
1469 | |
1470 | equalities.moveColumns(srcPos: srcOffset + varStart, num: convertCount, |
1471 | dstPos: dstOffset + pos + forwardMoveOffset); |
1472 | inequalities.moveColumns(srcPos: srcOffset + varStart, num: convertCount, |
1473 | dstPos: dstOffset + pos + forwardMoveOffset); |
1474 | |
1475 | space.convertVarKind(srcKind, srcPos: varStart, num: varLimit - varStart, dstKind, dstPos: pos); |
1476 | } |
1477 | |
1478 | void IntegerRelation::addBound(BoundType type, unsigned pos, |
1479 | const MPInt &value) { |
1480 | assert(pos < getNumCols()); |
1481 | if (type == BoundType::EQ) { |
1482 | unsigned row = equalities.appendExtraRow(); |
1483 | equalities(row, pos) = 1; |
1484 | equalities(row, getNumCols() - 1) = -value; |
1485 | } else { |
1486 | unsigned row = inequalities.appendExtraRow(); |
1487 | inequalities(row, pos) = type == BoundType::LB ? 1 : -1; |
1488 | inequalities(row, getNumCols() - 1) = |
1489 | type == BoundType::LB ? -value : value; |
1490 | } |
1491 | } |
1492 | |
1493 | void IntegerRelation::addBound(BoundType type, ArrayRef<MPInt> expr, |
1494 | const MPInt &value) { |
1495 | assert(type != BoundType::EQ && "EQ not implemented" ); |
1496 | assert(expr.size() == getNumCols()); |
1497 | unsigned row = inequalities.appendExtraRow(); |
1498 | for (unsigned i = 0, e = expr.size(); i < e; ++i) |
1499 | inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i]; |
1500 | inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) += |
1501 | type == BoundType::LB ? -value : value; |
1502 | } |
1503 | |
1504 | /// Adds a new local variable as the floordiv of an affine function of other |
1505 | /// variables, the coefficients of which are provided in 'dividend' and with |
1506 | /// respect to a positive constant 'divisor'. Two constraints are added to the |
1507 | /// system to capture equivalence with the floordiv. |
1508 | /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1. |
1509 | void IntegerRelation::addLocalFloorDiv(ArrayRef<MPInt> dividend, |
1510 | const MPInt &divisor) { |
1511 | assert(dividend.size() == getNumCols() && "incorrect dividend size" ); |
1512 | assert(divisor > 0 && "positive divisor expected" ); |
1513 | |
1514 | appendVar(kind: VarKind::Local); |
1515 | |
1516 | SmallVector<MPInt, 8> dividendCopy(dividend.begin(), dividend.end()); |
1517 | dividendCopy.insert(I: dividendCopy.end() - 1, Elt: MPInt(0)); |
1518 | addInequality( |
1519 | inEq: getDivLowerBound(dividend: dividendCopy, divisor, localVarIdx: dividendCopy.size() - 2)); |
1520 | addInequality( |
1521 | inEq: getDivUpperBound(dividend: dividendCopy, divisor, localVarIdx: dividendCopy.size() - 2)); |
1522 | } |
1523 | |
1524 | /// Finds an equality that equates the specified variable to a constant. |
1525 | /// Returns the position of the equality row. If 'symbolic' is set to true, |
1526 | /// symbols are also treated like a constant, i.e., an affine function of the |
1527 | /// symbols is also treated like a constant. Returns -1 if such an equality |
1528 | /// could not be found. |
1529 | static int findEqualityToConstant(const IntegerRelation &cst, unsigned pos, |
1530 | bool symbolic = false) { |
1531 | assert(pos < cst.getNumVars() && "invalid position" ); |
1532 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
1533 | MPInt v = cst.atEq(i: r, j: pos); |
1534 | if (v * v != 1) |
1535 | continue; |
1536 | unsigned c; |
1537 | unsigned f = symbolic ? cst.getNumDimVars() : cst.getNumVars(); |
1538 | // This checks for zeros in all positions other than 'pos' in [0, f) |
1539 | for (c = 0; c < f; c++) { |
1540 | if (c == pos) |
1541 | continue; |
1542 | if (cst.atEq(i: r, j: c) != 0) { |
1543 | // Dependent on another variable. |
1544 | break; |
1545 | } |
1546 | } |
1547 | if (c == f) |
1548 | // Equality is free of other variables. |
1549 | return r; |
1550 | } |
1551 | return -1; |
1552 | } |
1553 | |
1554 | LogicalResult IntegerRelation::constantFoldVar(unsigned pos) { |
1555 | assert(pos < getNumVars() && "invalid position" ); |
1556 | int rowIdx; |
1557 | if ((rowIdx = findEqualityToConstant(cst: *this, pos)) == -1) |
1558 | return failure(); |
1559 | |
1560 | // atEq(rowIdx, pos) is either -1 or 1. |
1561 | assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1); |
1562 | MPInt constVal = -atEq(i: rowIdx, j: getNumCols() - 1) / atEq(i: rowIdx, j: pos); |
1563 | setAndEliminate(pos, values: constVal); |
1564 | return success(); |
1565 | } |
1566 | |
1567 | void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) { |
1568 | for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) { |
1569 | if (failed(result: constantFoldVar(pos: t))) |
1570 | t++; |
1571 | } |
1572 | } |
1573 | |
1574 | /// Returns a non-negative constant bound on the extent (upper bound - lower |
1575 | /// bound) of the specified variable if it is found to be a constant; returns |
1576 | /// std::nullopt if it's not a constant. This methods treats symbolic variables |
1577 | /// specially, i.e., it looks for constant differences between affine |
1578 | /// expressions involving only the symbolic variables. See comments at function |
1579 | /// definition for example. 'lb', if provided, is set to the lower bound |
1580 | /// associated with the constant difference. Note that 'lb' is purely symbolic |
1581 | /// and thus will contain the coefficients of the symbolic variables and the |
1582 | /// constant coefficient. |
1583 | // Egs: 0 <= i <= 15, return 16. |
1584 | // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol) |
1585 | // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16. |
1586 | // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb = |
1587 | // ceil(s0 - 7 / 8) = floor(s0 / 8)). |
1588 | std::optional<MPInt> IntegerRelation::getConstantBoundOnDimSize( |
1589 | unsigned pos, SmallVectorImpl<MPInt> *lb, MPInt *boundFloorDivisor, |
1590 | SmallVectorImpl<MPInt> *ub, unsigned *minLbPos, unsigned *minUbPos) const { |
1591 | assert(pos < getNumDimVars() && "Invalid variable position" ); |
1592 | |
1593 | // Find an equality for 'pos'^th variable that equates it to some function |
1594 | // of the symbolic variables (+ constant). |
1595 | int eqPos = findEqualityToConstant(cst: *this, pos, /*symbolic=*/true); |
1596 | if (eqPos != -1) { |
1597 | auto eq = getEquality(idx: eqPos); |
