1 | //===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Analysis/Presburger/LinearTransform.h" |
10 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
11 | #include "mlir/Analysis/Presburger/MPInt.h" |
12 | #include "mlir/Analysis/Presburger/Matrix.h" |
13 | #include "mlir/Support/LLVM.h" |
14 | #include <utility> |
15 | |
16 | using namespace mlir; |
17 | using namespace presburger; |
18 | |
19 | LinearTransform::LinearTransform(IntMatrix &&oMatrix) : matrix(oMatrix) {} |
20 | LinearTransform::LinearTransform(const IntMatrix &oMatrix) : matrix(oMatrix) {} |
21 | |
22 | std::pair<unsigned, LinearTransform> |
23 | LinearTransform::makeTransformToColumnEchelon(const IntMatrix &m) { |
24 | // Compute the hermite normal form of m. This, is by definition, is in column |
25 | // echelon form. |
26 | auto [h, u] = m.computeHermiteNormalForm(); |
27 | |
28 | // Since the matrix is in column ecehlon form, a zero column means the rest of |
29 | // the columns are zero. Thus, once we find a zero column, we can stop. |
30 | unsigned col, e; |
31 | for (col = 0, e = m.getNumColumns(); col < e; ++col) { |
32 | bool zeroCol = true; |
33 | for (unsigned row = 0, f = m.getNumRows(); row < f; ++row) { |
34 | if (h(row, col) != 0) { |
35 | zeroCol = false; |
36 | break; |
37 | } |
38 | } |
39 | |
40 | if (zeroCol) |
41 | break; |
42 | } |
43 | |
44 | return {col, LinearTransform(std::move(u))}; |
45 | } |
46 | |
47 | IntegerRelation LinearTransform::applyTo(const IntegerRelation &rel) const { |
48 | IntegerRelation result(rel.getSpace()); |
49 | |
50 | for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) { |
51 | ArrayRef<MPInt> eq = rel.getEquality(idx: i); |
52 | |
53 | const MPInt &c = eq.back(); |
54 | |
55 | SmallVector<MPInt, 8> newEq = preMultiplyWithRow(rowVec: eq.drop_back()); |
56 | newEq.push_back(Elt: c); |
57 | result.addEquality(eq: newEq); |
58 | } |
59 | |
60 | for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) { |
61 | ArrayRef<MPInt> ineq = rel.getInequality(idx: i); |
62 | |
63 | const MPInt &c = ineq.back(); |
64 | |
65 | SmallVector<MPInt, 8> newIneq = preMultiplyWithRow(rowVec: ineq.drop_back()); |
66 | newIneq.push_back(Elt: c); |
67 | result.addInequality(inEq: newIneq); |
68 | } |
69 | |
70 | return result; |
71 | } |
72 | |