| 1 | //===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // A class to represent an relation over integer tuples. A relation is |
| 10 | // represented as a constraint system over a space of tuples of integer valued |
| 11 | // variables supporting symbolic variables and existential quantification. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
| 16 | #include "mlir/Analysis/Presburger/Fraction.h" |
| 17 | #include "mlir/Analysis/Presburger/LinearTransform.h" |
| 18 | #include "mlir/Analysis/Presburger/PWMAFunction.h" |
| 19 | #include "mlir/Analysis/Presburger/PresburgerRelation.h" |
| 20 | #include "mlir/Analysis/Presburger/PresburgerSpace.h" |
| 21 | #include "mlir/Analysis/Presburger/Simplex.h" |
| 22 | #include "mlir/Analysis/Presburger/Utils.h" |
| 23 | #include "llvm/ADT/DenseMap.h" |
| 24 | #include "llvm/ADT/STLExtras.h" |
| 25 | #include "llvm/ADT/Sequence.h" |
| 26 | #include "llvm/ADT/SmallBitVector.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | #include "llvm/Support/LogicalResult.h" |
| 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | #include <algorithm> |
| 31 | #include <cassert> |
| 32 | #include <functional> |
| 33 | #include <memory> |
| 34 | #include <numeric> |
| 35 | #include <optional> |
| 36 | #include <sstream> |
| 37 | #include <string> |
| 38 | #include <utility> |
| 39 | #include <vector> |
| 40 | |
| 41 | #define DEBUG_TYPE "presburger" |
| 42 | |
| 43 | using namespace mlir; |
| 44 | using namespace presburger; |
| 45 | |
| 46 | using llvm::SmallDenseMap; |
| 47 | |
| 48 | std::unique_ptr<IntegerRelation> IntegerRelation::clone() const { |
| 49 | return std::make_unique<IntegerRelation>(args: *this); |
| 50 | } |
| 51 | |
| 52 | std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const { |
| 53 | return std::make_unique<IntegerPolyhedron>(args: *this); |
| 54 | } |
| 55 | |
| 56 | void IntegerRelation::setSpace(const PresburgerSpace &oSpace) { |
| 57 | assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!" ); |
| 58 | space = oSpace; |
| 59 | } |
| 60 | |
| 61 | void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) { |
| 62 | assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!" ); |
| 63 | assert(oSpace.getNumVars() <= getNumVars() && "invalid space!" ); |
| 64 | unsigned newNumLocals = getNumVars() - oSpace.getNumVars(); |
| 65 | space = oSpace; |
| 66 | space.insertVar(kind: VarKind::Local, pos: 0, num: newNumLocals); |
| 67 | } |
| 68 | |
| 69 | void IntegerRelation::setId(VarKind kind, unsigned i, Identifier id) { |
| 70 | assert(space.isUsingIds() && |
| 71 | "space must be using identifiers to set an identifier" ); |
| 72 | assert(kind != VarKind::Local && "local variables cannot have identifiers" ); |
| 73 | assert(i < space.getNumVarKind(kind) && "invalid variable index" ); |
| 74 | space.setId(kind, pos: i, id); |
| 75 | } |
| 76 | |
| 77 | ArrayRef<Identifier> IntegerRelation::getIds(VarKind kind) { |
| 78 | if (!space.isUsingIds()) |
| 79 | space.resetIds(); |
| 80 | return space.getIds(kind); |
| 81 | } |
| 82 | |
| 83 | void IntegerRelation::append(const IntegerRelation &other) { |
| 84 | assert(space.isEqual(other.getSpace()) && "Spaces must be equal." ); |
| 85 | |
| 86 | inequalities.reserveRows(rows: inequalities.getNumRows() + |
| 87 | other.getNumInequalities()); |
| 88 | equalities.reserveRows(rows: equalities.getNumRows() + other.getNumEqualities()); |
| 89 | |
| 90 | for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { |
| 91 | addInequality(inEq: other.getInequality(idx: r)); |
| 92 | } |
| 93 | for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { |
| 94 | addEquality(eq: other.getEquality(idx: r)); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | IntegerRelation IntegerRelation::intersect(IntegerRelation other) const { |
| 99 | IntegerRelation result = *this; |
| 100 | result.mergeLocalVars(other); |
| 101 | result.append(other); |
| 102 | return result; |
| 103 | } |
| 104 | |
| 105 | bool IntegerRelation::isEqual(const IntegerRelation &other) const { |
| 106 | assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible." ); |
| 107 | return PresburgerRelation(*this).isEqual(set: PresburgerRelation(other)); |
| 108 | } |
| 109 | |
| 110 | bool IntegerRelation::isObviouslyEqual(const IntegerRelation &other) const { |
| 111 | if (!space.isEqual(other: other.getSpace())) |
| 112 | return false; |
| 113 | if (getNumEqualities() != other.getNumEqualities()) |
| 114 | return false; |
| 115 | if (getNumInequalities() != other.getNumInequalities()) |
| 116 | return false; |
| 117 | |
| 118 | unsigned cols = getNumCols(); |
| 119 | for (unsigned i = 0, eqs = getNumEqualities(); i < eqs; ++i) { |
| 120 | for (unsigned j = 0; j < cols; ++j) { |
| 121 | if (atEq(i, j) != other.atEq(i, j)) |
| 122 | return false; |
| 123 | } |
| 124 | } |
| 125 | for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) { |
| 126 | for (unsigned j = 0; j < cols; ++j) { |
| 127 | if (atIneq(i, j) != other.atIneq(i, j)) |
| 128 | return false; |
| 129 | } |
| 130 | } |
| 131 | return true; |
| 132 | } |
| 133 | |
| 134 | bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const { |
| 135 | assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible." ); |
| 136 | return PresburgerRelation(*this).isSubsetOf(set: PresburgerRelation(other)); |
| 137 | } |
| 138 | |
| 139 | MaybeOptimum<SmallVector<Fraction, 8>> |
| 140 | IntegerRelation::findRationalLexMin() const { |
| 141 | assert(getNumSymbolVars() == 0 && "Symbols are not supported!" ); |
| 142 | MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin = |
| 143 | LexSimplex(*this).findRationalLexMin(); |
| 144 | |
| 145 | if (!maybeLexMin.isBounded()) |
| 146 | return maybeLexMin; |
| 147 | |
| 148 | // The Simplex returns the lexmin over all the variables including locals. But |
| 149 | // locals are not actually part of the space and should not be returned in the |
| 150 | // result. Since the locals are placed last in the list of variables, they |
| 151 | // will be minimized last in the lexmin. So simply truncating out the locals |
| 152 | // from the end of the answer gives the desired lexmin over the dimensions. |
| 153 | assert(maybeLexMin->size() == getNumVars() && |
| 154 | "Incorrect number of vars in lexMin!" ); |
| 155 | maybeLexMin->resize(N: getNumDimAndSymbolVars()); |
| 156 | return maybeLexMin; |
| 157 | } |
| 158 | |
| 159 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> |
| 160 | IntegerRelation::findIntegerLexMin() const { |
| 161 | assert(getNumSymbolVars() == 0 && "Symbols are not supported!" ); |
| 162 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> maybeLexMin = |
| 163 | LexSimplex(*this).findIntegerLexMin(); |
| 164 | |
| 165 | if (!maybeLexMin.isBounded()) |
| 166 | return maybeLexMin.getKind(); |
| 167 | |
| 168 | // The Simplex returns the lexmin over all the variables including locals. But |
| 169 | // locals are not actually part of the space and should not be returned in the |
| 170 | // result. Since the locals are placed last in the list of variables, they |
| 171 | // will be minimized last in the lexmin. So simply truncating out the locals |
| 172 | // from the end of the answer gives the desired lexmin over the dimensions. |
| 173 | assert(maybeLexMin->size() == getNumVars() && |
| 174 | "Incorrect number of vars in lexMin!" ); |
| 175 | maybeLexMin->resize(N: getNumDimAndSymbolVars()); |
| 176 | return maybeLexMin; |
| 177 | } |
| 178 | |
| 179 | static bool rangeIsZero(ArrayRef<DynamicAPInt> range) { |
| 180 | return llvm::all_of(Range&: range, P: [](const DynamicAPInt &x) { return x == 0; }); |
| 181 | } |
| 182 | |
| 183 | static void removeConstraintsInvolvingVarRange(IntegerRelation &poly, |
| 184 | unsigned begin, unsigned count) { |
| 185 | // We loop until i > 0 and index into i - 1 to avoid sign issues. |
| 186 | // |
| 187 | // We iterate backwards so that whether we remove constraint i - 1 or not, the |
| 188 | // next constraint to be tested is always i - 2. |
| 189 | for (unsigned i = poly.getNumEqualities(); i > 0; i--) |
| 190 | if (!rangeIsZero(range: poly.getEquality(idx: i - 1).slice(N: begin, M: count))) |
| 191 | poly.removeEquality(pos: i - 1); |
| 192 | for (unsigned i = poly.getNumInequalities(); i > 0; i--) |
| 193 | if (!rangeIsZero(range: poly.getInequality(idx: i - 1).slice(N: begin, M: count))) |
| 194 | poly.removeInequality(pos: i - 1); |
| 195 | } |
| 196 | |
| 197 | IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const { |
| 198 | return {getSpace(), getNumInequalities(), getNumEqualities()}; |
| 199 | } |
| 200 | |
| 201 | void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) { |
| 202 | unsigned curNum = getNumVarKind(kind); |
| 203 | assert(num <= curNum && "Can't truncate to more vars!" ); |
| 204 | removeVarRange(kind, varStart: num, varLimit: curNum); |
| 205 | } |
| 206 | |
| 207 | void IntegerRelation::truncateVarKind(VarKind kind, |
| 208 | const CountsSnapshot &counts) { |
| 209 | truncateVarKind(kind, num: counts.getSpace().getNumVarKind(kind)); |
| 210 | } |
| 211 | |
| 212 | void IntegerRelation::truncate(const CountsSnapshot &counts) { |
| 213 | truncateVarKind(kind: VarKind::Domain, counts); |
| 214 | truncateVarKind(kind: VarKind::Range, counts); |
| 215 | truncateVarKind(kind: VarKind::Symbol, counts); |
| 216 | truncateVarKind(kind: VarKind::Local, counts); |
| 217 | removeInequalityRange(start: counts.getNumIneqs(), end: getNumInequalities()); |
| 218 | removeEqualityRange(start: counts.getNumEqs(), end: getNumEqualities()); |
| 219 | } |
| 220 | |
| 221 | PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const { |
| 222 | // If there are no locals, we're done. |
| 223 | if (getNumLocalVars() == 0) |
| 224 | return PresburgerRelation(*this); |
| 225 | |
| 226 | // Move all the non-div locals to the end, as the current API to |
| 227 | // SymbolicLexOpt requires these to form a contiguous range. |
| 228 | // |
| 229 | // Take a copy so we can perform mutations. |
| 230 | IntegerRelation copy = *this; |
| 231 | std::vector<MaybeLocalRepr> reprs(getNumLocalVars()); |
| 232 | copy.getLocalReprs(repr: &reprs); |
| 233 | |
| 234 | // Iterate through all the locals. The last `numNonDivLocals` are the locals |
| 235 | // that have been scanned already and do not have division representations. |
| 236 | unsigned numNonDivLocals = 0; |
| 237 | unsigned offset = copy.getVarKindOffset(kind: VarKind::Local); |
| 238 | for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) { |
| 239 | if (!reprs[i]) { |
| 240 | // Whenever we come across a local that does not have a division |
| 241 | // representation, we swap it to the `numNonDivLocals`-th last position |
| 242 | // and increment `numNonDivLocal`s. `reprs` also needs to be swapped. |
| 243 | copy.swapVar(posA: offset + i, posB: offset + e - numNonDivLocals - 1); |
| 244 | std::swap(a&: reprs[i], b&: reprs[e - numNonDivLocals - 1]); |
| 245 | ++numNonDivLocals; |
| 246 | continue; |
| 247 | } |
| 248 | ++i; |
| 249 | } |
| 250 | |
| 251 | // If there are no non-div locals, we're done. |
| 252 | if (numNonDivLocals == 0) |
| 253 | return PresburgerRelation(*this); |
| 254 | |
| 255 | // We computeSymbolicIntegerLexMin by considering the non-div locals as |
| 256 | // "non-symbols" and considering everything else as "symbols". This will |
| 257 | // compute a function mapping assignments to "symbols" to the |
| 258 | // lexicographically minimal valid assignment of "non-symbols", when a |
| 259 | // satisfying assignment exists. It separately returns the set of assignments |
| 260 | // to the "symbols" such that a satisfying assignment to the "non-symbols" |
| 261 | // exists but the lexmin is unbounded. We basically want to find the set of |
| 262 | // values of the "symbols" such that an assignment to the "non-symbols" |
| 263 | // exists, which is the union of the domain of the returned lexmin function |
| 264 | // and the returned set of assignments to the "symbols" that makes the lexmin |
| 265 | // unbounded. |
| 266 | SymbolicLexOpt lexminResult = |
| 267 | SymbolicLexSimplex(copy, /*symbolOffset*/ 0, |
| 268 | IntegerPolyhedron(PresburgerSpace::getSetSpace( |
| 269 | /*numDims=*/copy.getNumVars() - numNonDivLocals))) |
| 270 | .computeSymbolicIntegerLexMin(); |
| 271 | PresburgerRelation result = |
| 272 | lexminResult.lexopt.getDomain().unionSet(set: lexminResult.unboundedDomain); |
| 273 | |
| 274 | // The result set might lie in the wrong space -- all its ids are dims. |
| 275 | // Set it to the desired space and return. |
| 276 | PresburgerSpace space = getSpace(); |
| 277 | space.removeVarRange(kind: VarKind::Local, varStart: 0, varLimit: getNumLocalVars()); |
| 278 | result.setSpace(space); |
| 279 | return result; |
| 280 | } |
| 281 | |
| 282 | SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMin() const { |
| 283 | // Symbol and Domain vars will be used as symbols for symbolic lexmin. |
| 284 | // In other words, for every value of the symbols and domain, return the |
| 285 | // lexmin value of the (range, locals). |
| 286 | llvm::SmallBitVector isSymbol(getNumVars(), false); |
| 287 | isSymbol.set(I: getVarKindOffset(kind: VarKind::Symbol), |
| 288 | E: getVarKindEnd(kind: VarKind::Symbol)); |
| 289 | isSymbol.set(I: getVarKindOffset(kind: VarKind::Domain), |
| 290 | E: getVarKindEnd(kind: VarKind::Domain)); |
| 291 | // Compute the symbolic lexmin of the dims and locals, with the symbols being |
| 292 | // the actual symbols of this set. |
| 293 | // The resultant space of lexmin is the space of the relation itself. |
| 294 | SymbolicLexOpt result = |
| 295 | SymbolicLexSimplex(*this, |
| 296 | IntegerPolyhedron(PresburgerSpace::getSetSpace( |
| 297 | /*numDims=*/getNumDomainVars(), |
| 298 | /*numSymbols=*/getNumSymbolVars())), |
| 299 | isSymbol) |
| 300 | .computeSymbolicIntegerLexMin(); |
| 301 | |
| 302 | // We want to return only the lexmin over the dims, so strip the locals from |
| 303 | // the computed lexmin. |
| 304 | result.lexopt.removeOutputs(start: result.lexopt.getNumOutputs() - getNumLocalVars(), |
| 305 | end: result.lexopt.getNumOutputs()); |
| 306 | return result; |
| 307 | } |
| 308 | |
| 309 | /// findSymbolicIntegerLexMax is implemented using findSymbolicIntegerLexMin as |
| 310 | /// follows: |
| 311 | /// 1. A new relation is created which is `this` relation with the sign of |
| 312 | /// each dimension variable in range flipped; |
| 313 | /// 2. findSymbolicIntegerLexMin is called on the range negated relation to |
| 314 | /// compute the negated lexmax of `this` relation; |
| 315 | /// 3. The sign of the negated lexmax is flipped and returned. |
| 316 | SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMax() const { |
| 317 | IntegerRelation flippedRel = *this; |
| 318 | // Flip range sign by flipping the sign of range variables in all constraints. |
| 319 | for (unsigned j = getNumDomainVars(), |
| 320 | b = getNumDomainVars() + getNumRangeVars(); |
| 321 | j < b; j++) { |
| 322 | for (unsigned i = 0, a = getNumEqualities(); i < a; i++) |
| 323 | flippedRel.atEq(i, j) = -1 * atEq(i, j); |
| 324 | for (unsigned i = 0, a = getNumInequalities(); i < a; i++) |
