| 1 | //===- MathToFuncs.cpp - Math to outlined implementation conversion -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Conversion/MathToFuncs/MathToFuncs.h" |
| 10 | |
| 11 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 12 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
| 13 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 14 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 15 | #include "mlir/Dialect/Math/IR/Math.h" |
| 16 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 17 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 18 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 19 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 20 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 21 | #include "mlir/IR/TypeUtilities.h" |
| 22 | #include "mlir/Pass/Pass.h" |
| 23 | #include "mlir/Transforms/DialectConversion.h" |
| 24 | #include "llvm/ADT/DenseMap.h" |
| 25 | #include "llvm/ADT/TypeSwitch.h" |
| 26 | #include "llvm/Support/Debug.h" |
| 27 | |
| 28 | namespace mlir { |
| 29 | #define GEN_PASS_DEF_CONVERTMATHTOFUNCS |
| 30 | #include "mlir/Conversion/Passes.h.inc" |
| 31 | } // namespace mlir |
| 32 | |
| 33 | using namespace mlir; |
| 34 | |
| 35 | #define DEBUG_TYPE "math-to-funcs" |
| 36 | #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ") |
| 37 | |
| 38 | namespace { |
| 39 | // Pattern to convert vector operations to scalar operations. |
| 40 | template <typename Op> |
| 41 | struct VecOpToScalarOp : public OpRewritePattern<Op> { |
| 42 | public: |
| 43 | using OpRewritePattern<Op>::OpRewritePattern; |
| 44 | |
| 45 | LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final; |
| 46 | }; |
| 47 | |
| 48 | // Callback type for getting pre-generated FuncOp implementing |
| 49 | // an operation of the given type. |
| 50 | using GetFuncCallbackTy = function_ref<func::FuncOp(Operation *, Type)>; |
| 51 | |
| 52 | // Pattern to convert scalar IPowIOp into a call of outlined |
| 53 | // software implementation. |
| 54 | class IPowIOpLowering : public OpRewritePattern<math::IPowIOp> { |
| 55 | public: |
| 56 | IPowIOpLowering(MLIRContext *context, GetFuncCallbackTy cb) |
| 57 | : OpRewritePattern<math::IPowIOp>(context), getFuncOpCallback(cb) {} |
| 58 | |
| 59 | /// Convert IPowI into a call to a local function implementing |
| 60 | /// the power operation. The local function computes a scalar result, |
| 61 | /// so vector forms of IPowI are linearized. |
| 62 | LogicalResult matchAndRewrite(math::IPowIOp op, |
| 63 | PatternRewriter &rewriter) const final; |
| 64 | |
| 65 | private: |
| 66 | GetFuncCallbackTy getFuncOpCallback; |
| 67 | }; |
| 68 | |
| 69 | // Pattern to convert scalar FPowIOp into a call of outlined |
| 70 | // software implementation. |
| 71 | class FPowIOpLowering : public OpRewritePattern<math::FPowIOp> { |
| 72 | public: |
| 73 | FPowIOpLowering(MLIRContext *context, GetFuncCallbackTy cb) |
| 74 | : OpRewritePattern<math::FPowIOp>(context), getFuncOpCallback(cb) {} |
| 75 | |
| 76 | /// Convert FPowI into a call to a local function implementing |
| 77 | /// the power operation. The local function computes a scalar result, |
| 78 | /// so vector forms of FPowI are linearized. |
| 79 | LogicalResult matchAndRewrite(math::FPowIOp op, |
| 80 | PatternRewriter &rewriter) const final; |
| 81 | |
| 82 | private: |
| 83 | GetFuncCallbackTy getFuncOpCallback; |
| 84 | }; |
| 85 | |
| 86 | // Pattern to convert scalar ctlz into a call of outlined software |
| 87 | // implementation. |
| 88 | class CtlzOpLowering : public OpRewritePattern<math::CountLeadingZerosOp> { |
| 89 | public: |
| 90 | CtlzOpLowering(MLIRContext *context, GetFuncCallbackTy cb) |
| 91 | : OpRewritePattern<math::CountLeadingZerosOp>(context), |
| 92 | getFuncOpCallback(cb) {} |
| 93 | |
| 94 | /// Convert ctlz into a call to a local function implementing |
| 95 | /// the count leading zeros operation. |
| 96 | LogicalResult matchAndRewrite(math::CountLeadingZerosOp op, |
| 97 | PatternRewriter &rewriter) const final; |
| 98 | |
| 99 | private: |
| 100 | GetFuncCallbackTy getFuncOpCallback; |
| 101 | }; |
| 102 | } // namespace |
| 103 | |
| 104 | template <typename Op> |
| 105 | LogicalResult |
| 106 | VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const { |
| 107 | Type opType = op.getType(); |
| 108 | Location loc = op.getLoc(); |
| 109 | auto vecType = dyn_cast<VectorType>(opType); |
| 110 | |
| 111 | if (!vecType) |
| 112 | return rewriter.notifyMatchFailure(op, "not a vector operation" ); |
| 113 | if (!vecType.hasRank()) |
| 114 | return rewriter.notifyMatchFailure(op, "unknown vector rank" ); |
| 115 | ArrayRef<int64_t> shape = vecType.getShape(); |
| 116 | int64_t numElements = vecType.getNumElements(); |
| 117 | |
| 118 | Type resultElementType = vecType.getElementType(); |
| 119 | Attribute initValueAttr; |
| 120 | if (isa<FloatType>(resultElementType)) |
| 121 | initValueAttr = FloatAttr::get(resultElementType, 0.0); |
| 122 | else |
| 123 | initValueAttr = IntegerAttr::get(resultElementType, 0); |