1598 | // If the equality involves a local var, punt for now. |
1599 | // TODO: this can be handled in the future by using the explicit |
1600 | // representation of the local vars. |
1601 | if (!std::all_of(first: eq.begin() + getNumDimAndSymbolVars(), last: eq.end() - 1, |
1602 | pred: [](const MPInt &coeff) { return coeff == 0; })) |
1603 | return std::nullopt; |
1604 | |
1605 | // This variable can only take a single value. |
1606 | if (lb) { |
1607 | // Set lb to that symbolic value. |
1608 | lb->resize(N: getNumSymbolVars() + 1); |
1609 | if (ub) |
1610 | ub->resize(N: getNumSymbolVars() + 1); |
1611 | for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) { |
1612 | MPInt v = atEq(i: eqPos, j: pos); |
1613 | // atEq(eqRow, pos) is either -1 or 1. |
1614 | assert(v * v == 1); |
1615 | (*lb)[c] = v < 0 ? atEq(i: eqPos, j: getNumDimVars() + c) / -v |
1616 | : -atEq(i: eqPos, j: getNumDimVars() + c) / v; |
1617 | // Since this is an equality, ub = lb. |
1618 | if (ub) |
1619 | (*ub)[c] = (*lb)[c]; |
1620 | } |
1621 | assert(boundFloorDivisor && |
1622 | "both lb and divisor or none should be provided" ); |
1623 | *boundFloorDivisor = 1; |
1624 | } |
1625 | if (minLbPos) |
1626 | *minLbPos = eqPos; |
1627 | if (minUbPos) |
1628 | *minUbPos = eqPos; |
1629 | return MPInt(1); |
1630 | } |
1631 | |
1632 | // Check if the variable appears at all in any of the inequalities. |
1633 | unsigned r, e; |
1634 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
1635 | if (atIneq(i: r, j: pos) != 0) |
1636 | break; |
1637 | } |
1638 | if (r == e) |
1639 | // If it doesn't, there isn't a bound on it. |
1640 | return std::nullopt; |
1641 | |
1642 | // Positions of constraints that are lower/upper bounds on the variable. |
1643 | SmallVector<unsigned, 4> lbIndices, ubIndices; |
1644 | |
1645 | // Gather all symbolic lower bounds and upper bounds of the variable, i.e., |
1646 | // the bounds can only involve symbolic (and local) variables. Since the |
1647 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
1648 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
1649 | getLowerAndUpperBoundIndices(pos, lbIndices: &lbIndices, ubIndices: &ubIndices, |
1650 | /*eqIndices=*/nullptr, /*offset=*/0, |
1651 | /*num=*/getNumDimVars()); |
1652 | |
1653 | std::optional<MPInt> minDiff; |
1654 | unsigned minLbPosition = 0, minUbPosition = 0; |
1655 | for (auto ubPos : ubIndices) { |
1656 | for (auto lbPos : lbIndices) { |
1657 | // Look for a lower bound and an upper bound that only differ by a |
1658 | // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst. |
1659 | // For example, if ii is the pos^th variable, we are looking for |
1660 | // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The |
1661 | // minimum among all such constant differences is kept since that's the |
1662 | // constant bounding the extent of the pos^th variable. |
1663 | unsigned j, e; |
1664 | for (j = 0, e = getNumCols() - 1; j < e; j++) |
1665 | if (atIneq(i: ubPos, j) != -atIneq(i: lbPos, j)) { |
1666 | break; |
1667 | } |
1668 | if (j < getNumCols() - 1) |
1669 | continue; |
1670 | MPInt diff = ceilDiv(lhs: atIneq(i: ubPos, j: getNumCols() - 1) + |
1671 | atIneq(i: lbPos, j: getNumCols() - 1) + 1, |
1672 | rhs: atIneq(i: lbPos, j: pos)); |
1673 | // This bound is non-negative by definition. |
1674 | diff = std::max<MPInt>(a: diff, b: MPInt(0)); |
1675 | if (minDiff == std::nullopt || diff < minDiff) { |
1676 | minDiff = diff; |
1677 | minLbPosition = lbPos; |
1678 | minUbPosition = ubPos; |
1679 | } |
1680 | } |
1681 | } |
1682 | if (lb && minDiff) { |
1683 | // Set lb to the symbolic lower bound. |
1684 | lb->resize(N: getNumSymbolVars() + 1); |
1685 | if (ub) |
1686 | ub->resize(N: getNumSymbolVars() + 1); |
1687 | // The lower bound is the ceildiv of the lb constraint over the coefficient |
1688 | // of the variable at 'pos'. We express the ceildiv equivalently as a floor |
1689 | // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N + |
1690 | // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32). |
1691 | *boundFloorDivisor = atIneq(i: minLbPosition, j: pos); |
1692 | assert(*boundFloorDivisor == -atIneq(minUbPosition, pos)); |
1693 | for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) { |
1694 | (*lb)[c] = -atIneq(i: minLbPosition, j: getNumDimVars() + c); |
1695 | } |
1696 | if (ub) { |
1697 | for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) |
1698 | (*ub)[c] = atIneq(i: minUbPosition, j: getNumDimVars() + c); |
1699 | } |
1700 | // The lower bound leads to a ceildiv while the upper bound is a floordiv |
1701 | // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val + |
1702 | // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to |
1703 | // the constant term for the lower bound. |
1704 | (*lb)[getNumSymbolVars()] += atIneq(i: minLbPosition, j: pos) - 1; |
1705 | } |
1706 | if (minLbPos) |
1707 | *minLbPos = minLbPosition; |
1708 | if (minUbPos) |
1709 | *minUbPos = minUbPosition; |
1710 | return minDiff; |
1711 | } |
1712 | |
1713 | template <bool isLower> |
1714 | std::optional<MPInt> |
1715 | IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) { |
1716 | assert(pos < getNumVars() && "invalid position" ); |
1717 | // Project to 'pos'. |
1718 | projectOut(pos: 0, num: pos); |
1719 | projectOut(pos: 1, num: getNumVars() - 1); |
1720 | // Check if there's an equality equating the '0'^th variable to a constant. |
1721 | int eqRowIdx = findEqualityToConstant(cst: *this, pos: 0, /*symbolic=*/false); |
1722 | if (eqRowIdx != -1) |
1723 | // atEq(rowIdx, 0) is either -1 or 1. |
1724 | return -atEq(i: eqRowIdx, j: getNumCols() - 1) / atEq(i: eqRowIdx, j: 0); |
1725 | |
1726 | // Check if the variable appears at all in any of the inequalities. |
1727 | unsigned r, e; |
1728 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
1729 | if (atIneq(i: r, j: 0) != 0) |
1730 | break; |
1731 | } |
1732 | if (r == e) |
1733 | // If it doesn't, there isn't a bound on it. |
1734 | return std::nullopt; |
1735 | |
1736 | std::optional<MPInt> minOrMaxConst; |
1737 | |
1738 | // Take the max across all const lower bounds (or min across all constant |
1739 | // upper bounds). |
1740 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1741 | if (isLower) { |
1742 | if (atIneq(i: r, j: 0) <= 0) |
1743 | // Not a lower bound. |