| 325 | flippedRel.atIneq(i, j) = -1 * atIneq(i, j); |
| 326 | } |
| 327 | // Compute negated lexmax by computing lexmin. |
| 328 | SymbolicLexOpt flippedSymbolicIntegerLexMax = |
| 329 | flippedRel.findSymbolicIntegerLexMin(), |
| 330 | symbolicIntegerLexMax( |
| 331 | flippedSymbolicIntegerLexMax.lexopt.getSpace()); |
| 332 | // Get lexmax by flipping range sign in the PWMA constraints. |
| 333 | for (auto &flippedPiece : |
| 334 | flippedSymbolicIntegerLexMax.lexopt.getAllPieces()) { |
| 335 | IntMatrix mat = flippedPiece.output.getOutputMatrix(); |
| 336 | for (unsigned i = 0, e = mat.getNumRows(); i < e; i++) |
| 337 | mat.negateRow(row: i); |
| 338 | MultiAffineFunction maf(flippedPiece.output.getSpace(), mat); |
| 339 | PWMAFunction::Piece piece = {.domain: flippedPiece.domain, .output: maf}; |
| 340 | symbolicIntegerLexMax.lexopt.addPiece(piece); |
| 341 | } |
| 342 | symbolicIntegerLexMax.unboundedDomain = |
| 343 | flippedSymbolicIntegerLexMax.unboundedDomain; |
| 344 | return symbolicIntegerLexMax; |
| 345 | } |
| 346 | |
| 347 | PresburgerRelation |
| 348 | IntegerRelation::subtract(const PresburgerRelation &set) const { |
| 349 | return PresburgerRelation(*this).subtract(set); |
| 350 | } |
| 351 | |
| 352 | unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) { |
| 353 | assert(pos <= getNumVarKind(kind)); |
| 354 | |
| 355 | unsigned insertPos = space.insertVar(kind, pos, num); |
| 356 | inequalities.insertColumns(pos: insertPos, count: num); |
| 357 | equalities.insertColumns(pos: insertPos, count: num); |
| 358 | return insertPos; |
| 359 | } |
| 360 | |
| 361 | unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) { |
| 362 | unsigned pos = getNumVarKind(kind); |
| 363 | return insertVar(kind, pos, num); |
| 364 | } |
| 365 | |
| 366 | void IntegerRelation::addEquality(ArrayRef<DynamicAPInt> eq) { |
| 367 | assert(eq.size() == getNumCols()); |
| 368 | unsigned row = equalities.appendExtraRow(); |
| 369 | for (unsigned i = 0, e = eq.size(); i < e; ++i) |
| 370 | equalities(row, i) = eq[i]; |
| 371 | } |
| 372 | |
| 373 | void IntegerRelation::addInequality(ArrayRef<DynamicAPInt> inEq) { |
| 374 | assert(inEq.size() == getNumCols()); |
| 375 | unsigned row = inequalities.appendExtraRow(); |
| 376 | for (unsigned i = 0, e = inEq.size(); i < e; ++i) |
| 377 | inequalities(row, i) = inEq[i]; |
| 378 | } |
| 379 | |
| 380 | void IntegerRelation::removeVar(VarKind kind, unsigned pos) { |
| 381 | removeVarRange(kind, varStart: pos, varLimit: pos + 1); |
| 382 | } |
| 383 | |
| 384 | void IntegerRelation::removeVar(unsigned pos) { removeVarRange(varStart: pos, varLimit: pos + 1); } |
| 385 | |
| 386 | void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart, |
| 387 | unsigned varLimit) { |
| 388 | assert(varLimit <= getNumVarKind(kind)); |
| 389 | |
| 390 | if (varStart >= varLimit) |
| 391 | return; |
| 392 | |
| 393 | // Remove eliminated variables from the constraints. |
| 394 | unsigned offset = getVarKindOffset(kind); |
| 395 | equalities.removeColumns(pos: offset + varStart, count: varLimit - varStart); |
| 396 | inequalities.removeColumns(pos: offset + varStart, count: varLimit - varStart); |
| 397 | |
| 398 | // Remove eliminated variables from the space. |
| 399 | space.removeVarRange(kind, varStart, varLimit); |
| 400 | } |
| 401 | |
| 402 | void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) { |
| 403 | assert(varLimit <= getNumVars()); |
| 404 | |
| 405 | if (varStart >= varLimit) |
| 406 | return; |
| 407 | |
| 408 | // Helper function to remove vars of the specified kind in the given range |
| 409 | // [start, limit), The range is absolute (i.e. it is not relative to the kind |
| 410 | // of variable). Also updates `limit` to reflect the deleted variables. |
| 411 | auto removeVarKindInRange = [this](VarKind kind, unsigned &start, |
| 412 | unsigned &limit) { |
| 413 | if (start >= limit) |
| 414 | return; |
| 415 | |
| 416 | unsigned offset = getVarKindOffset(kind); |
| 417 | unsigned num = getNumVarKind(kind); |
| 418 | |
| 419 | // Get `start`, `limit` relative to the specified kind. |
| 420 | unsigned relativeStart = |
| 421 | start <= offset ? 0 : std::min(a: num, b: start - offset); |
| 422 | unsigned relativeLimit = |
| 423 | limit <= offset ? 0 : std::min(a: num, b: limit - offset); |
| 424 | |
| 425 | // Remove vars of the specified kind in the relative range. |
| 426 | removeVarRange(kind, varStart: relativeStart, varLimit: relativeLimit); |
| 427 | |
| 428 | // Update `limit` to reflect deleted variables. |
| 429 | // `start` does not need to be updated because any variables that are |
| 430 | // deleted are after position `start`. |
| 431 | limit -= relativeLimit - relativeStart; |
| 432 | }; |
| 433 | |
| 434 | removeVarKindInRange(VarKind::Domain, varStart, varLimit); |
| 435 | removeVarKindInRange(VarKind::Range, varStart, varLimit); |
| 436 | removeVarKindInRange(VarKind::Symbol, varStart, varLimit); |
| 437 | removeVarKindInRange(VarKind::Local, varStart, varLimit); |
| 438 | } |
| 439 | |
| 440 | void IntegerRelation::removeEquality(unsigned pos) { |
| 441 | equalities.removeRow(pos); |
| 442 | } |
| 443 | |
| 444 | void IntegerRelation::removeInequality(unsigned pos) { |
| 445 | inequalities.removeRow(pos); |
| 446 | } |
| 447 | |
| 448 | void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) { |
| 449 | if (start >= end) |
| 450 | return; |
| 451 | equalities.removeRows(pos: start, count: end - start); |
| 452 | } |
| 453 | |
| 454 | void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) { |
| 455 | if (start >= end) |
| 456 | return; |
| 457 | inequalities.removeRows(pos: start, count: end - start); |
| 458 | } |
| 459 | |
| 460 | void IntegerRelation::swapVar(unsigned posA, unsigned posB) { |
| 461 | assert(posA < getNumVars() && "invalid position A" ); |
| 462 | assert(posB < getNumVars() && "invalid position B" ); |
| 463 | |
| 464 | if (posA == posB) |
| 465 | return; |
| 466 | |
| 467 | VarKind kindA = space.getVarKindAt(pos: posA); |
| 468 | VarKind kindB = space.getVarKindAt(pos: posB); |
| 469 | unsigned relativePosA = posA - getVarKindOffset(kind: kindA); |
| 470 | unsigned relativePosB = posB - getVarKindOffset(kind: kindB); |
| 471 | space.swapVar(kindA, kindB, posA: relativePosA, posB: relativePosB); |
| 472 | |
| 473 | inequalities.swapColumns(column: posA, otherColumn: posB); |
| 474 | equalities.swapColumns(column: posA, otherColumn: posB); |
| 475 | } |
| 476 | |
| 477 | void IntegerRelation::clearConstraints() { |
| 478 | equalities.resizeVertically(newNRows: 0); |
| 479 | inequalities.resizeVertically(newNRows: 0); |
| 480 | } |
| 481 | |
| 482 | /// Gather all lower and upper bounds of the variable at `pos`, and |
| 483 | /// optionally any equalities on it. In addition, the bounds are to be |
| 484 | /// independent of variables in position range [`offset`, `offset` + `num`). |
| 485 | void IntegerRelation::getLowerAndUpperBoundIndices( |
| 486 | unsigned pos, SmallVectorImpl<unsigned> *lbIndices, |
| 487 | SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices, |
| 488 | unsigned offset, unsigned num) const { |
| 489 | assert(pos < getNumVars() && "invalid position" ); |
| 490 | assert(offset + num < getNumCols() && "invalid range" ); |
| 491 | |
| 492 | // Checks for a constraint that has a non-zero coeff for the variables in |
| 493 | // the position range [offset, offset + num) while ignoring `pos`. |
| 494 | auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) { |
| 495 | unsigned c, f; |
| 496 | auto cst = isEq ? getEquality(idx: r) : getInequality(idx: r); |
| 497 | for (c = offset, f = offset + num; c < f; ++c) { |
| 498 | if (c == pos) |
| 499 | continue; |
| 500 | if (cst[c] != 0) |
| 501 | break; |
| 502 | } |
| 503 | return c < f; |
| 504 | }; |
| 505 | |
| 506 | // Gather all lower bounds and upper bounds of the variable. Since the |
| 507 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
| 508 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
| 509 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
| 510 | // The bounds are to be independent of [offset, offset + num) columns. |
| 511 | if (containsConstraintDependentOnRange(r, /*isEq=*/false)) |
| 512 | continue; |
| 513 | if (atIneq(i: r, j: pos) >= 1) { |
| 514 | // Lower bound. |
| 515 | lbIndices->emplace_back(Args&: r); |
| 516 | } else if (atIneq(i: r, j: pos) <= -1) { |
| 517 | // Upper bound. |
| 518 | ubIndices->emplace_back(Args&: r); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | // An equality is both a lower and upper bound. Record any equalities |
| 523 | // involving the pos^th variable. |
| 524 | if (!eqIndices) |
| 525 | return; |
| 526 | |
| 527 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
| 528 | if (atEq(i: r, j: pos) == 0) |
| 529 | continue; |
| 530 | if (containsConstraintDependentOnRange(r, /*isEq=*/true)) |
| 531 | continue; |
| 532 | eqIndices->emplace_back(Args&: r); |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | bool IntegerRelation::hasConsistentState() const { |
| 537 | if (!inequalities.hasConsistentState()) |
| 538 | return false; |
| 539 | if (!equalities.hasConsistentState()) |
| 540 | return false; |
| 541 | return true; |
| 542 | } |
| 543 | |
| 544 | void IntegerRelation::setAndEliminate(unsigned pos, |
| 545 | ArrayRef<DynamicAPInt> values) { |
| 546 | if (values.empty()) |
| 547 | return; |
| 548 | assert(pos + values.size() <= getNumVars() && |
| 549 | "invalid position or too many values" ); |
| 550 | // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the |
| 551 | // constant term and removing the var x_j. We do this for all the vars |
| 552 | // pos, pos + 1, ... pos + values.size() - 1. |
| 553 | unsigned constantColPos = getNumCols() - 1; |
| 554 | for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) |
| 555 | inequalities.addToColumn(sourceColumn: i + pos, targetColumn: constantColPos, scale: values[i]); |
| 556 | for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) |
| 557 | equalities.addToColumn(sourceColumn: i + pos, targetColumn: constantColPos, scale: values[i]); |
| 558 | removeVarRange(varStart: pos, varLimit: pos + values.size()); |
| 559 | } |
| 560 | |
| 561 | void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) { |
| 562 | *this = other; |
| 563 | } |
| 564 | |
| 565 | std::optional<unsigned> |
| 566 | IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq) const { |
| 567 | assert(colIdx < getNumCols() && "position out of bounds" ); |
| 568 | auto at = [&](unsigned rowIdx) -> DynamicAPInt { |
| 569 | return isEq ? atEq(i: rowIdx, j: colIdx) : atIneq(i: rowIdx, j: colIdx); |
| 570 | }; |
| 571 | unsigned e = isEq ? getNumEqualities() : getNumInequalities(); |
| 572 | for (unsigned rowIdx = 0; rowIdx < e; ++rowIdx) { |
| 573 | if (at(rowIdx) != 0) |
| 574 | return rowIdx; |
| 575 | } |
| 576 | return std::nullopt; |
| 577 | } |
| 578 | |
| 579 | void IntegerRelation::normalizeConstraintsByGCD() { |
| 580 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
| 581 | equalities.normalizeRow(row: i); |
| 582 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
| 583 | inequalities.normalizeRow(row: i); |
| 584 | } |
| 585 | |
| 586 | bool IntegerRelation::hasInvalidConstraint() const { |
| 587 | assert(hasConsistentState()); |
| 588 | auto check = [&](bool isEq) -> bool { |
| 589 | unsigned numCols = getNumCols(); |
| 590 | unsigned numRows = isEq ? getNumEqualities() : getNumInequalities(); |
| 591 | for (unsigned i = 0, e = numRows; i < e; ++i) { |
| 592 | unsigned j; |
| 593 | for (j = 0; j < numCols - 1; ++j) { |
| 594 | DynamicAPInt v = isEq ? atEq(i, j) : atIneq(i, j); |
| 595 | // Skip rows with non-zero variable coefficients. |
| 596 | if (v != 0) |
| 597 | break; |
| 598 | } |
| 599 | if (j < numCols - 1) { |
| 600 | continue; |
| 601 | } |
| 602 | // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'. |
| 603 | // Example invalid constraints include: '1 == 0' or '-1 >= 0' |
| 604 | DynamicAPInt v = isEq ? atEq(i, j: numCols - 1) : atIneq(i, j: numCols - 1); |
| 605 | if ((isEq && v != 0) || (!isEq && v < 0)) { |
| 606 | return true; |
| 607 | } |
| 608 | } |
| 609 | return false; |
| 610 | }; |
| 611 | if (check(/*isEq=*/true)) |
| 612 | return true; |
| 613 | return check(/*isEq=*/false); |
| 614 | } |
| 615 | |
| 616 | /// Eliminate variable from constraint at `rowIdx` based on coefficient at |
| 617 | /// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be |
| 618 | /// updated as they have already been eliminated. |
| 619 | static void eliminateFromConstraint(IntegerRelation *constraints, |
| 620 | unsigned rowIdx, unsigned pivotRow, |
| 621 | unsigned pivotCol, unsigned elimColStart, |
| 622 | bool isEq) { |
| 623 | // Skip if equality 'rowIdx' if same as 'pivotRow'. |
| 624 | if (isEq && rowIdx == pivotRow) |
| 625 | return; |
| 626 | auto at = [&](unsigned i, unsigned j) -> DynamicAPInt { |
| 627 | return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j); |
| 628 | }; |
| 629 | DynamicAPInt leadCoeff = at(rowIdx, pivotCol); |
| 630 | // Skip if leading coefficient at 'rowIdx' is already zero. |
| 631 | if (leadCoeff == 0) |
| 632 | return; |
| 633 | DynamicAPInt pivotCoeff = constraints->atEq(i: pivotRow, j: pivotCol); |
| 634 | int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1; |
| 635 | DynamicAPInt lcm = llvm::lcm(A: pivotCoeff, B: leadCoeff); |
| 636 | DynamicAPInt pivotMultiplier = sign * (lcm / abs(X: pivotCoeff)); |
| 637 | DynamicAPInt rowMultiplier = lcm / abs(X: leadCoeff); |
| 638 | |
| 639 | unsigned numCols = constraints->getNumCols(); |
| 640 | for (unsigned j = 0; j < numCols; ++j) { |
| 641 | // Skip updating column 'j' if it was just eliminated. |
| 642 | if (j >= elimColStart && j < pivotCol) |
| 643 | continue; |
| 644 | DynamicAPInt v = pivotMultiplier * constraints->atEq(i: pivotRow, j) + |
| 645 | rowMultiplier * at(rowIdx, j); |
| 646 | isEq ? constraints->atEq(i: rowIdx, j) = v |
| 647 | : constraints->atIneq(i: rowIdx, j) = v; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | /// Returns the position of the variable that has the minimum <number of lower |
| 652 | /// bounds> times <number of upper bounds> from the specified range of |
| 653 | /// variables [start, end). It is often best to eliminate in the increasing |
| 654 | /// order of these counts when doing Fourier-Motzkin elimination since FM adds |
| 655 | /// that many new constraints. |
| 656 | static unsigned getBestVarToEliminate(const IntegerRelation &cst, |
| 657 | unsigned start, unsigned end) { |
| 658 | assert(start < cst.getNumVars() && end < cst.getNumVars() + 1); |
| 659 | |
| 660 | auto getProductOfNumLowerUpperBounds = [&](unsigned pos) { |
| 661 | unsigned numLb = 0; |
| 662 | unsigned numUb = 0; |
| 663 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
| 664 | if (cst.atIneq(i: r, j: pos) > 0) { |
| 665 | ++numLb; |
| 666 | } else if (cst.atIneq(i: r, j: pos) < 0) { |
| 667 | ++numUb; |
| 668 | } |
| 669 | } |
| 670 | return numLb * numUb; |
| 671 | }; |
| 672 | |
| 673 | unsigned minLoc = start; |
| 674 | unsigned min = getProductOfNumLowerUpperBounds(start); |
| 675 | for (unsigned c = start + 1; c < end; c++) { |
