1//===- PWMAFunction.cpp - MLIR PWMAFunction Class -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "mlir/Analysis/Presburger/PWMAFunction.h"
10#include "mlir/Analysis/Presburger/IntegerRelation.h"
11#include "mlir/Analysis/Presburger/PresburgerRelation.h"
12#include "mlir/Analysis/Presburger/PresburgerSpace.h"
13#include "mlir/Analysis/Presburger/Utils.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/STLFunctionalExtras.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/Support/raw_ostream.h"
18#include <algorithm>
19#include <cassert>
20#include <optional>
21
22using namespace mlir;
23using namespace presburger;
24
25void MultiAffineFunction::assertIsConsistent() const {
26 assert(space.getNumVars() - space.getNumRangeVars() + 1 ==
27 output.getNumColumns() &&
28 "Inconsistent number of output columns");
29 assert(space.getNumDomainVars() + space.getNumSymbolVars() ==
30 divs.getNumNonDivs() &&
31 "Inconsistent number of non-division variables in divs");
32 assert(space.getNumRangeVars() == output.getNumRows() &&
33 "Inconsistent number of output rows");
34 assert(space.getNumLocalVars() == divs.getNumDivs() &&
35 "Inconsistent number of divisions.");
36 assert(divs.hasAllReprs() && "All divisions should have a representation");
37}
38
39// Return the result of subtracting the two given vectors pointwise.
40// The vectors must be of the same size.
41// e.g., [3, 4, 6] - [2, 5, 1] = [1, -1, 5].
42static SmallVector<DynamicAPInt, 8> subtractExprs(ArrayRef<DynamicAPInt> vecA,
43 ArrayRef<DynamicAPInt> vecB) {
44 assert(vecA.size() == vecB.size() &&
45 "Cannot subtract vectors of differing lengths!");
46 SmallVector<DynamicAPInt, 8> result;
47 result.reserve(N: vecA.size());
48 for (unsigned i = 0, e = vecA.size(); i < e; ++i)
49 result.emplace_back(Args: vecA[i] - vecB[i]);
50 return result;
51}
52
53PresburgerSet PWMAFunction::getDomain() const {
54 PresburgerSet domain = PresburgerSet::getEmpty(space: getDomainSpace());
55 for (const Piece &piece : pieces)
56 domain.unionInPlace(set: piece.domain);
57 return domain;
58}
59
60void MultiAffineFunction::print(raw_ostream &os) const {
61 space.print(os);
62 os << "Division Representation:\n";
63 divs.print(os);
64 os << "Output:\n";
65 output.print(os);
66}
67
68void MultiAffineFunction::dump() const { print(os&: llvm::errs()); }
69
70SmallVector<DynamicAPInt, 8>
71MultiAffineFunction::valueAt(ArrayRef<DynamicAPInt> point) const {
72 assert(point.size() == getNumDomainVars() + getNumSymbolVars() &&
73 "Point has incorrect dimensionality!");
74
75 SmallVector<DynamicAPInt, 8> pointHomogenous{llvm::to_vector(Range&: point)};
76 // Get the division values at this point.
77 SmallVector<std::optional<DynamicAPInt>, 8> divValues =
78 divs.divValuesAt(point);
79 // The given point didn't include the values of the divs which the output is a
80 // function of; we have computed one possible set of values and use them here.
81 pointHomogenous.reserve(N: pointHomogenous.size() + divValues.size());
82 for (const std::optional<DynamicAPInt> &divVal : divValues)
83 pointHomogenous.emplace_back(Args: *divVal);
84 // The matrix `output` has an affine expression in the ith row, corresponding
85 // to the expression for the ith value in the output vector. The last column
86 // of the matrix contains the constant term. Let v be the input point with
87 // a 1 appended at the end. We can see that output * v gives the desired
88 // output vector.
