1 | //===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // A class to represent an relation over integer tuples. A relation is |
10 | // represented as a constraint system over a space of tuples of integer valued |
11 | // variables supporting symbolic variables and existential quantification. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
16 | #include "mlir/Analysis/Presburger/Fraction.h" |
17 | #include "mlir/Analysis/Presburger/LinearTransform.h" |
18 | #include "mlir/Analysis/Presburger/PWMAFunction.h" |
19 | #include "mlir/Analysis/Presburger/PresburgerRelation.h" |
20 | #include "mlir/Analysis/Presburger/PresburgerSpace.h" |
21 | #include "mlir/Analysis/Presburger/Simplex.h" |
22 | #include "mlir/Analysis/Presburger/Utils.h" |
23 | #include "llvm/ADT/DenseMap.h" |
24 | #include "llvm/ADT/STLExtras.h" |
25 | #include "llvm/ADT/Sequence.h" |
26 | #include "llvm/ADT/SmallBitVector.h" |
27 | #include "llvm/Support/Debug.h" |
28 | #include "llvm/Support/LogicalResult.h" |
29 | #include "llvm/Support/raw_ostream.h" |
30 | #include <algorithm> |
31 | #include <cassert> |
32 | #include <functional> |
33 | #include <memory> |
34 | #include <numeric> |
35 | #include <optional> |
36 | #include <sstream> |
37 | #include <string> |
38 | #include <utility> |
39 | #include <vector> |
40 | |
41 | #define DEBUG_TYPE "presburger" |
42 | |
43 | using namespace mlir; |
44 | using namespace presburger; |
45 | |
46 | using llvm::SmallDenseMap; |
47 | |
48 | std::unique_ptr<IntegerRelation> IntegerRelation::clone() const { |
49 | return std::make_unique<IntegerRelation>(args: *this); |
50 | } |
51 | |
52 | std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const { |
53 | return std::make_unique<IntegerPolyhedron>(args: *this); |
54 | } |
55 | |
56 | void IntegerRelation::setSpace(const PresburgerSpace &oSpace) { |
57 | assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!"); |
58 | space = oSpace; |
59 | } |
60 | |
61 | void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) { |
62 | assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!"); |
63 | assert(oSpace.getNumVars() <= getNumVars() && "invalid space!"); |
64 | unsigned newNumLocals = getNumVars() - oSpace.getNumVars(); |
65 | space = oSpace; |
66 | space.insertVar(kind: VarKind::Local, pos: 0, num: newNumLocals); |
67 | } |
68 | |
69 | void IntegerRelation::setId(VarKind kind, unsigned i, Identifier id) { |
70 | assert(space.isUsingIds() && |
71 | "space must be using identifiers to set an identifier"); |
72 | assert(kind != VarKind::Local && "local variables cannot have identifiers"); |
73 | assert(i < space.getNumVarKind(kind) && "invalid variable index"); |
74 | space.setId(kind, pos: i, id); |
75 | } |
76 | |
77 | ArrayRef<Identifier> IntegerRelation::getIds(VarKind kind) { |
78 | if (!space.isUsingIds()) |
79 | space.resetIds(); |
80 | return space.getIds(kind); |
81 | } |
82 | |
83 | void IntegerRelation::append(const IntegerRelation &other) { |
84 | assert(space.isEqual(other.getSpace()) && "Spaces must be equal."); |
85 | |
86 | inequalities.reserveRows(rows: inequalities.getNumRows() + |
87 | other.getNumInequalities()); |
88 | equalities.reserveRows(rows: equalities.getNumRows() + other.getNumEqualities()); |
89 | |
90 | for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { |
91 | addInequality(inEq: other.getInequality(idx: r)); |
92 | } |
93 | for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { |
94 | addEquality(eq: other.getEquality(idx: r)); |
95 | } |
96 | } |
97 | |
98 | IntegerRelation IntegerRelation::intersect(IntegerRelation other) const { |
99 | IntegerRelation result = *this; |
100 | result.mergeLocalVars(other); |
101 | result.append(other); |
102 | return result; |
103 | } |
104 | |
105 | bool IntegerRelation::isEqual(const IntegerRelation &other) const { |
106 | assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible."); |
107 | return PresburgerRelation(*this).isEqual(set: PresburgerRelation(other)); |
108 | } |
109 | |
110 | bool IntegerRelation::isObviouslyEqual(const IntegerRelation &other) const { |
111 | if (!space.isEqual(other: other.getSpace())) |
112 | return false; |
113 | if (getNumEqualities() != other.getNumEqualities()) |
114 | return false; |
115 | if (getNumInequalities() != other.getNumInequalities()) |
116 | return false; |
117 | |
118 | unsigned cols = getNumCols(); |
119 | for (unsigned i = 0, eqs = getNumEqualities(); i < eqs; ++i) { |
120 | for (unsigned j = 0; j < cols; ++j) { |
121 | if (atEq(i, j) != other.atEq(i, j)) |
122 | return false; |
123 | } |
124 | } |
125 | for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) { |
126 | for (unsigned j = 0; j < cols; ++j) { |
127 | if (atIneq(i, j) != other.atIneq(i, j)) |
128 | return false; |
129 | } |
130 | } |
131 | return true; |
132 | } |
133 | |
134 | bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const { |
135 | assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible."); |
136 | return PresburgerRelation(*this).isSubsetOf(set: PresburgerRelation(other)); |
137 | } |
138 | |
139 | MaybeOptimum<SmallVector<Fraction, 8>> |
140 | IntegerRelation::findRationalLexMin() const { |
141 | assert(getNumSymbolVars() == 0 && "Symbols are not supported!"); |
142 | MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin = |
143 | LexSimplex(*this).findRationalLexMin(); |
144 | |
145 | if (!maybeLexMin.isBounded()) |
146 | return maybeLexMin; |
147 | |
148 | // The Simplex returns the lexmin over all the variables including locals. But |
149 | // locals are not actually part of the space and should not be returned in the |
150 | // result. Since the locals are placed last in the list of variables, they |
151 | // will be minimized last in the lexmin. So simply truncating out the locals |
152 | // from the end of the answer gives the desired lexmin over the dimensions. |
153 | assert(maybeLexMin->size() == getNumVars() && |
154 | "Incorrect number of vars in lexMin!"); |
155 | maybeLexMin->resize(N: getNumDimAndSymbolVars()); |
156 | return maybeLexMin; |
157 | } |
158 | |
159 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> |
160 | IntegerRelation::findIntegerLexMin() const { |
161 | assert(getNumSymbolVars() == 0 && "Symbols are not supported!"); |
162 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> maybeLexMin = |
163 | LexSimplex(*this).findIntegerLexMin(); |
164 | |
165 | if (!maybeLexMin.isBounded()) |
166 | return maybeLexMin.getKind(); |
167 | |
168 | // The Simplex returns the lexmin over all the variables including locals. But |
169 | // locals are not actually part of the space and should not be returned in the |
170 | // result. Since the locals are placed last in the list of variables, they |
171 | // will be minimized last in the lexmin. So simply truncating out the locals |
172 | // from the end of the answer gives the desired lexmin over the dimensions. |
173 | assert(maybeLexMin->size() == getNumVars() && |
174 | "Incorrect number of vars in lexMin!"); |
175 | maybeLexMin->resize(N: getNumDimAndSymbolVars()); |
176 | return maybeLexMin; |
177 | } |
178 | |
179 | static bool rangeIsZero(ArrayRef<DynamicAPInt> range) { |
180 | return llvm::all_of(Range&: range, P: [](const DynamicAPInt &x) { return x == 0; }); |
181 | } |
182 | |
183 | static void removeConstraintsInvolvingVarRange(IntegerRelation &poly, |
184 | unsigned begin, unsigned count) { |
185 | // We loop until i > 0 and index into i - 1 to avoid sign issues. |
186 | // |
187 | // We iterate backwards so that whether we remove constraint i - 1 or not, the |
188 | // next constraint to be tested is always i - 2. |
189 | for (unsigned i = poly.getNumEqualities(); i > 0; i--) |
190 | if (!rangeIsZero(range: poly.getEquality(idx: i - 1).slice(N: begin, M: count))) |
191 | poly.removeEquality(pos: i - 1); |
192 | for (unsigned i = poly.getNumInequalities(); i > 0; i--) |
193 | if (!rangeIsZero(range: poly.getInequality(idx: i - 1).slice(N: begin, M: count))) |
194 | poly.removeInequality(pos: i - 1); |
195 | } |
196 | |
197 | IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const { |
198 | return {getSpace(), getNumInequalities(), getNumEqualities()}; |
199 | } |
200 | |
201 | void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) { |
202 | unsigned curNum = getNumVarKind(kind); |
203 | assert(num <= curNum && "Can't truncate to more vars!"); |
204 | removeVarRange(kind, varStart: num, varLimit: curNum); |
205 | } |
206 | |
207 | void IntegerRelation::truncateVarKind(VarKind kind, |
208 | const CountsSnapshot &counts) { |
209 | truncateVarKind(kind, num: counts.getSpace().getNumVarKind(kind)); |
210 | } |
211 | |
212 | void IntegerRelation::truncate(const CountsSnapshot &counts) { |
213 | truncateVarKind(kind: VarKind::Domain, counts); |
214 | truncateVarKind(kind: VarKind::Range, counts); |
215 | truncateVarKind(kind: VarKind::Symbol, counts); |
216 | truncateVarKind(kind: VarKind::Local, counts); |
217 | removeInequalityRange(start: counts.getNumIneqs(), end: getNumInequalities()); |
218 | removeEqualityRange(start: counts.getNumEqs(), end: getNumEqualities()); |
219 | } |
220 | |
221 | PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const { |
222 | // If there are no locals, we're done. |
223 | if (getNumLocalVars() == 0) |
224 | return PresburgerRelation(*this); |
225 | |
226 | // Move all the non-div locals to the end, as the current API to |
227 | // SymbolicLexOpt requires these to form a contiguous range. |
228 | // |
229 | // Take a copy so we can perform mutations. |
230 | IntegerRelation copy = *this; |
231 | std::vector<MaybeLocalRepr> reprs(getNumLocalVars()); |
232 | copy.getLocalReprs(repr: &reprs); |
233 | |
234 | // Iterate through all the locals. The last `numNonDivLocals` are the locals |
235 | // that have been scanned already and do not have division representations. |
236 | unsigned numNonDivLocals = 0; |
237 | unsigned offset = copy.getVarKindOffset(kind: VarKind::Local); |
238 | for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) { |
239 | if (!reprs[i]) { |
240 | // Whenever we come across a local that does not have a division |
241 | // representation, we swap it to the `numNonDivLocals`-th last position |
242 | // and increment `numNonDivLocal`s. `reprs` also needs to be swapped. |
243 | copy.swapVar(posA: offset + i, posB: offset + e - numNonDivLocals - 1); |
244 | std::swap(a&: reprs[i], b&: reprs[e - numNonDivLocals - 1]); |
245 | ++numNonDivLocals; |
246 | continue; |
247 | } |
248 | ++i; |
249 | } |
250 | |
251 | // If there are no non-div locals, we're done. |
252 | if (numNonDivLocals == 0) |
253 | return PresburgerRelation(*this); |
254 | |
255 | // We computeSymbolicIntegerLexMin by considering the non-div locals as |
256 | // "non-symbols" and considering everything else as "symbols". This will |
257 | // compute a function mapping assignments to "symbols" to the |
258 | // lexicographically minimal valid assignment of "non-symbols", when a |
259 | // satisfying assignment exists. It separately returns the set of assignments |
260 | // to the "symbols" such that a satisfying assignment to the "non-symbols" |
261 | // exists but the lexmin is unbounded. We basically want to find the set of |
262 | // values of the "symbols" such that an assignment to the "non-symbols" |
263 | // exists, which is the union of the domain of the returned lexmin function |
264 | // and the returned set of assignments to the "symbols" that makes the lexmin |
265 | // unbounded. |
266 | SymbolicLexOpt lexminResult = |
267 | SymbolicLexSimplex(copy, /*symbolOffset*/ 0, |
268 | IntegerPolyhedron(PresburgerSpace::getSetSpace( |
269 | /*numDims=*/copy.getNumVars() - numNonDivLocals))) |
270 | .computeSymbolicIntegerLexMin(); |
271 | PresburgerRelation result = |
272 | lexminResult.lexopt.getDomain().unionSet(set: lexminResult.unboundedDomain); |
273 | |
274 | // The result set might lie in the wrong space -- all its ids are dims. |
275 | // Set it to the desired space and return. |
276 | PresburgerSpace space = getSpace(); |
277 | space.removeVarRange(kind: VarKind::Local, varStart: 0, varLimit: getNumLocalVars()); |
278 | result.setSpace(space); |
279 | return result; |
280 | } |
281 | |
282 | SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMin() const { |
283 | // Symbol and Domain vars will be used as symbols for symbolic lexmin. |
284 | // In other words, for every value of the symbols and domain, return the |
285 | // lexmin value of the (range, locals). |
286 | llvm::SmallBitVector isSymbol(getNumVars(), false); |
287 | isSymbol.set(I: getVarKindOffset(kind: VarKind::Symbol), |
288 | E: getVarKindEnd(kind: VarKind::Symbol)); |
289 | isSymbol.set(I: getVarKindOffset(kind: VarKind::Domain), |
290 | E: getVarKindEnd(kind: VarKind::Domain)); |
291 | // Compute the symbolic lexmin of the dims and locals, with the symbols being |
292 | // the actual symbols of this set. |
293 | // The resultant space of lexmin is the space of the relation itself. |
294 | SymbolicLexOpt result = |
295 | SymbolicLexSimplex(*this, |
296 | IntegerPolyhedron(PresburgerSpace::getSetSpace( |
297 | /*numDims=*/getNumDomainVars(), |
298 | /*numSymbols=*/getNumSymbolVars())), |
299 | isSymbol) |
300 | .computeSymbolicIntegerLexMin(); |
301 | |
302 | // We want to return only the lexmin over the dims, so strip the locals from |
303 | // the computed lexmin. |
304 | result.lexopt.removeOutputs(start: result.lexopt.getNumOutputs() - getNumLocalVars(), |
305 | end: result.lexopt.getNumOutputs()); |
306 | return result; |
307 | } |
308 | |
309 | /// findSymbolicIntegerLexMax is implemented using findSymbolicIntegerLexMin as |
310 | /// follows: |
311 | /// 1. A new relation is created which is `this` relation with the sign of |
312 | /// each dimension variable in range flipped; |
313 | /// 2. findSymbolicIntegerLexMin is called on the range negated relation to |
314 | /// compute the negated lexmax of `this` relation; |
315 | /// 3. The sign of the negated lexmax is flipped and returned. |
316 | SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMax() const { |
317 | IntegerRelation flippedRel = *this; |
318 | // Flip range sign by flipping the sign of range variables in all constraints. |
319 | for (unsigned j = getNumDomainVars(), |
320 | b = getNumDomainVars() + getNumRangeVars(); |
321 | j < b; j++) { |
322 | for (unsigned i = 0, a = getNumEqualities(); i < a; i++) |
323 | flippedRel.atEq(i, j) = -1 * atEq(i, j); |
324 | for (unsigned i = 0, a = getNumInequalities(); i < a; i++) |
325 | flippedRel.atIneq(i, j) = -1 * atIneq(i, j); |
326 | } |
327 | // Compute negated lexmax by computing lexmin. |
328 | SymbolicLexOpt flippedSymbolicIntegerLexMax = |
329 | flippedRel.findSymbolicIntegerLexMin(), |
330 | symbolicIntegerLexMax( |
331 | flippedSymbolicIntegerLexMax.lexopt.getSpace()); |