| 676 | unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c); |
| 677 | if (numLbUbProduct < min) { |
| 678 | min = numLbUbProduct; |
| 679 | minLoc = c; |
| 680 | } |
| 681 | } |
| 682 | return minLoc; |
| 683 | } |
| 684 | |
| 685 | // Checks for emptiness of the set by eliminating variables successively and |
| 686 | // using the GCD test (on all equality constraints) and checking for trivially |
| 687 | // invalid constraints. Returns 'true' if the constraint system is found to be |
| 688 | // empty; false otherwise. |
| 689 | bool IntegerRelation::isEmpty() const { |
| 690 | if (isEmptyByGCDTest() || hasInvalidConstraint()) |
| 691 | return true; |
| 692 | |
| 693 | IntegerRelation tmpCst(*this); |
| 694 | |
| 695 | // First, eliminate as many local variables as possible using equalities. |
| 696 | tmpCst.removeRedundantLocalVars(); |
| 697 | if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint()) |
| 698 | return true; |
| 699 | |
| 700 | // Eliminate as many variables as possible using Gaussian elimination. |
| 701 | unsigned currentPos = 0; |
| 702 | while (currentPos < tmpCst.getNumVars()) { |
| 703 | tmpCst.gaussianEliminateVars(posStart: currentPos, posLimit: tmpCst.getNumVars()); |
| 704 | ++currentPos; |
| 705 | // We check emptiness through trivial checks after eliminating each ID to |
| 706 | // detect emptiness early. Since the checks isEmptyByGCDTest() and |
| 707 | // hasInvalidConstraint() are linear time and single sweep on the constraint |
| 708 | // buffer, this appears reasonable - but can optimize in the future. |
| 709 | if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest()) |
| 710 | return true; |
| 711 | } |
| 712 | |
| 713 | // Eliminate the remaining using FM. |
| 714 | for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) { |
| 715 | tmpCst.fourierMotzkinEliminate( |
| 716 | pos: getBestVarToEliminate(cst: tmpCst, start: 0, end: tmpCst.getNumVars())); |
| 717 | // Check for a constraint explosion. This rarely happens in practice, but |
| 718 | // this check exists as a safeguard against improperly constructed |
| 719 | // constraint systems or artificially created arbitrarily complex systems |
| 720 | // that aren't the intended use case for IntegerRelation. This is |
| 721 | // needed since FM has a worst case exponential complexity in theory. |
| 722 | if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) { |
| 723 | LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n" ); |
| 724 | return false; |
| 725 | } |
| 726 | |
| 727 | // FM wouldn't have modified the equalities in any way. So no need to again |
| 728 | // run GCD test. Check for trivial invalid constraints. |
| 729 | if (tmpCst.hasInvalidConstraint()) |
| 730 | return true; |
| 731 | } |
| 732 | return false; |
| 733 | } |
| 734 | |
| 735 | bool IntegerRelation::isObviouslyEmpty() const { |
| 736 | return isEmptyByGCDTest() || hasInvalidConstraint(); |
| 737 | } |
| 738 | |
| 739 | // Runs the GCD test on all equality constraints. Returns 'true' if this test |
| 740 | // fails on any equality. Returns 'false' otherwise. |
| 741 | // This test can be used to disprove the existence of a solution. If it returns |
| 742 | // true, no integer solution to the equality constraints can exist. |
| 743 | // |
| 744 | // GCD test definition: |
| 745 | // |
| 746 | // The equality constraint: |
| 747 | // |
| 748 | // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0 |
| 749 | // |
| 750 | // has an integer solution iff: |
| 751 | // |
| 752 | // GCD of c_1, c_2, ..., c_n divides c_0. |
| 753 | bool IntegerRelation::isEmptyByGCDTest() const { |
| 754 | assert(hasConsistentState()); |
| 755 | unsigned numCols = getNumCols(); |
| 756 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
| 757 | DynamicAPInt gcd = abs(X: atEq(i, j: 0)); |
| 758 | for (unsigned j = 1; j < numCols - 1; ++j) { |
| 759 | gcd = llvm::gcd(A: gcd, B: abs(X: atEq(i, j))); |
| 760 | } |
| 761 | DynamicAPInt v = abs(X: atEq(i, j: numCols - 1)); |
| 762 | if (gcd > 0 && (v % gcd != 0)) { |
| 763 | return true; |
| 764 | } |
| 765 | } |
| 766 | return false; |
| 767 | } |
| 768 | |
| 769 | // Returns a matrix where each row is a vector along which the polytope is |
| 770 | // bounded. The span of the returned vectors is guaranteed to contain all |
| 771 | // such vectors. The returned vectors are NOT guaranteed to be linearly |
| 772 | // independent. This function should not be called on empty sets. |
| 773 | // |
| 774 | // It is sufficient to check the perpendiculars of the constraints, as the set |
| 775 | // of perpendiculars which are bounded must span all bounded directions. |
| 776 | IntMatrix IntegerRelation::getBoundedDirections() const { |
| 777 | // Note that it is necessary to add the equalities too (which the constructor |
| 778 | // does) even though we don't need to check if they are bounded; whether an |
| 779 | // inequality is bounded or not depends on what other constraints, including |
| 780 | // equalities, are present. |
| 781 | Simplex simplex(*this); |
| 782 | |
| 783 | assert(!simplex.isEmpty() && "It is not meaningful to ask whether a " |
| 784 | "direction is bounded in an empty set." ); |
| 785 | |
| 786 | SmallVector<unsigned, 8> boundedIneqs; |
| 787 | // The constructor adds the inequalities to the simplex first, so this |
| 788 | // processes all the inequalities. |
| 789 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
| 790 | if (simplex.isBoundedAlongConstraint(constraintIndex: i)) |
| 791 | boundedIneqs.emplace_back(Args&: i); |
| 792 | } |
| 793 | |
| 794 | // The direction vector is given by the coefficients and does not include the |
| 795 | // constant term, so the matrix has one fewer column. |
| 796 | unsigned dirsNumCols = getNumCols() - 1; |
| 797 | IntMatrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols); |
| 798 | |
| 799 | // Copy the bounded inequalities. |
| 800 | unsigned row = 0; |
| 801 | for (unsigned i : boundedIneqs) { |
| 802 | for (unsigned col = 0; col < dirsNumCols; ++col) |
| 803 | dirs(row, col) = atIneq(i, j: col); |
| 804 | ++row; |
| 805 | } |
| 806 | |
| 807 | // Copy the equalities. All the equalities' perpendiculars are bounded. |
| 808 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
| 809 | for (unsigned col = 0; col < dirsNumCols; ++col) |
| 810 | dirs(row, col) = atEq(i, j: col); |
| 811 | ++row; |
| 812 | } |
| 813 | |
| 814 | return dirs; |
| 815 | } |
| 816 | |
| 817 | bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); } |
| 818 | |
| 819 | /// Let this set be S. If S is bounded then we directly call into the GBR |
| 820 | /// sampling algorithm. Otherwise, there are some unbounded directions, i.e., |
| 821 | /// vectors v such that S extends to infinity along v or -v. In this case we |
| 822 | /// use an algorithm described in the integer set library (isl) manual and used |
| 823 | /// by the isl_set_sample function in that library. The algorithm is: |
| 824 | /// |
| 825 | /// 1) Apply a unimodular transform T to S to obtain S*T, such that all |
| 826 | /// dimensions in which S*T is bounded lie in the linear span of a prefix of the |
| 827 | /// dimensions. |
| 828 | /// |
| 829 | /// 2) Construct a set B by removing all constraints that involve |
| 830 | /// the unbounded dimensions and then deleting the unbounded dimensions. Note |
| 831 | /// that B is a Bounded set. |
| 832 | /// |
| 833 | /// 3) Try to obtain a sample from B using the GBR sampling |
| 834 | /// algorithm. If no sample is found, return that S is empty. |
| 835 | /// |
| 836 | /// 4) Otherwise, substitute the obtained sample into S*T to obtain a set |
| 837 | /// C. C is a full-dimensional Cone and always contains a sample. |
| 838 | /// |
| 839 | /// 5) Obtain an integer sample from C. |
| 840 | /// |
| 841 | /// 6) Return T*v, where v is the concatenation of the samples from B and C. |
| 842 | /// |
| 843 | /// The following is a sketch of a proof that |
| 844 | /// a) If the algorithm returns empty, then S is empty. |
| 845 | /// b) If the algorithm returns a sample, it is a valid sample in S. |
| 846 | /// |
| 847 | /// The algorithm returns empty only if B is empty, in which case S*T is |
| 848 | /// certainly empty since B was obtained by removing constraints and then |
| 849 | /// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector |
| 850 | /// v is in S*T iff T*v is in S. So in this case, since |
| 851 | /// S*T is empty, S is empty too. |
| 852 | /// |
| 853 | /// Otherwise, the algorithm substitutes the sample from B into S*T. All the |
| 854 | /// constraints of S*T that did not involve unbounded dimensions are satisfied |
| 855 | /// by this substitution. All dimensions in the linear span of the dimensions |
| 856 | /// outside the prefix are unbounded in S*T (step 1). Substituting values for |
| 857 | /// the bounded dimensions cannot make these dimensions bounded, and these are |
| 858 | /// the only remaining dimensions in C, so C is unbounded along every vector (in |
| 859 | /// the positive or negative direction, or both). C is hence a full-dimensional |
| 860 | /// cone and therefore always contains an integer point. |
| 861 | /// |
| 862 | /// Concatenating the samples from B and C gives a sample v in S*T, so the |
| 863 | /// returned sample T*v is a sample in S. |
| 864 | std::optional<SmallVector<DynamicAPInt, 8>> |
| 865 | IntegerRelation::findIntegerSample() const { |
| 866 | // First, try the GCD test heuristic. |
| 867 | if (isEmptyByGCDTest()) |
| 868 | return {}; |
| 869 | |
| 870 | Simplex simplex(*this); |
| 871 | if (simplex.isEmpty()) |
| 872 | return {}; |
| 873 | |
| 874 | // For a bounded set, we directly call into the GBR sampling algorithm. |
| 875 | if (!simplex.isUnbounded()) |
| 876 | return simplex.findIntegerSample(); |
| 877 | |
| 878 | // The set is unbounded. We cannot directly use the GBR algorithm. |
| 879 | // |
| 880 | // m is a matrix containing, in each row, a vector in which S is |
| 881 | // bounded, such that the linear span of all these dimensions contains all |
| 882 | // bounded dimensions in S. |
| 883 | IntMatrix m = getBoundedDirections(); |
| 884 | // In column echelon form, each row of m occupies only the first rank(m) |
| 885 | // columns and has zeros on the other columns. The transform T that brings S |
| 886 | // to column echelon form is unimodular as well, so this is a suitable |
| 887 | // transform to use in step 1 of the algorithm. |
| 888 | std::pair<unsigned, LinearTransform> result = |
| 889 | LinearTransform::makeTransformToColumnEchelon(m); |
| 890 | const LinearTransform &transform = result.second; |
| 891 | // 1) Apply T to S to obtain S*T. |
| 892 | IntegerRelation transformedSet = transform.applyTo(rel: *this); |
| 893 | |
| 894 | // 2) Remove the unbounded dimensions and constraints involving them to |
| 895 | // obtain a bounded set. |
| 896 | IntegerRelation boundedSet(transformedSet); |
| 897 | unsigned numBoundedDims = result.first; |
| 898 | unsigned numUnboundedDims = getNumVars() - numBoundedDims; |
| 899 | removeConstraintsInvolvingVarRange(poly&: boundedSet, begin: numBoundedDims, |
| 900 | count: numUnboundedDims); |
| 901 | boundedSet.removeVarRange(varStart: numBoundedDims, varLimit: boundedSet.getNumVars()); |
| 902 | |
| 903 | // 3) Try to obtain a sample from the bounded set. |
| 904 | std::optional<SmallVector<DynamicAPInt, 8>> boundedSample = |
| 905 | Simplex(boundedSet).findIntegerSample(); |
| 906 | if (!boundedSample) |
| 907 | return {}; |
| 908 | assert(boundedSet.containsPoint(*boundedSample) && |
| 909 | "Simplex returned an invalid sample!" ); |
| 910 | |
| 911 | // 4) Substitute the values of the bounded dimensions into S*T to obtain a |
| 912 | // full-dimensional cone, which necessarily contains an integer sample. |
| 913 | transformedSet.setAndEliminate(pos: 0, values: *boundedSample); |
| 914 | IntegerRelation &cone = transformedSet; |
| 915 | |
| 916 | // 5) Obtain an integer sample from the cone. |
| 917 | // |
| 918 | // We shrink the cone such that for any rational point in the shrunken cone, |
| 919 | // rounding up each of the point's coordinates produces a point that still |
| 920 | // lies in the original cone. |
| 921 | // |
| 922 | // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i. |
| 923 | // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the |
| 924 | // shrunken cone will have the inequality tightened by some amount s, such |
| 925 | // that if x satisfies the shrunken cone's tightened inequality, then x + e |
| 926 | // satisfies the original inequality, i.e., |
| 927 | // |
| 928 | // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0 |
| 929 | // |
| 930 | // for any e_i values in [0, 1). In fact, we will handle the slightly more |
| 931 | // general case where e_i can be in [0, 1]. For example, consider the |
| 932 | // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low |
| 933 | // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS |
| 934 | // is minimized when we add 1 to the x_i with negative coefficient a_i and |
| 935 | // keep the other x_i the same. In the example, we would get x = (3, 1, 1), |
| 936 | // changing the value of the LHS by -3 + -7 = -10. |
| 937 | // |
| 938 | // In general, the value of the LHS can change by at most the sum of the |
| 939 | // negative a_i, so we accomodate this by shifting the inequality by this |
| 940 | // amount for the shrunken cone. |
| 941 | for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) { |
| 942 | for (unsigned j = 0; j < cone.getNumVars(); ++j) { |
| 943 | DynamicAPInt coeff = cone.atIneq(i, j); |
| 944 | if (coeff < 0) |
| 945 | cone.atIneq(i, j: cone.getNumVars()) += coeff; |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | // Obtain an integer sample in the cone by rounding up a rational point from |
| 950 | // the shrunken cone. Shrinking the cone amounts to shifting its apex |
| 951 | // "inwards" without changing its "shape"; the shrunken cone is still a |
| 952 | // full-dimensional cone and is hence non-empty. |
| 953 | Simplex shrunkenConeSimplex(cone); |
| 954 | assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!" ); |
| 955 | |
| 956 | // The sample will always exist since the shrunken cone is non-empty. |
| 957 | SmallVector<Fraction, 8> shrunkenConeSample = |
| 958 | *shrunkenConeSimplex.getRationalSample(); |
| 959 | |
| 960 | SmallVector<DynamicAPInt, 8> coneSample( |
| 961 | llvm::map_range(C&: shrunkenConeSample, F: ceil)); |
| 962 | |
| 963 | // 6) Return transform * concat(boundedSample, coneSample). |
| 964 | SmallVector<DynamicAPInt, 8> &sample = *boundedSample; |
| 965 | sample.append(in_start: coneSample.begin(), in_end: coneSample.end()); |
| 966 | return transform.postMultiplyWithColumn(colVec: sample); |
| 967 | } |
| 968 | |
| 969 | /// Helper to evaluate an affine expression at a point. |
| 970 | /// The expression is a list of coefficients for the dimensions followed by the |
| 971 | /// constant term. |
| 972 | static DynamicAPInt valueAt(ArrayRef<DynamicAPInt> expr, |
| 973 | ArrayRef<DynamicAPInt> point) { |
| 974 | assert(expr.size() == 1 + point.size() && |
| 975 | "Dimensionalities of point and expression don't match!" ); |