89 pointHomogenous.emplace_back(Args: 1);
90 SmallVector<DynamicAPInt, 8> result =
91 output.postMultiplyWithColumn(colVec: pointHomogenous);
92 assert(result.size() == getNumOutputs());
93 return result;
94}
95
96bool MultiAffineFunction::isEqual(const MultiAffineFunction &other) const {
97 assert(space.isCompatible(other.space) &&
98 "Spaces should be compatible for equality check.");
99 return getAsRelation().isEqual(other: other.getAsRelation());
100}
101
102bool MultiAffineFunction::isEqual(const MultiAffineFunction &other,
103 const IntegerPolyhedron &domain) const {
104 assert(space.isCompatible(other.space) &&
105 "Spaces should be compatible for equality check.");
106 IntegerRelation restrictedThis = getAsRelation();
107 restrictedThis.intersectDomain(poly: domain);
108
109 IntegerRelation restrictedOther = other.getAsRelation();
110 restrictedOther.intersectDomain(poly: domain);
111
112 return restrictedThis.isEqual(other: restrictedOther);
113}
114
115bool MultiAffineFunction::isEqual(const MultiAffineFunction &other,
116 const PresburgerSet &domain) const {
117 assert(space.isCompatible(other.space) &&
118 "Spaces should be compatible for equality check.");
119 return llvm::all_of(Range: domain.getAllDisjuncts(),
120 P: [&](const IntegerRelation &disjunct) {
121 return isEqual(other, domain: IntegerPolyhedron(disjunct));
122 });
123}
124
125void MultiAffineFunction::removeOutputs(unsigned start, unsigned end) {
126 assert(end <= getNumOutputs() && "Invalid range");
127
128 if (start >= end)
129 return;
130
131 space.removeVarRange(kind: VarKind::Range, varStart: start, varLimit: end);
132 output.removeRows(pos: start, count: end - start);
133}
134
135void MultiAffineFunction::mergeDivs(MultiAffineFunction &other) {
136 assert(space.isCompatible(other.space) && "Functions should be compatible");
137
138 unsigned nDivs = getNumDivs();
139 unsigned divOffset = divs.getDivOffset();
140
141 other.divs.insertDiv(pos: 0, num: nDivs);
142
143 SmallVector<DynamicAPInt, 8> div(other.divs.getNumVars() + 1);
144 for (unsigned i = 0; i < nDivs; ++i) {
145 // Zero fill.
146 std::fill(first: div.begin(), last: div.end(), value: 0);
147 // Fill div with dividend from `divs`. Do not fill the constant.
148 std::copy(first: divs.getDividend(i).begin(), last: divs.getDividend(i).end() - 1,
149 result: div.begin());
150 // Fill constant.
151 div.back() = divs.getDividend(i).back();
152 other.divs.setDiv(i, dividend: div, divisor: divs.getDenom(i));
153 }
154
155 other.space.insertVar(kind: VarKind::Local, pos: 0, num: nDivs);
156 other.output.insertColumns(pos: divOffset, count: nDivs);
157
158 auto merge = [&](unsigned i, unsigned j) {
159 // We only merge from local at pos j to local at pos i, where j > i.
160 if (i >= j)
161 return false;
162
163 // If i < nDivs, we are trying to merge duplicate divs in `this`. Since we
164 // do not want to merge duplicates in `this`, we ignore this call.
165 if (j < nDivs)
166 return false;
167
168 // Merge things in space and output.
169 other.space.removeVarRange(kind: VarKind::Local, varStart: j, varLimit: j + 1);
170 other.output.addToColumn(sourceColumn: divOffset + i, targetColumn: divOffset + j, scale: 1);
171 other.output.removeColumn(pos: divOffset + j);
172 return true;
173 };
174
175 other.divs.removeDuplicateDivs(merge);
176
177 unsigned newDivs = other.divs.getNumDivs() - nDivs;
178
179 space.insertVar(kind: VarKind::Local, pos: nDivs, num: newDivs);
180 output.insertColumns(pos: divOffset + nDivs, count: newDivs);
181 divs = other.divs;
182
183 // Check consistency.
184 assertIsConsistent();
185 other.assertIsConsistent();
186}
187
188PresburgerSet
189MultiAffineFunction::getLexSet(OrderingKind comp,
190 const MultiAffineFunction &other) const {
191 assert(getSpace().isCompatible(other.getSpace()) &&
192 "Output space of funcs should be compatible");
193
194 // Create copies of functions and merge their local space.
195 MultiAffineFunction funcA = *this;
196 MultiAffineFunction funcB = other;
197 funcA.mergeDivs(other&: funcB);
198
199 // We first create the set `result`, corresponding to the set where output
200 // of funcA is lexicographically larger/smaller than funcB. This is done by
201 // creating a PresburgerSet with the following constraints:
202 //
203 // (outA[0] > outB[0]) U
204 // (outA[0] = outB[0], outA[1] > outA[1]) U
205 // (outA[0] = outB[0], outA[1] = outA[1], outA[2] > outA[2]) U
206 // ...