332 | // Get lexmax by flipping range sign in the PWMA constraints. |
333 | for (auto &flippedPiece : |
334 | flippedSymbolicIntegerLexMax.lexopt.getAllPieces()) { |
335 | IntMatrix mat = flippedPiece.output.getOutputMatrix(); |
336 | for (unsigned i = 0, e = mat.getNumRows(); i < e; i++) |
337 | mat.negateRow(row: i); |
338 | MultiAffineFunction maf(flippedPiece.output.getSpace(), mat); |
339 | PWMAFunction::Piece piece = {.domain: flippedPiece.domain, .output: maf}; |
340 | symbolicIntegerLexMax.lexopt.addPiece(piece); |
341 | } |
342 | symbolicIntegerLexMax.unboundedDomain = |
343 | flippedSymbolicIntegerLexMax.unboundedDomain; |
344 | return symbolicIntegerLexMax; |
345 | } |
346 | |
347 | PresburgerRelation |
348 | IntegerRelation::subtract(const PresburgerRelation &set) const { |
349 | return PresburgerRelation(*this).subtract(set); |
350 | } |
351 | |
352 | unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) { |
353 | assert(pos <= getNumVarKind(kind)); |
354 | |
355 | unsigned insertPos = space.insertVar(kind, pos, num); |
356 | inequalities.insertColumns(pos: insertPos, count: num); |
357 | equalities.insertColumns(pos: insertPos, count: num); |
358 | return insertPos; |
359 | } |
360 | |
361 | unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) { |
362 | unsigned pos = getNumVarKind(kind); |
363 | return insertVar(kind, pos, num); |
364 | } |
365 | |
366 | void IntegerRelation::addEquality(ArrayRef<DynamicAPInt> eq) { |
367 | assert(eq.size() == getNumCols()); |
368 | unsigned row = equalities.appendExtraRow(); |
369 | for (unsigned i = 0, e = eq.size(); i < e; ++i) |
370 | equalities(row, i) = eq[i]; |
371 | } |
372 | |
373 | void IntegerRelation::addInequality(ArrayRef<DynamicAPInt> inEq) { |
374 | assert(inEq.size() == getNumCols()); |
375 | unsigned row = inequalities.appendExtraRow(); |
376 | for (unsigned i = 0, e = inEq.size(); i < e; ++i) |
377 | inequalities(row, i) = inEq[i]; |
378 | } |
379 | |
380 | void IntegerRelation::removeVar(VarKind kind, unsigned pos) { |
381 | removeVarRange(kind, varStart: pos, varLimit: pos + 1); |
382 | } |
383 | |
384 | void IntegerRelation::removeVar(unsigned pos) { removeVarRange(varStart: pos, varLimit: pos + 1); } |
385 | |
386 | void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart, |
387 | unsigned varLimit) { |
388 | assert(varLimit <= getNumVarKind(kind)); |
389 | |
390 | if (varStart >= varLimit) |
391 | return; |
392 | |
393 | // Remove eliminated variables from the constraints. |
394 | unsigned offset = getVarKindOffset(kind); |
395 | equalities.removeColumns(pos: offset + varStart, count: varLimit - varStart); |
396 | inequalities.removeColumns(pos: offset + varStart, count: varLimit - varStart); |
397 | |
398 | // Remove eliminated variables from the space. |
399 | space.removeVarRange(kind, varStart, varLimit); |
400 | } |
401 | |
402 | void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) { |
403 | assert(varLimit <= getNumVars()); |
404 | |
405 | if (varStart >= varLimit) |
406 | return; |
407 | |
408 | // Helper function to remove vars of the specified kind in the given range |
409 | // [start, limit), The range is absolute (i.e. it is not relative to the kind |
410 | // of variable). Also updates `limit` to reflect the deleted variables. |
411 | auto removeVarKindInRange = [this](VarKind kind, unsigned &start, |
412 | unsigned &limit) { |
413 | if (start >= limit) |
414 | return; |
415 | |
416 | unsigned offset = getVarKindOffset(kind); |
417 | unsigned num = getNumVarKind(kind); |
418 | |
419 | // Get `start`, `limit` relative to the specified kind. |
420 | unsigned relativeStart = |
421 | start <= offset ? 0 : std::min(a: num, b: start - offset); |
422 | unsigned relativeLimit = |
423 | limit <= offset ? 0 : std::min(a: num, b: limit - offset); |
424 | |
425 | // Remove vars of the specified kind in the relative range. |
426 | removeVarRange(kind, varStart: relativeStart, varLimit: relativeLimit); |
427 | |
428 | // Update `limit` to reflect deleted variables. |
429 | // `start` does not need to be updated because any variables that are |
430 | // deleted are after position `start`. |
431 | limit -= relativeLimit - relativeStart; |
432 | }; |
433 | |
434 | removeVarKindInRange(VarKind::Domain, varStart, varLimit); |
435 | removeVarKindInRange(VarKind::Range, varStart, varLimit); |
436 | removeVarKindInRange(VarKind::Symbol, varStart, varLimit); |
437 | removeVarKindInRange(VarKind::Local, varStart, varLimit); |
438 | } |
439 | |
440 | void IntegerRelation::removeEquality(unsigned pos) { |
441 | equalities.removeRow(pos); |
442 | } |
443 | |
444 | void IntegerRelation::removeInequality(unsigned pos) { |
445 | inequalities.removeRow(pos); |
446 | } |
447 | |
448 | void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) { |
449 | if (start >= end) |
450 | return; |
451 | equalities.removeRows(pos: start, count: end - start); |
452 | } |
453 | |
454 | void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) { |
455 | if (start >= end) |
456 | return; |
457 | inequalities.removeRows(pos: start, count: end - start); |
458 | } |
459 | |
460 | void IntegerRelation::swapVar(unsigned posA, unsigned posB) { |
461 | assert(posA < getNumVars() && "invalid position A"); |
462 | assert(posB < getNumVars() && "invalid position B"); |
463 | |
464 | if (posA == posB) |
465 | return; |
466 | |
467 | VarKind kindA = space.getVarKindAt(pos: posA); |
468 | VarKind kindB = space.getVarKindAt(pos: posB); |
469 | unsigned relativePosA = posA - getVarKindOffset(kind: kindA); |
470 | unsigned relativePosB = posB - getVarKindOffset(kind: kindB); |
471 | space.swapVar(kindA, kindB, posA: relativePosA, posB: relativePosB); |
472 | |
473 | inequalities.swapColumns(column: posA, otherColumn: posB); |
474 | equalities.swapColumns(column: posA, otherColumn: posB); |
475 | } |
476 | |
477 | void IntegerRelation::clearConstraints() { |
478 | equalities.resizeVertically(newNRows: 0); |
479 | inequalities.resizeVertically(newNRows: 0); |
480 | } |
481 | |
482 | /// Gather all lower and upper bounds of the variable at `pos`, and |
483 | /// optionally any equalities on it. In addition, the bounds are to be |
484 | /// independent of variables in position range [`offset`, `offset` + `num`). |
485 | void IntegerRelation::getLowerAndUpperBoundIndices( |
486 | unsigned pos, SmallVectorImpl<unsigned> *lbIndices, |
487 | SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices, |
488 | unsigned offset, unsigned num) const { |
489 | assert(pos < getNumVars() && "invalid position"); |
490 | assert(offset + num < getNumCols() && "invalid range"); |
491 | |
492 | // Checks for a constraint that has a non-zero coeff for the variables in |
493 | // the position range [offset, offset + num) while ignoring `pos`. |
494 | auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) { |
495 | unsigned c, f; |
496 | auto cst = isEq ? getEquality(idx: r) : getInequality(idx: r); |
497 | for (c = offset, f = offset + num; c < f; ++c) { |
498 | if (c == pos) |
499 | continue; |
500 | if (cst[c] != 0) |
501 | break; |
502 | } |
503 | return c < f; |
504 | }; |
505 | |
506 | // Gather all lower bounds and upper bounds of the variable. Since the |
507 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
508 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
509 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
510 | // The bounds are to be independent of [offset, offset + num) columns. |
511 | if (containsConstraintDependentOnRange(r, /*isEq=*/false)) |
512 | continue; |
513 | if (atIneq(i: r, j: pos) >= 1) { |
514 | // Lower bound. |
515 | lbIndices->emplace_back(Args&: r); |
516 | } else if (atIneq(i: r, j: pos) <= -1) { |
517 | // Upper bound. |
518 | ubIndices->emplace_back(Args&: r); |
519 | } |
520 | } |
521 | |
522 | // An equality is both a lower and upper bound. Record any equalities |
523 | // involving the pos^th variable. |
524 | if (!eqIndices) |
525 | return; |
526 | |
527 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
528 | if (atEq(i: r, j: pos) == 0) |
529 | continue; |
530 | if (containsConstraintDependentOnRange(r, /*isEq=*/true)) |
531 | continue; |
532 | eqIndices->emplace_back(Args&: r); |
533 | } |
534 | } |
535 | |
536 | bool IntegerRelation::hasConsistentState() const { |
537 | if (!inequalities.hasConsistentState()) |
538 | return false; |
539 | if (!equalities.hasConsistentState()) |
540 | return false; |
541 | return true; |
542 | } |
543 | |
544 | void IntegerRelation::setAndEliminate(unsigned pos, |
545 | ArrayRef<DynamicAPInt> values) { |
546 | if (values.empty()) |
547 | return; |
548 | assert(pos + values.size() <= getNumVars() && |
549 | "invalid position or too many values"); |
550 | // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the |
551 | // constant term and removing the var x_j. We do this for all the vars |
552 | // pos, pos + 1, ... pos + values.size() - 1. |
553 | unsigned constantColPos = getNumCols() - 1; |
554 | for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) |
555 | inequalities.addToColumn(sourceColumn: i + pos, targetColumn: constantColPos, scale: values[i]); |
556 | for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) |
557 | equalities.addToColumn(sourceColumn: i + pos, targetColumn: constantColPos, scale: values[i]); |
558 | removeVarRange(varStart: pos, varLimit: pos + values.size()); |
559 | } |
560 | |
561 | void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) { |
562 | *this = other; |
563 | } |
564 | |
565 | std::optional<unsigned> |
566 | IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq) const { |
567 | assert(colIdx < getNumCols() && "position out of bounds"); |
568 | auto at = [&](unsigned rowIdx) -> DynamicAPInt { |
569 | return isEq ? atEq(i: rowIdx, j: colIdx) : atIneq(i: rowIdx, j: colIdx); |
570 | }; |
571 | unsigned e = isEq ? getNumEqualities() : getNumInequalities(); |
572 | for (unsigned rowIdx = 0; rowIdx < e; ++rowIdx) { |
573 | if (at(rowIdx) != 0) |
574 | return rowIdx; |
575 | } |
576 | return std::nullopt; |
577 | } |
578 | |
579 | void IntegerRelation::normalizeConstraintsByGCD() { |
580 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
581 | equalities.normalizeRow(row: i); |
582 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
583 | inequalities.normalizeRow(row: i); |
584 | } |
585 | |
586 | bool IntegerRelation::hasInvalidConstraint() const { |
587 | assert(hasConsistentState()); |
588 | auto check = [&](bool isEq) -> bool { |
589 | unsigned numCols = getNumCols(); |
590 | unsigned numRows = isEq ? getNumEqualities() : getNumInequalities(); |
591 | for (unsigned i = 0, e = numRows; i < e; ++i) { |
592 | unsigned j; |
593 | for (j = 0; j < numCols - 1; ++j) { |
594 | DynamicAPInt v = isEq ? atEq(i, j) : atIneq(i, j); |
595 | // Skip rows with non-zero variable coefficients. |
596 | if (v != 0) |
597 | break; |
598 | } |
599 | if (j < numCols - 1) { |
600 | continue; |
601 | } |
602 | // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'. |
603 | // Example invalid constraints include: '1 == 0' or '-1 >= 0' |
604 | DynamicAPInt v = isEq ? atEq(i, j: numCols - 1) : atIneq(i, j: numCols - 1); |
605 | if ((isEq && v != 0) || (!isEq && v < 0)) { |
606 | return true; |
607 | } |
608 | } |
609 | return false; |
610 | }; |
611 | if (check(/*isEq=*/true)) |
612 | return true; |
613 | return check(/*isEq=*/false); |
614 | } |
615 | |
616 | /// Eliminate variable from constraint at `rowIdx` based on coefficient at |
617 | /// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be |
618 | /// updated as they have already been eliminated. |
619 | static void eliminateFromConstraint(IntegerRelation *constraints, |
620 | unsigned rowIdx, unsigned pivotRow, |
621 | unsigned pivotCol, unsigned elimColStart, |
622 | bool isEq) { |
623 | // Skip if equality 'rowIdx' if same as 'pivotRow'. |
624 | if (isEq && rowIdx == pivotRow) |
625 | return; |
626 | auto at = [&](unsigned i, unsigned j) -> DynamicAPInt { |
627 | return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j); |
628 | }; |
629 | DynamicAPInt leadCoeff = at(rowIdx, pivotCol); |
630 | // Skip if leading coefficient at 'rowIdx' is already zero. |
631 | if (leadCoeff == 0) |
632 | return; |
633 | DynamicAPInt pivotCoeff = constraints->atEq(i: pivotRow, j: pivotCol); |
634 | int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1; |
635 | DynamicAPInt lcm = llvm::lcm(A: pivotCoeff, B: leadCoeff); |
636 | DynamicAPInt pivotMultiplier = sign * (lcm / abs(X: pivotCoeff)); |
637 | DynamicAPInt rowMultiplier = lcm / abs(X: leadCoeff); |
638 | |
639 | unsigned numCols = constraints->getNumCols(); |
640 | for (unsigned j = 0; j < numCols; ++j) { |
641 | // Skip updating column 'j' if it was just eliminated. |
642 | if (j >= elimColStart && j < pivotCol) |
643 | continue; |
644 | DynamicAPInt v = pivotMultiplier * constraints->atEq(i: pivotRow, j) + |
645 | rowMultiplier * at(rowIdx, j); |
646 | isEq ? constraints->atEq(i: rowIdx, j) = v |
647 | : constraints->atIneq(i: rowIdx, j) = v; |
648 | } |
649 | } |
650 | |
651 | /// Returns the position of the variable that has the minimum <number of lower |
652 | /// bounds> times <number of upper bounds> from the specified range of |
653 | /// variables [start, end). It is often best to eliminate in the increasing |
654 | /// order of these counts when doing Fourier-Motzkin elimination since FM adds |
655 | /// that many new constraints. |
656 | static unsigned getBestVarToEliminate(const IntegerRelation &cst, |
657 | unsigned start, unsigned end) { |
658 | assert(start < cst.getNumVars() && end < cst.getNumVars() + 1); |
659 | |
660 | auto getProductOfNumLowerUpperBounds = [&](unsigned pos) { |
661 | unsigned numLb = 0; |
662 | unsigned numUb = 0; |
663 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
664 | if (cst.atIneq(i: r, j: pos) > 0) { |
665 | ++numLb; |
666 | } else if (cst.atIneq(i: r, j: pos) < 0) { |
667 | ++numUb; |
668 | } |
669 | } |
670 | return numLb * numUb; |
671 | }; |
672 | |
673 | unsigned minLoc = start; |
674 | unsigned min = getProductOfNumLowerUpperBounds(start); |
675 | for (unsigned c = start + 1; c < end; c++) { |
676 | unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c); |
677 | if (numLbUbProduct < min) { |
678 | min = numLbUbProduct; |
679 | minLoc = c; |
680 | } |
681 | } |
682 | return minLoc; |
683 | } |
684 | |
685 | // Checks for emptiness of the set by eliminating variables successively and |
686 | // using the GCD test (on all equality constraints) and checking for trivially |
687 | // invalid constraints. Returns 'true' if the constraint system is found to be |
688 | // empty; false otherwise. |
689 | bool IntegerRelation::isEmpty() const { |
690 | if (isEmptyByGCDTest() || hasInvalidConstraint()) |
691 | return true; |