| 124 | Value result = rewriter.create<arith::ConstantOp>( |
| 125 | loc, DenseElementsAttr::get(vecType, initValueAttr)); |
| 126 | SmallVector<int64_t> strides = computeStrides(sizes: shape); |
| 127 | for (int64_t linearIndex = 0; linearIndex < numElements; ++linearIndex) { |
| 128 | SmallVector<int64_t> positions = delinearize(linearIndex, strides); |
| 129 | SmallVector<Value> operands; |
| 130 | for (Value input : op->getOperands()) |
| 131 | operands.push_back( |
| 132 | rewriter.create<vector::ExtractOp>(loc, input, positions)); |
| 133 | Value scalarOp = |
| 134 | rewriter.create<Op>(loc, vecType.getElementType(), operands); |
| 135 | result = |
| 136 | rewriter.create<vector::InsertOp>(loc, scalarOp, result, positions); |
| 137 | } |
| 138 | rewriter.replaceOp(op, result); |
| 139 | return success(); |
| 140 | } |
| 141 | |
| 142 | static FunctionType getElementalFuncTypeForOp(Operation *op) { |
| 143 | SmallVector<Type, 1> resultTys(op->getNumResults()); |
| 144 | SmallVector<Type, 2> inputTys(op->getNumOperands()); |
| 145 | std::transform(first: op->result_type_begin(), last: op->result_type_end(), |
| 146 | result: resultTys.begin(), |
| 147 | unary_op: [](Type ty) { return getElementTypeOrSelf(type: ty); }); |
| 148 | std::transform(first: op->operand_type_begin(), last: op->operand_type_end(), |
| 149 | result: inputTys.begin(), |
| 150 | unary_op: [](Type ty) { return getElementTypeOrSelf(type: ty); }); |
| 151 | return FunctionType::get(op->getContext(), inputTys, resultTys); |
| 152 | } |
| 153 | |
| 154 | /// Create linkonce_odr function to implement the power function with |
| 155 | /// the given \p elementType type inside \p module. The \p elementType |
| 156 | /// must be IntegerType, an the created function has |
| 157 | /// 'IntegerType (*)(IntegerType, IntegerType)' function type. |
| 158 | /// |
| 159 | /// template <typename T> |
| 160 | /// T __mlir_math_ipowi_*(T b, T p) { |
| 161 | /// if (p == T(0)) |
| 162 | /// return T(1); |
| 163 | /// if (p < T(0)) { |
| 164 | /// if (b == T(0)) |
| 165 | /// return T(1) / T(0); // trigger div-by-zero |
| 166 | /// if (b == T(1)) |
| 167 | /// return T(1); |
| 168 | /// if (b == T(-1)) { |
| 169 | /// if (p & T(1)) |
| 170 | /// return T(-1); |
| 171 | /// return T(1); |
| 172 | /// } |
| 173 | /// return T(0); |
| 174 | /// } |
| 175 | /// T result = T(1); |
| 176 | /// while (true) { |
| 177 | /// if (p & T(1)) |
| 178 | /// result *= b; |
| 179 | /// p >>= T(1); |
| 180 | /// if (p == T(0)) |
| 181 | /// return result; |
| 182 | /// b *= b; |
| 183 | /// } |
| 184 | /// } |
| 185 | static func::FuncOp createElementIPowIFunc(ModuleOp *module, Type elementType) { |
| 186 | assert(isa<IntegerType>(elementType) && |
| 187 | "non-integer element type for IPowIOp" ); |
| 188 | |
| 189 | ImplicitLocOpBuilder builder = |
| 190 | ImplicitLocOpBuilder::atBlockEnd(loc: module->getLoc(), block: module->getBody()); |
| 191 | |
| 192 | std::string funcName("__mlir_math_ipowi" ); |
| 193 | llvm::raw_string_ostream nameOS(funcName); |
| 194 | nameOS << '_' << elementType; |
| 195 | |
| 196 | FunctionType funcType = FunctionType::get( |
| 197 | builder.getContext(), {elementType, elementType}, elementType); |
| 198 | auto funcOp = builder.create<func::FuncOp>(funcName, funcType); |
| 199 | LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR; |
| 200 | Attribute linkage = |
| 201 | LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage); |
| 202 | funcOp->setAttr("llvm.linkage" , linkage); |
| 203 | funcOp.setPrivate(); |
| 204 | |
| 205 | Block *entryBlock = funcOp.addEntryBlock(); |
| 206 | Region *funcBody = entryBlock->getParent(); |
| 207 | |
| 208 | Value bArg = funcOp.getArgument(0); |
| 209 | Value pArg = funcOp.getArgument(1); |
| 210 | builder.setInsertionPointToEnd(entryBlock); |
| 211 | Value zeroValue = builder.create<arith::ConstantOp>( |
| 212 | elementType, builder.getIntegerAttr(elementType, 0)); |
| 213 | Value oneValue = builder.create<arith::ConstantOp>( |
| 214 | elementType, builder.getIntegerAttr(elementType, 1)); |
| 215 | Value minusOneValue = builder.create<arith::ConstantOp>( |
| 216 | elementType, |
| 217 | builder.getIntegerAttr(elementType, |
| 218 | APInt(elementType.getIntOrFloatBitWidth(), -1ULL, |
| 219 | /*isSigned=*/true))); |
| 220 | |
| 221 | // if (p == T(0)) |
| 222 | // return T(1); |
| 223 | auto pIsZero = |
| 224 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, pArg, zeroValue); |
| 225 | Block *thenBlock = builder.createBlock(parent: funcBody); |
| 226 | builder.create<func::ReturnOp>(oneValue); |
| 227 | Block *fallthroughBlock = builder.createBlock(parent: funcBody); |
| 228 | // Set up conditional branch for (p == T(0)). |
| 229 | builder.setInsertionPointToEnd(pIsZero->getBlock()); |
| 230 | builder.create<cf::CondBranchOp>(pIsZero, thenBlock, fallthroughBlock); |
| 231 | |
| 232 | // if (p < T(0)) { |
| 233 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 234 | auto pIsNeg = |