| 976 | DynamicAPInt value = expr.back(); |
| 977 | for (unsigned i = 0; i < point.size(); ++i) |
| 978 | value += expr[i] * point[i]; |
| 979 | return value; |
| 980 | } |
| 981 | |
| 982 | /// A point satisfies an equality iff the value of the equality at the |
| 983 | /// expression is zero, and it satisfies an inequality iff the value of the |
| 984 | /// inequality at that point is non-negative. |
| 985 | bool IntegerRelation::containsPoint(ArrayRef<DynamicAPInt> point) const { |
| 986 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
| 987 | if (valueAt(expr: getEquality(idx: i), point) != 0) |
| 988 | return false; |
| 989 | } |
| 990 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
| 991 | if (valueAt(expr: getInequality(idx: i), point) < 0) |
| 992 | return false; |
| 993 | } |
| 994 | return true; |
| 995 | } |
| 996 | |
| 997 | /// Just substitute the values given and check if an integer sample exists for |
| 998 | /// the local vars. |
| 999 | /// |
| 1000 | /// TODO: this could be made more efficient by handling divisions separately. |
| 1001 | /// Instead of finding an integer sample over all the locals, we can first |
| 1002 | /// compute the values of the locals that have division representations and |
| 1003 | /// only use the integer emptiness check for the locals that don't have this. |
| 1004 | /// Handling this correctly requires ordering the divs, though. |
| 1005 | std::optional<SmallVector<DynamicAPInt, 8>> |
| 1006 | IntegerRelation::containsPointNoLocal(ArrayRef<DynamicAPInt> point) const { |
| 1007 | assert(point.size() == getNumVars() - getNumLocalVars() && |
| 1008 | "Point should contain all vars except locals!" ); |
| 1009 | assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() && |
| 1010 | "This function depends on locals being stored last!" ); |
| 1011 | IntegerRelation copy = *this; |
| 1012 | copy.setAndEliminate(pos: 0, values: point); |
| 1013 | return copy.findIntegerSample(); |
| 1014 | } |
| 1015 | |
| 1016 | DivisionRepr |
| 1017 | IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const { |
| 1018 | SmallVector<bool, 8> foundRepr(getNumVars(), false); |
| 1019 | for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) |
| 1020 | foundRepr[i] = true; |
| 1021 | |
| 1022 | unsigned localOffset = getVarKindOffset(kind: VarKind::Local); |
| 1023 | DivisionRepr divs(getNumVars(), getNumLocalVars()); |
| 1024 | bool changed; |
| 1025 | do { |
| 1026 | // Each time changed is true, at end of this iteration, one or more local |
| 1027 | // vars have been detected as floor divs. |
| 1028 | changed = false; |
| 1029 | for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) { |
| 1030 | if (!foundRepr[i + localOffset]) { |
| 1031 | MaybeLocalRepr res = |
| 1032 | computeSingleVarRepr(cst: *this, foundRepr, pos: localOffset + i, |
| 1033 | dividend: divs.getDividend(i), divisor&: divs.getDenom(i)); |
| 1034 | if (!res) { |
| 1035 | // No representation was found, so clear the representation and |
| 1036 | // continue. |
| 1037 | divs.clearRepr(i); |
| 1038 | continue; |
| 1039 | } |
| 1040 | foundRepr[localOffset + i] = true; |
| 1041 | if (repr) |
| 1042 | (*repr)[i] = res; |
| 1043 | changed = true; |
| 1044 | } |
| 1045 | } |
| 1046 | } while (changed); |
| 1047 | |
| 1048 | return divs; |
| 1049 | } |
| 1050 | |
| 1051 | /// Tightens inequalities given that we are dealing with integer spaces. This is |
| 1052 | /// analogous to the GCD test but applied to inequalities. The constant term can |
| 1053 | /// be reduced to the preceding multiple of the GCD of the coefficients, i.e., |
| 1054 | /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a |
| 1055 | /// fast method - linear in the number of coefficients. |
| 1056 | // Example on how this affects practical cases: consider the scenario: |
| 1057 | // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield |
| 1058 | // j >= 100 instead of the tighter (exact) j >= 128. |
| 1059 | void IntegerRelation::gcdTightenInequalities() { |
| 1060 | unsigned numCols = getNumCols(); |
| 1061 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
| 1062 | // Normalize the constraint and tighten the constant term by the GCD. |
| 1063 | DynamicAPInt gcd = inequalities.normalizeRow(row: i, nCols: getNumCols() - 1); |
| 1064 | if (gcd > 1) |
| 1065 | atIneq(i, j: numCols - 1) = floorDiv(LHS: atIneq(i, j: numCols - 1), RHS: gcd); |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | // Eliminates all variable variables in column range [posStart, posLimit). |
| 1070 | // Returns the number of variables eliminated. |
| 1071 | unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart, |
| 1072 | unsigned posLimit) { |
| 1073 | // Return if variable positions to eliminate are out of range. |
| 1074 | assert(posLimit <= getNumVars()); |
| 1075 | assert(hasConsistentState()); |
| 1076 | |
| 1077 | if (posStart >= posLimit) |
| 1078 | return 0; |
| 1079 | |
| 1080 | gcdTightenInequalities(); |
| 1081 | |
| 1082 | unsigned pivotCol = 0; |
| 1083 | for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) { |
| 1084 | // Find a row which has a non-zero coefficient in column 'j'. |
| 1085 | std::optional<unsigned> pivotRow = |
| 1086 | findConstraintWithNonZeroAt(colIdx: pivotCol, /*isEq=*/true); |
| 1087 | // No pivot row in equalities with non-zero at 'pivotCol'. |
| 1088 | if (!pivotRow) { |
| 1089 | // If inequalities are also non-zero in 'pivotCol', it can be eliminated. |
| 1090 | if ((pivotRow = findConstraintWithNonZeroAt(colIdx: pivotCol, /*isEq=*/false))) |
| 1091 | break; |
| 1092 | continue; |
| 1093 | } |
| 1094 | |
| 1095 | // Eliminate variable at 'pivotCol' from each equality row. |
| 1096 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
| 1097 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol, elimColStart: posStart, |
| 1098 | /*isEq=*/true); |
| 1099 | equalities.normalizeRow(row: i); |
| 1100 | } |
| 1101 | |
| 1102 | // Eliminate variable at 'pivotCol' from each inequality row. |
| 1103 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
| 1104 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol, elimColStart: posStart, |
| 1105 | /*isEq=*/false); |
| 1106 | inequalities.normalizeRow(row: i); |
| 1107 | } |
| 1108 | removeEquality(pos: *pivotRow); |
| 1109 | gcdTightenInequalities(); |
| 1110 | } |
| 1111 | // Update position limit based on number eliminated. |
| 1112 | posLimit = pivotCol; |
| 1113 | // Remove eliminated columns from all constraints. |
| 1114 | removeVarRange(varStart: posStart, varLimit: posLimit); |
| 1115 | return posLimit - posStart; |
| 1116 | } |
| 1117 | |
| 1118 | bool IntegerRelation::gaussianEliminate() { |
| 1119 | gcdTightenInequalities(); |
| 1120 | unsigned firstVar = 0, vars = getNumVars(); |
| 1121 | unsigned nowDone, eqs; |
| 1122 | std::optional<unsigned> pivotRow; |
| 1123 | for (nowDone = 0, eqs = getNumEqualities(); nowDone < eqs; ++nowDone) { |
| 1124 | // Finds the first non-empty column. |
| 1125 | for (; firstVar < vars; ++firstVar) { |
| 1126 | if ((pivotRow = findConstraintWithNonZeroAt(colIdx: firstVar, /*isEq=*/true))) |
| 1127 | break; |
| 1128 | } |
| 1129 | // The matrix has been normalized to row echelon form. |
| 1130 | if (firstVar >= vars) |
| 1131 | break; |
| 1132 | |
| 1133 | // The first pivot row found is below where it should currently be placed. |
| 1134 | if (*pivotRow > nowDone) { |
| 1135 | equalities.swapRows(row: *pivotRow, otherRow: nowDone); |
| 1136 | *pivotRow = nowDone; |
| 1137 | } |
| 1138 | |
| 1139 | // Normalize all lower equations and all inequalities. |
| 1140 | for (unsigned i = nowDone + 1; i < eqs; ++i) { |
| 1141 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol: firstVar, elimColStart: 0, isEq: true); |
| 1142 | equalities.normalizeRow(row: i); |
| 1143 | } |
| 1144 | for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) { |
| 1145 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol: firstVar, elimColStart: 0, isEq: false); |
| 1146 | inequalities.normalizeRow(row: i); |
| 1147 | } |
| 1148 | gcdTightenInequalities(); |
| 1149 | } |
| 1150 | |
| 1151 | // No redundant rows. |
| 1152 | if (nowDone == eqs) |
| 1153 | return false; |
| 1154 | |
| 1155 | // Check to see if the redundant rows constant is zero, a non-zero value means |
| 1156 | // the set is empty. |
| 1157 | for (unsigned i = nowDone; i < eqs; ++i) { |
| 1158 | if (atEq(i, j: vars) == 0) |
| 1159 | continue; |
| 1160 | |
| 1161 | *this = getEmpty(space: getSpace()); |
| 1162 | return true; |
| 1163 | } |
| 1164 | // Eliminate rows that are confined to be all zeros. |
| 1165 | removeEqualityRange(start: nowDone, end: eqs); |
| 1166 | return true; |
| 1167 | } |
| 1168 | |
| 1169 | // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin |
| 1170 | // to check if a constraint is redundant. |
| 1171 | void IntegerRelation::removeRedundantInequalities() { |
| 1172 | SmallVector<bool, 32> redun(getNumInequalities(), false); |
| 1173 | // To check if an inequality is redundant, we replace the inequality by its |
| 1174 | // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting |
| 1175 | // system is empty. If it is, the inequality is redundant. |
| 1176 | IntegerRelation tmpCst(*this); |
| 1177 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
| 1178 | // Change the inequality to its complement. |
| 1179 | tmpCst.inequalities.negateRow(row: r); |
| 1180 | --tmpCst.atIneq(i: r, j: tmpCst.getNumCols() - 1); |
| 1181 | if (tmpCst.isEmpty()) { |
| 1182 | redun[r] = true; |
| 1183 | // Zero fill the redundant inequality. |
| 1184 | inequalities.fillRow(row: r, /*value=*/0); |
| 1185 | tmpCst.inequalities.fillRow(row: r, /*value=*/0); |
| 1186 | } else { |
| 1187 | // Reverse the change (to avoid recreating tmpCst each time). |
| 1188 | ++tmpCst.atIneq(i: r, j: tmpCst.getNumCols() - 1); |
| 1189 | tmpCst.inequalities.negateRow(row: r); |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | unsigned pos = 0; |
| 1194 | for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) { |
| 1195 | if (!redun[r]) |
| 1196 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
| 1197 | } |
| 1198 | inequalities.resizeVertically(newNRows: pos); |
| 1199 | } |
| 1200 | |
| 1201 | // A more complex check to eliminate redundant inequalities and equalities. Uses |
| 1202 | // Simplex to check if a constraint is redundant. |
| 1203 | void IntegerRelation::removeRedundantConstraints() { |
| 1204 | // First, we run gcdTightenInequalities. This allows us to catch some |
| 1205 | // constraints which are not redundant when considering rational solutions |
| 1206 | // but are redundant in terms of integer solutions. |
| 1207 | gcdTightenInequalities(); |
| 1208 | Simplex simplex(*this); |
| 1209 | simplex.detectRedundant(); |
| 1210 | |
| 1211 | unsigned pos = 0; |
| 1212 | unsigned numIneqs = getNumInequalities(); |
| 1213 | // Scan to get rid of all inequalities marked redundant, in-place. In Simplex, |
| 1214 | // the first constraints added are the inequalities. |
| 1215 | for (unsigned r = 0; r < numIneqs; r++) { |
| 1216 | if (!simplex.isMarkedRedundant(constraintIndex: r)) |
| 1217 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
| 1218 | } |
| 1219 | inequalities.resizeVertically(newNRows: pos); |
| 1220 | |
| 1221 | // Scan to get rid of all equalities marked redundant, in-place. In Simplex, |
| 1222 | // after the inequalities, a pair of constraints for each equality is added. |
| 1223 | // An equality is redundant if both the inequalities in its pair are |
| 1224 | // redundant. |
| 1225 | pos = 0; |
| 1226 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
| 1227 | if (!(simplex.isMarkedRedundant(constraintIndex: numIneqs + 2 * r) && |
| 1228 | simplex.isMarkedRedundant(constraintIndex: numIneqs + 2 * r + 1))) |
| 1229 | equalities.copyRow(sourceRow: r, targetRow: pos++); |
| 1230 | } |
| 1231 | equalities.resizeVertically(newNRows: pos); |
| 1232 | } |
| 1233 | |
| 1234 | std::optional<DynamicAPInt> IntegerRelation::computeVolume() const { |
| 1235 | assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!" ); |
| 1236 | |
| 1237 | Simplex simplex(*this); |
| 1238 | // If the polytope is rationally empty, there are certainly no integer |
| 1239 | // points. |
| 1240 | if (simplex.isEmpty()) |
| 1241 | return DynamicAPInt(0); |
| 1242 | |
| 1243 | // Just find the maximum and minimum integer value of each non-local var |
| 1244 | // separately, thus finding the number of integer values each such var can |
| 1245 | // take. Multiplying these together gives a valid overapproximation of the |
| 1246 | // number of integer points in the relation. The result this gives is |
| 1247 | // equivalent to projecting (rationally) the relation onto its non-local vars |
| 1248 | // and returning the number of integer points in a minimal axis-parallel |
| 1249 | // hyperrectangular overapproximation of that. |
| 1250 | // |
| 1251 | // We also handle the special case where one dimension is unbounded and |
| 1252 | // another dimension can take no integer values. In this case, the volume is |
| 1253 | // zero. |
| 1254 | // |
| 1255 | // If there is no such empty dimension, if any dimension is unbounded we |
| 1256 | // just return the result as unbounded. |
| 1257 | DynamicAPInt count(1); |
| 1258 | SmallVector<DynamicAPInt, 8> dim(getNumVars() + 1); |
| 1259 | bool hasUnboundedVar = false; |
| 1260 | for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) { |
| 1261 | dim[i] = 1; |
| 1262 | auto [min, max] = simplex.computeIntegerBounds(coeffs: dim); |
| 1263 | dim[i] = 0; |
| 1264 | |
| 1265 | assert((!min.isEmpty() && !max.isEmpty()) && |
| 1266 | "Polytope should be rationally non-empty!" ); |
| 1267 | |
| 1268 | // One of the dimensions is unbounded. Note this fact. We will return |
| 1269 | // unbounded if none of the other dimensions makes the volume zero. |
| 1270 | if (min.isUnbounded() || max.isUnbounded()) { |
| 1271 | hasUnboundedVar = true; |
| 1272 | continue; |
| 1273 | } |
| 1274 | |
| 1275 | // In this case there are no valid integer points and the volume is |
| 1276 | // definitely zero. |
| 1277 | if (min.getBoundedOptimum() > max.getBoundedOptimum()) |
| 1278 | return DynamicAPInt(0); |
| 1279 | |
| 1280 | count *= (*max - *min + 1); |
| 1281 | } |
| 1282 | |
| 1283 | if (count == 0) |
| 1284 | return DynamicAPInt(0); |
| 1285 | if (hasUnboundedVar) |
| 1286 | return {}; |
| 1287 | return count; |
| 1288 | } |
| 1289 | |
| 1290 | void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) { |
| 1291 | assert(posA < getNumLocalVars() && "Invalid local var position" ); |
| 1292 | assert(posB < getNumLocalVars() && "Invalid local var position" ); |
| 1293 | |
| 1294 | unsigned localOffset = getVarKindOffset(kind: VarKind::Local); |
| 1295 | posA += localOffset; |
| 1296 | posB += localOffset; |
| 1297 | inequalities.addToColumn(sourceColumn: posB, targetColumn: posA, scale: 1); |
| 1298 | equalities.addToColumn(sourceColumn: posB, targetColumn: posA, scale: 1); |
| 1299 | removeVar(pos: posB); |
| 1300 | } |
| 1301 | |
| 1302 | /// mergeAndAlignSymbols's implementation can be broken down into two steps: |
| 1303 | /// 1. Merge and align identifiers into `other` from `this. If an identifier |