692 | |
693 | IntegerRelation tmpCst(*this); |
694 | |
695 | // First, eliminate as many local variables as possible using equalities. |
696 | tmpCst.removeRedundantLocalVars(); |
697 | if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint()) |
698 | return true; |
699 | |
700 | // Eliminate as many variables as possible using Gaussian elimination. |
701 | unsigned currentPos = 0; |
702 | while (currentPos < tmpCst.getNumVars()) { |
703 | tmpCst.gaussianEliminateVars(posStart: currentPos, posLimit: tmpCst.getNumVars()); |
704 | ++currentPos; |
705 | // We check emptiness through trivial checks after eliminating each ID to |
706 | // detect emptiness early. Since the checks isEmptyByGCDTest() and |
707 | // hasInvalidConstraint() are linear time and single sweep on the constraint |
708 | // buffer, this appears reasonable - but can optimize in the future. |
709 | if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest()) |
710 | return true; |
711 | } |
712 | |
713 | // Eliminate the remaining using FM. |
714 | for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) { |
715 | tmpCst.fourierMotzkinEliminate( |
716 | pos: getBestVarToEliminate(cst: tmpCst, start: 0, end: tmpCst.getNumVars())); |
717 | // Check for a constraint explosion. This rarely happens in practice, but |
718 | // this check exists as a safeguard against improperly constructed |
719 | // constraint systems or artificially created arbitrarily complex systems |
720 | // that aren't the intended use case for IntegerRelation. This is |
721 | // needed since FM has a worst case exponential complexity in theory. |
722 | if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) { |
723 | LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n"); |
724 | return false; |
725 | } |
726 | |
727 | // FM wouldn't have modified the equalities in any way. So no need to again |
728 | // run GCD test. Check for trivial invalid constraints. |
729 | if (tmpCst.hasInvalidConstraint()) |
730 | return true; |
731 | } |
732 | return false; |
733 | } |
734 | |
735 | bool IntegerRelation::isObviouslyEmpty() const { |
736 | return isEmptyByGCDTest() || hasInvalidConstraint(); |
737 | } |
738 | |
739 | // Runs the GCD test on all equality constraints. Returns 'true' if this test |
740 | // fails on any equality. Returns 'false' otherwise. |
741 | // This test can be used to disprove the existence of a solution. If it returns |
742 | // true, no integer solution to the equality constraints can exist. |
743 | // |
744 | // GCD test definition: |
745 | // |
746 | // The equality constraint: |
747 | // |
748 | // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0 |
749 | // |
750 | // has an integer solution iff: |
751 | // |
752 | // GCD of c_1, c_2, ..., c_n divides c_0. |
753 | bool IntegerRelation::isEmptyByGCDTest() const { |
754 | assert(hasConsistentState()); |
755 | unsigned numCols = getNumCols(); |
756 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
757 | DynamicAPInt gcd = abs(X: atEq(i, j: 0)); |
758 | for (unsigned j = 1; j < numCols - 1; ++j) { |
759 | gcd = llvm::gcd(A: gcd, B: abs(X: atEq(i, j))); |
760 | } |
761 | DynamicAPInt v = abs(X: atEq(i, j: numCols - 1)); |
762 | if (gcd > 0 && (v % gcd != 0)) { |
763 | return true; |
764 | } |
765 | } |
766 | return false; |
767 | } |
768 | |
769 | // Returns a matrix where each row is a vector along which the polytope is |
770 | // bounded. The span of the returned vectors is guaranteed to contain all |
771 | // such vectors. The returned vectors are NOT guaranteed to be linearly |
772 | // independent. This function should not be called on empty sets. |
773 | // |
774 | // It is sufficient to check the perpendiculars of the constraints, as the set |
775 | // of perpendiculars which are bounded must span all bounded directions. |
776 | IntMatrix IntegerRelation::getBoundedDirections() const { |
777 | // Note that it is necessary to add the equalities too (which the constructor |
778 | // does) even though we don't need to check if they are bounded; whether an |
779 | // inequality is bounded or not depends on what other constraints, including |
780 | // equalities, are present. |
781 | Simplex simplex(*this); |
782 | |
783 | assert(!simplex.isEmpty() && "It is not meaningful to ask whether a " |
784 | "direction is bounded in an empty set."); |
785 | |
786 | SmallVector<unsigned, 8> boundedIneqs; |
787 | // The constructor adds the inequalities to the simplex first, so this |
788 | // processes all the inequalities. |
789 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
790 | if (simplex.isBoundedAlongConstraint(constraintIndex: i)) |
791 | boundedIneqs.emplace_back(Args&: i); |
792 | } |
793 | |
794 | // The direction vector is given by the coefficients and does not include the |
795 | // constant term, so the matrix has one fewer column. |
796 | unsigned dirsNumCols = getNumCols() - 1; |
797 | IntMatrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols); |
798 | |
799 | // Copy the bounded inequalities. |
800 | unsigned row = 0; |
801 | for (unsigned i : boundedIneqs) { |
802 | for (unsigned col = 0; col < dirsNumCols; ++col) |
803 | dirs(row, col) = atIneq(i, j: col); |
804 | ++row; |
805 | } |
806 | |
807 | // Copy the equalities. All the equalities' perpendiculars are bounded. |
808 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
809 | for (unsigned col = 0; col < dirsNumCols; ++col) |
810 | dirs(row, col) = atEq(i, j: col); |
811 | ++row; |
812 | } |
813 | |
814 | return dirs; |
815 | } |
816 | |
817 | bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); } |
818 | |
819 | /// Let this set be S. If S is bounded then we directly call into the GBR |
820 | /// sampling algorithm. Otherwise, there are some unbounded directions, i.e., |
821 | /// vectors v such that S extends to infinity along v or -v. In this case we |
822 | /// use an algorithm described in the integer set library (isl) manual and used |
823 | /// by the isl_set_sample function in that library. The algorithm is: |
824 | /// |
825 | /// 1) Apply a unimodular transform T to S to obtain S*T, such that all |
826 | /// dimensions in which S*T is bounded lie in the linear span of a prefix of the |
827 | /// dimensions. |
828 | /// |
829 | /// 2) Construct a set B by removing all constraints that involve |
830 | /// the unbounded dimensions and then deleting the unbounded dimensions. Note |
831 | /// that B is a Bounded set. |
832 | /// |
833 | /// 3) Try to obtain a sample from B using the GBR sampling |
834 | /// algorithm. If no sample is found, return that S is empty. |
835 | /// |
836 | /// 4) Otherwise, substitute the obtained sample into S*T to obtain a set |
837 | /// C. C is a full-dimensional Cone and always contains a sample. |
838 | /// |
839 | /// 5) Obtain an integer sample from C. |
840 | /// |
841 | /// 6) Return T*v, where v is the concatenation of the samples from B and C. |
842 | /// |
843 | /// The following is a sketch of a proof that |
844 | /// a) If the algorithm returns empty, then S is empty. |
845 | /// b) If the algorithm returns a sample, it is a valid sample in S. |
846 | /// |
847 | /// The algorithm returns empty only if B is empty, in which case S*T is |
848 | /// certainly empty since B was obtained by removing constraints and then |
849 | /// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector |
850 | /// v is in S*T iff T*v is in S. So in this case, since |
851 | /// S*T is empty, S is empty too. |
852 | /// |
853 | /// Otherwise, the algorithm substitutes the sample from B into S*T. All the |
854 | /// constraints of S*T that did not involve unbounded dimensions are satisfied |
855 | /// by this substitution. All dimensions in the linear span of the dimensions |
856 | /// outside the prefix are unbounded in S*T (step 1). Substituting values for |
857 | /// the bounded dimensions cannot make these dimensions bounded, and these are |
858 | /// the only remaining dimensions in C, so C is unbounded along every vector (in |
859 | /// the positive or negative direction, or both). C is hence a full-dimensional |
860 | /// cone and therefore always contains an integer point. |
861 | /// |
862 | /// Concatenating the samples from B and C gives a sample v in S*T, so the |
863 | /// returned sample T*v is a sample in S. |
864 | std::optional<SmallVector<DynamicAPInt, 8>> |
865 | IntegerRelation::findIntegerSample() const { |
866 | // First, try the GCD test heuristic. |
867 | if (isEmptyByGCDTest()) |
868 | return {}; |
869 | |
870 | Simplex simplex(*this); |
871 | if (simplex.isEmpty()) |
872 | return {}; |
873 | |
874 | // For a bounded set, we directly call into the GBR sampling algorithm. |
875 | if (!simplex.isUnbounded()) |
876 | return simplex.findIntegerSample(); |
877 | |
878 | // The set is unbounded. We cannot directly use the GBR algorithm. |
879 | // |
880 | // m is a matrix containing, in each row, a vector in which S is |
881 | // bounded, such that the linear span of all these dimensions contains all |
882 | // bounded dimensions in S. |
883 | IntMatrix m = getBoundedDirections(); |
884 | // In column echelon form, each row of m occupies only the first rank(m) |
885 | // columns and has zeros on the other columns. The transform T that brings S |
886 | // to column echelon form is unimodular as well, so this is a suitable |
887 | // transform to use in step 1 of the algorithm. |
888 | std::pair<unsigned, LinearTransform> result = |
889 | LinearTransform::makeTransformToColumnEchelon(m); |
890 | const LinearTransform &transform = result.second; |
891 | // 1) Apply T to S to obtain S*T. |
892 | IntegerRelation transformedSet = transform.applyTo(rel: *this); |
893 | |
894 | // 2) Remove the unbounded dimensions and constraints involving them to |
895 | // obtain a bounded set. |
896 | IntegerRelation boundedSet(transformedSet); |
897 | unsigned numBoundedDims = result.first; |
898 | unsigned numUnboundedDims = getNumVars() - numBoundedDims; |
899 | removeConstraintsInvolvingVarRange(poly&: boundedSet, begin: numBoundedDims, |
900 | count: numUnboundedDims); |
901 | boundedSet.removeVarRange(varStart: numBoundedDims, varLimit: boundedSet.getNumVars()); |
902 | |
903 | // 3) Try to obtain a sample from the bounded set. |
904 | std::optional<SmallVector<DynamicAPInt, 8>> boundedSample = |
905 | Simplex(boundedSet).findIntegerSample(); |
906 | if (!boundedSample) |
907 | return {}; |
908 | assert(boundedSet.containsPoint(*boundedSample) && |
909 | "Simplex returned an invalid sample!"); |
910 | |
911 | // 4) Substitute the values of the bounded dimensions into S*T to obtain a |
912 | // full-dimensional cone, which necessarily contains an integer sample. |
913 | transformedSet.setAndEliminate(pos: 0, values: *boundedSample); |
914 | IntegerRelation &cone = transformedSet; |
915 | |
916 | // 5) Obtain an integer sample from the cone. |
917 | // |
918 | // We shrink the cone such that for any rational point in the shrunken cone, |
919 | // rounding up each of the point's coordinates produces a point that still |
920 | // lies in the original cone. |
921 | // |
922 | // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i. |
923 | // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the |
924 | // shrunken cone will have the inequality tightened by some amount s, such |
925 | // that if x satisfies the shrunken cone's tightened inequality, then x + e |
926 | // satisfies the original inequality, i.e., |
927 | // |
928 | // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0 |
929 | // |
930 | // for any e_i values in [0, 1). In fact, we will handle the slightly more |
931 | // general case where e_i can be in [0, 1]. For example, consider the |
932 | // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low |
933 | // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS |
934 | // is minimized when we add 1 to the x_i with negative coefficient a_i and |
935 | // keep the other x_i the same. In the example, we would get x = (3, 1, 1), |
936 | // changing the value of the LHS by -3 + -7 = -10. |
937 | // |
938 | // In general, the value of the LHS can change by at most the sum of the |
939 | // negative a_i, so we accomodate this by shifting the inequality by this |
940 | // amount for the shrunken cone. |
941 | for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) { |
942 | for (unsigned j = 0; j < cone.getNumVars(); ++j) { |
943 | DynamicAPInt coeff = cone.atIneq(i, j); |
944 | if (coeff < 0) |
945 | cone.atIneq(i, j: cone.getNumVars()) += coeff; |
946 | } |
947 | } |
948 | |
949 | // Obtain an integer sample in the cone by rounding up a rational point from |
950 | // the shrunken cone. Shrinking the cone amounts to shifting its apex |
951 | // "inwards" without changing its "shape"; the shrunken cone is still a |
952 | // full-dimensional cone and is hence non-empty. |
953 | Simplex shrunkenConeSimplex(cone); |
954 | assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!"); |
955 | |
956 | // The sample will always exist since the shrunken cone is non-empty. |
957 | SmallVector<Fraction, 8> shrunkenConeSample = |
958 | *shrunkenConeSimplex.getRationalSample(); |
959 | |
960 | SmallVector<DynamicAPInt, 8> coneSample( |
961 | llvm::map_range(C&: shrunkenConeSample, F: ceil)); |
962 | |
963 | // 6) Return transform * concat(boundedSample, coneSample). |
964 | SmallVector<DynamicAPInt, 8> &sample = *boundedSample; |
965 | sample.append(in_start: coneSample.begin(), in_end: coneSample.end()); |
966 | return transform.postMultiplyWithColumn(colVec: sample); |
967 | } |
968 | |
969 | /// Helper to evaluate an affine expression at a point. |
970 | /// The expression is a list of coefficients for the dimensions followed by the |
971 | /// constant term. |
972 | static DynamicAPInt valueAt(ArrayRef<DynamicAPInt> expr, |
973 | ArrayRef<DynamicAPInt> point) { |
974 | assert(expr.size() == 1 + point.size() && |
975 | "Dimensionalities of point and expression don't match!"); |
976 | DynamicAPInt value = expr.back(); |
977 | for (unsigned i = 0; i < point.size(); ++i) |
978 | value += expr[i] * point[i]; |
979 | return value; |
980 | } |
981 | |
982 | /// A point satisfies an equality iff the value of the equality at the |
983 | /// expression is zero, and it satisfies an inequality iff the value of the |
984 | /// inequality at that point is non-negative. |
985 | bool IntegerRelation::containsPoint(ArrayRef<DynamicAPInt> point) const { |
986 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
987 | if (valueAt(expr: getEquality(idx: i), point) != 0) |
988 | return false; |
989 | } |
990 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
991 | if (valueAt(expr: getInequality(idx: i), point) < 0) |
992 | return false; |
993 | } |
994 | return true; |
995 | } |
996 | |