1744 | continue; |
1745 | } else if (atIneq(i: r, j: 0) >= 0) { |
1746 | // Not an upper bound. |
1747 | continue; |
1748 | } |
1749 | unsigned c, f; |
1750 | for (c = 0, f = getNumCols() - 1; c < f; c++) |
1751 | if (c != 0 && atIneq(i: r, j: c) != 0) |
1752 | break; |
1753 | if (c < getNumCols() - 1) |
1754 | // Not a constant bound. |
1755 | continue; |
1756 | |
1757 | MPInt boundConst = |
1758 | isLower ? ceilDiv(lhs: -atIneq(i: r, j: getNumCols() - 1), rhs: atIneq(i: r, j: 0)) |
1759 | : floorDiv(lhs: atIneq(i: r, j: getNumCols() - 1), rhs: -atIneq(i: r, j: 0)); |
1760 | if (isLower) { |
1761 | if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst) |
1762 | minOrMaxConst = boundConst; |
1763 | } else { |
1764 | if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst) |
1765 | minOrMaxConst = boundConst; |
1766 | } |
1767 | } |
1768 | return minOrMaxConst; |
1769 | } |
1770 | |
1771 | std::optional<MPInt> IntegerRelation::getConstantBound(BoundType type, |
1772 | unsigned pos) const { |
1773 | if (type == BoundType::LB) |
1774 | return IntegerRelation(*this) |
1775 | .computeConstantLowerOrUpperBound</*isLower=*/true>(pos); |
1776 | if (type == BoundType::UB) |
1777 | return IntegerRelation(*this) |
1778 | .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
1779 | |
1780 | assert(type == BoundType::EQ && "expected EQ" ); |
1781 | std::optional<MPInt> lb = |
1782 | IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>( |
1783 | pos); |
1784 | std::optional<MPInt> ub = |
1785 | IntegerRelation(*this) |
1786 | .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
1787 | return (lb && ub && *lb == *ub) ? std::optional<MPInt>(*ub) : std::nullopt; |
1788 | } |
1789 | |
1790 | // A simple (naive and conservative) check for hyper-rectangularity. |
1791 | bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const { |
1792 | assert(pos < getNumCols() - 1); |
1793 | // Check for two non-zero coefficients in the range [pos, pos + sum). |
1794 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1795 | unsigned sum = 0; |
1796 | for (unsigned c = pos; c < pos + num; c++) { |
1797 | if (atIneq(i: r, j: c) != 0) |
1798 | sum++; |
1799 | } |
1800 | if (sum > 1) |
1801 | return false; |
1802 | } |
1803 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1804 | unsigned sum = 0; |
1805 | for (unsigned c = pos; c < pos + num; c++) { |
1806 | if (atEq(i: r, j: c) != 0) |
1807 | sum++; |
1808 | } |
1809 | if (sum > 1) |
1810 | return false; |
1811 | } |
1812 | return true; |
1813 | } |
1814 | |
1815 | /// Removes duplicate constraints, trivially true constraints, and constraints |
1816 | /// that can be detected as redundant as a result of differing only in their |
1817 | /// constant term part. A constraint of the form <non-negative constant> >= 0 is |
1818 | /// considered trivially true. |
1819 | // Uses a DenseSet to hash and detect duplicates followed by a linear scan to |
1820 | // remove duplicates in place. |
1821 | void IntegerRelation::removeTrivialRedundancy() { |
1822 | gcdTightenInequalities(); |
1823 | normalizeConstraintsByGCD(); |
1824 | |
1825 | // A map used to detect redundancy stemming from constraints that only differ |
1826 | // in their constant term. The value stored is <row position, const term> |
1827 | // for a given row. |
1828 | SmallDenseMap<ArrayRef<MPInt>, std::pair<unsigned, MPInt>> |
1829 | rowsWithoutConstTerm; |
1830 | // To unique rows. |
1831 | SmallDenseSet<ArrayRef<MPInt>, 8> rowSet; |
1832 | |
1833 | // Check if constraint is of the form <non-negative-constant> >= 0. |
1834 | auto isTriviallyValid = [&](unsigned r) -> bool { |
1835 | for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) { |
1836 | if (atIneq(i: r, j: c) != 0) |
1837 | return false; |
1838 | } |
1839 | return atIneq(i: r, j: getNumCols() - 1) >= 0; |
1840 | }; |
1841 | |
1842 | // Detect and mark redundant constraints. |
1843 | SmallVector<bool, 256> redunIneq(getNumInequalities(), false); |
1844 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1845 | MPInt *rowStart = &inequalities(r, 0); |
1846 | auto row = ArrayRef<MPInt>(rowStart, getNumCols()); |
1847 | if (isTriviallyValid(r) || !rowSet.insert(V: row).second) { |
1848 | redunIneq[r] = true; |
1849 | continue; |
1850 | } |
1851 | |
1852 | // Among constraints that only differ in the constant term part, mark |
1853 | // everything other than the one with the smallest constant term redundant. |
1854 | // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the |
1855 | // former two are redundant). |
1856 | MPInt constTerm = atIneq(i: r, j: getNumCols() - 1); |
1857 | auto rowWithoutConstTerm = ArrayRef<MPInt>(rowStart, getNumCols() - 1); |
1858 | const auto &ret = |
1859 | rowsWithoutConstTerm.insert(KV: {rowWithoutConstTerm, {r, constTerm}}); |
1860 | if (!ret.second) { |
1861 | // Check if the other constraint has a higher constant term. |
1862 | auto &val = ret.first->second; |
1863 | if (val.second > constTerm) { |
1864 | // The stored row is redundant. Mark it so, and update with this one. |
1865 | redunIneq[val.first] = true; |
1866 | val = {r, constTerm}; |
1867 | } else { |
1868 | // The one stored makes this one redundant. |
1869 | redunIneq[r] = true; |
1870 | } |
1871 | } |
1872 | } |
1873 | |
1874 | // Scan to get rid of all rows marked redundant, in-place. |
1875 | unsigned pos = 0; |
1876 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) |
1877 | if (!redunIneq[r]) |
1878 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
1879 | |
1880 | inequalities.resizeVertically(newNRows: pos); |
1881 | |
1882 | // TODO: consider doing this for equalities as well, but probably not worth |
1883 | // the savings. |
1884 | } |
1885 | |
1886 | #undef DEBUG_TYPE |
1887 | #define DEBUG_TYPE "fm" |
1888 | |
1889 | /// Eliminates variable at the specified position using Fourier-Motzkin |
1890 | /// variable elimination. This technique is exact for rational spaces but |
1891 | /// conservative (in "rare" cases) for integer spaces. The operation corresponds |
1892 | /// to a projection operation yielding the (convex) set of integer points |
1893 | /// contained in the rational shadow of the set. An emptiness test that relies |
1894 | /// on this method will guarantee emptiness, i.e., it disproves the existence of |