| 1304 | /// from `this` exists in `other` then we align it. Otherwise, we assume it is a |
| 1305 | /// new identifier and insert it into `other` in the same position as `this`. |
| 1306 | /// 2. Add identifiers that are in `other` but not `this to `this`. |
| 1307 | void IntegerRelation::mergeAndAlignSymbols(IntegerRelation &other) { |
| 1308 | assert(space.isUsingIds() && other.space.isUsingIds() && |
| 1309 | "both relations need to have identifers to merge and align" ); |
| 1310 | |
| 1311 | unsigned i = 0; |
| 1312 | for (const Identifier identifier : space.getIds(kind: VarKind::Symbol)) { |
| 1313 | // Search in `other` starting at position `i` since the left of `i` is |
| 1314 | // aligned. |
| 1315 | const Identifier *findBegin = |
| 1316 | other.space.getIds(kind: VarKind::Symbol).begin() + i; |
| 1317 | const Identifier *findEnd = other.space.getIds(kind: VarKind::Symbol).end(); |
| 1318 | const Identifier *itr = std::find(first: findBegin, last: findEnd, val: identifier); |
| 1319 | if (itr != findEnd) { |
| 1320 | other.swapVar(posA: other.getVarKindOffset(kind: VarKind::Symbol) + i, |
| 1321 | posB: other.getVarKindOffset(kind: VarKind::Symbol) + i + |
| 1322 | std::distance(first: findBegin, last: itr)); |
| 1323 | } else { |
| 1324 | other.insertVar(kind: VarKind::Symbol, pos: i); |
| 1325 | other.space.setId(kind: VarKind::Symbol, pos: i, id: identifier); |
| 1326 | } |
| 1327 | ++i; |
| 1328 | } |
| 1329 | |
| 1330 | for (unsigned e = other.getNumVarKind(kind: VarKind::Symbol); i < e; ++i) { |
| 1331 | insertVar(kind: VarKind::Symbol, pos: i); |
| 1332 | space.setId(kind: VarKind::Symbol, pos: i, id: other.space.getId(kind: VarKind::Symbol, pos: i)); |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | /// Adds additional local ids to the sets such that they both have the union |
| 1337 | /// of the local ids in each set, without changing the set of points that |
| 1338 | /// lie in `this` and `other`. |
| 1339 | /// |
| 1340 | /// To detect local ids that always take the same value, each local id is |
| 1341 | /// represented as a floordiv with constant denominator in terms of other ids. |
| 1342 | /// After extracting these divisions, local ids in `other` with the same |
| 1343 | /// division representation as some other local id in any set are considered |
| 1344 | /// duplicate and are merged. |
| 1345 | /// |
| 1346 | /// It is possible that division representation for some local id cannot be |
| 1347 | /// obtained, and thus these local ids are not considered for detecting |
| 1348 | /// duplicates. |
| 1349 | unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) { |
| 1350 | IntegerRelation &relA = *this; |
| 1351 | IntegerRelation &relB = other; |
| 1352 | |
| 1353 | unsigned oldALocals = relA.getNumLocalVars(); |
| 1354 | |
| 1355 | // Merge function that merges the local variables in both sets by treating |
| 1356 | // them as the same variable. |
| 1357 | auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool { |
| 1358 | // We only merge from local at pos j to local at pos i, where j > i. |
| 1359 | if (i >= j) |
| 1360 | return false; |
| 1361 | |
| 1362 | // If i < oldALocals, we are trying to merge duplicate divs. Since we do not |
| 1363 | // want to merge duplicates in A, we ignore this call. |
| 1364 | if (j < oldALocals) |
| 1365 | return false; |
| 1366 | |
| 1367 | // Merge local at pos j into local at position i. |
| 1368 | relA.eliminateRedundantLocalVar(posA: i, posB: j); |
| 1369 | relB.eliminateRedundantLocalVar(posA: i, posB: j); |
| 1370 | return true; |
| 1371 | }; |
| 1372 | |
| 1373 | presburger::mergeLocalVars(relA&: *this, relB&: other, merge); |
| 1374 | |
| 1375 | // Since we do not remove duplicate divisions in relA, this is guranteed to be |
| 1376 | // non-negative. |
| 1377 | return relA.getNumLocalVars() - oldALocals; |
| 1378 | } |
| 1379 | |
| 1380 | bool IntegerRelation::hasOnlyDivLocals() const { |
| 1381 | return getLocalReprs().hasAllReprs(); |
| 1382 | } |
| 1383 | |
| 1384 | void IntegerRelation::removeDuplicateDivs() { |
| 1385 | DivisionRepr divs = getLocalReprs(); |
| 1386 | auto merge = [this](unsigned i, unsigned j) -> bool { |
| 1387 | eliminateRedundantLocalVar(posA: i, posB: j); |
| 1388 | return true; |
| 1389 | }; |
| 1390 | divs.removeDuplicateDivs(merge); |
| 1391 | } |
| 1392 | |
| 1393 | void IntegerRelation::simplify() { |
| 1394 | bool changed = true; |
| 1395 | // Repeat until we reach a fixed point. |
| 1396 | while (changed) { |
| 1397 | if (isObviouslyEmpty()) |
| 1398 | return; |
| 1399 | changed = false; |
| 1400 | normalizeConstraintsByGCD(); |
| 1401 | changed |= gaussianEliminate(); |
| 1402 | changed |= removeDuplicateConstraints(); |
| 1403 | } |
| 1404 | // Current set is not empty. |
| 1405 | } |
| 1406 | |
| 1407 | /// Removes local variables using equalities. Each equality is checked if it |
| 1408 | /// can be reduced to the form: `e = affine-expr`, where `e` is a local |
| 1409 | /// variable and `affine-expr` is an affine expression not containing `e`. |
| 1410 | /// If an equality satisfies this form, the local variable is replaced in |
| 1411 | /// each constraint and then removed. The equality used to replace this local |
| 1412 | /// variable is also removed. |
| 1413 | void IntegerRelation::removeRedundantLocalVars() { |
| 1414 | // Normalize the equality constraints to reduce coefficients of local |
| 1415 | // variables to 1 wherever possible. |
| 1416 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
| 1417 | equalities.normalizeRow(row: i); |
| 1418 | |
| 1419 | while (true) { |
| 1420 | unsigned i, e, j, f; |
| 1421 | for (i = 0, e = getNumEqualities(); i < e; ++i) { |
| 1422 | // Find a local variable to eliminate using ith equality. |
| 1423 | for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j) |
| 1424 | if (abs(X: atEq(i, j)) == 1) |
| 1425 | break; |
| 1426 | |
| 1427 | // Local variable can be eliminated using ith equality. |
| 1428 | if (j < f) |
| 1429 | break; |
| 1430 | } |
| 1431 | |
| 1432 | // No equality can be used to eliminate a local variable. |
| 1433 | if (i == e) |
| 1434 | break; |
| 1435 | |
| 1436 | // Use the ith equality to simplify other equalities. If any changes |
| 1437 | // are made to an equality constraint, it is normalized by GCD. |
| 1438 | for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) { |
| 1439 | if (atEq(i: k, j) != 0) { |
| 1440 | eliminateFromConstraint(constraints: this, rowIdx: k, pivotRow: i, pivotCol: j, elimColStart: j, /*isEq=*/true); |
| 1441 | equalities.normalizeRow(row: k); |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | // Use the ith equality to simplify inequalities. |
| 1446 | for (unsigned k = 0, t = getNumInequalities(); k < t; ++k) |
| 1447 | eliminateFromConstraint(constraints: this, rowIdx: k, pivotRow: i, pivotCol: j, elimColStart: j, /*isEq=*/false); |
| 1448 | |
| 1449 | // Remove the ith equality and the found local variable. |
| 1450 | removeVar(pos: j); |
| 1451 | removeEquality(pos: i); |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart, |
| 1456 | unsigned varLimit, VarKind dstKind, |
| 1457 | unsigned pos) { |
| 1458 | assert(varLimit <= getNumVarKind(srcKind) && "invalid id range" ); |
| 1459 | |
| 1460 | if (varStart >= varLimit) |
| 1461 | return; |
| 1462 | |
| 1463 | unsigned srcOffset = getVarKindOffset(kind: srcKind); |
| 1464 | unsigned dstOffset = getVarKindOffset(kind: dstKind); |
| 1465 | unsigned convertCount = varLimit - varStart; |
| 1466 | int forwardMoveOffset = dstOffset > srcOffset ? -convertCount : 0; |
| 1467 | |
| 1468 | equalities.moveColumns(srcPos: srcOffset + varStart, num: convertCount, |
| 1469 | dstPos: dstOffset + pos + forwardMoveOffset); |
| 1470 | inequalities.moveColumns(srcPos: srcOffset + varStart, num: convertCount, |
| 1471 | dstPos: dstOffset + pos + forwardMoveOffset); |
| 1472 | |
| 1473 | space.convertVarKind(srcKind, srcPos: varStart, num: varLimit - varStart, dstKind, dstPos: pos); |
| 1474 | } |
| 1475 | |
| 1476 | void IntegerRelation::addBound(BoundType type, unsigned pos, |
| 1477 | const DynamicAPInt &value) { |
| 1478 | assert(pos < getNumCols()); |
| 1479 | if (type == BoundType::EQ) { |
| 1480 | unsigned row = equalities.appendExtraRow(); |
| 1481 | equalities(row, pos) = 1; |
| 1482 | equalities(row, getNumCols() - 1) = -value; |
| 1483 | } else { |
| 1484 | unsigned row = inequalities.appendExtraRow(); |
| 1485 | inequalities(row, pos) = type == BoundType::LB ? 1 : -1; |
| 1486 | inequalities(row, getNumCols() - 1) = |
| 1487 | type == BoundType::LB ? -value : value; |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | void IntegerRelation::addBound(BoundType type, ArrayRef<DynamicAPInt> expr, |
| 1492 | const DynamicAPInt &value) { |
| 1493 | assert(type != BoundType::EQ && "EQ not implemented" ); |
| 1494 | assert(expr.size() == getNumCols()); |
| 1495 | unsigned row = inequalities.appendExtraRow(); |
| 1496 | for (unsigned i = 0, e = expr.size(); i < e; ++i) |
| 1497 | inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i]; |
| 1498 | inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) += |
| 1499 | type == BoundType::LB ? -value : value; |
| 1500 | } |
| 1501 | |
| 1502 | /// Adds a new local variable as the floordiv of an affine function of other |
| 1503 | /// variables, the coefficients of which are provided in 'dividend' and with |
| 1504 | /// respect to a positive constant 'divisor'. Two constraints are added to the |
| 1505 | /// system to capture equivalence with the floordiv. |
| 1506 | /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1. |
| 1507 | void IntegerRelation::addLocalFloorDiv(ArrayRef<DynamicAPInt> dividend, |
| 1508 | const DynamicAPInt &divisor) { |
| 1509 | assert(dividend.size() == getNumCols() && "incorrect dividend size" ); |
| 1510 | assert(divisor > 0 && "positive divisor expected" ); |
| 1511 | |
| 1512 | appendVar(kind: VarKind::Local); |
| 1513 | |
| 1514 | SmallVector<DynamicAPInt, 8> dividendCopy(dividend); |
| 1515 | dividendCopy.insert(I: dividendCopy.end() - 1, Elt: DynamicAPInt(0)); |
| 1516 | addInequality( |
| 1517 | inEq: getDivLowerBound(dividend: dividendCopy, divisor, localVarIdx: dividendCopy.size() - 2)); |
| 1518 | addInequality( |
| 1519 | inEq: getDivUpperBound(dividend: dividendCopy, divisor, localVarIdx: dividendCopy.size() - 2)); |
| 1520 | } |
| 1521 | |
| 1522 | int IntegerRelation::findEqualityToConstant(unsigned pos, bool symbolic) const { |
| 1523 | assert(pos < getNumVars() && "invalid position" ); |
| 1524 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
| 1525 | DynamicAPInt v = atEq(i: r, j: pos); |
| 1526 | if (v * v != 1) |
| 1527 | continue; |
| 1528 | unsigned c; |
| 1529 | unsigned f = symbolic ? getNumDimVars() : getNumVars(); |
| 1530 | // This checks for zeros in all positions other than 'pos' in [0, f) |
| 1531 | for (c = 0; c < f; c++) { |
| 1532 | if (c == pos) |
| 1533 | continue; |
| 1534 | if (atEq(i: r, j: c) != 0) { |
| 1535 | // Dependent on another variable. |
| 1536 | break; |
| 1537 | } |
| 1538 | } |
| 1539 | if (c == f) |
| 1540 | // Equality is free of other variables. |
| 1541 | return r; |
| 1542 | } |
| 1543 | return -1; |
| 1544 | } |
| 1545 | |
| 1546 | LogicalResult IntegerRelation::constantFoldVar(unsigned pos) { |
| 1547 | assert(pos < getNumVars() && "invalid position" ); |
| 1548 | int rowIdx; |
| 1549 | if ((rowIdx = findEqualityToConstant(pos)) == -1) |
| 1550 | return failure(); |
| 1551 | |
| 1552 | // atEq(rowIdx, pos) is either -1 or 1. |
| 1553 | assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1); |
| 1554 | DynamicAPInt constVal = -atEq(i: rowIdx, j: getNumCols() - 1) / atEq(i: rowIdx, j: pos); |
| 1555 | setAndEliminate(pos, values: constVal); |
| 1556 | return success(); |
| 1557 | } |
| 1558 | |
| 1559 | void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) { |
| 1560 | for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) { |
| 1561 | if (constantFoldVar(pos: t).failed()) |
| 1562 | t++; |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | /// Returns a non-negative constant bound on the extent (upper bound - lower |
| 1567 | /// bound) of the specified variable if it is found to be a constant; returns |
| 1568 | /// std::nullopt if it's not a constant. This methods treats symbolic variables |
| 1569 | /// specially, i.e., it looks for constant differences between affine |
| 1570 | /// expressions involving only the symbolic variables. See comments at function |
| 1571 | /// definition for example. 'lb', if provided, is set to the lower bound |
| 1572 | /// associated with the constant difference. Note that 'lb' is purely symbolic |
| 1573 | /// and thus will contain the coefficients of the symbolic variables and the |
| 1574 | /// constant coefficient. |
| 1575 | // Egs: 0 <= i <= 15, return 16. |
| 1576 | // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol) |
| 1577 | // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16. |
| 1578 | // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb = |
| 1579 | // ceil(s0 - 7 / 8) = floor(s0 / 8)). |
| 1580 | std::optional<DynamicAPInt> IntegerRelation::getConstantBoundOnDimSize( |
| 1581 | unsigned pos, SmallVectorImpl<DynamicAPInt> *lb, |
| 1582 | DynamicAPInt *boundFloorDivisor, SmallVectorImpl<DynamicAPInt> *ub, |
| 1583 | unsigned *minLbPos, unsigned *minUbPos) const { |
| 1584 | assert(pos < getNumDimVars() && "Invalid variable position" ); |
| 1585 | |
| 1586 | // Find an equality for 'pos'^th variable that equates it to some function |
| 1587 | // of the symbolic variables (+ constant). |
| 1588 | int eqPos = findEqualityToConstant(pos, /*symbolic=*/true); |
| 1589 | if (eqPos != -1) { |
| 1590 | auto eq = getEquality(idx: eqPos); |
| 1591 | // If the equality involves a local var, we do not handle it. |
| 1592 | // FlatLinearConstraints can instead be used to detect the local variable as |
| 1593 | // an affine function (potentially div/mod) of other variables and use |
| 1594 | // affine expressions/maps to represent output. |
| 1595 | if (!std::all_of(first: eq.begin() + getNumDimAndSymbolVars(), last: eq.end() - 1, |
| 1596 | pred: [](const DynamicAPInt &coeff) { return coeff == 0; })) |
| 1597 | return std::nullopt; |
| 1598 | |
| 1599 | // This variable can only take a single value. |
| 1600 | if (lb) { |
| 1601 | // Set lb to that symbolic value. |
| 1602 | lb->resize(N: getNumSymbolVars() + 1); |
| 1603 | if (ub) |
| 1604 | ub->resize(N: getNumSymbolVars() + 1); |
| 1605 | for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) { |
| 1606 | DynamicAPInt v = atEq(i: eqPos, j: pos); |
| 1607 | // atEq(eqRow, pos) is either -1 or 1. |
| 1608 | assert(v * v == 1); |
| 1609 | (*lb)[c] = v < 0 ? atEq(i: eqPos, j: getNumDimVars() + c) / -v |
| 1610 | : -atEq(i: eqPos, j: getNumDimVars() + c) / v; |
| 1611 | // Since this is an equality, ub = lb. |
| 1612 | if (ub) |
| 1613 | (*ub)[c] = (*lb)[c]; |
| 1614 | } |
| 1615 | assert(boundFloorDivisor && |
| 1616 | "both lb and divisor or none should be provided" ); |
| 1617 | *boundFloorDivisor = 1; |
| 1618 | } |
| 1619 | if (minLbPos) |
| 1620 | *minLbPos = eqPos; |
| 1621 | if (minUbPos) |