| 235 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, pArg, zeroValue); |
| 236 | // if (b == T(0)) |
| 237 | builder.createBlock(parent: funcBody); |
| 238 | auto bIsZero = |
| 239 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, bArg, zeroValue); |
| 240 | // return T(1) / T(0); |
| 241 | thenBlock = builder.createBlock(parent: funcBody); |
| 242 | builder.create<func::ReturnOp>( |
| 243 | builder.create<arith::DivSIOp>(oneValue, zeroValue).getResult()); |
| 244 | fallthroughBlock = builder.createBlock(parent: funcBody); |
| 245 | // Set up conditional branch for (b == T(0)). |
| 246 | builder.setInsertionPointToEnd(bIsZero->getBlock()); |
| 247 | builder.create<cf::CondBranchOp>(bIsZero, thenBlock, fallthroughBlock); |
| 248 | |
| 249 | // if (b == T(1)) |
| 250 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 251 | auto bIsOne = |
| 252 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, bArg, oneValue); |
| 253 | // return T(1); |
| 254 | thenBlock = builder.createBlock(parent: funcBody); |
| 255 | builder.create<func::ReturnOp>(oneValue); |
| 256 | fallthroughBlock = builder.createBlock(parent: funcBody); |
| 257 | // Set up conditional branch for (b == T(1)). |
| 258 | builder.setInsertionPointToEnd(bIsOne->getBlock()); |
| 259 | builder.create<cf::CondBranchOp>(bIsOne, thenBlock, fallthroughBlock); |
| 260 | |
| 261 | // if (b == T(-1)) { |
| 262 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 263 | auto bIsMinusOne = builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, |
| 264 | bArg, minusOneValue); |
| 265 | // if (p & T(1)) |
| 266 | builder.createBlock(parent: funcBody); |
| 267 | auto pIsOdd = builder.create<arith::CmpIOp>( |
| 268 | arith::CmpIPredicate::ne, builder.create<arith::AndIOp>(pArg, oneValue), |
| 269 | zeroValue); |
| 270 | // return T(-1); |
| 271 | thenBlock = builder.createBlock(parent: funcBody); |
| 272 | builder.create<func::ReturnOp>(minusOneValue); |
| 273 | fallthroughBlock = builder.createBlock(parent: funcBody); |
| 274 | // Set up conditional branch for (p & T(1)). |
| 275 | builder.setInsertionPointToEnd(pIsOdd->getBlock()); |
| 276 | builder.create<cf::CondBranchOp>(pIsOdd, thenBlock, fallthroughBlock); |
| 277 | |
| 278 | // return T(1); |
| 279 | // } // b == T(-1) |
| 280 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 281 | builder.create<func::ReturnOp>(oneValue); |
| 282 | fallthroughBlock = builder.createBlock(parent: funcBody); |
| 283 | // Set up conditional branch for (b == T(-1)). |
| 284 | builder.setInsertionPointToEnd(bIsMinusOne->getBlock()); |
| 285 | builder.create<cf::CondBranchOp>(bIsMinusOne, pIsOdd->getBlock(), |
| 286 | fallthroughBlock); |
| 287 | |
| 288 | // return T(0); |
| 289 | // } // (p < T(0)) |
| 290 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 291 | builder.create<func::ReturnOp>(zeroValue); |
| 292 | Block * = builder.createBlock( |
| 293 | parent: funcBody, insertPt: funcBody->end(), argTypes: {elementType, elementType, elementType}, |
| 294 | locs: {builder.getLoc(), builder.getLoc(), builder.getLoc()}); |
| 295 | // Set up conditional branch for (p < T(0)). |
| 296 | builder.setInsertionPointToEnd(pIsNeg->getBlock()); |
| 297 | // Set initial values of 'result', 'b' and 'p' for the loop. |
| 298 | builder.create<cf::CondBranchOp>(pIsNeg, bIsZero->getBlock(), loopHeader, |
| 299 | ValueRange{oneValue, bArg, pArg}); |
| 300 | |
| 301 | // T result = T(1); |
| 302 | // while (true) { |
| 303 | // if (p & T(1)) |
| 304 | // result *= b; |
| 305 | // p >>= T(1); |
| 306 | // if (p == T(0)) |
| 307 | // return result; |
| 308 | // b *= b; |
| 309 | // } |
| 310 | Value resultTmp = loopHeader->getArgument(i: 0); |
| 311 | Value baseTmp = loopHeader->getArgument(i: 1); |
| 312 | Value powerTmp = loopHeader->getArgument(i: 2); |
| 313 | builder.setInsertionPointToEnd(loopHeader); |
| 314 | |
| 315 | // if (p & T(1)) |
| 316 | auto powerTmpIsOdd = builder.create<arith::CmpIOp>( |
| 317 | arith::CmpIPredicate::ne, |
| 318 | builder.create<arith::AndIOp>(powerTmp, oneValue), zeroValue); |
| 319 | thenBlock = builder.createBlock(parent: funcBody); |
| 320 | // result *= b; |
| 321 | Value newResultTmp = builder.create<arith::MulIOp>(resultTmp, baseTmp); |
| 322 | fallthroughBlock = builder.createBlock(parent: funcBody, insertPt: funcBody->end(), argTypes: elementType, |
| 323 | locs: builder.getLoc()); |
| 324 | builder.setInsertionPointToEnd(thenBlock); |
| 325 | builder.create<cf::BranchOp>(newResultTmp, fallthroughBlock); |
| 326 | // Set up conditional branch for (p & T(1)). |
| 327 | builder.setInsertionPointToEnd(powerTmpIsOdd->getBlock()); |
| 328 | builder.create<cf::CondBranchOp>(powerTmpIsOdd, thenBlock, fallthroughBlock, |
| 329 | resultTmp); |
| 330 | // Merged 'result'. |
| 331 | newResultTmp = fallthroughBlock->getArgument(i: 0); |
| 332 | |
| 333 | // p >>= T(1); |
| 334 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 335 | Value newPowerTmp = builder.create<arith::ShRUIOp>(powerTmp, oneValue); |
| 336 | |