1895 | /// a solution if it says it's empty. |
1896 | /// If a non-null isResultIntegerExact is passed, it is set to true if the |
1897 | /// result is also integer exact. If it's set to false, the obtained solution |
1898 | /// *may* not be exact, i.e., it may contain integer points that do not have an |
1899 | /// integer pre-image in the original set. |
1900 | /// |
1901 | /// Eg: |
1902 | /// j >= 0, j <= i + 1 |
1903 | /// i >= 0, i <= N + 1 |
1904 | /// Eliminating i yields, |
1905 | /// j >= 0, 0 <= N + 1, j - 1 <= N + 1 |
1906 | /// |
1907 | /// If darkShadow = true, this method computes the dark shadow on elimination; |
1908 | /// the dark shadow is a convex integer subset of the exact integer shadow. A |
1909 | /// non-empty dark shadow proves the existence of an integer solution. The |
1910 | /// elimination in such a case could however be an under-approximation, and thus |
1911 | /// should not be used for scanning sets or used by itself for dependence |
1912 | /// checking. |
1913 | /// |
1914 | /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set. |
1915 | /// ^ |
1916 | /// | |
1917 | /// | * * * * o o |
1918 | /// i | * * o o o o |
1919 | /// | o * * * * * |
1920 | /// ---------------> |
1921 | /// j -> |
1922 | /// |
1923 | /// Eliminating i from this system (projecting on the j dimension): |
1924 | /// rational shadow / integer light shadow: 1 <= j <= 6 |
1925 | /// dark shadow: 3 <= j <= 6 |
1926 | /// exact integer shadow: j = 1 \union 3 <= j <= 6 |
1927 | /// holes/splinters: j = 2 |
1928 | /// |
1929 | /// darkShadow = false, isResultIntegerExact = nullptr are default values. |
1930 | // TODO: a slight modification to yield dark shadow version of FM (tightened), |
1931 | // which can prove the existence of a solution if there is one. |
1932 | void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow, |
1933 | bool *isResultIntegerExact) { |
1934 | LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n" ); |
1935 | LLVM_DEBUG(dump()); |
1936 | assert(pos < getNumVars() && "invalid position" ); |
1937 | assert(hasConsistentState()); |
1938 | |
1939 | // Check if this variable can be eliminated through a substitution. |
1940 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1941 | if (atEq(i: r, j: pos) != 0) { |
1942 | // Use Gaussian elimination here (since we have an equality). |
1943 | LogicalResult ret = gaussianEliminateVar(position: pos); |
1944 | (void)ret; |
1945 | assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed" ); |
1946 | LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n" ); |
1947 | LLVM_DEBUG(dump()); |
1948 | return; |
1949 | } |
1950 | } |
1951 | |
1952 | // A fast linear time tightening. |
1953 | gcdTightenInequalities(); |
1954 | |
1955 | // Check if the variable appears at all in any of the inequalities. |
1956 | if (isColZero(pos)) { |
1957 | // If it doesn't appear, just remove the column and return. |
1958 | // TODO: refactor removeColumns to use it from here. |
1959 | removeVar(pos); |
1960 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n" ); |
1961 | LLVM_DEBUG(dump()); |
1962 | return; |
1963 | } |
1964 | |
1965 | // Positions of constraints that are lower bounds on the variable. |
1966 | SmallVector<unsigned, 4> lbIndices; |
1967 | // Positions of constraints that are lower bounds on the variable. |
1968 | SmallVector<unsigned, 4> ubIndices; |
1969 | // Positions of constraints that do not involve the variable. |
1970 | std::vector<unsigned> nbIndices; |
1971 | nbIndices.reserve(n: getNumInequalities()); |
1972 | |
1973 | // Gather all lower bounds and upper bounds of the variable. Since the |
1974 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
1975 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
1976 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1977 | if (atIneq(i: r, j: pos) == 0) { |
1978 | // Var does not appear in bound. |
1979 | nbIndices.push_back(x: r); |
1980 | } else if (atIneq(i: r, j: pos) >= 1) { |
1981 | // Lower bound. |
1982 | lbIndices.push_back(Elt: r); |
1983 | } else { |
1984 | // Upper bound. |
1985 | ubIndices.push_back(Elt: r); |
1986 | } |
1987 | } |
1988 | |
1989 | PresburgerSpace newSpace = getSpace(); |
1990 | VarKind idKindRemove = newSpace.getVarKindAt(pos); |
1991 | unsigned relativePos = pos - newSpace.getVarKindOffset(kind: idKindRemove); |
1992 | newSpace.removeVarRange(kind: idKindRemove, varStart: relativePos, varLimit: relativePos + 1); |
1993 | |
1994 | /// Create the new system which has one variable less. |
1995 | IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(), |
1996 | getNumEqualities(), getNumCols() - 1, newSpace); |
1997 | |
1998 | // This will be used to check if the elimination was integer exact. |
1999 | bool allLCMsAreOne = true; |
2000 | |
2001 | // Let x be the variable we are eliminating. |
2002 | // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note |
2003 | // that c_l, c_u >= 1) we have: |
2004 | // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u |
2005 | // We thus generate a constraint: |
2006 | // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub. |
2007 | // Note if c_l = c_u = 1, all integer points captured by the resulting |
2008 | // constraint correspond to integer points in the original system (i.e., they |
2009 | // have integer pre-images). Hence, if the lcm's are all 1, the elimination is |
2010 | // integer exact. |
2011 | for (auto ubPos : ubIndices) { |
2012 | for (auto lbPos : lbIndices) { |
2013 | SmallVector<MPInt, 4> ineq; |
2014 | ineq.reserve(N: newRel.getNumCols()); |
2015 | MPInt lbCoeff = atIneq(i: lbPos, j: pos); |
2016 | // Note that in the comments above, ubCoeff is the negation of the |
2017 | // coefficient in the canonical form as the view taken here is that of the |
2018 | // term being moved to the other size of '>='. |
2019 | MPInt ubCoeff = -atIneq(i: ubPos, j: pos); |
2020 | // TODO: refactor this loop to avoid all branches inside. |
2021 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2022 | if (l == pos) |
2023 | continue; |
2024 | assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified" ); |
2025 | MPInt lcm = presburger::lcm(a: lbCoeff, b: ubCoeff); |
2026 | ineq.push_back(Elt: atIneq(i: ubPos, j: l) * (lcm / ubCoeff) + |
2027 | atIneq(i: lbPos, j: l) * (lcm / lbCoeff)); |