997 | /// Just substitute the values given and check if an integer sample exists for |
998 | /// the local vars. |
999 | /// |
1000 | /// TODO: this could be made more efficient by handling divisions separately. |
1001 | /// Instead of finding an integer sample over all the locals, we can first |
1002 | /// compute the values of the locals that have division representations and |
1003 | /// only use the integer emptiness check for the locals that don't have this. |
1004 | /// Handling this correctly requires ordering the divs, though. |
1005 | std::optional<SmallVector<DynamicAPInt, 8>> |
1006 | IntegerRelation::containsPointNoLocal(ArrayRef<DynamicAPInt> point) const { |
1007 | assert(point.size() == getNumVars() - getNumLocalVars() && |
1008 | "Point should contain all vars except locals!"); |
1009 | assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() && |
1010 | "This function depends on locals being stored last!"); |
1011 | IntegerRelation copy = *this; |
1012 | copy.setAndEliminate(pos: 0, values: point); |
1013 | return copy.findIntegerSample(); |
1014 | } |
1015 | |
1016 | DivisionRepr |
1017 | IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const { |
1018 | SmallVector<bool, 8> foundRepr(getNumVars(), false); |
1019 | for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) |
1020 | foundRepr[i] = true; |
1021 | |
1022 | unsigned localOffset = getVarKindOffset(kind: VarKind::Local); |
1023 | DivisionRepr divs(getNumVars(), getNumLocalVars()); |
1024 | bool changed; |
1025 | do { |
1026 | // Each time changed is true, at end of this iteration, one or more local |
1027 | // vars have been detected as floor divs. |
1028 | changed = false; |
1029 | for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) { |
1030 | if (!foundRepr[i + localOffset]) { |
1031 | MaybeLocalRepr res = |
1032 | computeSingleVarRepr(cst: *this, foundRepr, pos: localOffset + i, |
1033 | dividend: divs.getDividend(i), divisor&: divs.getDenom(i)); |
1034 | if (!res) { |
1035 | // No representation was found, so clear the representation and |
1036 | // continue. |
1037 | divs.clearRepr(i); |
1038 | continue; |
1039 | } |
1040 | foundRepr[localOffset + i] = true; |
1041 | if (repr) |
1042 | (*repr)[i] = res; |
1043 | changed = true; |
1044 | } |
1045 | } |
1046 | } while (changed); |
1047 | |
1048 | return divs; |
1049 | } |
1050 | |
1051 | /// Tightens inequalities given that we are dealing with integer spaces. This is |
1052 | /// analogous to the GCD test but applied to inequalities. The constant term can |
1053 | /// be reduced to the preceding multiple of the GCD of the coefficients, i.e., |
1054 | /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a |
1055 | /// fast method - linear in the number of coefficients. |
1056 | // Example on how this affects practical cases: consider the scenario: |
1057 | // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield |
1058 | // j >= 100 instead of the tighter (exact) j >= 128. |
1059 | void IntegerRelation::gcdTightenInequalities() { |
1060 | unsigned numCols = getNumCols(); |
1061 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
1062 | // Normalize the constraint and tighten the constant term by the GCD. |
1063 | DynamicAPInt gcd = inequalities.normalizeRow(row: i, nCols: getNumCols() - 1); |
1064 | if (gcd > 1) |
1065 | atIneq(i, j: numCols - 1) = floorDiv(LHS: atIneq(i, j: numCols - 1), RHS: gcd); |
1066 | } |
1067 | } |
1068 | |
1069 | // Eliminates all variable variables in column range [posStart, posLimit). |
1070 | // Returns the number of variables eliminated. |
1071 | unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart, |
1072 | unsigned posLimit) { |
1073 | // Return if variable positions to eliminate are out of range. |
1074 | assert(posLimit <= getNumVars()); |
1075 | assert(hasConsistentState()); |
1076 | |
1077 | if (posStart >= posLimit) |
1078 | return 0; |
1079 | |
1080 | gcdTightenInequalities(); |
1081 | |
1082 | unsigned pivotCol = 0; |
1083 | for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) { |
1084 | // Find a row which has a non-zero coefficient in column 'j'. |
1085 | std::optional<unsigned> pivotRow = |
1086 | findConstraintWithNonZeroAt(colIdx: pivotCol, /*isEq=*/true); |
1087 | // No pivot row in equalities with non-zero at 'pivotCol'. |
1088 | if (!pivotRow) { |
1089 | // If inequalities are also non-zero in 'pivotCol', it can be eliminated. |
1090 | if ((pivotRow = findConstraintWithNonZeroAt(colIdx: pivotCol, /*isEq=*/false))) |
1091 | break; |
1092 | continue; |
1093 | } |
1094 | |
1095 | // Eliminate variable at 'pivotCol' from each equality row. |
1096 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
1097 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol, elimColStart: posStart, |
1098 | /*isEq=*/true); |
1099 | equalities.normalizeRow(row: i); |
1100 | } |
1101 | |
1102 | // Eliminate variable at 'pivotCol' from each inequality row. |
1103 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
1104 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol, elimColStart: posStart, |
1105 | /*isEq=*/false); |
1106 | inequalities.normalizeRow(row: i); |
1107 | } |
1108 | removeEquality(pos: *pivotRow); |
1109 | gcdTightenInequalities(); |
1110 | } |
1111 | // Update position limit based on number eliminated. |
1112 | posLimit = pivotCol; |
1113 | // Remove eliminated columns from all constraints. |
1114 | removeVarRange(varStart: posStart, varLimit: posLimit); |
1115 | return posLimit - posStart; |
1116 | } |
1117 | |
1118 | bool IntegerRelation::gaussianEliminate() { |
1119 | gcdTightenInequalities(); |
1120 | unsigned firstVar = 0, vars = getNumVars(); |
1121 | unsigned nowDone, eqs; |
1122 | std::optional<unsigned> pivotRow; |
1123 | for (nowDone = 0, eqs = getNumEqualities(); nowDone < eqs; ++nowDone) { |
1124 | // Finds the first non-empty column. |
1125 | for (; firstVar < vars; ++firstVar) { |
1126 | if ((pivotRow = findConstraintWithNonZeroAt(colIdx: firstVar, /*isEq=*/true))) |
1127 | break; |
1128 | } |
1129 | // The matrix has been normalized to row echelon form. |
1130 | if (firstVar >= vars) |
1131 | break; |
1132 | |
1133 | // The first pivot row found is below where it should currently be placed. |
1134 | if (*pivotRow > nowDone) { |
1135 | equalities.swapRows(row: *pivotRow, otherRow: nowDone); |
1136 | *pivotRow = nowDone; |
1137 | } |
1138 | |
1139 | // Normalize all lower equations and all inequalities. |
1140 | for (unsigned i = nowDone + 1; i < eqs; ++i) { |
1141 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol: firstVar, elimColStart: 0, isEq: true); |
1142 | equalities.normalizeRow(row: i); |
1143 | } |
1144 | for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) { |
1145 | eliminateFromConstraint(constraints: this, rowIdx: i, pivotRow: *pivotRow, pivotCol: firstVar, elimColStart: 0, isEq: false); |
1146 | inequalities.normalizeRow(row: i); |
1147 | } |
1148 | gcdTightenInequalities(); |
1149 | } |
1150 | |
1151 | // No redundant rows. |
1152 | if (nowDone == eqs) |
1153 | return false; |
1154 | |
1155 | // Check to see if the redundant rows constant is zero, a non-zero value means |
1156 | // the set is empty. |
1157 | for (unsigned i = nowDone; i < eqs; ++i) { |
1158 | if (atEq(i, j: vars) == 0) |
1159 | continue; |
1160 | |
1161 | *this = getEmpty(space: getSpace()); |
1162 | return true; |
1163 | } |
1164 | // Eliminate rows that are confined to be all zeros. |
1165 | removeEqualityRange(start: nowDone, end: eqs); |
1166 | return true; |
1167 | } |
1168 | |
1169 | // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin |
1170 | // to check if a constraint is redundant. |
1171 | void IntegerRelation::removeRedundantInequalities() { |
1172 | SmallVector<bool, 32> redun(getNumInequalities(), false); |
1173 | // To check if an inequality is redundant, we replace the inequality by its |
1174 | // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting |
1175 | // system is empty. If it is, the inequality is redundant. |
1176 | IntegerRelation tmpCst(*this); |
1177 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1178 | // Change the inequality to its complement. |
1179 | tmpCst.inequalities.negateRow(row: r); |
1180 | --tmpCst.atIneq(i: r, j: tmpCst.getNumCols() - 1); |
1181 | if (tmpCst.isEmpty()) { |
1182 | redun[r] = true; |
1183 | // Zero fill the redundant inequality. |
1184 | inequalities.fillRow(row: r, /*value=*/0); |
1185 | tmpCst.inequalities.fillRow(row: r, /*value=*/0); |
1186 | } else { |
1187 | // Reverse the change (to avoid recreating tmpCst each time). |
1188 | ++tmpCst.atIneq(i: r, j: tmpCst.getNumCols() - 1); |
1189 | tmpCst.inequalities.negateRow(row: r); |
1190 | } |
1191 | } |
1192 | |
1193 | unsigned pos = 0; |
1194 | for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) { |
1195 | if (!redun[r]) |
1196 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
1197 | } |
1198 | inequalities.resizeVertically(newNRows: pos); |
1199 | } |
1200 | |
1201 | // A more complex check to eliminate redundant inequalities and equalities. Uses |
1202 | // Simplex to check if a constraint is redundant. |
1203 | void IntegerRelation::removeRedundantConstraints() { |
1204 | // First, we run gcdTightenInequalities. This allows us to catch some |
1205 | // constraints which are not redundant when considering rational solutions |
1206 | // but are redundant in terms of integer solutions. |
1207 | gcdTightenInequalities(); |
1208 | Simplex simplex(*this); |
1209 | simplex.detectRedundant(); |
1210 | |
1211 | unsigned pos = 0; |
1212 | unsigned numIneqs = getNumInequalities(); |
1213 | // Scan to get rid of all inequalities marked redundant, in-place. In Simplex, |
1214 | // the first constraints added are the inequalities. |
1215 | for (unsigned r = 0; r < numIneqs; r++) { |
1216 | if (!simplex.isMarkedRedundant(constraintIndex: r)) |
1217 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
1218 | } |
1219 | inequalities.resizeVertically(newNRows: pos); |
1220 | |
1221 | // Scan to get rid of all equalities marked redundant, in-place. In Simplex, |
1222 | // after the inequalities, a pair of constraints for each equality is added. |
1223 | // An equality is redundant if both the inequalities in its pair are |
1224 | // redundant. |
1225 | pos = 0; |
1226 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1227 | if (!(simplex.isMarkedRedundant(constraintIndex: numIneqs + 2 * r) && |
1228 | simplex.isMarkedRedundant(constraintIndex: numIneqs + 2 * r + 1))) |
1229 | equalities.copyRow(sourceRow: r, targetRow: pos++); |
1230 | } |
1231 | equalities.resizeVertically(newNRows: pos); |
1232 | } |
1233 | |
1234 | std::optional<DynamicAPInt> IntegerRelation::computeVolume() const { |
1235 | assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!"); |
1236 | |
1237 | Simplex simplex(*this); |
1238 | // If the polytope is rationally empty, there are certainly no integer |
1239 | // points. |
1240 | if (simplex.isEmpty()) |
1241 | return DynamicAPInt(0); |
1242 | |
1243 | // Just find the maximum and minimum integer value of each non-local var |
1244 | // separately, thus finding the number of integer values each such var can |
1245 | // take. Multiplying these together gives a valid overapproximation of the |
1246 | // number of integer points in the relation. The result this gives is |
1247 | // equivalent to projecting (rationally) the relation onto its non-local vars |
1248 | // and returning the number of integer points in a minimal axis-parallel |
1249 | // hyperrectangular overapproximation of that. |
1250 | // |
1251 | // We also handle the special case where one dimension is unbounded and |
1252 | // another dimension can take no integer values. In this case, the volume is |
1253 | // zero. |
1254 | // |
1255 | // If there is no such empty dimension, if any dimension is unbounded we |
1256 | // just return the result as unbounded. |
1257 | DynamicAPInt count(1); |
1258 | SmallVector<DynamicAPInt, 8> dim(getNumVars() + 1); |
1259 | bool hasUnboundedVar = false; |
1260 | for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) { |
1261 | dim[i] = 1; |
1262 | auto [min, max] = simplex.computeIntegerBounds(coeffs: dim); |
1263 | dim[i] = 0; |
1264 | |
1265 | assert((!min.isEmpty() && !max.isEmpty()) && |
1266 | "Polytope should be rationally non-empty!"); |
1267 | |
1268 | // One of the dimensions is unbounded. Note this fact. We will return |
1269 | // unbounded if none of the other dimensions makes the volume zero. |
1270 | if (min.isUnbounded() || max.isUnbounded()) { |
1271 | hasUnboundedVar = true; |
1272 | continue; |
1273 | } |
1274 | |
1275 | // In this case there are no valid integer points and the volume is |
1276 | // definitely zero. |
1277 | if (min.getBoundedOptimum() > max.getBoundedOptimum()) |
1278 | return DynamicAPInt(0); |
1279 | |
1280 | count *= (*max - *min + 1); |
1281 | } |
1282 | |
1283 | if (count == 0) |
1284 | return DynamicAPInt(0); |
1285 | if (hasUnboundedVar) |
1286 | return {}; |
1287 | return count; |
1288 | } |
1289 | |
1290 | void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) { |
1291 | assert(posA < getNumLocalVars() && "Invalid local var position"); |
1292 | assert(posB < getNumLocalVars() && "Invalid local var position"); |
1293 | |
1294 | unsigned localOffset = getVarKindOffset(kind: VarKind::Local); |
1295 | posA += localOffset; |
1296 | posB += localOffset; |
1297 | inequalities.addToColumn(sourceColumn: posB, targetColumn: posA, scale: 1); |
1298 | equalities.addToColumn(sourceColumn: posB, targetColumn: posA, scale: 1); |
1299 | removeVar(pos: posB); |
1300 | } |
1301 | |
1302 | /// mergeAndAlignSymbols's implementation can be broken down into two steps: |
1303 | /// 1. Merge and align identifiers into `other` from `this. If an identifier |
1304 | /// from `this` exists in `other` then we align it. Otherwise, we assume it is a |
1305 | /// new identifier and insert it into `other` in the same position as `this`. |
1306 | /// 2. Add identifiers that are in `other` but not `this to `this`. |
1307 | void IntegerRelation::mergeAndAlignSymbols(IntegerRelation &other) { |
1308 | assert(space.isUsingIds() && other.space.isUsingIds() && |
1309 | "both relations need to have identifers to merge and align"); |
1310 | |
1311 | unsigned i = 0; |
1312 | for (const Identifier identifier : space.getIds(kind: VarKind::Symbol)) { |
1313 | // Search in `other` starting at position `i` since the left of `i` is |
1314 | // aligned. |
1315 | const Identifier *findBegin = |
1316 | other.space.getIds(kind: VarKind::Symbol).begin() + i; |
1317 | const Identifier *findEnd = other.space.getIds(kind: VarKind::Symbol).end(); |
1318 | const Identifier *itr = std::find(first: findBegin, last: findEnd, val: identifier); |
1319 | if (itr != findEnd) { |
1320 | other.swapVar(posA: other.getVarKindOffset(kind: VarKind::Symbol) + i, |