| 337 | // if (p == T(0)) |
| 338 | auto newPowerIsZero = builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, |
| 339 | newPowerTmp, zeroValue); |
| 340 | // return result; |
| 341 | thenBlock = builder.createBlock(parent: funcBody); |
| 342 | builder.create<func::ReturnOp>(newResultTmp); |
| 343 | fallthroughBlock = builder.createBlock(parent: funcBody); |
| 344 | // Set up conditional branch for (p == T(0)). |
| 345 | builder.setInsertionPointToEnd(newPowerIsZero->getBlock()); |
| 346 | builder.create<cf::CondBranchOp>(newPowerIsZero, thenBlock, fallthroughBlock); |
| 347 | |
| 348 | // b *= b; |
| 349 | // } |
| 350 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 351 | Value newBaseTmp = builder.create<arith::MulIOp>(baseTmp, baseTmp); |
| 352 | // Pass new values for 'result', 'b' and 'p' to the loop header. |
| 353 | builder.create<cf::BranchOp>( |
| 354 | ValueRange{newResultTmp, newBaseTmp, newPowerTmp}, loopHeader); |
| 355 | return funcOp; |
| 356 | } |
| 357 | |
| 358 | /// Convert IPowI into a call to a local function implementing |
| 359 | /// the power operation. The local function computes a scalar result, |
| 360 | /// so vector forms of IPowI are linearized. |
| 361 | LogicalResult |
| 362 | IPowIOpLowering::matchAndRewrite(math::IPowIOp op, |
| 363 | PatternRewriter &rewriter) const { |
| 364 | auto baseType = dyn_cast<IntegerType>(op.getOperands()[0].getType()); |
| 365 | |
| 366 | if (!baseType) |
| 367 | return rewriter.notifyMatchFailure(op, "non-integer base operand" ); |
| 368 | |
| 369 | // The outlined software implementation must have been already |
| 370 | // generated. |
| 371 | func::FuncOp elementFunc = getFuncOpCallback(op, baseType); |
| 372 | if (!elementFunc) |
| 373 | return rewriter.notifyMatchFailure(op, "missing software implementation" ); |
| 374 | |
| 375 | rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperands()); |
| 376 | return success(); |
| 377 | } |
| 378 | |
| 379 | /// Create linkonce_odr function to implement the power function with |
| 380 | /// the given \p funcType type inside \p module. The \p funcType must be |
| 381 | /// 'FloatType (*)(FloatType, IntegerType)' function type. |
| 382 | /// |
| 383 | /// template <typename T> |
| 384 | /// Tb __mlir_math_fpowi_*(Tb b, Tp p) { |
| 385 | /// if (p == Tp{0}) |
| 386 | /// return Tb{1}; |
| 387 | /// bool isNegativePower{p < Tp{0}} |
| 388 | /// bool isMin{p == std::numeric_limits<Tp>::min()}; |
| 389 | /// if (isMin) { |
| 390 | /// p = std::numeric_limits<Tp>::max(); |
| 391 | /// } else if (isNegativePower) { |
| 392 | /// p = -p; |
| 393 | /// } |
| 394 | /// Tb result = Tb{1}; |
| 395 | /// Tb origBase = Tb{b}; |
| 396 | /// while (true) { |
| 397 | /// if (p & Tp{1}) |
| 398 | /// result *= b; |
| 399 | /// p >>= Tp{1}; |
| 400 | /// if (p == Tp{0}) |
| 401 | /// break; |
| 402 | /// b *= b; |
| 403 | /// } |
| 404 | /// if (isMin) { |
| 405 | /// result *= origBase; |
| 406 | /// } |
| 407 | /// if (isNegativePower) { |
| 408 | /// result = Tb{1} / result; |
| 409 | /// } |
| 410 | /// return result; |
| 411 | /// } |
| 412 | static func::FuncOp createElementFPowIFunc(ModuleOp *module, |
| 413 | FunctionType funcType) { |
| 414 | auto baseType = cast<FloatType>(funcType.getInput(0)); |
| 415 | auto powType = cast<IntegerType>(funcType.getInput(1)); |
| 416 | ImplicitLocOpBuilder builder = |
| 417 | ImplicitLocOpBuilder::atBlockEnd(loc: module->getLoc(), block: module->getBody()); |
| 418 | |
| 419 | std::string funcName("__mlir_math_fpowi" ); |
| 420 | llvm::raw_string_ostream nameOS(funcName); |
| 421 | nameOS << '_' << baseType; |
| 422 | nameOS << '_' << powType; |
| 423 | auto funcOp = builder.create<func::FuncOp>(funcName, funcType); |
| 424 | LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR; |
| 425 | Attribute linkage = |
| 426 | LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage); |
| 427 | funcOp->setAttr("llvm.linkage" , linkage); |
| 428 | funcOp.setPrivate(); |
| 429 | |
| 430 | Block *entryBlock = funcOp.addEntryBlock(); |
| 431 | Region *funcBody = entryBlock->getParent(); |
| 432 | |
| 433 | Value bArg = funcOp.getArgument(0); |
| 434 | Value pArg = funcOp.getArgument(1); |
| 435 | builder.setInsertionPointToEnd(entryBlock); |
| 436 | Value oneBValue = builder.create<arith::ConstantOp>( |
| 437 | baseType, builder.getFloatAttr(baseType, 1.0)); |
| 438 | Value zeroPValue = builder.create<arith::ConstantOp>( |
| 439 | powType, builder.getIntegerAttr(powType, 0)); |
| 440 | Value onePValue = builder.create<arith::ConstantOp>( |
| 441 | powType, builder.getIntegerAttr(powType, 1)); |
| 442 | Value minPValue = builder.create<arith::ConstantOp>( |
| 443 | powType, builder.getIntegerAttr(powType, llvm::APInt::getSignedMinValue( |
| 444 | powType.getWidth()))); |
| 445 | Value maxPValue = builder.create<arith::ConstantOp>( |
| 446 | powType, builder.getIntegerAttr(powType, llvm::APInt::getSignedMaxValue( |
| 447 | powType.getWidth()))); |
| 448 | |
| 449 | // if (p == Tp{0}) |
| 450 | // return Tb{1}; |