2028 | assert(lcm > 0 && "lcm should be positive!" ); |
2029 | if (lcm != 1) |
2030 | allLCMsAreOne = false; |
2031 | } |
2032 | if (darkShadow) { |
2033 | // The dark shadow is a convex subset of the exact integer shadow. If |
2034 | // there is a point here, it proves the existence of a solution. |
2035 | ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1; |
2036 | } |
2037 | // TODO: we need to have a way to add inequalities in-place in |
2038 | // IntegerRelation instead of creating and copying over. |
2039 | newRel.addInequality(inEq: ineq); |
2040 | } |
2041 | } |
2042 | |
2043 | LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << allLCMsAreOne |
2044 | << "\n" ); |
2045 | if (allLCMsAreOne && isResultIntegerExact) |
2046 | *isResultIntegerExact = true; |
2047 | |
2048 | // Copy over the constraints not involving this variable. |
2049 | for (auto nbPos : nbIndices) { |
2050 | SmallVector<MPInt, 4> ineq; |
2051 | ineq.reserve(N: getNumCols() - 1); |
2052 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2053 | if (l == pos) |
2054 | continue; |
2055 | ineq.push_back(Elt: atIneq(i: nbPos, j: l)); |
2056 | } |
2057 | newRel.addInequality(inEq: ineq); |
2058 | } |
2059 | |
2060 | assert(newRel.getNumConstraints() == |
2061 | lbIndices.size() * ubIndices.size() + nbIndices.size()); |
2062 | |
2063 | // Copy over the equalities. |
2064 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
2065 | SmallVector<MPInt, 4> eq; |
2066 | eq.reserve(N: newRel.getNumCols()); |
2067 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2068 | if (l == pos) |
2069 | continue; |
2070 | eq.push_back(Elt: atEq(i: r, j: l)); |
2071 | } |
2072 | newRel.addEquality(eq); |
2073 | } |
2074 | |
2075 | // GCD tightening and normalization allows detection of more trivially |
2076 | // redundant constraints. |
2077 | newRel.gcdTightenInequalities(); |
2078 | newRel.normalizeConstraintsByGCD(); |
2079 | newRel.removeTrivialRedundancy(); |
2080 | clearAndCopyFrom(other: newRel); |
2081 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n" ); |
2082 | LLVM_DEBUG(dump()); |
2083 | } |
2084 | |
2085 | #undef DEBUG_TYPE |
2086 | #define DEBUG_TYPE "presburger" |
2087 | |
2088 | void IntegerRelation::projectOut(unsigned pos, unsigned num) { |
2089 | if (num == 0) |
2090 | return; |
2091 | |
2092 | // 'pos' can be at most getNumCols() - 2 if num > 0. |
2093 | assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position" ); |
2094 | assert(pos + num < getNumCols() && "invalid range" ); |
2095 | |
2096 | // Eliminate as many variables as possible using Gaussian elimination. |
2097 | unsigned currentPos = pos; |
2098 | unsigned numToEliminate = num; |
2099 | unsigned numGaussianEliminated = 0; |
2100 | |
2101 | while (currentPos < getNumVars()) { |
2102 | unsigned curNumEliminated = |
2103 | gaussianEliminateVars(posStart: currentPos, posLimit: currentPos + numToEliminate); |
2104 | ++currentPos; |
2105 | numToEliminate -= curNumEliminated + 1; |
2106 | numGaussianEliminated += curNumEliminated; |
2107 | } |
2108 | |
2109 | // Eliminate the remaining using Fourier-Motzkin. |
2110 | for (unsigned i = 0; i < num - numGaussianEliminated; i++) { |
2111 | unsigned numToEliminate = num - numGaussianEliminated - i; |
2112 | fourierMotzkinEliminate( |
2113 | pos: getBestVarToEliminate(cst: *this, start: pos, end: pos + numToEliminate)); |
2114 | } |
2115 | |
2116 | // Fast/trivial simplifications. |
2117 | gcdTightenInequalities(); |
2118 | // Normalize constraints after tightening since the latter impacts this, but |
2119 | // not the other way round. |
2120 | normalizeConstraintsByGCD(); |
2121 | } |
2122 | |
2123 | namespace { |
2124 | |
2125 | enum BoundCmpResult { Greater, Less, Equal, Unknown }; |
2126 | |
2127 | /// Compares two affine bounds whose coefficients are provided in 'first' and |
2128 | /// 'second'. The last coefficient is the constant term. |
2129 | static BoundCmpResult compareBounds(ArrayRef<MPInt> a, ArrayRef<MPInt> b) { |
2130 | assert(a.size() == b.size()); |
2131 | |
2132 | // For the bounds to be comparable, their corresponding variable |
2133 | // coefficients should be equal; the constant terms are then compared to |
2134 | // determine less/greater/equal. |
2135 | |
2136 | if (!std::equal(first1: a.begin(), last1: a.end() - 1, first2: b.begin())) |
2137 | return Unknown; |
2138 | |
2139 | if (a.back() == b.back()) |
2140 | return Equal; |
2141 | |
2142 | return a.back() < b.back() ? Less : Greater; |
2143 | } |
2144 | } // namespace |
2145 | |
2146 | // Returns constraints that are common to both A & B. |
2147 | static void getCommonConstraints(const IntegerRelation &a, |
2148 | const IntegerRelation &b, IntegerRelation &c) { |
2149 | c = IntegerRelation(a.getSpace()); |
2150 | // a naive O(n^2) check should be enough here given the input sizes. |
2151 | for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) { |
2152 | for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) { |
2153 | if (a.getInequality(idx: r) == b.getInequality(idx: s)) { |
2154 | c.addInequality(inEq: a.getInequality(idx: r)); |
2155 | break; |
2156 | } |
2157 | } |
2158 | } |
2159 | for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) { |
2160 | for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) { |
2161 | if (a.getEquality(idx: r) == b.getEquality(idx: s)) { |
2162 | c.addEquality(eq: a.getEquality(idx: r)); |
2163 | break; |
2164 | } |
2165 | } |
2166 | } |
2167 | } |
2168 | |
2169 | // Computes the bounding box with respect to 'other' by finding the min of the |
2170 | // lower bounds and the max of the upper bounds along each of the dimensions. |
2171 | LogicalResult |
2172 | IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) { |
2173 | assert(space.isEqual(otherCst.getSpace()) && "Spaces should match." ); |
2174 | assert(getNumLocalVars() == 0 && "local ids not supported yet here" ); |
2175 | |
2176 | // Get the constraints common to both systems; these will be added as is to |
2177 | // the union. |
2178 | IntegerRelation commonCst(PresburgerSpace::getRelationSpace()); |
2179 | getCommonConstraints(a: *this, b: otherCst, c&: commonCst); |
2180 | |
2181 | std::vector<SmallVector<MPInt, 8>> boundingLbs; |
2182 | std::vector<SmallVector<MPInt, 8>> boundingUbs; |