| 1622 | *minUbPos = eqPos; |
| 1623 | return DynamicAPInt(1); |
| 1624 | } |
| 1625 | |
| 1626 | // Check if the variable appears at all in any of the inequalities. |
| 1627 | unsigned r, e; |
| 1628 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
| 1629 | if (atIneq(i: r, j: pos) != 0) |
| 1630 | break; |
| 1631 | } |
| 1632 | if (r == e) |
| 1633 | // If it doesn't, there isn't a bound on it. |
| 1634 | return std::nullopt; |
| 1635 | |
| 1636 | // Positions of constraints that are lower/upper bounds on the variable. |
| 1637 | SmallVector<unsigned, 4> lbIndices, ubIndices; |
| 1638 | |
| 1639 | // Gather all symbolic lower bounds and upper bounds of the variable, i.e., |
| 1640 | // the bounds can only involve symbolic (and local) variables. Since the |
| 1641 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
| 1642 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
| 1643 | getLowerAndUpperBoundIndices(pos, lbIndices: &lbIndices, ubIndices: &ubIndices, |
| 1644 | /*eqIndices=*/nullptr, /*offset=*/0, |
| 1645 | /*num=*/getNumDimVars()); |
| 1646 | |
| 1647 | std::optional<DynamicAPInt> minDiff; |
| 1648 | unsigned minLbPosition = 0, minUbPosition = 0; |
| 1649 | for (auto ubPos : ubIndices) { |
| 1650 | for (auto lbPos : lbIndices) { |
| 1651 | // Look for a lower bound and an upper bound that only differ by a |
| 1652 | // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst. |
| 1653 | // For example, if ii is the pos^th variable, we are looking for |
| 1654 | // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The |
| 1655 | // minimum among all such constant differences is kept since that's the |
| 1656 | // constant bounding the extent of the pos^th variable. |
| 1657 | unsigned j, e; |
| 1658 | for (j = 0, e = getNumCols() - 1; j < e; j++) |
| 1659 | if (atIneq(i: ubPos, j) != -atIneq(i: lbPos, j)) { |
| 1660 | break; |
| 1661 | } |
| 1662 | if (j < getNumCols() - 1) |
| 1663 | continue; |
| 1664 | DynamicAPInt diff = ceilDiv(LHS: atIneq(i: ubPos, j: getNumCols() - 1) + |
| 1665 | atIneq(i: lbPos, j: getNumCols() - 1) + 1, |
| 1666 | RHS: atIneq(i: lbPos, j: pos)); |
| 1667 | // This bound is non-negative by definition. |
| 1668 | diff = std::max<DynamicAPInt>(a: diff, b: DynamicAPInt(0)); |
| 1669 | if (minDiff == std::nullopt || diff < minDiff) { |
| 1670 | minDiff = diff; |
| 1671 | minLbPosition = lbPos; |
| 1672 | minUbPosition = ubPos; |
| 1673 | } |
| 1674 | } |
| 1675 | } |
| 1676 | if (lb && minDiff) { |
| 1677 | // Set lb to the symbolic lower bound. |
| 1678 | lb->resize(N: getNumSymbolVars() + 1); |
| 1679 | if (ub) |
| 1680 | ub->resize(N: getNumSymbolVars() + 1); |
| 1681 | // The lower bound is the ceildiv of the lb constraint over the coefficient |
| 1682 | // of the variable at 'pos'. We express the ceildiv equivalently as a floor |
| 1683 | // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N + |
| 1684 | // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32). |
| 1685 | *boundFloorDivisor = atIneq(i: minLbPosition, j: pos); |
| 1686 | assert(*boundFloorDivisor == -atIneq(minUbPosition, pos)); |
| 1687 | for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) { |
| 1688 | (*lb)[c] = -atIneq(i: minLbPosition, j: getNumDimVars() + c); |
| 1689 | } |
| 1690 | if (ub) { |
| 1691 | for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) |
| 1692 | (*ub)[c] = atIneq(i: minUbPosition, j: getNumDimVars() + c); |
| 1693 | } |
| 1694 | // The lower bound leads to a ceildiv while the upper bound is a floordiv |
| 1695 | // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val + |
| 1696 | // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to |
| 1697 | // the constant term for the lower bound. |
| 1698 | (*lb)[getNumSymbolVars()] += atIneq(i: minLbPosition, j: pos) - 1; |
| 1699 | } |
| 1700 | if (minLbPos) |
| 1701 | *minLbPos = minLbPosition; |
| 1702 | if (minUbPos) |
| 1703 | *minUbPos = minUbPosition; |
| 1704 | return minDiff; |
| 1705 | } |
| 1706 | |
| 1707 | template <bool isLower> |
| 1708 | std::optional<DynamicAPInt> |
| 1709 | IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) { |
| 1710 | assert(pos < getNumVars() && "invalid position" ); |
| 1711 | // Project to 'pos'. |
| 1712 | projectOut(pos: 0, num: pos); |
| 1713 | projectOut(pos: 1, num: getNumVars() - 1); |
| 1714 | // Check if there's an equality equating the '0'^th variable to a constant. |
| 1715 | int eqRowIdx = findEqualityToConstant(/*pos=*/0, /*symbolic=*/false); |
| 1716 | if (eqRowIdx != -1) |
| 1717 | // atEq(rowIdx, 0) is either -1 or 1. |
| 1718 | return -atEq(i: eqRowIdx, j: getNumCols() - 1) / atEq(i: eqRowIdx, j: 0); |
| 1719 | |
| 1720 | // Check if the variable appears at all in any of the inequalities. |
| 1721 | unsigned r, e; |
| 1722 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
| 1723 | if (atIneq(i: r, j: 0) != 0) |
| 1724 | break; |
| 1725 | } |
| 1726 | if (r == e) |
| 1727 | // If it doesn't, there isn't a bound on it. |
| 1728 | return std::nullopt; |
| 1729 | |
| 1730 | std::optional<DynamicAPInt> minOrMaxConst; |
| 1731 | |
| 1732 | // Take the max across all const lower bounds (or min across all constant |
| 1733 | // upper bounds). |
| 1734 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
| 1735 | if (isLower) { |
| 1736 | if (atIneq(i: r, j: 0) <= 0) |
| 1737 | // Not a lower bound. |
| 1738 | continue; |
| 1739 | } else if (atIneq(i: r, j: 0) >= 0) { |
| 1740 | // Not an upper bound. |
| 1741 | continue; |
| 1742 | } |
| 1743 | unsigned c, f; |
| 1744 | for (c = 0, f = getNumCols() - 1; c < f; c++) |
| 1745 | if (c != 0 && atIneq(i: r, j: c) != 0) |
| 1746 | break; |
| 1747 | if (c < getNumCols() - 1) |
| 1748 | // Not a constant bound. |
| 1749 | continue; |
| 1750 | |
| 1751 | DynamicAPInt boundConst = |
| 1752 | isLower ? ceilDiv(LHS: -atIneq(i: r, j: getNumCols() - 1), RHS: atIneq(i: r, j: 0)) |
| 1753 | : floorDiv(LHS: atIneq(i: r, j: getNumCols() - 1), RHS: -atIneq(i: r, j: 0)); |
| 1754 | if (isLower) { |
| 1755 | if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst) |
| 1756 | minOrMaxConst = boundConst; |
| 1757 | } else { |
| 1758 | if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst) |
| 1759 | minOrMaxConst = boundConst; |
| 1760 | } |
| 1761 | } |
| 1762 | return minOrMaxConst; |
| 1763 | } |
| 1764 | |
| 1765 | std::optional<DynamicAPInt> |
| 1766 | IntegerRelation::getConstantBound(BoundType type, unsigned pos) const { |
| 1767 | if (type == BoundType::LB) |
| 1768 | return IntegerRelation(*this) |
| 1769 | .computeConstantLowerOrUpperBound</*isLower=*/true>(pos); |
| 1770 | if (type == BoundType::UB) |
| 1771 | return IntegerRelation(*this) |
| 1772 | .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
| 1773 | |
| 1774 | assert(type == BoundType::EQ && "expected EQ" ); |
| 1775 | std::optional<DynamicAPInt> lb = |
| 1776 | IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>( |
| 1777 | pos); |
| 1778 | std::optional<DynamicAPInt> ub = |
| 1779 | IntegerRelation(*this) |
| 1780 | .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
| 1781 | return (lb && ub && *lb == *ub) ? std::optional<DynamicAPInt>(*ub) |
| 1782 | : std::nullopt; |
| 1783 | } |
| 1784 | |
| 1785 | // A simple (naive and conservative) check for hyper-rectangularity. |
| 1786 | bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const { |
| 1787 | assert(pos < getNumCols() - 1); |
| 1788 | // Check for two non-zero coefficients in the range [pos, pos + sum). |
| 1789 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
| 1790 | unsigned sum = 0; |
| 1791 | for (unsigned c = pos; c < pos + num; c++) { |
| 1792 | if (atIneq(i: r, j: c) != 0) |
| 1793 | sum++; |
| 1794 | } |
| 1795 | if (sum > 1) |
| 1796 | return false; |
| 1797 | } |
| 1798 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
| 1799 | unsigned sum = 0; |
| 1800 | for (unsigned c = pos; c < pos + num; c++) { |
| 1801 | if (atEq(i: r, j: c) != 0) |
| 1802 | sum++; |
| 1803 | } |
| 1804 | if (sum > 1) |
| 1805 | return false; |
| 1806 | } |
| 1807 | return true; |
| 1808 | } |
| 1809 | |
| 1810 | /// Removes duplicate constraints, trivially true constraints, and constraints |
| 1811 | /// that can be detected as redundant as a result of differing only in their |
| 1812 | /// constant term part. A constraint of the form <non-negative constant> >= 0 is |
| 1813 | /// considered trivially true. |
| 1814 | // Uses a DenseSet to hash and detect duplicates followed by a linear scan to |
| 1815 | // remove duplicates in place. |
| 1816 | void IntegerRelation::removeTrivialRedundancy() { |
| 1817 | gcdTightenInequalities(); |
| 1818 | normalizeConstraintsByGCD(); |
| 1819 | |
| 1820 | // A map used to detect redundancy stemming from constraints that only differ |
| 1821 | // in their constant term. The value stored is <row position, const term> |
| 1822 | // for a given row. |
| 1823 | SmallDenseMap<ArrayRef<DynamicAPInt>, std::pair<unsigned, DynamicAPInt>> |
| 1824 | rowsWithoutConstTerm; |
| 1825 | |
| 1826 | // Check if constraint is of the form <non-negative-constant> >= 0. |
| 1827 | auto isTriviallyValid = [&](unsigned r) -> bool { |
| 1828 | for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) { |
| 1829 | if (atIneq(i: r, j: c) != 0) |
| 1830 | return false; |
| 1831 | } |
| 1832 | return atIneq(i: r, j: getNumCols() - 1) >= 0; |
| 1833 | }; |
| 1834 | |
| 1835 | // Detect and mark redundant constraints. |
| 1836 | SmallVector<bool, 256> redunIneq(getNumInequalities(), false); |
| 1837 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
| 1838 | DynamicAPInt *rowStart = &inequalities(r, 0); |
| 1839 | if (isTriviallyValid(r)) { |
| 1840 | redunIneq[r] = true; |
| 1841 | continue; |
| 1842 | } |
| 1843 | |
| 1844 | // Among constraints that only differ in the constant term part, mark |
| 1845 | // everything other than the one with the smallest constant term redundant. |
| 1846 | // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the |
| 1847 | // former two are redundant). |
| 1848 | DynamicAPInt constTerm = atIneq(i: r, j: getNumCols() - 1); |
| 1849 | auto rowWithoutConstTerm = |
| 1850 | ArrayRef<DynamicAPInt>(rowStart, getNumCols() - 1); |
| 1851 | const auto &ret = |
| 1852 | rowsWithoutConstTerm.insert(KV: {rowWithoutConstTerm, {r, constTerm}}); |
| 1853 | if (!ret.second) { |
| 1854 | // Check if the other constraint has a higher constant term. |
| 1855 | auto &val = ret.first->second; |
| 1856 | if (val.second > constTerm) { |
| 1857 | // The stored row is redundant. Mark it so, and update with this one. |
| 1858 | redunIneq[val.first] = true; |
| 1859 | val = {r, constTerm}; |
| 1860 | } else { |
| 1861 | // The one stored makes this one redundant. |
| 1862 | redunIneq[r] = true; |
| 1863 | } |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | // Scan to get rid of all rows marked redundant, in-place. |
| 1868 | unsigned pos = 0; |
| 1869 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) |
| 1870 | if (!redunIneq[r]) |
| 1871 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
| 1872 | |
| 1873 | inequalities.resizeVertically(newNRows: pos); |
| 1874 | |
| 1875 | // TODO: consider doing this for equalities as well, but probably not worth |
| 1876 | // the savings. |
| 1877 | } |
| 1878 | |
| 1879 | #undef DEBUG_TYPE |
| 1880 | #define DEBUG_TYPE "fm" |
| 1881 | |
| 1882 | /// Eliminates variable at the specified position using Fourier-Motzkin |
| 1883 | /// variable elimination. This technique is exact for rational spaces but |
| 1884 | /// conservative (in "rare" cases) for integer spaces. The operation corresponds |
| 1885 | /// to a projection operation yielding the (convex) set of integer points |
| 1886 | /// contained in the rational shadow of the set. An emptiness test that relies |
| 1887 | /// on this method will guarantee emptiness, i.e., it disproves the existence of |
| 1888 | /// a solution if it says it's empty. |
| 1889 | /// If a non-null isResultIntegerExact is passed, it is set to true if the |
| 1890 | /// result is also integer exact. If it's set to false, the obtained solution |
| 1891 | /// *may* not be exact, i.e., it may contain integer points that do not have an |
| 1892 | /// integer pre-image in the original set. |
| 1893 | /// |
| 1894 | /// Eg: |
| 1895 | /// j >= 0, j <= i + 1 |
| 1896 | /// i >= 0, i <= N + 1 |
| 1897 | /// Eliminating i yields, |
| 1898 | /// j >= 0, 0 <= N + 1, j - 1 <= N + 1 |
| 1899 | /// |
| 1900 | /// If darkShadow = true, this method computes the dark shadow on elimination; |
| 1901 | /// the dark shadow is a convex integer subset of the exact integer shadow. A |
| 1902 | /// non-empty dark shadow proves the existence of an integer solution. The |
| 1903 | /// elimination in such a case could however be an under-approximation, and thus |
| 1904 | /// should not be used for scanning sets or used by itself for dependence |
| 1905 | /// checking. |
| 1906 | /// |
| 1907 | /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set. |
| 1908 | /// ^ |
| 1909 | /// | |
| 1910 | /// | * * * * o o |
| 1911 | /// i | * * o o o o |
| 1912 | /// | o * * * * * |
| 1913 | /// ---------------> |
| 1914 | /// j -> |
| 1915 | /// |
| 1916 | /// Eliminating i from this system (projecting on the j dimension): |
| 1917 | /// rational shadow / integer light shadow: 1 <= j <= 6 |
| 1918 | /// dark shadow: 3 <= j <= 6 |
| 1919 | /// exact integer shadow: j = 1 \union 3 <= j <= 6 |
| 1920 | /// holes/splinters: j = 2 |
| 1921 | /// |
| 1922 | /// darkShadow = false, isResultIntegerExact = nullptr are default values. |
| 1923 | // TODO: a slight modification to yield dark shadow version of FM (tightened), |
| 1924 | // which can prove the existence of a solution if there is one. |
| 1925 | void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow, |
| 1926 | bool *isResultIntegerExact) { |
| 1927 | LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n" ); |
| 1928 | LLVM_DEBUG(dump()); |
| 1929 | assert(pos < getNumVars() && "invalid position" ); |
| 1930 | assert(hasConsistentState()); |
| 1931 | |
| 1932 | // Check if this variable can be eliminated through a substitution. |
| 1933 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
| 1934 | if (atEq(i: r, j: pos) != 0) { |
| 1935 | // Use Gaussian elimination here (since we have an equality). |
| 1936 | LogicalResult ret = gaussianEliminateVar(position: pos); |
| 1937 | (void)ret; |
| 1938 | assert(ret.succeeded() && "Gaussian elimination guaranteed to succeed" ); |
| 1939 | LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n" ); |
| 1940 | LLVM_DEBUG(dump()); |
| 1941 | return; |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | // A fast linear time tightening. |
| 1946 | gcdTightenInequalities(); |
| 1947 | |
| 1948 | // Check if the variable appears at all in any of the inequalities. |
| 1949 | if (isColZero(pos)) { |
| 1950 | // If it doesn't appear, just remove the column and return. |
| 1951 | // TODO: refactor removeColumns to use it from here. |
| 1952 | removeVar(pos); |
| 1953 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n" ); |
| 1954 | LLVM_DEBUG(dump()); |
| 1955 | return; |
| 1956 | } |
| 1957 | |