| 451 | auto pIsZero = |
| 452 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, pArg, zeroPValue); |
| 453 | Block *thenBlock = builder.createBlock(parent: funcBody); |
| 454 | builder.create<func::ReturnOp>(oneBValue); |
| 455 | Block *fallthroughBlock = builder.createBlock(parent: funcBody); |
| 456 | // Set up conditional branch for (p == Tp{0}). |
| 457 | builder.setInsertionPointToEnd(pIsZero->getBlock()); |
| 458 | builder.create<cf::CondBranchOp>(pIsZero, thenBlock, fallthroughBlock); |
| 459 | |
| 460 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 461 | // bool isNegativePower{p < Tp{0}} |
| 462 | auto pIsNeg = builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, pArg, |
| 463 | zeroPValue); |
| 464 | // bool isMin{p == std::numeric_limits<Tp>::min()}; |
| 465 | auto pIsMin = |
| 466 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, pArg, minPValue); |
| 467 | |
| 468 | // if (isMin) { |
| 469 | // p = std::numeric_limits<Tp>::max(); |
| 470 | // } else if (isNegativePower) { |
| 471 | // p = -p; |
| 472 | // } |
| 473 | Value negP = builder.create<arith::SubIOp>(zeroPValue, pArg); |
| 474 | auto pInit = builder.create<arith::SelectOp>(pIsNeg, negP, pArg); |
| 475 | pInit = builder.create<arith::SelectOp>(pIsMin, maxPValue, pInit); |
| 476 | |
| 477 | // Tb result = Tb{1}; |
| 478 | // Tb origBase = Tb{b}; |
| 479 | // while (true) { |
| 480 | // if (p & Tp{1}) |
| 481 | // result *= b; |
| 482 | // p >>= Tp{1}; |
| 483 | // if (p == Tp{0}) |
| 484 | // break; |
| 485 | // b *= b; |
| 486 | // } |
| 487 | Block * = builder.createBlock( |
| 488 | funcBody, funcBody->end(), {baseType, baseType, powType}, |
| 489 | {builder.getLoc(), builder.getLoc(), builder.getLoc()}); |
| 490 | // Set initial values of 'result', 'b' and 'p' for the loop. |
| 491 | builder.setInsertionPointToEnd(pInit->getBlock()); |
| 492 | builder.create<cf::BranchOp>(loopHeader, ValueRange{oneBValue, bArg, pInit}); |
| 493 | |
| 494 | // Create loop body. |
| 495 | Value resultTmp = loopHeader->getArgument(i: 0); |
| 496 | Value baseTmp = loopHeader->getArgument(i: 1); |
| 497 | Value powerTmp = loopHeader->getArgument(i: 2); |
| 498 | builder.setInsertionPointToEnd(loopHeader); |
| 499 | |
| 500 | // if (p & Tp{1}) |
| 501 | auto powerTmpIsOdd = builder.create<arith::CmpIOp>( |
| 502 | arith::CmpIPredicate::ne, |
| 503 | builder.create<arith::AndIOp>(powerTmp, onePValue), zeroPValue); |
| 504 | thenBlock = builder.createBlock(parent: funcBody); |
| 505 | // result *= b; |
| 506 | Value newResultTmp = builder.create<arith::MulFOp>(resultTmp, baseTmp); |
| 507 | fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), baseType, |
| 508 | builder.getLoc()); |
| 509 | builder.setInsertionPointToEnd(thenBlock); |
| 510 | builder.create<cf::BranchOp>(newResultTmp, fallthroughBlock); |
| 511 | // Set up conditional branch for (p & Tp{1}). |
| 512 | builder.setInsertionPointToEnd(powerTmpIsOdd->getBlock()); |
| 513 | builder.create<cf::CondBranchOp>(powerTmpIsOdd, thenBlock, fallthroughBlock, |
| 514 | resultTmp); |
| 515 | // Merged 'result'. |
| 516 | newResultTmp = fallthroughBlock->getArgument(i: 0); |
| 517 | |
| 518 | // p >>= Tp{1}; |
| 519 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 520 | Value newPowerTmp = builder.create<arith::ShRUIOp>(powerTmp, onePValue); |
| 521 | |
| 522 | // if (p == Tp{0}) |
| 523 | auto newPowerIsZero = builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, |
| 524 | newPowerTmp, zeroPValue); |
| 525 | // break; |
| 526 | // |
| 527 | // The conditional branch is finalized below with a jump to |
| 528 | // the loop exit block. |
| 529 | fallthroughBlock = builder.createBlock(parent: funcBody); |
| 530 | |
| 531 | // b *= b; |
| 532 | // } |
| 533 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 534 | Value newBaseTmp = builder.create<arith::MulFOp>(baseTmp, baseTmp); |
| 535 | // Pass new values for 'result', 'b' and 'p' to the loop header. |
| 536 | builder.create<cf::BranchOp>( |
| 537 | ValueRange{newResultTmp, newBaseTmp, newPowerTmp}, loopHeader); |
| 538 | |
| 539 | // Set up conditional branch for early loop exit: |
| 540 | // if (p == Tp{0}) |
| 541 | // break; |
| 542 | Block *loopExit = builder.createBlock(funcBody, funcBody->end(), baseType, |
| 543 | builder.getLoc()); |
| 544 | builder.setInsertionPointToEnd(newPowerIsZero->getBlock()); |
| 545 | builder.create<cf::CondBranchOp>(newPowerIsZero, loopExit, newResultTmp, |
| 546 | fallthroughBlock, ValueRange{}); |
| 547 | |
| 548 | // if (isMin) { |
| 549 | // result *= origBase; |
| 550 | // } |
| 551 | newResultTmp = loopExit->getArgument(i: 0); |
| 552 | thenBlock = builder.createBlock(parent: funcBody); |
| 553 | fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), baseType, |
| 554 | builder.getLoc()); |
| 555 | builder.setInsertionPointToEnd(loopExit); |
| 556 | builder.create<cf::CondBranchOp>(pIsMin, thenBlock, fallthroughBlock, |
| 557 | newResultTmp); |
| 558 | builder.setInsertionPointToEnd(thenBlock); |