207 // (outA[0] = outB[0], ..., outA[n-2] = outB[n-2], outA[n-1] > outB[n-1])
208 //
209 // where `n` is the number of outputs.
210 // If `lexMin` is set, the complement inequality is used:
211 //
212 // (outA[0] < outB[0]) U
213 // (outA[0] = outB[0], outA[1] < outA[1]) U
214 // (outA[0] = outB[0], outA[1] = outA[1], outA[2] < outA[2]) U
215 // ...
216 // (outA[0] = outB[0], ..., outA[n-2] = outB[n-2], outA[n-1] < outB[n-1])
217 PresburgerSpace resultSpace = funcA.getDomainSpace();
218 PresburgerSet result =
219 PresburgerSet::getEmpty(space: resultSpace.getSpaceWithoutLocals());
220 IntegerPolyhedron levelSet(
221 /*numReservedInequalities=*/1 + 2 * resultSpace.getNumLocalVars(),
222 /*numReservedEqualities=*/funcA.getNumOutputs(),
223 /*numReservedCols=*/resultSpace.getNumVars() + 1, resultSpace);
224
225 // Add division inequalities to `levelSet`.
226 for (unsigned i = 0, e = funcA.getNumDivs(); i < e; ++i) {
227 levelSet.addInequality(inEq: getDivUpperBound(dividend: funcA.divs.getDividend(i),
228 divisor: funcA.divs.getDenom(i),
229 localVarIdx: funcA.divs.getDivOffset() + i));
230 levelSet.addInequality(inEq: getDivLowerBound(dividend: funcA.divs.getDividend(i),
231 divisor: funcA.divs.getDenom(i),
232 localVarIdx: funcA.divs.getDivOffset() + i));
233 }
234
235 for (unsigned level = 0; level < funcA.getNumOutputs(); ++level) {
236 // Create the expression `outA - outB` for this level.
237 SmallVector<DynamicAPInt, 8> subExpr =
238 subtractExprs(vecA: funcA.getOutputExpr(i: level), vecB: funcB.getOutputExpr(i: level));
239
240 // TODO: Implement all comparison cases.
241 switch (comp) {
242 case OrderingKind::LT:
243 // For less than, we add an upper bound of -1:
244 // outA - outB <= -1
245 // outA <= outB - 1
246 // outA < outB
247 levelSet.addBound(type: BoundType::UB, expr: subExpr, value: DynamicAPInt(-1));
248 break;
249 case OrderingKind::GT:
250 // For greater than, we add a lower bound of 1:
251 // outA - outB >= 1
252 // outA > outB + 1
253 // outA > outB
254 levelSet.addBound(type: BoundType::LB, expr: subExpr, value: DynamicAPInt(1));
255 break;
256 case OrderingKind::GE:
257 case OrderingKind::LE:
258 case OrderingKind::EQ:
259 case OrderingKind::NE:
260 assert(false && "Not implemented case");
261 }
262
263 // Union the set with the result.
264 result.unionInPlace(disjunct: levelSet);
265 // The last inequality in `levelSet` is the bound we inserted. We remove
266 // that for next iteration.
267 levelSet.removeInequality(pos: levelSet.getNumInequalities() - 1);
268 // Add equality `outA - outB == 0` for this level for next iteration.
269 levelSet.addEquality(eq: subExpr);
270 }
271
272 return result;
273}
274
275/// Two PWMAFunctions are equal if they have the same dimensionalities,
276/// the same domain, and take the same value at every point in the domain.
277bool PWMAFunction::isEqual(const PWMAFunction &other) const {
278 if (!space.isCompatible(other: other.space))
279 return false;
280
281 if (!this->getDomain().isEqual(set: other.getDomain()))
282 return false;
283
284 // Check if, whenever the domains of a piece of `this` and a piece of `other`
285 // overlap, they take the same output value. If `this` and `other` have the
286 // same domain (checked above), then this check passes iff the two functions
287 // have the same output at every point in the domain.