| 1958 | // Positions of constraints that are lower bounds on the variable. |
| 1959 | SmallVector<unsigned, 4> lbIndices; |
| 1960 | // Positions of constraints that are lower bounds on the variable. |
| 1961 | SmallVector<unsigned, 4> ubIndices; |
| 1962 | // Positions of constraints that do not involve the variable. |
| 1963 | std::vector<unsigned> nbIndices; |
| 1964 | nbIndices.reserve(n: getNumInequalities()); |
| 1965 | |
| 1966 | // Gather all lower bounds and upper bounds of the variable. Since the |
| 1967 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
| 1968 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
| 1969 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
| 1970 | if (atIneq(i: r, j: pos) == 0) { |
| 1971 | // Var does not appear in bound. |
| 1972 | nbIndices.emplace_back(args&: r); |
| 1973 | } else if (atIneq(i: r, j: pos) >= 1) { |
| 1974 | // Lower bound. |
| 1975 | lbIndices.emplace_back(Args&: r); |
| 1976 | } else { |
| 1977 | // Upper bound. |
| 1978 | ubIndices.emplace_back(Args&: r); |
| 1979 | } |
| 1980 | } |
| 1981 | |
| 1982 | PresburgerSpace newSpace = getSpace(); |
| 1983 | VarKind idKindRemove = newSpace.getVarKindAt(pos); |
| 1984 | unsigned relativePos = pos - newSpace.getVarKindOffset(kind: idKindRemove); |
| 1985 | newSpace.removeVarRange(kind: idKindRemove, varStart: relativePos, varLimit: relativePos + 1); |
| 1986 | |
| 1987 | /// Create the new system which has one variable less. |
| 1988 | IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(), |
| 1989 | getNumEqualities(), getNumCols() - 1, newSpace); |
| 1990 | |
| 1991 | // This will be used to check if the elimination was integer exact. |
| 1992 | bool allLCMsAreOne = true; |
| 1993 | |
| 1994 | // Let x be the variable we are eliminating. |
| 1995 | // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note |
| 1996 | // that c_l, c_u >= 1) we have: |
| 1997 | // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u |
| 1998 | // We thus generate a constraint: |
| 1999 | // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub. |
| 2000 | // Note if c_l = c_u = 1, all integer points captured by the resulting |
| 2001 | // constraint correspond to integer points in the original system (i.e., they |
| 2002 | // have integer pre-images). Hence, if the lcm's are all 1, the elimination is |
| 2003 | // integer exact. |
| 2004 | for (auto ubPos : ubIndices) { |
| 2005 | for (auto lbPos : lbIndices) { |
| 2006 | SmallVector<DynamicAPInt, 4> ineq; |
| 2007 | ineq.reserve(N: newRel.getNumCols()); |
| 2008 | DynamicAPInt lbCoeff = atIneq(i: lbPos, j: pos); |
| 2009 | // Note that in the comments above, ubCoeff is the negation of the |
| 2010 | // coefficient in the canonical form as the view taken here is that of the |
| 2011 | // term being moved to the other size of '>='. |
| 2012 | DynamicAPInt ubCoeff = -atIneq(i: ubPos, j: pos); |
| 2013 | // TODO: refactor this loop to avoid all branches inside. |
| 2014 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
| 2015 | if (l == pos) |
| 2016 | continue; |
| 2017 | assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified" ); |
| 2018 | DynamicAPInt lcm = llvm::lcm(A: lbCoeff, B: ubCoeff); |
| 2019 | ineq.emplace_back(Args: atIneq(i: ubPos, j: l) * (lcm / ubCoeff) + |
| 2020 | atIneq(i: lbPos, j: l) * (lcm / lbCoeff)); |
| 2021 | assert(lcm > 0 && "lcm should be positive!" ); |
| 2022 | if (lcm != 1) |
| 2023 | allLCMsAreOne = false; |
| 2024 | } |
| 2025 | if (darkShadow) { |
| 2026 | // The dark shadow is a convex subset of the exact integer shadow. If |
| 2027 | // there is a point here, it proves the existence of a solution. |
| 2028 | ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1; |
| 2029 | } |
| 2030 | // TODO: we need to have a way to add inequalities in-place in |
| 2031 | // IntegerRelation instead of creating and copying over. |
| 2032 | newRel.addInequality(inEq: ineq); |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << allLCMsAreOne |
| 2037 | << "\n" ); |
| 2038 | if (allLCMsAreOne && isResultIntegerExact) |
| 2039 | *isResultIntegerExact = true; |
| 2040 | |
| 2041 | // Copy over the constraints not involving this variable. |
| 2042 | for (auto nbPos : nbIndices) { |
| 2043 | SmallVector<DynamicAPInt, 4> ineq; |
| 2044 | ineq.reserve(N: getNumCols() - 1); |
| 2045 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
| 2046 | if (l == pos) |
| 2047 | continue; |
| 2048 | ineq.emplace_back(Args&: atIneq(i: nbPos, j: l)); |
| 2049 | } |
| 2050 | newRel.addInequality(inEq: ineq); |
| 2051 | } |
| 2052 | |
| 2053 | assert(newRel.getNumConstraints() == |
| 2054 | lbIndices.size() * ubIndices.size() + nbIndices.size()); |
| 2055 | |
| 2056 | // Copy over the equalities. |
| 2057 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
| 2058 | SmallVector<DynamicAPInt, 4> eq; |
| 2059 | eq.reserve(N: newRel.getNumCols()); |
| 2060 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
| 2061 | if (l == pos) |
| 2062 | continue; |
| 2063 | eq.emplace_back(Args&: atEq(i: r, j: l)); |
| 2064 | } |
| 2065 | newRel.addEquality(eq); |
| 2066 | } |
| 2067 | |
| 2068 | // GCD tightening and normalization allows detection of more trivially |
| 2069 | // redundant constraints. |
| 2070 | newRel.gcdTightenInequalities(); |
| 2071 | newRel.normalizeConstraintsByGCD(); |
| 2072 | newRel.removeTrivialRedundancy(); |
| 2073 | clearAndCopyFrom(other: newRel); |
| 2074 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n" ); |
| 2075 | LLVM_DEBUG(dump()); |
| 2076 | } |
| 2077 | |
| 2078 | #undef DEBUG_TYPE |
| 2079 | #define DEBUG_TYPE "presburger" |
| 2080 | |
| 2081 | void IntegerRelation::projectOut(unsigned pos, unsigned num) { |
| 2082 | if (num == 0) |
| 2083 | return; |
| 2084 | |
| 2085 | // 'pos' can be at most getNumCols() - 2 if num > 0. |
| 2086 | assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position" ); |
| 2087 | assert(pos + num < getNumCols() && "invalid range" ); |
| 2088 | |
| 2089 | // Eliminate as many variables as possible using Gaussian elimination. |
| 2090 | unsigned currentPos = pos; |
| 2091 | unsigned numToEliminate = num; |
| 2092 | unsigned numGaussianEliminated = 0; |
| 2093 | |
| 2094 | while (currentPos < getNumVars()) { |
| 2095 | unsigned curNumEliminated = |
| 2096 | gaussianEliminateVars(posStart: currentPos, posLimit: currentPos + numToEliminate); |
| 2097 | ++currentPos; |
| 2098 | numToEliminate -= curNumEliminated + 1; |
| 2099 | numGaussianEliminated += curNumEliminated; |
| 2100 | } |
| 2101 | |
| 2102 | // Eliminate the remaining using Fourier-Motzkin. |
| 2103 | for (unsigned i = 0; i < num - numGaussianEliminated; i++) { |
| 2104 | unsigned numToEliminate = num - numGaussianEliminated - i; |
| 2105 | fourierMotzkinEliminate( |
| 2106 | pos: getBestVarToEliminate(cst: *this, start: pos, end: pos + numToEliminate)); |
| 2107 | } |
| 2108 | |
| 2109 | // Fast/trivial simplifications. |
| 2110 | gcdTightenInequalities(); |
| 2111 | // Normalize constraints after tightening since the latter impacts this, but |
| 2112 | // not the other way round. |
| 2113 | normalizeConstraintsByGCD(); |
| 2114 | } |
| 2115 | |
| 2116 | namespace { |
| 2117 | |
| 2118 | enum BoundCmpResult { Greater, Less, Equal, Unknown }; |
| 2119 | |
| 2120 | /// Compares two affine bounds whose coefficients are provided in 'first' and |
| 2121 | /// 'second'. The last coefficient is the constant term. |
| 2122 | static BoundCmpResult compareBounds(ArrayRef<DynamicAPInt> a, |
| 2123 | ArrayRef<DynamicAPInt> b) { |
| 2124 | assert(a.size() == b.size()); |
| 2125 | |
| 2126 | // For the bounds to be comparable, their corresponding variable |
| 2127 | // coefficients should be equal; the constant terms are then compared to |
| 2128 | // determine less/greater/equal. |
| 2129 | |
| 2130 | if (!std::equal(first1: a.begin(), last1: a.end() - 1, first2: b.begin())) |
| 2131 | return Unknown; |
| 2132 | |
| 2133 | if (a.back() == b.back()) |
| 2134 | return Equal; |
| 2135 | |
| 2136 | return a.back() < b.back() ? Less : Greater; |
| 2137 | } |
| 2138 | } // namespace |
| 2139 | |
| 2140 | // Returns constraints that are common to both A & B. |
| 2141 | static void getCommonConstraints(const IntegerRelation &a, |
| 2142 | const IntegerRelation &b, IntegerRelation &c) { |
| 2143 | c = IntegerRelation(a.getSpace()); |
| 2144 | // a naive O(n^2) check should be enough here given the input sizes. |
| 2145 | for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) { |
| 2146 | for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) { |
| 2147 | if (a.getInequality(idx: r) == b.getInequality(idx: s)) { |
| 2148 | c.addInequality(inEq: a.getInequality(idx: r)); |
| 2149 | break; |
| 2150 | } |
| 2151 | } |
| 2152 | } |
| 2153 | for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) { |
| 2154 | for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) { |
| 2155 | if (a.getEquality(idx: r) == b.getEquality(idx: s)) { |
| 2156 | c.addEquality(eq: a.getEquality(idx: r)); |
| 2157 | break; |
| 2158 | } |
| 2159 | } |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | // Computes the bounding box with respect to 'other' by finding the min of the |
| 2164 | // lower bounds and the max of the upper bounds along each of the dimensions. |
| 2165 | LogicalResult |
| 2166 | IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) { |
| 2167 | assert(space.isEqual(otherCst.getSpace()) && "Spaces should match." ); |
| 2168 | assert(getNumLocalVars() == 0 && "local ids not supported yet here" ); |
| 2169 | |
| 2170 | // Get the constraints common to both systems; these will be added as is to |
| 2171 | // the union. |
| 2172 | IntegerRelation commonCst(PresburgerSpace::getRelationSpace()); |
| 2173 | getCommonConstraints(a: *this, b: otherCst, c&: commonCst); |
| 2174 | |
| 2175 | std::vector<SmallVector<DynamicAPInt, 8>> boundingLbs; |
| 2176 | std::vector<SmallVector<DynamicAPInt, 8>> boundingUbs; |
| 2177 | boundingLbs.reserve(n: 2 * getNumDimVars()); |
| 2178 | boundingUbs.reserve(n: 2 * getNumDimVars()); |
| 2179 | |
| 2180 | // To hold lower and upper bounds for each dimension. |
| 2181 | SmallVector<DynamicAPInt, 4> lb, otherLb, ub, otherUb; |
| 2182 | // To compute min of lower bounds and max of upper bounds for each dimension. |
| 2183 | SmallVector<DynamicAPInt, 4> minLb(getNumSymbolVars() + 1); |
| 2184 | SmallVector<DynamicAPInt, 4> maxUb(getNumSymbolVars() + 1); |
| 2185 | // To compute final new lower and upper bounds for the union. |
| 2186 | SmallVector<DynamicAPInt, 8> newLb(getNumCols()), newUb(getNumCols()); |
| 2187 | |
| 2188 | DynamicAPInt lbFloorDivisor, otherLbFloorDivisor; |
| 2189 | for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) { |
| 2190 | auto extent = getConstantBoundOnDimSize(pos: d, lb: &lb, boundFloorDivisor: &lbFloorDivisor, ub: &ub); |
| 2191 | if (!extent.has_value()) |
| 2192 | // TODO: symbolic extents when necessary. |
| 2193 | // TODO: handle union if a dimension is unbounded. |
| 2194 | return failure(); |
| 2195 | |
| 2196 | auto otherExtent = otherCst.getConstantBoundOnDimSize( |
| 2197 | pos: d, lb: &otherLb, boundFloorDivisor: &otherLbFloorDivisor, ub: &otherUb); |
| 2198 | if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor) |
| 2199 | // TODO: symbolic extents when necessary. |
| 2200 | return failure(); |
| 2201 | |
| 2202 | assert(lbFloorDivisor > 0 && "divisor always expected to be positive" ); |
| 2203 | |
| 2204 | auto res = compareBounds(a: lb, b: otherLb); |
| 2205 | // Identify min. |
| 2206 | if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) { |
| 2207 | minLb = lb; |
| 2208 | // Since the divisor is for a floordiv, we need to convert to ceildiv, |
| 2209 | // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=> |
| 2210 | // div * i >= expr - div + 1. |
| 2211 | minLb.back() -= lbFloorDivisor - 1; |
| 2212 | } else if (res == BoundCmpResult::Greater) { |
| 2213 | minLb = otherLb; |
| 2214 | minLb.back() -= otherLbFloorDivisor - 1; |
| 2215 | } else { |
| 2216 | // Uncomparable - check for constant lower/upper bounds. |
| 2217 | auto constLb = getConstantBound(type: BoundType::LB, pos: d); |
| 2218 | auto constOtherLb = otherCst.getConstantBound(type: BoundType::LB, pos: d); |
| 2219 | if (!constLb.has_value() || !constOtherLb.has_value()) |
| 2220 | return failure(); |
| 2221 | std::fill(first: minLb.begin(), last: minLb.end(), value: 0); |
| 2222 | minLb.back() = std::min(a: *constLb, b: *constOtherLb); |
| 2223 | } |
| 2224 | |
| 2225 | // Do the same for ub's but max of upper bounds. Identify max. |
| 2226 | auto uRes = compareBounds(a: ub, b: otherUb); |
| 2227 | if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) { |
| 2228 | maxUb = ub; |
| 2229 | } else if (uRes == BoundCmpResult::Less) { |
| 2230 | maxUb = otherUb; |
| 2231 | } else { |
| 2232 | // Uncomparable - check for constant lower/upper bounds. |
| 2233 | auto constUb = getConstantBound(type: BoundType::UB, pos: d); |
| 2234 | auto constOtherUb = otherCst.getConstantBound(type: BoundType::UB, pos: d); |
| 2235 | if (!constUb.has_value() || !constOtherUb.has_value()) |
| 2236 | return failure(); |
| 2237 | std::fill(first: maxUb.begin(), last: maxUb.end(), value: 0); |
| 2238 | maxUb.back() = std::max(a: *constUb, b: *constOtherUb); |
| 2239 | } |
| 2240 | |
| 2241 | std::fill(first: newLb.begin(), last: newLb.end(), value: 0); |
| 2242 | std::fill(first: newUb.begin(), last: newUb.end(), value: 0); |
| 2243 | |
| 2244 | // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor, |
| 2245 | // and so it's the divisor for newLb and newUb as well. |
| 2246 | newLb[d] = lbFloorDivisor; |
| 2247 | newUb[d] = -lbFloorDivisor; |
| 2248 | // Copy over the symbolic part + constant term. |
| 2249 | std::copy(first: minLb.begin(), last: minLb.end(), result: newLb.begin() + getNumDimVars()); |
| 2250 | std::transform(first: newLb.begin() + getNumDimVars(), last: newLb.end(), |
| 2251 | result: newLb.begin() + getNumDimVars(), |
| 2252 | unary_op: std::negate<DynamicAPInt>()); |
| 2253 | std::copy(first: maxUb.begin(), last: maxUb.end(), result: newUb.begin() + getNumDimVars()); |
| 2254 | |
| 2255 | boundingLbs.emplace_back(args&: newLb); |
| 2256 | boundingUbs.emplace_back(args&: newUb); |
| 2257 | } |
| 2258 | |
| 2259 | // Clear all constraints and add the lower/upper bounds for the bounding box. |
| 2260 | clearConstraints(); |
| 2261 | for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) { |
| 2262 | addInequality(inEq: boundingLbs[d]); |
| 2263 | addInequality(inEq: boundingUbs[d]); |
| 2264 | } |
| 2265 | |
| 2266 | // Add the constraints that were common to both systems. |
| 2267 | append(other: commonCst); |
| 2268 | removeTrivialRedundancy(); |
| 2269 | |
| 2270 | // TODO: copy over pure symbolic constraints from this and 'other' over to the |
| 2271 | // union (since the above are just the union along dimensions); we shouldn't |
| 2272 | // be discarding any other constraints on the symbols. |
| 2273 | |
| 2274 | return success(); |
| 2275 | } |
| 2276 | |
| 2277 | bool IntegerRelation::isColZero(unsigned pos) const { |
| 2278 | return !findConstraintWithNonZeroAt(colIdx: pos, /*isEq=*/false) && |
| 2279 | !findConstraintWithNonZeroAt(colIdx: pos, /*isEq=*/true); |