| 559 | newResultTmp = builder.create<arith::MulFOp>(newResultTmp, bArg); |
| 560 | builder.create<cf::BranchOp>(newResultTmp, fallthroughBlock); |
| 561 | |
| 562 | /// if (isNegativePower) { |
| 563 | /// result = Tb{1} / result; |
| 564 | /// } |
| 565 | newResultTmp = fallthroughBlock->getArgument(i: 0); |
| 566 | thenBlock = builder.createBlock(parent: funcBody); |
| 567 | Block *returnBlock = builder.createBlock(funcBody, funcBody->end(), baseType, |
| 568 | builder.getLoc()); |
| 569 | builder.setInsertionPointToEnd(fallthroughBlock); |
| 570 | builder.create<cf::CondBranchOp>(pIsNeg, thenBlock, returnBlock, |
| 571 | newResultTmp); |
| 572 | builder.setInsertionPointToEnd(thenBlock); |
| 573 | newResultTmp = builder.create<arith::DivFOp>(oneBValue, newResultTmp); |
| 574 | builder.create<cf::BranchOp>(newResultTmp, returnBlock); |
| 575 | |
| 576 | // return result; |
| 577 | builder.setInsertionPointToEnd(returnBlock); |
| 578 | builder.create<func::ReturnOp>(returnBlock->getArgument(0)); |
| 579 | |
| 580 | return funcOp; |
| 581 | } |
| 582 | |
| 583 | /// Convert FPowI into a call to a local function implementing |
| 584 | /// the power operation. The local function computes a scalar result, |
| 585 | /// so vector forms of FPowI are linearized. |
| 586 | LogicalResult |
| 587 | FPowIOpLowering::matchAndRewrite(math::FPowIOp op, |
| 588 | PatternRewriter &rewriter) const { |
| 589 | if (isa<VectorType>(op.getType())) |
| 590 | return rewriter.notifyMatchFailure(op, "non-scalar operation" ); |
| 591 | |
| 592 | FunctionType funcType = getElementalFuncTypeForOp(op); |
| 593 | |
| 594 | // The outlined software implementation must have been already |
| 595 | // generated. |
| 596 | func::FuncOp elementFunc = getFuncOpCallback(op, funcType); |
| 597 | if (!elementFunc) |
| 598 | return rewriter.notifyMatchFailure(op, "missing software implementation" ); |
| 599 | |
| 600 | rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperands()); |
| 601 | return success(); |
| 602 | } |
| 603 | |
| 604 | /// Create function to implement the ctlz function the given \p elementType type |
| 605 | /// inside \p module. The \p elementType must be IntegerType, an the created |
| 606 | /// function has 'IntegerType (*)(IntegerType)' function type. |
| 607 | /// |
| 608 | /// template <typename T> |
| 609 | /// T __mlir_math_ctlz_*(T x) { |
| 610 | /// bits = sizeof(x) * 8; |
| 611 | /// if (x == 0) |
| 612 | /// return bits; |
| 613 | /// |
| 614 | /// uint32_t n = 0; |
| 615 | /// for (int i = 1; i < bits; ++i) { |
| 616 | /// if (x < 0) continue; |
| 617 | /// n++; |
| 618 | /// x <<= 1; |
| 619 | /// } |
| 620 | /// return n; |
| 621 | /// } |
| 622 | /// |
| 623 | /// Converts to (for i32): |
| 624 | /// |
| 625 | /// func.func private @__mlir_math_ctlz_i32(%arg: i32) -> i32 { |
| 626 | /// %c_32 = arith.constant 32 : index |
| 627 | /// %c_0 = arith.constant 0 : i32 |
| 628 | /// %arg_eq_zero = arith.cmpi eq, %arg, %c_0 : i1 |
| 629 | /// %out = scf.if %arg_eq_zero { |
| 630 | /// scf.yield %c_32 : i32 |
| 631 | /// } else { |
| 632 | /// %c_1index = arith.constant 1 : index |
| 633 | /// %c_1i32 = arith.constant 1 : i32 |
| 634 | /// %n = arith.constant 0 : i32 |
| 635 | /// %arg_out, %n_out = scf.for %i = %c_1index to %c_32 step %c_1index |
| 636 | /// iter_args(%arg_iter = %arg, %n_iter = %n) -> (i32, i32) { |
| 637 | /// %cond = arith.cmpi slt, %arg_iter, %c_0 : i32 |
| 638 | /// %yield_val = scf.if %cond { |
| 639 | /// scf.yield %arg_iter, %n_iter : i32, i32 |
| 640 | /// } else { |
| 641 | /// %arg_next = arith.shli %arg_iter, %c_1i32 : i32 |
| 642 | /// %n_next = arith.addi %n_iter, %c_1i32 : i32 |
| 643 | /// scf.yield %arg_next, %n_next : i32, i32 |
| 644 | /// } |
| 645 | /// scf.yield %yield_val: i32, i32 |
| 646 | /// } |
| 647 | /// scf.yield %n_out : i32 |
| 648 | /// } |
| 649 | /// return %out: i32 |
| 650 | /// } |
| 651 | static func::FuncOp createCtlzFunc(ModuleOp *module, Type elementType) { |
| 652 | if (!isa<IntegerType>(Val: elementType)) { |
| 653 | LLVM_DEBUG({ |
| 654 | DBGS() << "non-integer element type for CtlzFunc; type was: " ; |
| 655 | elementType.print(llvm::dbgs()); |
| 656 | }); |
| 657 | llvm_unreachable("non-integer element type" ); |
| 658 | } |
| 659 | int64_t bitWidth = elementType.getIntOrFloatBitWidth(); |
| 660 | |
| 661 | Location loc = module->getLoc(); |
| 662 | ImplicitLocOpBuilder builder = |
| 663 | ImplicitLocOpBuilder::atBlockEnd(loc, block: module->getBody()); |
| 664 | |
| 665 | std::string funcName("__mlir_math_ctlz" ); |
| 666 | llvm::raw_string_ostream nameOS(funcName); |
| 667 | nameOS << '_' << elementType; |
| 668 | FunctionType funcType = |
| 669 | FunctionType::get(builder.getContext(), {elementType}, elementType); |
| 670 | auto funcOp = builder.create<func::FuncOp>(funcName, funcType); |
| 671 | |
| 672 | // LinkonceODR ensures that there is only one implementation of this function |
| 673 | // across all math.ctlz functions that are lowered in this way. |