288 return llvm::all_of(Range: this->pieces, P: [&other](const Piece &pieceA) {
289 return llvm::all_of(Range: other.pieces, P: [&pieceA](const Piece &pieceB) {
290 PresburgerSet commonDomain = pieceA.domain.intersect(set: pieceB.domain);
291 return pieceA.output.isEqual(other: pieceB.output, domain: commonDomain);
292 });
293 });
294}
295
296void PWMAFunction::addPiece(const Piece &piece) {
297 assert(piece.isConsistent() && "Piece should be consistent");
298 assert(piece.domain.intersect(getDomain()).isIntegerEmpty() &&
299 "Piece should be disjoint from the function");
300 pieces.emplace_back(Args: piece);
301}
302
303void PWMAFunction::print(raw_ostream &os) const {
304 space.print(os);
305 os << getNumPieces() << " pieces:\n";
306 for (const Piece &piece : pieces) {
307 os << "Domain of piece:\n";
308 piece.domain.print(os);
309 os << "Output of piece\n";
310 piece.output.print(os);
311 }
312}
313
314void PWMAFunction::dump() const { print(os&: llvm::errs()); }
315
316PWMAFunction PWMAFunction::unionFunction(
317 const PWMAFunction &func,
318 llvm::function_ref<PresburgerSet(Piece maf1, Piece maf2)> tiebreak) const {
319 assert(getNumOutputs() == func.getNumOutputs() &&
320 "Ranges of functions should be same.");
321 assert(getSpace().isCompatible(func.getSpace()) &&
322 "Space is not compatible.");
323
324 // The algorithm used here is as follows:
325 // - Add the output of pieceB for the part of the domain where both pieceA and
326 // pieceB are defined, and `tiebreak` chooses the output of pieceB.
327 // - Add the output of pieceA, where pieceB is not defined or `tiebreak`
328 // chooses
329 // pieceA over pieceB.
330 // - Add the output of pieceB, where pieceA is not defined.
331
332 // Add parts of the common domain where pieceB's output is used. Also
333 // add all the parts where pieceA's output is used, both common and
334 // non-common.
335 PWMAFunction result(getSpace());
336 for (const Piece &pieceA : pieces) {
337 PresburgerSet dom(pieceA.domain);
338 for (const Piece &pieceB : func.pieces) {
339 PresburgerSet better = tiebreak(pieceB, pieceA);
340 // Add the output of pieceB, where it is better than output of pieceA.
341 // The disjuncts in "better" will be disjoint as tiebreak should gurantee
342 // that.
343 result.addPiece(piece: {.domain: better, .output: pieceB.output});
344 dom = dom.subtract(set: better);
345 }
346 // Add output of pieceA, where it is better than pieceB, or pieceB is not
347 // defined.
348 //
349 // `dom` here is guranteed to be disjoint from already added pieces
350 // because the pieces added before are either:
351 // - Subsets of the domain of other MAFs in `this`, which are guranteed
352 // to be disjoint from `dom`, or
353 // - They are one of the pieces added for `pieceB`, and we have been
354 // subtracting all such pieces from `dom`, so `dom` is disjoint from those
355 // pieces as well.
356 result.addPiece(piece: {.domain: dom, .output: pieceA.output});
357 }
358
359 // Add parts of pieceB which are not shared with pieceA.
360 PresburgerSet dom = getDomain();
361 for (const Piece &pieceB : func.pieces)
362 result.addPiece(piece: {.domain: pieceB.domain.subtract(set: dom), .output: pieceB.output});
363
364 return result;
365}
366
367/// A tiebreak function which breaks ties by comparing the outputs
368/// lexicographically based on the given comparison operator.
369/// This is templated since it is passed as a lambda.
370template <OrderingKind comp>
371static PresburgerSet tiebreakLex(const PWMAFunction::Piece &pieceA,
372 const PWMAFunction::Piece &pieceB) {
373 PresburgerSet result = pieceA.output.getLexSet(comp, other: pieceB.output);
374 result = result.intersect(set: pieceA.domain).intersect(set: pieceB.domain);
375
376 return result;
377}
378
379PWMAFunction PWMAFunction::unionLexMin(const PWMAFunction &func) {
380 return unionFunction(func, tiebreak: tiebreakLex</*comp=*/OrderingKind::LT>);
381}
382
383PWMAFunction PWMAFunction::unionLexMax(const PWMAFunction &func) {
384 return unionFunction(func, tiebreak: tiebreakLex</*comp=*/OrderingKind::GT>);
385}
386
387void MultiAffineFunction::subtract(const MultiAffineFunction &other) {
388 assert(space.isCompatible(other.space) &&
389 "Spaces should be compatible for subtraction.");
390
391 MultiAffineFunction copyOther = other;
392 mergeDivs(other&: copyOther);
393 for (unsigned i = 0, e = getNumOutputs(); i < e; ++i)
394 output.addToRow(row: i, rowVec: copyOther.getOutputExpr(i), scale: DynamicAPInt(-1));
395
396 // Check consistency.