1321 | posB: other.getVarKindOffset(kind: VarKind::Symbol) + i + |
1322 | std::distance(first: findBegin, last: itr)); |
1323 | } else { |
1324 | other.insertVar(kind: VarKind::Symbol, pos: i); |
1325 | other.space.setId(kind: VarKind::Symbol, pos: i, id: identifier); |
1326 | } |
1327 | ++i; |
1328 | } |
1329 | |
1330 | for (unsigned e = other.getNumVarKind(kind: VarKind::Symbol); i < e; ++i) { |
1331 | insertVar(kind: VarKind::Symbol, pos: i); |
1332 | space.setId(kind: VarKind::Symbol, pos: i, id: other.space.getId(kind: VarKind::Symbol, pos: i)); |
1333 | } |
1334 | } |
1335 | |
1336 | /// Adds additional local ids to the sets such that they both have the union |
1337 | /// of the local ids in each set, without changing the set of points that |
1338 | /// lie in `this` and `other`. |
1339 | /// |
1340 | /// To detect local ids that always take the same value, each local id is |
1341 | /// represented as a floordiv with constant denominator in terms of other ids. |
1342 | /// After extracting these divisions, local ids in `other` with the same |
1343 | /// division representation as some other local id in any set are considered |
1344 | /// duplicate and are merged. |
1345 | /// |
1346 | /// It is possible that division representation for some local id cannot be |
1347 | /// obtained, and thus these local ids are not considered for detecting |
1348 | /// duplicates. |
1349 | unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) { |
1350 | IntegerRelation &relA = *this; |
1351 | IntegerRelation &relB = other; |
1352 | |
1353 | unsigned oldALocals = relA.getNumLocalVars(); |
1354 | |
1355 | // Merge function that merges the local variables in both sets by treating |
1356 | // them as the same variable. |
1357 | auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool { |
1358 | // We only merge from local at pos j to local at pos i, where j > i. |
1359 | if (i >= j) |
1360 | return false; |
1361 | |
1362 | // If i < oldALocals, we are trying to merge duplicate divs. Since we do not |
1363 | // want to merge duplicates in A, we ignore this call. |
1364 | if (j < oldALocals) |
1365 | return false; |
1366 | |
1367 | // Merge local at pos j into local at position i. |
1368 | relA.eliminateRedundantLocalVar(posA: i, posB: j); |
1369 | relB.eliminateRedundantLocalVar(posA: i, posB: j); |
1370 | return true; |
1371 | }; |
1372 | |
1373 | presburger::mergeLocalVars(relA&: *this, relB&: other, merge); |
1374 | |
1375 | // Since we do not remove duplicate divisions in relA, this is guranteed to be |
1376 | // non-negative. |
1377 | return relA.getNumLocalVars() - oldALocals; |
1378 | } |
1379 | |
1380 | bool IntegerRelation::hasOnlyDivLocals() const { |
1381 | return getLocalReprs().hasAllReprs(); |
1382 | } |
1383 | |
1384 | void IntegerRelation::removeDuplicateDivs() { |
1385 | DivisionRepr divs = getLocalReprs(); |
1386 | auto merge = [this](unsigned i, unsigned j) -> bool { |
1387 | eliminateRedundantLocalVar(posA: i, posB: j); |
1388 | return true; |
1389 | }; |
1390 | divs.removeDuplicateDivs(merge); |
1391 | } |
1392 | |
1393 | void IntegerRelation::simplify() { |
1394 | bool changed = true; |
1395 | // Repeat until we reach a fixed point. |
1396 | while (changed) { |
1397 | if (isObviouslyEmpty()) |
1398 | return; |
1399 | changed = false; |
1400 | normalizeConstraintsByGCD(); |
1401 | changed |= gaussianEliminate(); |
1402 | changed |= removeDuplicateConstraints(); |
1403 | } |
1404 | // Current set is not empty. |
1405 | } |
1406 | |
1407 | /// Removes local variables using equalities. Each equality is checked if it |
1408 | /// can be reduced to the form: `e = affine-expr`, where `e` is a local |
1409 | /// variable and `affine-expr` is an affine expression not containing `e`. |
1410 | /// If an equality satisfies this form, the local variable is replaced in |
1411 | /// each constraint and then removed. The equality used to replace this local |
1412 | /// variable is also removed. |
1413 | void IntegerRelation::removeRedundantLocalVars() { |
1414 | // Normalize the equality constraints to reduce coefficients of local |
1415 | // variables to 1 wherever possible. |
1416 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
1417 | equalities.normalizeRow(row: i); |
1418 | |
1419 | while (true) { |
1420 | unsigned i, e, j, f; |
1421 | for (i = 0, e = getNumEqualities(); i < e; ++i) { |
1422 | // Find a local variable to eliminate using ith equality. |
1423 | for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j) |
1424 | if (abs(X: atEq(i, j)) == 1) |
1425 | break; |
1426 | |
1427 | // Local variable can be eliminated using ith equality. |
1428 | if (j < f) |
1429 | break; |
1430 | } |
1431 | |
1432 | // No equality can be used to eliminate a local variable. |
1433 | if (i == e) |
1434 | break; |
1435 | |
1436 | // Use the ith equality to simplify other equalities. If any changes |
1437 | // are made to an equality constraint, it is normalized by GCD. |
1438 | for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) { |
1439 | if (atEq(i: k, j) != 0) { |
1440 | eliminateFromConstraint(constraints: this, rowIdx: k, pivotRow: i, pivotCol: j, elimColStart: j, /*isEq=*/true); |
1441 | equalities.normalizeRow(row: k); |
1442 | } |
1443 | } |
1444 | |
1445 | // Use the ith equality to simplify inequalities. |
1446 | for (unsigned k = 0, t = getNumInequalities(); k < t; ++k) |
1447 | eliminateFromConstraint(constraints: this, rowIdx: k, pivotRow: i, pivotCol: j, elimColStart: j, /*isEq=*/false); |
1448 | |
1449 | // Remove the ith equality and the found local variable. |
1450 | removeVar(pos: j); |
1451 | removeEquality(pos: i); |
1452 | } |
1453 | } |
1454 | |
1455 | void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart, |
1456 | unsigned varLimit, VarKind dstKind, |
1457 | unsigned pos) { |
1458 | assert(varLimit <= getNumVarKind(srcKind) && "invalid id range"); |
1459 | |
1460 | if (varStart >= varLimit) |
1461 | return; |
1462 | |
1463 | unsigned srcOffset = getVarKindOffset(kind: srcKind); |
1464 | unsigned dstOffset = getVarKindOffset(kind: dstKind); |
1465 | unsigned convertCount = varLimit - varStart; |
1466 | int forwardMoveOffset = dstOffset > srcOffset ? -convertCount : 0; |
1467 | |
1468 | equalities.moveColumns(srcPos: srcOffset + varStart, num: convertCount, |
1469 | dstPos: dstOffset + pos + forwardMoveOffset); |
1470 | inequalities.moveColumns(srcPos: srcOffset + varStart, num: convertCount, |
1471 | dstPos: dstOffset + pos + forwardMoveOffset); |
1472 | |
1473 | space.convertVarKind(srcKind, srcPos: varStart, num: varLimit - varStart, dstKind, dstPos: pos); |
1474 | } |
1475 | |
1476 | void IntegerRelation::addBound(BoundType type, unsigned pos, |
1477 | const DynamicAPInt &value) { |
1478 | assert(pos < getNumCols()); |
1479 | if (type == BoundType::EQ) { |
1480 | unsigned row = equalities.appendExtraRow(); |
1481 | equalities(row, pos) = 1; |
1482 | equalities(row, getNumCols() - 1) = -value; |
1483 | } else { |
1484 | unsigned row = inequalities.appendExtraRow(); |
1485 | inequalities(row, pos) = type == BoundType::LB ? 1 : -1; |
1486 | inequalities(row, getNumCols() - 1) = |
1487 | type == BoundType::LB ? -value : value; |
1488 | } |
1489 | } |
1490 | |
1491 | void IntegerRelation::addBound(BoundType type, ArrayRef<DynamicAPInt> expr, |
1492 | const DynamicAPInt &value) { |
1493 | assert(type != BoundType::EQ && "EQ not implemented"); |
1494 | assert(expr.size() == getNumCols()); |
1495 | unsigned row = inequalities.appendExtraRow(); |
1496 | for (unsigned i = 0, e = expr.size(); i < e; ++i) |
1497 | inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i]; |
1498 | inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) += |
1499 | type == BoundType::LB ? -value : value; |
1500 | } |
1501 | |
1502 | /// Adds a new local variable as the floordiv of an affine function of other |
1503 | /// variables, the coefficients of which are provided in 'dividend' and with |
1504 | /// respect to a positive constant 'divisor'. Two constraints are added to the |
1505 | /// system to capture equivalence with the floordiv. |
1506 | /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1. |
1507 | void IntegerRelation::addLocalFloorDiv(ArrayRef<DynamicAPInt> dividend, |
1508 | const DynamicAPInt &divisor) { |
1509 | assert(dividend.size() == getNumCols() && "incorrect dividend size"); |
1510 | assert(divisor > 0 && "positive divisor expected"); |
1511 | |
1512 | appendVar(kind: VarKind::Local); |
1513 | |
1514 | SmallVector<DynamicAPInt, 8> dividendCopy(dividend); |
1515 | dividendCopy.insert(I: dividendCopy.end() - 1, Elt: DynamicAPInt(0)); |
1516 | addInequality( |
1517 | inEq: getDivLowerBound(dividend: dividendCopy, divisor, localVarIdx: dividendCopy.size() - 2)); |
1518 | addInequality( |
1519 | inEq: getDivUpperBound(dividend: dividendCopy, divisor, localVarIdx: dividendCopy.size() - 2)); |
1520 | } |
1521 | |
1522 | int IntegerRelation::findEqualityToConstant(unsigned pos, bool symbolic) const { |
1523 | assert(pos < getNumVars() && "invalid position"); |
1524 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1525 | DynamicAPInt v = atEq(i: r, j: pos); |
1526 | if (v * v != 1) |
1527 | continue; |
1528 | unsigned c; |
1529 | unsigned f = symbolic ? getNumDimVars() : getNumVars(); |
1530 | // This checks for zeros in all positions other than 'pos' in [0, f) |
1531 | for (c = 0; c < f; c++) { |
1532 | if (c == pos) |
1533 | continue; |
1534 | if (atEq(i: r, j: c) != 0) { |
1535 | // Dependent on another variable. |
1536 | break; |
1537 | } |
1538 | } |
1539 | if (c == f) |
1540 | // Equality is free of other variables. |
1541 | return r; |
1542 | } |
1543 | return -1; |
1544 | } |
1545 | |
1546 | LogicalResult IntegerRelation::constantFoldVar(unsigned pos) { |
1547 | assert(pos < getNumVars() && "invalid position"); |
1548 | int rowIdx; |
1549 | if ((rowIdx = findEqualityToConstant(pos)) == -1) |
1550 | return failure(); |
1551 | |
1552 | // atEq(rowIdx, pos) is either -1 or 1. |
1553 | assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1); |
1554 | DynamicAPInt constVal = -atEq(i: rowIdx, j: getNumCols() - 1) / atEq(i: rowIdx, j: pos); |
1555 | setAndEliminate(pos, values: constVal); |
1556 | return success(); |
1557 | } |
1558 | |
1559 | void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) { |
1560 | for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) { |
1561 | if (constantFoldVar(pos: t).failed()) |
1562 | t++; |
1563 | } |
1564 | } |
1565 | |
1566 | /// Returns a non-negative constant bound on the extent (upper bound - lower |
1567 | /// bound) of the specified variable if it is found to be a constant; returns |
1568 | /// std::nullopt if it's not a constant. This methods treats symbolic variables |
1569 | /// specially, i.e., it looks for constant differences between affine |
1570 | /// expressions involving only the symbolic variables. See comments at function |
1571 | /// definition for example. 'lb', if provided, is set to the lower bound |
1572 | /// associated with the constant difference. Note that 'lb' is purely symbolic |
1573 | /// and thus will contain the coefficients of the symbolic variables and the |
1574 | /// constant coefficient. |
1575 | // Egs: 0 <= i <= 15, return 16. |
1576 | // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol) |
1577 | // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16. |
1578 | // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb = |
1579 | // ceil(s0 - 7 / 8) = floor(s0 / 8)). |
1580 | std::optional<DynamicAPInt> IntegerRelation::getConstantBoundOnDimSize( |
1581 | unsigned pos, SmallVectorImpl<DynamicAPInt> *lb, |
1582 | DynamicAPInt *boundFloorDivisor, SmallVectorImpl<DynamicAPInt> *ub, |
1583 | unsigned *minLbPos, unsigned *minUbPos) const { |
1584 | assert(pos < getNumDimVars() && "Invalid variable position"); |
1585 | |
1586 | // Find an equality for 'pos'^th variable that equates it to some function |
1587 | // of the symbolic variables (+ constant). |
1588 | int eqPos = findEqualityToConstant(pos, /*symbolic=*/true); |
1589 | if (eqPos != -1) { |
1590 | auto eq = getEquality(idx: eqPos); |
1591 | // If the equality involves a local var, we do not handle it. |
1592 | // FlatLinearConstraints can instead be used to detect the local variable as |
1593 | // an affine function (potentially div/mod) of other variables and use |
1594 | // affine expressions/maps to represent output. |
1595 | if (!std::all_of(first: eq.begin() + getNumDimAndSymbolVars(), last: eq.end() - 1, |
1596 | pred: [](const DynamicAPInt &coeff) { return coeff == 0; })) |
1597 | return std::nullopt; |
1598 | |
1599 | // This variable can only take a single value. |
1600 | if (lb) { |
1601 | // Set lb to that symbolic value. |
1602 | lb->resize(N: getNumSymbolVars() + 1); |
1603 | if (ub) |
1604 | ub->resize(N: getNumSymbolVars() + 1); |
1605 | for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) { |
1606 | DynamicAPInt v = atEq(i: eqPos, j: pos); |
1607 | // atEq(eqRow, pos) is either -1 or 1. |
1608 | assert(v * v == 1); |
1609 | (*lb)[c] = v < 0 ? atEq(i: eqPos, j: getNumDimVars() + c) / -v |
1610 | : -atEq(i: eqPos, j: getNumDimVars() + c) / v; |
1611 | // Since this is an equality, ub = lb. |
1612 | if (ub) |
1613 | (*ub)[c] = (*lb)[c]; |
1614 | } |
1615 | assert(boundFloorDivisor && |
1616 | "both lb and divisor or none should be provided"); |
1617 | *boundFloorDivisor = 1; |
1618 | } |
1619 | if (minLbPos) |
1620 | *minLbPos = eqPos; |
1621 | if (minUbPos) |
1622 | *minUbPos = eqPos; |
1623 | return DynamicAPInt(1); |
1624 | } |
1625 | |
1626 | // Check if the variable appears at all in any of the inequalities. |
1627 | unsigned r, e; |
1628 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
1629 | if (atIneq(i: r, j: pos) != 0) |
1630 | break; |
1631 | } |
1632 | if (r == e) |
1633 | // If it doesn't, there isn't a bound on it. |
1634 | return std::nullopt; |
1635 | |
1636 | // Positions of constraints that are lower/upper bounds on the variable. |
1637 | SmallVector<unsigned, 4> lbIndices, ubIndices; |
1638 | |
1639 | // Gather all symbolic lower bounds and upper bounds of the variable, i.e., |
1640 | // the bounds can only involve symbolic (and local) variables. Since the |
1641 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
1642 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
1643 | getLowerAndUpperBoundIndices(pos, lbIndices: &lbIndices, ubIndices: &ubIndices, |
1644 | /*eqIndices=*/nullptr, /*offset=*/0, |
1645 | /*num=*/getNumDimVars()); |
1646 | |
1647 | std::optional<DynamicAPInt> minDiff; |
1648 | unsigned minLbPosition = 0, minUbPosition = 0; |
1649 | for (auto ubPos : ubIndices) { |
1650 | for (auto lbPos : lbIndices) { |
1651 | // Look for a lower bound and an upper bound that only differ by a |