| 674 | LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR; |
| 675 | Attribute linkage = |
| 676 | LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage); |
| 677 | funcOp->setAttr("llvm.linkage" , linkage); |
| 678 | funcOp.setPrivate(); |
| 679 | |
| 680 | // set the insertion point to the start of the function |
| 681 | Block *funcBody = funcOp.addEntryBlock(); |
| 682 | builder.setInsertionPointToStart(funcBody); |
| 683 | |
| 684 | Value arg = funcOp.getArgument(0); |
| 685 | Type indexType = builder.getIndexType(); |
| 686 | Value bitWidthValue = builder.create<arith::ConstantOp>( |
| 687 | elementType, builder.getIntegerAttr(elementType, bitWidth)); |
| 688 | Value zeroValue = builder.create<arith::ConstantOp>( |
| 689 | elementType, builder.getIntegerAttr(elementType, 0)); |
| 690 | |
| 691 | Value inputEqZero = |
| 692 | builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, arg, zeroValue); |
| 693 | |
| 694 | // if input == 0, return bit width, else enter loop. |
| 695 | scf::IfOp ifOp = builder.create<scf::IfOp>( |
| 696 | elementType, inputEqZero, /*addThenBlock=*/true, /*addElseBlock=*/true); |
| 697 | ifOp.getThenBodyBuilder().create<scf::YieldOp>(loc, bitWidthValue); |
| 698 | |
| 699 | auto elseBuilder = |
| 700 | ImplicitLocOpBuilder::atBlockEnd(loc, block: &ifOp.getElseRegion().front()); |
| 701 | |
| 702 | Value oneIndex = elseBuilder.create<arith::ConstantOp>( |
| 703 | indexType, elseBuilder.getIndexAttr(1)); |
| 704 | Value oneValue = elseBuilder.create<arith::ConstantOp>( |
| 705 | elementType, elseBuilder.getIntegerAttr(elementType, 1)); |
| 706 | Value bitWidthIndex = elseBuilder.create<arith::ConstantOp>( |
| 707 | indexType, elseBuilder.getIndexAttr(bitWidth)); |
| 708 | Value nValue = elseBuilder.create<arith::ConstantOp>( |
| 709 | elementType, elseBuilder.getIntegerAttr(elementType, 0)); |
| 710 | |
| 711 | auto loop = elseBuilder.create<scf::ForOp>( |
| 712 | oneIndex, bitWidthIndex, oneIndex, |
| 713 | // Initial values for two loop induction variables, the arg which is being |
| 714 | // shifted left in each iteration, and the n value which tracks the count |
| 715 | // of leading zeros. |
| 716 | ValueRange{arg, nValue}, |
| 717 | // Callback to build the body of the for loop |
| 718 | // if (arg < 0) { |
| 719 | // continue; |
| 720 | // } else { |
| 721 | // n++; |
| 722 | // arg <<= 1; |
| 723 | // } |
| 724 | [&](OpBuilder &b, Location loc, Value iv, ValueRange args) { |
| 725 | Value argIter = args[0]; |
| 726 | Value nIter = args[1]; |
| 727 | |
| 728 | Value argIsNonNegative = b.create<arith::CmpIOp>( |
| 729 | loc, arith::CmpIPredicate::slt, argIter, zeroValue); |
| 730 | scf::IfOp ifOp = b.create<scf::IfOp>( |
| 731 | loc, argIsNonNegative, |
| 732 | [&](OpBuilder &b, Location loc) { |
| 733 | // If arg is negative, continue (effectively, break) |
| 734 | b.create<scf::YieldOp>(loc, ValueRange{argIter, nIter}); |
| 735 | }, |
| 736 | [&](OpBuilder &b, Location loc) { |
| 737 | // Otherwise, increment n and shift arg left. |
| 738 | Value nNext = b.create<arith::AddIOp>(loc, nIter, oneValue); |
| 739 | Value argNext = b.create<arith::ShLIOp>(loc, argIter, oneValue); |
| 740 | b.create<scf::YieldOp>(loc, ValueRange{argNext, nNext}); |
| 741 | }); |
| 742 | b.create<scf::YieldOp>(loc, ifOp.getResults()); |
| 743 | }); |
| 744 | elseBuilder.create<scf::YieldOp>(loop.getResult(1)); |
| 745 | |
| 746 | builder.create<func::ReturnOp>(ifOp.getResult(0)); |
| 747 | return funcOp; |
| 748 | } |
| 749 | |
| 750 | /// Convert ctlz into a call to a local function implementing the ctlz |
| 751 | /// operation. |
| 752 | LogicalResult CtlzOpLowering::matchAndRewrite(math::CountLeadingZerosOp op, |
| 753 | PatternRewriter &rewriter) const { |
| 754 | if (isa<VectorType>(op.getType())) |
| 755 | return rewriter.notifyMatchFailure(op, "non-scalar operation" ); |
| 756 | |
| 757 | Type type = getElementTypeOrSelf(op.getResult().getType()); |
| 758 | func::FuncOp elementFunc = getFuncOpCallback(op, type); |
| 759 | if (!elementFunc) |
| 760 | return rewriter.notifyMatchFailure(op, [&](::mlir::Diagnostic &diag) { |
| 761 | diag << "Missing software implementation for op " << op->getName() |
| 762 | << " and type " << type; |
| 763 | }); |
| 764 | |
| 765 | rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperand()); |
| 766 | return success(); |
| 767 | } |
| 768 | |
| 769 | namespace { |
| 770 | struct ConvertMathToFuncsPass |
| 771 | : public impl::ConvertMathToFuncsBase<ConvertMathToFuncsPass> { |
| 772 | ConvertMathToFuncsPass() = default; |
| 773 | ConvertMathToFuncsPass(const ConvertMathToFuncsOptions &options) |
| 774 | : impl::ConvertMathToFuncsBase<ConvertMathToFuncsPass>(options) {} |
| 775 | |
| 776 | void runOnOperation() override; |
| 777 | |
| 778 | private: |
| 779 | // Return true, if this FPowI operation must be converted |
| 780 | // because the width of its exponent's type is greater than |
| 781 | // or equal to minWidthOfFPowIExponent option value. |
| 782 | bool isFPowIConvertible(math::FPowIOp op); |