397 assertIsConsistent();
398}
399
400/// Adds division constraints corresponding to local variables, given a
401/// relation and division representations of the local variables in the
402/// relation.
403static void addDivisionConstraints(IntegerRelation &rel,
404 const DivisionRepr &divs) {
405 assert(divs.hasAllReprs() &&
406 "All divisions in divs should have a representation");
407 assert(rel.getNumVars() == divs.getNumVars() &&
408 "Relation and divs should have the same number of vars");
409 assert(rel.getNumLocalVars() == divs.getNumDivs() &&
410 "Relation and divs should have the same number of local vars");
411
412 for (unsigned i = 0, e = divs.getNumDivs(); i < e; ++i) {
413 rel.addInequality(inEq: getDivUpperBound(dividend: divs.getDividend(i), divisor: divs.getDenom(i),
414 localVarIdx: divs.getDivOffset() + i));
415 rel.addInequality(inEq: getDivLowerBound(dividend: divs.getDividend(i), divisor: divs.getDenom(i),
416 localVarIdx: divs.getDivOffset() + i));
417 }
418}
419
420IntegerRelation MultiAffineFunction::getAsRelation() const {
421 // Create a relation corressponding to the input space plus the divisions
422 // used in outputs.
423 IntegerRelation result(PresburgerSpace::getRelationSpace(
424 numDomain: space.getNumDomainVars(), numRange: 0, numSymbols: space.getNumSymbolVars(),
425 numLocals: space.getNumLocalVars()));
426 // Add division constraints corresponding to divisions used in outputs.
427 addDivisionConstraints(rel&: result, divs);
428 // The outputs are represented as range variables in the relation. We add
429 // range variables for the outputs.
430 result.insertVar(kind: VarKind::Range, pos: 0, num: getNumOutputs());
431
432 // Add equalities such that the i^th range variable is equal to the i^th
433 // output expression.
434 SmallVector<DynamicAPInt, 8> eq(result.getNumCols());
435 for (unsigned i = 0, e = getNumOutputs(); i < e; ++i) {
436 // TODO: Add functions to get VarKind offsets in output in MAF and use them
437 // here.
438 // The output expression does not contain range variables, while the
439 // equality does. So, we need to copy all variables and mark all range
440 // variables as 0 in the equality.
441 ArrayRef<DynamicAPInt> expr = getOutputExpr(i);
442 // Copy domain variables in `expr` to domain variables in `eq`.
443 std::copy(first: expr.begin(), last: expr.begin() + getNumDomainVars(), result: eq.begin());
444 // Fill the range variables in `eq` as zero.
445 std::fill(first: eq.begin() + result.getVarKindOffset(kind: VarKind::Range),
446 last: eq.begin() + result.getVarKindEnd(kind: VarKind::Range), value: 0);
447 // Copy remaining variables in `expr` to the remaining variables in `eq`.
448 std::copy(first: expr.begin() + getNumDomainVars(), last: expr.end(),
449 result: eq.begin() + result.getVarKindEnd(kind: VarKind::Range));
450
451 // Set the i^th range var to -1 in `eq` to equate the output expression to
452 // this range var.
453 eq[result.getVarKindOffset(kind: VarKind::Range) + i] = -1;
454 // Add the equality `rangeVar_i = output[i]`.
455 result.addEquality(eq);
456 }
457
458 return result;
459}
460
461void PWMAFunction::removeOutputs(unsigned start, unsigned end) {
462 space.removeVarRange(kind: VarKind::Range, varStart: start, varLimit: end);
463 for (Piece &piece : pieces)
464 piece.output.removeOutputs(start, end);
465}
466
467std::optional<SmallVector<DynamicAPInt, 8>>
468PWMAFunction::valueAt(ArrayRef<DynamicAPInt> point) const {
469 assert(point.size() == getNumDomainVars() + getNumSymbolVars());
470
471 for (const Piece &piece : pieces)
472 if (piece.domain.containsPoint(point))
473 return piece.output.valueAt(point);
474 return std::nullopt;
475}
476

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of mlir/lib/Analysis/Presburger/PWMAFunction.cpp