2183 | boundingLbs.reserve(n: 2 * getNumDimVars()); |
2184 | boundingUbs.reserve(n: 2 * getNumDimVars()); |
2185 | |
2186 | // To hold lower and upper bounds for each dimension. |
2187 | SmallVector<MPInt, 4> lb, otherLb, ub, otherUb; |
2188 | // To compute min of lower bounds and max of upper bounds for each dimension. |
2189 | SmallVector<MPInt, 4> minLb(getNumSymbolVars() + 1); |
2190 | SmallVector<MPInt, 4> maxUb(getNumSymbolVars() + 1); |
2191 | // To compute final new lower and upper bounds for the union. |
2192 | SmallVector<MPInt, 8> newLb(getNumCols()), newUb(getNumCols()); |
2193 | |
2194 | MPInt lbFloorDivisor, otherLbFloorDivisor; |
2195 | for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) { |
2196 | auto extent = getConstantBoundOnDimSize(pos: d, lb: &lb, boundFloorDivisor: &lbFloorDivisor, ub: &ub); |
2197 | if (!extent.has_value()) |
2198 | // TODO: symbolic extents when necessary. |
2199 | // TODO: handle union if a dimension is unbounded. |
2200 | return failure(); |
2201 | |
2202 | auto otherExtent = otherCst.getConstantBoundOnDimSize( |
2203 | pos: d, lb: &otherLb, boundFloorDivisor: &otherLbFloorDivisor, ub: &otherUb); |
2204 | if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor) |
2205 | // TODO: symbolic extents when necessary. |
2206 | return failure(); |
2207 | |
2208 | assert(lbFloorDivisor > 0 && "divisor always expected to be positive" ); |
2209 | |
2210 | auto res = compareBounds(a: lb, b: otherLb); |
2211 | // Identify min. |
2212 | if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) { |
2213 | minLb = lb; |
2214 | // Since the divisor is for a floordiv, we need to convert to ceildiv, |
2215 | // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=> |
2216 | // div * i >= expr - div + 1. |
2217 | minLb.back() -= lbFloorDivisor - 1; |
2218 | } else if (res == BoundCmpResult::Greater) { |
2219 | minLb = otherLb; |
2220 | minLb.back() -= otherLbFloorDivisor - 1; |
2221 | } else { |
2222 | // Uncomparable - check for constant lower/upper bounds. |
2223 | auto constLb = getConstantBound(type: BoundType::LB, pos: d); |
2224 | auto constOtherLb = otherCst.getConstantBound(type: BoundType::LB, pos: d); |
2225 | if (!constLb.has_value() || !constOtherLb.has_value()) |
2226 | return failure(); |
2227 | std::fill(first: minLb.begin(), last: minLb.end(), value: 0); |
2228 | minLb.back() = std::min(a: *constLb, b: *constOtherLb); |
2229 | } |
2230 | |
2231 | // Do the same for ub's but max of upper bounds. Identify max. |
2232 | auto uRes = compareBounds(a: ub, b: otherUb); |
2233 | if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) { |
2234 | maxUb = ub; |
2235 | } else if (uRes == BoundCmpResult::Less) { |
2236 | maxUb = otherUb; |
2237 | } else { |
2238 | // Uncomparable - check for constant lower/upper bounds. |
2239 | auto constUb = getConstantBound(type: BoundType::UB, pos: d); |
2240 | auto constOtherUb = otherCst.getConstantBound(type: BoundType::UB, pos: d); |
2241 | if (!constUb.has_value() || !constOtherUb.has_value()) |
2242 | return failure(); |
2243 | std::fill(first: maxUb.begin(), last: maxUb.end(), value: 0); |
2244 | maxUb.back() = std::max(a: *constUb, b: *constOtherUb); |
2245 | } |
2246 | |
2247 | std::fill(first: newLb.begin(), last: newLb.end(), value: 0); |
2248 | std::fill(first: newUb.begin(), last: newUb.end(), value: 0); |
2249 | |
2250 | // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor, |
2251 | // and so it's the divisor for newLb and newUb as well. |
2252 | newLb[d] = lbFloorDivisor; |
2253 | newUb[d] = -lbFloorDivisor; |
2254 | // Copy over the symbolic part + constant term. |
2255 | std::copy(first: minLb.begin(), last: minLb.end(), result: newLb.begin() + getNumDimVars()); |
2256 | std::transform(first: newLb.begin() + getNumDimVars(), last: newLb.end(), |
2257 | result: newLb.begin() + getNumDimVars(), unary_op: std::negate<MPInt>()); |
2258 | std::copy(first: maxUb.begin(), last: maxUb.end(), result: newUb.begin() + getNumDimVars()); |
2259 | |
2260 | boundingLbs.push_back(x: newLb); |
2261 | boundingUbs.push_back(x: newUb); |
2262 | } |
2263 | |
2264 | // Clear all constraints and add the lower/upper bounds for the bounding box. |
2265 | clearConstraints(); |
2266 | for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) { |
2267 | addInequality(inEq: boundingLbs[d]); |
2268 | addInequality(inEq: boundingUbs[d]); |
2269 | } |
2270 | |
2271 | // Add the constraints that were common to both systems. |
2272 | append(other: commonCst); |
2273 | removeTrivialRedundancy(); |
2274 | |
2275 | // TODO: copy over pure symbolic constraints from this and 'other' over to the |
2276 | // union (since the above are just the union along dimensions); we shouldn't |
2277 | // be discarding any other constraints on the symbols. |
2278 | |
2279 | return success(); |
2280 | } |
2281 | |
2282 | bool IntegerRelation::isColZero(unsigned pos) const { |
2283 | unsigned rowPos; |
2284 | return !findConstraintWithNonZeroAt(colIdx: pos, /*isEq=*/false, rowIdx: &rowPos) && |
2285 | !findConstraintWithNonZeroAt(colIdx: pos, /*isEq=*/true, rowIdx: &rowPos); |
2286 | } |
2287 | |
2288 | /// Find positions of inequalities and equalities that do not have a coefficient |
2289 | /// for [pos, pos + num) variables. |
2290 | static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos, |
2291 | unsigned num, |
2292 | SmallVectorImpl<unsigned> &nbIneqIndices, |
2293 | SmallVectorImpl<unsigned> &nbEqIndices) { |
2294 | assert(pos < cst.getNumVars() && "invalid start position" ); |
2295 | assert(pos + num <= cst.getNumVars() && "invalid limit" ); |
2296 | |
2297 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
2298 | // The bounds are to be independent of [offset, offset + num) columns. |
2299 | unsigned c; |
2300 | for (c = pos; c < pos + num; ++c) { |
2301 | if (cst.atIneq(i: r, j: c) != 0) |
2302 | break; |
2303 | } |
2304 | if (c == pos + num) |
2305 | nbIneqIndices.push_back(Elt: r); |
2306 | } |
2307 | |
2308 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
2309 | // The bounds are to be independent of [offset, offset + num) columns. |
2310 | unsigned c; |
2311 | for (c = pos; c < pos + num; ++c) { |
2312 | if (cst.atEq(i: r, j: c) != 0) |
2313 | break; |
2314 | } |
2315 | if (c == pos + num) |
2316 | nbEqIndices.push_back(Elt: r); |
2317 | } |
2318 | } |
