1 | //===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Analysis/Presburger/LinearTransform.h" |
10 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
11 | #include "mlir/Analysis/Presburger/Matrix.h" |
12 | #include <utility> |
13 | |
14 | using namespace mlir; |
15 | using namespace presburger; |
16 | |
17 | LinearTransform::LinearTransform(IntMatrix &&oMatrix) : matrix(oMatrix) {} |
18 | LinearTransform::LinearTransform(const IntMatrix &oMatrix) : matrix(oMatrix) {} |
19 | |
20 | std::pair<unsigned, LinearTransform> |
21 | LinearTransform::makeTransformToColumnEchelon(const IntMatrix &m) { |
22 | // Compute the hermite normal form of m. This, is by definition, is in column |
23 | // echelon form. |
24 | auto [h, u] = m.computeHermiteNormalForm(); |
25 | |
26 | // Since the matrix is in column ecehlon form, a zero column means the rest of |
27 | // the columns are zero. Thus, once we find a zero column, we can stop. |
28 | unsigned col, e; |
29 | for (col = 0, e = m.getNumColumns(); col < e; ++col) { |
30 | bool zeroCol = true; |
31 | for (unsigned row = 0, f = m.getNumRows(); row < f; ++row) { |
32 | if (h(row, col) != 0) { |
33 | zeroCol = false; |
34 | break; |
35 | } |
36 | } |
37 | |
38 | if (zeroCol) |
39 | break; |
40 | } |
41 | |
42 | return {col, LinearTransform(std::move(u))}; |
43 | } |
44 | |
45 | IntegerRelation LinearTransform::applyTo(const IntegerRelation &rel) const { |
46 | IntegerRelation result(rel.getSpace()); |
47 | |
48 | for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) { |
49 | ArrayRef<DynamicAPInt> eq = rel.getEquality(idx: i); |
50 | |
51 | const DynamicAPInt &c = eq.back(); |
52 | |
53 | SmallVector<DynamicAPInt, 8> newEq = preMultiplyWithRow(rowVec: eq.drop_back()); |
54 | newEq.emplace_back(Args: c); |
55 | result.addEquality(eq: newEq); |
56 | } |
57 | |
58 | for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) { |
59 | ArrayRef<DynamicAPInt> ineq = rel.getInequality(idx: i); |
60 | |
61 | const DynamicAPInt &c = ineq.back(); |
62 | |
63 | SmallVector<DynamicAPInt, 8> newIneq = preMultiplyWithRow(rowVec: ineq.drop_back()); |
64 | newIneq.emplace_back(Args: c); |
65 | result.addInequality(inEq: newIneq); |
66 | } |
67 | |
68 | return result; |
69 | } |
70 | |