1652 | // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst. |
1653 | // For example, if ii is the pos^th variable, we are looking for |
1654 | // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The |
1655 | // minimum among all such constant differences is kept since that's the |
1656 | // constant bounding the extent of the pos^th variable. |
1657 | unsigned j, e; |
1658 | for (j = 0, e = getNumCols() - 1; j < e; j++) |
1659 | if (atIneq(i: ubPos, j) != -atIneq(i: lbPos, j)) { |
1660 | break; |
1661 | } |
1662 | if (j < getNumCols() - 1) |
1663 | continue; |
1664 | DynamicAPInt diff = ceilDiv(LHS: atIneq(i: ubPos, j: getNumCols() - 1) + |
1665 | atIneq(i: lbPos, j: getNumCols() - 1) + 1, |
1666 | RHS: atIneq(i: lbPos, j: pos)); |
1667 | // This bound is non-negative by definition. |
1668 | diff = std::max<DynamicAPInt>(a: diff, b: DynamicAPInt(0)); |
1669 | if (minDiff == std::nullopt || diff < minDiff) { |
1670 | minDiff = diff; |
1671 | minLbPosition = lbPos; |
1672 | minUbPosition = ubPos; |
1673 | } |
1674 | } |
1675 | } |
1676 | if (lb && minDiff) { |
1677 | // Set lb to the symbolic lower bound. |
1678 | lb->resize(N: getNumSymbolVars() + 1); |
1679 | if (ub) |
1680 | ub->resize(N: getNumSymbolVars() + 1); |
1681 | // The lower bound is the ceildiv of the lb constraint over the coefficient |
1682 | // of the variable at 'pos'. We express the ceildiv equivalently as a floor |
1683 | // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N + |
1684 | // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32). |
1685 | *boundFloorDivisor = atIneq(i: minLbPosition, j: pos); |
1686 | assert(*boundFloorDivisor == -atIneq(minUbPosition, pos)); |
1687 | for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) { |
1688 | (*lb)[c] = -atIneq(i: minLbPosition, j: getNumDimVars() + c); |
1689 | } |
1690 | if (ub) { |
1691 | for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) |
1692 | (*ub)[c] = atIneq(i: minUbPosition, j: getNumDimVars() + c); |
1693 | } |
1694 | // The lower bound leads to a ceildiv while the upper bound is a floordiv |
1695 | // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val + |
1696 | // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to |
1697 | // the constant term for the lower bound. |
1698 | (*lb)[getNumSymbolVars()] += atIneq(i: minLbPosition, j: pos) - 1; |
1699 | } |
1700 | if (minLbPos) |
1701 | *minLbPos = minLbPosition; |
1702 | if (minUbPos) |
1703 | *minUbPos = minUbPosition; |
1704 | return minDiff; |
1705 | } |
1706 | |
1707 | template <bool isLower> |
1708 | std::optional<DynamicAPInt> |
1709 | IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) { |
1710 | assert(pos < getNumVars() && "invalid position"); |
1711 | // Project to 'pos'. |
1712 | projectOut(pos: 0, num: pos); |
1713 | projectOut(pos: 1, num: getNumVars() - 1); |
1714 | // Check if there's an equality equating the '0'^th variable to a constant. |
1715 | int eqRowIdx = findEqualityToConstant(/*pos=*/0, /*symbolic=*/false); |
1716 | if (eqRowIdx != -1) |
1717 | // atEq(rowIdx, 0) is either -1 or 1. |
1718 | return -atEq(i: eqRowIdx, j: getNumCols() - 1) / atEq(i: eqRowIdx, j: 0); |
1719 | |
1720 | // Check if the variable appears at all in any of the inequalities. |
1721 | unsigned r, e; |
1722 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
1723 | if (atIneq(i: r, j: 0) != 0) |
1724 | break; |
1725 | } |
1726 | if (r == e) |
1727 | // If it doesn't, there isn't a bound on it. |
1728 | return std::nullopt; |
1729 | |
1730 | std::optional<DynamicAPInt> minOrMaxConst; |
1731 | |
1732 | // Take the max across all const lower bounds (or min across all constant |
1733 | // upper bounds). |
1734 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1735 | if (isLower) { |
1736 | if (atIneq(i: r, j: 0) <= 0) |
1737 | // Not a lower bound. |
1738 | continue; |
1739 | } else if (atIneq(i: r, j: 0) >= 0) { |
1740 | // Not an upper bound. |
1741 | continue; |
1742 | } |
1743 | unsigned c, f; |
1744 | for (c = 0, f = getNumCols() - 1; c < f; c++) |
1745 | if (c != 0 && atIneq(i: r, j: c) != 0) |
1746 | break; |
1747 | if (c < getNumCols() - 1) |
1748 | // Not a constant bound. |
1749 | continue; |
1750 | |
1751 | DynamicAPInt boundConst = |
1752 | isLower ? ceilDiv(LHS: -atIneq(i: r, j: getNumCols() - 1), RHS: atIneq(i: r, j: 0)) |
1753 | : floorDiv(LHS: atIneq(i: r, j: getNumCols() - 1), RHS: -atIneq(i: r, j: 0)); |
1754 | if (isLower) { |
1755 | if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst) |
1756 | minOrMaxConst = boundConst; |
1757 | } else { |
1758 | if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst) |
1759 | minOrMaxConst = boundConst; |
1760 | } |
1761 | } |
1762 | return minOrMaxConst; |
1763 | } |
1764 | |
1765 | std::optional<DynamicAPInt> |
1766 | IntegerRelation::getConstantBound(BoundType type, unsigned pos) const { |
1767 | if (type == BoundType::LB) |
1768 | return IntegerRelation(*this) |
1769 | .computeConstantLowerOrUpperBound</*isLower=*/true>(pos); |
1770 | if (type == BoundType::UB) |
1771 | return IntegerRelation(*this) |
1772 | .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
1773 | |
1774 | assert(type == BoundType::EQ && "expected EQ"); |
1775 | std::optional<DynamicAPInt> lb = |
1776 | IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>( |
1777 | pos); |
1778 | std::optional<DynamicAPInt> ub = |
1779 | IntegerRelation(*this) |
1780 | .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
1781 | return (lb && ub && *lb == *ub) ? std::optional<DynamicAPInt>(*ub) |
1782 | : std::nullopt; |
1783 | } |
1784 | |
1785 | // A simple (naive and conservative) check for hyper-rectangularity. |
1786 | bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const { |
1787 | assert(pos < getNumCols() - 1); |
1788 | // Check for two non-zero coefficients in the range [pos, pos + sum). |
1789 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1790 | unsigned sum = 0; |
1791 | for (unsigned c = pos; c < pos + num; c++) { |
1792 | if (atIneq(i: r, j: c) != 0) |
1793 | sum++; |
1794 | } |
1795 | if (sum > 1) |
1796 | return false; |
1797 | } |
1798 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1799 | unsigned sum = 0; |
1800 | for (unsigned c = pos; c < pos + num; c++) { |
1801 | if (atEq(i: r, j: c) != 0) |
1802 | sum++; |
1803 | } |
1804 | if (sum > 1) |
1805 | return false; |
1806 | } |
1807 | return true; |
1808 | } |
1809 | |
1810 | /// Removes duplicate constraints, trivially true constraints, and constraints |
1811 | /// that can be detected as redundant as a result of differing only in their |
1812 | /// constant term part. A constraint of the form <non-negative constant> >= 0 is |
1813 | /// considered trivially true. |
1814 | // Uses a DenseSet to hash and detect duplicates followed by a linear scan to |
1815 | // remove duplicates in place. |
1816 | void IntegerRelation::removeTrivialRedundancy() { |
1817 | gcdTightenInequalities(); |
1818 | normalizeConstraintsByGCD(); |
1819 | |
1820 | // A map used to detect redundancy stemming from constraints that only differ |
1821 | // in their constant term. The value stored is <row position, const term> |
1822 | // for a given row. |
1823 | SmallDenseMap<ArrayRef<DynamicAPInt>, std::pair<unsigned, DynamicAPInt>> |
1824 | rowsWithoutConstTerm; |
1825 | |
1826 | // Check if constraint is of the form <non-negative-constant> >= 0. |
1827 | auto isTriviallyValid = [&](unsigned r) -> bool { |
1828 | for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) { |
1829 | if (atIneq(i: r, j: c) != 0) |
1830 | return false; |
1831 | } |
1832 | return atIneq(i: r, j: getNumCols() - 1) >= 0; |
1833 | }; |
1834 | |
1835 | // Detect and mark redundant constraints. |
1836 | SmallVector<bool, 256> redunIneq(getNumInequalities(), false); |
1837 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1838 | DynamicAPInt *rowStart = &inequalities(r, 0); |
1839 | if (isTriviallyValid(r)) { |
1840 | redunIneq[r] = true; |
1841 | continue; |
1842 | } |
1843 | |
1844 | // Among constraints that only differ in the constant term part, mark |
1845 | // everything other than the one with the smallest constant term redundant. |
1846 | // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the |
1847 | // former two are redundant). |
1848 | DynamicAPInt constTerm = atIneq(i: r, j: getNumCols() - 1); |
1849 | auto rowWithoutConstTerm = |
1850 | ArrayRef<DynamicAPInt>(rowStart, getNumCols() - 1); |
1851 | const auto &ret = |
1852 | rowsWithoutConstTerm.insert(KV: {rowWithoutConstTerm, {r, constTerm}}); |
1853 | if (!ret.second) { |
1854 | // Check if the other constraint has a higher constant term. |
1855 | auto &val = ret.first->second; |
1856 | if (val.second > constTerm) { |
1857 | // The stored row is redundant. Mark it so, and update with this one. |
1858 | redunIneq[val.first] = true; |
1859 | val = {r, constTerm}; |
1860 | } else { |
1861 | // The one stored makes this one redundant. |
1862 | redunIneq[r] = true; |
1863 | } |
1864 | } |
1865 | } |
1866 | |
1867 | // Scan to get rid of all rows marked redundant, in-place. |
1868 | unsigned pos = 0; |
1869 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) |
1870 | if (!redunIneq[r]) |
1871 | inequalities.copyRow(sourceRow: r, targetRow: pos++); |
1872 | |
1873 | inequalities.resizeVertically(newNRows: pos); |
1874 | |
1875 | // TODO: consider doing this for equalities as well, but probably not worth |
1876 | // the savings. |
1877 | } |
1878 | |
1879 | #undef DEBUG_TYPE |
1880 | #define DEBUG_TYPE "fm" |
1881 | |
1882 | /// Eliminates variable at the specified position using Fourier-Motzkin |
1883 | /// variable elimination. This technique is exact for rational spaces but |
1884 | /// conservative (in "rare" cases) for integer spaces. The operation corresponds |
1885 | /// to a projection operation yielding the (convex) set of integer points |
1886 | /// contained in the rational shadow of the set. An emptiness test that relies |
1887 | /// on this method will guarantee emptiness, i.e., it disproves the existence of |
1888 | /// a solution if it says it's empty. |
1889 | /// If a non-null isResultIntegerExact is passed, it is set to true if the |
1890 | /// result is also integer exact. If it's set to false, the obtained solution |
1891 | /// *may* not be exact, i.e., it may contain integer points that do not have an |
1892 | /// integer pre-image in the original set. |
1893 | /// |
1894 | /// Eg: |
1895 | /// j >= 0, j <= i + 1 |
1896 | /// i >= 0, i <= N + 1 |
1897 | /// Eliminating i yields, |
1898 | /// j >= 0, 0 <= N + 1, j - 1 <= N + 1 |
1899 | /// |
1900 | /// If darkShadow = true, this method computes the dark shadow on elimination; |
1901 | /// the dark shadow is a convex integer subset of the exact integer shadow. A |
1902 | /// non-empty dark shadow proves the existence of an integer solution. The |
1903 | /// elimination in such a case could however be an under-approximation, and thus |
1904 | /// should not be used for scanning sets or used by itself for dependence |
1905 | /// checking. |
1906 | /// |
1907 | /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set. |
1908 | /// ^ |
1909 | /// | |
1910 | /// | * * * * o o |
1911 | /// i | * * o o o o |
1912 | /// | o * * * * * |
1913 | /// ---------------> |
1914 | /// j -> |
1915 | /// |
1916 | /// Eliminating i from this system (projecting on the j dimension): |
1917 | /// rational shadow / integer light shadow: 1 <= j <= 6 |
1918 | /// dark shadow: 3 <= j <= 6 |
1919 | /// exact integer shadow: j = 1 \union 3 <= j <= 6 |
1920 | /// holes/splinters: j = 2 |
1921 | /// |
1922 | /// darkShadow = false, isResultIntegerExact = nullptr are default values. |
1923 | // TODO: a slight modification to yield dark shadow version of FM (tightened), |
1924 | // which can prove the existence of a solution if there is one. |
1925 | void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow, |
1926 | bool *isResultIntegerExact) { |
1927 | LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos "<< pos << "):\n"); |
1928 | LLVM_DEBUG(dump()); |
1929 | assert(pos < getNumVars() && "invalid position"); |
1930 | assert(hasConsistentState()); |
1931 | |
1932 | // Check if this variable can be eliminated through a substitution. |
1933 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1934 | if (atEq(i: r, j: pos) != 0) { |
1935 | // Use Gaussian elimination here (since we have an equality). |
1936 | LogicalResult ret = gaussianEliminateVar(position: pos); |
1937 | (void)ret; |
1938 | assert(ret.succeeded() && "Gaussian elimination guaranteed to succeed"); |
1939 | LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n"); |
1940 | LLVM_DEBUG(dump()); |
1941 | return; |
1942 | } |
1943 | } |
1944 | |
1945 | // A fast linear time tightening. |
1946 | gcdTightenInequalities(); |
1947 | |
1948 | // Check if the variable appears at all in any of the inequalities. |
1949 | if (isColZero(pos)) { |
1950 | // If it doesn't appear, just remove the column and return. |
1951 | // TODO: refactor removeColumns to use it from here. |
1952 | removeVar(pos); |
1953 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); |
1954 | LLVM_DEBUG(dump()); |
1955 | return; |
1956 | } |
1957 | |
1958 | // Positions of constraints that are lower bounds on the variable. |
1959 | SmallVector<unsigned, 4> lbIndices; |
1960 | // Positions of constraints that are lower bounds on the variable. |
1961 | SmallVector<unsigned, 4> ubIndices; |
1962 | // Positions of constraints that do not involve the variable. |
1963 | std::vector<unsigned> nbIndices; |
1964 | nbIndices.reserve(n: getNumInequalities()); |
1965 | |
1966 | // Gather all lower bounds and upper bounds of the variable. Since the |
1967 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
1968 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
1969 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1970 | if (atIneq(i: r, j: pos) == 0) { |
1971 | // Var does not appear in bound. |
1972 | nbIndices.emplace_back(args&: r); |
1973 | } else if (atIneq(i: r, j: pos) >= 1) { |
1974 | // Lower bound. |
1975 | lbIndices.emplace_back(Args&: r); |
1976 | } else { |
1977 | // Upper bound. |
1978 | ubIndices.emplace_back(Args&: r); |
1979 | } |
1980 | } |
1981 | |
1982 | PresburgerSpace newSpace = getSpace(); |
1983 | VarKind idKindRemove = newSpace.getVarKindAt(pos); |
1984 | unsigned relativePos = pos - newSpace.getVarKindOffset(kind: idKindRemove); |
1985 | newSpace.removeVarRange(kind: idKindRemove, varStart: relativePos, varLimit: relativePos + 1); |
1986 | |
1987 | /// Create the new system which has one variable less. |
1988 | IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(), |
1989 | getNumEqualities(), getNumCols() - 1, newSpace); |
1990 | |
1991 | // This will be used to check if the elimination was integer exact. |