2319 | |
2320 | void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) { |
2321 | assert(pos + num <= getNumVars() && "invalid range" ); |
2322 | |
2323 | // Remove constraints that are independent of these variables. |
2324 | SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices; |
2325 | getIndependentConstraints(cst: *this, /*pos=*/0, num, nbIneqIndices, nbEqIndices); |
2326 | |
2327 | // Iterate in reverse so that indices don't have to be updated. |
2328 | // TODO: This method can be made more efficient (because removal of each |
2329 | // inequality leads to much shifting/copying in the underlying buffer). |
2330 | for (auto nbIndex : llvm::reverse(C&: nbIneqIndices)) |
2331 | removeInequality(pos: nbIndex); |
2332 | for (auto nbIndex : llvm::reverse(C&: nbEqIndices)) |
2333 | removeEquality(pos: nbIndex); |
2334 | } |
2335 | |
2336 | IntegerPolyhedron IntegerRelation::getDomainSet() const { |
2337 | IntegerRelation copyRel = *this; |
2338 | |
2339 | // Convert Range variables to Local variables. |
2340 | copyRel.convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Range), |
2341 | dstKind: VarKind::Local); |
2342 | |
2343 | // Convert Domain variables to SetDim(Range) variables. |
2344 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Domain), |
2345 | dstKind: VarKind::SetDim); |
2346 | |
2347 | return IntegerPolyhedron(std::move(copyRel)); |
2348 | } |
2349 | |
2350 | bool IntegerRelation::removeDuplicateConstraints() { |
2351 | bool changed = false; |
2352 | SmallDenseMap<ArrayRef<MPInt>, unsigned> hashTable; |
2353 | unsigned ineqs = getNumInequalities(), cols = getNumCols(); |
2354 | |
2355 | if (ineqs <= 1) |
2356 | return changed; |
2357 | |
2358 | // Check if the non-constant part of the constraint is the same. |
2359 | ArrayRef<MPInt> row = getInequality(idx: 0).drop_back(); |
2360 | hashTable.insert(KV: {row, 0}); |
2361 | for (unsigned k = 1; k < ineqs; ++k) { |
2362 | row = getInequality(idx: k).drop_back(); |
2363 | if (!hashTable.contains(Val: row)) { |
2364 | hashTable.insert(KV: {row, k}); |
2365 | continue; |
2366 | } |
2367 | |
2368 | // For identical cases, keep only the smaller part of the constant term. |
2369 | unsigned l = hashTable[row]; |
2370 | changed = true; |
2371 | if (atIneq(i: k, j: cols - 1) <= atIneq(i: l, j: cols - 1)) |
2372 | inequalities.swapRows(row: k, otherRow: l); |
2373 | removeInequality(pos: k); |
2374 | --k; |
2375 | --ineqs; |
2376 | } |
2377 | |
2378 | // Check the neg form of each inequality, need an extra vector to store it. |
2379 | SmallVector<MPInt> negIneq(cols - 1); |
2380 | for (unsigned k = 0; k < ineqs; ++k) { |
2381 | row = getInequality(idx: k).drop_back(); |
2382 | negIneq.assign(in_start: row.begin(), in_end: row.end()); |
2383 | for (MPInt &ele : negIneq) |
2384 | ele = -ele; |
2385 | if (!hashTable.contains(Val: negIneq)) |
2386 | continue; |
2387 | |
2388 | // For cases where the neg is the same as other inequalities, check that the |
2389 | // sum of their constant terms is positive. |
2390 | unsigned l = hashTable[row]; |
2391 | auto sum = atIneq(i: l, j: cols - 1) + atIneq(i: k, j: cols - 1); |
2392 | if (sum > 0 || l == k) |
2393 | continue; |
2394 | |
2395 | // A sum of constant terms equal to zero combines two inequalities into one |
2396 | // equation, less than zero means the set is empty. |
2397 | changed = true; |
2398 | if (k < l) |
2399 | std::swap(a&: l, b&: k); |
2400 | if (sum == 0) { |
2401 | addEquality(eq: getInequality(idx: k)); |
2402 | removeInequality(pos: k); |
2403 | removeInequality(pos: l); |
2404 | } else |
2405 | *this = getEmpty(space: getSpace()); |
2406 | break; |
2407 | } |
2408 | |
2409 | return changed; |
2410 | } |
2411 | |
2412 | IntegerPolyhedron IntegerRelation::getRangeSet() const { |
2413 | IntegerRelation copyRel = *this; |
2414 | |
2415 | // Convert Domain variables to Local variables. |
2416 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Domain), |
2417 | dstKind: VarKind::Local); |
2418 | |
2419 | // We do not need to do anything to Range variables since they are already in |
2420 | // SetDim position. |
2421 | |
2422 | return IntegerPolyhedron(std::move(copyRel)); |
2423 | } |
2424 | |
2425 | void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) { |
2426 | assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) && |
2427 | "Domain set is not compatible with poly" ); |
2428 | |
2429 | // Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`. |
2430 | IntegerRelation rel = poly; |
2431 | rel.inverse(); |
2432 | |
2433 | // Append dummy range variables to make the spaces compatible. |
2434 | rel.appendVar(kind: VarKind::Range, num: getNumRangeVars()); |
2435 | |
2436 | // Intersect in place. |
2437 | mergeLocalVars(other&: rel); |
2438 | append(other: rel); |
2439 | } |
2440 | |
2441 | void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) { |
2442 | assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) && |
2443 | "Range set is not compatible with poly" ); |
2444 | |
2445 | IntegerRelation rel = poly; |
2446 | |
2447 | // Append dummy domain variables to make the spaces compatible. |
2448 | rel.appendVar(kind: VarKind::Domain, num: getNumDomainVars()); |
2449 | |
2450 | mergeLocalVars(other&: rel); |
2451 | append(other: rel); |
2452 | } |
2453 | |
2454 | void IntegerRelation::inverse() { |
2455 | unsigned numRangeVars = getNumVarKind(kind: VarKind::Range); |
2456 | convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getVarKindEnd(kind: VarKind::Domain), |
2457 | dstKind: VarKind::Range); |
2458 | convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: numRangeVars, dstKind: VarKind::Domain); |
2459 | } |
2460 | |
2461 | void IntegerRelation::compose(const IntegerRelation &rel) { |
2462 | assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) && |
2463 | "Range of `this` should be compatible with Domain of `rel`" ); |
2464 | |
2465 | IntegerRelation copyRel = rel; |
2466 | |
2467 | // Let relation `this` be R1: A -> B, and `rel` be R2: B -> C. |
2468 | // We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of |
2469 | // R1 with R2. After this, we get R1: A -> C, by projecting out B. |
2470 | // TODO: Using nested spaces here would help, since we could directly |
2471 | // intersect the range with another relation. |