| 783 | |
| 784 | // Reture true, if operation is integer type. |
| 785 | bool isConvertible(Operation *op); |
| 786 | |
| 787 | // Generate outlined implementations for power operations |
| 788 | // and store them in funcImpls map. |
| 789 | void generateOpImplementations(); |
| 790 | |
| 791 | // A map between pairs of (operation, type) deduced from operations that this |
| 792 | // pass will convert, and the corresponding outlined software implementations |
| 793 | // of these operations for the given type. |
| 794 | DenseMap<std::pair<OperationName, Type>, func::FuncOp> funcImpls; |
| 795 | }; |
| 796 | } // namespace |
| 797 | |
| 798 | bool ConvertMathToFuncsPass::isFPowIConvertible(math::FPowIOp op) { |
| 799 | auto expTy = |
| 800 | dyn_cast<IntegerType>(getElementTypeOrSelf(op.getRhs().getType())); |
| 801 | return (expTy && expTy.getWidth() >= minWidthOfFPowIExponent); |
| 802 | } |
| 803 | |
| 804 | bool ConvertMathToFuncsPass::isConvertible(Operation *op) { |
| 805 | return isa<IntegerType>(Val: getElementTypeOrSelf(type: op->getResult(idx: 0).getType())); |
| 806 | } |
| 807 | |
| 808 | void ConvertMathToFuncsPass::generateOpImplementations() { |
| 809 | ModuleOp module = getOperation(); |
| 810 | |
| 811 | module.walk([&](Operation *op) { |
| 812 | TypeSwitch<Operation *>(op) |
| 813 | .Case<math::CountLeadingZerosOp>([&](math::CountLeadingZerosOp op) { |
| 814 | if (!convertCtlz || !isConvertible(op)) |
| 815 | return; |
| 816 | Type resultType = getElementTypeOrSelf(op.getResult().getType()); |
| 817 | |
| 818 | // Generate the software implementation of this operation, |
| 819 | // if it has not been generated yet. |
| 820 | auto key = std::pair(op->getName(), resultType); |
| 821 | auto entry = funcImpls.try_emplace(key, func::FuncOp{}); |
| 822 | if (entry.second) |
| 823 | entry.first->second = createCtlzFunc(&module, resultType); |
| 824 | }) |
| 825 | .Case<math::IPowIOp>([&](math::IPowIOp op) { |
| 826 | if (!isConvertible(op)) |
| 827 | return; |
| 828 | |
| 829 | Type resultType = getElementTypeOrSelf(op.getResult().getType()); |
| 830 | |
| 831 | // Generate the software implementation of this operation, |
| 832 | // if it has not been generated yet. |
| 833 | auto key = std::pair(op->getName(), resultType); |
| 834 | auto entry = funcImpls.try_emplace(key, func::FuncOp{}); |
| 835 | if (entry.second) |
| 836 | entry.first->second = createElementIPowIFunc(&module, resultType); |
| 837 | }) |
| 838 | .Case<math::FPowIOp>([&](math::FPowIOp op) { |
| 839 | if (!isFPowIConvertible(op)) |
| 840 | return; |
| 841 | |
| 842 | FunctionType funcType = getElementalFuncTypeForOp(op); |
| 843 | |
| 844 | // Generate the software implementation of this operation, |
| 845 | // if it has not been generated yet. |
| 846 | // FPowI implementations are mapped via the FunctionType |
| 847 | // created from the operation's result and operands. |
| 848 | auto key = std::pair(op->getName(), funcType); |
| 849 | auto entry = funcImpls.try_emplace(key, func::FuncOp{}); |
| 850 | if (entry.second) |
| 851 | entry.first->second = createElementFPowIFunc(&module, funcType); |
| 852 | }); |
| 853 | }); |
| 854 | } |
| 855 | |
| 856 | void ConvertMathToFuncsPass::runOnOperation() { |
| 857 | ModuleOp module = getOperation(); |
| 858 | |
| 859 | // Create outlined implementations for power operations. |
| 860 | generateOpImplementations(); |
| 861 | |
| 862 | RewritePatternSet patterns(&getContext()); |
| 863 | patterns.add<VecOpToScalarOp<math::IPowIOp>, VecOpToScalarOp<math::FPowIOp>, |
| 864 | VecOpToScalarOp<math::CountLeadingZerosOp>>( |
| 865 | patterns.getContext()); |
| 866 | |
| 867 | // For the given Type Returns FuncOp stored in funcImpls map. |
| 868 | auto getFuncOpByType = [&](Operation *op, Type type) -> func::FuncOp { |
| 869 | auto it = funcImpls.find(std::pair(op->getName(), type)); |
| 870 | if (it == funcImpls.end()) |
| 871 | return {}; |
| 872 | |
| 873 | return it->second; |
| 874 | }; |
| 875 | patterns.add<IPowIOpLowering, FPowIOpLowering>(patterns.getContext(), |
| 876 | getFuncOpByType); |
| 877 | |
| 878 | if (convertCtlz) |
| 879 | patterns.add<CtlzOpLowering>(patterns.getContext(), getFuncOpByType); |
| 880 | |
| 881 | ConversionTarget target(getContext()); |
| 882 | target.addLegalDialect<arith::ArithDialect, cf::ControlFlowDialect, |
| 883 | func::FuncDialect, scf::SCFDialect, |
| 884 | vector::VectorDialect>(); |
| 885 | |
| 886 | target.addDynamicallyLegalOp<math::IPowIOp>( |
| 887 | [this](math::IPowIOp op) { return !isConvertible(op); }); |
| 888 | if (convertCtlz) { |
| 889 | target.addDynamicallyLegalOp<math::CountLeadingZerosOp>( |
| 890 | [this](math::CountLeadingZerosOp op) { return !isConvertible(op); }); |
| 891 | } |
| 892 | target.addDynamicallyLegalOp<math::FPowIOp>( |
| 893 | [this](math::FPowIOp op) { return !isFPowIConvertible(op); }); |
| 894 | if (failed(applyPartialConversion(module, target, std::move(patterns)))) |
| 895 | signalPassFailure(); |
| 896 | } |
| 897 | |