| 2280 | } |
| 2281 | |
| 2282 | /// Find positions of inequalities and equalities that do not have a coefficient |
| 2283 | /// for [pos, pos + num) variables. |
| 2284 | static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos, |
| 2285 | unsigned num, |
| 2286 | SmallVectorImpl<unsigned> &nbIneqIndices, |
| 2287 | SmallVectorImpl<unsigned> &nbEqIndices) { |
| 2288 | assert(pos < cst.getNumVars() && "invalid start position" ); |
| 2289 | assert(pos + num <= cst.getNumVars() && "invalid limit" ); |
| 2290 | |
| 2291 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
| 2292 | // The bounds are to be independent of [offset, offset + num) columns. |
| 2293 | unsigned c; |
| 2294 | for (c = pos; c < pos + num; ++c) { |
| 2295 | if (cst.atIneq(i: r, j: c) != 0) |
| 2296 | break; |
| 2297 | } |
| 2298 | if (c == pos + num) |
| 2299 | nbIneqIndices.emplace_back(Args&: r); |
| 2300 | } |
| 2301 | |
| 2302 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
| 2303 | // The bounds are to be independent of [offset, offset + num) columns. |
| 2304 | unsigned c; |
| 2305 | for (c = pos; c < pos + num; ++c) { |
| 2306 | if (cst.atEq(i: r, j: c) != 0) |
| 2307 | break; |
| 2308 | } |
| 2309 | if (c == pos + num) |
| 2310 | nbEqIndices.emplace_back(Args&: r); |
| 2311 | } |
| 2312 | } |
| 2313 | |
| 2314 | void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) { |
| 2315 | assert(pos + num <= getNumVars() && "invalid range" ); |
| 2316 | |
| 2317 | // Remove constraints that are independent of these variables. |
| 2318 | SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices; |
| 2319 | getIndependentConstraints(cst: *this, /*pos=*/0, num, nbIneqIndices, nbEqIndices); |
| 2320 | |
| 2321 | // Iterate in reverse so that indices don't have to be updated. |
| 2322 | // TODO: This method can be made more efficient (because removal of each |
| 2323 | // inequality leads to much shifting/copying in the underlying buffer). |
| 2324 | for (auto nbIndex : llvm::reverse(C&: nbIneqIndices)) |
| 2325 | removeInequality(pos: nbIndex); |
| 2326 | for (auto nbIndex : llvm::reverse(C&: nbEqIndices)) |
| 2327 | removeEquality(pos: nbIndex); |
| 2328 | } |
| 2329 | |
| 2330 | IntegerPolyhedron IntegerRelation::getDomainSet() const { |
| 2331 | IntegerRelation copyRel = *this; |
| 2332 | |
| 2333 | // Convert Range variables to Local variables. |
| 2334 | copyRel.convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Range), |
| 2335 | dstKind: VarKind::Local); |
| 2336 | |
| 2337 | // Convert Domain variables to SetDim(Range) variables. |
| 2338 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Domain), |
| 2339 | dstKind: VarKind::SetDim); |
| 2340 | |
| 2341 | return IntegerPolyhedron(std::move(copyRel)); |
| 2342 | } |
| 2343 | |
| 2344 | bool IntegerRelation::removeDuplicateConstraints() { |
| 2345 | bool changed = false; |
| 2346 | SmallDenseMap<ArrayRef<DynamicAPInt>, unsigned> hashTable; |
| 2347 | unsigned ineqs = getNumInequalities(), cols = getNumCols(); |
| 2348 | |
| 2349 | if (ineqs <= 1) |
| 2350 | return changed; |
| 2351 | |
| 2352 | // Check if the non-constant part of the constraint is the same. |
| 2353 | ArrayRef<DynamicAPInt> row = getInequality(idx: 0).drop_back(); |
| 2354 | hashTable.insert(KV: {row, 0}); |
| 2355 | for (unsigned k = 1; k < ineqs; ++k) { |
| 2356 | row = getInequality(idx: k).drop_back(); |
| 2357 | if (hashTable.try_emplace(Key: row, Args&: k).second) |
| 2358 | continue; |
| 2359 | |
| 2360 | // For identical cases, keep only the smaller part of the constant term. |
| 2361 | unsigned l = hashTable[row]; |
| 2362 | changed = true; |
| 2363 | if (atIneq(i: k, j: cols - 1) <= atIneq(i: l, j: cols - 1)) |
| 2364 | inequalities.swapRows(row: k, otherRow: l); |
| 2365 | removeInequality(pos: k); |
| 2366 | --k; |
| 2367 | --ineqs; |
| 2368 | } |
| 2369 | |
| 2370 | // Check the neg form of each inequality, need an extra vector to store it. |
| 2371 | SmallVector<DynamicAPInt> negIneq(cols - 1); |
| 2372 | for (unsigned k = 0; k < ineqs; ++k) { |
| 2373 | row = getInequality(idx: k).drop_back(); |
| 2374 | negIneq.assign(in_start: row.begin(), in_end: row.end()); |
| 2375 | for (DynamicAPInt &ele : negIneq) |
| 2376 | ele = -ele; |
| 2377 | if (!hashTable.contains(Val: negIneq)) |
| 2378 | continue; |
| 2379 | |
| 2380 | // For cases where the neg is the same as other inequalities, check that the |
| 2381 | // sum of their constant terms is positive. |
| 2382 | unsigned l = hashTable[row]; |
| 2383 | auto sum = atIneq(i: l, j: cols - 1) + atIneq(i: k, j: cols - 1); |
| 2384 | if (sum > 0 || l == k) |
| 2385 | continue; |
| 2386 | |
| 2387 | // A sum of constant terms equal to zero combines two inequalities into one |
| 2388 | // equation, less than zero means the set is empty. |
| 2389 | changed = true; |
| 2390 | if (k < l) |
| 2391 | std::swap(a&: l, b&: k); |
| 2392 | if (sum == 0) { |
| 2393 | addEquality(eq: getInequality(idx: k)); |
| 2394 | removeInequality(pos: k); |
| 2395 | removeInequality(pos: l); |
| 2396 | } else { |
| 2397 | *this = getEmpty(space: getSpace()); |
| 2398 | } |
| 2399 | break; |
| 2400 | } |
| 2401 | |
| 2402 | return changed; |
| 2403 | } |
| 2404 | |
| 2405 | IntegerPolyhedron IntegerRelation::getRangeSet() const { |
| 2406 | IntegerRelation copyRel = *this; |
| 2407 | |
| 2408 | // Convert Domain variables to Local variables. |
| 2409 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Domain), |
| 2410 | dstKind: VarKind::Local); |
| 2411 | |
| 2412 | // We do not need to do anything to Range variables since they are already in |
| 2413 | // SetDim position. |
| 2414 | |
| 2415 | return IntegerPolyhedron(std::move(copyRel)); |
| 2416 | } |
| 2417 | |
| 2418 | void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) { |
| 2419 | assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) && |
| 2420 | "Domain set is not compatible with poly" ); |
| 2421 | |
| 2422 | // Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`. |
| 2423 | IntegerRelation rel = poly; |
| 2424 | rel.inverse(); |
| 2425 | |
| 2426 | // Append dummy range variables to make the spaces compatible. |
| 2427 | rel.appendVar(kind: VarKind::Range, num: getNumRangeVars()); |
| 2428 | |
| 2429 | // Intersect in place. |
| 2430 | mergeLocalVars(other&: rel); |
| 2431 | append(other: rel); |
| 2432 | } |
| 2433 | |
| 2434 | void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) { |
| 2435 | assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) && |
| 2436 | "Range set is not compatible with poly" ); |
| 2437 | |
| 2438 | IntegerRelation rel = poly; |
| 2439 | |
| 2440 | // Append dummy domain variables to make the spaces compatible. |
| 2441 | rel.appendVar(kind: VarKind::Domain, num: getNumDomainVars()); |
| 2442 | |
| 2443 | mergeLocalVars(other&: rel); |
| 2444 | append(other: rel); |
| 2445 | } |
| 2446 | |
| 2447 | void IntegerRelation::inverse() { |
| 2448 | unsigned numRangeVars = getNumVarKind(kind: VarKind::Range); |
| 2449 | convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getVarKindEnd(kind: VarKind::Domain), |
| 2450 | dstKind: VarKind::Range); |
| 2451 | convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: numRangeVars, dstKind: VarKind::Domain); |
| 2452 | } |
| 2453 | |
| 2454 | void IntegerRelation::compose(const IntegerRelation &rel) { |
| 2455 | assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) && |
| 2456 | "Range of `this` should be compatible with Domain of `rel`" ); |
| 2457 | |
| 2458 | IntegerRelation copyRel = rel; |
| 2459 | |
| 2460 | // Let relation `this` be R1: A -> B, and `rel` be R2: B -> C. |
| 2461 | // We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of |
| 2462 | // R1 with R2. After this, we get R1: A -> C, by projecting out B. |
| 2463 | // TODO: Using nested spaces here would help, since we could directly |
| 2464 | // intersect the range with another relation. |
| 2465 | unsigned numBVars = getNumRangeVars(); |
| 2466 | |
| 2467 | // Convert R1 from A -> B to A -> (B X C). |
| 2468 | appendVar(kind: VarKind::Range, num: copyRel.getNumRangeVars()); |
| 2469 | |
| 2470 | // Convert R2 to B X C. |
| 2471 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: numBVars, dstKind: VarKind::Range, pos: 0); |
| 2472 | |
| 2473 | // Intersect R2 to range of R1. |
| 2474 | intersectRange(poly: IntegerPolyhedron(copyRel)); |
| 2475 | |
| 2476 | // Project out B in R1. |
| 2477 | convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: numBVars, dstKind: VarKind::Local); |
| 2478 | } |
| 2479 | |
| 2480 | void IntegerRelation::applyDomain(const IntegerRelation &rel) { |
| 2481 | inverse(); |
| 2482 | compose(rel); |
| 2483 | inverse(); |
| 2484 | } |
| 2485 | |
| 2486 | void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); } |
| 2487 | |
| 2488 | void IntegerRelation::printSpace(raw_ostream &os) const { |
| 2489 | space.print(os); |
| 2490 | os << getNumConstraints() << " constraints\n" ; |
| 2491 | } |
| 2492 | |
| 2493 | void IntegerRelation::removeTrivialEqualities() { |
| 2494 | for (int i = getNumEqualities() - 1; i >= 0; --i) |
| 2495 | if (rangeIsZero(range: getEquality(idx: i))) |
| 2496 | removeEquality(pos: i); |
| 2497 | } |
| 2498 | |
| 2499 | bool IntegerRelation::isFullDim() { |
| 2500 | if (getNumVars() == 0) |
| 2501 | return true; |
| 2502 | if (isEmpty()) |
| 2503 | return false; |
| 2504 | |
| 2505 | // If there is a non-trivial equality, the space cannot be full-dimensional. |
| 2506 | removeTrivialEqualities(); |
| 2507 | if (getNumEqualities() > 0) |
| 2508 | return false; |
| 2509 | |
| 2510 | // The polytope is full-dimensional iff it is not flat along any of the |
| 2511 | // inequality directions. |
| 2512 | Simplex simplex(*this); |
| 2513 | return llvm::none_of(Range: llvm::seq<int>(Size: getNumInequalities()), P: [&](int i) { |
| 2514 | return simplex.isFlatAlong(coeffs: getInequality(idx: i)); |
| 2515 | }); |
| 2516 | } |
| 2517 | |
| 2518 | void IntegerRelation::mergeAndCompose(const IntegerRelation &other) { |
| 2519 | assert(getNumDomainVars() == other.getNumRangeVars() && |
| 2520 | "Domain of this and range of other do not match" ); |
| 2521 | // assert(std::equal(values.begin(), values.begin() + |
| 2522 | // other.getNumDomainVars(), |
| 2523 | // otherValues.begin() + other.getNumDomainVars()) && |
| 2524 | // "Domain of this and range of other do not match"); |
| 2525 | |
| 2526 | IntegerRelation result = other; |
| 2527 | |
| 2528 | const unsigned thisDomain = getNumDomainVars(); |
| 2529 | const unsigned thisRange = getNumRangeVars(); |
| 2530 | const unsigned otherDomain = other.getNumDomainVars(); |
| 2531 | const unsigned otherRange = other.getNumRangeVars(); |
| 2532 | |
| 2533 | // Add dimension variables temporarily to merge symbol and local vars. |
| 2534 | // Convert `this` from |
| 2535 | // [thisDomain] -> [thisRange] |
| 2536 | // to |
| 2537 | // [otherDomain thisDomain] -> [otherRange thisRange]. |
| 2538 | // and `result` from |
| 2539 | // [otherDomain] -> [otherRange] |
| 2540 | // to |
| 2541 | // [otherDomain thisDomain] -> [otherRange thisRange] |
| 2542 | insertVar(kind: VarKind::Domain, pos: 0, num: otherDomain); |
| 2543 | insertVar(kind: VarKind::Range, pos: 0, num: otherRange); |
| 2544 | result.insertVar(kind: VarKind::Domain, pos: otherDomain, num: thisDomain); |
| 2545 | result.insertVar(kind: VarKind::Range, pos: otherRange, num: thisRange); |
| 2546 | |
| 2547 | // Merge symbol and local variables. |
| 2548 | mergeAndAlignSymbols(other&: result); |
| 2549 | mergeLocalVars(other&: result); |
| 2550 | |
| 2551 | // Convert `result` from [otherDomain thisDomain] -> [otherRange thisRange] to |
| 2552 | // [otherDomain] -> [thisRange] |
| 2553 | result.removeVarRange(kind: VarKind::Domain, varStart: otherDomain, varLimit: otherDomain + thisDomain); |
| 2554 | result.convertToLocal(kind: VarKind::Range, varStart: 0, varLimit: otherRange); |
| 2555 | // Convert `this` from [otherDomain thisDomain] -> [otherRange thisRange] to |
| 2556 | // [otherDomain] -> [thisRange] |
| 2557 | convertToLocal(kind: VarKind::Domain, varStart: otherDomain, varLimit: otherDomain + thisDomain); |
| 2558 | removeVarRange(kind: VarKind::Range, varStart: 0, varLimit: otherRange); |
| 2559 | |
| 2560 | // Add and match domain of `result` to domain of `this`. |
| 2561 | for (unsigned i = 0, e = result.getNumDomainVars(); i < e; ++i) |
| 2562 | if (result.getSpace().getId(kind: VarKind::Domain, pos: i).hasValue()) |
| 2563 | space.setId(kind: VarKind::Domain, pos: i, |
| 2564 | id: result.getSpace().getId(kind: VarKind::Domain, pos: i)); |
| 2565 | // Add and match range of `this` to range of `result`. |
| 2566 | for (unsigned i = 0, e = getNumRangeVars(); i < e; ++i) |
| 2567 | if (space.getId(kind: VarKind::Range, pos: i).hasValue()) |
| 2568 | result.space.setId(kind: VarKind::Range, pos: i, id: space.getId(kind: VarKind::Range, pos: i)); |
| 2569 | |
| 2570 | // Append `this` to `result` and simplify constraints. |
| 2571 | result.append(other: *this); |
| 2572 | result.removeRedundantLocalVars(); |
| 2573 | |
| 2574 | *this = result; |
| 2575 | } |
| 2576 | |
| 2577 | void IntegerRelation::print(raw_ostream &os) const { |
| 2578 | assert(hasConsistentState()); |
| 2579 | printSpace(os); |
| 2580 | PrintTableMetrics ptm = {.maxPreIndent: 0, .maxPostIndent: 0, .preAlign: "-" }; |
| 2581 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
| 2582 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) |
| 2583 | updatePrintMetrics<DynamicAPInt>(val: atEq(i, j), m&: ptm); |
| 2584 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
| 2585 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) |
| 2586 | updatePrintMetrics<DynamicAPInt>(val: atIneq(i, j), m&: ptm); |
| 2587 | // Print using PrintMetrics. |
| 2588 | constexpr unsigned kMinSpacing = 1; |
| 2589 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
| 2590 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
| 2591 | printWithPrintMetrics<DynamicAPInt>(os, val: atEq(i, j), minSpacing: kMinSpacing, m: ptm); |
| 2592 | } |
| 2593 | os << " = 0\n" ; |
| 2594 | } |
| 2595 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
| 2596 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
| 2597 | printWithPrintMetrics<DynamicAPInt>(os, val: atIneq(i, j), minSpacing: kMinSpacing, m: ptm); |
| 2598 | } |
| 2599 | os << " >= 0\n" ; |
| 2600 | } |
| 2601 | os << '\n'; |
| 2602 | } |
| 2603 | |
| 2604 | void IntegerRelation::dump() const { print(os&: llvm::errs()); } |
| 2605 | |
| 2606 | unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos, |
| 2607 | unsigned num) { |
| 2608 | assert((kind != VarKind::Domain || num == 0) && |
| 2609 | "Domain has to be zero in a set" ); |
| 2610 | return IntegerRelation::insertVar(kind, pos, num); |
| 2611 | } |
| 2612 | IntegerPolyhedron |
| 2613 | IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const { |
| 2614 | return IntegerPolyhedron(IntegerRelation::intersect(other)); |
| 2615 | } |
| 2616 | |
| 2617 | PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const { |
| 2618 | return PresburgerSet(IntegerRelation::subtract(set: other)); |
| 2619 | } |
| 2620 | |