1992 | bool allLCMsAreOne = true; |
1993 | |
1994 | // Let x be the variable we are eliminating. |
1995 | // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note |
1996 | // that c_l, c_u >= 1) we have: |
1997 | // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u |
1998 | // We thus generate a constraint: |
1999 | // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub. |
2000 | // Note if c_l = c_u = 1, all integer points captured by the resulting |
2001 | // constraint correspond to integer points in the original system (i.e., they |
2002 | // have integer pre-images). Hence, if the lcm's are all 1, the elimination is |
2003 | // integer exact. |
2004 | for (auto ubPos : ubIndices) { |
2005 | for (auto lbPos : lbIndices) { |
2006 | SmallVector<DynamicAPInt, 4> ineq; |
2007 | ineq.reserve(N: newRel.getNumCols()); |
2008 | DynamicAPInt lbCoeff = atIneq(i: lbPos, j: pos); |
2009 | // Note that in the comments above, ubCoeff is the negation of the |
2010 | // coefficient in the canonical form as the view taken here is that of the |
2011 | // term being moved to the other size of '>='. |
2012 | DynamicAPInt ubCoeff = -atIneq(i: ubPos, j: pos); |
2013 | // TODO: refactor this loop to avoid all branches inside. |
2014 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2015 | if (l == pos) |
2016 | continue; |
2017 | assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified"); |
2018 | DynamicAPInt lcm = llvm::lcm(A: lbCoeff, B: ubCoeff); |
2019 | ineq.emplace_back(Args: atIneq(i: ubPos, j: l) * (lcm / ubCoeff) + |
2020 | atIneq(i: lbPos, j: l) * (lcm / lbCoeff)); |
2021 | assert(lcm > 0 && "lcm should be positive!"); |
2022 | if (lcm != 1) |
2023 | allLCMsAreOne = false; |
2024 | } |
2025 | if (darkShadow) { |
2026 | // The dark shadow is a convex subset of the exact integer shadow. If |
2027 | // there is a point here, it proves the existence of a solution. |
2028 | ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1; |
2029 | } |
2030 | // TODO: we need to have a way to add inequalities in-place in |
2031 | // IntegerRelation instead of creating and copying over. |
2032 | newRel.addInequality(inEq: ineq); |
2033 | } |
2034 | } |
2035 | |
2036 | LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: "<< allLCMsAreOne |
2037 | << "\n"); |
2038 | if (allLCMsAreOne && isResultIntegerExact) |
2039 | *isResultIntegerExact = true; |
2040 | |
2041 | // Copy over the constraints not involving this variable. |
2042 | for (auto nbPos : nbIndices) { |
2043 | SmallVector<DynamicAPInt, 4> ineq; |
2044 | ineq.reserve(N: getNumCols() - 1); |
2045 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2046 | if (l == pos) |
2047 | continue; |
2048 | ineq.emplace_back(Args&: atIneq(i: nbPos, j: l)); |
2049 | } |
2050 | newRel.addInequality(inEq: ineq); |
2051 | } |
2052 | |
2053 | assert(newRel.getNumConstraints() == |
2054 | lbIndices.size() * ubIndices.size() + nbIndices.size()); |
2055 | |
2056 | // Copy over the equalities. |
2057 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
2058 | SmallVector<DynamicAPInt, 4> eq; |
2059 | eq.reserve(N: newRel.getNumCols()); |
2060 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2061 | if (l == pos) |
2062 | continue; |
2063 | eq.emplace_back(Args&: atEq(i: r, j: l)); |
2064 | } |
2065 | newRel.addEquality(eq); |
2066 | } |
2067 | |
2068 | // GCD tightening and normalization allows detection of more trivially |
2069 | // redundant constraints. |
2070 | newRel.gcdTightenInequalities(); |
2071 | newRel.normalizeConstraintsByGCD(); |
2072 | newRel.removeTrivialRedundancy(); |
2073 | clearAndCopyFrom(other: newRel); |
2074 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); |
2075 | LLVM_DEBUG(dump()); |
2076 | } |
2077 | |
2078 | #undef DEBUG_TYPE |
2079 | #define DEBUG_TYPE "presburger" |
2080 | |
2081 | void IntegerRelation::projectOut(unsigned pos, unsigned num) { |
2082 | if (num == 0) |
2083 | return; |
2084 | |
2085 | // 'pos' can be at most getNumCols() - 2 if num > 0. |
2086 | assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position"); |
2087 | assert(pos + num < getNumCols() && "invalid range"); |
2088 | |
2089 | // Eliminate as many variables as possible using Gaussian elimination. |
2090 | unsigned currentPos = pos; |
2091 | unsigned numToEliminate = num; |
2092 | unsigned numGaussianEliminated = 0; |
2093 | |
2094 | while (currentPos < getNumVars()) { |
2095 | unsigned curNumEliminated = |
2096 | gaussianEliminateVars(posStart: currentPos, posLimit: currentPos + numToEliminate); |
2097 | ++currentPos; |
2098 | numToEliminate -= curNumEliminated + 1; |
2099 | numGaussianEliminated += curNumEliminated; |
2100 | } |
2101 | |
2102 | // Eliminate the remaining using Fourier-Motzkin. |
2103 | for (unsigned i = 0; i < num - numGaussianEliminated; i++) { |
2104 | unsigned numToEliminate = num - numGaussianEliminated - i; |
2105 | fourierMotzkinEliminate( |
2106 | pos: getBestVarToEliminate(cst: *this, start: pos, end: pos + numToEliminate)); |
2107 | } |
2108 | |
2109 | // Fast/trivial simplifications. |
2110 | gcdTightenInequalities(); |
2111 | // Normalize constraints after tightening since the latter impacts this, but |
2112 | // not the other way round. |
2113 | normalizeConstraintsByGCD(); |
2114 | } |
2115 | |
2116 | namespace { |
2117 | |
2118 | enum BoundCmpResult { Greater, Less, Equal, Unknown }; |
2119 | |
2120 | /// Compares two affine bounds whose coefficients are provided in 'first' and |
2121 | /// 'second'. The last coefficient is the constant term. |
2122 | static BoundCmpResult compareBounds(ArrayRef<DynamicAPInt> a, |
2123 | ArrayRef<DynamicAPInt> b) { |
2124 | assert(a.size() == b.size()); |
2125 | |
2126 | // For the bounds to be comparable, their corresponding variable |
2127 | // coefficients should be equal; the constant terms are then compared to |
2128 | // determine less/greater/equal. |
2129 | |
2130 | if (!std::equal(first1: a.begin(), last1: a.end() - 1, first2: b.begin())) |
2131 | return Unknown; |
2132 | |
2133 | if (a.back() == b.back()) |
2134 | return Equal; |
2135 | |
2136 | return a.back() < b.back() ? Less : Greater; |
2137 | } |
2138 | } // namespace |
2139 | |
2140 | // Returns constraints that are common to both A & B. |
2141 | static void getCommonConstraints(const IntegerRelation &a, |
2142 | const IntegerRelation &b, IntegerRelation &c) { |
2143 | c = IntegerRelation(a.getSpace()); |
2144 | // a naive O(n^2) check should be enough here given the input sizes. |
2145 | for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) { |
2146 | for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) { |
2147 | if (a.getInequality(idx: r) == b.getInequality(idx: s)) { |
2148 | c.addInequality(inEq: a.getInequality(idx: r)); |
2149 | break; |
2150 | } |
2151 | } |
2152 | } |
2153 | for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) { |
2154 | for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) { |
2155 | if (a.getEquality(idx: r) == b.getEquality(idx: s)) { |
2156 | c.addEquality(eq: a.getEquality(idx: r)); |
2157 | break; |
2158 | } |
2159 | } |
2160 | } |
2161 | } |
2162 | |
2163 | // Computes the bounding box with respect to 'other' by finding the min of the |
2164 | // lower bounds and the max of the upper bounds along each of the dimensions. |
2165 | LogicalResult |
2166 | IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) { |
2167 | assert(space.isEqual(otherCst.getSpace()) && "Spaces should match."); |
2168 | assert(getNumLocalVars() == 0 && "local ids not supported yet here"); |
2169 | |
2170 | // Get the constraints common to both systems; these will be added as is to |
2171 | // the union. |
2172 | IntegerRelation commonCst(PresburgerSpace::getRelationSpace()); |
2173 | getCommonConstraints(a: *this, b: otherCst, c&: commonCst); |
2174 | |
2175 | std::vector<SmallVector<DynamicAPInt, 8>> boundingLbs; |
2176 | std::vector<SmallVector<DynamicAPInt, 8>> boundingUbs; |
2177 | boundingLbs.reserve(n: 2 * getNumDimVars()); |
2178 | boundingUbs.reserve(n: 2 * getNumDimVars()); |
2179 | |
2180 | // To hold lower and upper bounds for each dimension. |
2181 | SmallVector<DynamicAPInt, 4> lb, otherLb, ub, otherUb; |
2182 | // To compute min of lower bounds and max of upper bounds for each dimension. |
2183 | SmallVector<DynamicAPInt, 4> minLb(getNumSymbolVars() + 1); |
2184 | SmallVector<DynamicAPInt, 4> maxUb(getNumSymbolVars() + 1); |
2185 | // To compute final new lower and upper bounds for the union. |
2186 | SmallVector<DynamicAPInt, 8> newLb(getNumCols()), newUb(getNumCols()); |
2187 | |
2188 | DynamicAPInt lbFloorDivisor, otherLbFloorDivisor; |
2189 | for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) { |
2190 | auto extent = getConstantBoundOnDimSize(pos: d, lb: &lb, boundFloorDivisor: &lbFloorDivisor, ub: &ub); |
2191 | if (!extent.has_value()) |
2192 | // TODO: symbolic extents when necessary. |
2193 | // TODO: handle union if a dimension is unbounded. |
2194 | return failure(); |
2195 | |
2196 | auto otherExtent = otherCst.getConstantBoundOnDimSize( |
2197 | pos: d, lb: &otherLb, boundFloorDivisor: &otherLbFloorDivisor, ub: &otherUb); |
2198 | if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor) |
2199 | // TODO: symbolic extents when necessary. |
2200 | return failure(); |
2201 | |
2202 | assert(lbFloorDivisor > 0 && "divisor always expected to be positive"); |
2203 | |
2204 | auto res = compareBounds(a: lb, b: otherLb); |
2205 | // Identify min. |
2206 | if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) { |
2207 | minLb = lb; |
2208 | // Since the divisor is for a floordiv, we need to convert to ceildiv, |
2209 | // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=> |
2210 | // div * i >= expr - div + 1. |
2211 | minLb.back() -= lbFloorDivisor - 1; |
2212 | } else if (res == BoundCmpResult::Greater) { |
2213 | minLb = otherLb; |
2214 | minLb.back() -= otherLbFloorDivisor - 1; |
2215 | } else { |
2216 | // Uncomparable - check for constant lower/upper bounds. |
2217 | auto constLb = getConstantBound(type: BoundType::LB, pos: d); |
2218 | auto constOtherLb = otherCst.getConstantBound(type: BoundType::LB, pos: d); |
2219 | if (!constLb.has_value() || !constOtherLb.has_value()) |
2220 | return failure(); |
2221 | std::fill(first: minLb.begin(), last: minLb.end(), value: 0); |
2222 | minLb.back() = std::min(a: *constLb, b: *constOtherLb); |
2223 | } |
2224 | |
2225 | // Do the same for ub's but max of upper bounds. Identify max. |
2226 | auto uRes = compareBounds(a: ub, b: otherUb); |
2227 | if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) { |
2228 | maxUb = ub; |
2229 | } else if (uRes == BoundCmpResult::Less) { |
2230 | maxUb = otherUb; |
2231 | } else { |
2232 | // Uncomparable - check for constant lower/upper bounds. |
2233 | auto constUb = getConstantBound(type: BoundType::UB, pos: d); |
2234 | auto constOtherUb = otherCst.getConstantBound(type: BoundType::UB, pos: d); |
2235 | if (!constUb.has_value() || !constOtherUb.has_value()) |
2236 | return failure(); |
2237 | std::fill(first: maxUb.begin(), last: maxUb.end(), value: 0); |
2238 | maxUb.back() = std::max(a: *constUb, b: *constOtherUb); |
2239 | } |
2240 | |
2241 | std::fill(first: newLb.begin(), last: newLb.end(), value: 0); |
2242 | std::fill(first: newUb.begin(), last: newUb.end(), value: 0); |
2243 | |
2244 | // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor, |
2245 | // and so it's the divisor for newLb and newUb as well. |
2246 | newLb[d] = lbFloorDivisor; |
2247 | newUb[d] = -lbFloorDivisor; |
2248 | // Copy over the symbolic part + constant term. |
2249 | std::copy(first: minLb.begin(), last: minLb.end(), result: newLb.begin() + getNumDimVars()); |
2250 | std::transform(first: newLb.begin() + getNumDimVars(), last: newLb.end(), |
2251 | result: newLb.begin() + getNumDimVars(), |
2252 | unary_op: std::negate<DynamicAPInt>()); |
2253 | std::copy(first: maxUb.begin(), last: maxUb.end(), result: newUb.begin() + getNumDimVars()); |
2254 | |
2255 | boundingLbs.emplace_back(args&: newLb); |
2256 | boundingUbs.emplace_back(args&: newUb); |
2257 | } |
2258 | |
2259 | // Clear all constraints and add the lower/upper bounds for the bounding box. |
2260 | clearConstraints(); |
2261 | for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) { |
2262 | addInequality(inEq: boundingLbs[d]); |
2263 | addInequality(inEq: boundingUbs[d]); |
2264 | } |
2265 | |
2266 | // Add the constraints that were common to both systems. |
2267 | append(other: commonCst); |
2268 | removeTrivialRedundancy(); |
2269 | |
2270 | // TODO: copy over pure symbolic constraints from this and 'other' over to the |
2271 | // union (since the above are just the union along dimensions); we shouldn't |
2272 | // be discarding any other constraints on the symbols. |
2273 | |
2274 | return success(); |
2275 | } |
2276 | |
2277 | bool IntegerRelation::isColZero(unsigned pos) const { |
2278 | return !findConstraintWithNonZeroAt(colIdx: pos, /*isEq=*/false) && |
2279 | !findConstraintWithNonZeroAt(colIdx: pos, /*isEq=*/true); |
2280 | } |
2281 | |
2282 | /// Find positions of inequalities and equalities that do not have a coefficient |
2283 | /// for [pos, pos + num) variables. |
2284 | static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos, |
2285 | unsigned num, |
2286 | SmallVectorImpl<unsigned> &nbIneqIndices, |
2287 | SmallVectorImpl<unsigned> &nbEqIndices) { |
2288 | assert(pos < cst.getNumVars() && "invalid start position"); |
2289 | assert(pos + num <= cst.getNumVars() && "invalid limit"); |
2290 | |
2291 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
2292 | // The bounds are to be independent of [offset, offset + num) columns. |
2293 | unsigned c; |
2294 | for (c = pos; c < pos + num; ++c) { |
2295 | if (cst.atIneq(i: r, j: c) != 0) |
2296 | break; |
2297 | } |
2298 | if (c == pos + num) |
2299 | nbIneqIndices.emplace_back(Args&: r); |
2300 | } |
2301 | |
2302 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
2303 | // The bounds are to be independent of [offset, offset + num) columns. |
2304 | unsigned c; |
2305 | for (c = pos; c < pos + num; ++c) { |
2306 | if (cst.atEq(i: r, j: c) != 0) |
2307 | break; |
2308 | } |
2309 | if (c == pos + num) |
2310 | nbEqIndices.emplace_back(Args&: r); |
2311 | } |
2312 | } |
2313 | |
2314 | void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) { |
2315 | assert(pos + num <= getNumVars() && "invalid range"); |
2316 | |
2317 | // Remove constraints that are independent of these variables. |
2318 | SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices; |
2319 | getIndependentConstraints(cst: *this, /*pos=*/0, num, nbIneqIndices, nbEqIndices); |
2320 | |
2321 | // Iterate in reverse so that indices don't have to be updated. |
2322 | // TODO: This method can be made more efficient (because removal of each |