2472 | unsigned numBVars = getNumRangeVars(); |
2473 | |
2474 | // Convert R1 from A -> B to A -> (B X C). |
2475 | appendVar(kind: VarKind::Range, num: copyRel.getNumRangeVars()); |
2476 | |
2477 | // Convert R2 to B X C. |
2478 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: numBVars, dstKind: VarKind::Range, pos: 0); |
2479 | |
2480 | // Intersect R2 to range of R1. |
2481 | intersectRange(poly: IntegerPolyhedron(copyRel)); |
2482 | |
2483 | // Project out B in R1. |
2484 | convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: numBVars, dstKind: VarKind::Local); |
2485 | } |
2486 | |
2487 | void IntegerRelation::applyDomain(const IntegerRelation &rel) { |
2488 | inverse(); |
2489 | compose(rel); |
2490 | inverse(); |
2491 | } |
2492 | |
2493 | void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); } |
2494 | |
2495 | void IntegerRelation::printSpace(raw_ostream &os) const { |
2496 | space.print(os); |
2497 | os << getNumConstraints() << " constraints\n" ; |
2498 | } |
2499 | |
2500 | void IntegerRelation::removeTrivialEqualities() { |
2501 | for (int i = getNumEqualities() - 1; i >= 0; --i) |
2502 | if (rangeIsZero(range: getEquality(idx: i))) |
2503 | removeEquality(pos: i); |
2504 | } |
2505 | |
2506 | bool IntegerRelation::isFullDim() { |
2507 | if (getNumVars() == 0) |
2508 | return true; |
2509 | if (isEmpty()) |
2510 | return false; |
2511 | |
2512 | // If there is a non-trivial equality, the space cannot be full-dimensional. |
2513 | removeTrivialEqualities(); |
2514 | if (getNumEqualities() > 0) |
2515 | return false; |
2516 | |
2517 | // The polytope is full-dimensional iff it is not flat along any of the |
2518 | // inequality directions. |
2519 | Simplex simplex(*this); |
2520 | return llvm::none_of(Range: llvm::seq<int>(Size: getNumInequalities()), P: [&](int i) { |
2521 | return simplex.isFlatAlong(coeffs: getInequality(idx: i)); |
2522 | }); |
2523 | } |
2524 | |
2525 | void IntegerRelation::mergeAndCompose(const IntegerRelation &other) { |
2526 | assert(getNumDomainVars() == other.getNumRangeVars() && |
2527 | "Domain of this and range of other do not match" ); |
2528 | // assert(std::equal(values.begin(), values.begin() + |
2529 | // other.getNumDomainVars(), |
2530 | // otherValues.begin() + other.getNumDomainVars()) && |
2531 | // "Domain of this and range of other do not match"); |
2532 | |
2533 | IntegerRelation result = other; |
2534 | |
2535 | const unsigned thisDomain = getNumDomainVars(); |
2536 | const unsigned thisRange = getNumRangeVars(); |
2537 | const unsigned otherDomain = other.getNumDomainVars(); |
2538 | const unsigned otherRange = other.getNumRangeVars(); |
2539 | |
2540 | // Add dimension variables temporarily to merge symbol and local vars. |
2541 | // Convert `this` from |
2542 | // [thisDomain] -> [thisRange] |
2543 | // to |
2544 | // [otherDomain thisDomain] -> [otherRange thisRange]. |
2545 | // and `result` from |
2546 | // [otherDomain] -> [otherRange] |
2547 | // to |
2548 | // [otherDomain thisDomain] -> [otherRange thisRange] |
2549 | insertVar(kind: VarKind::Domain, pos: 0, num: otherDomain); |
2550 | insertVar(kind: VarKind::Range, pos: 0, num: otherRange); |
2551 | result.insertVar(kind: VarKind::Domain, pos: otherDomain, num: thisDomain); |
2552 | result.insertVar(kind: VarKind::Range, pos: otherRange, num: thisRange); |
2553 | |
2554 | // Merge symbol and local variables. |
2555 | mergeAndAlignSymbols(other&: result); |
2556 | mergeLocalVars(other&: result); |
2557 | |
2558 | // Convert `result` from [otherDomain thisDomain] -> [otherRange thisRange] to |
2559 | // [otherDomain] -> [thisRange] |
2560 | result.removeVarRange(kind: VarKind::Domain, varStart: otherDomain, varLimit: otherDomain + thisDomain); |
2561 | result.convertToLocal(kind: VarKind::Range, varStart: 0, varLimit: otherRange); |
2562 | // Convert `this` from [otherDomain thisDomain] -> [otherRange thisRange] to |
2563 | // [otherDomain] -> [thisRange] |
2564 | convertToLocal(kind: VarKind::Domain, varStart: otherDomain, varLimit: otherDomain + thisDomain); |
2565 | removeVarRange(kind: VarKind::Range, varStart: 0, varLimit: otherRange); |
2566 | |
2567 | // Add and match domain of `result` to domain of `this`. |
2568 | for (unsigned i = 0, e = result.getNumDomainVars(); i < e; ++i) |
2569 | if (result.getSpace().getId(kind: VarKind::Domain, pos: i).hasValue()) |
2570 | space.setId(kind: VarKind::Domain, pos: i, |
2571 | id: result.getSpace().getId(kind: VarKind::Domain, pos: i)); |
2572 | // Add and match range of `this` to range of `result`. |
2573 | for (unsigned i = 0, e = getNumRangeVars(); i < e; ++i) |
2574 | if (space.getId(kind: VarKind::Range, pos: i).hasValue()) |
2575 | result.space.setId(kind: VarKind::Range, pos: i, id: space.getId(kind: VarKind::Range, pos: i)); |
2576 | |
2577 | // Append `this` to `result` and simplify constraints. |
2578 | result.append(other: *this); |
2579 | result.removeRedundantLocalVars(); |
2580 | |
2581 | *this = result; |
2582 | } |
2583 | |
2584 | void IntegerRelation::print(raw_ostream &os) const { |
2585 | assert(hasConsistentState()); |
2586 | printSpace(os); |
2587 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
2588 | os << " " ; |
2589 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
2590 | os << atEq(i, j) << "\t" ; |
2591 | } |
2592 | os << "= 0\n" ; |
2593 | } |
2594 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
2595 | os << " " ; |
2596 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
2597 | os << atIneq(i, j) << "\t" ; |
2598 | } |
2599 | os << ">= 0\n" ; |
2600 | } |
2601 | os << '\n'; |
2602 | } |
2603 | |
2604 | void IntegerRelation::dump() const { print(os&: llvm::errs()); } |
2605 | |
2606 | unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos, |
2607 | unsigned num) { |
2608 | assert((kind != VarKind::Domain || num == 0) && |
2609 | "Domain has to be zero in a set" ); |
2610 | return IntegerRelation::insertVar(kind, pos, num); |
2611 | } |
2612 | IntegerPolyhedron |
2613 | IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const { |
2614 | return IntegerPolyhedron(IntegerRelation::intersect(other)); |
2615 | } |
2616 | |
2617 | PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const { |
2618 | return PresburgerSet(IntegerRelation::subtract(set: other)); |
2619 | } |
2620 | |