2323 | // inequality leads to much shifting/copying in the underlying buffer). |
2324 | for (auto nbIndex : llvm::reverse(C&: nbIneqIndices)) |
2325 | removeInequality(pos: nbIndex); |
2326 | for (auto nbIndex : llvm::reverse(C&: nbEqIndices)) |
2327 | removeEquality(pos: nbIndex); |
2328 | } |
2329 | |
2330 | IntegerPolyhedron IntegerRelation::getDomainSet() const { |
2331 | IntegerRelation copyRel = *this; |
2332 | |
2333 | // Convert Range variables to Local variables. |
2334 | copyRel.convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Range), |
2335 | dstKind: VarKind::Local); |
2336 | |
2337 | // Convert Domain variables to SetDim(Range) variables. |
2338 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Domain), |
2339 | dstKind: VarKind::SetDim); |
2340 | |
2341 | return IntegerPolyhedron(std::move(copyRel)); |
2342 | } |
2343 | |
2344 | bool IntegerRelation::removeDuplicateConstraints() { |
2345 | bool changed = false; |
2346 | SmallDenseMap<ArrayRef<DynamicAPInt>, unsigned> hashTable; |
2347 | unsigned ineqs = getNumInequalities(), cols = getNumCols(); |
2348 | |
2349 | if (ineqs <= 1) |
2350 | return changed; |
2351 | |
2352 | // Check if the non-constant part of the constraint is the same. |
2353 | ArrayRef<DynamicAPInt> row = getInequality(idx: 0).drop_back(); |
2354 | hashTable.insert(KV: {row, 0}); |
2355 | for (unsigned k = 1; k < ineqs; ++k) { |
2356 | row = getInequality(idx: k).drop_back(); |
2357 | if (hashTable.try_emplace(Key: row, Args&: k).second) |
2358 | continue; |
2359 | |
2360 | // For identical cases, keep only the smaller part of the constant term. |
2361 | unsigned l = hashTable[row]; |
2362 | changed = true; |
2363 | if (atIneq(i: k, j: cols - 1) <= atIneq(i: l, j: cols - 1)) |
2364 | inequalities.swapRows(row: k, otherRow: l); |
2365 | removeInequality(pos: k); |
2366 | --k; |
2367 | --ineqs; |
2368 | } |
2369 | |
2370 | // Check the neg form of each inequality, need an extra vector to store it. |
2371 | SmallVector<DynamicAPInt> negIneq(cols - 1); |
2372 | for (unsigned k = 0; k < ineqs; ++k) { |
2373 | row = getInequality(idx: k).drop_back(); |
2374 | negIneq.assign(in_start: row.begin(), in_end: row.end()); |
2375 | for (DynamicAPInt &ele : negIneq) |
2376 | ele = -ele; |
2377 | if (!hashTable.contains(Val: negIneq)) |
2378 | continue; |
2379 | |
2380 | // For cases where the neg is the same as other inequalities, check that the |
2381 | // sum of their constant terms is positive. |
2382 | unsigned l = hashTable[row]; |
2383 | auto sum = atIneq(i: l, j: cols - 1) + atIneq(i: k, j: cols - 1); |
2384 | if (sum > 0 || l == k) |
2385 | continue; |
2386 | |
2387 | // A sum of constant terms equal to zero combines two inequalities into one |
2388 | // equation, less than zero means the set is empty. |
2389 | changed = true; |
2390 | if (k < l) |
2391 | std::swap(a&: l, b&: k); |
2392 | if (sum == 0) { |
2393 | addEquality(eq: getInequality(idx: k)); |
2394 | removeInequality(pos: k); |
2395 | removeInequality(pos: l); |
2396 | } else { |
2397 | *this = getEmpty(space: getSpace()); |
2398 | } |
2399 | break; |
2400 | } |
2401 | |
2402 | return changed; |
2403 | } |
2404 | |
2405 | IntegerPolyhedron IntegerRelation::getRangeSet() const { |
2406 | IntegerRelation copyRel = *this; |
2407 | |
2408 | // Convert Domain variables to Local variables. |
2409 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getNumVarKind(kind: VarKind::Domain), |
2410 | dstKind: VarKind::Local); |
2411 | |
2412 | // We do not need to do anything to Range variables since they are already in |
2413 | // SetDim position. |
2414 | |
2415 | return IntegerPolyhedron(std::move(copyRel)); |
2416 | } |
2417 | |
2418 | void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) { |
2419 | assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) && |
2420 | "Domain set is not compatible with poly"); |
2421 | |
2422 | // Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`. |
2423 | IntegerRelation rel = poly; |
2424 | rel.inverse(); |
2425 | |
2426 | // Append dummy range variables to make the spaces compatible. |
2427 | rel.appendVar(kind: VarKind::Range, num: getNumRangeVars()); |
2428 | |
2429 | // Intersect in place. |
2430 | mergeLocalVars(other&: rel); |
2431 | append(other: rel); |
2432 | } |
2433 | |
2434 | void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) { |
2435 | assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) && |
2436 | "Range set is not compatible with poly"); |
2437 | |
2438 | IntegerRelation rel = poly; |
2439 | |
2440 | // Append dummy domain variables to make the spaces compatible. |
2441 | rel.appendVar(kind: VarKind::Domain, num: getNumDomainVars()); |
2442 | |
2443 | mergeLocalVars(other&: rel); |
2444 | append(other: rel); |
2445 | } |
2446 | |
2447 | void IntegerRelation::inverse() { |
2448 | unsigned numRangeVars = getNumVarKind(kind: VarKind::Range); |
2449 | convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: getVarKindEnd(kind: VarKind::Domain), |
2450 | dstKind: VarKind::Range); |
2451 | convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: numRangeVars, dstKind: VarKind::Domain); |
2452 | } |
2453 | |
2454 | void IntegerRelation::compose(const IntegerRelation &rel) { |
2455 | assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) && |
2456 | "Range of `this` should be compatible with Domain of `rel`"); |
2457 | |
2458 | IntegerRelation copyRel = rel; |
2459 | |
2460 | // Let relation `this` be R1: A -> B, and `rel` be R2: B -> C. |
2461 | // We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of |
2462 | // R1 with R2. After this, we get R1: A -> C, by projecting out B. |
2463 | // TODO: Using nested spaces here would help, since we could directly |
2464 | // intersect the range with another relation. |
2465 | unsigned numBVars = getNumRangeVars(); |
2466 | |
2467 | // Convert R1 from A -> B to A -> (B X C). |
2468 | appendVar(kind: VarKind::Range, num: copyRel.getNumRangeVars()); |
2469 | |
2470 | // Convert R2 to B X C. |
2471 | copyRel.convertVarKind(srcKind: VarKind::Domain, varStart: 0, varLimit: numBVars, dstKind: VarKind::Range, pos: 0); |
2472 | |
2473 | // Intersect R2 to range of R1. |
2474 | intersectRange(poly: IntegerPolyhedron(copyRel)); |
2475 | |
2476 | // Project out B in R1. |
2477 | convertVarKind(srcKind: VarKind::Range, varStart: 0, varLimit: numBVars, dstKind: VarKind::Local); |
2478 | } |
2479 | |
2480 | void IntegerRelation::applyDomain(const IntegerRelation &rel) { |
2481 | inverse(); |
2482 | compose(rel); |
2483 | inverse(); |
2484 | } |
2485 | |
2486 | void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); } |
2487 | |
2488 | void IntegerRelation::printSpace(raw_ostream &os) const { |
2489 | space.print(os); |
2490 | os << getNumConstraints() << " constraints\n"; |
2491 | } |
2492 | |
2493 | void IntegerRelation::removeTrivialEqualities() { |
2494 | for (int i = getNumEqualities() - 1; i >= 0; --i) |
2495 | if (rangeIsZero(range: getEquality(idx: i))) |
2496 | removeEquality(pos: i); |
2497 | } |
2498 | |
2499 | bool IntegerRelation::isFullDim() { |
2500 | if (getNumVars() == 0) |
2501 | return true; |
2502 | if (isEmpty()) |
2503 | return false; |
2504 | |
2505 | // If there is a non-trivial equality, the space cannot be full-dimensional. |
2506 | removeTrivialEqualities(); |
2507 | if (getNumEqualities() > 0) |
2508 | return false; |
2509 | |
2510 | // The polytope is full-dimensional iff it is not flat along any of the |
2511 | // inequality directions. |
2512 | Simplex simplex(*this); |
2513 | return llvm::none_of(Range: llvm::seq<int>(Size: getNumInequalities()), P: [&](int i) { |
2514 | return simplex.isFlatAlong(coeffs: getInequality(idx: i)); |
2515 | }); |
2516 | } |
2517 | |
2518 | void IntegerRelation::mergeAndCompose(const IntegerRelation &other) { |
2519 | assert(getNumDomainVars() == other.getNumRangeVars() && |
2520 | "Domain of this and range of other do not match"); |
2521 | // assert(std::equal(values.begin(), values.begin() + |
2522 | // other.getNumDomainVars(), |
2523 | // otherValues.begin() + other.getNumDomainVars()) && |
2524 | // "Domain of this and range of other do not match"); |
2525 | |
2526 | IntegerRelation result = other; |
2527 | |
2528 | const unsigned thisDomain = getNumDomainVars(); |
2529 | const unsigned thisRange = getNumRangeVars(); |
2530 | const unsigned otherDomain = other.getNumDomainVars(); |
2531 | const unsigned otherRange = other.getNumRangeVars(); |
2532 | |
2533 | // Add dimension variables temporarily to merge symbol and local vars. |
2534 | // Convert `this` from |
2535 | // [thisDomain] -> [thisRange] |
2536 | // to |
2537 | // [otherDomain thisDomain] -> [otherRange thisRange]. |
2538 | // and `result` from |
2539 | // [otherDomain] -> [otherRange] |
2540 | // to |
2541 | // [otherDomain thisDomain] -> [otherRange thisRange] |
2542 | insertVar(kind: VarKind::Domain, pos: 0, num: otherDomain); |
2543 | insertVar(kind: VarKind::Range, pos: 0, num: otherRange); |
2544 | result.insertVar(kind: VarKind::Domain, pos: otherDomain, num: thisDomain); |
2545 | result.insertVar(kind: VarKind::Range, pos: otherRange, num: thisRange); |
2546 | |
2547 | // Merge symbol and local variables. |
2548 | mergeAndAlignSymbols(other&: result); |
2549 | mergeLocalVars(other&: result); |
2550 | |
2551 | // Convert `result` from [otherDomain thisDomain] -> [otherRange thisRange] to |
2552 | // [otherDomain] -> [thisRange] |
2553 | result.removeVarRange(kind: VarKind::Domain, varStart: otherDomain, varLimit: otherDomain + thisDomain); |
2554 | result.convertToLocal(kind: VarKind::Range, varStart: 0, varLimit: otherRange); |
2555 | // Convert `this` from [otherDomain thisDomain] -> [otherRange thisRange] to |
2556 | // [otherDomain] -> [thisRange] |
2557 | convertToLocal(kind: VarKind::Domain, varStart: otherDomain, varLimit: otherDomain + thisDomain); |
2558 | removeVarRange(kind: VarKind::Range, varStart: 0, varLimit: otherRange); |
2559 | |
2560 | // Add and match domain of `result` to domain of `this`. |
2561 | for (unsigned i = 0, e = result.getNumDomainVars(); i < e; ++i) |
2562 | if (result.getSpace().getId(kind: VarKind::Domain, pos: i).hasValue()) |
2563 | space.setId(kind: VarKind::Domain, pos: i, |
2564 | id: result.getSpace().getId(kind: VarKind::Domain, pos: i)); |
2565 | // Add and match range of `this` to range of `result`. |
2566 | for (unsigned i = 0, e = getNumRangeVars(); i < e; ++i) |
2567 | if (space.getId(kind: VarKind::Range, pos: i).hasValue()) |
2568 | result.space.setId(kind: VarKind::Range, pos: i, id: space.getId(kind: VarKind::Range, pos: i)); |
2569 | |
2570 | // Append `this` to `result` and simplify constraints. |
2571 | result.append(other: *this); |
2572 | result.removeRedundantLocalVars(); |
2573 | |
2574 | *this = result; |
2575 | } |
2576 | |
2577 | void IntegerRelation::print(raw_ostream &os) const { |
2578 | assert(hasConsistentState()); |
2579 | printSpace(os); |
2580 | PrintTableMetrics ptm = {.maxPreIndent: 0, .maxPostIndent: 0, .preAlign: "-"}; |
2581 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
2582 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) |
2583 | updatePrintMetrics<DynamicAPInt>(val: atEq(i, j), m&: ptm); |
2584 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
2585 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) |
2586 | updatePrintMetrics<DynamicAPInt>(val: atIneq(i, j), m&: ptm); |
2587 | // Print using PrintMetrics. |
2588 | constexpr unsigned kMinSpacing = 1; |
2589 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
2590 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
2591 | printWithPrintMetrics<DynamicAPInt>(os, val: atEq(i, j), minSpacing: kMinSpacing, m: ptm); |
2592 | } |
2593 | os << " = 0\n"; |
2594 | } |
2595 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
2596 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
2597 | printWithPrintMetrics<DynamicAPInt>(os, val: atIneq(i, j), minSpacing: kMinSpacing, m: ptm); |
2598 | } |
2599 | os << " >= 0\n"; |
2600 | } |
2601 | os << '\n'; |
2602 | } |
2603 | |
2604 | void IntegerRelation::dump() const { print(os&: llvm::errs()); } |
2605 | |
2606 | unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos, |
2607 | unsigned num) { |
2608 | assert((kind != VarKind::Domain || num == 0) && |
2609 | "Domain has to be zero in a set"); |
2610 | return IntegerRelation::insertVar(kind, pos, num); |
2611 | } |
2612 | IntegerPolyhedron |
2613 | IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const { |
2614 | return IntegerPolyhedron(IntegerRelation::intersect(other)); |
2615 | } |
2616 | |
2617 | PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const { |
2618 | return PresburgerSet(IntegerRelation::subtract(set: other)); |
2619 | } |
2620 |
Definitions
- clone
- clone
- setSpace
- setSpaceExceptLocals
- setId
- getIds
- append
- intersect
- isEqual
- isObviouslyEqual
- isSubsetOf
- findRationalLexMin
- findIntegerLexMin
- rangeIsZero
- removeConstraintsInvolvingVarRange
- getCounts
- truncateVarKind
- truncateVarKind
- truncate
- computeReprWithOnlyDivLocals
- findSymbolicIntegerLexMin
- findSymbolicIntegerLexMax
- subtract
- insertVar
- appendVar
- addEquality
- addInequality
- removeVar
- removeVar
- removeVarRange
- removeVarRange
- removeEquality
- removeInequality
- removeEqualityRange
- removeInequalityRange
- swapVar
- clearConstraints
- getLowerAndUpperBoundIndices
- hasConsistentState
- setAndEliminate
- clearAndCopyFrom
- findConstraintWithNonZeroAt
- normalizeConstraintsByGCD
- hasInvalidConstraint
- eliminateFromConstraint
- getBestVarToEliminate
- isEmpty
- isObviouslyEmpty
- isEmptyByGCDTest
- getBoundedDirections
- isIntegerEmpty
- findIntegerSample
- valueAt
- containsPoint
- containsPointNoLocal
- getLocalReprs
- gcdTightenInequalities
- gaussianEliminateVars
- gaussianEliminate
- removeRedundantInequalities
- removeRedundantConstraints
- computeVolume
- eliminateRedundantLocalVar
- mergeAndAlignSymbols
- mergeLocalVars
- hasOnlyDivLocals
- removeDuplicateDivs
- simplify
- removeRedundantLocalVars
- convertVarKind
- addBound
- addBound
- addLocalFloorDiv
- findEqualityToConstant
- constantFoldVar
- constantFoldVarRange
- getConstantBoundOnDimSize
- computeConstantLowerOrUpperBound
- getConstantBound
- isHyperRectangular
- removeTrivialRedundancy
- fourierMotzkinEliminate
- projectOut
- BoundCmpResult
- compareBounds
- getCommonConstraints
- unionBoundingBox
- isColZero
- getIndependentConstraints
- removeIndependentConstraints
- getDomainSet
- removeDuplicateConstraints
- getRangeSet
- intersectDomain
- intersectRange
- inverse
- compose
- applyDomain
- applyRange
- printSpace
- removeTrivialEqualities
- isFullDim
- mergeAndCompose
- dump
- insertVar
- intersect
Improve your Profiling and Debugging skills
Find out more